Loading...
HomeMy WebLinkAboutAPA2111l}{]£[ffi~£o~[ID£@@@ Susitna Joint Venture Document Number· C : ---=:;>2...._.__1 .._.__I/ _ Please Return To . DOCUMENTCONTROL c ---~-------------,- PBS0-133044 . INDUSTRIAL SOURCE COMPLEX ( ISC) DISPERSION MODEL . USER'S GUIDE-D VOLUME I c [ [· . . H c ['"; ' -----~ B D u .J H. E. · Cramer Company, Incorporated Salt Lake City, UT . Dec. 79 < • ·:· ••• ---. · . U.S. DEPARTMENT OF COMMERCE National Technical Information Service NII!!S® ... ~' .. ; ,. :. -~ . · .. ·: .:· - :.. ••• >I [ i c - ' [ [·~ . .. c c c. c 5 [ INDUSTRIAL SOURCE. COMPLEX (ISC) DISPERSION MODEL USER'S GUIDE (VOLUME. I) by PBB0-133044 EPA-450/4-79-030 J. F. Bowers, J. R. Bjorklund and C. s. Cheney H. E •. CRAMER COMPANY, INC. University . of . Utah Research Par:k · . ' Post .Office Box ao49 . Salt Lake City, Utah· 84108 '::. '.' ... ,_,t-o,! t I ... Source Receptor. Analysis Branch U. S. Environmental Protection Agency Research Triangle Park,.d'lo.r:th. Carol ina 27711 . . . EPA Contract No. 68-02-3323 Work Assignment No. 3 EPA Project Officer: George J. Schewe IIPIODUC£11 BY . -NATIONAL TECHNICAL lNFORMATION SERVICE U.S. O£PAR1M£11f OF COMMERCE . Sl'lllfiGfiElD, Yli. 22161 ' . ' j· [ u c [ c 0 D c BIBLIOGRAPHIC DATA ,1. Heport No. f~Pl\/DF-80/003a SHEET EPA 450/4-79-030 4. Tide and Subtitle Industrial Source Complex (ISC) Dispersion Model User•s Guide Volume I 7. Aurhor(s)J.I'. uowers, J.R. Sjorld/ltld & C.S. Cheney, H.E. CRAt~ER Co. Inc. for Georqe J. Schewe. EPA. U.S. Government 9. Pcrformin.: Org;tniz:ttion Name and Address H. E. CIW1ER Co, Inc. Post Office Box 8049 Salt Lake City, Utah 84108 12. Sponsoring Org:miucion Name and Addreu Environmental Protection Agency OAQPS, MDAO, SRAB M0-14 Research Triangle Park, N.C. 27711 15. Supplementary Notes.., Ma ti T , PB80 13·30..,~ .i! or gne c ape see • -;>V S." Report Date December 1979 6. ] J I i a. Performing OrganizMion kept. I No. I 10. Projcct/Task/Wo;k {jnit :-io. Work Assianment #3 '1tP1f"Earif~ac1: :-so. #68-02-3323 13. Type of Report&. tlcricd Covered Final 12/79 14. 16. Abstracts Volume I describes the Industli'iai Source Complex Dispersion Model and its use. i The model updates various EPA dispersion model algorithms and combines them in t\'10 I computer programs that can be used to assess the air quality. impact of emissions from the wide variety of source types associated with an industrial source complex. The !SCI Model $hQrt-term program ISCST, an updated version of the EPA Single Source {CRSTER) Model l2J uses sequential hourly meteorological data to calcu.late values of avera:.:;e concentration or total dry deposition for time periods of 1, 2, 3, 4, 6, 8, 12 and 24 hours. Additionally;·ISCST may be used to ·calculate "N11 is 366 days. The !SC :·1cde !· . long-terni computer p.rogram ISCLT, a sector~averaged model th~t update and-combines I b~sic features of the EPA Air Quality Display Model {AQDM)t3J and the EPA Climatciogica1 D1spersion t4ode1 (CDH) ,(4) uses STAR suJTllllar~e~, (~tati~tical tabu~ation of ~h«; joint l frequency of occurrence of wind-speed and w1nd-d1rect1on categor1es, class1f1ed accord-! ing to the Pasquill stability categories) to calculate seasonal and/or annual a.vera9c: • 1 concentration or total deposition values. Both the ISCST and !$CIT program~ mako tho _ I r.~~"'W<.?!lta'":M':'*l;t;'lf:ti~t!!~l"t"S!-~"'~ 7~. '"'-~."::::.·.r.•:t:'f:! 1 same oas1c d1spersion-mouel assump~1ons. Additionally, both the ISCST and ISCLT pro-1 grams use either a polar or a Cartesian receptor grid. The ISC Model programs are I written in Fortran IV and require approximately 65,000 UNIVAC 1110 computer words. The two programs may also be used-on medium-to-large IBM or CDC computer systems with littl~ or no modification. Although the number of sources and receptors that can be included ! in a single program run varies, each program accepts at least 100 sources and 400 receptors. 17. Key Words-and Document Analysis. 17a. Descriptions Industrial 17Ut;t~.:U.~fl~w'"Jir1'~iflt* ' Dispersion Model C·omp 1 ex Source 17b. Identifiers/Open-Ended Terms ISC 17e. CCSATI Field'Group 18. A'l"ailabilay ~t.uem~nt Release Unlimited -""-'-"'-·------··-~· ; .·· •. INDUSTRIAL SOURCE COMPLEX MODEL VOLUME I This two':"vol ume report and the reT a ted computer programs wi 11 be available from the National Technical Infonnation Service, 5285 Port Royal Road,. Springfield,. Virginia 22161 in Ap.ri 1, 1980. Comments and suggestions regarding this publication should be • sent to: •;, .... ··: Chief, Source Receptor Analysis Branch' M0.;.14 OAQPS-EPA· Res.earch Triangle Park,. N.C. 277ll ' r [ r L r~ L."'J [. [ C. c r~ l r L [ 0 c c ,L '~ 0 6 . c r-, l [; [' r. c [ c c [ [ c G L .,-~_ -~ •••• <# : ·~· "_! s :,.,. ., ;."'. ... -~ . .. , . :·t;·--~ .· ~-4_;~~-·_ .· . .; " : ·i_~·~:-f-~;.. / :--~ . =-~-~--.. -~ .· -·· ~ A:.> .. ·· ~-~-~~~-~·i;.~--~~.~~-#~~~\~~~·~-?~;:~:-~;.! ._!</~:' .. --. -:.;. ... __ ~"':. ·;.:~~·~-:: -~- ACKNOWLEDGEMENTS The H. E. Cramer Company, Inc.· wishes t.o acknowledge the important contributions to the development of the Industrial Source Complex (ISC) Dispersion Model ~de bythe-~taff of the Source-Receptor '. Analysis Branch, U. S. Enviionmental. Protection Agency, Research Triangle ,., ~ .. -~ Park, N. C. First, we thank· our· Projeci.Officers .:.... Mr. George Schewe, Mr. James Dicke· and Mr. PhilliP. You~gblood ";;._· .f~r their many helpful comments and suggestions.. l'!r. Youngblood and Mr. Dicke were the initial Project Officers for the development of the ISC Model. Af.ter Mr. Young- blood accepted a position with private industry in October 19.78, Mr. Schewe assumed· his responsibilitie-s~-· Mr. _Joseph Tik.Vart, Mr.· Dicke, Mr. Youngblood and Mr~ ·Al.an Huber<assisted ·in defining· the technical speci- fications for the I.SC ·Model. The pr~cedures ·used by the I.SC Model to quantify the-effects of .aerodynamic bjiilding wakes on effluent dispersion are principally. based on th.e sugg~tious of Mr .. Huber •. Also, we wish to thank Mr. Jerome MersCh and Mr. Ge~ald":Moss for the.ir assistance in defining the specificatioris for the·rsc·Model computer programs. . . J In addition to the authors :of ''the-rep0rt, other staff members . .. . /,. . of the H. E. Cramer ·company, ·rue. made important contributions to the preparation of the Industr:ial Sour.ce Compliex · (ISC) Dispersion Model User 1 s . Guide. The report was typed by Ms. Cheril:i Christensen, Ms. Lori Sieden- strang and Ms. Bonnie Swanson. All technical illustrations were prepared by Mr. Kay Memmott. Mr. Jeffrey Record and Mr. Lacy Hancock were respon- sible for compiling the photographically-reduced figures showing example output fr~ the ISC"Model comPuter programs. .. . . •' -· " A special thanks is deserving to Mr. Erik Sieurin for his U."ltir~~ wo:::k on the testi?l9 and ·.i:mp1ementation of the -~del on the EPA ·Univac computer system • ......... ~ .. .... .. , ~-. :_it. ----·· :-:. ... ~ · ... ~ . ~ Section 1 2 .. .. TABLE. oF· CONTENTS' VO'LUME I · ··'''title '·~ LIST OF TABLES LIST: OF FIGUBES ~ .. ~ ... ~ .. ·: _;_... " .... :: . . .. · ,..~ . "'"' ' " MODEL OVElt.'VIEW '' 1.1 Backgiound and PurPo'se· · '. 1.2 General Description 1.3 System ~~ription.. . _ 1.3.1 The ISC Short-Term (ISCST) Model . . . Program . 1 •. 3~2 --~-ISC LOng.-Term (ISCLT) Model . . ·_· ·:~~~~~-::~;~~< '""'-~;~)~ .. ·. ; . ': . -· l. 4-.. Summaxy of .Input:. Data ~ '•< ,"•,,,,', ·-~:-J• '', ,, ~:. ' __ M.,.'' .;, ' p .••• 1.4.1 the ISC. Short-Term (ISCST) Model . · --. -_. -~:Prosr~mc-. -_. , -. · · L ·· .-. · -r.c~ .2 ~--~·-IS.C Long-Term (ISCLT) Model . _ . -·-~--;)'t?~alu.-:· ~---.. · -· ·-· · ·-' ·:.-· .. 'TECBNtcAL'DES~T~ON ".;: 2.L GeD.e'ra.l:>---· · · -.: .. " -·-· -· -~~:z~. Model. ·rnput. _Data 2.2.1 Meteorological Input Data 2. 2 •. 2 Source Iiiput Data 2. 2.3 Receptor Data 2.3 Plume Rise Formulas 2. 4 The· ISC Shor.t-Tenii. Dispersion Model Equations ___ ,,._.. .. .,. z-.4~1 stacK EmiSsions' --· 2~-4~~2''"A:i:'eai~ :Vol.t#ne and Line Source Eillissions ·--. z-.-4.3 ·The .ISC Short•Term Dry Depos-ition Model 2.5 The ISC Long-Term Dispersion Model Equations ii i vi.i 1-1 1-1 1-2 1-5 1-5 1-5 1-8 1-8 1-12 2-1 2-1 2-1. 2-1 2-lQ.; ... · 2;_14 2-19 2-24 2-24 2-53 2-59 2-62 ---~-------------------------------------------. .. ........ --- .. .......... ·. :. c [ [ [~ -· [ [ c n u [ c r,. tl C, [ [ [ 0 " u J 4 T..'-BLE OF CONTENTS (Continued) Title 2.5.1 Stack Emissions " 2. S. 2 Area, Volume and Line "Sou:ce Emissions 2.5.3 The ISC Long-Term Dry Deposit:i.on Mode.l 2.6 Example P:oblem " 2.6.1 DescriptiOn of a Hypothetical Potash Processing Plant 2.6.2 Example ISCST Problem 2.6.3 Example ISCLT Problem USER'S INSTRUCTIONS FOR THE ISC SHORT-TEEM (ISCST) MODEL PROGRAM "" 3.1 SUIDIII&ry of Program Options~" Data Requirements and, Outp9-t 3.1.1 Summary of ISCST Program Options 3 .. 1.2 Data "Input 'Requirements 3.1.3 "Output Information 3.2 U8er's "h.structi.on& for the ISCST P:ogram 3.2.1 Program·DescriptiDn "3.2."2 Control Language and Data Deck Setup "'3~2-.3 Input "Data Description 3.2.4 Program Output Data Description 3.2.5 Program Run Time, Page and Tape Output Estimates 3.2.6 Program Diagnostic'JMessages 3.2.7 Program Mod:i.ficat:i.on for Computers Other than UNIVAC 1100 Series Computers USER'S INSTRUCTIONS FOR THE ISC LONG-TERM (ISCLT) MODEL PROGRAM 4 .1 Summary of Program Options, Data Requirements and Output· 4.1.1 Summary of ISCI.T P:ogram Options 4.1.2 Data Input Requirements 4.1.3 Output Information 4.2 User's Instructions for the ISCLT Program. 4.2.1 Program. Description 4.2.2 Control Language and Data Deck Setup iii Page 2-62 2-68 2-70 ' 2-72 2-72 2-72 2-77 3-1 3-1 3-1 3-6 3-31 3-34 3-34 3-36 3-41 3-66 3-98 3-103 3-106 4-1 4-1 4-1 4-5 4-45 4-4i 4-4i 4-51 Section A B c .. .. D ... E .. ·. ·' . . .. •.* .· ... ·F G H I TABLE OF CONTENTS (Continued) Title 4.2.3 Input Data Description 4.2.4 Program Output Data. Description 4.2.5 Program Rt.m. T::lm.e~ Page and. Tape Output Est::lm.ates 4.2.6 Program D:.lagnostic: Messages 4.2 ... 7 Program Modifications for Computers other than UNIVAC ~00 Series Computers REFERENCES VOLUME II LIST OF TABI,ES LIST OF FIGtT.RES COMPLETE FQRTB.AN. LISTING OF '!'.BE DmUS'!RIAL SOURCE COMPLEX SROR'r-T.Em:t MODEL. (IS CST) .COMPUTER PROGRAM COMPLETE FOU'BAN LISTING OF THE DmUS'!RIAL SOURCE COMPLEX LONG-TERM MODEL (ISCL'X): COMPUTER PROGRAM EXAMPLE EXEC'llTIONS OF THE ISC SHORT-TERM MODEL (ISCST) COMPUTER PROGR.AH EXAMELE EX.EC'llTIONS OF THE ISC LONG-TERM MODEL (ISCL'!) COMPtmm. PROGRAM CODING FORMS FOR CAB!) INPUT TO '!'BE ISC SHORT-TERM MODEL (ISCST) COMPUTER .PROGRAM CCD.ING FORMS FOR CARD INPUT TO '!'BE ISC LONG-TERM . MODEL (ISCLT) COMPUTER PROGRAM THE METEOROLOGICAL PREPROCESSOR. PROGRAM FOR ISCST LOGIC FLOW DESCRIPTION OF THE ISC SHORT-TERM MODEL (ISCST) COMPUTER PROGRAM LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM MODEL (ISCLT) COMPUTER PROGRAM iv 4-58 4-85 4-135 4-140 4-145 S--1 iii, iv A-1 B-l C-1 D-1 E~l F-1 G-1 H-1 I-1 -·· [ [ c 6 [ 0 c c f r [. [ [ [ c [ [ 0 c D 0 . . 0 L Number l-l 2-l 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-ll 2-12 2-13 2-14 ' . . LIST OF TABLES Major Features of the ISC Model l-4 Hourly Meteorological Inputs Required by the ISC Short-Term Model Program 2-2 Default ValueS far the Wind-profile Exponents and Vertical Potential Temperature Gradients 2-2 Pas~uill-Gifford Dispersion Coefficients Used by the ISC Model in the Rural and Urban Modes 2-5 Meteorological Inputs Required by ·the ISC Long- Term Model Prosram 2-6 Possible Combinations of Wind-Speed and Pasquill Stability Categories and Mean Wind Speeds in Each NCC Star Summary Wind-Speed Category 2-7 Source Inputs Required by the ISC Model Programs 2-11 Parameters Used to Calculate a 2-27 y Parameters' Used. :tio 'c;arcu1:ate a · 2-28 :z: Coefficients Used to Calculate Lateral Virtual Distances 2-32 Summary of Suggested Prci~E!dures· for Estimating Initial Lateral Dimensions (ci'y0 ) and Initial ·Vertical Dimensions (a ) for Volume and Line Sources · · zo~ · · · ' · · 2-5 7 Emissions Data for a Hypothetical Potash Processing Plant 2-74 : . ~~' ......... ~-:; .-.... -. ·•. : Particle-Size Distribution, Gravitational Settling Velocities and Surface Reflection Coefficients for Particulate Emissions from the Ore Pile and Conveyor Belt 2-74 Emissions InventorY in Form for Input to the ISC Dispersion MOdel 2-78 Particulate Emission Rates for the Ore Pile 2-79 V. ... -- USl'.:~Of ·TAaLES ~(Continued) Number 2-15 , -Pa.li_tj;c~late Emis~d.o.~nRates -::£.or·. t-he 'Ore ~PUe and Conveyor Belt as Functions of Wilid· Speed. and. Stability ·.r .. :·· ~~-.. ~ .. #--. ,~.-...-.. ~_ .. _;.;.~ ~-~J:1·:!·:~ ~;?~ ~.:-~.; ..... -· 2-16 ·Annual Particulate Emissions for the Ore PUe 3-1 3-2 3-3 3-4 .. 3-5 3'-6 •; .. ---- 4-1 4-2 '4-3 4-4 4-5· 4-6 'v and· Conveyor Belt as Functions of Wind Speed and :!St-~b,Ui;ty'•.:• > -;,'"::'_'~c::-•: , . .' • ~ Meteorological· Data Input Options for ISCST . Dispe~sion~MQdel. _Op,t:i.ons for _IS CST ISCST Output Options ., -·IS-GST Program ~rd-Input Parameters,-FORTRAN Edit -Cede:· (Format) and Desc~ipt:i,on . ~ -;_ ·Juli-Day-to .l'Wnth>/.Seaso.-n o~-Month to Season ·· · Ccmversion Chiit: ~or<:teap; l'·ears-.-· · .· :. ·-:!:ime :Per.io4.,.In..t~:rva.ls :and ~Co:rresponding Hours of the Day ._:.:.: .. • .::.':D·.:·::; .. · ., .. Meteorologi_cal. Daea--Inpu~ Options for ·ISCLT Dispersion-MOdel Options for ISCLT ISCLT. Program.:Card~ ,J:npu;-.. Paramete-rs., FORTRAN Edit · Cocfe}Format) and: -De~cription .. · Input/Output Tape Format ISCLT Warning and Error Mess~ges . . I .. •:. vi 2-82 3-2 3-2. 3-4 3-42 3-64 3-79 4-2 4-2 4-4 4-59 4-132 4-141 ... [ c ,,[ [ [ c [ c D Q L )c D B c [,, ,. [: ' L: f c: [ D. c c L ... . Number l-1 1-2 2-1 2-2 2-3 2-4 '2-5 2-6 2-7 2-8 2-9 2-10 2-ll 3-1 -----~---------------··--·-·--·-·"'' . LIST OF FIGCRES 'fitle Schematic diagram of the ISC MOdel short-term computer program ISCST. Schematic diagram of the ISC MOdel long-term computer ·. program ISCLl. The sixteen standard 22.5-.degree wind-direction sectors used in STAB. summaries. Example of a polar receptor grid. The stippled area shows the property of ~ hypothetical industrial source complex. · Example of an irregularly-spaced Cartesian receptor grid. The stippled area shows the property of a hypothetical industrial source complex. The method of ·mul.tiple ·plume .images . used ::to simulate plume reflection in the ISC.MOdel. 1-6 1-7 2-9 2-16 2-42 Schematic illustration of (a) urban and (b). rural mixing . height interpolatiOD." proc-edures. 2-44 Illustration of plume behaVior in complex terrain assumed by the ISC Model. · · 2-47 Illustration of vertical concentration profiles for reflection coefficients of 0, 0.5 and 1.0. 2-48 Relationship between the gravitational settling velocity Vsn and the reflection coefficient Yn suggested by Dumbauld, . .!! &· (1976). 2-52 Representation of an irregularly shaped area source by ll square area sources. Exact and approximate representations of a line source by multiple volume sources. Plant layout and side view of a hypothetical potash processing plant. Input data deck setup for the ISCST program. vii 2-54 2-58 2-73 3-40 Number 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 4-1 4-2 4-4 4-S LlST OF FIGURES (Continued) Example input data listing (ISW(6) option). Example listing of a day of meteorological data (ISW(6) option). Example listing of a "da:f.ly11 average concentration out- put table (ISW(l6) option). Example listing of an ''N"-day average concentration out- put table (ISW(lS) option). Example listing. of a highest average concentration out- put table (ISW(l7) option). .Example listing of a maximum· 50 average concentrations output table (ISW(lS) option). Example listing of a diagnostic message table printed when source-receptor iiiSt:aUc:es are less than the maximum of 100 meters and three . building heights or three building widths. (a) throuSb. (e) show the five types of error messages. printed by the ISCST Program.. The run is terminated after an error message is printed. Input: data deck setup for the !SCLT program. Example listing of input data for the calculation of seasonal and annual ground-level particulate concen- tration from a hypothetical.. potash processing plant. Example listing of input. sources used in the calcula- tion of seasonal and annual ground-level particulate .concentration from·a hypothetical potash processing ·plant. Example listing of seasonal ground-level particulate concentration for the winter season due to a single source. ~~le listing of annual ground-level concentration due to a single source. viii 3-68 3-77 3-80 3-84 3-89 3-94 3-104 3-105 4-57 4-87 4-102 4-114 4-117 [ c ( ·c: -· L L c L [ [ 0 [ c [ [ [ [ [ c c [ c c [ ~ ..... : ... ---~·-·--·-·--~·-·---·---~-------------.-..-.. ~ __ _.:_._:-----""""""'------.... -----· Number 4-6 4-7 4-8 4-9 4-10 ... "·. LIST OF FIGURES .(Continued) Example listing of seasonal ground-level concentration for the fall season due to a single source with a maximum 10 table showing the contribution of this source to the maximum 10 receptors of the indicated combined sources. 4-120 Example listing of seasonal ground-level concentration for the winter season for combined sources. 4-123 Example listing of annual ground-level concentration from combined sources. 4-126 Example listing of the 10 values of. seasons.! ground- level conceni:ration from a single source that contri- bute to the maximum. 10 receptors of the indicated · combined sources for the fall· season. 4-129 Example listing of the 10 values of annual ground-level concentration for a single source that contribute to the maximum 10 receptors of the indicated combined sources. 4-130 .... ' " . ..:._ . : [ [ c [ c 0 E L 1.1 SECTION 1 MODEL OVERVIEW BACKGROUND AND PURPOSE In recent: years· the need has become apparent for a comprehen- sive set of dispersion model computer programs that can be used to address the complicated air qual:ity impact analysis problems that cannot be adequately handled by the existing, generally available computerized models. Air qualitT·impact analyses·for pollutant sources other than emissions from isolated stacks often require consideration of factors such as fugitive emissions, aerodynamic wake effects, gravitational settling and dry deposition. The Industrial Source Complex (ISC) Disper- sion Model consists of. two computer programs that are designed to con- sider these and other factors. so as to meet the. needs of those who must perform complicated· dispersion., model analyses... The ISC Model computer programs ~redesigned to be flexible,. economical and as easy to use as possible without. sacrificing the model features required to address complicated. problems. Cautionary Note -The ISC Model contains a number of options that are designed to consider complicated source configurations and special atmospheric effects. These options include site-specific wind- profile exponents and vertical potential temperature gradients, source- specific plume entrainment coefficients, time-dependent exponential decay of pollutants, stack-tip downwash, building wake effects, plume rise calculated as a function of downwind distance, and dry deposition. If one or more of these options is not specified by the user, the programs ·will assign preselected default values to various parameters. For regulatory applications, the default values for these options are generally recommended. If the user believes that the use of site- specific or source-specific parameters is appropriate, their use should be discussed with the responsible air pollution control agency prior to 1-1 ··-·-·····-·· ·····-------------·-· ---- t:he modd calculacions. Also, because proper application of many of the ISC Model features requires a fundame~tal knowledge of the concepts of acmospheric transport and dispersion, the user should seek expert advise before .using any ISC Model feature that is not fully understood. Finally, because a comprehensive model is required to address complicated problems, the ISC Model is not necessarily the model of choice for all applications. Simpler and less expensive computerized models ·csuch as the Singl.e Source (CRSTEB.) Model (EPA, 1977) should be used for. appli- cations that do not require at .least one of the ISC Model features. The ISC Model computer programs arE7 sui.table for application to Pollutant sources in the following types of studies: • Stack design stud±es • Combustion source permit applicat±ons • Regulatory variance evaluation • Monitoring network design . . . •· Control strategy evaluat±on for SIP's • Fuel. (e. g., coa;,) convers±on studi.es . . : ' . ' . : . ' ' . • Control technology evaluation • Design of supplementary control systems • New source review • Prevention of significant deterioration l. 2 GENE'.RAL DESCRIPTION .. The Industrial Source Complex (ISC) Dispersion Model combines and enhances various dispersion model algorithms into a set of two computer programs that can be used to assess the air quality impact of emissions from the wide variety of sources associated with an industrial source complex. For plumes comprised of particulates with appreciable gravita- tional settling velocities, the ISC Model accounts for the effects on ambient particulate concentrations of gravitational settling and dry 1-2 n [ '[ [ [ [ c [ [ [ D c G ,Dl .. c u c L [ [ [ [ c [ [ c D . 0 c 0. c o c L -··- deposition. Alternately, the ISC Model can be used to calculate dry deposition. The ISC short-term model (ISCST) , an. ex1:ended version of the Single Source (CRSTER) Model (EPA., 197-7), is designed to calculate concentration or deposition values for time periods of 1, 2, 3, 4, 6, 8, 12 and 24 hours. If used with a year· of sequential hourly meteorological data, ISCS't can also calculate annual concentration or deposition values. The ISC long-te~ model (ISCL!) is a sector-averaged model that extends and combines basic features of the Air Quali:ty Display Model (AQDM) and the Climatological. Dispersion Model (CDM) .. The long-term model uses statistical wind summaries to calculate seasonal (quarterly) md/or annual ground-level concentration or deposition values. Both ISCST and ISCLT use either a polar or a· Cartesim receptor grid. The ISC Model computer programs are written in Fortran IV md require approximately 65, 000 UNIVAC 1110 computer words. The major features of the ISC Model are listed in 'table 1-1.· 'the. ISC~ Model. programs accept, the following source types : stack:, area ·axid volume. 'the volume source option is also used to simu- late line sources. The steady-s1:a1:e Gaussian plume equation for a ~ .. ," ~ ' . . ... continuous source is used to calculate ground-level concentrations for stack and volume sources. '!he area. source. equation in the. ISC Model programs is based on the equation for a continuous-and finite crosswind line source. The generali.zed Briggs (1971 and 1975) plume-rise equations, including the momentum tems, are used to calculate plume rise as a function of downwind distance •. Procedures suggested by Huber and Snyder (1976) and Huber (1977) are. used. to evaluate the affects of the aero- dynamic wakes and eddies formed by buildings and other structures on plume dispersion.. A wind-profile exponent law is used to adjust the observed me.an wind speed from the measurement height _to the emission height for'. the plume rise. and c:oncentration calculations. Procedures . utilized by the Single Sourc:.e · (CRS'tEB.) Model are used to account for variations in terrain he:fght over the receptor grid. The Pasquill- Gifford curves ('turner, 1970) are used to calculate lateral (a ) and y l-3 . :: .~------.