HomeMy WebLinkAboutAPA1427\
'
SUSITNA HYDROELECTRIC PROJECT
FISHERIES MITIGATION OPTIONS
REVISED (MARCH) 1982)
{
DRAFT
TABLE OF CONTENTS
I. Introduction--------------------------------------------l
II. Loss of grayling habitat in the impoundment zones--------2
III. Dissolved gas supersaturation downstream of the Watana
and Devil Canyon reservoirs and in the Devil Canyon
reservoir-----------------------------------------------5
IV. Alteration of the natural temperature regime of the water
downstream of the dam-----------------------------------13
V. Altered flow regime in the reach of river between Devil
Canyon and the Chulitna River confluence----------------29
VI. Downstream impacts on the fisheries resources of the Susitna
River below the confluences of the Talkeetna and Chulitna
rivers--------------------------------------------------38
DRAFT
INTRODUCTION
Hitigation alternatives for impacts associated with the Susitna Hydroelectric
Project can be divided into the categories avoid, minimize, rectify, reduce or
eliminate, or compensate. However, except for a few very clear, well defined
alternatives the placement into one or another of these categories may be very
subjective. The intent of this report is to describe, in detail available at
this time, the various choices that exist for mitigation of impacts that are
believed feasible at this time. The technology is available to accomplish any
or all of the mitigation techniques described or mentioned. Hitigation
techniques described in one section may also be suitable for other impacts.
However, for the purpose of this report, repetition of description has been
avoided as much as possible. For example: temperature control is discussed
in detail in the section on temperature impacts, but it also may be an
integral part of other impact mitigation techniques.
In summary, all mitigation options are viewed as reasonable and possible at
this point in time. Additional studies are planned, or being planned, that
will add information that will be useful in selecting the most appropriate
mitigation method. These studies include the cost of the options, and their
conflict with other project objectives.
DRAFT
IMPACT: Loss of grayling habitat in the impoundment areas.
The creation of the Watana and Devil Canyon impoundments will cause the
inundation of the mainstem Susitna River and reaches of the tributaries in the
impoundment area below the high water (full reservoir) elevation. The tribu-
taries of the Susitna provide grayling habitat in the impoundment zones,
supporting approximately 10,000 grayling (ADF&G, 1981). The mainstem Susitna
has useful habitat areas in clearwater zones, usually associated with stream
mouths. The stream reaches above the high water mark should not be affected
negatively. A positive impact for grayling in the stream reaches above the
impoundments could come from the reservoirs providing an abundance of over-
wintering area, if overwintering habitat is population limiting.
A secondary impact, increased fishing pressure, could be caused by the con-
struction personnel working on the project and increased access after the
project is operational. Grayling are sensitive to fishing pressure and the
populations may not respond well to increased sport fishing pressure.
MITIGATION: Avoiding, minimizing, or reducing the impact on the grayling
fishery in the impoundment zones all have project limiting implications. They
would all include such options as lowering the height of the dams, relocating
the dams, or possibly building only one of the dams. Inasmuch as both dams
are needed for the project to be viable, and other more suitable dam locations
are not as viable economically and/or environmentally other mitigation options
will be more viable. The most practical mitigation methods appear to be
associated with management and enhancement of fishery resources. The
reservoirs' fishery potential is not completely predictable. However, based
on the water quality report (Peterson, 1981) and the reservoir sedimention
report (R&M, 1981) some potential may exist for a limited fishery in the
Watana reservoir. Additional areas that may be investigated for mitigation of
the sport fishery resource that will be lost to inundation include any barren
clearwater lakes and streams in the Susitna drainage for their potential for
providing a viable sport fishery. It is probable that any clearwater lakes,
or streams, that have potential already have fish resources in them. There-
fore, although this should be investigated, it is not probable that this will
be the most viable option.
-2-
DRAFT
The reach of the Susitna mainstem between Devil Canyon and the Chulitna River
confluence should also be evaluated in light of the postproject conditions
that will exist there. The potential for developing a downstream fishery, in
the Devil Canyon to the Chulitna confluence section, is contingent upon the
water quality conditions that exist in the postproject period. The post-
project water quality conditions will be an improvement over the current
summer conditions. A reduction in the solids and turbidity during the summer
will result from settling of solids in the reservoirs (R&M, 1981). Also,
other mitigative measures associated with controlling the temperature of the
discharged water and the flow rates from the project are necessary to develop
a sport fishery in this region. These measures are described in other
sections of this report. If the proper downstream flow criteria could be met
and if the turbidity of this reach of the Susitna is similar to the conditions
of the Kenai River, it is possible that substantial improvement in the chinook
and coho salmon populations in the Susitna mainstem could occur. Continued
and future investigations may further define the potential of this area.
These investigations should be designed to provide very specific information
about the future possibility of increasing the production of this stretch of
river.
Mitigation of reservoir impoundment impacts on the fishery resources could
also be accomplished by increasing the fishery resources in other areas,
outside the Susitna drainage. However, several lakes in the Susitna drainage
have been identified as having potential for increased production of one or
more species of salmon. Larson Lake, an 800 acre lake near Talkeetna is a
candidate for fertilization, as is Shell Lake, a l ,000 acre lake on the
Skwentna, and Byers Lake, a 400 acre lake on the Chulitna drainage. These
lakes have been identified as having the potential for increased sockeye
production. Finger, Delyndia, and Butterfly lakes have also been identified
as lakes that may have increased fishery production potential for additional
coho salmon.
Increased fishing pressure, caused by construction personnel, can be mitigated
for in the writing of the labor contract. The contract can be written in such
-3-
DRAFT
a fashion that fishing is prohibited. This would probably be more effective
than trying to control fishing through regulation. Regulation control will
probably be required when general public access is provided.
The loss of grayling habitat, because of the uncertainty of the reservoir
potential, should be considered for mitigation outside of the reservoir areas
at this time. In the future, when more is known about the postproject
reservoir conditions this view might change. The technology is available to
enhance the fishery in other areas, such as the ones previously mentioned.
However, because the loss is primarily of a sport fishery nature, the miti-
gation efforts should, most appropriately be directed toward the enhancement
of other sport fishery resources. Increased coho and chinook production in
the regions previously discussed could satisfy that goal.
-4-
DRAFT
IMPACT: Dissolved gas supersaturation downstream of the Watana and Devil
Canyon reservoirs and in the Devil Canyon reservoir.
Nitrogen and oxygen supersaturation downstream of hydroelectric developments
can be a problem for fish survival. Gas bubble disease can be caused below
dams by total gas supersaturation of about 116 percent. The gas embolism that
accompanies this condition occurs when a fish swims near the surface of the
river or reservoir where the hydrostatic pressure is less than the pressure
required to keep the excess gas in solution. As a result, the gas comes out
of solution in the gills and bloodstream causing small bubbles to form in the
circulatory system of the fish. If the embolism is sufficiently severe, the
fish will die directly from the gas bubble disease. In the milder cases, the
fish often dies from secondary infections which set in the damaged tissues.
As large volumes of water spill over a dam into a stilling basin below, air
bubbles are entrained and plunged with the main flow deep into the stilling
basin. Here, the gas, under high pressure is driven into solution in the
water causing a supersaturated condition to exist. The excess gas is not
easily liberated from the water. Should a slackwater condition exist down-
stream, as in another impoundment, the supersaturated condition will exist
through the entire slackwater pool and be passed along downstream, In
addition, Alaska statutes call for dissolved gas concentrations no higher than
110%. These levels are exceeded under natural conditions downstream of Devil
Canyon during the summer.
This problem was recognized early in the design of the Susitna project. In
addition, the sequence of development, Watana first then Devil Canyon nine (9)
years later, has to be considered in mitigating this impact. Thus, gas
supersaturation mitigation is incorporated in the design of both the Watana
and Devil Canyon dams.
MITIGATION: The mitigation alternatives that can be used to avoid or minimize
nitrogen supersaturation impacts are associated with operational modifications
and design of the spilling structures. The following information explains the
-5-
DRAFT
techniques that have been incorporated to avoid dissolved gas supersaturation
at the Watana and Devil Canyon developments.
l. Watana
a. Spill Frequency
Several operational procedures for power production were studies to
minimize the frequency of spilling from the Watana reservoir. A
simulation of monthly reservoir operation over a period of 32 years
of recorded streamflow has been carried out (Appendix A1). The
results indicate that the Watana reservoir would spill only rarely,
once, in say, 30 years (See Table 1).
b. Spill Discharge
On the basis of monthly simulation (Table 1), the spill rates are
estimated to be around 2,300 cfs averaged over one month peri~d. To
take account of shorter duration summer floods when spills occur, a
flood routing analysis was carried out to estimate peak discharges
from the dams.
c. Design and Operation of Outlet Works
In consultation with the fisheries study team, it was decided that
spills from the reservoir up to 1:50 year recurrence frequency
should be discharged in such a manner as to reduce the potential of
nitrogen supersaturaion in the spill discharge and the river flow
downstream. Special facilities incorporating fixed-cone valves
(Figure 1) have been designed to cater to this requirement. These
vall,tes are designed to disperse and break upstream the discharge
into small droplets which fall into the river water below with
little plunging. For description of the values refer to Volume 1 of
main report. It is expected that nitrogen levels in spill dis-
charges will be reduced below about 110% by these facilities. It
-6-
V\'-'}<-:-, ' I ... sriLL .. r.FJI.-~---~·-· _· ... ___ _: __ ·. --~-· _' __ · ~:_--~···-·-----·. /fll'<j Juv .1.( j)tq S.,;;l. . ·1----•0.... a a .. Q • a a. o a. a o.._n ___ o •. 0----'"-• o .... n o •. o ___ o .... o _________ ---~ ··--·-·-----· ·' o.O o,o .-·-··· 61d ... -,! (hO \ · O;Q ·· od) ·.. o.i> o,Q · ·1).1) o,o d.o ·· o.o o,o cl.o Ot<1 010 o,O OJCJ • CJ,O. O.U thO o.o o,o o.o :.~----·-g:g ---~:~·-----~:g-·--· ~:g-r---~:~-----·~:~--.... ~:~-·-· ~.:~-~.-~;;_~:~·!·--·~:~-~---·· ~:~ ·---~:g···.' I" o.o o.o o.o o.o o,o o.o-. o.o o,o o.o o,<l o.o o.o ,, Q,_O o& a 0 I 0 () I 0 0 I 0 0 I o ___ o I 0 0 I 0 :...a.D !) I 0 !) t 0 .._n..__ ___ ••·-,,-.,-------· 11 o.o.·r.· o,o·-···:~'bJo,·.~~~·'OlO".' '1 O,o···~:.ridi ·:~·~_.·o,(l U,o<··_,)_:·!o;b:•··.1·.o,cl (.1,() OiO o.o ·· o~o --~-:~o.<l'·;l: Uitl .. · .. o.u ~o.o ·· .· o.o. o.d ·.,·:}~~ OiO::·· .. o.<, o,o o,o 0 0 0 0 n n ·. ·. · n n · n n · · n 0 · · Q · (i ·. · · n Q_ ·.• ., .. (\ i1 .. · _jl " · Q_ 0 n n · I.··---· I .. ··----l:,•1!_ .. _._\d\~-----'!.Jl .. .:.-~.~..,~t ... ···-~-~-t ---·-~-VJ ..• _. __ -•.\.!.,._:..~ . ..:. •. ·'"-····-J.-------l!IY ._ _ ··~---· Nov bt=c... Jf!..> F£b . ffkw c8-/ipt •.. 'I 0. 0 0 • 0 I) I 0 0 f 0 0. 0 0 ,I) I). 0 0. 0 0. 0 0 I 0 0. 0 0. (l ,._ o.o Q,O o.o o.o· o.o o,Q o.o o,o o.o o,o o.<• o.o 1-. --ll)-Qt..() ___ ...fiJ .. Q-~_O....LQ ~ ,.-. OJ.~Jl_d~-~~t.Q----~-t.fl. ___ J2.J..Q .. -~J..q _. ' 0-t {!J...{I ___ Q_t..{L_ _______ ,_, ____________________ . p:: Q,O .. ,. 010 . o.o·:··::\:•,0•0 ·~ ~.0 ·. O,O 01() <lJO t.,··:1::· OtO ·;: 0.0,. O.<l ·.· o,o /0 <J; o~o :·. o.o -~-·-.:': l>.o -,· __ ·: ... ,;-q;d :_ .'.: ~,o :··: ;·-~-tLo ·-· o,~ . · o.1. :---~:· .. hi~ .__·· : .. -~d> :-·_: thO 'O•o -·,, .•. ·J:Y __ o 1 o _._·_o, o . ...:.:......:._o .•. L~.J.D .• _._._n. o .. _· __ .. JJ ._o _______ o • o ~~u t.o.....L:..:;.;_b_, L-··--_O.t.!J_, __ ._. _OJ.d ___ o ,_o ______________ -·---------.. __ >-t o.o Q,Q Q,O Q10 o,o Q,O Q,Q o,Q Q,O c),Q c),O o,o • o,o o,o o,o o,o o,o o,O (ltO o,o o,o 0,0 <loO Q,O ·' _____ o 1 o ___ o_,_.o ___ .,...o ,_o ___ ..:.._n ... u .o. __ _o 1.o. ____ o 1 o ___ o .... o_,_oJ.o ___ o .... .n _ _____a .•. Q ____ o_ ... o _________ --·--·--·--· ,--··----------___ .. _ .. _ .... " o.o o.o ._..:{~o,o..:-\l-·,0.<' .. ,_ ... o,d··-:·,.o.<>.:.·:.o,o:1 • .'·:':-o~(l,:.{.:.-:~-~~o~<l:<~ji0d-'.<-··u.o · b,O .. ~~ o.o ;-.q_\ o~o v: . .-~·,o,o 1!l'"1'0io··.;·,·."OHt·:~'~··,. tJdi · 010 1.•· .... ,·.-(\io _,:~··.l·~:on~-·:~!~:·_ o.o 1.-.,. o.o · o,o · , ,, , , ••• , , • ,_ · ·' I.. ' , -·'t' · • • •" ' 1 " __ ._o..... · •· o .•. o __ ._ .... _Q._o · " o 'b~o. o ·. .·.-OJ..o__:_.~.o-1 a._. __ d., o · !. · • o i h ···.·· ~·-D..i.D..:...;..:__:_d_ .. o .... .o _____ :....:_ ;"I O,O (l,{l OoO Q,(l 010 ('1,0' ('1,(1 0,(1 OtO O,O <l10 Q,{l o,O 010 Q,O O,O 0.0 , Q,Q Q,O 010 Q.Q ~ t).O o,o o,o ~~---· ... o. o .. --..,.-.o:,!l--~-.JL.,--.,.,.,J?"Jl~Q_dl--,..,._.Q ..• o._,__Q_, <L-.-Q •£ . . . Q1_.Jl......,--,,-<4 o-~-. <t..~------·------· · _ ... _ ---·· " o.o .. :o,o j "010: .,:·.,o~O·.• .·OlO·· ~-p,o ~ d.b ·.'· .. O•\···;.~·.·t,()•.·\; .-o,o 'if.U,O· O,o · · '\ _o,o ·: '0,0 ':· .. OiU ;.~1-,·~.~~10/'·:.;.··.c\,b :._:, .. 0~0 : .. 0.0. ·.·: .. Odl::···.i~:·<il01• ,·:~·~~iO :~.:.:litO'.': 010 · ' ·. ' i 0 0 · 01" ···.,OJ" · 11 "I"· ""1" ''•·· I)·O ',., n.LO '· ·•o "·"•'' ···li' ,.,,, .. ,., "' . "·• · "··0. --·--··· t ·---. ~---~ .V--.-.:...IL.ll.---l.I...U-·.~ ... _.._ ... ~-'-~ 4-·-,i..l.l~ f..U-~1.\.l..........J....\/.t.w____..JLL ----·--·-""•---:---··--.•. ---··--,. ,_ ., 0.0 ' 0.0 0.0 o,o · o,O 010 o,o o,o o,o · 0,0 ('l,(t 0.0 ·,, 0 I 0 1 ('I I(} • 0 I 0 0 I (l 0 f 0 0 I 0 0 I 0 0 I {) • 0 I 0 ' ('I I (l ~ I (I 0 I 0 , I·; ..... ~, o .. ..: __ Q, Q .. '"':'-,·~-·..0--~~ <1-.-.-.. -.. n. •. ~ .. ~~o .•. o .•... _ . o_, o .. ---.....--. .o .•. a.~.a....47.·~-o.~..a_7'"' __ o ... q.--:-__ o .... 0----.--·------·~· .. --·----·-·---.. --~-----· .. ; o,o : o,o : I))O . .,··.·tb,d · · .;··.0•0 · , .. ~,o 010 ·· :1),6 :·: ·.u,Q · ·: t),t) ~j~;!,~ · •. ,. tl;O t~ ____ :_ ! : ;'. • :,:, ~ifik'.: ~ ;;; . : ':.:·; \ . ' ; -~·-~~..:: . ,: . ; ; . :;" . . . ,. . -··--··------·-·-···. Watana ~pili Predicti~ns : ·-.. ·---·------: .. -;::_~---,' -<,--·-:-·v __ -;::>;-:< £ ·~ ~·,.;<._-~, .. ______ ......... -.~-----· --.-----------------------~:----·--·----·---·····--···-·· --~-.. • ;,: ,. ' , . .• ! I r ~·· ' .. __ ; __ , ___ ..; .. ,._,:._• ·-· _._.-...:...,;_·~-·--...___ __ .::__. --·--~ ... -~-··. -~-----...... ....:..... __ ._. ____ . ____ ;__~-.. ----------·---· ·--. • "'"""" .:. ·-----···---· ··-· .. .. . --·----··-··--· ------· --····-·-·-------... --.. --.. --···-·--· ..... _, ___ --· --.. ·-... -..... --.. ----·
A' . . ~ ~
J AT EL 930 •
Figure J.
Cone Valves
Watana and Devil Canyon
DETAIL
~a
SECTION A-A
t.C.Ai:EB
--
...._
N
eo" PJ...FIXE.:;) c::.c:-.JE. VALVf. .&.i EL.930' (IO'Z~ P\.L FIWEP CONE. VAL.Vf: A.T E.!., 10&,0)
I
.t 0
"""'-" a
0
<G<L.E ..