------~------· -------------·-----------... ----------········--··-. TABLE 1-1 MAJOR FE:ATtJRES OF THE ISC-MODEL Polar or Cartesian coordinate syst~ Plume rlse due to momentum and_ buoyancy as a ·function of downwind dis- tance for stack emissions (Briggs, l97l and l975) Procedures suggested by Huber and Snyder (1976) and Huber (1977) for evaluating. building. wake effects Procedures suggested by Briggs (1973) for evaluating stack-tip down- wash Separation of mUltiple po.ill.t sources Consideration of the effects of gravitational settling and dry deposi- .. tion on ambient particulate coru:elitrations Capability of simulating line. volume and area sources Capability to calculate dry-deposition Variation with height_ of wind speed (wind-profile exponent law) Concentration estimates .fo.r 1-hour ·to annual average Terrain-adjustment procedures for complex terrain Consideration of--time--dependent exponential decay of pollutants 1-4 '[ [ .c [ c c [ n w L [ c c [ [ 0 [ o, L vertical (0' ) plume spread. z The ISC Model has rural and urban options. In the Rural Mode, rural mixing heights* and the O'y for tha indicated stability category are used in the and 0' values z calculations • In Urban Mode 1, the stable E and F stability categories are redefined as • neutral D stability. In Urban Mode 2, the E and F stab:tlity categories are combined and the 0' and 0' values for the stability category one y z step more unstable than the indicated stability category (except A) are used in the calculations (see Section 2. 2.1.1). Urban mixing heights* are used in both urban modes •. SYSTEM DESCRIPTION 1.3.1 The ISC Short-Term (ISCST) Model Program Figure 1-1 is a schema_tic. diagram of. the ISC Model short-term computer. program. (ISCST) •. As. shown: by the fi.gure,. ISCST directly accepts the preprocessed meteorological data tape described in the User's Manual for the Single. Source (CltSTER) Model and in Appendix G. Alternately, hourly meteorological data may be input by card deck. Program control parameters, source data and receptor data are input by card deck. The program produces printouts of calculated concentration or deposition values. 1.3.2 The ISC Long-Term (ISCLT) Model Program Figure 1-2 is a schematic diagram of the ISC Model long-term computer program (ISCLT). As shown by the figure, program control, parameters, meteorological data, source data and receptor data are 1nput by card deck. The program produces printouts of calculated concentration *The mi-~ng height is the height above the surface at which ~n elevated stable layer restricts verticalmixing and confines pollutant emissions w1thin the surface mL~ng layer. · 1-5 7 ~ Program Control 1-------tll>f Parameters Receptor Data Source Data Card Meteorological 1--..-.t Data ISC Short-Term Model Prt>gram (lSCST) · Input Data Output (Optional) Dally Output Tables (Optional) "N"-Day Output Tables (Optional) lllghest & Second IUghest Output . Tables (Opthmal) Maximum 50 Output Tables (Optional) FIGURE 1-1. Schematic diagram of the ,ISC Model short-term computer program ISCST. ~ L ' ) ,.L-..-.-, L.c J "' ll .~ ;l i . t..·· ... r----, 5 r ~ !-> I L} [ [ [ [ [ [ --:-+ c [ c C .. c u r t [ Source data cards- ISCL'!' program- control and option data cards ISCL'!-Long-Term Computer Program • Seasonal and/or annual average ground-level con- centration • Seasonal and/or annual total ground:-level deposition- Printed Concentration or Deposition Tables Meteorological data cards Receptor data c:ards FIGURE 1-2. Schematic diagram of the ISC Model long-term computer program ISCLT. l-7 (,7 I' or deposition values. Ad.did..oil.a.lly, all' input data and the results of all calculations may be stored on an optional mast,er tape inventory which can: be used as ±nput. to 'f',lture: update runs. The master tape file stores-the concentration or' deposition <!a.lculated for each source at each receptor.· Sources inay''be added~ ·.deleted or· altered in update runs usitig card input· for 'the·· affected: sourc.es~ ... Concentration or deposition calcul.a.tion.S are·: then made for those sources oDly and the· concentration or deposition values calculated· for each source are resummed to obtain an updated estimate of the:·i::.oucen'tration· or deposition produced at each rec..ept.or-by-·all. s.oiirt:es .. · c ·I" 1.4 .. . . •.. . . . ' ~-. 1.4.1 The· ISC' :Short.;.Term · (ISCsT) Model Program The. inptii ,;-eq:u:fremerits for the ISC Model short-tem computer program (ISCST)· consfsi'.of::foti~ dtegorfes: · ·_-.:· ... • Meteorological' data·.· •. Source data • Receptor data • Program control parameters a. Meteorolod.ca'l Data. Meteorological inputs required by the ISCST program· include hourly estimates of the wind direction~ wind speed, ambient ai.r temperature, Pasquill stability category, mixing height, wind-profile'ex.Ponent .. ~ vertical potential temperature gradient. The magnetic tapeoutput'o£ themeteoroiogical data preprocessor program (see Appendix 'G) ··and the :program'default values for the wind-profile exponent and·the vertical potential temperature gradient satisfy all ISCST hourly meteorological d.ata requirements. Alternately, hourly meteorological data can be 'input by means of a card deck. 'rne number of hours for which concent:.ration.or deposition calculations can be made l-8 [. ~ [ [ ..:. [ [ L [ c [ [ [ D G D c .. L B- E L ranges from 1 to 8,784 (i.e., up to every hour of a 366-day year). b. Source Data. The ISCST program accepts three source types: stack, area and volume. For each source, input data requirements include the source location with respect to a user-specified origin, the source elevation (if terrain effects are to be included in the model calculations) and the pollutant emission rate. For each stack, additional source input requirements. include the physical stack height, the stack. inner diameter, the stack exit temperature, the stack. exit velocity and ---if the stack. is adjacent to a building and aerodynamic wake effects are to be considered --the length, width and height of the building. The horizontal. dimensions and effective emission height are required for each area source or volume source. If the calculations are to consider particulates with appreciable gravitational settling velocities, source inputs for each. sourc~, also include. the mass fraction of particulates in each gravitational settling-velocity category as well as the surface reflection coefficientand,settllrig'vEilocity of each settling-Velocity category. Because industrial pollutant emis~ion ratas are often highly variable, emission: rates for each, source maY be held constant or varied as follows: • By hour of· the day • By season or month • By hour of the day and season • By stability and wind speed (applias to fugitive sources of wind-blown particulates) c. Receptor Data. The ISCST program uses either a polar (r·, 6) or a Cartesian (X, Y) coordinate system. · The typical. polar receptor array consists of 36 radials (one for every 10 degrees of azimuth) and five to ten downwind ring distances for a total of 180 to 360 re<':eptors. However, the user is not restricted to a 10-degree angular separation of receptors. Receptor locations in the Cartasi~~ coordinate system may be given as Universal Tra~verse Mercator (U~) 1-9 coordinates or as X (east-west) and Y (north-south) coordinates with respect to a user-specified origin. Discrete receptor points corre- sponding to the locations of air quality monitors, elevated terrai.n or other points of interest may also be used with either coordinate system. If terrain effects are to be inc~uded in the calculations~ the elevation of each receptor is also required. d. Program Control Parameters and Options. The ISCST program ~ows the user to select from a number of model options. · The prog-ram p.arameters for these options are discussed in detai.l in s·ection 3.2.3. The avai~ble options include: • • Concentration/Deposition Option --Directs the program to calculate average concentration or total aeposition Receptor Grid System Option --Selects a Cartesian or a polar rec.e.ptor grid system ~· .Discrete Receptor Option ~ Allows the user to arbitrar- ily place a receptor at any point using either a Car- tesian or a polar coordinate system • • • Receptor Terrain Elevation Option --Allows the user to specify an elevation for each receptor (level terrain is assumed if this option is. not exercised) Tape Output Option --Directs the program to output the results of all concentration or deposition calculations to tape Prin-Input Data Option --Directs the program to print program control parameters, source data and receptor data; the user may also direct the program to print the hourly meteorological data if this option is exercised 1-10 [ [ [ _[ [ c [ c [ [ C- [ __ [ i [ c [ [ [ c c B D- D 6 D L --···-· •· Output Table-s Option -.Specifies which· of the four types of output tables are to be printed (see Section 3.1.3) •· MeteOrological Data Option --Directs the program to read hour~y data from either the meteorological pre- processor format or a card image format ., Rural/Urban Option --Specifies whether the concentration or deposition calculations are made in the Rural Mode, Urban Mode 1 or Urban Mode2 (see Section 2.2.1.1) •-Wind~Profile Exponent Option ---Directs the program to read user-provided wind-profile exponents or to use the default values ; .. ' ., Vertical Potential. Temperature Gradient Option --Directs the p;ogram.to read user-provided vertical potential temperature. gradients or to use the default values •· Source Combination Option. -Allows the user to specify the combinations of sources for. which concentration or deposition estimates are required • Single Time Period Interval Option -Directs the program to print concentration or deposition values for a speci- fic time interval within a day (for example, the third 3- hour period) •· Variable Emission Rate Option --Allows the user to specify scalars which are multiplied by the source's average emission rate; the scalars may vary by season or month, by hour of the day~ by season and hour of the day, or by wind speed and stability 1-ll -.----------··---.......... ______ .. ,., .... _______ ---------- • · Plume Rise as a Function of Distance Option --Allows the user to direct the. program to calculate plume rise • '-' as a function of downwind distance or to calculate final plume rise at all downwitld distances . Sta<:k.l!ip Dow:wash Option .;._ Allows the user to direct the":p~ogram~:t.c; use· the Briggs (1973) procedures for ~ai~ating: st~ck-t:f.p downwash for. all stack sources 1.4.2 The ·Isc·.tong;;..Term (ISCLT) .Model Program The· ~P~--teqUir~ents for the: 'ISC Model long-term computer program (ISCLT). ·cousist of f.o.W; categories.: • • . Me~;;o1o1ogic~ data so~ci :Jaes:·::"' ReCeptor data .Pr6i:f~:-.~·on't£of:p~rameters:_:c.· ._ .. a. Mete0-1.-oiomiea.l -Data. Seasonal or annual "STAR" sum- marieo\5. (stat:l.sti~l-tabti.la.ti.ons.of .the.joint frequency of occurrence of wi~d;:sp~~r ~d~--;h~d;:,di~~et±oii= ·categories'~ ·classified, according to the Pa~~~ll~"it~blii~.;.::~~a·t~gorie~)* are the principal meteorological iilputs to Ist:i:r: ... The: ~r'~gt~-: iccepts' STAR summaries with six Pas quill s t:.abili ty cate~ories" (A·'hhi~ti-gh:'p.) or·: fi:V~ stability· cat'egories (A through E with the E and F cat~g~{ies eom.binecU • .ISCLT is ·not designed to use the Cl~tol~~i.ai'· Di~P'et'sio1:f -HOdel'·· (CDM) sti.a ~-summa~ies which subdivide the ' :;:. ' .·~-: ,:1 . -;; <::: .. ~ :, •• --t .. ~ ·-~'! " •• ··-~ . ..._ ..... -"' ~ ~-~ -'. ' • neutral D staoiii:ty· 'category ·into day and'hn£ght. D categories. Additional m~i'e~rdi~~i~If~ta:.::-ricftiitemeilt!f ixlclude;~seasonal· 'average maximum and " ~ ·--...----------·--------·-··-·- *STAB :._su~~;i~-~~~a~i 7~va.il:~ble ~from the ·Na-tional Climatic Center (NCC), A.shevilla, North "Carolina~·' l-!2- [ [ [ '[ -:[ [ [ c [ c D ·C L L [ [ [ c [ r L [ [ C-- b. Source Data. The ISCLT source data requirements are the same as those given in Section 1.4.l.b for the ISCST program. c. Receptor Data.. The ISCLT receptor data requirements are the same as those given in Section 1.4.l.c for the ISCST program. d. Program Control Parameters and Ootions. The ISCLT progrmn allows· the· user to· select fr~ a number of model and logic options. The program control parameters for these options are discussed in detail in Section 4.2.3. The available options include: • • .. '. __ ,. •• Concentration/Deposition Option -Directs the program to calculate average concentration or total deposition Receptor: Grid System Option -Selects a Cartesian or a polar receptor grid systen Discrete Receptor· Option--Allows the user to place a receptor· at any point using-either a Cartesian or polar coordinate reference system •' Receptor· Terrain Elevation Option -Allows the user to specify· axi elevation for each receptor (level terrain is assumed by the program if this option is not exercised) ., · Tape Input/Output Option --Directs the program to input and/or output results of all concentration or deposition calculations, source data and meteorological data from and/or to magnetic tape or other data file •· ----·------------------- Print Input Option Directs ·the program to print program control parameters, source data, receptor data and meteoro- logical data -----·---------------.. -·--------·---- • • Print Seasonal/Annual Results Option --Directs the program to print seasonal and/or annual concentration or deposition values, where seasons are normally defined as winter, spring, summer and fall Print Results from Individual/Combined Source Option -- Directs the p-rogram to print the concentration or depo- sition values fot: individual and/or combined sources, where the combined source output is the sum over a select group of sources or all sources • Rural/Urban Option -Specifies .whether the concentration or deposition calculations are to be made in the Rural MOde, Urban Mode l or Urban Mode 2 (see Section 2.2.1.1) • • Plume Rise as a Function of Distance Option --Allows the user to direct the program to calculate plume rise as a function. of do:wnwin.d' distance or to calculate final plume. rise-at all downtdnd distances Print Mmdmum 10/All Receptor Points Option -Specifies whether the program is to print the maximum 10 concen- tration (deposition) values and receptors or to print the the results of the calculations at all receptors without maximu:ms: or· both Automatic Determination of Maximum 10 Option -Directs the program to calculate the maximum 10 values of concen- tration. (deposition) from the set of all receptors input; also, directs the program to display the 10 values of each contributing source at the locations determined by the maximum 10 values of the combined sources or to display the maximum 10 values and locations of each source individually l-14 [ [ [ c [ · .. 0 [ c -0 L [ [ c [, [ [ c [ [ c u fj [ • • •· • •• User Specified Maximum 10 Option --Allows the user the option of specifying up to 5 sets of 10 receptor points, one set for each seasonal and annual calculation or a single set of 10 receptor points, at which each source contribution as wel~ as the total concentration (depo sition) values for· the combined so~rces are displayed Print Unit Option --Allows-the user to optionally direct the print output to any output device Tape Unit Option -Allows the user-to optionally select the logical unit numbers used for magnetic tape input and output Print Output Option --This option is provided to minimize paper output; if selected•: the program does not start a _new page with. each new table, but continues printing Lines per Page Option -This option is provided to enable the user to specify the exact number of lines his installation pr~ter. :pr:izi..t_s ~er. page S~ze Options -:-_;Th.~e. a:re _parameters that allow the user . . to sped.fy the. number .. ,of ·s.ources input via data card, the sizes of .. the X .. and _Y . re_ceP:t.ar . axes if used, the number of .discrete :recep~o; ._poil;lts. if. used~ the number of seasons ' --.... ~ -. -~ • • • • ' I -;. ~ ' • . . ... <or ~annual, ,Onl)!.). U.r.t~~.,m~~-~olpgical. input data, and the ..numbe.r.of wind~speE74, .• ~asquill stability and wind- direction. categories in_the. input. meteorological data . . .. -:. . , ' -. -· ~ ..; . : . '.--.-. ':. .. . . . Combined -Sources. _Option· -.. .. Allows the user the· option of 1 .••.. , .. · .• ·-·· .. • . ·. - specifying, .by. source-number, multiple sets of sources to use in .forming .. combine~ ::sources :.output or the option of using all sources in forming combined sources output 1-15 .· .. -------------------------------·--~---------------------~ -----------------.... -------------.. -------------------- • • Units Opti.oti ~ -iiibws the user the option of spec:ifyi.ng the u;,~ti:1t'~1'1si~n~ :Jdie~---and/or output concent::ati.on or deposition units Varia,'Qf.e,.j:~:issio_ns Qption--:::-~Allows th_e user the option • +' • . 'o' -:.: ~-': :.::-.~ -• • ~ • : -' ., -• • of vaeyj,ng _emi.ssfo~ by _season, by wi:Od speed and season, __ :._,d:-· ~-:~ :.:: -M~Ji~· .. :•e::: !::.~·~.; ,_._:·;~_ ·."~-.. :>: · ·-. . . _by Pasqull~ stabili.ty cat~go-ry and season or by wind '• -.. ~ . -. ' f:.· ..... ~-. . • ._. . . ... : .. ·.: .. -:-' . ~ .-. . . speed,· Pasquill stability catego-ry and season (season is ;' - ; . . ~--~=-~~~-_,-. . ·-. . e±ther ~ee:r, s:ar:t.ng, summer,-f~l or annual only) ·. ;__ .:~--·' ··: :-;::...:.::~;:~;":;.•,; j>~; . ·.: .•.• ·> ~ .. ;__. ' >-' ---. ( . \ ..... .. . . '· ..-~ :':~ ·":' ;' :··-: ..... "; ,.. . ~ ~ '. ~--. ·. : . . . . : . . • Stack-TipDownwash Option_-.All()WS the us~;: to direct the ~-·"-~rb~aDi-·to ~~~--~he ;Brlg~~ ,(l-97:3) proc~dures for 'evaluating ·:.:-~-·-_: ··:~: '!"!~·.-~·; . .::-:.· .. ~;.j_;=' •. J ·) -~<>·~ n;.-:_:(·· : .... ~.:. · .. '"stack-tip ciownwash'for ·au sources ,. ..... "*" '" ... ...~ .t .. ..t• . . ,; .. ~. ~,J .... , ,."' t : ..... ' • :· ! ···'. ~. _::,--,. ~::c· . _ _._.,,_ ... . ·~:' l-16 [ r b . ' ·-c-. .. [ "'1 . -_, r' C~ [ c [ D [ E [ [ [ c [ [ c c [ [ c c C.· . L 2.1 GENERAL SECTION 2 TECHNICAL DESCRIPTION The Industrial Source Compl~ (ISC) Dispersion Mode1 is an advanced Gaussian plume model.. The technical discussion contained in this section assumes that .the reader is already familiar with the theory and concepts of Gaussian plume models. lleaders who lack a fundamental knowledge of the basic concepts of Gaussian plume modeling are referred to Section 2 of the User's Manua1 for the Single Source (CRSTER) Model (EPA,. 1977) or to other references such as Meteorology and Atomic Ener2v (Slade, 1968) or the Workbook of Atmospheric Dispersion Estimates (Turner, 1970). 2.2 'MODEL: mPUT. DA'J!A ' · . · ··. 2.2.1 Meteorological Input Data 2.2.1.1 Meteorological Inputs for the ISC Short-Term (ISCST). Model Program Table 2-1 gives the hourly meteorological inputs required by the ISC Model short-term computer program (ISCST) • These inputs include the mean wind speed meas~red at height z1 , the direction to'tJJCI.:l'd t.Jhich the u:Jind is bZowirr.g~ the wind-profile exponent, the ambient air temperature, the Pasquill stability category and the vertical potential temperature gradient. In general, these inputs are developed from concurrent surface and upper~air· meteorological. data by the same preprocessor program as used by the Single. Source (CRSTER) Mo~el (see Appendix G). If the pre- processed meteorological data are used, the user may input, for each combination of wind-speed and Pasqui1l stability categ~ries, site-specific values of the wind-profile exponent and the vertical potential temperat~=e 2-l -------~----. -----------------------·-------.... ..,..-------·-·---- T.~BLE 2-1 HOURLY M!TEOROLOGICAL L~UTS REQUIRED BY THE !SC SHORT-TEll~ MODEL PROGRAM Parameter p T' a H m Stability Definition Mean Wind speed in meters per second (m/sec) at height z 1 (default value for z 1 is 10 meters) Average random flow vector (direction toward which the wind is blowing) Wind-profile exponent (default values assigned on the basis of stability; see Table 2-2) Ambient air temperature in degrees Kelvin (°K) Depth of surface mixing layer (meters), developed from twice-daily mixing height estimates by the meteorological preprocessor program Pasquill stability category (1 =A, 2 = B, etc.) Vertical potential temperature gradient in degrees Kelvin per meter (default values assigned on the basis of stability; see Table 2-2) TABLE 2-2 DEFAULT VALUES FOR THE WIND-PRoFILE EXPONENTS AND VERTICAL POTENTIAL TEMPERATURE GRADIENTS Vertical Pasquill Stability Wind-Profile Potential Category Exponent p Temperature Gradient (°K/m) A 0.10 0.000 ·B 0.15 o.ooo c 0.20 0.000 D 0.25 0.000 E 0.30 0.020 F 0.30 0.035 ... .... 2-2 r [ [. r L c c c ti c L [ [ c [ c [ D ~ c 6 fj ' c L gradient. If the user does not input site-specific wind-profile expo- ' '' nents and v:ertica.l poten~ial tesnpe!~~~r~)~radients, the tSC Model uses the default values given in Table 2-2. !he inputs listed in Table 2-l may also be developed by the user from observed hourly meteorological data and input by card deck. In these cases,, the direction from which the wind is blowing must be reversed 1~0 degrees to conform with the average flow vector (the di.recti.On toward· which the-wind is blowing) generated by the meteorological preprocessor program. It should be noted that concentrations calculated using Gaussian dispersion models-are inversely proportional to the mean wind speed and thus the. calculated concentrations approach infinity as the mean wind speed approaches zero (calm). Also, there is no basis for estimating wind, direction du~-ng periods of catm winda. The meteorological prepro-, cessor program arbitrarily sets the wind speed equal to l meter per . I , second if the observ•d ,wind ,speed is !less t~ l meter per second and, l in the case of calm winds,, seta the.~Jtl.nd .direction equaL to the value reported for the last non-cal.Iil.'houl:!.· nttis~, considerable uncertainties exist in the results of model calculatiOns for hours , with calm winds, especially if a series of consecutive calm hours occurs. In this case, the preprocessor progrBDLassumes a single persistent wind direction for the duration of the period of calm winds. Concentrations calculated for such periods may significantly overestimate the concentrations that can actually be expected to occur. Consequently, it is recommended that the ISCS'r user examine the preprocessed meteorological data for the periods with calculated maximum short-term concentrations to ensure that the results are not determined by an arbitrary assumption. Periods of persistent calm winds may be recognized by the combination of· a constant wind direction with a wind speed of exactly 1.0 meter per second. The ISCST program has a rural and two urban options. In the· Rural Mode., rural mixing heights and, the a and, cr values for the y z indicated stability category are used in the calculations. Urban mixing heights are used in both urban-modes. In Urban MOdel, the stable E and ----------------------------·--~-------------------...... ----- F stability categories are redefined as-neutral D stability following current EPA guidance. In Urban Mode 2,--the E and F stability categories are combined and the a and a values for the· stability category one y z ' step more unstable' than the 'indicated categoey are used in the calcula- ·-tions.--For example, the Q'. and ·a values for C stability are used in y z calculations for D stability in Urban Mode 2. Table 2-3 gives the dispersion -coefficients used in eac.l-r mode. The Rural. Mode is usually selected for industrial source com- plexes located in rural areas. . However, the urban options may also be considered in modeling ·an industrial· source complex located in a rural area if the-source complex is large and contains numerouS tall bul.ldings and/or large heat sources (for example; coke ovens). ArL urban mode is appropriate £or these cases in order to account for the enhanced turbu- lence generated during stable meteorological conditions by the surface roughness elements and/or heat soui:;ces. _ If an urban mode is appropriate, Urban Mode l is recommended ·for most situations. Urban Mode 2 is pri- marily recommended for area sources in urban areas. Urban Mode 2 should not be used for stack sources iti_m.odeling ·studies for regulatory purposes. 2.2.1.2 Meteorological Inputs for the ISC Long- Term (ISCLT) Model Program _ Table 2-4 lists· the meteorological inputs required by the ISC Model long-term COlii.puter program . (ISC~T) • _ Seasonal or annual S'IAR sum- maries are the principal meteorological inputs to the ISCLT program. A STAR summary is a tabulation of the joint frequency of occurrence of ~~nd-speed and wind-direction categories, classified according to the Pasquill stability categories. Table 2-5 identifies the combinations of wind-speed. and Pasquill stability categories that are possible following the Turner (1964) procedures of using airport surface weather observations· to_ estimate atmospheric stability. The wind-speed categories in Table 2-5 are in knots because the National Weather Service (NWS) reports airport wind speeds to the nearest knot. The default values of the wind 2-4 [ \c _, .f~ !"" L [ c [ [ c ·C c [., :>: [ [ r: _; [ c H c. 0 L: (j p u L TABU 2-3 PASQUILL-GIFFORD DISPERSION COEFFICIENTS USED BY THE ISC MODEL. IN THE RURAL AND URBA.."f MODES Actual Pasquill. Pasquill Stahillty category for the cry, Ciz Values' Used. in-ISC Model Calculati.ons Stabi.li.ty Category*· Ru:al. Mod& U:ban Mode-1 U:ban Mode 2 A A A. A B B B A c c c B 0 11-D c E E D D y. .... : lt D D _, :ll't'he ISCST program redefines extremely stable· G stabil.ity as very stable F stab:llity. 2-5 'r • a,k,J. ae a; .i,k H.m;.i,k,R. ME'l'EOROLOGICAL INWTS REQUUED BY T"dE ISC LONG-'r:ERM MODEL PRDGR..AM Definition: Frequency of occurrence of the i th wind- speed category and jth wind-direction cat- egory by stability category k for the tt:.h season (STAR summary) Mean wind speed in meters per second (m/sec) .at height zl for each wind-speed category (default values based on STAR wind-speed cat- egories) W'ind-profile ·exponent for each combination of wind-speed and stability categories (default values are assigned on the basis of stability; see 'table 2-2) Ambient air temperature for the kth stab- .ility category and ,tth .season in degrees Kelvin (°K) Vertical potential temperature gradien·t in degrees KelVin per·meter (OK/m) ·for each combination of wind-speed and stability categ~es (default values are assigned on ·the basis of stability; see Table 2-2) th Mixing height in meters for the i wind- speed category, kth stability category and R.th season 2-6 --------------------- c [ ·r L [ [ c c B ·C c 6 c [ [ [ c- [. [~ [ c [ [ c c c C- C [ !ABLE 2-5 POSSIBLE COMBINATIONS OF WIND-SPEED AND PASQUILL STABILITY CATEGORIEs* AND MEAN WIND SPEEDS m EAeli NCC STAR SUMMARY WIND-SPEED CATEGORY Pasquill. Stability Willd. Speed (kt) Category 0-3.-4-6-1:..1o 11-16 17-21 A X X B X X X c X X X X X D X X X-X X E X ' X F-X X. ·~ >21 X X IS_CL'I. Wind, Speed. · ·a.7s·--2~50i 4.30; 6.80 9.50 12.50 (m/sec) ' . I { \ J I \ I ' *Based on Turner (1964) dl!;f'inition;S o£ tl\e Pasquill stability categories. ,... ... .I / I \ / i \ I ..;~·i .. I i ~-~~ I ... I - I ·,.__ . ... ··.............. i .,___ ! \ .. .... ' ~ .. '"'o-· ... ---t '-.J_ ___ ..,.. ·-'f: ..... '·' ---~--....._-~-. ··x; ·~r. '-; -;; . •. : ~·:.··: -.•.::i_; f.o.;. , 2-7 speeds ill meters per second essig!led by ISCL! to each wind-speed category are shown a!: the bottom of '!.able 2-5. The sixteen standard 22. 5-degree ~: . . . w-i:nd-direct:ion sectors ~~a ili·>tsTA:if stmllllaries are showu in Figure 2-1. ,_. ;·q -:.' ·., .. :· ISCL'! accepts .. STAR summaries with six' stability .~tegories (A through F) •. · ! ' or five stability categoiies (A throcigh E with th~"E and F categories -,. .. combined) . · IsCL! is not designed to' use the Cli.Dia.tological Dispersion M~d~l (CDM) STAR s~iei· wb.i6h divide_ §he neutral D stability category into day and night; D categories. SID summaries are available for most N'"wS ·surface weat:her._statiods fr~ ,the National 'Cli.matic Center. (NCC). Th~· ISCL! us~r must spJcify ~ient .ailf',temperatures by sta- bility ~d seaso.;· and mirlng \eights by s.tability and/or wind-speed and . . ._ ·. (' _.~ . ;' . " season.. .It is suggested that· .. the .average seasonal max:i mum daily temper- ature be assi·gn;d to· the ~;--& \m.~· cf~tability cEf.tegories; the average '.·.• . . ...... .~·:./ .. "····· seasonal minimum daily tempe,.rai;ure·be,assigned to theE and F stability categories;· and .. the averag~·"~J.is~~al t~~rature·be. assigned to the D Stability category. .:&t· urban/ a~e~ .• C~Qn practice is to. assign the mean a££!rnoon,.m!ting hdght: gi;~n b~ Hol~orth (197'Z) to the B and C stability .categori~s~:i.s t~es ~he me~ aftern~on mixing height to the . ._-, . . . -. : . -- --, . - - --~~ A stabiiity categor;i, the mean early morning mixing height to the E and f• ,' F stability categories. and the a.Jerage of· the mean. early morning and afternoon mixing heights ~o the D ~tability category. In rural areas, the ·applicability of Holzworth early morning ~rban mixing heights is quesd.ona?le. Consequently, ISCLT in the Rural Mode currently assumes that there.is. no restriction on vertical mixin~ during hours with E and F stability. . It-~:is suggested that Holzworth mean afternoon mixing heights be assigned to th~ B, C' and n·.:stabil:i:ty categories in rural areas and that 1. 5 times the mean afternoon mixing height be assigned to the A stability category~ If sufficient climatological data are available, wind-profile exponents and vertical potential temperature gradients can be assigned by the use-to each combination of wind-speed and stability categories u;_ o~de·r .to 'm"ak~,f.:t~e 'to;g-t~bn model site specific. In the 2-8 c c [ c r l" [ c c- [ [ [ [J [ [ [ c c B c [j 6 c [ -· -- ·~·- .. - FIGURE 2-1. The six:een atanda:ci 2l • .5-dag:ea wind-direction sectors used u STAB. •UIIIIII&riea. 2-9 . ·-· .. -·--------. ----··.----·------·-··-· -·· ··-· -------··- __ _. ... _____________________ ,_~···-·----'--~----~---...... ---·-·· absence of site-specific. wind-profile exponents and vertical potential temperature gradients~ the default values given in Table 2-2 are auto- matically used by the ISCL~ program. The: ISCL'l'. program conta.i.ns a rural mode and two urban modes. A discussion-of these modes_ and guidance. on their_ use is given in Sec- tion-2.2:.1.1. 2.2.2 Source. Input Data Table 2~6 summarizes the.source input data requirements of the ISC Dispersion Model camputer-programs. As shown by the table, there are three source types: stack, volume and area. The volume-source option is also used to simulate line. sources. Source elevations above mean sea level and source locations with respect to a user-specified origin. are required for all sources. If the Universal Transverse Mercator (U'lM) coordinate. system. ·is used. to define receptor locations, trrM coordinates are. also us.ed to define: source locations~ Otherwise, the origin· of the. recepto.r· array-(either polar or Cartesian) is usually placed at the location of the most significant pollutant source within the industrial source complex. The X and Y coordinates of the other sources with re.spect to this origin are then obtained from a plant layout drawn to scale. The X axis is positive to the east and the Y: axis is positive to the north. The pollutant emission rat:e is also required for each source. If the pollutant is deplet:ed by any mechanism that can be described by time--dependent:· exponential decay, the user may enter a decay coefficient: tjl. The parameters tpn, V sn and yn are only required if concent:ration or deposition calculations are b.eing made for part:iculat:es wit:h appreci- able gravitational settling velocities (diamet:ers great:er t:han about 20 micrometers). Particulate emissions from-each source can be divided by the user into a maximum of 20 gravitational settling-velocity categories. 2-10 [ c ,[ [ [ r l~ [ [ c c c [ [ c [. [ [ L Parameter Stacks Q z s h v s T s v sn TABLE 2-6 SOURCE INPUTS REQUIRED BY THE ISC MODEL PROGRAMS Definition Pollutant emission rate for concentration calculations (mass per unit time) Total. pollutant emissions during the time period T for which deposition is calcu- lated (mass) Pollutant decay coefficient. (seconds-1) X and. Y coordinates of the stack (:meters) Elevation of base. of. stack (meters above ~· ~e~~. ~evel:) J StaCk:axit:ve.l.ocity-(meters per second) " ' .. Stack inner diameter· (meters) Staek_exit temperature (degrees Kelvin) Mass fraction of particulates in the nth settling-ve.locity· category Gravitational settling velocity for par- ticulates in the nth settling-velocity category (meters per second) Surface reflection coefficient for par- ticulates in the nth settling-velocity category -~Height of building adjacent te the stack (meters) -· · · · ·--·--·-~~-·-----------·--------- . ·-------·-------------·--·--------·····---- Parameter w L -Volume Source (Line Source) - Q Q"t' ;l/J X, y z s H v sn Area Source , ' TABLE 2-6 (Continued) Definition Width of building adjacent to the stack (meters) Length of building adjacent to the stack (meters) Same definition as for stacks Same definition as for stacks Same definition as for stacks X and Y coordinates of the center of the volume source or of each volume source used to repre- sent a line·· source (meters) .. Elevation of the ground surface at the point of the center of each volume source (meters above mean sea level) Height of the centerof each volume source above the ground surface (meters) Initial horizontal dimension (meters) Initial vertical dimension (meters) Same definition as for stacks Same definition as for stacks Same definition as for stacks Pollutant emission rate for concentration cal- culations (mass per unit time per unit area) 2-12 _. ·----------------~-----· -~~~~_:_ ________________________________________ . --------------.. ---·····-·- ------c -c ; .r [' [ [ r b [ ~ -' ~ . E c [ 0 co b . I b 6 [ [ . J c c r L [ c E c [ Parameters X,. y H ... -·,. ~ 2-6 (Continued) Definition rot:al. pollut:ant: emissions during the tiEe period ~ for which deposi.t:ion i.s calcu- lat:ed (mass per unit area) Sama definition as for stacks .x and Y coordinates of the southwest cor- ner of the sqti.ara·· area source (meters) Elevat:ion of ~he area.. source (meters above mean. sea level) Effective emission height of the area source (meters) ·Width· gf· the square area source (meters) Same. definition as for stacks' Same definition as for stacks .. Same: definition as for stacks . 2-13 -----· .. ·-·--·----··· ... Emission ra~es used by the short-term model progr~ ISCST may be held constant or may be varied as follows: • By hour of the day· • By season or month • ·•· By hour of the day and season By ~.nd-speed and stability categories (applies to fugitive sources of wind-blown dust) Emission races . used by the long-term model program !SCLT may be annual average· rates or may be varied by season or by wind-speed and stability categories. Additional source ~nputs required for staCks include the physical staCk height, the stack exit velocity, the stack inner diameter and. the stack exit temperature. For. an. area source or a volume source, the dimensions of the source and the effective emission height are .entered in place of these parameters. If a stack :i.s located on or ad- jacent to a builung and the staCk height to building height ratio is less than 2.5, the length (L) and width (W) of the building are required as source inputs in order. to include aerodynamic wake effects ·in t.he model. calculations. The bui Zding UJake effects option is c::u.toma:t- icaZZy.e=ercised if building dimensions are entered. 2.2.3 Rece'Otor Data 'The rsc· Dispersion Model computer programs allow the user to select either a Cartes.ian (X, Y) or a polar (r, 9) receptor grid system. In the Cartesian system, the X-axis is positive to the east of a user- specified origin and the Y~axis is positive to the north. In the polar system, r is the radial distance measured from the user-specified origin and the angle e (azimuth bearing) is measured clockwise from 2-14 L [ [ c L [ [ [ .. [ [ c [ [ c L north. If pollutant emissions are dominated by a single source or by a group of sources in clos~ proximity, a polar coordinate system with its origin at the location of the dominant source or sources is the preferred receptor grid system. However, if the industrial source complex is comprised of multiple sources that. are not located at the same point., a Cartesian coordinate system is usually more convenient. Additionally, if the Universal Transverse Mercator (U'!M) coordinate system is used to define source locations and/or to extract the elevations of receptor points from USGS topographic maps, the UTM system can also be used in the ISC Model calculations. Discrete (arbitrarily placed) receptor points corresponding to the locations of air quality monitors, elevated terrain features, the property boundaries of the industrial source comple."'t or other· points of interest can be used with either coordinate system. In the polar coordinate, ;;ystem, receptor points are usually spaced at. 10-degree interiais ~n c~n~~t~ic ~~gs. Thus, there are 36 receptors on each rin~.: The radial,.distances from the origin to the receptor rings a"Fe: user·: sell!ct;ed. .and·,~.e ,generally set equal to the distances to the expected maximum .g~o~d~;Levl!l, concentrations for the major pollutant sources under the mo~,~ :..fl\~quent S!tability and wind-speed combinations. Estimates of these distances can be obtained from the PIMA.'\: ~omputer program (Turner and Busse, 1973) or from preliminary calculations using the ISCST computer progrm.m--:., Th~ ~~ number of receptor points is determined by. factors. such. as .. the number, of sources and the des ired output (see Equation (3-l) for th~ slto.rt~term model and Equations (4-1), (4-2) and (4-3) for the long7term mod~) •;'r ~'example of a polar receptor array is shown in Fi~ure 2-2. :~ :. ~ .... _-_ ~-' In the C~rtesian coordin.a_te _system, . the. X and Y coordinates of the receptors are specified by the us_er.. The spacing of grid points is not required i;o. be uniform sa. that . the .density of grid points can be greatest in the area of t;he exp~c;t~ad.-maximum ground-level concentrations. 2-15 __ ........:_ _________________ _ .. . .-.. ;.,•·, • • ·,,;_I 't- • • • • . ·-: .. .. . • • • • • -----------------~---------------------·"'' .. ·• • . .. ·• •• J ... • • • •• .• • • • · ... •.:·:· ... ::~ :;}~-: ;: • .. .. ~ -..: • • ' • ~ ~\_-'!, . ' • • ·s·~~-: • • !.·( !; • • • • . .:,;_:.::r~ :..'· ~-.. ~-.. :--• -· .• ' •· • -.• • ·• • • •· • • .. .. .. .... :,;;.:.' --~-~: ~: :~:: ~:'· ·•: ··-· ::' -· • .. •. ·•· '':":'\<"_!._r~ ...... ~---,_.,.,.,._ ._.. . .. • • • • • , •• ·• .... <~!' .. , • ·-:-~--~: .. :-"""' ·:·· •• • • • ·• • • • -~ i. -('• ~-· ·.·, • ..• ·: • • . . .. -... .. • ~ ... .-.' ~ .~·,'" t·· -~ -- •• • • • • • • • • • • • • .. • • • • • • • ·- . . • • • • • • • • • • • • • ·• • • • • F!GURE ~ ·2. Ex~le of. a_ P~t~; .~ec~pt:or, gri~. The stipp'ieci area shows the property of a h:fpotha~cal. industrial source complex. 2-16 _, .r·. , __ [ [ c [ [ c ·C L [. [ [ [ [ C· L For example, assume that an industrial source complex is comprised of a number of major sources, contained within a 1-kilometer square, whose maximum ground-level concentrations are expected to occur at downwind distances ranging from 500 to _1000 meters. The Cartesian receptor grid {X andY • 0, !200~ !400~. ~00, !800, !1,000, !1~200, !1,500, !2,000, !3,000} illustrated in Figure 2-3 provides a dense spacing of grid points in. the areas where the highest concentrations are expected to occur. As shown by Figure 2-3, use of the Cartesian system requires that some of the receptor points be located within the property of the source complex~ Also, some of the receptors may be located within 100 meters of an individual source.. If a receptor· is located within 100 meters of a source, a warning message is printed and concentrations are not calculated for the source-receptor. combination. The 100-meter restriction,. which arises from: the fact that the Pasquill-Gifford curves begin at: 100· meters,. is not a: problem in. this case· because the concentra- tions of conc.ern are the· concentrations calculated at and beyo~d the property boundaries of tha sour.ce· cOmplex~. Comparison of Fisures 2-2 and 2-3 shows that, .fa~.: the hypothetiea.l. industrial source complex described above, the: Cartesian ·receptor array is mora likely to detect the maximum concentrations. produced by the combined emissions from the various sources within the industrial source complex than is the polar receptor array. As noted above, discrete (arbitrarily spaced) receptor points may be entered using either a.polar or a Cartesian coordinate system. In general~ discrete receptor points are placed at the locations of air quality monitors, the boundaries of the property of an industrial source complex or at other points of interest. HOwever, discrete receptor ·.points. can be used for many purposes. For example, assume that a proposed coal-fired power plant will be located approximately 30 kilo- meters from a National Park that is a Class I (pristine air quality) area and that it. is desired to determine whether the 3-hour·and 24-hour Class I Non-Deterioration Increments for so 2 will be exceeded on more 2-17 -~---.... -·-----~ .. -·-·--. 2000~------~--~~-+~~+-~~-+~~+-~~---+------~ ',". •.. . . .. ·.~ .... .~ •: ...... ·~ ~ -· :.. . • ........ ·*"• :· -2000~------~--~~-+~~+-~~-+~~+-~~--~------~ -3000~----~~--~~~~~_.~~._~~~~--~~----~ -3000 -2000 -1000 0 1000 2000 3000 FIGURE 2-3. Example of an irregul.ady-spacacl Cartesian recept:or grid.. The stippled area show• th• properey of a hypothet:ical induat:rial sourc.a complex. 2-18 [ c -[ [ [ c [ [ [ c [ C .. · . . 'lc B L L [ [ c [ [ c 0 [ b [J [ than 18 days per year. The angular dimensions of the areas within which the 3-hour and 24-hour Class I Non-Deterioration Increments for so 2 are exceeded are usually less than 10 degrees. It follows that a polar coordinate system with a 10-degree angular separation of receptors is not adequate to detect all occurrences of 3-hour and 24-hour so 2 concen- trations above the short-term Class I. so 2 Increments. The user may therefore wish to place discrete: receptors at !-degree intervals along the boundary of and within the Class I area. If model calculations are to be made for an industrial source complex located in complex terrain~ the elevation above mean sea level of each receptor must be input. If the eZeva;t;i.on of any reoeptor e::r:aeeds the height; of any stack or the effeoti.ve emission height of a:ny voLume souroe, an error message is printed and progranr e:::ecut:ion is terminated. 2. 3 PLUME' RISE. FOIOOTI..AS . The effective. stack. height H. o:f a plume with momentum and/or thermal buoyancy· is given by the sum. of· the physical stack height h and the plume rise t.h. The-ISC Model programs use the generalized Briggs (1971, 1975) plume--rise equations.. Parameters used in these equations are defined as follows: F' • F • 0 (l - T /T ) • F' > F a s ' c 2-19 F' < F - c ···---·-------··------------·· .. (2-1) (2-2a) where r 0~0727 (V d)4/J ; F' < 55 4 3 ~ m /sec " . S· . -·· F --(2-2b) c 0 0141· (V d)5 /3 F' > 55 4 3 m /sec -~ ' s . . ... ~.·--.. ~; .. . "-·-· • -,•:--w:--•·-.:-.:•• ,;,:._.., .... ~ -~ _g ' '" (2-3) • momentum flux' term · "· • ··---·· ·n ···-·····-~---,.....,, ....... ·~ . ... F = buoyancy flliX term F · • buoyancy flux below which plume rise is due to momentum only c ej .. jet ~ntrainm.ent;.coefficient T • a T • s O· ambient air temperature ( K) sta~k:ex'i.t t~perature (°K),' input as zero for a pure momentum source ,-. }!9 ., ~ •_, ~ta.~ :-:~~t -.V:el()C:i;J!• :.J:m( sec) , :input. as. zero if no plume rise is to be calculated · : .. ·. . ~. .. . . g ·= accelerad:.on due to, gravity (9.8 -m/sec2 ) u{h} = mean wind speed (m/sec) at emission height h ' ~-. . ' ....... ~. :· If th~-vert:i:.ca.J. potential temperature gradient is less than or equal to zero (th~-d~f~~it value for the A, B, C and D Pasquill stability categories), plume ~se __ li.~ _ due to guoyancy and/or momentum at downwind distance x iS-given by (2-4) 2-20 [ c ,[ [ [ [ [ c -~ u [ 6 [ L [ [ [ c:·- [ [ [ 0 c b U. . ·• X . x < 3.5 x* and F > 0 •· ; X< 4d (vs + 3u{hl)2 and F • 0 :lC v 8 a{h} x' •· (2-5) 3.5. x* . x. .::.._ 3.5 x* and. F > 0 • 4d (v ~ + Ju{hl) 2 ~ 4d (v s + .3ii{h}l2 and F • 0 v a{h} x.::.... v u{h} · s . s .. 4 3} F ~ 5.5 m. /sec . . 4 3 F > S.S m./sec. (2-6) 'where the default:. value· for the adiabatic entrai:mnent:. coefficient. al is o. 6 (Briggs,. 1975). It should be., noted that Equation (2-4) is a theoretical formulation. At present,. sufficient.. experimental. data.· to determiile the validity of the final plume rises yielded by Equation. (2-4) for non-buoy- ana:. plumes are not available. If the. vertical. potential temperature gradient is positive, plume rise Ahs at downwind distance x is given by Ah. {x} s • + 311 (1 -cos (s 112 x' /a{h}) )1 113 a~ u{hl s J 2-21 (2-7) x' where X - . , s ·x < ~ u{h} s-112 and F > a x < Eu{h} s-1/2 and F • o 2 -{ } -1/2 X2,:~U.h S and F > 0 x > ~ u{h} s-112 and F • o -2 • S ·• stability parameter· vert:ic:al potential temperature gradient. (the default ~~ • value is 0.0200K/m for E stability and 0.035°K/m for F stability) (2-8) (2-9) '!he default. value for the stable entrainment coefficient s2 is o. 6 (Briggs, 19?!1). It should be not.ed that, if the buoyancy parameter F is equal to zero and ~s {x} is greater than JV 5 d/u{:h} ~ th4 ).SC M~~~ :pro-. g:ams set ~h {x} equal to JV d/u{h}. Equation (2-7) is a theoretical s s formulation. In the case of non-buoyant. plumes, sufficient experimental data to det.ermine the validity of the final plume rises calculated by Equation (2-7) currently are not available. It is important to n,te that the calculation of plume rise as a funct:ion of downwi.nd distance is an ISC Model option. If the !SC Model 2-22 [ [ [ [ : [ L: c r L; [ L u [ G ·C Q b c . [ [ [ [: r~ L [ c [ [ [ 0 [ c 6 [ [ programs are not directed to calculate plume rise as a function of downwind distance, the programs will assume that the final plume rise applies at all downwind distances. The final plume rise with an adia- batic or unstable thermal. stratification is given by Equation (2-4) with x' set equal to the. maximum. value allowed by Equation (2-5). Similarly, the final. plume rise with a stable thermal stratification is given by Equation (2-7) with x' set equal. to the ma:ximum. value allowed by Equa- tion (2-8). A wind-profile exponent law is used to adjust the mean wind speed ul from the wind system. measurement 'height zl (default value of 10 meters) to the emission height h.. This· law is of the form - -(h )p .~ ... · · · 1 ·· ·z• · u.{:t. .. }. •· .. u .·· ·.-.. · . . . l where p is the· wind-profile exponent. The· default:: values for p are given in Table· 2-2. (2-10) As an option,. the user may. direct. the ISC Model programs to consider stack-tip downwssh for all stacks following the_suggestions of Briggs (1973). The physical stack height h is replaced by an adjusted stack height h', which is defined a.s h' -(2-11) 2-23 The user is cautioned that Equation (2-:"11) is based on data obtained in an aeronautical wind tunnel without airstream turbulence and without pro- per Froude number s'ca.J...:b.g fo£ ·buoyancy effects {see Ralitsky, 1978). Additionally, the published data upon which Equation (2-11) is based --· ....• ~ ·. :·-.~·/,;;;,.:..,:: .·.:::: .?~··.:::~:. .-... ·-··· ·--~ -·~ ' (She:r~oek. anc:l:.~-t~er·!:}_9.4l),,F.~~r .to .the dowp.ward displacement_of the ~ower plume· bbunctary ra:ther·· than>'tb .the 'dawtl.ward displacement of the '< --~:-.• ~~·. ··~·-, •• ·.: • plume-center~e.' .. ·.-... .. 2.4 THE J:SC SHORT-TERM DISPERSION MODEL EQUATIONS 2.4.1 Stack Emissions · .. The.-ISC short-tenn _c;:.oncentration model for stacks uses the steady-state Gaus15ian plume.~quationfpr a continuous elevated source. For .. each. stack.. and . each hour., .. tb.e. o.rigin of the stack's coordinate sys-. . . ' -' -., -~ . ,..· : . -~ . .. -. tem is _plac;:.eci.at the grqun:;,;5urface at the base of the stack. The x axis is P9Sit:f,.ve in t}le, downwind. direction, the y a.:xi.s. is crosswind ~' --· ... · ' .. -·---~-~: ~ -~·· . -• ····--· .. ., ' . (normal.) to the x axis and the . z axis extends vertically. The fixed receptor· locations are converted to each stack's coordinate system for each.hourly concent:t;a;~.C?U cpJ.cullil.tion. The ho'urly concentrations. calcu- lated for each stack at .. each. receptor are summed to' obtain the total . - . . . • .·, . . . ,J'.' ' -'• . " -~ concent:ation produced at each receptor by the combined stack emissions. The'hourly gr~und-level concentratio~ at downwind distance X and cross~d_distance y is given by . ·-'. ;{Vert::!:cal Tenn} {Decay Term} 2-24 (2-12) [ [ c n c [ L [! c c: c\ ; ' L~ [ [ c c [ »- '"' [ ...