" ., I'EET
"" """ F<fl
ALASKA POWER AUTHORITY
SUSITNA HYDROEl..ECTRIC PROJECT
DEVIL CANYON
OUTLET FACILITIES
•
DRAFT
is, of course, possible that for floods of lesser frequency than
1:50 year, higher supersaturation levels will occur and such risk is
considered acceptable.
2. Watana and Devil Canyon
a. Spill Frequency and Discharge
A similar analysis, as described above, was carried out for the
period when both Watana and Devil Canyon development are
operational. The frequency of spills increase somewhat (4 times in
30 years, Table 2). Results of the flood routing analysis are
presented in Table 3 where pre-and postproject flood peaks are
compared.
As in Watana, the spill discharges up to 1:50 year return frequency
will be discharged through fixed-cone valves in the Devil Canyon
dam. The facility will avoid increasing the gas supersaturation
below Devil Canyon to levels higher than natural levels due to
project operation.
b. Spilling Rate
The rates of spills that are expected to occur are approximately
321, 1390, 1149, and 3138 c. f. s. (Table 2). The rates are averaged
over a 30 day period and the actual spills that occur can be
expected to be greater than this average and for a shorter duration
than a 30 day period because the flood periods that occur in the
Susitna drainage are generally of shorter duration than 30 days. In
addition, the reservoirs should be full, or near full, at the time
when floods are expected and the excess water will have to be passed
by spilling.
-9-
'
SF' ILL CFS
Od-No~. Cec ..Jf/W paf:, m~r. ftpr. rr!lltj JI.[/'J. Ju.l~ f11UJ .S£p1.
010 0 I O· o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o o.o o.o c.o o.o o.o o.o o.o o.o o.o o,o o.o o,o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o o.o o,o 0 ·'J o.o o,o o.o o.o o.o o.o o.o Od} o.o o.o o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o (),Q o.o o,o o.o o.o o.o o.o o.o .o.o o.o o.o OoO o.o o.o J ~-1 ' 6 o.o o.o o.o 0. 0 ,,1 o.o o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o 36-1,2" o.o o.o OiO o.o o.o o.o o.o o.o o.o
.0 .o o.o o, ·o o.o ·0 f 0. o.o OtO o.o o.o o. 0 . c.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0 I 0' 0 :o o.o o-.o o,o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o ·o. o 1~90.5 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
(I) o.o ,Q I 0 o.o o.o o.o o.o o.6 o.o o.o o.o o.o o.o
P:l o.o o.o o.o o.o o.o O;o o.o o.o o.o o.o o.o o.o
<t; o,o o,o o.o o.o o,o o,o (1,0 o,o o.o o.o ,0. 0 o,o
[il o.o o.o o.o o.o o.o o.o o,o o.o o.o o.o 1 H9,D o.o ?-1 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o c.o o.o o,o o.o o.o o.o o.o o.o o. 0. o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,c o.o o.o o.o 'Q I Q o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o o.o OoO o.o o.o o.o o.o o·. o o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o· o.o o.o o.o o.o o.o o.o o.o ·o .o o.o o.o o.o o.o o.o o,o o.o o,o o.o o.o o.o . o. 0 o.o o.o o.o OiO o.o o.o o,o o,o ·o. o o.o o.o o.o o.o o.o o.o o,o o,o o.o o.o o.o OoO o.o o.o o.o o.o o,o ·o .o o.o o.o o.o o.o o.o . o. 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o o. o· o.o o.o o.o o,o o.o o.o o.o o .. o o.o o.o o.o o.o o.o o.o • o.o o.o o.o o.o o.o o.o o.o o,o o.o o.o 3J3Bo8 o.o
·'· T\1 \. s <;pj11 ncc•JrrR<i becA.u.se nf unllS11<"11 f;J,11 FUll nff cnnrltttnns' CJ.n<i is
nrnjRcte<i tn nccur 1moier the npRr'ltinn assumptlnnq userl in this simu1ati.on
mnoie1 , llnrlRr .H.Ct11'l 1 operflti.nn nr<J.cticc, vi.nter spi..11s vn1J 1 rl nnt nccur,
Table 2
Dev i 1 Canyon s pi 11 Predictions
(
Recurrence
Interval
2
5
10
25
Recurrence
Interval
2
5
10
25
Recurrence
Interval
2
5
10
25
Recurrence
Interval
2
5
10
25
Recurrence
Inten.Tal
2
5
10
25
TABLE 3
ESTIMATES OF PRE AND POST PROJECT
DISCHARGE AND STAGE FREQUENCY ANALYSIS
Devil Canyon Damsite
Preproject Postproject
Revised
Q Q
(cfs) (cfs)
47,000 11,000
61,000 12,000
71,000 13,000
84,000 28,000
Susitna River at Gold Creek
Preproject Postproject
Q Stage Q Stage
(cfs) (ft) (cfs) (ft)
49,500 13.4 13,500 8. 7
66,000 14.9 17,000 9.6
78,000 15.8 20,000 10.1
94,000 16.7 38,000 12.3
Susitna River at Sunshine Station
Preproject Postproject
Q Stage Q Stage
(cfs) (ft) (cfs) (ft)
95,000 12.5 59,000 9.3
124,000 14.8 75,000 10.8
144,000 16.3 85,000 11.7
174,000 18.4 118,000 14.3
Susitna River at Delta Islands
Preproject Postproject
Q Stage Q Stage
(cfs) (ft) (cfs) (ft)
105,000 94.6 69,000 92.7
138,000 95.6 89,000 94.0
159,000 96.3 101,000 95.0
193,000 97.3 137,000 96.0
Susitna River at Susitna Station
Preproject Postproject
Q Stage Q Stage
(cfs) (ft) (cfs) (ft)
157,000 16.7 121,000 14.8
206,000 19.3 157,000 16.7
239,000 20.9 181,000 18.0
289,000 23.0 233,000 20.5
Change
In Stage
(feet)
-4.7
-5.3
-5.7
-4.4
Change
In Stage
(feet)
-3.2
-4.0
-4.6
-4.1
Change
In Stage
(feet)
-1.9
-1.6
-1.3
-1.3
Change
In Stage
(feet)
-1.9
-2.6
-2.9
-2.5
DRAFT
c. Design and Operation of the Spilling Structures
The structures incorporated into the Devil Canyon dam design for
spilling of excess water are cone type valves exactly like the ones
in the Watana dam (Figure 1). The valves are designed to disperse
and breakup the spilled water. The droplets will fall onto the
surface of the stilling basin below and will not penetrate very far
below the surface. This will avoid increasing the nitrogen and
oxygen supersaturation below Devil Canyon above that which occurs
naturally as a result of project operation.
3. Summary Discussion
Total dissolved gas pressure (supersaturation) values are directly
related to the waterhead pressure and inversely related to temperature.
Thus an increase in the pressure caused by water depth on plunging flows
with entrained air below the water surface will increase the amount of
dissolved gas in solution. The spill water from a dam can cause this to
happen. The mitigation measures described in the preceding paragraphs
describe the equipment designed into this project to avoid increasing the
amount of gases in the downstream waters or the reservoir waters.
Dissolved gas levels were taken at sites in the Devil Canyon region in
1981 (T.E.S., 1981). The total dissolved gas supersaturation ranged from
105.3% just above Devil Canyon to 116.7% just below Devil Canyon and
above Portage Creek at relatively high discharges. Design and
operational procedures have been incorporated into the project to avoid
the possibility of having an increase in the amount of dissolved gas
downstream as a result of the project. In addition to the cone type
valves for spilling, operational modes have been explored that reduce the
magnitude and frequency of spills to the point that up to the one in SO
year <flood can pass through the cone valves and the generating units.
The problem of supersaturation of gases has been minimized through design
and operation of the facilities.
-12-
DRAFT
IMPACT: Alteration of the natural temperature regime of the water downstream
of the project.
The changes in temperature regimes downstream of hydroelectric projects have
caused serious problems for survival of fish stocks downstream of the
discharge outfall. Shifting of the temperature events, increased winter
temperatures, and decreased summer temperatures have commonly occurred.
Structures that provide for selective withdrawal of water from the reservoir
to control downstream temperature are essential to avoid adverse impacts on
downstream fisheries. Several configurations of the intake structures at
Watana and Devil Canyon have been examined to achieve acceptable control of
downstream water temperatures during the different seasons.
The temperature structure that normally occurs in the Devil Canyon to Chulitna
confluence reach is available from many sources (R&M, 1981, ADF&G, 1981, ADF&G
1975-77, USGS data record, ACRES, 1981). Figures 2 through 8 present the
temperature structure of the river reach previously mentioned for wet, dry,
and average postproject conditions as well as natural conditions. The winter
projections assume 4 C. water discharged from Devil Canyon reservoir. In
addition, ADF&G (1975) reports the slough surface waters in the winter to be
about 1.2 C. on the average. A slough intergravel measurement taken in
September 1981 (ADF&G) reported the temperature at 3 C.
An intergravel temperature study presently being conducted will provide needed
information concerning the winter intergravel temperatures in the reach of the
river between Devil Canyon and the Chulitna confluence. Predictions of the
extent of winter impacts of post-project temperature regimes will be facili-
tated by the information gathered during this investigation. The source of
the water in the sloughs that are productive is from groundwater. The tempera-
ture of this groundwater and the intergravel water in the mainstem will be
compared to postproject water temperature predictions. The degree of impact
associated with the postproject temperature regime will depend on the variance
from the normal intergravel conditions.
Preliminary data indicate that the intergravel temperatures of the redds is in
the vicinity of 2.5 to 4 C. If this temperature is determined, to be the
-13-
60.D
58.0
56.0
54.0
52.0
LL 50.0
0
w a:
::> 48.0 f-< a: w a.
::E w 46.0 f-
a: w
!;;t
~ 44.0
42.0
40.0
38.0
36.0
34.0
32.0
J F M
~-. ·.-·
LC.OC.I'HJ
!::;. AVERAGE YEAR
0 DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
v i\
:>..... ~\\ j -; \'
4 -'\ I
/<: 'l
~ VY
I
I
/
A M
I
I
I
J
TIME
..
J . A
CROSS SECTION LRX 68
DOWNSTREAM OF DEVIL CANYON DAM SITE
"l\
\
g.ll-....
'X"'
s 0 N D
I ·'
60.0
58.0
56.0
54.0
52.0
... 50.0
0
"' a::
:::> 48.0 !:i a::
"' Cl. ::; 46.0 UJ
1-
a::
"' 1-44.0 "' ~
42.0
40.0
38.0
36.0
34.0
32.0
J F M
h .
\>...
I '\ ~
! ' ~\
I
•) '/ . .. --.
{ V,
I I v 1;7
I
/
A M J
TIME
J A
CROSS. SECTION LRX 61
DOWNSTREAM OF PORTAGE CREEK
~
1::. AVERAGE YEAR
0 DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
\ ..
-
F·Q r.
\
~
s 0 N D J
t___---------~FIG~URE~·\t~lii
60.0
58.0
56.0
54.0
52.0
50.0
"-
o.
w a: 48.0 :::>
!;< a: w
0.. ::;; 46.0 w
I-
a: w
~ 44.0
42.0
40.0
./
:v 38.0
l[l-
36.0
34.0
32.0
J F
I
LEGEND
!:; AVERAGE YEAR
o DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
-
/
~!': ~
/) ~
II ;· I -.. --
?! X
J /!
L I
v I I
I
I
/
/
M A M J
TIME
J A
CROSS SECTION LRX 47
NEAR GOLD CREEK
\
.. -~~ -·
\
~
X
~
s 0 N 0
60.0
58.0
56.0
54.0
52.0
...: 50.0
0
w
0:
::::> 48.0 ~
0: w
0.. :::;; 46.0 w
1-
0: w
~ 44.0
3::
42.0
40.0
38.0
36.0 ~
34.0
32.0
J
' j y
/,
)~'/ \
II \
I I \1i
!·· I -'i
. • .. ...
I I
.I I
/ I
I
/ I
F .
/
X
/
M A
Jl
M J
TIME
J ·A s
. CROSS SECTION LRX 21
BETWEEN CURRY CREEK AND MACKENZIE CREEK
LEGEND
C:, AVERAGE YEAR
0 DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
\
~~
'\
~
""· 0 N 0
r,: '•'-,·.J.Ji~~ r . ".: • .,
C'lr"l IOC' •;.J •·
' }--
c.!. I'
I
60.0
58.0
56.0
54.0
52.0
..... 50.0
0
w a:
~ 48.0
"' a: w a.
~ 46.0 ...
a: w
!;:;: 44.0
3::
42.0
40.0
38.0
36.0
I
LEGt:.NIJ
6 AVERAGE YEAR
0 DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
(
vv (
I I
I
/I J
I I
\
34.0 Vi v -~ ~~
32.0 ~-_;;--4---..J_ _ _..J __ _L __ .L. _ _jL_ _ _L __ _L_~,.._ _ _;; __
J F M .A M J
TIME
J A
CROSS SECTION LRX 3
NEAR THE CONFLUENCE ·oF THE
CHULITNA AND SUSITNA RIVERS
s 0 N D
0 J
L
<: ...
60.0
-o:: rs~ I-ua::
I
D---r--_ 0
u..
0
w
0:
::> >-<(
0: w
"-::;
w
t-
o: w
t-
~
50.0
40.0
30.0
•
6-
.A
o-:--
V'
T
•
I
RIVER MILES -100
3
L RX SECTION 6
•
6
.A
0
\7
.,.
•
I I
9
w
V>
<(
I u
I
I
I I
110
10
'=!
N z
z <t
"' W:<: ,_:.:: -'"' ::; "' Z"' ww :<:w ww -'W a: ow <(W
zw Uw a;W ::>w w _lW -w
<(0: <to: ::>0: :<:a: :r: oa: Oa;
_lU ::;u uu U) u <f) C>U ~u
I T I I I I I
0-----• o~---.._
• ljl --------4. • •
6 -o !-/\~-~-.A
0
\7
T
•
I I I
14 15 18
6 6
I .A .... .
-o-
I 0
V' V'
T T
• •
I
I
i
I
I
I
I
!
' I
I I I I I
120
20 21 27 29
LONGITUDINAL THERMAL PROFILES
· POST PROJECT AtlD NATURAL CONDITIONS
...._................,0
1-o-
V' -e-~
T T T
• • •
' .
I
I ' I
'
I I I I
130
33 35 38
•
__ ..._
I
6 =--------------
~
•
MONTH POST
JUNE
JULY
AUG.
SEPT.
I I
140
51 53 54 53
w
~"' o-w a;w oa: a_u
I
• •
---.t..~ 1
==G~
-~-~
•
LEGEND I
PROJECT NATURAL
0
6 0
\7
I I
150
60 62 68
I
I
!
I
I
CONDITIONS
• ...
•
v
RIVER Mil
LRX SECl
FIGURE
PLATE _2_
'
WH SCAL[ I U,HO
N LOCATIONS
. .. ·. ;-..~.·. F Lq UJtQ.. . ·; ......
I
I I
'
(
'/
(
J ~-
II
--A".
/. \\
n.I
>< .
cc ·'
-1
,,_ --__ ____l_j
I '
•,
=
3-18
DRAFT
winter requirement for egg incubation, winter discharges of warmer water may.
be determined to be desirable. At this time any conclusion regarding winter
requirements of downstream temperature for the existing fisheries would appear
to be premature.
MITIGATION: To avoid or minimize the impact of shifting of temperature
events, adversely affecting winter temperatures, and decreasing summer
temperatures, structures that provide for withdrawing water from strata within
the reservoir which provides for control of downstream water temperatures are
essential. The intake design has been altered many times and various con-
figurations have been examined. Presently, the project design includes a
multi-level intake at the Watana development (Figure 9) and a single level
intake at the Devil Canyon development (Figure 10).
The impact of low water temperatures during the critical summer spawning
months has not been alleviated by the adoption of a "multilevel" turbine
intake system. By proper control, water can be drawn from the surface layers
of the reservoirs in the summer. This water will average between 9.8 C and
11.8 C. This is with the normal summer time temperature variability of the
system.
The impact of altered water temperatures during the winter months (i.e., from
0.0 C. -1.0 C. to 3.9 C.) on fisheries has not been established.
The effects of altered temperatures during the winter period could potentially
benefit downstream fisheries as well as create adverse conditions. If the
existing stock of salmon in the river below Devil Canyon are dependent on
groundwater temperatures in the range of the project temperature water
discharge, the release of warmer water from the reservoirs during the winter
period could provide a large source of warm water that meets the thermal
requirements of the incubating eggs and developing alevins. If other
conditions are met for successful spawning and incubation, significant
enhancement of the fisheries resource may occur.
Alternatively, if the cold water of the mainstem is needed to provide the
proper development rate of the eggs and juveniles, similar warming of
-23-
1
DRAFT
the downstream discharges could provide earlier development of the immature
fish and the resultant early downstream migrants could be subjected to adverse
conditions that would decrease their survival rates. The studies of these
thermal phenomena and the development rates of eggs incubating in the spawning
gravel should help resolve this qu~stion.
The outlets of the Watana reservoir are currently designed with multiple level
intakes. During the summer period, these are predicted to selectively
withdraw water from the proper thermal strata of the upper layers of the
reservoir water column to provide downstream water acceptable to migrating
anadromous fish and the resident species. These temperatures are also well
within the tolerance levels of the early incubation period for the chum and
sockeye eggs. During actual operation of both reservoirs, this warm water
layer will be stored in Devil Canyon reservoir and discharged through a single
outlet 70 feet below the full pool level of the reservoir. During the summer
months, the water level of Devil Canyon reservoir can be maintained below full
pool so that the water temperature discharged downstream of Devil Canyon is
drawn from near the surface of this reservoir. The projected downstream
temperatures from this operation scheme are depicted in Figures 2 through
8. The establishment of an inverted thermal strata during the winter period
for both reservoirs is a possibility with significant layers of water cooler
than the maximum density layers of 4 C. The extent that this layer develops
will determine the downstream water temperature discharged in the wiriter
months. Data from the Corps of Engineers studies of Bradley Lake, indicate
that in December, this layer may extend to 70 meters. However, since a
precise prediction of the thermal strata of the reservoirs is not available at
this time, the worst case assumption has been used for winter discharges in
projecting downstream temperatures; that is continuous winter discharge of 4 C
water. This value most significantly departs from the natural thermal regime.
Using these discharge temperatures from Devil Canyon reservoir, the downstream
temperatures during the winter months do not decrease to the normal stream
winter temperature of 0 C. until near the Chulitna-Susitna confluence
(Figure ll).
Further evaluation of the fisheries studies currently ongoing will be required
to determine whether this condition is beneficial or adverse to the fishery
-24-
e.l.. 'ZZI'Z.
H:.:io-..E5T
L1FT
_ !:.L. '2.i~, G.a..tE 1
CP£~A.iE.O
l
A
SECTION THRU HOUSE
INTAKE GATE CONTROL
~O>.J7~0L GA.TE
GurO£
S70P LOG
G:.J;;)E.S
I
I
I
I
.:0'
11---I I
I
[[]
j rn
I
I
I rn
!
j
I
I !
I I
I
I
I
I
!
I
I
I
,I
"' I '· j:l I ;:! ! : I
I
i
I·!
[i
ti
I
i!
i I
I
:n1.1oi I · ~~==~-+~~=5~0.--~~--; '---
5C'
. I
FP.8NI EL.::VI-.TION SECTION 8-8
'~ !
I~ I
:,1
I I ,,,,
~~ ~ rl 1
:,li Ill
II:
ifl . ,.
IIi'
II!!
: II ~
~ ~ ! ;,I!
r::· . r.
t.!l l,j,
1.1 \
J'~ ;
t''· !!'
··i· '" ,:1: .,
,i:.
li'
II;
I;; ,, ;
I • I !:!
SECT!8N A-A
r
-
POWER AUTHOR!
ALASKA -. C:::TRI: PROJECi
SUSrTNt.. HYD?.O::.~
WATANA
POWER IN;:-~ELEVATIO PLANS, SECTIONS
r+B
6
r\
II
II
II
It
II
II
"' ~nr~~~~==~~~~~=r.r-
><Oil.., .. t I'<E5Eot\'OIR W..
~
FLOW ----
FLOW ----
0 ... ..
SECTION A-A
SECTIONAL PLAN
~CI.l[' A
'1!1.-l~
~ ~
~
I
~
,
~ l
t. '
v 1.--~ 11\T.l.><£ I
I .
t>C~o· I
I .
•It• .... p. Ill
..,.,_ .. ~ l'•·•·•t• 1'1• I
'i!:lilili,.iill r,HII!Ib ill!i
I .,
l I
!
-. ,-
''"·· '£1.--1%5 I :.1-
tl.'l JI•H'HI I l'•llilllt
... , ., " ... ,. .. . .
E,!..\355 I
l•lffi· IB'\11\ I
\ .
.,~o· I ,.o~o·
I
I
' d , ...
II: i!ll iii 1: IIi II'
I
I l
~~.r1
i '"" , P• I IIIII .... . . ..
I
Jlii~'lll"t"1!1f\
SECTION B-B
S::A!..t.A
~
/<
,..
I
I
I
I I
.of ' I ,p· [ITT
f\ 1111: lll!i1i 1·lr:
.. :I
I
J._
:.1--'
'''"' HiP!1 ..
' /l•l"i'7•1iW.t.\
~ ALASKA POWER AUTHOR!
.il---S-US_!TN_A_H_Y_DP._ .. -::r.;-ELECT--R-IC-PP.-.O-.r£Cl-
DEVIL CANYON
POWER INTAKE STRUCTURE
PLAN AND SECTIONS
MARCH 1982.
., ::.
.,
=::-:-:.:: -~--.r::. ::. -----------··------· ------------------. r --------~-------------;,. ----
------------------
,-~-----·
~---~ .3 . !"-:.::-::: _ •. _:·----------=~---~~. ____ __::__ ____ _
--------· ---------------· -----
. -------~------------------
:.----__ : ___ -
--------------
____ ._-_-_. ------------------------------------:----·--. ------------------:-·------
--L"_ --
------. ---~-·-·---·----~-.::-~-=-.:.·:..-.:...:-::.-::.-:: __ -_-_._-_·-=·-·-=·---:-:----. ---------~--...:.....::....::. ---------· --------------------------------
• _-__::;·.=..=---.......:...~-==-'"" 11....· _· :..._:-ki : : :..:: ::-. : .. -.:.:.. ~: ~--_ .... ____ _
6/•J ~-c: I
-
---------
------
~---0-«' 1/ -.
! -. ~ :
I
l---
-------
B.(u·l~ -I ?'_\.
DRAFT
resource of the river. If adverse impacts are predicted, an altered operation
scheme and multiple level discharge structure at the Devil Canyon reservoir
will have to be explored to determine if this would alleviate any adverse
impacts. If determined to be beneficial, discharge from the 4 C. thermal
layer of the Devil Canyon could be accomplished by maintaining sufficient
depth in this reservoir during the winter or routing warmer water from the
Watana reservoir lower butlets during the winter periods.
During both the summer and winter periods, the use of multiple level outlet
structures of proper design and operated in a manner to provide the required
downstream temperatures will probably be adequate to meet the water
temperature requirements of downstream fisheries.
-28-
DRAFT
IMPACT: Altered flow regime in the Devil Canyon to Chulitna confluence and
it's effect on the fisheries resources.
The fisheries in this reach of the river use portions of the wetted portion of
the system during different times in their life cycle. Resident fish are
found overwintering in the mainstem of the river and are usually concentrated
in the mouth areas of the tributaries.during the summer. The mainstem is also
a migratory corridor for these species in the spring and fall.
Sockeye salmon adults migrate during the summer months of July and August
through the mainstem and spawn exclusively in the slough habitat. Little
information is available on the rearing of this species, but they apparently
rear in this type of habitat also.
Chum salmon behave similarly to sockeye salmon in that they migrate into the
system in early August and spawn primarily in the slough habitat with minor
use of the tributaries. There is also use of side channels of the mainstem
for spawning by this species. Chum salmon will outmigrate in a relatively
short period of time after emerging from the gravel to the Cook Inlet estuary.
The odd year pink salmon which run in this area primarily use the clear water
tributaries for spawning with very little use of the slough habitats. This
species immediately outmigrates upon emergence with very little fresh water
rearing. No information is available on habitat use during the large even
year runs.
The coho salmon adults migrate into the system during August and September
with these individuals primarily using clear water tributaries for spawning.
Limited use of side channel or peripheral portions of the mainstem was
observed. The juveniles of this species, upon emergence, rear for one to two
years in the associated riverine habitat. This rearing occurs in the clear
water tributaries and in the mainstem of the Susitna Hith the main concen-
trations associated with the slough habitats.
Chinook salmon in this reach of the river were observed to spawn only in the
clear water tributaries. The juveniles rear in habitat similar to the coho
-29-
DRAFT
juveniles, primarily concentrated in the slough habitats. Both coho and
chinook juveniles were observed in the mainstem and some of the sloughs during
the winter months.
The alteration of the natural flow regime of the Susitna River will be a
requirement of the storage facility operation of the proposed project in order
to meet the seasonal load demands for electricity. The overall effect of this
process is to substantially increase the winter flows and decrease the summer
flows in this reach of the Susitna River. Figure 12 depicts the pre-and
post-project monthly average flows under the proposed operation scheme with
both Watana and Devil Canyon on line. The flow variability of the pre-project
conditions are also shown in this illustration.
The proposed flow regime for the project will sufficiently decrease the stage
of the Susitna River so that access of adults to the slough habitat and
possibly to the side channel of peripheral mainstem habitats will not be
possible. This will effectively eliminate the spawning populations of the
species using this habitat in this reach of the river, the chum and sockeye
salmon. Approximately 15% of the Susitna chum and 1% of the Susitna sockeye
use this section of the river. The effects on the odd year pink salmon run
will be minimal, in that access into the clear water tributaries should not be
affected. These streams have sufficient gradient to establish a new channel
adequate for fish passage between the tributaries and the lower stage Susitna.
Likewise, coho and chinook spawning should not be significantly affected
although the present rearing habitat will be reduced. It is not known whether
rearing habitat will be sufficiently limited for these species to adversely
affect the populations currently using the system.
postproject flow regime • associated with the previously MITIGATION: The
described impacts has been developed to maximize power production. Many
alternatives are available for mitigation of these impacts. However,
mitigation activities within the Devil Canyon to Chulitna confluence reach of
the river will require that flood and flow control be maintained at some flow
above the power production level. Mitigation options that have been
identified including the flow control options are described in the following
-30-
45
40
35
30
25
0
0
0
...
C/) u..
(.) 20
3:
0
..J u..
15
10
5
0
-
~
I. PERIOD OF RECORD:
PRE-PROJECT -1950 -1979 (RECORDED)
POST PROJECT-1950-1979 (SYNTHESIZED)
2. VARIABILITY MARKED FOR SUMMER
PRE PROJECT FLOWS ONLY.
'
I DAY HIGH--
3 DAY HIGH
'
'
'
-
T
f-
+
I
• I
1 ;.:
i
T 1---------------14 DAY HIGH-~-+-~~~-=---_-+:.=----l:..__+-+
1
---1
V POST PROJECT .---.,
I
I '---;
r __ ..J I
I '---,
..J 1...-------1----
l
I I
0 N
14 DAY LOW
~ 7 DAY LOW
PRE-PROJECT--........ -~-3 DAY LOW.
~ --I DAY LOW
' I I I I I I
0 J F M A M J
PRE AND POST PROJECT FLOWS
SUSITNA RIVER AT GOLD CREEK
T
·-.__
I
J A
FlGURE
r
I
., ..I..
I L __ _
s
I
1
DRAFT
sections. The technology to mitigate by using any or all of the techniques is
available. Detailed investigations, aimed at determining which method would
be the most suitable would be implemented before a final program could be
instituted.
One option is to maintain or improve conditions in side sloughs utilized by
salmon. Upwelling water in the channels or sloughs provides the necessary
flow to hatch the eggs and to maintain aquatic food organisms during the
winter freeze-up period. Such groundwater flow is not sufficient to provide
the necessary depth and velocity required by spawning adults. This flow is
either supplied by the river flowing through the slough or by backwater
entering the slough from the downstream end. A river flow level near 19,000
cfs at Gold Creek is presently required to provide the upper end flow in the
sloughs. This level of flow is above the summer power requirements and must
be spilled during critical times. The reservation of a quantity of water as
acre feet can be established and used for this extra spill. Sufficient water
could be provided during the late summer to allow access of spawning chum and
sockeye salmon to the side slough habitat currently used by these species. In
addition, flows could be manipulated over a short period of time to provide
adequate water to run through the sloughs to clean the spawning gravel. The
exact time of the spill and the duration, while generally known, requires
additional refinement before a flow regime can be worked out and submitted for
inclusion in the operating schedule or for rule curve operation. Although
significantly different from the natural flow regime, flows sufficient to
avoid adverse impacts to the fisheries of the river are possible if they can
be regulated on a short term basis during the summer months.
The flow from upwelling groundwater may or may not be available as the
recharge water source for the aquifers has not been established. This
requires that a program be developed and executed to establish both source and
quantity of the ground water' supply and the resultant temperatures. The
techniques for developing this type of survey and assessing the findings are
known and may be applied to the problems associated with the sloughs.
To insure an upwelling flow, it may be necessary to recharge an aquifer. If
the aquifer is supplied from river flows and stored in the island(s) between a
-32-
DRAFT
channel and the main river, an upper river flow sufficient to recharge the
aquifer may be required.
Besides establishing a level of river flow to provide the necessary supportive
depth and velocity required by spawning fish in the sloughs, there is the
possibility of altering the water level control of a slough. This may require
excavation at one or both ends of the slough and a physical structure at the
upper end. The useful spawning area of many of the sloughs is not at either
end. The upper end may serve primarily as a channel for high water flows to
enter through and it may be severely scoured. The lower end may be an area of
deposition for suspended material that settles out as the water flowing
through the slough slows down. It may be possible to alter the water control
level without disturbing the useful area.
If the control is lowered below the stage of the high winter power flow, the
introduction of river water at that time in the sloughs may produce undesired
results by this water freezing, ice blocks, by anchor ice, or frazil ice
formation. Thus, the control should not be lowered below the stage of the
winter high flow unless a physical structure that can be closed is placed at
the upper end of the slough.
The river cross section profiles produced an indication that either flow or
bed level adjustments are practical. To establish precisely the appropriate
flow or bed level or combination requires that a detailed survey of the upper
and lower ends of the sloughs be made to define the type of control needed at
such points. Water can be introduced either through a culvert or through the
bed with shape adjustments to give the necessary supportive depth and
velocity. Except for the required field survey, the technology necessary to
undertake this type of mitigation is established and available. The require-
ments for spawning are established for these species in other regions, as are
flows needed to keep deposited eggs alive. Data is scheduled for collection
that will be stock specific for this region.
The necessary excavation varies for the sloughs under study. The exact
quantities must await a detailed field survey and the choice of flow control.
There are 32 sloughs at the pres·ent time that are used by spawning and rearing
-33-
DRAFT
salmon. The annual cost of maintenance of the proper conditions within the
slough will depend on the level of flood control achieved. With proper flood
control this would be expected to be minimal.
Construction materials such as culverts, gates, and gabions may be considered
as shelf items. Their use depends upon the control needed for the individual
slough.
Major floods have altered the sloughs and side channels. Destruction is
generally caused by deposits of gravel, the scouring of the slough bed, or the
isolation of the slough from the main river. To insure stabilization in the
sloughs that are used by the salmon for spmming or rearing it is necessary
that the level of a major flood with a return period of approximately 20 years
be reduced to about 28,000 cfs at Gold Creek. This requires the allocation of
storage room in the reservoirs and the development of a release pattern to
maintain the desired flow level at Gold Creek. Without flood control, miti-
gation by altering the occupied sloughs may be found to be impractical. The
final levels of flow regulation must await the development and completion of
the surveys of the sloughs to find their levels and slopes.
Improving conditions in sloughs now not available to spawning salmon is
possible under the same scenario as mentioned above. There are a number of
sloughs now not used by spawning salmon either because of the lack of water to
supply the needed supportive depth and velocity required by spawning salmon,
lack of suitable substrate, or because the upwelling flow required to maintain
the eggs and fry is not present. The existing transect surveys are not
adequate to determine the precise bed levels in the main Susitna. A field
survey of the most promising non-used sloughs could result in channel alter-
ations similar to the approach suggested for slough now used by salmon to
bring such sloughs into useful production. Until additional field surveys can
be made these sloughs must remain as potential Tor production.
It has been suggested that the existing sloughs now used by salmon could be
augmented by additional flow from the mainstem by maintaining water levels
that permit greater wetting of the slough beds. There is a preferred
temperature for spawning salmon. Through control of the water temperature by
-34-
DRAFT
the use of a multi-level intake it may be p_ossible to maintain the slough
temperature levels as near as possible to the preferred levels, thus resulting
in maximum production. These levels are established but they need further
site verification, for Susitna stock, in order that a temperature regulating
schedule for water releases, primarily through the hydroelectric turbines may
be suggested. It has been mentioned previously that it may be undesirable to
have a small amount of river water passing through the slough area during the
cold water period. This requires a further examination to determine whether
such water would be useful or harmful. If useful, it would expand the
productive area of the slough; if harmful, it should be excluded.
Maintaining areas in the main river ·where salmon presently spawn can be helped
in part by increasing the water clarity. If the level of clarity of the water
can be improved after it· has passed through the reservoirs, it is possible
that the main river may become more productive and the suspected areas where
salmon may now spawn will be improved by the removal of silt. It is assumed
that there is little use of the river by chinook salmon. In other large
streams chinook salmon are known to spawn in the mainstem. With most of the
silt removed and with flow control spawning adults may utilize new areas for
the production of large chinook salmon. It is not recommended at this time
that additional gravel be placed in the mainstem for spawning purposes. If
spawning areas develop, they will develop under the new flow conditions as the
river is freed from scouring floods and entrapped silt.
It is believed that there is a limited use of the main river by coho for
spawning. With water that is relatively silt free, and with river discharge
control, river areas may become more productive or additional areas in which
the coho salmon will expand their activities into may be developed naturally.
Additional stocking of these habitats may also be desirable to more rapidly
develop new populations. The value of this approach requires additional study
to evaluate.
Increased food production may be expected in the main river areas as the
stream becomes clearer. Additional studies should be made of this to predict
a possible increase in rearing area for both coho and chinook fry, fingerlings
and yearlings.
-35-
DRAFT
Man-made spawning beds could be constructed and operated in suitable areas, in
or out of the Susitna basin. Man-made, or artificial spawning beds have been
successfully built and operated for sockeye salmon in cold areas. At this
time there is no location picked for such spawning channels, but it remains as
a potential for mitigation or augmentation, as the mechanics of their
construction are known and the potential resulting efficiencies established.
Chum salmon are known to spawn in upwelling spring areas and it would be
expected that they would respond to conditions in an upwelling artificial
spmming bed. It is possible that coho, chinook, and sockeye salmon may use
such an area also.
The operation of artificial spawning areas under freezing conditions requires
a carefully designed system. Such spawning beds would have to be protected
from scouring flood flows. Sufficient numbers of channels have been con-
structed so that a general overall cost may be established, subject to site
specific conditions, particularly the water source.
costs and annual maintenance costs must be added.
In addition development
Hatchery facilities could be located in or out of the Susitna basin to
mitigate for fish losses as a result of the project. Hatcheries have long
been used for salmon production. Hatchery conditions vary, but production
techniques are well established. Hatcheries have been built and operated in
cold areas where there are salmon runs. The costs will vary depending upon
the climatic conditions and the species of salmon to be hatched and reared.
The species found in the upper Susitna have been cultured elsewhere in
hatcheries, but require details for site specific conditions. A volume of
pure, well oxygenated water of proper temperature is required. The cost of
supplying one or all of such requirements at a given site may be prohibitive.
Temperature control may be a very costly factor. While 4 C. water may be
desirable in the winter time, it would be undesirable during other periods.