-.;. - c c G - C-· c E c L where Q • pollutant emission rate (mass per unit time) K • a scaling coefficient to convert calculated concentrations to desired units (default value of 1 ~· 106 for Q in g/sec and concen• tration in l-8/m3) . standard deviation of lateral, vertical con- centration distribution (m) u{h} -mean wind speed (m/sec) at Stacie. height h Equation (2-12) includes: a Vertical Term, a Decay Term, and dis- persion coefficients <oy and az). The dispersion coefficients and the Vertical Term are discussed. below.. It should be noted that the Vertical Term includes the effects. of 110urce. elevation,. plume rise, limited mix- ing in the vertical, and: the. gravi.tationai. settling and dry deposition. of larger particulates: (particulates with diameters greater than. about 20 micrometers). The Decay Term,. which· is a simple method of accounting for · pollutant removal by physical or chemical processes, is of the form where · {Decay Term} • exp .[ljl x/u{h~ (' -1 •~P • the decay coefficient sec ) For example, if T112 is the pollutant half life in. seconds, the user can obtain q, from the relationship q,. -0.693 Tl/2 2-25 (2-13) (2-14) ··----··---···· ···---------------------~- Tne default value for ~ is zero. the model calculations unless ~ !hat is. decay is not considered in is specified. In addition to stack emissions, the ISC short-term concentration model considers emissions from area and volume sources. The volume- source option is also used to simulate line sources. These model options are described in Section 2.4.2. Section 2.4.3 gives the optional algorithms for calculating dry deposition for stack, area and volume sources. 2.4.1.1 The Dispersion Coefficients a. Point Source Dis'Dersion Coefficients. Equations that approximately fit the Pasquill-Gifford curves (Turner~ 1970) are used to calculate a and a • . y z form The equations used to calculate 0' • 465.11628 X tan(TH) y TH • 0.017453293 (c -d ln x) a are of the· y where the downwind distance x is in kilometers in Equations (Z-15) and (2-16); the coefficients c and d are listed in Table 2-7. The equa- tion used to calculate is of the form b ax where the downwind distance x is in kilometers in Equation (2-17) and the coefficients a and b are given in Table 2-8. 2-26 (2-15) (2-16) (2-17) [ [ [ [ [ [ [ c [ E ~~- ~ L__::; [ [ j ~l [ [ D [ G D· c o [ - - Pasquill Stability. Category A B c D E F' T.A.BLE 2-7 P.AB.AMETERS USED TO CAI.CUI..ATE-cr y cry· .-465.11628: x(l<:m) tan (TH) Ta.• 0.017453293 (c -d ln (x(km))) c: d 24.1670 2.5334 18.3330 1.8096 12.5000 1.0857 8.3330 0.72382 6.2500:. 0.54287 4;1667 0 .• 36191 .;. • J ._, .. , ' ;'J ·;.} .. ;.; Z-27 .. ·----·-·-·---·-· ··------------········ -·----··--___ .........._ _______ _ Pasquill .. Stability category ---· A* B* C* D ·- P.A:RAME'!ERS USED·. TO CALCUI.A.TE a z :.:·{km) . .. .. a z -,.·:!" •• -~ . - a 0.10 -0.15 158.080 0.16 -0.20 170.220 0.21 -0.25 179.520 0,.26 -0.30 217.410 .0.31 -0.40 258.890 0.41 -0.30 346.750 0.51 -3.11 453.850 :>3.11 ** 0.10 -0.20 90.673 0.21 -0.40 98.483 ' >0.40 109.300 .. >0.10 61.141 . ··' . 0.10 -0.30 .. 34.4.59 -. .. ·:· 0.31 -L.cro .. 32.093 .. .. . . 1.0'1 -3.00 32.093 .- 3.01 -10.00 33.504 10.01 ... 30.00 36.650 >30.00 4 .... o.s3 b -a x(km) -b 1.05420 1.09320 1.12620 1.26440 1.40940 1. 72830 2.11660 ** 0.93198 0.98332 1.09710 0~9146.5 0.86974 0.81066 0.64403 0.60486 0.56589 0 • .51179 *If the calculated value of crz exceeds 5000 ~, crz is set to 5000 m. *~a-is equal to 5000 m • ... 2-28 ------r [ [ [ r~ l_; [ [ c [ . [ B [ L ~ [ l [. [ [ [ [' L [ E G c 6 U· u l Pas quill Stability Category E· ...... F .. ·. -------------------·--.... -~--- !ABLE 2-8 (Continued) b C1 = a x(km) X (km) z a: b 0.10 -0.30 23.331 0.81956 0.31.-1.00 21.628. 0.75660 1.01-2.00 21.628 0.63077 2.01 -4.00 22.534 o. 57154 4.01 -10.00 24.703 0.50527 10.01 -20.00 '26.970 0.46713 20.01 -40.00 35~420 0.37615 >40.00 47.618 0.29592 .. 0.10 -0.20 '15.209 0.81558 0.21.-0.70 14.457 0.78407 0.71-1.00 13.953 0.68465 1.01 -2.00 13.953 0. 63227 2.01 -3.00 14.823 0.54503 3;,01 -7.00· 16.187 . 0.46490 7.01 -15.00 17.836 0.41507 .. 15.01 -30.00 22.651 0.32681 30.01 -60.00 27.074 0.27436 .. >60.00 34.219 0.21716. 2-29 -·---· ···---·--···· ·····---- b. Downwind and Crossvind Distances. As noted in Section 2.2.3, the ISC Model uses either a polar or a Cartesian receptor grid as specified. by the user. In the polar coordinate system, the radial coor- dinate of the po.int (r, 6) is measured. from the user-specified. origin and angular coordinate e is measured clockwise from north. In the Cartesian coordinate systemt the X axis is positive to the east of the user-speci- fied orig~ and. the Y axis is positive to the north. For either type of receptor grtd, the user must define the location of each source with respect to the origin of the grid using Cartesian coordinates. In the polar coor,.. dinate system, the X and. Y coordinates of a receptor at the point (r, 6) are givan by X(R) • r sin. 6 (2-18) y (R) . -r cos a (2-19) If the X and. Y c.oordinates of the source .are X(S) and Y (S), the down- wind distance x to the receptor is given by x • -(X(R) -X(S)) sin DD -· (Y(R) -Y(S)) cos DD (2-20) where DD is the direction .!::2!. which the wind is blowing. If any receptor is located within 100 meters of a source, a warning message is printed and no concentrations are calculated for the source-receptor combination. The crosswind distance y to the receptor (see Equation (2-12)) is given by y --(Y(R) -Y(S)) sin DD + (x(R) -X(S)) cos DD (2-21) 2-30 [ 6 -c r >b [ [ c [ [ E c [; 6 ~u u u L L [ [ r. '1 ~· ,. [' . ·~. [ [ [ [ [ [ n 6 8 C, u B L [ c. Lateral and Vertical Virtual Distances. Equations (2-15) through (2-17) define the dispersion coefficients for an ideal point source. Howevert volume sources have initial lateral and vertical dimensions. AJ.so, as discussed below, building wake effects can enhance. the initial growth of stack plumes. In these cases, lateral (xy) and vertical (xz) virtual distances are added by the ISC Model to the actual downwind distance x for the a and. a cal:culations. The lateral virtual distance in k:i=lom-Y z eters is given l;ly xy(km) ( a (m))1/q .. _yo.;.o::...._ p . (2-22) where. the stability-dependent: coefficients p and. q are given in Table 2-9 and a is the standard deviation of the lateral concentration dis-yo tribution at the source~ Similarly,_ tha vertical virtual distance in kilom- eters is given by where the coefficients a and b are obtained from Table 2-8 and a zo is the standard deviation of the vertical concentration distribution at the source. It is important to note that the ISC Model programs check to ensure that the xz used to calculate az{x+xz} is the Xz calcu- lated using the coefficients a and b that correspond to the distance category specified by the quantity (x·+ xz). (2-23) ·d. Procedures Used to Account for the Effects of Building Wakes on Ef.fluent Disoersion. The procedures used by the ISC Model to account for the effects of the aerodynamic "Takes and eddies produced by plant buildings and structures on plume dispersion follow the suggestions ·of Huber and Snyder (1976) and Huber (1977). Their suggestions are princi- 2-31 -~-----~~-~-·--·-.:_···--··-·-·---.... ---~------------------------~---· ---~-----------··---~----------~--------· ------~ ._.-.·: COEFFICIENTS USED . TO CALCULATE ··' · LATExAL VI.RTUAI.' DISTANCES-· -: .. :.·. •;·,, i··:tv. ·'"··\ •\',.• ~-. .-..... · .: ·.·A. . --. . ... c D . ·.• . ·. -· :·. E ..... : .... :..::::..:·.: F:.:. '• .1' .. __ ::.:. :·_·.: ~ ...... : .... ::-.:· ' -.-. . ~ .·. (. ·"·'-~. ·~--' >..!, ..... ~ ... t;(._ .. --::~~-; J ~~--.. ~:·.;..:· ·_:;..·_;_ .·.•.) . ~ __ .. ~ ..... ,. . ~-.;. : .... _,._ .p. \. ~ 209.14. . . -.. ~-~ 154.46 ........ ·.-: ... ._ .. _, ... 2-32 10.~.26 68.26 51.06 .,33. 9.2 -,J. q 0.890 0.902 0.917 0.919 0.921 0.919 ----·-... -------··-.. . [ [ [ [ [ [ [ [ c c L [ ' [. c c c B ' [j u pally based on the results of wind-tunnel experiments using a model build- ing with a crosswind dimension double that of the building height. The atmospheric turbulence simulated in the wind-tunnel experiments was inter- mediate between the turbulent intensity associated with the slightly unstable Pasqu:l.ll C category and the turbulent intensity associated with the neutral D category. Thus, the ~ta reported by Ruber and Snyder reflect a spec:Lfic stability,., building. shape and building ortentation with. respect. to the. mean wind direction. It follows that the ISC Model wake-effects evaluation procedures may not be strictly applicable to all situations. Rowever, the. suggestions. of I:!uber and Snyder are based on the best available data. and. are used by the ISC Model as interim proce- dures until additional data. become available. 'the wake-effects evaluation procedures may be applied. by the user to any stack. on or.· adjacent: to a. building. The distance-dspe:ndent p'tume rise· op-tion f!enem'Z:Ly shQu.Zd be used UJ'i,th ths buiZdir11J wake effea_ta op-tion. A.dditionaZZy,. bec:ause ths .. ef!eet:s?of sta,ik.-ti:p ~aJ3h (see Equ.a.tion·_ (2-ll)) are impt.ici.tt.y. i7zC'tuilsd in the bu;itdir11J wake effeats option~ ths stxiak-t:lp ~k dpt:it:Jn 1'1Q.f.'111a.Zt,y shou1.d not be used in . "' -. . . . ' ·--, -' . ~ . . . aombirra:tion 'UJith the bu.iZdirrg UJake.· effects option. The first step in the wake-effects evaluation procedures used by· the ISC Model programs is to calculate the plume\ rise due to momentum alone at a distance of two building· heights downwind from the stack.. Equation (2-4) or Equation (2-7) with the buoyancy parameter·F set equal to zero is used to calculate this momentum rise. If the plume height, given by the sum of the stack height and the momentum rise at a downwind distance of two building heights, . is greater than either 2.5 building heights (2 .5 ~) or the sum of the building height and 1.5 times the building width (~ + 1.5 hw), the plume. is assumed to be unaffected by the building wake. Otherwise, the plume·is assumed to be affected by the building wake • . The ISC Model programs account for the effects of building wakes by modifying cr for plumes from stacks with plume height to z building height ratios greater than 1.2 (bu~ less than 2.5) and by 2-33 ---------------~-----------------~---------·---. ·-~--···---· ---~-------------~-----------~---·---·-----·-----·-·---~-.............. -··· modifying both ay and a :z: for plumes with plume height to building heigh: ratios less than or e.qual t.o 1. 2. The plume height used in the plume height t:o s.tack height ratios i.s the same plume height used to determine if the plume is affe.cted by the building wake. The ISC Model defines bu:fldings as squat (hw 2:; ~) or tall (hw < ~). The building width h is approximated by the di:ameter of a circle with an area w equal t.o the horizontal area of the building. The ISC Model includes a general procedure for modifying a and a at distances greater than z y 3 ~ for squat buildings or 3 hw for tall buildings. The air flow in t:he building cavity region is both highly turbulent and generaliy recir- culating. The ISC Mode.l i.s not appropriate. for e.st:imating concentrations . within such regions. The ISC Mode.l assumption that this recirculating cavity region extends to a dOWD.wind distance of ·3 ~ for a squat building or 3 hw .:or a tall building is most appropriate for a building whose width is not much greater than its height.. The 'ISC Model user is cautioned that, for other type.s ofbui.ldings, receptors located at downwind distances of 3 ·~ (squat buildings) or 3 hw (tall buildings) may be within the re.ci.rculat.ing region. Some guidance and. techniques for estimating . concentrations very near ·bui.id:ings e:a;.~. be found· in Barry (1964), P.alitsky (1963) a:nd Vincent (1977). The downwash procedure found in Budney (1977) may·also.beused to obtain a "worst,..case11 estimate. ' a • z The modified a equation for a squat building is given by z 0.7~(m) + 0.067 [x(m) ·-3~(m)]; 3~(m) < x(m) < 10~ (m) x (m) ~ 10~ (m) (2-24) where the building height ~ is in meters. For a tall building, Huber (19i7) suggests tha't the width scale h,., replace ~ in Equation (2-24). 2-34 [ [ h [ ; ,[ [ r~ 'L • [ n u c E n ,__. c 6 ·D u t E [ [ r c [· [" ~~. [' [ c .. r L [ [ c c ' E D c B Q l The modified crz equation for a tall building is then given by I cr • z 3h < x(m) < 1 Oh. (m) w w x(m) > 10h (m) -w <.~-25) where h is in meters. It is important to note that cr' is not permitted w ~ to be less than the point source value given by Equation (2-17), a condition that may occur with the A and B stability categories. The vertical virtual. distance xz is added to the actual ·dow~ind distance x at downwind. distances beyond 10~ (squat buildings) or lOhw (tall buildings) in order to account for the enhanced initial plume growth caused by the building wake. Equations. (2-17) and (2-24) can be combined to derive the verticaL virtual distance x for a squat building. First, z. it follows from Equation (2-2_4) that crz. is equal to L2~ at a downwind distance. ~f· 10~ in me_te.rs or 0.01. ~;in kilometers. Thus, xz for a squat building is obtained from Equation· (2-17} as follows:. . -: •·· % -z . 1.2~ . .. (2-26) (2-27) where the stabllity~ependen: constants a:. ~d b are given in Table 2-S. Similarly; the vertical virtual distance for tall buildings. is given by % z --------· ------~-~-~ ----··---·--------------- - . .. "1/b:-..::; : . (l.2hw)--~ O.Olh a w 2-35 . (2-28) .. ' For a squat: 'bUilding. with a bUilding width to hu:Llding height ratio less than or eqna.l:. to 5·, the modified Q' equation is. given by y . ' cr • .Y ·. · {. . . c· .. ·· ··' ·; ·o ··'·}. .. . . 0 . . X (km) . + X. (k:ni) . ·.. y .. ' .. _Y. ~.·-x(m) ~ 10~ (m) ~ - with the la:teral.'virtUai ,·di~taiice ,XY. giv~ by X .Y '. (2-29) (2-30) The. stability..;.dependent coefficients.· ii ·alid. q are given in Table 2-9. For building width to building height ratios bw/hb greater than 5, the presently available dat;:a are insufficient to provide general equa- tions for cr • For a buildillg tha.t' is much wider than it is tall and a y stack located toward the center of the building (i.e., away from either end), "only the height scale is considered te be significant. The modified a equation ° for .a squat "buiid:i.ttg is: then given by y "0·.35~ (m) + (};;·067 Jx(mJJ.;. 3~ (m~ ·; 3ho < x(m) < 10ho (m) .. ' r:; .... y (2-31) x(m) ~ lO~(m) 2-36 ---[ [ r L [ E t L [ [ [~· [ [ [ [ [ [ [ c [·~ ~ ... [~ u D . .r . p lJ L .. ·-·•+. with the lateral virtual distance xy given by --(o.Past;, \ 1/q \ . I -o.o11;, (2-32) For h,/hy, greater tb.an.. 5 and. a stack. located laterally within about 2.5 ~ of the end of the-building~ ·lateral plume spread is affected by the flow around the end of the building. Wit;h eud effects. the enhancement in the initial lateral ·spread is assumed not to exceed that given by Equation (2-29) with h replaced ~y-5h • The modified cry equation is given w b by 1 •. 75~ (m) + 0.067 ~(m) --3~ (m~ 3~ < x(m) < 10~ (m) ' a • y {2-33) -(z.~V/q \ I -o.o1~ (2-34). The upper and lower bounds. of the concentrations that can be expected to occur near a building are determined respectively by Equations (2~31) and (2-33). The user must. specify whether Equation (2-31) or Equation {2-33) is to b~ used in the model calculations. In the absence of user instruc- tions, t4e ISC &del uses Equation (2-31} if the building width to building height ra~io hw/h], exceeds s. Although Equation (2~31) provides the highest concentration esti- mates for squat buildings with building width to building height ratios 2-37 ----·------·---~---------.,..--------- h~/1-''b greeter t:han 5 ~ the equation is applicable only to a. stack. locat.ed. near tb..a c.en'!:er of th.e building when th.e wind direction ia per- pe::::~.d.ic.ular to the long side of the building (i.e., when the air flow over the ·portion of the building containing the source is two dimensional). !!!h:us:~ Equa:t;i.on (2-33) genezta't~y i:s mM'e a:pp~ tht::m. Equation (2-31). It is believed that Equations (2-31) and (2-33) provide reasonable lim:f.ts on the extent of the latera.J. ~anceme.n.t of dispersion and that t.hese equations are adequate until additional data are available to evaluate . the flCJW near very wide buildings • . The modified cry equation for a tall building is given by 3h < x(m) < lOh w w t 0' -y cr {x (km) + x. (km)} y. .· y Because the Pasquill-Gifford 0' and cr curves begin at a y z downwind distance of 100 meters, the ·Isc Model programs print a warning message and do not calculate concentrations for any source-receptor com- bination where the source-receptor separation is less than the maximum of lOO·meters or ~ for a squat building or 3hw for a tall bui.lding. ·rt should be noted that, for certain combinations of stability and build- ing height and/or width, the vertical and/or lateral plume dimensions i.u.dicated for a point source by the Pasquill-Giffordccurves at a down- wind distance of ten building heights or w~dths can exceed the values 2-38 (2-35) (2-36) [ r -~ ) ~i [ c [ E c 6 L L ,.,.., ! c [ [ ' [ [ [ [ r-b. [ n u c f1 [J L given by Equation (2-24) or (2-25) and by Equation (2-29), (2-31) or (2-32). Consequently, the ISC MOdel programs do not permit the virtual distances xy and xz to be less than zero. It is important to note that the use of a single effective building width hw for all wind. directions-is a simplification that is required. to enable the ISC MOdel computer. programs. to operate within the constraints imposed on the programs without sacrificing other desired ISC Model features. The effective building width ·h affects a for w z tall buildings (hw < ~) and cry for squat buildings (hw z:. ~) with plume height. to building height ratios less than or equal to 1.2. Tall buildings typically· have lengths and widths that are equivalent so that the use of one value of h for. all wind directions does not significantly w affect the accuracy of. the calculations. However, the use of one value of hw for squae buildings· with plume. height to building height ratios less than or equal to 1.2 affects; the. accuracy of the calculations near the source if the building length: is, large. in comparison with the building . . width. For example, if the. building· height: and width are approximately the same and the building. length is. equal'to ·five building widths, the . .. ISC MOdel at a downwi~. distance/of·l~'Uil.derestimates the centerline concentration or deposition by about: 40 percent for-winds parallel to the building's long side and overestimates the centerline concentration (or deposition) by about~ 60 percene·for winds nomal to the building's long side. -Thus, the user should ~ercise caution in interpreting the results of concentra:~ion (or dep·os:i:tibu') 'CaJ.culations for receptors located near a squat bullding if tb~'itadC: height. to building height ~ .. ·~.,..i'"'C. .. ratio is less than or equal to 1. 2'. ' ' · " - j' -· . The recommended procedure{ foi'. calc:U.lating accurate concentra- tion (or deposition) values for receptors located near squat buildings consists of two phases. First, the appropriate ~C Model program is executed using the effective buila!ng ·width· hw derived from the building length and width. Second,. the ISC Model calculations· are repeated for 2;-39 the recepeors near the scurce ~~:h highest calculaeed conceneraeion (or deposition) values using recepeor•speci!ic values of hw. For example_ assume thae ehe ISCST program is used wieh a year of sequeneial hourly data.to calculaee maximum 24-hour average concenerations and that the highest calculated concentrations occur at Receptor A on Julian Day 18 and at Recepeor B on Julian .Day 352. The crosswind building width hw associated-with the wind directions required to transport emissions to Receptors A and B may· be obtained from a scale drawing of the building. The ISCST program. is then executed for Receptor A only on Day 18 only using the appropriate hw value for Receptor A. Similarly, the ISCST program is executed for Receptor .B only on Day 352 only using the appro- priate hw . value for Receptor :a. .. 2.4.1.2 ·The Vertical-Term a. The Vertical Te-rm fo'l:' Gases and Small Particulates. In general, the effects on ambient concentrations of gravitational settling and dry deposition· ean be neglected for gaseous pollutants and small pareiculates (diameters less than about 20 :micrometers). The Vertical ... {Vertical Term} • l-t i (!;)j + t~ t i ~2i::-H)j + exp E t (2i\+ JJ]l 2-40 (2-37) [ [ ,[ [ [ [ [ [ E c u tJ L L [ c c c r -=:J t c [ c [~ L [ [ 0 c [ j 0 c 6 D L .• where H ~ effective stack height • sum of actual stack heigh~ h (m) and buoyant rise ~h (m) H • mixing height (m) m The infinite series term in. Equation. (2-37) accounts for the effects of the restriction on vertical plume growth at the top of the surface mixing layer. As shown by Figure 2-4, the method of image sources is used to account for multiple reflections of the plume from the ground surface and at the top of the surface mixing layer. It should be noted that. if the effective stack height H exceeds the mixing height H , . m the· plume. is assumed to remain elevated. and tha ground•level concentration is set equal to zero .. Equation .. (2-37) assumes: that the mixing· height in rural and . . urban areas . is known for all stability cat~gor:ies. As explained below, the meteorological preprocessor· progra:ai uses·mixing heights derived from twice-daily mixing heights calculated. using the Holzworth (1972) pro- cedures.. These mixing heights are. believed to be representative, a~ least on the average,. of mixing heights. in urban areas under all stabil- ities and of mixing heights in rural. areas during periods of unstable or neutral stability. However·, because the Holzworth minimum mixing heigh~s are intended to include the heat island effect for urban areas, their applicability to rural areas during periods of stable meteorological conditions (E or F stability) is questionable. Consequently, the ISC Model iri the Rural Mode currently d&letes the . infinite series term in Equation ·._(2-37) for the E and F stability· categories. The Vertical Term defined by Equation (2-37) changes the form of the vertical concentration distribution from Gaussian to rectangular (uniform concentration within the surface mi~ng layer) at long downwind 2-41 . . .......... -· .... ---·--··------------.. -------·--·~----------·---·------~-----··-------.. ·---~----.-.... [ [ Hm < t\ . .( // v/ \ //"\ / /\ \ / \ ~)) / \ y\ \ 'x/ . \</ \ \ /\ / \ \\ ~----< ~) \1 \\ \\ \ '\ ''\ \ \ \ 2Hm+H \( \ \ \ \\ . / '· \ .\. \ \ / .. \. . \ \ \ \ . \ l)) IMAGE \ \ \ . \ \ PLUME \ \ \ , 2Hm-H MIXING HEIGHT (Hm} b [ . l-.. ' ' ' __ ; [- r· [ r L [ B c [ L ·C L riGUU 2-4. The method of I:ILlltip~e plume images wsecl to simulate plume reflec-h.·.:_· tiou iu the !SC Moclel. U 2-42 L L [ [. [ [ c r L [ [ L distances. Consequently, in order to reduce computational time without a loss of accuracy, Equation (2-12) is Changed to the form X {x,y} .. KQ .rz::; u{h}O' a Y m (2-38) at downwind distances where the 0' /H ratio is greater than or equal to z m 1.6. · ithe metearological preprocessor program used by the ISC short- term model (see Appendix G) uses an interpolation scheme to assign hourly rural or urban mixing. heights on the basis of the early morning and afternoon. mixing heights calculated using the Holzworth (1972) procedures. The procedures used. to interpolate hourly mixing heights in urban and rural areas are illustrated in Figure 2-S, where H. {max}· .. maximum mixing height on a. gi.ven day m .. H {min} -mini:mnm mixing. height:. on a given day m . MN ... m:idn:ight Sit .. sunrise ss -suaset The interpolation procedures are functions of the stability category for the hour· before sunrise. If the hour before sunrise is neutral, the mixing h~ights that apply are indicated by the dashed lines labeled neutral in Figure 2-5. · If the hour before sunset is stable, the mi..ung hei.ghts that apply are indicated by the dashed lines labeled stable. It should be pointed out that there is a discontinuity in the rural mL~ing 2-43 ---~-----~·----· -------··-----·-----------. C) z -·. X -:E ·-···-·--·--··-----· MN SR .1400-SS . MN.,. MN MN. "' ~ ·--. <.~tlJ.~ban Mixir1g Heights ~AY1 · , JNeu!ralt .................... ... ... :, .,·:-_""'f'!"' ........ I ~m {max} I I I I I I (Stable) I I I ,,,, •. ,. 1·.:;· I (b) Rural Mixing Heights ..... {Neutral) ......... ....... _._..~ i I I I I I (Stable) I / Hm {max} I I MN MN FIGURE 2-5. Schematic illuatraticn of (a) urban ·and (b) rural mixing height: interpolation procedures. 