The resulting production from a successful artificial spawning channel or
hatchery operation calls for additional management techniques to protect the
natural runs which co-mingle in a mixed fishery. Hatcheries, as an in lieu
-36-
DRAFT
mitigation, might have to be located outside of the Susitna basin. The
technology of construction and operation is established and such a facility
remains as a potential for mitigation or augmentation.
-37-
DRAFT
IMPACT: Downstream impacts on the fisheries resources of the Susitna River
below the confluence of the Talkeetna and Chulitna rivers.
The installation and operation of the proposed hydroelectric project has the
potential of altering the natural flow regime, temperature, water quality,
river morphology, and ice processes in this reach. All of these changes have
the potential for adversely impacting or benefiting the fisheries resources of
this reach of river.
Preliminary baseline measurements and data analyses have been conducted for
these parameters for the river reach below Talkeetna. The Sunshine Station at
the Parks Highway Bridge has provided the basis for evaluation of this river
reach along with supportive data from the Alaska Department of Fish and Game
fisheries investigations. These data have provided information on the distri-
bution of resident and anadromous fisheries resources within this reach and
the variability of the other physical and chemical parameters of the pre-
project river system.
The operation of the project is projected to estimate changes in the monthly
average flows in this reach (Figure 13 and 14). Fish will experience post-
project discharges that are within the range of natural variability but
generally lower by some 20% of average natural discharges during the months of
August and September at Sunshine Station and around 10% lower at Susitna
Station. As these months are associated with the majority of spawning
activity of the anadromous species, little effect of the project on these
species within this reach is anticipated.
The winter months will create conditions substantially different from the
normal variation of the system, with significant increases in the discharge.
During this period of. time, the mainstem is used for overwintering habitat for
anadromous juveniles and resident species with very little incubation of
salmon redds occurring. Although the increase in winter flows is substantial,
it is still a small amount compared to the capacity of the channel and there
is presently no data available that suggests the flows will cause adverse
effects on the fisheries. The increase in discharge during this period may
improve winter conditions on the river, but there is also no data suggesting
-38-
70
60
50
0
0 g
>C
"' 40 u..
(.)
3:
0
..J u..
30
20
10
0
NOTE
I. PERIOD OF RECORD :
PRE-PROJECT-1950-1979 (SYNTHESIZED)
POST PROJECT-1950-1979 (SYNTHESIZED)
PRE-PROJECT~
r---,
1---...J i
1----
f---, ~ST-PROJECT
I ~---.
f---...1 '---,
I
"I I
0 N
I
0 J
L---..., ---
I I
F
I
M
MONTHS
·-
I '
A M J
PRE AND POST PROJECT FLOWS
SUSITNA RIVER AT SUNSHINE STATION
I
I
L---
I I
I .J I I
L--I
. I
I
I
l
i
I
I I I
J A · S
FIGURE
ISO
160
lifO
120
tOO
0
0
0
M
U) 80 u.
u ._.
~
0
...J
14..
60
40
20
0
r--~----------------------------
tQTI;
I. f>EWOO Of" ll!"CORD:
PRE-f>nO.JU:T-1975-1980 (RECORDED)
POST PROJECT-1975-197'9 {SYNTHESIZED)
2.. VARI~BlUTr WA.RKEO FOR SU~J.L£R
PRE-PROJfCT flOWS ONLY.
I
-f-
1---------"--------------------+---·;...· .:..:.:···±::;:;----1[---~·
~:...
~---------------------------+-~t---~~~~+--------r-=r_-
.
-.
I DAY MtGH -r-
'• !--4----r-i •
i---..J I
. . I
' 7 DAY H~ff -1--+---c!~'-~-----t--. _-t :...-:
+
I
J
I
-!-
+·
L i-=:::=::j==-------------·-----~ ---·-. -.----------.--:=-"'-"""1~-....ot
-1-
""'
r--1-_,.
-1-
.=l::::..
~~------------------------~-------------------~ -f4 O~Y LOW
~r
POST PROJECT
---~--t--..,.--.::-.-::;-;-:;:;:-;-;---~~---·-.,_ ---,_ _.t.., . I 3 Of>.Y LOW
L --.,_ ....; _ _,---I DAY lOW ·
I I I J I I J. I I
0 N a F M. A J s
PRE AND POST PROJECT FLOWS
SUSITNA RIVER AT SUSlTNA STATtON 1'/
FJGURE
DRAFT
that overwintering habitat limits the abundance of the species in this portion
of the river. Additional data collected which will more clearly define the
changes in stage with respect to the cross sections in this reach of the river
are planned for this coming field season.
Examination of discharge data at Susitna Station indicates that the months of
May through October are well within the natural variability of the system, but
as at Sunshine Station, the winter months provide for significant discharge
increases (Figure 14). These changes are not predicted to have significant
effects on the fisheries resources of this system.
The water temperature changes induced by the project versus preproject con-
ditions at the Susitna River confluence with the Chulitna River have been
provided by ACRES American (Figure 11-LRX-3). As this water will mix with the
other two tributaries in this vicinity, the temperature effects during both
the summer and winter periods should be well within the natural variability of
the water temperatures during these periods, and not significantly different
from the actual preproject conditions. Therefore, the downstream postproject
temperature potential impacts will not be affected in this reach of the river.
The water quality parameters measured during the 1981 summer at the Sunshine
Station sampling site have been used as the basis for evaluation of the
postproject effects on water quality. Postproject water quality conditions
have not been clearly established, but evaluation of the parameters by R&M
Consultants indicates that no hazardous concentrations of any chemical
constituents are expected.
Although decreases in the summer suspended sediment concentrations and
associated turbidity are predicted for the river upstream of the Chulitna
confluence, the effects of the Chulitna River sediment load on the system
should be sufficiently high to mask any benefit that could be expected below
this reach. This is caused by a reduction in volume and a subsequent lesser
contribution of the total water volume by the mainstem Susitna as well as the
Chulitna being the major contributor of sediment per unit volume. Addition-
ally, analyses of the water quality parameters variability during 1981 indi-
cates that the variability between sampling periods is of sufficient magnitude
-41-
DRAFT
that any decrease should not be distinguishable in this reach of the river.
This relationship also holds for other chemical parameters as well. Winter
turbidity may have minor increases over the normal conditions. There is no
data available to suggest these changes will be adverse to the existing
fisheries.
River morphology changes may occur in this reach of river because of the
decreases in volume and subsequent bedload transport by the mainstem Susitna
in the confluence area near Talkeetna. A long term aggradation of materials
may occur in this reach and thus cause an increase in stage at any particular
discharge in this reach. The flood frequency of the lower river will be
decreased. This may produce a long term change in flood pattern and provide
more channel stability. The magnitude of these changes do not appear to be
sufficient to project any changes in the fish habitat in this area.
The ice formation processes are predicted to change because of winter
temperature effects on the river above Talkeetna. On average year conditions,
an ice cover is not projected to form above the confluence of the Chulitna
River. As a consequence, the ice formation processes will occur in the
vicinity of this confluence. ACRES American has provided a detailed analysis
of the ice formation process. There is currently no information that suggests
these changes will adversely affect the fishery resource.
MITIGATION: Based on the current level of information available, postproject
planned operation of the reservoirs should provide conditions in the river
sufficiently close to preproject conditions that significant changes in the
existing fishery are not predicted. Therefore, impacts in this reach may be
avoided by operation of the project in the currently planned framework. This
includes downstream temperature control and dissolved gas control in the
spilled water and a flow regime that is within the minimums currently
projected.
-42-
DRAFT
ADF&G. 1975. Pre-authorization of the Susitna Hydroelectric Project:
Preliminary Investigations of Water Quality and Species Composition.
Alaska Department of Fish and Game, Anchorage, Alaska.
ADF&G. 1977.
Preliminary
Composition.
Pre-authorization of the Susitna Hydroelectric Project:
investigations of the Water Quality and Aquatic Species
Alaska Department of Fish and Game, Anchorage, Alaska.
ADF&G. 1981. Susitna Hydroelectric Project Environmental Studies Report
Subtask 7.10-Adult Anadromous Fisheries Investigations, Chinook Salmon
Species Report. Prepared by Alaska Department of Fish and Game for the
Alaska Power Authority, Anchorage, Alaska.
ADF&G. 1981. Susitna Hydroelectric Project Environmental Studies Report
Subtask 7.10 -Adult Anadromous Fisheries Project. Phase I Final Draft
Report. Prepared by Alaska Department of Fish and Game for the Alaska
Power Authority, Anchorage, Alaska.
ADF&G. 1981. Susitna Hydroelectric Project Environmental Studies Report
Subtask 7.10 -Species Reports, Juvenile Anadromous Fish. Prepared by
the Alaska Department of Fish and Game for the Alaska Power Authority.
ADF&G. 1981. Susitna Hydroelectric Project Environmental Studies Report
Subtask 7.10 Resident Fish Investigations, Upper Susitna River
Species/Subject Report. Prepared by the Alaska Department of Fish and
Game for the Alaska Power Authority.
APA. 1981. Susitna Hydroelectric Project Environmental Studies Report
Subtask 7.10: Fish Ecology Studies. Submitted by Terrestrial
Environmental Specialists, Inc. to Acres American, Inc. for the Alaska
Power Authority, Anchorage, Alaska.
Peterson, L. and R&M Consultants, Incorporated. 1981. Susitna Hydroelectric
Project Hydrology Studies Draft Final Report. Impoundment Effects on
Water Quality. Acres American, Inc. Buffalo, New York.
-43-
R&M Consultants, Incorporated. 1981. Susitna Hydroelectric Project
Preliminary Report Subtask 3.10: Lower. Susitna Studies -Preliminary
Open Water Calculations. Submitted to Acres American, Inc., Buffalo, New
York.
R&M Consultants, Incorporated. 1981.
Report Subtask 3.07: Sediment
Susitna Hydroelectric Project Interim
Yield and River Morphology Studies -
Reservoir Sedimentation. Submitted to Acres American, Inc., Buffalo> New
York.
-44-
DRAFT ANALYSIS
Draft Analysis of Fisheries Mitigation Options
The various stages of Susitna hydroelectric development (cofferdam con-
struction, dam construction, reservoir filling, and reservoir operation) are
expected to cause various impacts on the fishery of the Susitna River.
Many potential impacts associated with hydroelectric projects have been
examined and, where possible, techniques to minimize these impacts have been
incorporated into the design of the dams and ancilliary facilities. These
potential impacts include supersaturation of gases in the water, changes in
water temperature, loss of habitat, and interference with anadramous fish
migration.
Information attached describes the proposed operation of the Susitna
hydroelectric development including reservoir drawdown, downstream flows,
and temperature.
Supersaturation of gas, particularly nitrogen, can be lethal to fish. This
condition can result from plunging flows from the dam spillways. Design for
the Watana and Devil Canyon dams have been modified so that cone type valves
will be used for the spillway mechanism thereby ~irtually eliminating the
potential supersaturation problem.
Changes in water temperatures downstream could result in potential impacts.
This problem has also been examined and designs modified to reduce the
potential for impacts. A multiple level intake structure has been incorpor-
ated and should result in a minimization of temperature changes from those
that naturally occur.
Operation of the two dams also has the potential to create impacts to
fisheries. These impacts will vary for each segment of the river depending
upon the distance from the dams, changes in stream conditions, and fisheries
resources present. These segments of the river can be classified as: the
impoundment areas, Devil Canyon to the confluence of the Talkeetna and Chulitna
rivers, and from the confluence of the Susitna, Chulitna, and Talkeetna
rivers to Cook Inlet.
In the impoundment area, the greatest impacts will occur due to loss of
habitat. Tributary streams utilized by grayling will be inundated.
Although the mainstem river of the Susitna is not considered a productive
area, this area will be lost as riverine fish habitat. Other changes
occuring in the reservoir area will be settling out of sediment load and an
increase in productivity.
The section of the river from Devil Canyon to Talkeetna will be subject to
the largest potential impacts. This area includes natural spawning areas,
primarily sloughs outside of the main stem of the river. Reduction of flows
during reservoir filling will result in flows of 900 cfs in the winter and
6000 cfs in summer. These winter flows approximate ambient conditions while
the summer flows are substantially reduced from natural conditions. The
reduction of these flows will likely result in the elimination of access to
sloughs used for spawning by chum, pink and sockeye salmon. Following
reservoir filling, power production flows in the summer will also prohibit
access to the sloughs. In contrast to these impacts, reduction of flood
flows and elimination of most of the suspended sediment load could improve
existing mainstream conditions. Additional enhancement of mainstream
conditions is being actively considered as a means of mitigating the loss of
side slough habitat in this Talkeetna to Devil Canyon reach.
The least impacts will occur in the river downstream of the confluence with
the Chulitna and Talkeetna rivers. Flow and temperature variations will be
dampered greatly downstream from this confluence as flows from major
tributaries will compensate for much of the changes. Operation of the
reservoir will, however, result in a reduction in flood flows and an increase
in winter flows.
Many mitigation alternatives are presently under consideration. The TES
annual 1980 report more completely outlines the potential impacts associated
with hydroelectric development. These impacts will be addressed in the
feasibility report. Possible mitigation measures are presented in generic
form inthe following table.
MITIGATION OPTIONS FOR OPERATION FLOW -DOWNSTREAM FISHERIES
A) Avoidance
B) Minimization
C) Rectify Impact
D) Reduce or Eliminate
Impact Over Time
E) Compensate
no change in natura 1 flows -· no project
option
-provide adequate downstream flow on
diel basis throughout year -possible no
project option.
alternative flow regime to minimize impacts
on fisheries resource
-mechanical alteration to provide access to
spawning areas at newly created flows,
transporting of gravels to suitably
maintain spawning areas.
-basically monitoring of resource as impacts
develop, and also monitoring of planned
mitigation measures. This may include the
following examples: repair stream alter-
ations due to flooding, proper operation
and maintenance of any artifical propoga-
tion facilities
-lake fertilization for sockeye enhancement
-fish hatchery
-artificial spawning channels
-creation of new habitat sites not currently
utilized
-fish passage structures
-lake and or stream stocking management
MITIGATION OPTIONS FOR IMPACT OF IMPOUNDMENT CREATION
A) Avoidance
B) Minimization
C) Rectify
D) Reduce or Elim-
inate Impact
E) Compensate
No impoundment creation; meaning no project option.
1. Lowering height of reservoir pools, therefore
reducing the number of tributary miles inundated by
the impoundments.
2. Eliminate Watana Reservoir -opting for single dam
site at Devil Canyon. Proposed Watana impoundment
has most of the productive tributaries.
3. Move dams to sites where a smaller number of streams
would be inundated.
4. Provide for enhancement of other species such as
salmon or resident salmonids. Flow regulation
downstream may provide this opportunity.
5. Development, if possible, of a fisheries in the
impoundments.
Possible stocking of portions of tributaries, inclu-
ding areas that will not be inundated.
/
Monitoring of tributary stream systems to determine
impoundment effects upon fisheries.
Intensify management efforts in existing habitats
to enhance populations. Also stocking of lakes,
other drainage systems, removal of fish barriers
and other habitat improvement measures.
MITIGATION OPTIONS FOR DOWNSTREAM TEMPERATURE REGIME ALTERATIONS
A. Avoidance
B. Minimize
C. Rectify
D. Reduce or
Eliminate
E. Compensate
1. Multi-level discharges that effectively provide
controlled temperatures during summer months.
2. Consideration of floating intake structure to allow
colder winter intake water to be discharged.
Improved multi-level discharge schemes could also·
accomplish this.
3. During filling time, consideration of feasible
options for discharging water with a temperature
closely following the existing temperature regime.
1. Multi-level discharge structure should at least
reduce any significant impact on summer rearing and
adult behavior. Proper operation, design, and
control of water releases at both dams are
necessary.
2. During filling, possible variation in flow ·releases
to allow water temperatures downstream of the dam to
obtain temperatures as close to the present regime
as possible.
Importing artifically reared stock to the affected
area.
Monitoring water temperature regime and fish
population response to the altered temperatures.
Introduction of other species or stocks more
adaptable to altered temperature regimes.
Replacement of lost population in other geographic
areas.
Artificial propagation in suitable portions of the
Susitna through spawning channels or hatcheries, if
losses confined to the reproductive cycle of the
salmon.
Reservoir Operations and Temperature Modeling
l. Pre and post-project average monthly flows at Gold Creek, Sunshine, and
Susitna stations for 30 year hydrology record utilizing Case A (proposed
operation scenario).
2. Pre and post-project average monthly stream temperatures for Case A for
average, wettest, and driest flow year of record in the reach from
Devil Canyon to Talkeetna.
3. Post-project stream flows during Watana reservoir filling sequence.
4. Reservoir temperature profiles for average year conditions.
5. Post-project stream temperatures during Watana reservoir filling
sequence.
GOI.r.t fPFFI\ IIF'IIATF.n F'RF.-F'RO.lECl Fl. OMS
OCI NOV OEC: .lt'IN FF:B HAR (IF'f\ tiA'( JIIN 101 AI!B SF.P YR AVO
6335. 253], 1439. .t 0 ::!7 • 7flfl, 726. l:l/0. 11510. 196(l(\. :?:i6()(1. 1 ~'flBO, 1'!3<H, ?9'1? •
304fl. 1.300. . t 100. 960. fl:?O, 740. 16.17. I 'IO:HI, :!(1?90. :?:~·'!)?() t 19670. 2.1 :-!·10. 906;!.
55?1. 27-14. 1900. Jt.-00. l.OOO, f.!BO, 9:·.~0. :5419. :n:no. 21.-390. 20920. I -14B(I. 9516.
8202. 3-19?. 1700. 1100. 820. 820. .tf>tS, 19:?70 • 27320. 20200. ;!(16 1 (). J ~:no. 1.(1035.
~.)/.,04 • :noo. .t!'iOO. .13()(), 1 (1()0. 7fl(l, J :?~~' J. 7.?fl(l, :.!~)~!::-.iO • ;.!0:360. :?MOO, J 29;.'(1, 91,. J.9 •
5370. :~760. 20.r\5. 1794. 1400. uo~. 17?.00. 9319. :?9flb(l. 27500. ~'~L7~,o, 11:?90. .1 o:~o4.
119!)1. 19(\(), 1300. 9fl(l, 970. 940. ~?50. 17/:.6(). :U340, .:H 090, :?453(1, H!HO. 1.14 I 2,
5001.-. ~1)50. 2142. 1700. 1500. 1200, 1:?00. nn'iO. 30.1.60. :n:J.I.O, 20!)40. 19fl0(), 10347.
B212, 39:i4. 3264. ).965. 1307. 1.t4f!. 1 ~)33. 12900. :;·~· '100. :nHBO, 2;~~4(). 7f'i50. 94~3.
4011. 2J~O. t~H3, 1448. t307. 9fiO, .t2~.i(), 1 ~)99(1, ?:n2''· ~~5000. :HHIO, 169:?0, J.()4fl9.
6~):)0. 2fl:)(l, :~200. 1A4:i. 1452. 1197. 1300, l57HO. 1~:.5:'H). :;>;~·?nh. ~!:~:590. :?O:i ·' O. 9649.
7794. :woo. 2694. 245:?. 1754. 11HO, 26~0. 17:~60. :~9450, :.!~15/0. : .. >? 1 (1(/, 1:\:1 7(1, 107:i0.
5916. 27('0. 2100. J. 900. l!H>O, 1.400. 17()(1, 1259(1, 43:?70. 25B50. ;?.1~50. .t !Hi90, 11531.
6723. 2800. :?000. .t.soo. .t500, lOOO, 8](1, .t 90](1, 21>000. 34400 • ;!:11>70. 12]:W. ·t<IS'f!9,
6449. .:::'250. 1494, t04H, 9oo. 7!3. :;' 4~i. 4:50?. ~;o~,BO, ?29~0. 16440. 95?.1. 9793,
6291. 2799. . I 2J1, 960. fl60. 900, 11 ,)(), l2990. ~!~.i72()' ;! /(14 (l. :?.t .t :?0. .t935() • J.(>Jt?.
7~!05, ?098. 11.-31. 1400. 1300. 1:100, t 775. 91.-4~. 3;.!9~0. 19fl6(), 2 JIL~(I, 11'f~j(l, 9:~9:i.
4163. toOO, t~oo. l:iOO, 1400. t;WO, 1167. 15400. :?95.to. :?6AOO, J2o2(1, 1 Mli'O, .l.t.t:H,
490(1, ?:~:):1. 2055. .I 90 .1 .• 1 9()(1. 19()(), I 91 0, Jfd fl(l, :H:i50, ~!64;!(1, 1n1o. Hflto. 97/,J •
302:?.. 1630. flB:?, 724. 723. 6.\f.-, l!'i.l(l. 11050. 15:-iO(l. i I\ .1. 00. flfl79. 509~~. 5!)1,{ •
31?4. t2J~. 066. 824. ?of!. 776, .lOBO, 113AO, 1.0630. 2~'o<'>o • 199fJO, 9LH, 7~:15.
52flR, :1407 • :?290. 144:?.. 1036. 950. 1 OB~.', 3745. 32930. 239~)0, :319.1(1, .14440. 1.0201.-.
5847. 3093. 2510. ?.239. 20;!B. 1 H:?:i, 1710. 21fJ9(l. ~~44 :10. :?2?70. 1 9290.,~ 1:?400, .108:1.S.
4826. 22~)3. 1465. 1::'00. 1200. 1000. 1o:n. f.!:-'3~. ~UBOO, 182~)(). ;;~()2'70. ~'0/4. AO!:t2.
:0!733. 152:1. 1034. fl74. 777. 724. 992. 161 fl(l, I'IB?O. JBHOO. 11.-:t:?O. t =~·:;'~)0. 75fl1.
3739. 1700. '1603. J:il6. 1471. t •100. l ~9 J. l:'B:H>. :Ln.to. 277;)(), JH()',I(), UdtQ, IO:~:H.
7739. .1993. 10B.t • 974. 95(). 900. 1373. 1:?6:?0. 2431)(). IH94(1, 198()0. 6fJA1, 8136.
3974. 26f)O. ::!403. 1A:?9. IotA. J.:iOO. I .SAO, 1 ?(•f.IO, 37970. 22870. 19~!10' 1:/{.40. I ()(If.!(),
7571. 3!)2~. 25f19, :?029. 1668. 1.!-0~i. 17();;>, lJ.?:iO, 1 9f)~i0. ~~Jo::~o. Ud90. ~607. ~j/12.
4907. 2~)~~:;. J6flt. D97, l.:?f16, l:?OO, 14~i(l, U870. ?.-1690, 2f!flfl0. ~!0460. 10770. 94:?7'
!:i/.,39 .• 2467. . t 773. 14:i4. I :?:36, I 114, 1368 • t:Uli' • ~!79:~H. 2:3fJ5:lt 21479. 13171.
1i
!HHISIIIIIE tilflllOII IWI.tflfEI:I PI~E··f'ROJECl FLOWS
OCI
l·l () () .3 •
12:!2·~.
LI/I..L
J. ~ .. ~3 9 ~l •
L:l8B.
. 11 Ott.
t:L·~3:::.
1 o::; '"''.
11!';?:'1.
1 !.il :.1 L ,
:1 ·I ~L"i •
I :S ~· ~\ t: .•
t B ::;~:; :~; •.
1 ~i'll 3.
ta:·.~o~:.
115~) l. '
10/'()6.
·;· 1 L .~.
.t~~2<l'l.
1<1:5.13.
:L ;j:JOB.
1128 ·1.
1:'1302.
I :.:::it.::~.
1 1)62•.).
L '/ .~ ··;' ;· •
L 1 ',!:'!J.
IIIJ 'J
[)(,:59.
1} 1 ;: •
~) ?02.
717'9.
so·;.··2.
6:3 ·10.
•l.\f,;··.
9\)32.
:;3:31 •
6-115.
i. j ()'i.
6!...'57.
7 ·l ?:! t
:)J.n.
·)29!J'
!) ll.l.
~ 0 ,tf} •
:r:.'a.
}·tl)'l.
,';, ~-: 1 :; •
:,··) 1 a.
·161"9 .•
')•;· :w.
·t::Jo.
313813.
/130.
~if.di3.
l:tEC
:~6 11 •
.100·1.
:37El2.
4 o:.1<~.
:59 77.
131.:3.
3J.61.
190/'.
6137.
·16'~0.
:5 ~.i .3 ,!, •
·l~i:56.
3B5b·
45t):\.
:!!.,:.)!).
28-HJ.
·19.~0.
l ·;l;2'.!.
:· .• :51:3.
~3013.
.IMI
2/'lB,
:!9 .~().
34/'0.
2Jll ;.! •
36t,'/.
:39V,
~'<>12.
40(<6.
406/' t
:n:P.
~1 o:5?.
·'17 .~ ·;>.
·10/' 1. . ..., ... ,., ...
.·:.I '1 I t
3:r;::,.
3•\!H,
36'il3.
<llfH,
2:!HI,·
2600.
332~.1 •
3312.
:3~)46.
2507.
12:51.
·\?U.
36 /'1,
FE[!
2276.
2133.
2511.
234:5.
2BBr7',
3189.
:'286.
3-171.
2'?9{,.
:UO!.
3·\78.
J:H::.
3621.
2 ·1·17 •
276:!.
J007'.
32'7'4.
3~'86.
2092.
2·H8.
2~11 4.
:HIOt,
298<1.
:2~t9.
2990.
2.3:55.
3610.
32:~7'
3206.
HM\
:.•033.
:! l 1)•\ •
::~ :~ 1 / •
2 ·12:~.
-~~ ~~ 7 / •
220s~.
;~ l'l ·1 4 •
26·\J.
~;:.'f.l<).
20U.
2818.
::.~ 8 ~:-:;.
2i'9.3.
38''8.
2()77'
:•:182.
.;:~51 •
::c. •l6.
:·! :~ :.~ () •
~'81<).
2281 I
Jlll.
3()0~~.
2'7'63.
.wr'
:·~H 1,
.s:;n.L
;.! J::i 7.
·l· .. ~ ·;·.:. •
:~;;!() /1 •
~.'·'<i!l •
:' ~~ l ·I •
:?90?.
:.-<;:::t·:.
~11. I) 't.
33fJl.
~:;q~'!.
~~ ·l: \ ~ ....
:3 :~; 7' :~J •
.~ n ,; 1 ,
·13~59.
T·l:·ifl,
;1 l ~jO.
::'6·10'
:.'H:2t ,
2S~l.~.
3160.
J:!9·1·
:·~ :·j ·l :.~ •
~370·1.
H1W
2::uo.
·121 ?6.
11258.
50302.
3.3157.
:1·11 -\'.),
:~' ·\1.>0.
3·!802.
3:!·nn.
:n:s::o.
~s~;2·t5.
n(:.•t::;.
2·15'7'7'
lfl 171'.
J:•912.
36961.
::1 :•;()9.
:23687.
10632.
3b 18().
18215.
31-186.'
29380.
2::'B7!J.
272 11'2.
~~2; .. 07.
33076.
.Jill!
•\5613.
5fl8 j' .! •
t.H7.3t-:: I
6·t0 /:;.
<>7'Mio.
7.l ' ·11 •
/'S'J~;.~,
/l(i ;.-:·;::·.
6120(,.
393J l.
bOHil,'>.
e:·::;J;·.
1110/':t,.
~iP.1Bt~.
6'7>ibY.
Mdt,;:>,
7f.770.
·1 () •l'() -1 ••
76208.
61-irJ:·i.f ••
!;';9:~:-\ I
4:Pt . ..i,
7::'836.
~:;c,:l,.)iJ.
~1/ 77:~ I
·Hi 0 11 I •
5'iH·l?',
..IIJL
~.)7179.
.H·I/'1,
b ·1 :~ -;:.·;:.
~ !:;~ :..;::n •
!'iJJ::.:t,.
;·oa-;\ ·l.
80~3b''¥.
!31'~1::;o .•
6 'i'~:)? 1.
:iP22·1.
/J~1lJ 1~).
b ~:'/':),~.
::·B.:.!l 'i.
~:.)B(JJ/.; •
(:. ~ .. iO ·1 :! •
S::J~ 1:1.
'7 7125.
6'i7J3.
60771.
51711.
51267.
"7 .Jl:, '12.
5::i::506.
f..;: .I ?·1.
~j/' ,. 30.
'l.ll; ·1.
· ftiJG
:.HB<\9.
r.tB3~·.i.•).
~J:~3{;3.
·l97f.i·\.
~~~ ... '61'2.
6903·\.
5J:!•l3 t
r. # ... r ·~
··'" 7 ,1 .. : .•
71?1H.
f:.; ~·:, .J 1:; •
6 1~):) lQ.
61181.
52738.
·1/..3?1.
~'i/:.J l5.
6 '1f'. .'\'7 ...',J.JJ.
46730.
24b5b.
5'19~6.
'i ·1~~-'i.
fi 12:-.i l.
51085.
113~2~.
516?8.
52155.
5~f157.
,12118.
,18897 t
SFF'
:·!: .. 7.'5•1.
~.i1009.
:·~ ... :O~j 7.
:'t'L1; 6.
:55335.
l I 1•;3.
·ID 1 :~ 1 •
~!0098.
:5i,S' 1 ~;.
·1:Hltl6.
360~7 1.
31>/11.
:~s·182.
::i:l ::'\; .3 •
~5(i156.
:-11:-\79.
::~vHB~.
H26a.
27191.
:~:.:102.
:-\415,;.
;/~J:!.3S. ;:nu.
u~r.o:.
:~2/.1 ·;.
:·~2 ., ~l::.
;: ,:, ·;· 'i ~) •
YB t,'.'l~
::02\11.
::zoH.
2 .-L) 1 fj.
::1 ;~ ;" r;·'
2~i8U·l.
2i' 12·\ •
26<llB,
2267·:>.
::~:i18f:J.
::::'HB.
•.. . ~ .-~,
....iJC,J I ,
2 •Hi86.
22c:.::o.
:o·lo U:.
1 u,;:;,
2·1:jrJzj.
.::.: ·12·;~,.
20132.
J1(!71.
2·\870.
J.'i'86::J.
:~i1~6.
(
ilt:l m: c
.. :.~.0/; ';'.
l u 0 :.~ :) I (; \,1' J ·' t :::; '7 t) J. t
Jl'>~~. l~:ih·l. 6YO·?.
.. , l ';' :; 2 • I .• ;. :.~I~ ~· I 7 ·;;· '1 .J.., ..
2·JI,:;'i'. l.~tL2':?. ~·j:.~··:.;:.
23dJ6. 91~8. ~·183.
t~;:.;f to~:.~. 7:~5.
2',:' / t /) ~
~?: ·.--r: -L~> •
~·.~8:'"4/~
::.: {, :; '.1' ~\ •
:l 1'/ ~-;·,.
. :1:.!8 17,
3~'!} (,::\
2/)·::-G:;.
:!~J 'i' '7 i!. .•
. :10 t •l().
:w~::-s:>,
:s.sa t\).
l 01 i.;.fj.
l :.: :' l I,
l 1. '7 •':· ;~ I
13B/3.
t .. S(J.-J,
!.) 7:?'i.
16607.
I l'i' ;: :! •
l ·l ~J ~3 3 •
I.() l 1.5.
UH·:l(' •
~~·;·:~~.}.
1 s:.: ~·o.
12\f,:!-o.
. I :i·:l ;)()'
·t;: ~~ 3.
?·.)·}:5.
l :L:-/.JIJ.
uu.~:s.
~;J C, ;,: ,.;, I
s l ~:. 7.
91 ~i?.
. BJ::~·! •
13001.
·1·~~·: '1.
501 t) I
86:5.3 •
lL''i' l ,
81·17.
b081.
<:'·1U'.
6·:100.
13100.
:' :.i :.~ '1' •
'?30·S.
JMI
.~: 0 i' ·~!.
707·1.
B . .:i' ·1 •
3().',9 •
i'20:~. _ _.,,. .. , ..
I .·.,I ..J t
6177'.
1<1600.
H'>''/t''•''
/ I ) ~; t
6 '7 1 .:,.
1 :~ iH~., r,~ •
Jo:·;o.
66/' .L.
6 ~ ~il. •
i>'1~52 t
r~o:·5 ·'· •
HO:-!';:·.
ltt::<H,
::;<n:;;.
607<\.
6~iOS',
·n;-10.
76\:11.
7 ·1 I}~:,
8~il7.
6529 I
10100,
lJ?/1.
1382:5.
'7906 t
liM\
72i!'~i. b~:'\B2.
70.36. · 5a:J:5.
b?75. [,::;~)().
47'93. •\'1BO I
5fJl5. ~.'j:5tf,.
loB31. t.:-::::1.
8~~:.;6. 73:)3 .•
6:3£7. 66.'\1 •
631().
10034.
~.lf.~~'.
785·1·
,q ~ .s.
71f:l<l.
7'721.).
1153:?.;
~j137.
:3:jB 1 ,
6:'!5·1.
31::iS.
7·177.
6'717.
7804.
5H·L
8'~11 •
6/"71.
79.16.
70:37.
St. 51 I
919:3.
~i9!-.i 1. f.
60:HJ,
6170.
70'1 ~ .•
66;33.
877:1.
:-j 1 i':!.
5'73:.~ f
5SBJ,
66•1.',,
6:513 •
,s :~'t 1'
70 ·1i).
5.368.
f,i'7 4.
6~:;~~·n.
?OJ:! •
t1l"l\ i1f1'f .11)1-! .llll ~~:liG 3Ef'
::.i 6 :·; ;1 • l.'S ;~ 7 4 • l c 1 td. /; I J. 2 4 H ~,. 0 • 1 \) t. ·l :3 ;·.~ • ::; 9:3 3 l t
/.~:i·\, 5::·:~73. n:·:~:.:;~· .• t::;·516·\, t·:><:.9·l7. ·i':\,!/1.
:··i 1
.:: a :3 I •\ ~i 2 9 •1 t J :~ :! ~~ 1 / I l.3 ;• :~:: :; I .l 1 ,·:,18 f., I 0 :>:) ~:' 6 I
/';1 '1·.~. f.t8f!·\O, l3():;l,t. 1:·~~·~·:9, 77610. ·l<lli)3.
i':.:iOf,. ~j8~'i16. lOF.t~P,.t • .iJ6';'~)2, 128387. f.,6;~i'[j.
b ·l t ~! • :) 8 l /} l • 1 61' () 1 :; • 1 ·l t3 8 } ·;.. • 1 2 0 1 ~ 0 • :; :1, 5 () 4 •
'i'U:t;~. u;~·lB<>. 1U3·1! .• 1f.HP.15. tJt6::o. u:··t2ta.
'i''i'O!:i. 6.·~:!0~1. l/{.):1 1•1, .llt0.3tEJ. 1:!·\613. 8/B:?::i.
F·:l'ii'. i'·:1:5:~1. Jl:'Wi/. J:':':'P,O, '79609. ::;:~o:.;:~.
;, ·1.';;-1. 36601 • l1 ().;():'!. l'\(. :·17. 138:53 'L
:·B:·:.o. ~i\1062. B!13·l. 1:~7·1•:i:·L 1.13972.
'i' H 0 .3 , 8 :; ·15 7 , 1 :it 71 ;; , l 3 B ; 6 r , 11 /.. 6 9 i' ,
,1,,;:~;;, 5·):;:.i•l. 163().1'7, 1-\3·111. 1::!12:.>.1.
:;:;b:), 5J'r0.3. n:'I61B. H6•120. tooo·;·.
:):;.n. 3s:;36. 15:Jtu,. 1::!48·:J.s. 122ao.
i.l:~O. 491B~:i. JJ0(\7:,, 1:3fH07. 1118-\6,
!'l()·li-J, :.;:n11. 12:)UH, 11/,L,()/, 118729.
/ :~ P.l. 5 81 0 '7 , l.H 8 B l. 1 3 f.> :H> 6 , 1:1 I 318 ,
H/63. 9·11•LJ, L\?867. 13051-l. 81>87:'),
.,;):;:!. ·I!:J17, 03:Ut,, 1021:!1. 6::!3-S!L
:,/69. 5~036. ~-·ltd:~. 132913:;. 117728.