2-44 ·-·-··----· ... ~---... [ [: '[ ,,[ [ [ [ [ [ E c [ 6 ·C u 0 c [ [ [ b [ Li [ c· c [. c E c c- 6 D. c D L l he.ight at sunrise if the preceding hour is stable.. As explained above~ because of the uncertainties about the applicability of Holzworth mixing heights to rural areas during periods of E and F stability, the ISC Model in the Rural Mode ignores the interpolated mixing heights for E and F stabilities and. effectively sets. the mixing height equal to in- finity. b. 'the Vertical Term in Complex Terrain. 'the ISC Model makes the following assumption about· plume behavior in complex terrain: • 'the plume axis remains at the plume stabilization height above mean sea level as it passes over elevated terrain • The mixing height is terrain following • . The wind speed is a function of. he.ight above the surface · .. (seer Equation: (2-10)) Thus~ a modified piume . stabilization. he.ight . R' is substituted for the effective sta~ height R ia the VerticaL Term· given by Equation (2-37). For exam:Ple, . the effective· plume stabilization height at the point (X, '{) is. given by (2-39) where zs • height above mean sea level of the base of the stack . z {X,;Y} . • height above mean sea· level of the point (X, Y) 2-45 ---------------------~--------------~----------------- ---·-·---------·--·· ··------------------------·-· --------·- It should be noted that, ii the ter:ain he~ght (z{X,Y} -z ) exceeds h s for a stack or H for a volume source (See Section 2.4.2), tho computer program prints an error message and terminates execution. Also, if the recepto~ elevation is less than the stack base elevation, the receptor elevation is set equal to the stack base elevation by the computer program. Figure 2-6 illustrates the terrain-adjustment procedures used by the ISC Model. c. The Vertical Term for Large Particulates. The dispersion of particulates or droplets with. significant gravitational settling veloc- ities differs from that of gaseous pollutants and small particulates in that the larger particulates are brought to the surface by the combined processes of a~spheric turbulence and gravitational settling. Addition- ally, gaseous pollutants and small particulates tend to be reflected from the. surface, while larger particulates that come in contact with the su:- face ~y be completely or partially retained at the surface. The ISC Model Vertical Term for large particulates includes the effects of both gravita- tional settling and dry deposition. Gravitational. settling is assumed to result in a tilted plume with the plume axis inclined to the horizontal at an angle given by arctan (V /u) where V is the gravitational settl-.s -s ing velocity. A user-specified fraction y of the material that reaches the ground surface by the combined processes of gravitational settling and atmospheric turbulence is assumed to be reflected fram the surface. Figure. 2-7 illustrates the vertical concentration profiles for complete reflection from the surface (y equal to unity), So-percent reflection from the su:face (y equal to 0.5) and complete retention at the surface (y equal to zero). For a given particulate source, the user must subdivide the total particulate emissions into N settling-velocity categories (the maximum value of N is 20). The ground-level concentration of particulates with settling velocity V is given by Equation (2-12) with the Vertical Term defined sn as (Dumbauld and Bjorklund, 1975) 2-46 .... ,[ [ [ r L [ [ 0 ·D E I ' c ,, ,. TOP Of SURfACE MIXING LAYER FIGUKE 2-6. Illustration of plume behavior in complex terrain aaaumed by the ISC Hodel. '· .. i ,· ~ ~~; . ,, ',• J,. -4~~~~------+.----------~--~~ ~ •. (a) SELECTED FOLDED NORMAL DISTRIBUTIONS ........ _.' ·; ..... ,. ·'··! TOTAL REFLECTION ; . : (Y = I.OL 50°/o REFLECTION'; . (Y=0,5). ZERO REFLECTION----tto~ (Y:O) CONC~t4TRATION . ~ ... (b) RESULTING VERTICAL CONCENTRATION PROFILES FIGUP~ 2-7. Illustration of vertical concentration profiles for reflection coefficients of O, 0.5 and 1.0. ' ~r::-.:r:JJrr:=JIJ][':-JDnc-Jc::-::J[Tl ,.----; 'J ··. ; ;. i I i ; [ [ b [· [ [ [ c r L [ [ c c E . - 0-. ... E ti b L {Vertical Term} where y-n.. v sn - - - co ti t 1 .(21Hm + H -(Vsnx/u{h}))j + y exp --. n 2 a i•l. z th mass; fraction of particulates in the n settling- velocity category reflection coefficient for particulates in the nth settling-velocity category (set equal to unity for complete·. reflection) th settling velocity of particulates in the n set- tling-velocity category (2-40) For convenience, oO is. defined to be utdty in Equation (2-40). The total concentration is computed by the program by summing over the N settling- velocity. cat~gories. The. optional. algorithm used to calculate dry deposi- tion is discussed in Section 2.4.3. Use of Equation (2-40) requires a knowledge of both the particu- late si.ze distribution and the density of the particulates emitted by each 2-49 source. !he to.tal particulate emi.ssi.ons for each source are subdivided by the user into a maximum of 20 categories aud the gravitational settling velocity .is calculated for the mass-mean diameter of each c.at.egory. The ·,mass-mean d.iameter is given by -(2-41) where d 1 aud d 2 are the lower and upper bow:u!s of the particle-size cat- egory •. McDonald (1960) gives simple techniques for calculat.ing the gravita- tional.set.tling velocity for all sizes of particulat.es. For part.iculates wi.th a density an the order· of 1 gram per cubic centimeter and diameters less than about 80 micrometers, the settling velocity is given by where v ,. s V • settling velocity (em • sec-1) s p • particle density (gm • cm-3) g .. acceleration due to gravity (980 em • sec-2) r • particle radius (em) absolute viscosity of air (l.l ... 1. 83 x 1o-4 gm • c::n-1 • sec-1) (2-42) It should be noted that. t.he set.t.ling velocity calculated using Equation (2-42) must be converted by the user from centimeters per s.econd to meters per second for use.iD. the model calculations. 2-50 [ 6 [ n [ [ c C' . p l:::i tJ L [ [ [ [ [ [ [ [ [ [ c .. c [ The reflection coefficient y can be estimated for each par~icle-n size category using Figure 2-8 and the settling velocity calculated for the mass-mean diameter. If it is desired to include the effects of gravitational settling in calculating ambient particulate concentrations while at the same time excluding the effects of deposition, y should be set equal to n unity for all settling velocities. On the other hand, if it is desired to calculate maximum possible deposition., y should be set: equal to zero for n all settling velocities. The effects of dry deposition for gaseous pollu- tants may be estimated by setting the settling velocity· V9 n equal to. zero and the reflection coefficient y equal to the amount of material assumed . n to be reflected from the surface. For example, if 20 percent of a gaseous pollutant that reaches the surface is assumed to be retained at the surface by vegetation uptake or other mechanisms, y is equal to 0.8. n The derivation of Equation. (2-40) assumes that the terrain is flat or gently rolling. Consequently, the: gravitational settling and dry deposi- tion options cannot: be used for'sources located in complex terrain without v:Lolating mass continuity. However, the effects of gravitational settling alone can be estimated for· sources located in complex terrain. by setting Yn equal to unity for each settling· velocity category. This procedure will tend to overestimate ground-level concentrations, especially at the longer downwind distances, because it neglec.ts the effects of dry deposition. It should be noted that Equation (2-40) assumes that crz is a continuous fu~ction of downwind distance. Also, Equation (2-40) does not simplify for cr /R greater than 1.6 as does Equation (2-37). As shown z m by Table 2-8, cr for the very unstable A stability category attains a z maximum value of 5,000 meters at 3.ll kilometers. Because Equation (2-40) requires that cr ·. z be a continuous function of distance, the coefficients a and b ·.given in Table 2-8 for A stability and the 0.51-to 3.11- ld.lometer range are-· used by the ISC Model in calculations beyond 3 .ll ld.lometers. Conse,:uently, this introduces uncertainties in the results of the calculations beyond 3.ll kilometers for A stability. 2-51 ....... -------····---------.. " ...... , _____ _ --l·" (,) CD Ul e -.} > ..... -u 0 _...J .·· LIJ > C) z·.: ·.-_ -.-':·.- ...J ........ '.... ! ·.: ~-. .... LIJ en" .. 0.4 1.0 REFLECTION COEFFICIENT Tn F!GURE 2-8. Relationship between the gravitational settling velociry Vsn and the reflection coefficient Yn suggested by Dumbauld, ll !!.· (1976). 2-52 [' [= ·c [_ r L [ [ D [ tJ " . L [ [ [ [ c [ r kj n w~.· D ~: u L 2.4.2 Area, Volume and Line Source Emissions 2.4.2.1 General The· area and volume sources options of the ISC Madel ar.e used to simulate the effects of emissions: from a wide variety of industrial sources. In general. the ISC area source model is used to simulate the ef- fects of fug~tive emissions from sources such as storage p~es and slag dumps. 'the ISC volume source model is useci to simulate the effects of emissions from sources such as bu~ding roof monitors and line sources (for example, conveyor belts and rail lines). 2.4.2.2 'tha Short-Tem Al:'ea. Source Medel 'the ISC area.source. model is based on the equation for a finite crosswind. line. source.. Individual area sources are required to have the, same north-south and.:· east-west dimensions.;· ·However, as shown by Figure 2-9' the effects of an area source with an irregular shape can. ba simulated by dividing the area. source into multiple squares that approx±mate the geometry of the area source. Note that the size of the individual area sources in Figure 2-9 varies; the only requirement is that each area source must be square. 'the ground-level concentration at downwind distance x (measured from the downwind. edge of the area source) and crosswind distance y is given by - (2-43) {-z;' j2 -YJ} { ' · } . + erf \ {r a Y' l . Decay 'i arm 2-53 ---·-··--·----·-·---------·-----·---------------·-·--------····----··--------·--------·--·-··---.... ·---------' •I •9 FIGURE 2-9. llepresentatiou of an irregularly shaped area source by 11 square area sources. 2-54 [ [ c r; .L r- [_ __ ...., I' L [ t c [ b ·L [ b [ L r [ [ [ [ c [ [ ... , •' l c [ [ r. LJ r L1 [ where X 0 x' 0. - .. area source emission rate (mass per unit area per unit time) length. of the side. of the area source (m) effectivecrosswind width aDd.. the Vertica~. term is given by Equatian (Z-37) or Equation (Z-40} with th& effective emission-height R assigned by the user. In genera~, a should. be set· equal.. to the physic~ height of the source of fugitive emis- sions.. For example, the emission height R of a s~ag dump is the physical. height. of the shg dump. A vertic~ virtual. distance, given by x 0 in ki~ometers, is added to the ac~ dowawind distance x for the crz cal- c~tions. If a. receptor is located within: xMZ p~us 100 meters of the center of an area source, a warning message is printed and no concentrations are. cal.culated for the. source-receptor combination. Rawever, program. execu- tion. is not: terminated •. · It. is recommended that·., if the. se-Pa~ation beeween an area· sou:ce and a. receptor is less, than: tha, side-. of the' area source x 0 ,. the area. source be. subdivideci into smaller area: sources. I.f tha source-receptor separation is less: tha.a: x0 ~ the, ISC: Mcd~ tends to overp:edict the area source concentration. The degree of. overprediction. is a function of stab- Uity, tha orientation. of the re~.'~ptor w~t:h respect:. to the area source and the mean wind direction •. Rowever •. the degree_ of overpredict:ion c.ea: the-area source rarely exceeds about 30 percent:. 2.4.2.3 the Short-T~ Vo~ume Source Mod~ ._Equation (Z-12) is. also used to calculate ground-level concentra- tions produced by volume-source emissions. If the volume source is e~evated, the user assigns the. emission height a. The user also assigns initial lateral (ay0 ) and vertical (az0 ) dim.enaioaa for the vo~um• source. 2-55 ······---·····--····---· ·-----·--··-------·-·------- .. •'. Lateral · (x ) and vertical (x ) virtual distances are added to the y z actual down~d distance x for the a 1 and· crz calculations. The lateral virtual distance in kilometers is given by Equation (2-22). Similarly, tl;le. vertical virtual-distance in kilometers is gi..,?en by Equation (2-,23). The volume source model is used to simulate the effects of emis- sions from sources suCh as building roof monitors and line sources (for example, conveyor belts and rail lines).· As with the area source model, the north-south and east-west dilnensiotis' of each volUme source used in the model must be the same. Table 2-10 summarizes the general procedures suggested for· estimati.ilg. 'initial lateral··; (a ) and vertical (cr ) yo zo dimensions for sii:tgle volume sources and for multiple volume sources used to represent a line source. . !n the case of a long and narrow line source such as a rail line, it may not be practical to divide the source into N volume sources, where N is given by .the length c;>f the line source divided by its width. The user can obtain an approximate representa- tion of the line. source by placing a smaller number of volume sources at equal interVals along the line source. 1:n general, the ·spacing between . -... ~ . . . individual volume sources should not be greater than twice the width of the line source. However, a. larger spacing can be used if the ::atio of the minimum source-receptor separation.and the spacing between individ- ual volume sources is greater than about 3. In these cases, concentra-. . . . tions at the nearest receptors may be underestimated by 10 to .15 percent. At longer downwind distances, concentrations calculated using fewer than N volume sour~es to represent the line source conve.::ge to the concentrations calculated using N volume sources to represent the line source as long as sufficient volume sources are used to preserve the horizontal geometry of the line source. Figure 2-10 illustrates representations of a curved line source by multiple volume sources. Emissions from a line source or narrow volume source represented by multiple volume sources are divided equally 2-56 ' ' [ r-, ~ '[ f ' I. ' r~ L, [ [ [ [ r u r· ; ~ c L t u L [ [ ! c c· [ [ c. b [ r G c c H c .. L B c L TABLE 2-10 SUMMARY OF SUGGESTED PROCEDURES "FOR ESTIMATING INITIAL. LATERAL DIMENSIONS (O'y 0 ) AND INITIAL VERTICAL DIMENSIONS (O'z 0 ) FOR VOLUME AND LINE. SOURCES Type of Source Procedure for Obtaining Initial Dimension (a) Initial Lateral Dimensions (~yo) Single Volume Source 0' • length of side divided by yo 4.3 Line Source Represented by Adj a-cr· -length of side divided by cent Volume Sources. (see Figure yo 2.15 2-10(a)) Line Source Represented. by·Separ~ 0' -center to center distance ated Volume. Sources (see Figure. yo divided by 2.15 2-10(b)) (b) InitiaL.Vertical·D±measions (crzo) Surface-Based Source:· (H:::O} a . •·vertica~ dimension of source zo divided by 2.15 .. Elevated Source (H>O.) on or Adja-cr • building height diviaed by cent to a.Building zo 2..15 Elevated Source. (E>O) not on or 0' • vertical dimension of source Adjacent. to a Building ... zo . .divided by 4. 3 2-57 -------------·--··-·----·· ·----------·--· -------------- .. 0: -w -,a-m -~ • • • • • I 2 3 4 5 -w- (a) .EXACT REPRESENTATION t w I t 0:. 2W ya=m ·-2W • I -w- .. • j • • 2 3 •10 •9 •8 •7 ::; •5 •4 (b.) APPROXIMATE REPRESENTATION -r [ c -r L [ [ [ n L r L [ E .c. [ E .[ FIG'tl'R.E 2-10. Exact and c~.ppro:r.ima'te reprasenta1:iotUil of a line source by mul-r~ tiple volume sourcea. lJ 2-58 -----·-·-··· b L L [ [ [ I ~ [ c r L [ [ c [ c c [ [ among the individual sources unless there is a known spatial va~i~tion in emissions. Setting the initial lateral dimension cr yo equal to W /2. 15 in Figure 2-lO(a) or 2W/2.15 in Figure 2-10(b) results in overlapping Gaussian distributions for the individual sources. If the wind direction is normal to a straight line source that is represented by multiple volume sources, the initial crosswind concentration distribution is uniform_ except at the edges of. the. line source. 'Ihe doubling of cr by the user . . yo in the approximate: line-souree representation in Figure 2-lO(b) is offset by the fact that the emission rates f·or: the individual volume sources are also doubled by the user. Thera are two types of volume sources: surface-based sources, which may also be modeled as-area sources, and elevated sources. An example of a surface-based source is. a surface rail line. The effective emission height H for a. surface-based source is usually set equal to zero.. An example of an elevated source is an elevated rail line with an effective emission height .. H' · set eq~ to ·the height of the rail line. 2.4.-3 The·rsc: Short-Term Dry Deposition Model 2.4.3.1 General··, .... The. Industrial'Sourc:e Comp1e:lt short.:.terin 'dry deposition model is based on the Dumbauld, et 'al. (1976) deposition model. ·. The Dumbauld, ~ al. model, which is an advanced version of the Cramer, ~ al. (1972) deposition model, assumes that a user-speci:fi.ed'lfracti.c;n:, :-y · of the material that - -n comes into contact with the ground surface by the combined processes of atmospha'ric turbulence and'-gravi"tation'al·'se£illrig·is reflected from the surface (see Section 2.4.1.2.c). The reflection coefficient Yn• which is a function of settling_ velocity and the ground. surface for particulates and of the ground surface for gaseous pollutants, is analogous in purpose to the deposition velocity used in other deposition models. The Cramer, ~ al. (1972) deposition model has closely matched ground-level deposition . --___ .. ______ ...... -----------.. -----~------------ patte:rus for droplets with diameters above about 30 micrometers, while the more generalized Dumbauld~ ~~· (1976) deposition model has closely matched observed deposition patteti:uf fo~ both .large and small droplets. Section .2.4.1..2.c discusses the selection of the reflection coefficient ."Y as well as the computation of the gravitational settling . n ' velocity V s~ ~ .·: The }~C :'d,ry d~pout~C).tL~.<i~l:-. sh~uid .not be applied to sources located in c~mplex terrain •. Also, as noted in Section 2.4.1.2.c, uncertainties in the deposition calculations are likely for the A stabil- ity category if de~dsitio!l calculations are made at downwind distances ·~ ' : . -. -.• :_~ ·. -.. -.. :· . ..., ~~: . _. . . . greater than 3 •. ll kilometers~-:c Deposi..tion. and ambient concentration cal- culations c~t b~ .. uuid.e in a s~gle progr~, e:x:~cu~ion. In an individual computer iun, the 1:SC Model calculates either concentration (including the effects of gravitational settling and dry deposition) ~r dry deposi- tion. •·· -<:•c:.:.: · ! .. r..:D~~iit:f:~~·;i~r''~a~fi~uf~t~s ··in ~~:'· ·n th'• · s~ttli~g~elo~ity · -~ate~~ry. or.~-gas~~~~· ·p6illi~~-~-~th z~ro, ~~ttling velocity v and a ....... f<•:··. '·· ; _:_ .. ::.-~·::,;c:.··<;: .• ~ :;;:.:.. .. _, .... '. . . ,,-.... ·_ sn reflection coefficient "'( is ·given by •• ; ··-~·"' ~ ~-t., .. :n .... ·-< ... :r,..:· • ·, ')._. DEP {x,.y.} n {[ ba+ "::'_ ~;·~·~, x;U:h~ ~-[-_t( -v~•x/U{hln + t~i-l [b 1.==1 C (2iH -H) -(1 -b) V x/~{h}J m sn (2-44) (Equation (2-44) continued on following page) 2-60 . [ b h '[ 1. [ b [ [ [ ·f .. L [J n r ·] L [ L L [ [ r,l_ ~ .. -" ! [, [' ! [' " [ r: L [ •' [ [ [ ' F :.; c.: Jt l;j u c ~ L ·-· - (Equation (2-44) continued) (2-44) The parameter ~ is: the: total amount of material emitted. during the time period. t' for '<Jhich: the depositi011' calculation is made. For example., Qt' is the: total amOUnt.: of' material. G.itted 'duriD.g: a: l-haur period if an hourly deposition is' calculated~ For: time: periods· longer than an hour, the program. sums· tha depcsitj;ou calculateci for. each hour to: obtain. the total.. deposition. For convenience., oO is defined ta be: unity in Equation (2-44). The coeffi- cient: S is the average valu.Et of. the exponent:. b . for the interval between the· source· and the dowa:wind distance, x (see Tabla 2-8). In the case of a volume·· source·, the· user muse specify· the effective emission height H and the ini1:ial source dimel::lsion.S, (jyo ·and .az0 .. 2.4.3.3. Area Source Emissions For area source. emissions,. the first line of Equation (2-44) is changed. to the form 2-61 .... -~--------·--·····-•""'" -------------------------------·---------·--· -------'------------------~--------------- -{ (x~/2 + y) erf v! a " y (2-45) The parameter QAT is the total mass 'DU unit area emitt.ed. over t.he time period T for which deposition is calculated. 2.5 '!HE ISC LONG-TERM DlSPE'RSION MODEL EQUAXIONS Z.S.l Stack Emissions 'Ihe lSC loug-ter=. concentration model m.a.kes the same basic assump- tions as the sbort-tem model. .ln the loug-tem model, the area. surrounding a continuous soilrce of pollutants is divided into sectors of equal angular width corresponding ·to .the sectors of the seasonal and ·annual frequency dis- tributions Of wind direction (see Figure 2~1). Seasonal or ax:mUa.l emissions from ·ehe_ .source are pareitioned among the. secto::s according to the frequenc- ies of wind blowing toward the sectors. The ground-level concentration fields calculated for each sourc.e are translated to a com:mon coordinate sys- tem (either polar or Careesian as specified by the user) and summed to obtain the total due to all sources. For a single stack, the mean seasonal c.ancen:ra.tion at a point (r > 100 m, 9) with respect to the stack is given by 2-62 r; r-_ i": L [ L L L [ [ r, L [ [ [ •.. [ :~ -.~ .. L c . c ~ ' c c 0 L L where -- Q -pollutant: euaissiou rate (mass per unit time) , i,k,~ for· the ith. wind-speed category, kth stab- A.6' s{e} v . i,k,J. ility category and tth season th ., . freqwmcy of ocr:w:"rence of the 1 wind- speed cat ego~, j th wind-direction cate- go~ and kth stability category for the tth saalion. . " .. the. sector width in ,radians . . -. . ' .. ; ; : ., a ~othing funcd.cni similar to that of the · AQDM' (see Section 2..S-.l.l) · mean wind speed (m/sec) at stack height h for the 1.th wind-speed category and kth 'st:abiUt:)P clifegt:iry ·: ·.· :::: •· · · the Vertical Term for the · 1 th wind-speed category. kth stability category and 1th season ~-/ :-l t :-:. • 1, \ • i "' : .. ,. I -; \ ~ } I .. the :~ecay coefficient .~sec-1 ) The mean annual concentration at the point (r ,_ 6) is calculated from the seasonal concentrations using the· expression 2-63 (2-45) :·." ------·-----------·-·--·---·----·--· .. 4 . E-.:xtfr,e} f.ial1 :.: · . . . ,:., . ·;· (2-4 7) The terms-in Equation.-(2-46) correspond. to the terms discussed in Section 2.4.1 forthe 'short.,.terui ~del excep.t that the i subscript refers to wind-speed categories:. the j~· ~~ subscrlpt refers" tG· wind-direction ca te- gories,. the k · subscript refers· to:.,stab-illty ~categories,. and the R. sub- script· re.fers to the season:;;,• 'The va-rious terms-· are briefly discussed in the following~ subsections. In addi.tion:·eo stack emissions, the ISC long:-term concent:ra.tion mOdel <con~idenr e~ssi.ons-. ffonf: area and cvolume souree.s. These model options. are aiscu.Sseli in Sec.tlioil' 2rS~'-Z;;·-··'Tbe ·o:peiotta1· algorithms for calculating dty deposition are discussed in Section 2.5.3. '•.· 2. S;.l.·l-0:: The:: Dispersion Coefficients a-. · Point S'ource··D'ispe.t'sion COeffieie.nts~·c· See Section 2.4.l.l.a - for a disc:Ussion -of· the.· proeedures· U:Sed ·to calcula-te· the standard deviation of the vertical <:.oncettttat:Lon dis-trlbutiou: a·. for point sources. (sources z without initial dimensions).. -'1 ~--,~.,. . · b.. Downwind and Crl:>ss't.r:t:ttcf Di~tances·. · See the discussion given in Sec:tion 2.4.l.l.b. ''! • ... -.~ : c. Vertical Virtual· Distanc£es. · See Section 2. 4.l.l.c for a dis- cussion of the procedures used to calculate vertical virtual dis~ances. The ~ ~. lateral virtual distance. is given by \ ~;~~ .. " ·~ -r cot (~S' /2) 0 . ~-.. . .. ' (2-48) where r 0 is the effective source radius. For volume sources (see Sec- tion 2.5 .. 2), the program sets ... 0 equal to 2.15 2-64 cryo• where cr yo is ·n -- r·, -~ [ [ ... [ c [ E c c ' b ·D u b L L c [~ --~1 [ [ c ,~ L L ' ,. .. .. E .. .:,..;. -~·· c c E D· " L b L L the initial lateral dimension. For area sources (see Section 2.5. 2) , the program sets r equal to x /h Where x is the side of the area source. 