:; 7 B S • 2 9 fl<i 9 , 1:: ;> ~ 5 ~~ , 1 3 ;:· 113 3 , D :13 ).1) ,
Ml'i:.i, '7•H)62, 1}60~~-l. H27H7, 10'7597,
'/f.BB. 6·153•1, 1:•:,'/9/, 1::!3362. 107261.
. <,?!,:\, 61·\::lll, 678.Hl. 1021fH, 80~!::;:!.
6B67, 1751\0, 126600. L\:i/'0(), 9L560i
'i'::':'i3, '70·160, l 070(10, 11520(), ri'7·1J50.
.'>::::~3. 56 tao. u.:J7()(.. 1·D9oo. 1:':o:~oo.
;o~~. 486'/0. 7'<>9JO. 117600. 102100.
llMi:'.. 81.':.!60, 11 '1100, 11:'500, 1:-'P.:'O\l,
67104.
B.t:jb5.
6:n·;o.1.
71\806.
/0'782.
'\6110.
Hti·'t,.1·\.
',')3887.
87527.
-l:.':~G5.
:)<1085.
80585.
6';~021.
,.;ono.
~.i61:? •I.
?I' 7 4 0.
•lll910.
1331310.
:J5~00 •
'(F; t1'Jil
'1::11.3.
-11513 •.
·l·;,:·;a:!.
118'7·12.
·U9?6,
ti114;i',
;:}at,:::jt.
y;:-:;·:>J.
-192 11!} I
o\3BB1.
5 117~~2.
52S'9J.
H9 t::,
·H 1:32.
·1762i'.
~i()()9 ·1.
31228.
4-1?17.
·\1)()06.
.5·1(H5.
·\3171.
360:~6.
·15900.
1:: 78'1'.
3~733.
H713.
:-i331?.
r"..t:
I . '~··~ l••(•'lr~~·f'""'JI'_'.,r."'""l_..,..~ , ... ~ •·· •' ~~~ .. ~)!~~;yr ~· ... • . ::•;. ·;· ·:~: .~: •·:· •• ,• ~ :: ' I
:t·•··;· ; .
. '
OOI.Il CREEk F'OST-F'ROJEtT f'LOIJ9 U:ABF. AI iJF.r:.:l:ldiliu
ocr NOV llF.:C JAN fEll HAR AF'R HAY .JIJN JtJL IIllO Sf.F' YR ftVIJ
773&. 9on. 12669. 101114, 89611 7877. 7.931. 10434. 10176• R):HI, :1773. 1906. 8724.
691.7. 7fl75o 9411. 8340 .. . 6614. 6604 • 635:5t 10016, .• '136:/.o 7650. 61Uo l:l:!Hit 1115:?.
74flo4o I063:5o 13130. li:lli&. 917:1. 110:11, 7fl:l6o . 8dJII• !3752. ~ ..... uo~a.· 669?.. 9516.
10094. 1131111. tUJOo toant.. ll99~i 7971. IH9!!, 118091' l ~!91!! I 764:!• 94~:1. 11148. 100:1:$.
7496. 9'191. 12729. 1101!7. 9173. .7932. 110:11. l:u.st. 12866. 8060. \16::18· 610\lo . 961l9t
7006. 10074. 13274. 11:501; 957:1. ll251. 79'18• 10179. i:ztO'Io fHHiiJ, H:ss-4. llt:'i\lo '(ll:J:!.
61l43. 9791. 1:!52~· 1071>6. . 914.t. II09?.o 797~. 12:!117 •. iJ~!lllo 1:'il>4 t • l.600ll· 14617 •. 11H2o
769Ro 10941. 13371 •. 11487. 9673. a:J:!:.!; 7~'93. 111:51. Ji 989. 84n. 10:?-4:1. . 12789. 103-47. ')
101(14. 11845; 14487. Jt 759. 94110i 8299 •. 81 t-11 iO:O.IIIi 10704. .. 799';l, 'l!l57. 4995 •• 9796 •
6977.. 76116. 10:!7.9. 117.:14. 9480. llt.H • 1110J, tH~I1• 121>95; 9101. H60li 9909. 10106.
IH!l1, J (1741. 13430. 11632. 96:?S. RJ48. 7967o iOJ12• Y25<Jo 11:1:19; &41t. 112511. 9649·
96116. 10R91o 1:197.:1. 122:1Y o . 9926; ll96li 97.:11: ll:!97 • 137-H. 107111. 120:11. 6466• I 0'159,
7700. 105911 1:1:1294 11687. 967Ji l1552• 8281•. 8nu. . 163:53. f46:?:1t, 16-462. t:un. lll'i22.
( 8616. i 06 9 t •. t 32!!9. t 1:HI7, 167J •. 8152.: 779:i. it:310l 1240~. i:<77~. 1471:11 IJl J1 I 10990.
11341. 10141. 12723· 1011:15. 'i' 139t •. 71164. 71179. AJ731 165:?-t. 147A7t 8482. .:51~6. 10020t
70A::!. 90A2, 12HO, 107471 90JJi IJO~l; 79411 9Aoo, t1A02o 'IYOHt JOHAA, 12:tJ9. 9A8'i'o
( 9097. 9989. 1iH61o 11186. 947:1. 1145~. 8:1~6. 101~7• 14134. . 83lO. 1-11?.. 5:155. YS69.
6876. 7599. un:;. 112861 9573 ,· B351o BO!'i6, Joso4, l1ABAo 129:17. t7240t l-t90~. . 10912.
7589. 10?.H. 1 J21l4 •. 117611. ioo7JI 9051. 849li 10929• '· 12\1;!7, · 1 :HWO, ll:l:!91 50321 l012flo
679:1. 7664. 9:104. IO!;tOo AA96i · 79t.7o ll09t. 9:112. 8:5.47. ·. 60:13; 1'1164. -\9117 I 7772. )
717?.. 9004. 91H9, 11420 •. 611011 696Ro ~875• 6737.i : 11 :S:!:! j 9506. M:l-4, 5151o 71>4~.
7lH, 7780. A9117o 112:.>:.0. 71211l 746::!. 840Jt B91AI · 128341; BOB&, 67J2. tl270. AOIIlo
6900. 775Ao t1A79o 120-.~6. ·l0<1 0lo 119741 11:!\llo 1:1497.. H05'/o l4li0l'lo 106:!11• ll6H; lOH3.
6630. 9987. 126.94. 109861 937:?; AH'Il • . 7A:!li 11526• ,. 1101.-61 • Mill7t li:SIIl• 4YJ2o • 115:10.:
70AO. 79:12. 'i'JOO, 78441 ' 879AI' ·, 71176. ··. ·. 78:09i .ton69 .... too-46. 7560i 5682· !HIJ o IIOJ'i't ... , ( 6916. 7775. 9:104. 6227• ·. 6515.' ;, 7.:S7Jo A173i 11::!:141 : i:Z7ldi i4A90o CJ124t ~298t ;:: . 92971 ,.
96:11. 9884. 12J10o t07AO. 91':l.Jo 11~511 '·; 110501 • fl2511l ····tH96.1 66:141 i'iVio :'i070i ll962i
I 7194. 917:Si 97171 Bt'i'ii 9160; 116:511 b:?.&O, .' 116861',' !:t7291 · 11Rt7; 9AJ4,' !ifl61o 9:n:l. ' 92:11. 1 l4lt.. t3Bl9o !11115. 9B4i I .. 117!!6t fl?.ll:J I 8295 j' .' anM.il 7516. :'i/'711 !!0711 9Q57·
7 I 41. 795lo 9:149o 1Jl26. h9itl iJJist; IIOJOo ' 9o7&i :;. hiJ7oi 1:tO'Ilo llt:llo 5024. . 1159A.
(' 77!18 • 94ll2. llvJOi 1057.41 · ii'i'H1, : 91:~7. 59901 loHa. l:!iH.t i il>:i?.Oo Y:I:IJ, 77tL · )
• .... (t
TY OCCF'ST .MT
0
., I
I 0
I
r
. ....,.. .. T .· :I' c .. f·~·t·: .. ~. ~~ .. ~; .• ''t ···~·~·· ' ..
. " : ...... ., ...
SUH!llliHF. STI\, POST F'RO.JFr:T FLO US (I': A SF. A1 o~·r:,·:?J, 19ni
·ocr HOV I)EC .IAN i='Ell HAR 1\F'R HA'f' .IUN .fill' 1\IJ!l !lEP YR AVO
15404. 12129. HllHI 12!135. .·10449. 918~. 9372· 2l:H21 HiR9o H9171 40742; ~4:1:191 209541
I 5:145, ll;2971 l:H 111. · lfl310. 82~!9. · aoo91 \l:lol. Jlll22· 474H, 1115541 H797; 4'l:l-471 2~074!.
15606; 13393. 15012. 1J256 •. 1oMl4. . , 9433. 9293. t467i'. 50120. -477511. 40470; :?-1269. 2201-4 •
19296. 15090. 15:uo. u.so~. 10515. . '146!1. · IOil7'Zi 4?.041. 49670. 4i67J • Jll797i ?.6615. ?.4:195.
( 151.19. 12983. 15206. 13454. 110621 9:17!'). 1oooo1 21147ih 424211 4101161 .U!i'29•. 21!16!1;'. :Hil491
139:?4. 136541 155421 i37141 11362· 97:?1l; 94:161 226liJ I 511'35. 521921 66H6; :<'9254. 251H5.
12903. 1225fl, 14390. i:?J9flo 10459• 93611 9266· 27794o :138561 &!'ioo~ · 605091 40792. 27 .. 24.
C' 17tH, 14920. 16136. 1:1793. tt6H1 . 99961 9700i 31!'141. 60982• 4746 ... 429.6o' ~H1o~ 26441lo
20291· 16923. 17:162. 131161. 11169. 9794; 9980. 2:S377 .• 4!'i756t H962o 4:l619. .175431 23053.
13739. 10867. 12:101!. 131731 112:1~. 94J1. 97411· 26991J, :o;:lo61• IH'I22• 5~i.171) I 299041 24004;
(· 17024. 14306. 16053. 139461 11374. 91l26t 9!'i9!'i.: 293:14 i 3J04d. 43MIJ, :IIH361 J311J.f, :t:<!49RI .. ,
I 98111!. 14001), 16/3:1. 14526. 11/.50. 106:11. 11690. .:!6375. -tr.i77. H7Rfl, !lf):'i47. . 29167. ·. ?.4931.
16:163. 14548. 11..0491 l-4009. tt!'l15. 10127. !0162. 2071..2• '60620. 5.\5:1'1. 54(193. . J499Q. 2664B•
1511Ho 13943, 15919. 13861. 11794. 9:S511 89RRI · 27525. .tJo:$:; • 59594 •. 43981. 249931 24086.
20447. 1J79B. 14762. 1251l4. 106201 9i64 •. 9!H4o .lUH1 77017i iio61J1 3A416o 1BIJ:S2,. 24(1471
16264. 13735. i5765. 13160. 111 J:io 991..9: 101116; 21207. 44:170; 47110. Hi:<t3;: 1l-69:<!. 2464:9.
20too. 13'21?.. 1519ti, 13191), 111112. l01)'27t tl)179. 169Hi :S0'/ 53. ~.1753. 17:'ih9. '237611 .. 2<!992.
. 14264. 10294. 14091. 1Hf14, l14&7i .9944. 9:i28; . i79:16 i 4ll:l38. 6:1:;!62 • 67367 •. J:i-414. 271321
13395. 13304. 15792 •. 139<\IJ, 12159. 11049. 10940'i 3i710i 59147. :S7li5. 3781191 ii'10ll ·!<!4Jilt.
( 1151..4. 10011<! i. 111)72. 121)04. IO:!~m. ~2:!f1. 101):19 •. 1'9771' .!34:!11 :l!'i<!'l.O. ~~09-11 •. 1H:t2. 164no. )
13464. 10767. 115011 10196· 114111. fl574o 7945. 21044. 40:124. 47617. 409110. 232:H, 20360.
14l20. 11940, 116271 io1oii. B60~. .. ·an6:J • 9961• . l:SR25i 56H2. -!Rn:J, 493~11 ?3232t 22:180.
(-15366. 11410. 14291. 14044. 11974 i . 104116. 97'11· 277112. H411~i. 54030. 4:!59?.• ?.7J91), '2JR03,· .
1539:?; 13752. 15259. l309Ro tH:S61 9797. 91..45.·. la5o&. -13199. 400411. ;Jc\:~761 210Y6o 20610 •.
14611. l1091l. 11790 I 911521 t0540i ::· 9372· 979:4. ?.6t7:;. • 151JB'I I 40027. 326n4•· . :1:.'!277• ' 195011 •
f) 15479. 11013. 11478. 102:S7i ROJ4o ll993t . 97401 252fl4 I· !'1323&;· 62662. 42712• .,.211555• • ~39!\3 I .. .,
17457. 121:?9. 1J96Ji 12293. i052!1. ;. 9432. 99711 21:113· 4:1492. -tno(l, 37626 j .. 166911 20&90. . ': 13940. 114131 125'19·. 10593. 10.tB2• .!0322; iOi.t71 2629Bi 63532. 5tt•h. 457:!1 1.1 25'1401 . 24319·
{' 190591 15021. 16ti4:1. . 13'199. 1J400i. iOHIJ, 11)i:d. 190~2; :r;n:s9i 44426. 3t~o:s. 1~?.06. 21)696.
13457. 1106~. 11'17~. i040:ll 99!11. ·lotH. 1o2n-4~ · 290!14'1 .\40291 :S598:S. 39l.Ofl, ~1044i ; :<'216~.
(· 1:SBJ9, 12Ri-4. •i4J511i 1!!6h1 1 oA59.1 ~A~:i. 9ooo, . 2-40 tri ~ . ~li3JL ~n;4:'1 • ·hilt~ •. ~1i.if441. • .) .. '•'
TY SIIHCF'SToOIJT
()
... )
SIJSITHA STAUOH POST f'RO.IF.CT FLO liS ICA6F. A) ou:.:?J,19B1
(
OCT NOV DEC .JAil FED HAR Af'R HAY .IIIII .Hil A liB !'lr.F' YR AVO
28270. 1 71157'• 17427. 15659. 1:1~:29. 12521J. 12711'1. 65211'1. 92.19:!. 1106~·6. n:l:•:;. :1~9:16. -1:?6Mi,
c 21 H5, ll50B· 14295. 14454 •. fJ069, 12246. 1:?09:?. 5:'it99. 706~~7. lllfi~!H. 073116· 641'49. 4060;1.
32946. ·24255, 16219. 1Bo6o. . 15209, iJOO~. i:l9:?1. -lfl713. 1139~·9. I:?OH3, 10:-1:?93. 742110 • 19:'ill2.
4&044. 241110. 209:16. 171155. 14947. 13501. 1157:!. ll1.ll9. 1 16 Hi6. 11.!.19 I, IIH:1:1. J70411. 48942.
22061. 19720, 16501. 1t.989. 13166. 121:1:?. 1:110:1. :';4397. 9/.497. 1044:12. I l:?ll:;, 59164. 150-IH,
25:'i32. 16462.· 17H2. 17042. 14018. 12467. 1 :!:? 10. 590~t4. 15L!94. 1:1ot15. I.Ofl9:?4. 41:!7:1. :H079,
21815, 1A4JJ, 18:.'124. 1596!'1. 1::1004. 1J.I7<$t 14204. '7:711:1. l41:?t.t. I :'i Ullll, J :;>:1095. 100505. 59:195.
43714. 29439. 2::1375. 20307. 11\:129. H:'ios. IH9R, 11060:'i, 1:!8040. 125-IUO, 1H516o BOA .14, 5111\:19. )
:j4520. 27778: 2111!10. 17:147. 14:'160, 1:!0:10. 14MJO, 679.39. 9.i'9<)1, I 07311:?., ll63l6o 50498. 471101>.
32704. 15064. 13-479. 17561. '147:17. 12617. JJU.t. 54039. 99377. t:to618, 1:?1156. /.0093. 4RIM6,
I :271>47. 16056. 10<1:15. 1650.1. 1HI13o 12602. 1H97, 41594. 771J6:1. 114711~1. 961'1:1. n:tt3. ·OIIIH.
3:!674. 2080:1. 24997. 224:16. 10:?06. 16JH, 163fl4. 79394. 1:160(11>1 1:?:1.117. 1 0611~·n. tl!\6(1(1, ~4ROt,
30013. 20934. 20206. 10637, 1-4356. 13i03. 1:1216. :'10796. 136132. 1J2U4, lt41;1J. 71(193. ~2'i'fl6,
29609. 18646. 20094. 104:!6. .16027. 13210. 125Ufl -t61RJ, 720~4. 1:?779:1. 977:10. 66:193. 44912.
:J97ja, 1939;1, 168:s:s. 161311. 1:193:!1 12061. 1:?664. :19602. U907(1, 11664:1. 84322; 41695. 44360.
295:18. 167211 17:156. i67J9. 14369; 1:1J:l1, 1:170.1. 46095. 959:';7, 1 ~~0·47:'i. 101594. H2'i'J31 47400.
3BH5, 202041 20:109. 17817. 15662. 1424:s, 146:19. 51.79:1. 1116.H1J1 106U7, to4.H a. !)7491.. 47373. ')
29109, 18962. 18:557. 1781 :'i I • 1:!899. 13034. 14170. :13.1:11. ttn57. 1:?:?H;t, 1:?19:18· 11:1562. 52556.
40414 •• 23764. 26310. 21391. 19705. 15923. Hi3H·, OOA9:?. t192H. l17R'i'4, :IFIO:J4, :111601. 50460.
16911. 1 264o• 12701, l11i19. 1U1o. 1:?:12:1. 130:JJ, 42579. 76:?7:1. 9:?074. :'i6115:J, :1:19"19. JJ-1.19.
267:11. 1:1588. 136/.9, i3670. 11614. 11924. 10564. 40393. 675:H. H9B3t, 10:1'i02 'I 7116.15. 441126,
341>73. 2091!0. 153301 1UI19, 12:1~6 •. 12395. 1:1109, 34982, 10:?162. 1~fU19 •. 10FflJ:/1 59651, 15661,
33616. 19567. 111160. 19167. · u~a:u; 1:1:197. 1J4.i'6. 65664. 1 ~i5653. IH!i2S, 9ll9Jfo• 5.H!'i4, :iJff72.
28586. 22587. 19376. 17:19:'1. 15649. 1HH, 14:112. 64B2:S. 10606:1. 1111199. 9~-~l:i:?. 41 011~ .. -1!)1149.
24303. 16512. 14347. 1·4:172. i-1768. .13446. 1JIJJO, 56'1 47. 6001'1. 909H. 69714. 49<11'17. :16474.
22697. 16475. 17120. 15300. 12640. 132:1'1. 13447. 4J4H, 109200, 12:1670. 6~::194. 707:-tB. H9t.J,
33442. 1711:?4. 17229. 163151 IJ707i 12!11?· 139:10. 69096. 94116· 1021194. 851~··· .t/099. 4:161:1.
33460. n19s. 20414 I 16462. 1:145;1, 13925. 12613. 551~6. 1416:19. 1321147. lt6o<r4. '77oJ1. :'149:000.
39090. 20521. 1117591 1676(), 149H, 1j741t 1:161-4. 4501:1 •. 11074tlo 104096. 91487. fi11'64. 41.6211.
:J'i'OH, · 20-tl ~. J6974 I 1555:?, I :16!111, 1410:1. 1:!26:1. 7b466. i(I4000. 126711. 011911. 61:1:59<1. :$24681
( 32203. 19643, ia:i7J, 17027. 1414:1. U313i 136111. 57:.'i64. 1o7a:u. 1111~99, 9H9Ui • 60!')04. •
(
(
FORM NO. 152 REV. 1
5TRI!.AM. lUI'I·niR. TttMt"'IUAT\J~~ FoR.. Avt:.Rf.'l<l<lt '{~,q~ Cl\~1! A (oc.)
,, ! ,,
F'LOAT.l.I\N l.N"TA'f.\! AI ·WAii\1\JI\ 1\NO 3-:tf\J<.irl..f! LE:vttl.. .X.Nt"A\(1!. AT lo J:T, AI m:.IJlt... CA'N'(ON
c:.~~ 'JAN t:'r:a M,t: AP~ M~y J.,..., Jvt.. ""c. Sf!,. Oc.r I'Jo-1 ))~;:c
! :
s~cno..a ..
LRlt l..<i 3, "3."f I ~.1· 3.9 5,7 7.1 9.fl cu .. ?.~ lf.~ 3.<) 3.1 ' f!>B.I-.o w .
i>G.I/11.-. c.At-<· cr-.1
j)~.
LRll G.i 3.'il . 3 .'8 3.'1 3.<i S.i 7,1 '1 ''8 'f.7 '·' 4.3 ~ .<f 3.f
fbRTAG:-E
' C~RS.£1<. I '
' u~x 54 3.3 ~.S" ~.7 'f.O l.f 7,5 to. I to, I 1.7 '1-. 2. 3.5" 3.~ t
LRlC 47 3.0 3.1. ' ' '3.1. .... r l.. 2. 7.9 lo.2.. lo.3 1.i 'f.l. 3.'i 3. '3
FfO t:.!) <:..,O;G I( I
I I ,
LRJt'-ft 1.'1
. .
3.l. q,r l..3 7.9 /o . .3 ro.1 ?.<g •· lf.l. 3.3 3. 2.. 3. '2. :
' .• i
LR X. ~-4 :l. {,. ~.1 ~.'i 11.'2. t..~ g,2..' 10.5' lo.? 7."1 '+., 3 .<l 2/i
:
'1, t ., ,!) ' 3.3 'i.J l,S' <a,t. /0.7 ft.o 'a,o lf. I :l.? 2.5 lRlt :n
L_R(~I t.7 l.~ 3, 2. 1/.lf 7.0 ~.c; Jo."l II.~ <t1. f 1f.o '-. 5" l..'L
;
kR~ 15 '·, '· 9' 3.0 '-1.5 7.3 1 . .,. li.L 11,8 \!.<.. 3.'l 'J. ' , '·'
LR'-"l ¢,5. ,, 't !{.~ 1#.1 7,7 Cf.~ I I I!) 12. 2. 'i1.3 3.'iJ 1.7 1.~
)> 01 (/) '11 ... , -< J: r 0 , m 01 m m
~ -i z z c c !: !: 01 01 m m :n :n
l..JH~ '3 ()., I I I l.l. Lf-.'i 7."1 lo.3 11.7 ll..lo 'if,'-/ 3,Cj{ f. 'I-O,lJ
Cof\ICLv~ 8...
..
PI 5e:.ll II l(t. e. )05'11/ ~f~3 ~012. i<io~ t:;3'1i.J /02~8' qo7() 8'&.~5 t.'in .. 7'{03 'i'llS" JI'U.'f
~~l-ow be. CFs) I
FORM NO. 152 REV. 1
SIRI!.IW\ WA·~~ T ~MPI!~ M"tJ ~I! Fo~ W.;1" 'i'e:APt CASE A (oc) ,, ft ~ f 1.0 P\l T 1\JG :tN1A~E PiT WP.TANPI P.NC> S.:t 1\lG. L E. LE\/ £.L :t:NIAI<~ ,.:IT 70 ~~ ~T PI!V1:L. (..Al\l'(oN ,
CRoSS jf\1\J Fe o · ,..,.,.~ Ao>p;_ . MA'f Jo....t j.,._ .. Auc; sc.,. 0<:.-r !'lo-t O...::c.
'::F..cnc:u• (I) n c
f/.: It f/ LR~ G.l\ 3.'t 3.9 3,"} 3.9 S,? 7, I 10.1 9.7 7.3, Y.L.. 3,C} ~.9 E D.>
' .. l '·' .·,, j ! I m -i .. : •• C1 0 .;,/,,I :-:t c:
u~x l. f 3.'a 3.S . '3.tt 3,q s.s 7,'2.. to. I G.~ 7.3 .... 1.. ;).'1 '3.CJ lfl-
G OJ
(II r+
1-1 -·
G..o (.5 1.</ l.f.'
...( 0
LRlt o!f 3.3 3.S 3.7 'f,O 10.3 to.o 3.5 1.5" l :J :p en I
LR"' •n 3,0 ~.3 J,L ~.I t..2. . 7.9 ·~."'/ lo. 2. 7,5' l.i. , 3.3· '3.3 :r:
1 ..... /tl t':: ·.: ,r -<.
0
AI
3. 1.. . ~.I ?.'j )0,5' lo.2. 1.~ \ 3.~ 0
LRlt 4J :t.9 3.(, ~.2... 'f. I '3. G. ,,
~
L~~ 3't :1. (... 7..9 :vi lf I 2-(...Lf i.l ro.G. ro.'i 1,5 't .a 3 .I 2.Cf ~ (\
LRll.:n '1' , 2..{, ~.3 't.3 {..,7 ~.5' 10.~ 10.7 7.G 3.1 2.7 ::? 'l. r
f.f
U?J< .:U l.'il 1.3 3.1. '1.~ ~.Cf '8'.~ to.'} to.~ 7,7 3.1 2.5' ~.3 ~
)> co en :!! '-, -< :t 0
1,i ·o m r co
LRX. IS' I. I 1.9 3.0 Y.5 1.'2.. 'L3 II. I 'I. 2.. 3.tf l./ J ,ljf m m z ~ z c
1J c s:
E s: co co m
1.5 I I. L. /."1 3,7 1.7 m :n
L ~lt 9 o.lD 2..~ 'l.7 7.!'; 'l.'g 11.3 l,tl .AI :n
lRJl ~ o. I f. 2.. ')../... 't. 'il 7,g, 10 • 'Z. , , !) I/. '8 1.Cf 3,(.. LS' t.o 0 0 0
)> )> ,
(,:,If .t~·;+;:. I 'J, ' I~ ~ ~ m m
D.r.s:.JINtn lo?oi. <.Jot.l. 'i<=~O'f, ?'l'l<l. l()tO(,. ' t tosi 1 131t.. 31 fll <:)g5', ll713, {,SJ./0, IJC.~ • ll 1l3t... ~ ~ t.i>w l> t.. ___ C.FS) 09
FORM NO. 152 REV. 1
,, 1\
Ft.oA"TrNCt 'INTAK!t f'"t' WATAP\11"\
(oc) AN 1:) l: ...,.,... \(It P\T ':70 J'!T AT D,C,
..
C~s.SJ JAN Fe-6 MA~ 1\pff.. Mr!y JvoJ JcJL Ave. ScP. Oc_T No" Dt::c .
S~;.<:.Tlot>l I.
-
,.,'; / (. t lRX '8 3.9 3.<t ' 3 .e;· 3·.9 'l..S.? (.,.q q,lf cr.i 7.1(. '1-.3 3,q 3,q
/1/: t"// . . ,,.:,/:,.
' I i
li?JC ~I 3. 'a . 3.'it !>,9 3.<1 s.~ (...t} <?.'I 9.3 ?.'t Y.3 3.'a J.~
'
: '
LRX5'/ 3.2. 3.3 3.1 If. I .. ~.2 7.1 ~.? l<l .() ?.!.. 't. '2.. 3.S J.'-f
'
LR)(•n :z.~ 3. I .35 't. 2. . c...s 7.1.. 9.1 l~.!f 7.? 1L I 3. 2.. 3.' ' '/',i/ /./'('
l
i' {.
L.RX 4 I l. 7 3.0 3.S 'l:Z. (,,l 7.7 (0.0 10.5 7.? '-f.l 3.1 3.0 ..
. . ' ·~'.
LR~M I (...~ ~.0 'LI l.. 1 2.3 J.,, 3.'1 'f-.3 /0,1. IJ,O "J,g 1.9
'
LR~:n
'· 7
:::t.2. ; 3.2.. •t.1 7.2. £LS' fo.5 , I.(.. ~.0 'l.o l.S 2. '2.
LRX :tl 1.3 l.'f ' 3, I 't.5" /.5" g,? Ja1 12..0 ~.I 3.'1 1.3 LCJ
..
; . I
lRXIS o.t l._lf 2..~ ... 7 s.o, '1.3 11.0 12.? S.3 3,'6 f.Cj!l 1.3
'
lf(X 9 0,0 O,<f 'J..l iJ,S ~.t.J q,g ,,, 3 13.3 B.tf 3.7 , . " 0,1?
..
o.(, : ' 13.7 8,5" l.f o.'l LRX 3 o,o ~.5 5,0 'a.? to. '). II,£, ~.7
. ;: .; .. r·
~U:Jir\Y:c.' 8'353, (,7'/J..; l.ottllf., 5'8'12, L071, tooti;, rCJ'i'f'. Lf107t 1-/ 117'1, &'11'1, 1lJJ~' 'ill(,~.
~ ........ be .
(C..FS) ' I
'
imr.r:t n:rnr • r·n!lt • r:·mJJi=:r.r n.nl-ls ( "'ftr """ RI::S. r tl.i. Hlln lll'.t, ~! t , J 91H
I
'·
OCT HIW I)F r. JAN r~:.n ti/'IR 1\F'P IittY .I !HI ··'"'-1\lfn r.n:· Yl1' t'\VI~
:~(,(, 5. i~9<1, ' ~ 70. JH:?. 10..,6. J057· I ~170, r.o:JL '11 /, tl. 9-107. ~,.,. (. /,. ~!)flJ • ·lo-1·~,
2579. .I.Ot;J, 1.09-1. !052. 1047. to::oo. t, :' J. ~i' .S-1-10• (,;p~. 1-l/H~. Oft,':·!• ''·~:q. 4t)]'7 •.
JO::'f!, 147-1. j ~· '1'1 • ':;>2!). J05'?. Jo-1:.;. lOlA. S;?,(t:;', fO:i9/. I ~I;J?tl, Q~(.-1, 7~·(19. -14•H.
376(.. tA.-10. J.~H·. ttol, Jioa. 1049. ti:n. fl::>:n. '?050. flfl'l:!. 97:.:f!. tU~•t·. ~7.1. 7.
3435. Hoo. J. :?l6. Ut::>. .t.o•n. 1. 0 -1:? • . 1.1. 9:.1, 9!~n.:L •nn. o:;n(, • ,,(,/<;', ~~~~' ""~"'· 35(,1. 1607. JJ9!i. 13('(., t ::'-17. ll.t-1. II.C.9. &t.oi. fl97?. "77'2· r1:?.f.J f :i-1-17. ·1700·
~1:199. J:?.).:?.. H6~. .f.063. I tl!i. t.t46. IU:?. R707, HH60. .I .1. :!!'19. 1 t:i77. C?'730. 50tH.
H-1f!, tt.7J. .I ~:15, . 1 :?.:?.7. tzu. J.~A;,, . t .t ~r-;' n:111. ~nn.5. '! :~f:. ·'· • ~'2'J'J, 9~t~9. ., (,, f! .
4227, H'If!, f'7'0!i. i11H. tH!i. 1074. 1.1.61:1. 694;;t. 7 (.(1:!. .,. f :,o?. ~/f..'f?, (.l?~. 43(,!1.
3it;3. t320. 1.?91:1. t2t.7. I ~·59, J.iiM· 1?6-1. 9fl./19. 1:1990· 1.0507. 1. 3:?110. 90:'n. ~?{);;'.
3H::!• .1536. J-1:?fl. tJ-15. .t.:?t:-1. .tt 36 • 'uo. t./:'f:.. (.')97. Q-1'1'-1. 1 o:•,t,?. '7'0?4. H H •
37';5. l!i??. tt.:;>t. 157:?1 13-19. l37Q, '· !'10!)' 77-n. tOM/.. 10730. fl(,;?(), 7R2-t. ·1070.
3320. .1.~37. 1:?.110. t.t 9 .t • t.t.4:l. U23. J.t.n. !j256. u 2!i~. fH06. 7(:.(.3. 774-t. 11-tO?.
'321:;. tl9t. U'i'.t. H9t. t:;>1!]. iot&. 'f!i:f. 7731.. '1337. 0(,3:1. 1:1(, 59. ~.I:.!(). H!'i-1,
331'2· . I 361. 11'7'9. too;,t,, ~Off.,, lOJIJ, J03/i. ~nn . Jt73tl. Of!67. o:~'i':?. l·-!o.P. II ?.Of!,
350:?. .t33 t • 1oH. 997. 907. '7''7'3• 10'20 • 60:?4. ~507. tQiiOII. ?n.t.. 77:;>-t. -1:!77.
..;o:J-1. t-133. f3:?.7 • iz..;o. 1.2J!j, J:U.5o U37. li:!!i.t. Jioto. 'r'706. tOH'?. 71.36. ,P:;'(l.
27113. 1.29~. l:;i7R. 1/.'ffl, ~?69. J:?ll· t :.>. t 7. 69:?-l• f!79fl, 10fl,.3. ,~~1!3. 7797. 4700,
27:H, I 3.t 9, . t 251. 1263. . 12-10. J:?1o • l233. 73!)3. 9tt.oi(.. 10337. 90:;>;?., ~:!!$;;'' ·1Ht •
2737. .i1n'i, to:;-o. .10051 10t,t, • io;lo. H-11J, 57J,t,; !';!)Jfl, 7:15(,. 7J(I7. !"ill3:~. :ns.t.
277j. . .I 09.,, . t (157. iooo. 1066. I.OtJ:? • 794 • !'iOH; H?:Jt, 1025(). 971(,. f:.-t9'7. -1.130.
:l570. .tf:H .I, l!"io~. 1:!..;5. 1i59o t.t :J:h ll,t,B, _,OOIJ, o;:Jp, IHt~t-1, .I 0 ·M:J, 6fl5t. 113?fl,
29.U~. t •J06. 1.,53. Ht,fl, ,.;37. t~57• tJos. 'H't7. t.toot. fl950. 771lp. 60114. -l!"ifl(,,
25·75. t pr;. UHf, to61J, itoo; !O:;>,t,, l013. ..;740· 7941. 71199. ~2'i".J. :>!i7.,. ~....,3.
27:?.~. to6n. ioo2. 9flrf, 9117. 917· lO:?O, 7:?91• 70tH•. llfl2fl. 069(,, 706-1. j9fl0•
2700. t t:u .• t:n6. J:;-oo. l:Z6t; l2!59i l~lfl:?. 767ri. 9 6:Z .~ • f<H'90. b963· 71135. 4537.
4Ho. J:?9:Z • • ttos. IH6, Jl07.· 1107. J 2L1, 761Ji, llJfl6, 792!i. 7-1<M. 'S., (.9 • -10~0.
29M. tli23. t6.t5. t:Joo. t:H5• • j2~9· Jj77. .b.tH; .io&17. 'i'tli :1' IHJ:~, /,f)J.7. .ts.t:? •
J927. !7!10.. . t569. iJ5.t; ijoo. {249· Jt'i' ... hw. 577~~ I ll6:m. fJ'f7!1 • (.(17 4. :~o;,,.
:H 113. H.o;o. 11Ml, Jt~o. t t:H I 99'f· 1.03:!. !mo;.; !'i7R!i, 'i''?MJ, 9UJ9; ~:?73. ~'f6~.
3i96. i4<lS; 'l29f.l. .t :;!0~. f iM;. ll2S• H&.-1, A91 L f:ifJj!), 9!)09. 1-16(, • 7f57. • w~ CJuJr;g~·.
bi!JOO g~o
lt-fJOO 6ooo .
( ~:m 1oo 1eo Cfoo 1(9.c fe<D '}oo l.,r:$::0
..
H!JIIGIIIIIE !3lo'o, 'FOST' FF:U . .JECI FLOWS (tJoH.-oPt'l EFS, FJLLliHli t•Ec,::>.l,,I·;·H!.
ocr
t:t<l~~.l.
1 il'T77.
11170.
13158.
110:58.
10377'.
8?5?.
130'1<1.
HH4.
9960.
12015.
12997.
11991 ..
l04ol6.
1.5-118.
12764.
15037.
10331.
an7.
750!3.
9063.
10ti46.
113a-t.
1 1:H7,
10277.
11263.
11936.
9696.
13655.
9499.
110'.'
·11J\);; •
-1-1:32. , ... , '') ._, ,, · ....
•137 2.
518?.
:~/, 77.
5652.
6996.
4::;o t.
5101.
4681.
5294.
4-143.
50UJ,
6004.
46:'i.S.
3993. nn.
3593.
3857.
5971.
:.;o:HJ.
4940.
-t2-t1.
43fJ-t.
353"7.
•H16t,
5;;H:j,
·1603.
476f.l,
r•EC
.3:3·12.
37'1B.
:Hat.
:36'1'?.
3693.
:3663.
:~o~:2.
-1100.
·1780.
33?7.
4051.
1131.
3960.
3881.
3231:1.
.,3(,6.
3M!.
3634.
3759.
2796.
3039.
11143.
3H6~i.
3683.
3·192.
3400.
VSfJ,
44'17.
12:n.
3895.
37l5·
J Ml
:!83:3.
3022.
309~~'
:.!f:l•j'9.
3·179.
3-t3?.
3533.
3486.
3::'()(,.
3559.
38!i9.
3513.
3665.
2845.
3410.
:12·H.
3496.
31/d.
2.,99.
2864.
3128,"
3 ·lflh.
3180.
299/,.
3230.
2649.
3792.
353!j,
3437.
3251.
~: 5:J ~t •
2662.
~!!:i70.
2631.
. ~986.
3038.
2131.
3182.
~B':i4.
301.0.
2962.
3073.
2985.
3336.
2565.
3089.
2924.
3163.
33:u ••
2375.
27-Ht.
2637.
32tO.
2884.
2729.
2780.
25i2.
3337;
2959.
3051.
2t=lflt.
IHoR
;:~::; ·11, •
26f:l~5.
2591·
?.H~i.
~!809.
2569.
?.HJ6,
26JI!,
.30 1'?.
269f:l.
:lH5.
2338.
:??it.
2790.
2804·
3nfl.
2291.
265!3.
2534.
281, '?.
2672.
219].
2669.
2•190.
2960.
;!.~ ·1:;.
2762.
2641.
(oF·R
:~ :~ :3 .l •
.~Ltd.
:3 }1.1. ().
:H61.
~(,J.7,
2 ·1 :!.~.
:~Ht..2,
::.o:H.
:..!1'0·t.
;!758.
1 ~) 11 •
302 ·1.
~· 1 'Ill.
'2672.
:oo3.
3t(,().
:~689.
31>H~'• :ws-6·.
:IM-1,
:n26.
:?~HJ::; •
:!1307.
?.~1 .,,
~!fH9,
:3134.
:~ ~~:!4 •
. w.H.
:1:1 f.l6.
11,·,y . .lUI'
.1/N,::. ::utst.
:3·1~i·1f.t, 11!::\:j:!,
.t.t0·1J., 'lt','.~r~~·.-,,
39::!6!1. •\,l,l,()!),
?1B9!'~. :l•;-:;:'fl,
19010, •lHBo!·;,
2l:.'<H, 3076',',
279(,.,. 5 7fJ7f.l.
2lf301. 4:!.6!i4.
:~:~:H 9, -199:'if,,
25758. :3(10/fl.
22~100. 1:!.t.o:!.
17106. ~)5520.
:?:l9.,6. :39966.
9066. ' 7::•:;>31.
1 7(, 3 .l • ., i 2 n_; •
13385. 471,~!9.
211356. '!!1450.
28U-1. 5:3()(,(,,
161.95. 3044:.:.
20131. :'7203.
.1 . .t 795 •• r.;:~5'f~t.
21207. -1:31';>7,
t-!·nn. -1007•1.
22397. :!2?J:!.
21708. ·50141'.
179U,, •1037~!.
2n23. t.<l42(>.
15-17:;. 3·176 i •
2:::i:J07. 4()9·1'1·
• .!UL
·1 :·;·; B6,
1:-•10:'.
~;:< 106.
607:'\B,
·HU~5:3.
<\6()97.
J30~'!8.
1·171 n.
1980().
;,i(l.J.t2.
55452.
4-1753.
•17006.
-t50n'~.
61138.
536:.)7,.
36·123.
48~~61.
-19661.
18172.
-1J.M,o.
11293.
Jf3:.'62.
41491.
48•187.
155·,5.
!.i:·•B62,
·! if:)i'IJ.
1:'0()7.
. 3 7 :: ~::-;: •
-1.\280 •
f•Ol :5 !J •
!J!":.iR f.J l •
<11925.
·Ho~;?.
!i •1 \) ~Hl •
H992.
•1713-'>.
472)'.1.
37927.
38326.
44981.
50616.
t.:~642.
3959:::!.
22804.
·1 •1662.
s:3o ri.
3971 11.
:3'1'068.
:J!.'ib9l3.
4/551.
• 3'1 '76 J..
. •t f13JO.
3170-~.
.1n2~:o.
EiEF
;: : I ( 1 .1 '~ t
~jH ·16J.
:·~.(1136.
:'t.a::3.
;::~.n .to.
:~ b!i3 7.
:3:::i'7 ()1.
:•1/880.
Hll.t 9,
:1 90413.
;• .. \600.
:3052~ t
30565.
;·:~982.
;!()3113.
4:.~on.
::!5542.
2():\(16.
1.13321.
H608,
2·!367.
:,'·181. :3.
~!}8()().
:~1738.
::!3928.
173'70.
:,~6706 •
20209.
Yl\ ,',1)f;
l I";~: 7 3 f
J.()'.••·'".
J TtJ,: I' .
J ,7 (J ·;·I'; •
J. >'H80,
;!JO;'J,
t 76:!:!,
l'i'90t.
.1'i'2b7.
J. 'i'(J!ll •
19!i29.
17551.
t8n4.
1 '71111 •
1(1Ji11.
21000.
19695.
l :~05?,.
t l>f.l53.
U~6:!7,
18027.
.t 572:3.
15'161'.
191 ?:L
'57 ·\7 •
J. tt~-;as.
15501.
t/'5:31).
(
~.
(.
!.illf:l.t'lilti :>Uti'J.IHI •r·osr H\!LJECl FLOWS <WrtHtlltt REG. FH.LIIIG) lti·C.:'.lt.l~·nt
DCI
::>HS''i·
J. 6 ;•;"?.
;: f:l ;j l \).
l :J()\)(l •
L'Di' 1.
:J~,.~ ,:, ·t •
·1B,;!3l,
2:::,;;JB~
2?i~~~~ .•
26-l-11.
2 ·\20[,.
. ~·I;:-f: 'l •
~5 :~:; f:J :.:.
:.~!.'JJ 7 !) •
:·5 ~-j ·;: ~-' (~ f
1 HJ!j~i.
~7'f:L3·~.
2·1~;:n.
lS'96•?,
18431..
:~ ;~ . .,, 2 J. f
2v;,::.t6.
:l4 •lfl6.
. 550Bb.
I HI'.'
I.~: .1 BJ,
1 ., ... , :) :·~ 4
11 .1. :! 'l.
B:l 1 :',
·;··u:H.
;'()l.:"t,
1. tn:; 1..
t:,:. ;: ti.
ns::it.
J. 1·1 ,:jt,.
l t 6fl!).
91 cl(j t
t 0:)8[.~.
t 16 l:':.
1:?6/;J.,
I. !J(II, l •
l. 3 7 i':).
'16~.)8.
7f:J::>.~.
.tl:->1 :.L
I.Of!!'l.i,
t-z;-::;5.
:.!7711. 1.15??.
l.tEC
:;r =~a.
~ j ,1·. ~~ ~j •
cdB<l •.
1 ·; fJG.
~-:;~; .3.3.
71 :j/,.
4!'i l/3.
,:,;::u.
f3l17.
!3331 •
tlf}~j!J,
BJ.OO.
l. 4 :~ ;• I •
t·l25.
5:207.
· 7B·16.
77.l1.
?aon.
6()1?.
1'0 1','..
6024.
12:312.
6 ·~ 17.
889.~.
7730·
Jtill
61.:57. ;-u,t,.
7897.
81 :; ~).
70 1·!.
6 ~''b>'.
626:~.
10127.
67~7·.:~ t
76H.
6216.
117!1'-f.
8:5·11..
B2l)~.
6.39";'.
b?F.t9.
·;n;1 l .•
1 ()8flb.
r.~.~l·l.
633f3.
[,31 ;,>,.
9,1,()'~.
i'-177.
7516.
a:wt.
6671.
9651.
6:!9/,.
11586.
FH:
:i~jl·t,
/:)~~:!.
7095.
70!.:3.
~iOl'O.
:;69 •l.
6976.
806/.
lo21:J.
6~il~).
{.()71.
';'6:2?.
5826.
756'i'.
5fJ80.
6:323.
7 1 () 1 •.
1087::!.
5-130.
587~'.
63i7.
7867.
7377.
6957.
7594.
5771.
8609.
6403.
7i91.
Htir\
57no.
666'.'~ t
6018.
!i2 ·1:2.
5330.
bJ:5'J.
73J.f.l,
6.t,():•;.
:;~; ~'~).
876.'.
~j{j ?•l.
607 ·l.
6:U,:3.
70() . .;.
(,(,'1·1.
8.1.U.
5J86.
6008.
6066.
6180.
(..~39.
6567.
6'10/.
!.i~i77.
6363 •.
":n.L
6931 •
liFH
:·d~/ 'j'.
f.>?:i2 f
60Gl.
7:.; t t.
f.:.:6J.
(dil.
;· ,'ib .. ,.
',!'(,{,'),
;: .. 3-l.
f, ·! F: :~ •
:,(,"' ·:).
f:l? .~)j,
/,078.
:~i;B8,
!~;B2:2, .
h?~~B.
i'lt 't () •.
'i:),q.
!IOH.~,
6(l'i0,
:i6B3,
:it; i ·1 •
. t, 17'!).
/()/·1.
~·7'9 1.
,. 0 ';':3 •
:.,';·~o.
It~;~:!~.:; •
ft :-'f., '5 •
HAY JUH JUL MIG
7:1516.
90,1..S1'.
lO·lt~:7.().
t.t,;:w. B">'UH. t.r.t6?i'.
~16~3. 677JJ. 10937;·;
·1:007'7. 1l0771. l:'L'l.L
; 'i' :w :L 1 no ·7 1. • u ·1 :; ;· .,.
::; o tH ? , •7 ;l.t<H • .l 0 ~. 7 ·18 ,
~·;:H-16. l·lflJb•l, t:HOB9.
73533. 13817~. t18i84.
l.l.•!Jf.,t...,
1l8H7.
11.3-1'?5.
6 L:~.-;3,
~)()olf.,o).
·llOHl.
~~;:.:!1. 9.
·17220.
·1260 ,,,
,1·1:.: I. 7.
-17~J51.
f:J~i.H6,
, ... ,;·;·:,\.
r; f:.:·: ~~ ;! •
/ ·1'7'01 •
1.3::'9.11.
l3lOJ:~.
MF35.
1 U:'84,
9:,:8A:.:,
103::~1:.~ •
11. H6';,
tl.HbJ,
1oe:i:>.;. r,,;tr.,6.
u .t n ·l. .t:'!U 9 ·1.
J.1Sfl'77. 100619.
1:'5!:19. !.0:3:>.17.
12:::;977, l.On3·L
1.23/,53. <;: 16'76.
!.1.0'7::':3, f.H2:~:?,
.I :.'It 7 .t , 10 0 •13 ;.' ,
.IO'i•l."i3. 10~"33!1.
t:~o:~J9. 1.172!.3.
11<1Hl.. 79'7:~;.
3~'()03. 7:121..·!. 932/'/. 603'?6.
-17500. 81213. l~05Jj, 107~64.
;30952. 9P.6'·1~i. l.>Hl~:;;, 1lHl6:L
b20H9. 1::;:n9:;. 128%7. ?6087.
61247. lo293n. 113011. 952~4.
J2369. ~il057. 9~:~1:!. 72729.
39868. l06tl.l. 1!.8270. 82233.
6:.'i521. 9!006. 10410:5. 87256.
G.16tt. t:HI5~i •. no1n. 11.-161'3 •
HBf:l, 77A!i:l. 10521~i. 74688.
728? 1. I (l09'7!i. I ~.!:~::;sa. 117:32?.
su·
:~M·.tl.
60:365.
/:'dO~j,
:,728,1 t
f.d/09.
!;!:i62 4.
7]38·1.
:;16 I 4.
{,(1\):~ 7.
/('~l/9'
3(,?!.i9.
/)t,c,rjn.
"·1582.
•1:1.186.
'i'tJJl p..
:)7:2'73.
fl\H51.
39921.
~ ·l 42~i.
7'1961.
(d -13:~.
33864 •
4!'727.
::.(19:~8.
h'?265.
1/778.
77797.
!:J27 0 ~;-.
(,';!H3.
b7/.t,. 510J7. lO·lhO!i. J.J.7!J~:IH. 9882~1. 597~1'/.
Yr~: tt'JG
&l:l t f.J.t •
:36·ltl7.
l·lt·;o 7.
H6~'·1.
·l':L298.
·l ;,j J. ~l~i.
~i ~:·;:·at ,
·12 ·1 ~;~;.
·1J'.;;·,.:J2 t
3f:!C.~i0.
48?11.
.,;:386 i'.
383'77.
3!3:5116.
-1188'!,
·l !,.1 ::-1 •
.:1 4'77 ·l.
:::·;:o 1 B.
-11:320.
•Lcl2B.
477'16'
·10762.
.1:!\:5·1.
•10~03.
38671.
~.i0197.
3.i 4:3i ...
4783'1.
'-
0
N
('t') .....
!-"' u.
(
-',
:
: :
--+
-::---
:
:
:
:
:
:
:
:
:
:
:
:
: :
: :
: : : : :
: :
:
: : :
: :
:
:
:
:
:
:
: : : :lim
: :
: :
: : : :
:
: :
;
:
:
:
: :
: :
,. ' j,,,
: :
:
:
: :
: :
: :
-·
. ' ,, ' ,,,
,,,, ,, ',,,
' ,,
''
''
,,
''' ''I
( )
' ' j. ,,.,
,, ,, '
,, ' ',,,
1-4'--, ,,,,
,., ' '·
',, ''
r-w-.
• <II to ,, '
L
'' ' ''
,,,
,, ' '! '
' '
,,
' ,,
'' ,, ..
'' ' ,, ' ' ,,
''' ''I ,,,,
,,
,,,,
,,
,,
''
' ' '
l>l ''
,, ''
''
,,.,
,,, ,,
''
' ,,
.,,
' ,,
,,, ' '
,,, ,,.
~-'
., ,,
·~s~-~-~~.
.,
,,, '
(
0
N
('I') .....
~:
t:::=·: :: ~
1-7---t-/
~·::(:·
-~
,,
.. '
' '
.. '
'
.3Z
' '
'' ..
.. ,, '
,. ,.
' ''
•1 ,,,, .. '' ,,.
so $2..
/lv~~/.e /!1.,,/),4 .:'~• --;;;fft'.,.._-t;r~s (c•) k IY!/,j t{/d f.,_q_ ~5C,-<N-i-l!_ , odd JkM5 ( /,uJ //.M)) ... .:J""'"vtt-1'7 ~.,t • ....., {11·.-<" Apr< I .~-:r:n,c.. :[:.'J _lfo,y_!'_!_ f £-.-// a.i ,-/cJ ::D..-c w.t... . .._ Fft.._._, ._.,. '11>0 '100 ~0 '100 4 "mJ ...Voao .?000 t,.()()O 6ov"f $Z.u 3. 2A><J /f•l ?oo '100 .,.,,(.... ..... tWJ_, L~M ti•(J:-,,,_rv ovlfJ.w Te...p .3.'1 3.1 .s. 7 3.9 3.9 3. 7 ' .3. 9 .!!·9 3.9 3.'1 .;;. 'i 3. ~ /....f<X t.8 o.o o.o o.o ,5.{, ,.7 g',{., t: . .3 7./ 4-9 z,.(3 o.o 0·0 If</~."~ <'· ~,/t~,t 1 ,· 1/•,-/'·--: '1/ . li'-X t../ T/00 1/Jt/'5" /070 G57t'J 710$ f!l£'(, (fUS 71At '-loaD ;zz-;-!15(. FI<>...V 1070 r.· , <!.HiP,'-; 0.0 ().0 o.o s.t. /..7 a.~ ].s-7-1 "~· '1 2-5'" (>0 "· ( . J..ft.X s4 0.(1 o.o 0.0 (..' 7./ '1.t. 7.!! 7.(,. 5.1 .ul o.o ll·l LRl( "17~ , o.o o.o ().{) t..3 "" ... '/.5' 8-0 7-1 ,5.2.. z.t/ o.o 19. c '~· ·('1-t' .( /,'::!;;"/,_ .... ~-. JRX .-'f, o.o o.o o.o /..of 7.5' '/.6. $.1 $.0 £:3 z.t/ 0·0 O·l Lf'..X H 0·0 o.o o.o t,,{., 7· 1 1.'1 g-.-/ "·3 s.t/ _z.t/ o.o tfJ.O lrt.x Z.7 ().0 o.o o.o t-~ e./ /J . .; ?-7 11-B' 5~ 2:.3 tf),O 0·0 lRX ;-i .. , o.o o.o o.o t...9 3.3 /0-'i? 8.1 9.1 57 Z-3 o.o o.o . l..RX IS' o.o o.o o.o 7.2 8.8 1!.1 7-3 9:7 S-9 z.z o.o o.o lfl..){ '1 o.o DO o.o /.3 ?.l. II· '1 1-7 /{). l. (,,/ 2. 2. tfJ.O o.o ,ffJ..t 3 o.o o.o o.o 1·1 ft). 7 ,-;z. 3 ltJ. 0 /~.t. t.z. z,z 0·0 o.o ;f. 't,.: 1 ~,' r .. /"' l~ ;7//. • l?" 1 I . 6 ' ~at.tt\.e:._·i.~ . "'..._,.,..__. rt.. •.. t 1()0 19o Cfpo 1c<' 4ovo itcolJ I (,ce:> c I be.,~ 'oorj.11<>o ~~7•"/1•<1 '7 (I!) /Po ·-~ .... ··-.'n.wf·11'' ,4. 3 LIU df!' 0·0 4,o "·0 ({.s 8 •lt ;, 1 5~ 1,.7 ~·S (l(} 0·0