0 . 0 . 0 For plumas affected by building wakes (see Section 2.4.l.l.d), the program sets r equal to 2.15 a' where a'. ·is given for squat buildings by 0 . y . y Equation (2-29), (2-31 ). or (2.-33) for downwind distances between 3 and 10 building heights· and for tall buildings by. Equation (2-35) for downwind distances between. 3 and: 10 building· widths... At downwind distances greater than 10 building heights for Equation· (2~29), ~2-31) or (Z-33) ~ a; is held constant at the value of a•· calculated at a downwind distance of 10 y building heights. Similarly, .. at: downwind distances greater than 10 building widths for Equation. (Z-35), a'. is-held constant at the value . y . . of a~ calculated at a downwind. distance of 10 building widths. d. Procedures Used to Account for the Effects of Building Wakes on Effluent Dispersion... With the exception of the equations used to cal- culate the lateral. virtual. .s:listai:uie, the procedures used: to account for· the effects of building wake effects on: effluent dispersion are the same as those .outlined: in: SeC.t.ion. 2'•4~l.!.d fo'r the. short-term model. 'Ihe cal- culation of lateral v.ir1:'wU. distal1ces by the. long-term tnOdel is discussed in. Section Z. S .1. l. c. above-. Z..S.l.l-· 'Ihe Vertical.. Term a. The Ver-tical Term for Gases and Small Particulates. The Vertical Term for gases a.;ui small particulates is given by v i,k,..t • (2-49) (Equation (2.-49) continued on following page.) _._:_, .:·~ .. •. (Equation 2-48) continued .• ) ~ ( 2nH -_ t m;i,~,R. · z;k (2-49) Except for the use of subscripts to indicate wind-speed and stability cate- gories and season, the parameters in Equation (2-49) correspond to thos·e discussed in Section 2.4.1.2. As shown by-Equation (2-49), the user may assign a sep~rate mixing heigh~ Hm . to each combination of wind-speed and stability categories for each season. As with the short-term model, the Vertical Term given by Equatl.on (2-48) is changed to the form v . . .1.,k,.2. -· .rz;· a_ ·.k. z·; 2H · m;.i,.k,.2. at downwind dis.tances where the a . Ja . i k ·n ratio is greater than or z, m, , ,~ equal to 1.6. Additionally, the ground-level concentration is set equal to zero ·if the effective stack height H exceeds the mixing height H . m As explained. in Section 2.2.L2, ISCLI in the Rural Mode currently sets (2-50) · the mixing h-eight equal to infinity for the E and F stability categories. b. The Vertical Term in Complex Terrain. See Section 2.4.1. 2 .• b. c. The Vertical Term for Large Particulates. Section 2.4.1.2.c discusses the differences in the dispersion of· large particulates and the dispersion of gases and small particulates. The Vertical Term for large particul~tes is given by -· -· 2-66 [ [ [ . [ r· L [ [ c r: b L u L [ [ [ L [ c [ [ [ 0 [ c 6 [ vi,k,.t .. <P i~co t · t. 1 (2a& .. k .., -H., .k n + V .r/li{h})j n a m~ J., ,,;(, .1., ,,;(, sn . 2 Yn exp -2 a a= . z;k (2,;_51) t l .(2aH •i k n + H1 k n -V. r/u. k{h})j ---m, ! ,.;c, ? z..V sn ~z 2 Gz;k . where q,n i.s the mass. .fraction of particulates 0 with settling velocity V sn, yn is the surface refl.ection coe££icient and. 0 is de.fined as unity. See Section 2.4.1.2.c.for a. discussion of the parameters in Equation (2-51) and guidance on. the use of' this model. option. 2.5.1.3 The. Smoothing Function As shown by Equation (2-46), the rectangular concentration distrib- ution within a given a:a.gular sector is m.odified by _the function s{e} which sm.oothes_discontinuities in the c~centration at the boundaries of adjacent sectors. ·. 'Ihe centerline concentration in each sector is unaffected by con- tributions.from adjacent sectors. At points off the sector centerline, the concentration is a weighted function. of the concentration at the centerline and.the concentration at the centerline of the nearest adjoining sector. ·. The smoothing function is given by .. ; . ... 2-67 where 9' j er ~ !:.9' S{9} • 0 • the angle measured in radians from north to the centerline of the j th wind-direction sector ... the angle measured in radians from north to the point (r,e) 2.5.2 .<\rea 2 Volume and Line Source Emissions 2.5.2.1 General (2-52) As explained·= in· Section.·2.4.2.1·~ the ISC Model area and. volume sources are. used. to simulate the effects·: of emissions from a wid.e variety of industrial sources.. Section 2.4.2.2 provides guidance on the use of the· area source model and. Section 2.4.2.3 provides guidance on the use of the. volume: source. model. ':the volume. source model. is also used to simulate line sources. The foll..owing subsections' ·gi:ve· the: area and volume source equations used by the long-term model. 2.5.2.2 'I'he Long-Term Area Source Model 'I'he seasonal average ground-level concentration at the point. (r.e) with :respect to the center of an area source is given by the expression (2-53) (!qW!tion (2-53) continued on following page.) 2-68 [ [ [ [ [ c c c h u c l t l G r I t [ ' [~ [ c [ c c. c L ---·----------------------------_________________________ ..:_ ___ , ____ ...;_ __ ,,_ ---------- (Equation (2-53) continued.) where R • - radial dista.uce from the lateral virtual point source to the receptor ( 2 . 2)1/2 \(r' + xy) + y r' • . distance from source center to receptor, 111ea.sured ·along the plume axis r • effective source radius • XolfiT 0 y • .lateral dista.t1ce from the cloud axis to the receptor • lateral virtual distance (see Equation (2-48)) 'Ihe Vertica.l 'J:erm ·v. k 11 for gaseous pollut"a.tlts and small particulates J., t.N is given by Equation (2-49) or Equation (2-50) with the emission height H defined by the user. If the user selects the gravitational settling and dry deposition option, th~ Vertical Term is given by Equation. (2-51). 2.5.2.3 The Long-'J:erm Volume Source Model Equation (2-46) is also used to calculate seasonal average ground- level concentrations for volume sources. !he user must assign initial lateral (cy0 ) and vertical (az0 ) dimensions and the effective emission height H. A discussion of the application of the volume .. source model is given in Sec- tion 2.4.2.3. 2-69 2.5.3 The ISC Long-Ter.m Dry Depos~tion Model 2.5.3.1 General The concepts upon which the ISC long-term dry deposition model are based are discussed ill Sections 2.4.1.2.c and 2.4.3.1. 2.5.3.2 Stack and Volume Source Emissions The seasonal deposition at the point (r,S) with respect to the base of a stack or the center of a. volume source for particulates in the nth settlins-velocity category or a gaseous pollutant with zero settling. velocity V and a reflection coefficient y is given by sn.. n DEP R.,.n {r,e} (2-54') f2aH -H ) \ m;i,k,i i,k,i (Equation (2-54) continued on folloYir~ page.) 2-70 [ [ r L [ [ c c L 0 L L [.,. J ,. ' I [I L [ c r~ L Lj [ c [ E L ... ..... -..... "··--~··-"--'---·--+ ----------------,. -·------·--·----- (Equa:ion (2-54) continued.) t 1 ( 2aB •i lc. II -Jli lc. 11 + v r/u1 lc.{h})~ - -m, ! aN z ,N SD ! 2 az;k ·. exp (2-54) + ya [bk (2aB.m;i,k,R. + ai,k,R.) + (1-blc.) vsnr/ui,k{h}J where ~;i,k,R. is the product: of the total time during the R. th season . . . . . ·. . 1:h and the seasonal emission rate Q1 k R. for the. i wind-speed category th . ' , and k stability category~ For example, if the emission rate is in grams per second and there are 92 days in the summer season (June, July . 6 and August), ~;i,k,R.•J is given by . 7.95xl0 ~,lc.,R.•r It should be noted that the user need not vary the emission rate by season or by wind speed and stability. If an annual average emission rate is assumed, ~ is equal to 3.15Xl07 Q for a .365-day year. For convenience, o0 is defined as unity in Equation (2-54). For a plume comprised of N settling velocity categories, 1:he total seasonal deposition is obtained by slllllll1ing Equation (2-54) over the N settling-velocity categories. The program also sums the seasonal deposition values to obtain the annual deposition. 2.5.3 • .3 Area Source.Emissions With slight modifications, Equation (2-54) is applied to area source emissions. The user assigns the effective emission height 1l and 2-71 the first line of Equation (2-54) is changed to where DEP n (r ,9} x..,n K {I .:. ·r~)¢n · x~ {2rr &2 AS' . 'tQ f 2: · AT;i,~,i i,:l,k,.Q. . j k z;k l. t ' .. s(el .. "J q·:. · ·· ·.·-.... ·. '"··-· the product: of the. total. time during the A:r;. i,k,.2. .:.· .. :·./. .2.th season and the eniission rate per unit arfi4 for the 1th wind-speed category-and k.t s.tabUity cateio:ry 2. 6 EXAMPt.t· PROBLEM 2.6.1. . Description of a Hypothetical Potash Processing Plant .. ,~·-···~· .... ~.~-~ . ·-·· .. ,. . .,. (2-55) Figure-Z:-11 (a) shows. the plant. layout and Figure 2-ll (b) shows a side view o:f' a hypot~e·tical potash proceSsing plant. Sylvinite ore is brought to the 'surface ·fr~: an· underground llline by a hoist anci dumped on the ore storage, pUe •. The.,_ore then travels along an inclined conveyor belt to the .. ..-;· / ore. processing; buil,!ling where:. the ore is. crushed and screened. Fugitive particulate emissions resulting from the. crushing and' screening processes are discharged, horizontally at ambient· temperature from a roof monitor extending the length of the· ore processing building... The ore. is ~~-en •· refined· .by froth fldtation and sent to the dryers. 1 Particulate emissions produced by· the dryntg process are discharged from a so-meter stack, located adjacent to t~a:ore: processing building, which has a height of 2.5 meters. ,!''·. '.2.6.2 Example ISCST Problem Table 2-ll gives .. tile_ emissions data for the hypothetical potash processing plant shown in Figure 2-ll. The sylvinite mine and hoist are assumed to operate during the period 0800 to 1600 LST. Fugitive emissions 2-72 ----·--·--·----·----·· ----· ........ ._. ______ _ [ [ h '[ [ I - r -· [ r L [ [ c C ,. E -·C [ b c L N I ._... w ORE PROCESSING BUILDING I'-90m •1 ' CONVEYOR BELT 50 m ,_,-_-_-:_-_-_-_96-:-"m~--:---__ .;..._ _-;..1-.:.:.RO.:_O~F_:_M_:_O.:.:.N~IT_:.O.:.:.R_Jjm I ORE PILE STACK (o) PLANT LAYOUt 0 50 lOOm STACK f (b) SIDE VIEW OF PLANT FIGURE 2-11. Plant layout and side view of a hypothetical potash processing plant. \ I I· i I i I i ! I I / Source, EMISSIONS DATA FOR A HYPOTim'XICAL POTASH PROCESSING PtA.~ Source Ore Conveyor· Roo£ Pile: Belt. Monitor Particulate emissi.on rate (g/sec) 353.4'/t: 1.3' 10.5 EmisS'ion: height. (m:) - -- E.xi.t. velocity (m/sec) -' - - Oiame.ter. (m) -' --- ~t temperature (OJ:tl -' -- . l-f'.ai.n Stack 5 50 8 l.O 340 . *Emis,sion rate during the period. 0800 to 1600 LST.. The emission rate dur- ing the period. 1600( eo. 0800 LST: is 70.7 grams per second. TABLE 2-lZ PAR'.ttctE~SIZE D.IS't:R.Im.ITION, GBAVITAnONAI., SE'ITI.ING· vm:.OCITIES AND: STJ'UACE. REFLECTION: COEFFICIENTS FOR PARTICULATE EMISSIONS noM, 'IBE. ORE PiliE. AND CONVEYOP. BELT Particle Mass Mean.. Mass Fraction Settling, Reflection Sue Category Diameter <Pn Velocity· Coefficient (\.1) CJJ)' VSU, (m/sec) Yn. o-10 6.3Q. 0:.10, 0.001 1.00 10-20 15.54 0.40: 0.007 0.82 20 -30: 2.5.33, 0.28 0.019 0.72 30-40 3.S. 24 . 0.12 0.037 0.6.S ~ 40 -so 4.S.lS 0.06 0.061 0.59 50 -65 17.82 0.04 0.099 o.:so ·- 2-i4 [ b ··r· ~> [ r L [ [ c 6 L [! [: r:i f\. L¥.~: L .. [ [ c r L [ [ c [ E d~ c fj u [ --------·---·-·-----------·-·-····- from ~he ore pile during ~he period 0800 eo 1600 LST are higher ehan during ehe period 1600 ~o 0800 LST because the hoist is contitluously dumpiug sylvini~e ore oneo ehe ore pile. A significant fraceion of ~be fugitive emissions from the ore pile and the conveyor belt consists of large partic- ulates. !he particle-size distribution, gravitational settling velocities- and surface reflection coefficients for particulate emissions from the ore pile and conveyor belt are given in Table 2-12. The se~tling velocities in Table 2-12 were calculated using Equations (2-41) and (2-42) with the par- eiculate density assumed to be 1 gram per cubic centimeter; the reflection coefficients were obtained from Figure 2-8. The remainder of the particu- late ~ssions from the hypothetical plant are assumed to be submicron particulates so that the .effects of gravitational settling and dry depos- ition tleed not be included in the model calculations. The purpose of this ex~ple problem is to use ISCST to calculate 24-bour average particulate concentrations produced by emissions from the hypothetical potash plant. Additionally. estimates of the dry deposition of fugitive emissions from the ore pile and the conveyor belt are required for each 24-hour period. !he ore pile is modeled as an area source with the effective side x of the circular storage pile given by 0 -D (2-56) where D is the diameter of the base of the storage pile. The emission height R is set equal to the height of the ore pile (10 meters). The emission rate in grams per second is divided by the horizontal area of the storage pile (706.9 square meters) to obtain the area source emission rate in grams per second per square meter. The conveyor belt is 10 meters wide and 100 meters long and is inclined at an angle of 10 degrees. Thus, the conveyor belt is modeled as ten 10-meter square volume sources. The initial lateral dimension of each source is obtained by dividing the width (10 me~ers) by 2.15. The initial 2-75 ....... vertica~ dimension azo is. arbitrarily set equal to 1 meter to account for the: effects of local plant r~ughnass elements.. The emission height H~ .... for the ith sou.;:c:.e. is giyen by· where .. - R i .: .... ._, ..,.:_;.., "-.. ~-"'"·'·''' ... ,.,, . . ,_ ... th the effective emission height for the i volume source the length, measured from the begil:m;ng of the con- veyor belt, to. the center of the · 1th volume source the aug~a ()f inc:lin.ation (10 degreas) (2-57) The-volume·S0'!1%'Ce.model,.is:_ldso l,lSed.to mo_del. the 9Q-meter 'by 20-. . . meter. roof .m,nitor. _·The:; roof-. inonit1Jr: is: ap~o:rlmatad by· four 20-meter. square. volume sourc:as with· the. centers of the volume. sources spaced at 23. 3~meter i.D.tervals·. , The.d.nitial. lateral dime:nsiou. a of each of the ·--· . . .... ·. . .. . . .. yo four~ volume .. source.s is; obtaiJ:lad by dividing 23.3 meters by 2.15. Because the: .opening of the roof-mouitors extends from 20 to 25 meters above plant . ' . ,. . . ~ . gr~~e,. J:he emis~i~n .height li ;a _set eq~al to 22.5 meters. In order to account_ .~or ~he, .. t'!:ffe~_ts:. ~;_,the .. ~4\ll:O.~c:..w~k.e. of · th!ll-proc;essiug building on the: initial dispersion of em¥sious from tJ;le roof monitor' the. initial vertical dimension a is obtained· by dividing· the building height (25 zo .· meters) by ~~ 15. .~n. s.!'mo/a,ry;_.~ ti;E! .. e~;.~~t~: p_; emissiQU$ · frotQ. the hypothetical potash processing plant sl:low:n in Figure 2:-11 cau be simulated by 16. sources. A single area sou;c::.e r.epresents the. ore pile,. ten. volume sources simulate • -• . ;, . .·;. . •. . ' • .. •. . ·.• . . ·* ·-. ~ the inclined co~veyor belt, four volume. sources represent the roof monitor, and there is one. stack. . It should be noted that the stack height to build- . 2-76 ----·--. ----·" .. --~-----·-· -· __ ___, __ _ [ r· [ [ [ c [ fj [J c L L [ c [ [ [ c c c c r' Li o ,--~----· ---···-~--·-.... ······---~----------------------------~--__________ , ________ ---·--------------- ing height ratio is less than 2.5 so that the ISC Model procedures for evaluating wake effects are applied to the stack. ,emissions. The emis- sions data for the hypothetical plant given in Table 2-11 are converted to the form required for input to ISCST in Tables 2-13 and 2-14. The infor- mation given in Table 2-12 is also required for· the ore pile and the conveyor belt. Because the plant is located in open terrain, all source elevations are set equal to zero. The · X and Y coordinates assume that the origin of the coordinate system is located at the center of the ore pile. Source combinations that are of interest in analyzing the results of the calcula- tions are as follows: • Source ~ Ore Pile ·• Sources 2"':'ll -Conveyor Belt • Sources 12-12 -Roof Monitor • Source 16 --Stack. • Sources .1-16 -·Plant as. a Whole Example IS CST runs that use the .inputs· given tn Tables 2-12 through 2-14 and the receptor grid shown in Figure 2-3 ;to calculate concentrations and deposition are given in Appendix C. The hypothetical potash plant is assumed to be located in a rural area. Also, the plant does not contain large surface roughness elements or heat sources. Consequently, the Rural MOde is used in the ISCST .calculations. 2.6.3 Example ISCLT Problem The purpose of this example problem is-to use ISCLT to calculate, for the receptor grid shown in Figure 2-3, annual average ground-level par- ticulate concentrations produced by emissions from the hypothetical potash processing plant shown in Figure 2-11 as well as the annual deposition pro- duced by fugitive emissions from the ore pile and conveyor belt. Annual 2-77 i ·I I I . . I .. · Sou~c• Source X y z ........ ~ Type* (a) (•) (a) • 2 •IJ.S -IU 0 ~ 1 20 0 9 l I lO 0 0 4 • 40 0 0 5 4 41 0 0 6 I n 0 0 1 I 69 0 0 8 I 79 0 0 9 • 89 0 () 10 I !1111 0 0 u J 109 0 0 n t 121 0 0 .. • 144 0 0 14 I 167 0 0 15 I l!IO 0 0 16*~ 0 201 JO 0 l ' '; (j ;• TABL~ 2-ll EMISSIONS IWV~NTORY IN FO~ FOR INPUT TO TP~ ISC DISPERSION MODEL V8 <•l•e~) -Type 0 b a (a) -: Type l ~ (•) -Type 0 'fa (OJ) (•) yo . . o (m) -Tjpa l Type 0 x0 (11) ~ Type 2 J.:O IO.Q :l6.~ ---- o.tt ~.7 1.0 -- ~·~ ~.l •• o -- 4.3 ; .. ., a.o -- 6.J ·~l 1.0 -- ., ... ~.1 a.o -- 9.~ ··~ a.o -- 11.3 4•7 1.0 - u.o 4~1 a,o -- 14,0 4·1 a.o -- 16.5 4.1 1.0 -- 22.5 10.8 ll.f,i -- 22.5 ao.a 11.6 -- 22.5 '10.8 U.6 - 22.5 10.8 U.6 --. •· 50.0 a.o. 1.0 l40 . U., (a) T~Pll 0 -- -- -- --- -- -- -- -- -- -- -- -- - -- 25 *Source Type 0 • Stack, Source Type 1 • Volume and Source Type 2 • Area. iUBuUdinQ width 1a 50 meters and buildlng length is 90 meters (see Figure 2-11) • r------'1 l ) q (./aac) -Type¥ 0 • l J/(~~c • Ill} -Type ~ 5.00 " 10-1 J,)O ll 10-l •• 30 ll 10-l J,)O x 10-1 -1 1.30 ll 10 l.lo , 10 -I -1 1.30 ll 10 1.30 ll to-• -I l.lO ll 10 J.~o ll to-1 J.lO x 10-l ;!.61 2.61 2.6l ;!.6l 5.00 [ [ [ [ [ c [ [ n u [···~ o.J e IJ ' ~-- u [ J / :Sour (LST) 0100 0200 0300 0400· 0500 •.. 0600 0100. 0800 0900. 1000 1100 .. 1200 1300 1400 1500 1600 1700 1800 1900 . 2000 2100 2200 2300 2400 TABLE 2-14 PARTICULATE EMISSION RATES FOR THE ORE PILE Eml.ssion Rate QA (g/ (see -m2)) 0.1 0.1 0.1 0.1 0.1 . . ·-0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 .. 0.5 I . 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Total :Sourly Emission Q * (gfm2) AT 360 360 360 360 360 360 360 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 360 360 360 360 360 360 360 360 360 *The a:mount of material emitted during each hour is required £or the depos- ition . calculations. · 2-79 -···--····-··· ··-··--······ .. ···---·-··----·-----...... . concentration and deposition estimates are also required for an air quality mcni.torlng station located 2,108 meters from the center of the ore pile at a bearing of 014 degrees. With the· exception of emissions from the ore pile and the conveyor belt, the emissions data for the plant are assumed to be identical to the data. giveu in. Tab~es 2-13-an.d 2.-:-14. Fugitive em.iss.ion rates for the ore pile an.d conveyor belt are· given in Table 2-15 as func- tions of the wind-speed an.d Pasqu.ill stability categories. The correspond- ing annual particulate emissions required for the annual deposition calcu- lations are given in Table 2-16. Example ISCLT runs that calculate annual average concentration an.d total annual deposition values for this problem are presented in Appendix D. ., 2-80 .·. [ [ I'' ~ [ [ [ [ c L B < u .. 0 [ l : [ c [ c [ c c c 6 D D D b L ___ .,. _________ ... _...,, ___ ·--·----~----~ .. -.. ---------~---·---·-~ . TABLE 2-15 P .ARTICtlLA.J.""E EMISSION RATES FOR TEE ORE Pn.E AND CONVEYOR BELl' AS FU'NC'l'IONS OF WIND SPEED AND S'l'.A:BILI'l'Y Pasquill Emission Rate for Wind Speeds (m/sec.) of Stabili.r.y Category Q-1.5 l. 6-3.1 3.2-5.1 5.2-8.2 8.'3-10.8 (a) Ore Pile QA•i k(g/(sa.c.m2)) A 0.40 0.50 --- B 0.30 0.40 0.50 -- c 0.20 0.30 0.40 0.50 0.70 D . 0.10 0.25 o.so 0.50 0.70 E -0.20 0.25 -- F o.os 0.10 --- (b) Ind.ividua.l Volume Sources..~ k '.g/ s.e.c} Us.ed to ~epresent the Convevor Belt ' A 0.13 0.16 •, ·--- B 0.10 0.13 0.16 ·-- c 0.08. 0~12 '0.14 .. 0.16 0.19 D 0.04 0.10 0.13 0.16 0.19 E ·-0.08 0.10 ·--- F 0.02 o.os -·-·- 2-81 >10.8 -- 1.00 1.00 --- - -- 0.22 0.22 -- j . ! I I. Pas quill Stability Category A B c () E f 1'A~~E 2-16 ANNUAL fARTlCULATE EMHJSIO.~S FO~ TltE O~E JJILE ~D COliVJ;:YOR Ql!J.f' AS FUNCTlO"S Pf WI~ ~fEED AND $lABlLlT¥ Annual Emi~siops fof Wind Spe~ds (JD/sec) of 0:-1.5 1.6-l, 1 3.2-5 .• ~ 5.2-8.2 8.3-10~8. (a) Ore Pil~ QAti,lc: 1,26 X 107 J,58 X 107' ------ $.46 X 1Q6 l.26 ~ to7 1 ~-sa ~ 10 7 ---- Q.31 K 106 9.4~ ~ 10~ 1,2() l.' 107 1.58 x ~o7 3.2J ¥ 1Q7 3.15 X 107 7.88 X J09 1,26 ~ 1Q7 !,58, X 107 2!?1 ~ 1()7 --6.31 ~ JOQ ~.46 ~ 106 ---- 1.58 x 106 3.15 X 106 ------ (b} lndividual Volume so~fces q;~f.lc: (g) Us.ed t:o Represen~ the ~onveyor ~el~ 106 106 . A 4.10 X 5.05 x ------ B 3.15 K 106 4.10 X 106 5.()5 X 106 ---- c 2.52 K 1()6 3.78 x w6 4.42 X 1()2 5.05 X 106 5.99 X 106 D 1.26 X 106 3.15 X 106 4.10 X 106 5,05 X 106 5.99 x 106 E --2.52 X 106 3.15 X 106 ---- F 6.31 X lOS 1.58 X 106 ------ .. >10.8 -- -- 3.15 X 101 3.15 X 107 -- -- -- -- 6.94 X 106 6.94 X 106 -- -- *QAT;J,k (g/m2 ) "'QA;i.k(g/(sec•m2 )) x (3600 sec/hr) x (24 hr/day) x 065 d;:ty/yr) ;;; 3,1536 x 10 7 QA;i,k 7 **Similarly.· QT·i k(g) "" 3.1536 x 10 Q1 k (g/sec) · • • • . crc-J L. L1 .~ [ [ b [· [ r· [ [ E c L: 6 U- C u L 3.1 SECTION 3 USER'S INSTRUCTIONS FOR THE ISC: SHORT-TERM (ISCST) MODEL PROGRAM SlJMMAB.Y OF PROGRAM OPTIONS, DATA REQUIREMENTS AND OUTPUT 3.1.1 Summary of ISCST Program Opti.ons The program options of the ISC Dispersion Model short-term computer program (ISCST) consist o£ three. general categories: • MeteorologicaLdata input opti.ons ·- Dispersion model options Output opti.ons Each category is discussed. separately below. a. Meteorological Data Input Options. Table 3-1 lists the meteorological-data:. input options for-th& ISCS'.t computer· program. Hourly meteorological datama:y be input by card deck: or by means of the prepro- cessed meteorological aata.tape (see Appendix G). If available, site- specific wind-profile exponents and vertical potential temperature gradients may be input for each stability category or for each combina- tion of wind-speed and stability categories.. The Rural Mode, Urban Mode 1 or Urban Mode 2 (see Secti.on 2 .. 2.1.1)-maybe selected by the user. Source-specific entrainment coeffici.ents-may also be used in the plume- rise calculations (see Section 2.3). ··Also~: the user may direct the pro- gram to calculate plume rise as-a. function of downwind distance or to assume that the final. plume rise applies at all downwind distances. If the wind system measurement. height di.ffers from 10 meters, the actual mea- surement height should be entered. 3-1 -<-·-----··-------------------------------·------·------------·--···· TABLE 3-1 METEOROLOGICAL DATA INPUT OPTIONS FOR ISCST Input of hourly data by preprocessed data tape or card deck Site-specific wind-profile exponents Site-specific vertical potential temperature gradients Rural. Mode or Urban Mode 1 or 2 Entrainment coefficients other than the Briggs (1975) coefficients Final or distance dependent plume rise Wind system measurement height other than 10 meters TABLE 3-2 DISPERSION-MODEL OPTIONS FOR ISCST _ .... Cone,~tration or dry cle~osition. calculations . Inclusion 1)£ effects of gravitational settling and/or dry deposition in conc_entration calculations Inclusion of terrain effects (concentration calculations only) Cartesian or polar receptor system Discrete receptors (Cartesian or polar system) Stack~ volume and area sources Pollutant emission rates held constant or varied by hour of the day, by season or month, by hour of the day and season, or by wind speed and stability Time-dependent exponential decay of pollutants Inclusion of building wake and stack-tip downwash effects Time periods for which concentration or deposition calculations are to be made ( 1, 2 ,. 3, 4, 6, 8, 12 and 24 hours and N days are possible, where N is the total number of days considered) Specific days and/or time periods within a day for which concentra- tion or deposition calculations are to be made 3-2 _________ .. , ... _ .... , ........ -.. ·---·---.... ---- ------c [ [ [ n L [J [ c u D L [ c [ [ c G [ l ! ::::jil u lj u [ ...... ~~ .. . ·,.t..-. .. L-. b. Dispersion Model Options •. Table 3-2 lists the dispersion model options for. the ISCST computer program. The user may elect to make either concentration or dry deposition calculations. In the case of concentration calculations, the effects of gravitational settling and/or dry deposition may be included in the calculations for areas of open terrain.-Terrain: effects may be included in the model calculations if the maximum: terrain elevation does not exceed the minimum stack top elevation •. In general, the gravitational settling and dry deposition options should not· be used iil. complex. terrain (see Sections 2.4.1.2.c and 2.4.3). The user may select either a Cartesian or a polar receptor system and may also input· discrete receptor points with either system. ISCST calculates concentration or deposition valueB for stack, volume and area source emissions. The volume: source option is also used to simUlate line. sources-·(see: Section 2. 4. 2. 3) • Pollutant emission rates may be hel~ constant or varied by hour of the day, by season or month, by hour of the day and. season, _or by wind speed and stability. The effects of· d.m.e.-dependent: e.XpoD.eritia! decay of a pollutant as a result of chemical trari.sformation or other removal. processes may also be included in the model:· cal.cula.tions·.(see. Section. 2';..4-.~) •.. 'If' a stack is located on or adjacent to a bui.l.cling,. the-user·must input: the buiJ.ding· d:imeDsions (length, width and height) in order for the program to consider the affects of the building's aerodynamic wake on plume. dispersion. The user must select the time periods over whicll concentration is to be averaged or deposition is to be summed~ The user must also select the specific days and/ or t±ne periods within specific days for· which concen- tration or· deposition calculations are to be made. For example, the user may ~h to calculate 3-hour average. concentrations for the third 3-hour period on Day 118;. c. Output Options.· Table 3-3 lists the tSCST program output options. A more detailed discussion of the ISCST output information is given in Section 3.1. 3. 3-3 ·-----------------··"··---------------------------------------------------------···-..... . TABLE 3""!3 ISCST OUTPUT OPTIONS .. R.esul ts of the . calculations stored on . magnetic tape Printout of p.rogram. control parameters, souree data and receptor data ·Printout of tables of. hourly: meteorological data for each specified day Printout of nN"-day average concentration or t-otal deposition calculated at each receptor for·anydesired combinations of sources Printout of the-concentration or deposition values calculated for any des±red combinations of sources at all receptors for any specified day or time period W'i thin the day Printout of tables of highest and-second-highest concentration or deposi- tion values calculated at each receptor for each specified time period during an "N"-day period for any desired combinations of sources Printout of tables of the maximum 50 concentration or deposition values calculated for· any desired: combinations of sources for each specified time period 3-4 . ·----------. ----------------·----····--·-·---------·-· --------------- - F L n L [ [ E D = 6 t L [ [ [ h [ E G c E l The results of all ISCST calculations may be stored on magne- tic tape. The user may also elect to print one or more of the following tables: • • ·- !he program control parameters~ source data and receptor data Hourly meteorological inputs. for each specified day !he "tr':-day average concentration or "B''-day total deposition calculated at each receptor for any desired combinations of sources !he concentration or deposition values calculated for any desired combinations of sources at all receptors for any specified day or time period within a day ., !he highest .. and second-hi.ghest concentration or deposi- tion vaiues calcu.Ia.ted for any desired combinations of ·sources at: each reeeptor for each specified averaging . time (concentration) or summation time (deposition) during, an.. ''N" -day period •' !he maximum. 50 concentration or deposition values calculated for any desired combinations of sources for each specified averaging time (concentration) or summation time (deposition) It should be noted that a given problem run may generate a large print output (see Section 3.2.S.b). Consequently, it may be more convenient to make mu!tiple program runs for a given. problem. 3-5 -------------------------- 3.1..2 Data Inout Reauirements ~~s section provides a description of all input data para- meters required by the ISCST program. The user should note that some input parameters are not read or are ignored by the program, depending on what values control parameters have been assigned by the user. Except where noted, all data are read from card images. a. Program Control Parameter Data. These data contain parameters which provide user-control of all program options. Parameter Name ISW(l) ISW(2) :sw(3) Concentration/Deposition Option -Directs the program to calculate either average concentration or total depo- sition. A value of "1" indicates average concentration and a "2".indicates total deposition. The default value equals ·"1". Receptor Grid System Option --Specifies whether a right-handed rectangular Cartesian coordinate system or a polar coordinate system is used to reference the receptor grid. A value of "1" indicates the Cartesian coordinate system, and "2" indicates the polar coordinate system. Additionally, a "3" or "4" value will automatically generate a grid system using the Cartesian or polar coordinate systems, respectively, wit.}} user-defined starting locations and spacing distances. The default value equals "1". Discrete Receptor Option Specifies whether a right- handed rectangul~r Cartesian coordinate system or a polar coordinate system is used to reference discrete receptor 3-6 [ r h [ l-~ -"· ["' [: [ L [ r"' L: I c c 6 -0 b E u L [ [ r~ r: L c G c 6 [ Parameter Name ISW(3) (Cont.) ISW(4) ISW(5) ISW(6) ISW(7)- ISW(l4) points. A value of "l" indicates the Cartesian coordinate system and. a "2" indicates the polar coordinate system. 'l:he default value equals "l". Receptor Terrain Elevation Option. -Allows the user to input terrain. elevations f~r ali receptor points. A value of "l" directs the program to read. user-provided terrain elevations. ·Receptor elevations below stack base elevation are set equal · to stack base elevation. A value of "O" assumes level ter- rain and no terrain elevations are read by the program. The. default value equals "O". Outpu~ Tape Option..--· Allows all calculated average concen- tration. or total deposition values to be written onto a mag- .··. netic. tape.;· A valua ·of· · nl" ·writes calculated values to an output. tape. Refer·tc) Section. 3.2~4.b for a. complete descrip- tion:. of the output produced from the use of this option. A "O"' value, does. not· write a:ay calcula.tions. to an output tape. The: default value equals. nou. Print Input Data Option -Allows the user to print all input data parameters. A value of uon indicates no input data are listed. A "1"' indicates .. that all program control parameters and model constants, receptor site data and source data are printed. A· "2" value is the same as the "l" option except that all hourly meteorological data used in the calculat:Cons are also printed. ··:-. . ~.,_ Time Period OptionS -These options allow the user to~~ _ compute average concentration or total deposition based on up to eight time periods. Parameters ISW(7) through . ISW(l4) respectively correspond. to 1-, 2-, J-., 4,.., 6-, . 3-7 ---------------- Parameter Name ISW(7)- ISW(14) ISW(15)* ISW(16)* ISW(l7)* ______ .... ___ ..___ __ ---------~------------\-------···------------ 8-, 12-and 24-hour time periods. The user may choose any number of the eight time periods. A value of "1" for any of the eight parameters directs the program to compute average concentration or total deposition values for the corresponding time period. .A "0" value for any of the eight time-period parameters directs the program not to make calculations for the corresponding time period. The default values equal "0". Output "N"-Day Table Option --Allows the user to print average concentration or total deposition for the total number of days of meteorological data processed by the problem run for source group combinations chosen by the user. A value o! "1" employs this option; "N"-day tables are not printed if ISW(15) has a "011 value. The default value equals "O". Outpu.t Daily Tables Option -Allows the user to print average concentration or total deposition values for all time periods and source groups specified by the user for each day of meteorological data processed. A value of "1" directs the program to print these tables; these tables are not printed if ISW(16) has a "O" value or if parameters ISW(7) through ISW(l4) equal "O". The default value equals "0". Output Highest and Second Highest Tables Option --Allows the user to print the highest and second highest average concentration or total deposition calculated at each recep- *The four parameters ISW(15) through ISW(18) pertain to output table options. Refer to Section 3.1.3 for a more complete summary of the con- tents of each type of ou~put table. 3-8 [ '[ [ [ r u E c -G L c· l, r: ~' [ [ [ r: c [ [ E ; ~.o; ... i c c E . e I 0 [ ~ - Parameter Name ISW(l7)* (Cont.) ISW(l8)* ISW(l9) ISW(20) tor. A set of the highest and second highest tables is printed for each time period and source group combination chosen by the user. A value of rrl n directs the program to print these tables; these tables. are not printed if ISW(l7) has a "Ou. value or if parameters ISW(7) through ISW(l4) equal "O". The default value equals "Ou. Output Maximwn 50 Tables Option --Specifies whether or not. tables of the 50 highest calculated average concentra- tion or total deposition values are printed for each time period and source group specified by the user. A "1" value employs this option; these tables are not printed if ISW(l8) ·has a "0'1 value or if parameters ISW(7) through ISW(l4) equal "O". The default: value equals non. Meteorological Data. Option.-· A "1" value. directs the . program. to read: .hourly meteorological data from FORTB.A!.'I logical unit IMET in a. format compatible with that gen- erated by· the. preprocessor: program (see Appendix G). A "2"value directs the program to read hourly meteorologi- ca.l: data in a card image format. The default value equals "111 ~ . . . Rural/tJrban Option -Specifies whether rural or urban surface mixing heigh:ts are read. from the hourly meteoro- logical data. Also, this J)arameter option provides · two urban modes of adjustment of input stability cate- gOries (see Table 2-3) •. · A value of "0" directs the pro- *'!he four parameters ISW(lS) through ISW(18) pertain to output table options. Refer to Section 3 .1. 3 for a more complete summary of the con- tents of each type of output table. 3-9 -----------------:----··------~ ~. Parameter N2!!!e ISW(20) (Coi:tt.) IS"'w(21) (Cont.) ISW(22) gram to read rural mixing heights. A "1" value causes the program to read urban .mixing heights with Urban Mode l adjustments to the input stability categories. A "2" value causes the program to read urban mixing heights w~th Urban Mode 2 adjustments to the input stability categories. The default value equals ·"O". It should be noted that if Meteorological Data Option (ISW(l9)) has a value of "2", the program automatically assigns a "O" value to ISW (20) and ignores. any conflicting value entered by the user. Wind Profile Exponent Option --This option allows the user to enter wind profile exponent values or allows the J>rogram to provide default wind profile exponent values. If a. value of · 11 1" is entered, the program provides default values. See. Table 2•2 for the default values used by the program. If a value of "2" is entered.; the program reads user-provided wind profile exponents in input parameter PDEF. These values remain constant throughout the problem run. If a value of "3" is entered, the program reads user-provided wind profile·exponent values in input param- eter P for each hour of meteorological data processed by the program. Note that the ISW(21) equals "3" option assumes the hourly meteorological data are in a card image . format (ISW(l9) • "211 ). The default value of ISW(21) equals "1". Vertical Potential., Temperature Gradient Option -This .tJ. option a.llows the' ,user to enter vertical potential tem- perature gradient values or allows the pr(;ram to provide default vertical potential temperature gradient values. If a value o.f "1 11 is entered, the program provides default 3-10 [ [ T~ L, [. [ [ [ G [ -G f' b L [ c r' b r t: . "·' [ [ [ [ [ c c [ e u D- Parameter Name ISW(22) (Cont.) ISW(23) values. See table 2-2 for the default values used by the program. If a value of "2" is-entered, the program reads user-provided vertical potential temperature grad- ient values in input· parameter DTHDEF. These values remain constant: throughout the problem run. If a value of "3" is entered,. the program reads user-provided ver- tical potential temperature gradient values in input parameter DTBDZ for each hour of meteorological data pro- cessed by the program.. Note that the ISW(22) equals "3" option assumes hourly meteorological data are in a card image fo;z:mat.. (ISW(l9) equals "2 .. ). The default value of ISW(22) equals "l". Variable Source Emission Rate Option --·Allows the . . " ' -·- user to specify scaJ.ars which are multiplied by the sources' average emission rates. This parameter is employed. by the-user when ir is desired to vary the aver- age emission rates for .!J:!.. sources. It: is also possible to vary the:· emission-rates fsr indivl:dua! sources with . . -. . ... . ""' the· QFLG parameter option. These scalars may vary as a ftm.ction of season, month, hour of the day, hour of the ... day and season, or wind speed and stability category. A value of "1" allows the user to enter four seasonal scalars; a "2" allows the user to enter ewelve monthly scalars; a ·· "3" allows the user to enter ewenty-four scalars for each hour of the day; a "4" value allows the user to enter _ thirty-six scalars for s~ wind speed categories for each . . . . . . . of the six stability categories; a "S" value allows the . user to enter ninty-six scalars for twenty-four hourly values for each of the four seasons. A "O" value directs .3-11 Parameter Name IS'W(24) IS'W(25) NSOURC . -·------···------ Parameter the program not to vary average emission rates for all sources, and allows the use of the QFLG parameter option for the individual sources. The default value of this parameter equals 11 011 • Plume Rise Option --Allows the program to consider only the final plume rise at all downwind receptor locations if a ·value of "1" is entered. If a value of "2" is entered, the program computes plume rise as a function of.the downwind distance of each receptor. The default value of ISW.(24) equals "l". · Stack-Tip Downwash Optio11 -Allows the program to use the physical stack height entered by the user or to modify the physical stack height of all stack-type sources etitered in order to accoU11t for stack-tip downwash effects (Briggs, 1973). · If a value of "1" is entered, all phys- sical stack heights entered by the user are used through- out the problem run; if a value of "2" is entered, all physical stack heights entered are modified to account for stack-tip downwash. The default value of ISY(25) equals " l" . . Number of Sources This parameter specifies the total number of sources to be processed by the problem run. X-Axis/Range Receptor Grid Size --This parameter speci- fies the number of east-west receptor grid locations for the Cartesi .. n coordinate system X-axis, or the number of receptor grid ranges (rings) in the polar coordinate sys- tem (depending on which receptor grid system is chosen by 3-12. [ [ b '·'[• . ' r· [ c [ [ ·[ c [; LJ -~ u t u L ' ~--_J [ " I [ [ [ c r~ L [ t c .. c L Parameter Name NXPNTS (Cont.). NYI'NTS NGROUP .·IPERD the user with parameter ISW(2)). A "0" value causes the program to assume that no regular (non-discrete) recep- tor grid. is used •. Y-Axis/Radial Receptor Grid Size --This parameter speci- fies the number of north-south receptor grid locations for the Cartesian coordinate system Y-axis, or the number of receptor grid direction radials in the polar grid system (depending on which receptor grid system is chosen by the user with parameter ISW(2)). A "O" value causes the program to assume that no regular (non-discrete) receptor grid is used. Number of Discreta Receptors -.This parameter indicates the total. number of discrete receptors to be processed by the: problem run. A "O" value causes the program to assume that: no· discrete receptors· are used. Number of Source Groups -This parameter specifies the number· of source groups desired. Each source group con- sists. of any desired combination of sources. A "O" value defines one source group whi.ch consists of all sources. The default value equals "O". A maximum of 150 source groups are allowed. Single Time Period Interval Option --This parameter allows the user to specify one. time period interval out of all pos- sible time period intervals within ·a day. The use of this option directs the program , to print:. only one time period interval specified for daily output tables (see Section 3.1.3.b). For e."'taa!lple, if.the user desires to print only 3-13 --------~-· ·--------···-----·-·-------·----· -·--·-- -... -· ----------------·---·-·-···-·····------ . . Parli!llleter Name !PEBD (Cont.) NROURS NDAYS NSOGR.P the fifth 3-hour time period~ IPERD requires a value of "5". Also, parameter ISW(51) must equal "l" in order to compute average concentration· or total deposition based on a 3- hour time period. A "O" value directs the program to consider all-intervals of a given time period. Number· of Hours Per Day of Hourly Meteorological Data --This . . . parameter is ·used only when hourly meteorological data are read from card i~ges (parameter : ISW ( 19 ) equals ''2 r•) • This parameter specifies the number of hours per day of meteoro- logical data. For example., one need not enter 24 hours of meteorological data in order to calculate a 3-hour average concentration from only 3 hours of meteorological data. Number o£ Days of Meteorological Data -This parameter is used only when hourly meteorological data are read from card images (parai!Iet::~r ISW(l9) equals "2") • This parameter specifies the total number of days of meteorological data to be processed by the program. The default value assumes one day (a value equal to "I'~) of meteorological data • Number of Sources Defining Source Groups --This parameter is not read if the parameter NGROUP has a no~' value. This parameter is an array (NGROUP long) which indicates how many source identification numbers are read by the program in order to define each source group. The source identifi- cation numbers themselves are read in parameter IDSOR. / Refer to parameter IDSOR for an example of the use of th~ parameter NSOGRP. in association with parameter IDSOR. A maximum of lSO source groups may be used. 3-14 [ [ [ c [ D [ [ L [' [ c [ [ [ c r L [ 0 D 0- c Parameter Name IDSOR . -! Source Identification Numbers Defining Source Groups --This parameter is not read if parameter NGROUP has a "O" value. This. parameter is an array which contains the source identi- fication numbers and/o~ the lower and upper bounds of source identification numbers' to_ be summed over·, which are used to define a sourcE! group. This parameter-is used in associa- tion. with parameter NSOGRP discussed above. The following should illustrate the interactive use of parameters NGROUP, NSOGBP and IDSOR. Let. us assume that we have 50 sources whose identification numbers are 10~ 20, 30~ ••• , 490, 500. First, if_ one desires only to see the average con- centration or total. depositi~ calculated from all. sources, the parameter NGROUP should. equaL "O". The parameters NSOGRP and _msoa. are~. not :required by· _the program. _and are not input by-the, user-Nut·., let. us_• assume· that one desires to see- the average-concentration-or.-total deposition contribution --' individually of sources with. identification numbers 10, 100, 200,.. 300._ 400 and. 500 as well. as the combined contributions of: sources with numbers 10 through 100, 50 through 260, 100 through 200 plus 400 through 500, and of all sources combined (10 through 500). Hence, the average concentration or total deposition contributions from six individual sources are desired plus the contributions from each of four sets of combined sources~·-fa~·-&-total of ten source groups. Thus, a value of "10" must. be entered for parameter NGROUP. For parameter_NSOGRP,_one enters the ten values: 1, 1, 1, 1, 1, 1, 2, 2,. 4 and 2~ ;For parameter IDSOR, one enters the source identification numbers : 10, 100, 200, 300, 400 , 500, 10, -100,_ SO; -260, 100, -200, 400, -500, 10 and -500. Now let us examine the relationship between those values entered in param- eters NSOGRP and. IDSOR. The first six entries of beth NSOGRP 3-15 Parameter Name IDS OR (Cont~). ----· ------------·-·-----·---·····--·-- and IDSOR are it!. a one-to-one correspondence; th.e "1 11 value entered in parameter NSOGRP implies that only one source identification number is read by the program in the IDSOR array· in order to define a complete source grout~. The seventh entry in parameter NSOGRP (a _11 2 11 ) indicates that· the source identification -.numbers 10 and -100 (the seventh and eighth entries in IDSOR) define a source group. Th.e minus sigr.. preceding source ident:ification number "100" indicates to the program. to inclusively sum over all sources with ident- ification numbers ranging from "10" to 11 100". The user need not be concerned by the fact that no source number of, say, "43" exists. The program only sums over those source numbers defined (in this case, 10; ·20, 30, ••• , 90, 100). '!b.e eighth entry in parameter NSOGRP (a "2") specifies a source group including source numbers "SO'' through "260" which are the next . set of values in. parameter IDSOR. If one .desires to.see source contributions from consecutive source numbers, and also desires ·to exclude some source numbers, the next entry in parameter NSOGRP (a "4") illustrates this pro- cedure. The value "4" implies that four source numbers are ·read by the program in order to define a source group. The four source identification numbers read by the program in parameter IDSOR, which are the source numbers following the last source numbers used to define the preceding source group, are 100, -200, 400, -500. This arrangement implies that inclusive srnmJ1ng over all sources from "100" to "200" and "400". to "500" is desired, excluding source numbers "210" to "390". Finally, it is still possible to obtain the com- bined contribution from all sources as shown in the last source group. In summary, we have: (1) Parameter NGROUP is a value which represents the number of source groups 3-16 [· [ [ [ [ c [ -0 c L [ [ c [ [ [ L [. c [ t ...... .-. c E B G c 6 [ L Parameter Name IDSOR (Cont •. ) b. desired; (2) The values ~ parameter NSOGRF indicate the number of source identification numbers read by the program in parameter IDSOR; and 9 (3) parameter IDSOR contains the sourca identification numbers used to define a source group, where: a minus sign preceding a source number implies inclu- sive snmming from the. previous source number entered to the source number with· the. minus sign. The number of source identification numbers cannot exceed two hundred values for parameter IDSOR. Meteorological-Related Constants. These data consist of parameters related to the meteorological conditions of the problem run. They are constants which are. iiiitialized. at the beginning of the problem run and. remain. constant-throughout the problem r:un (as opposed to the hourly meteorologicaldata.which: change throughout. the problem rtm). Parameter Name PDEF DTHDEF. Wind Profile Exponents --These data are read by the prog- ram only if option ISW(21) has a value equal to "2". This parameter is· an array containing wind profile exponents for si:it stability· categories, where each stability category contains six values for the six wind speed categories. A total of thirty-six wind profile exponents are entered by the user. Vertical Potential Temperature Gradients --These data are read by the program only if option ISW(22) has a value equal to "2". · · This parameter is an array· containing vertical potential temperature gradients (degrees Kelvin/metar) for six stability categories, where each stability category con- ·J-17 . -····· ............ --···-·--··----· ····-·-----------·---------·-· ··--------·--···-· ···---··--········ ·--···--· Parameter Name DTHDEF (Cont.) UCATS BE TAl BETA2 ZR DECAY* ta:l:il.s six values-· for the six wind speed categories. A total of thirty-six vertical potential temperature gradients are entered by the user. Wind· Speed Categories This: parameter contains five values which specify.the upper bound of the first through fifth wind speed categories (ineters:/second). The program assumes no upper limit-on· the· sixth wind speed category. Tne default values equal 1~54, 3·.09, 5.14, 8.23 and 10.8 meters per second'for the· first through fifth categories, respectively. Adiabatic Entrainment Coefficient -This parameter is used by the p-lume rise section of the model as the entrainment coefficient for adiabatic conditions (vertical potential t'empetature'gradi.ents' .less'>than or-equal to zero). The . default·value· equals 0.6~~:(Briggs ,, 1975). ·. s·table Entrainment-. Coefficient -This parameter is used by the plume ri.sesection of the model as the entrainment coef- ficient for stable conditions (vertical potential temperature gradients greater· than zero). The default value equals 0. 6 (Briggs,. l9T5)'• .Wind Speed Reference Height--This parameter specifies the height (meters) at:.which·-the wind speed was measured. The default value equalS-10.0 meters. Decay Coefficient --This parameter is the decay coefficient (seconds-!) used to describe decay of a pollutant due to *This parameter is read by the program only if the hourly meteorological data are in a preprocessed format (parameter ISW(l9) equals "l"). 3-18 [ [ ··c···· ~ [ [ [ c [-:;. ~ .J -D [ L [ c [ c [ [ [ c r L [ c c c L Parameter Name DECAY* IDAY* ISS* ISY* IUS* chemical depletion. The default value equals "0" fo-r no decay. Meteorological .Tulian Day Indicator--This parameter con- sists of an array of. 366: entries,. where each entry indicates whetherornot·a meteorological day of qata is processed by tha. program. The entry number of the array corresponds to the Julian Day of meteorological data. For example, the 140th entry IDAY(l40) corresponds to Julian Day 140. An entry with a "1" value directs the program to process the -corresponding day of meteorological data. A "O" value directs the program., to ignore that corresponding day. -The default assumes-"O" values for-all 366 entries. 'r .. _,--· ._ .. : ... Surface-Station Number --This.-param~ter specifies the sur- face station number of the' meteorological data being used. Thee surface station number· usually corresponds to· the WBAN station· identification number· for a. given observation sta- tion. The number is usually a. five-digit integer. Year of Surface Station:· Data ·--'Ihis parameter specifies the year of the surface station meteorological data. Only the last two digits of t~eyear are entered. Upper Air Station Number ~ This parameter specifies the upper air station number of the meteorological data being used. The upper air station number usually corresponds to ......... . _,.. *This parameter is. read by· the program only.if the hourly meteorological data are in a preprocessed format (parameter ISW(l9) equals "1 "). 3-19 Pa.ran:.et.er Name IUS* (Cont.) I!JY* the W.S.AN station identificat:ion number for a given observa- tion stat:ion. The number is usually a five-digit number. Year of Upper Air Station Data --This parameter speci- fies the yea~ of the upper air station meteorological data. Only the last two d~gits of the year are entered. c. Identification Labels and Model Constants. These data consist of parameters pertaining to heading and identification labels and program constants. Parameter Name IQUN ICHIUN Reading Label --This parameter allows the user to enter up to 60 characters· in order to identify a problem. run ... The inf~rmation enteredin th:is parameter appears at the .top of each page of print output. Source Emission Rate Label --This parameter provides the user with up to 12 characters in order to identify the emission rate units of all sources. The default label is (GRAMS/SEC) when calculating average concentration and . (GRAMS) when calculating total deposition. All area source emission rate labels automatically include units of per square. meter. Output Units Label --This parameter provides the user with a 28-character label in order to identify the units of aver- *This parameter is read by the program only if the hourly meteorological data. are in a preprocessed format (parameter IS"W(l9) equals "1"). 3-20 [ [ E D c -c L h Ll [ [ b c· ' [ [ [ - c n L [ >< ·--" c c c E D c 6 lJ - C Parameter Name rem UN (Cont.) TK I'!AP age concentration or total deposition. Th.e default value is ~ICROGRAMS/CUBIC METER) for average concentration cal- culations and (GRAMS/SQUARE.METER) for total deposition calculations. Source Emission Rate Conversion Factor --This parameter allows the user to scale the source emission rate for all sources in order to convert the emission rate units. This parameter is used in conjunction with label parameters IQUN and ICHIUN. The default value equals 1.0 x 10 6 for average concentration calculations and 1.0 for total deposition calculations. FOR'IRANLogical Unit Number for· Hourly Meteorological Data- .. This. parameter ~pecifies the.. FORTRAN logical unit number of . . the.. device from ~i,c:h the hourly meteorological data are read. The default vaiue equals "9 1' for hourly meteorologi- cal data which-ara ·in' a preprocessed format. The default value for card. image meteorological data is the same as the logical. unit number for all card input data. FORTRAN Logical Unit Number of Output Tape --Ihis param- eter is _ignored by. the program if no output tape is gener- ated by the problem run (ISW (5) equals. "O") • Ihis param- eter specifies tha FORTRAN logical unit number of the out.- put device with which the output tape is externally assoc- iated. The default value e.quals. "3". d. Receptor Data. These data consist of the (X, Y) or (range, theta) locations of all receptor points. ·Also included are the receptor terrain elevations. 3-21 ... -·~------·· ---------------------·----·----"·-----·-·· --------------------------------------------------------------------------..... . Parameter Name GRID X GRIDY ..... · _Receptor Grid -~:-:-:Axis or Range Data <--This parameter is read by the program only if input parameters NXPNTS and NYPN'l'S are. bo~ greater than zero. This parameter is an ~ray whicl:l hC!S_-~ifferent functions depending on the value of ISW(Z). If ISW(Z) equals "1", this parameter .contains NXPNTS values of the X-axis receptor grid points (mete_rs)~--. If ISW(~) equals "2" or "4", this parameter contains _ ~NTS values of th_e receptor_ grid ranges (rings) in meters., . , If ISW (2) . equals. "3", the first entry of this parameter contains the starting location (meters) of the X-axis receptor gri.d and the second entry contains the incremental value (meters) with which the remaining NXPNTS values of the X-axis are generated~ Receptor Grid Y-Axis or Direction Radial Data --This param- eter is-read; by_ t.he Pl:'9gra11;1 only if input parameters NXPNTS ·and NYPNTS-are both greater than zero. This parameter is an array which· has different' functions depending on the value of ISW'(2). If ISW(Z) equals "1", this parameter contains NYPNTS values of the Y-axis receptor grid points (meters). If ISW(2) equals "2", this parameter contains NYPNTS values of the direction radials (degrees) for the receptor grid. The program requires that these values not be fractional value~ but integer values within the range of 1 to 360 degrees. The default: value equals-"360" degrees. If ISW(J.) equals "3", the first entry of this parameter contains the starting location (meters) of .. the Y-axis receptor grid and the second entry contains the incremental value (meters) with which the remaining_NYPNTS values of theY-axis are generated. If _ ISW(Z) equals "4", the first entry _of this parameter con- tains the starting direction radial location (degrees) 3-22 -------[ ·c- ---~ l_, [ r L [ c -c L [ [ ~ ' c~ c [ [ c [ [ c c c 6 - u [ .:=.~ .... Parameter Name GRIDY (Cont.) of the receptor grid and the second. entry contains the incremental value (degrees) with which the rema:1ning· NYP~ITS direction radial values of the receptor grid are generated. All values generated must be integers within the range of l to 360 degrees: The default value equals 11 360" degrees. Discrete Receptor X: or Range Data-'this parameter is read. by the program only if parameter NXWYPT is greater than zero. 'this parameter is an array wh:ich has different functions depending on the. value of parameter ISW(3). .If . . XDIS ISW(3) equals "1". this parameter contains NXWYPT discrete YDIS GRIDZ receptor X: locations (meters). I! ISW(3) equals "2", this parameter contains NXWYPT discrete receptor range locations (meters). 'Ihe values entered in this parameter are used .in associa~ion-.wi~h .tltose in_ par~e~er· YDIS. . . . · .. • . -· . ' ' . . . . . --· - Discrete: Receptor Y' or. Direction Data -'this parameter is read by the program only if NX.WYPT: is greater than zero. This parameter is. an array which has. different funct:ions depenatng on the value of parameter ISW(3). If ISW(3) equals "1", this parameter c'Ontains NX.WYPT dis<;rete recep- tor Y locations (meters) • · If ISW(3) equals "2", this parameter contains MXWYPT discrete receptor direct±on values .(degrees). These direction values must not be fractional in value, but integer values within the range of 1 to 360 ~egrees where the default value is "360" degrees. The values entered in this parameter are used in association with those in parameter XDIS -:: Receptor Terrain Eleva~±on Data --This parameter is read only if parameter ISW(4) equals ·"1". This parameter is an 3-23 .... -·--·---·-···-"'"""'"' ____ __:__;,__ _________ . _____ ---'--- Parameter 'Name GRIDZ (Cont.) e. array which contains all the receptor terrain elevations * (feet/· for the receptor grid and discrete receptors. The terrain elevations for the receptor grid are entered first (if there-is a receptor grid). Receptor elevation Zij cor- responds to the i th X coordinate (range) and j t.i. Y coordi- nate (direction radial). Begin with z11 and enter NX?NTS values (Z 11 ~ z21 , z31 , ••• ). Then, starting with a new card image, enter NXPNTS values (z 12 , z22 ~ z32 , ••• ). Continue until all regular receptor elevations have been entered. The terrain elevations for the discrete receptors (if any) are entered next. Beginning with a new card image, enter the terrain elevations for the discrete receptor points ~ the order the discrete receptor locations were entered into param- eters XDIS and YDIS. Source Data. These data.consist of all necessary information required for each source entered by the user. Because the program can process three types of sources (stack, volume and area), some source types require more info:rma.tion than other types. The following input parameters are required by all source types. Parameter Name NSO Source Identification Number --This-parameter is a number which uniquely identifies each source. The program uses this identification number for any output tables that are generated requiring individual source identification. This number must be a positive number. - Ground elevations in feet-are ~eqUired· for this otherwise met~ic program to afford compatibility with the units used in the routinely available U.S.G.S. topographic maps. 3-24 f' [ r L, [ [ L [ [ [ [ r L [ c :~ ... Parameter Name I'!Yl'E NVS QnG Q Source Type Indicator -This parameter specifies the type of source. If a value of "O" is entered, this is a stack- type. source. Similarly, a. "1" is entet'ed for a volume- type source. A. "2" is entered for an area-type source. Consult Sections 2.4.1. and.2.4.2 for a technical discus- sion of these source types. Number of Gravitational Settling Categories -This param- eter specifies the number of gravitational settling cate- gories to be considered. This parameter is used for sources with particulates or droplets with significant gt'avitational settling velocities. A maximum of 20 cate- gories is allowed for each source. Variational Source Emission Rate.Option ~This parameter is ignored by the program .if ISW(23) has a non-zero value. This parameter allows the. user to specify scalars which are multiplied by this individual source's average emis- sion rate.. These scalars· may vary as a function of season, month, hour of the day, season and hour of the day, or stability category and wind speed. The implementation of this parameter is the same as that of parameter ISW(23). Refer to the description of parameter ISW(23) for an explana- tion of what values are associated with each variational ·function. Emission Rate --This parameter specifies the average emis- sion rate of the source. If average concentration is cal- culated, the units for stack and volume sources are mass per time and for area sources are mass per square meter per time-If total deposition is calculated, the units 3-25 Parameter Name Q (Cont.) xs YS zs Stack-Source Parameters H.S TS ----· _ ..... --·----~--------·-·--------·-··· --------.. ~· for stack and volume.sources are mass and for area sources are mass per square meter. X Location: --This parameter specifies the relative X loca- tion (meters) of the center of a·stack or volume source and of the southwest c.orner of an area source. Y Location --This parameter specifies the relative Y loca- tion (meters) of the center of a stack or volume source and of the southwest corner of an area source. Source Elevation --1his parameter specifies the elevation (meters above mean sea level) of the source at the source base. Wake Effects Option -This parameter pertains only to stacks with bU:Uding wake effects (parameters HB, H.L and HW greater than zero). Enter a "O" value to calculate an "upper bound" average concentration or total deposition. Enter a "l" value to calculate a "lower bound" average con- centration or total deposition. The appropriate value for this. parameter depends on building shape and stack ·placement with respect to the building. Consult Section 2.4.l.l.d for a technical discussion of building wake effects. The default value equals 11 0". Stack Height --This ~arameter specifies the height of the stack above the ;round (meters). Stack Exit Temperature --This parameter specifies the stack exit temperature in degrees Kelvin. If this value is less 3-26 [ [ I' L [ [ [ [ E [ [ -. ~ " i=i n, I Lj [ [ [ [ ·~ [ L [ E c c . 6 ~· D lJ (j [ Stack-Source Parameters TS (Cont.) vs D HB* . m.x· HW* Volume-Source Parameters SIGZO than the ambient air temperature for a given hour, the program sets this parameter equal to the ambient air temperature. Stack Exit Velocity·--This parameter specifies the stack exit velocity in meters per second. Stack Diameter -This parameter specifies the inner stack diameter in meters. Building. Height --This parameter specifies the height of a buildin~ a4jacent to this stack (meters). . -Building Leng.th:. - . This· parameter specifies the length of a building adjacent to-this stack (meters). Building Width --Thi~ parameter specifies· the width of a building adjacent to this-stack (meters). Center Height -This parameter specifies the height of .. the center of the volume source above the ground (meters). Initial Vertical Dimension -This parameter specifies the initial vertical dimension ~ of the volume source zo . (meters). *If non-zero values are entered for parameters HB or HL and.HW, the pro- gram automatically uses the building wake effects option (see Section 2.4.l.l.d). However, if RB, HL, and HW are not punched, or are equal to "O," wake effects for the respective source are not considered. 3-27 -____ .. ___________ ... ---------_______ , ________ _ Volume-Source Parameters SIGYO Area-Source Parameters xo Gravitational. Settling Categories Parameters VSN GAMMA ------·~--····--------------------····-----·--------··-------------------· --------~ r Initial Horizontal Dimension --This parameter specifies the initial horizontal dimension a10 source (meters) • of the volume Effective Emission Height --This parameter specifies the effective emission height of the area source (meters). Area Source Width --This parameter specifies the width x 0 of the square area source (meters) • Mass Fraction--This ·parameter is.an array which specifies the mass fraction of particulates for each settling velocity category. A maximum of 20 values per source may be entered. Settling Velocity --This parameter is an array which speci- fies the gravitational settling velocity (meters/second) for each settling velocity category.. A maximum of 20 values per source may be entered. Surface Reflection Coefficient --This parameter is an array which contains the surface reflection coefficient for each settling velocity category. A maximum of 20 values per source may be entered. 3-2.8 [ [ c c L u c E -c u [ l [ [ [ [ c c 6· u' u [ L [ Parameter Name Source Emission Rate Scalars --This parameter is applic- able only to sources whose emission rates are multiplied by variational scalar,values. If parameter ISW(23) is greater than. zero. this parameter applies to all sources in the problem ruu. If parameter ISW(23) equals zero~ this param- eter is read by the program for each source for which the parameter QFLG is greater than zero. If both parameters ISW(23) and QFLG equal zero for all sources, ~is parameter is. not read by the program.. This parameter is an array which contains the source emission rate scalars used to multiply the average emission rate of a (all) source(s). The format in which the scalar values are entered depends on the value of either parameter-QFLG or ISW(23) (which- ever parameter is ap~lic.able) ~ If this . value equals "l'', enter four. seasonal scalars in the order of Winter, Spring, S1.t1111ner and Fall. If the QFLG (or ISW(23)) parameter has a value-of "2"~-enter 12 ID.Ollthly · scalar values beginning with· January and ending. with. December. If the value equals "3"',. enter 24-scalar values for each. hour of t.'le day begin- ning with the first hour and end.ing with the twenty-foorth hour. If the value. equals "411 , enter six sets of scalar . values for. the six wind. speed categories for a total of 36 scalar values.. Each of the six sets of scalar values represents a Pasquill stability beginning with category A and ending with category F~ Each set is started on a new card image. If the value. equals "S", four sets of scalar values are entered where each set contains 24 hourly values (analogous. to a value equal to "3" option) for a total of 96 scalar values. The four sets of scalar values represents the four seasons in the order of Winter, Spring, Sammer and Fall. Each set is started on a new card image. 3-29 ------·----· --------------------~----~~ . ----------------- f. Hourlv-Meteorclogical Data.-These data maybe entered in one of two fo~ts _(governed by the value entered in parameter ISW(l9)). One format is that generated by the preprocessor program (~ee Appendix G). This format usUa.lly res~des ori magnetic tape where the tape device is externally associ:S.ted with the-'logical unit specified by parameter IMET. All hourly data req:uired -by the program are contained on the tape. The other f·ormat is ·card' -image.· The following data are required for each hour ·only when the card image format is chosen by the user. Parameter Name JDAY AWS HLH : :: .. Julian Day --This parameter specifies the Julian Day of thiS day of meteorological data. This parameter is read by the program for.only the first hour of data for each day. - This parameter is ignored for the second and successive hours of each day of data. Th:is parameter is used by the program to determine the month or season if required by other program options~-The default· value equals-"l" {Julian Day 1). Win:d Flow Vector --This parameter specifies the direction (degrees) toward-which the wind is blowing. Wind Speed -This parameter specifies the mean wind speed (meters/second) measured at the reference height specified in parameter ZR. Mixing Height ;;;;... Th:is parameter specifies the height of the top of the surface mixing layer (meters). ·Ambient Air Temperature This parameter specifies the· ambient air temperature (degrees Kelvin). 3-30 II' L .r-_= ' -" [ . [ [ [ [ L [ -c = L r'· ! u c [ c [ [ E D c 'il..:....· Parameter Name DTEDZ IST p DECAY Vertical Potential Temperature Gradient (Optional) --This parameter specifies the vertical potential temperature gradient (degrees Kelvill/meter) for a given nour. The value for this parameter is used by the·program only if parameter ISW(22) equals "3". Pasquill Stability Category --This parameter specifies the Pasquill stability category. A value of "1" equals category A, "2" equals B, "3" equals C, etc. Wind Profile Exponent (Optional) --This parameter speci- fies the wind profile exponent. for a. given hour. The value .. fol! this parameter is used by the program. only if parameter . . ·ISW'(Zl.) · equals "3" ~ Decay Coefficient -This. parameter specifies the decay coefficient (seconds -l) for chemical or other removal pro- . cesses for: a given: hour. · This: parameter overrides any value entered in parameter DECAY described earlier in Section 3.1.2.b. The default value equals "O" for no decay. 3.1.3 Output Information The ISCST program generates six categories of program output. Each category is opt:ional to· the user. That is·;. the user controls what: output: the program generates .for a given problem run. In the following paragraphS, each cat:egory of· output is related t:o the input parameter that controls the output category. All program output are printed except for the magnetic tape output. 3-31 ·-··-----·--···-----------------------~----- a. Innut Parameter Output. The use: ~y desire to see all input parameters used by the program. If input parameter !SW(6) equals "l", the program will print all program control input parameters, meteorological-related and information constants, receptor data and source data. Additionally, if parameter ISW(6) equals "2", the program will also print all hourly meteorological data processed by the program for a given problem run. b. Dailv Concentration (Denosition) Output. This · category of output prints calculated values of average concentration or total deposition for each day of meteorological data processed by the program for a given problem run. For each day, tables consisting of average concentration or total deposition values at each receptor point are printed for all combinations of user-defined time periods and source groups. For example, suppose combinations of 1-, 3-and 24-hour time periods and five source groups (NGROUP.equals "5") are specified and input parameter IPEBD equals "O". Thirty-three tables would be generated by all time period intervals (24 1-hour tables, eight 3-hour tables and one 24-hour table) for a total of 16S·tables for all source groups for each day of meteorological data. Input parameters ISW(7) through ISW(l4) and IPERD specify the time periods and time period interval, respectively, for which average concentration or total deposition values are printed. The source ·group combinations are specified by input parameters NGROUP, NSOGRP and IDSOR. Input parameter ISW(16) controls the employment of this output category. c. "N''-Day Concentration (Deposition) Outnut. This category prints the average concentration or total deposition calculated over the number of days ("N") of meteorological data processed by a given problem run. Tables consisting of average concentration or total deposition values at each receptor point are printed for all source group combinations defined by the user with input parameters NGROUP, NSOGRP and IDSOR. Input parameter ISW(l5) specifies the use of this output category. 3-32 [ [ r· [ [ [ [ [' . c -lJ [ r: [ c [ [ [ t: w r b]·~ L ·-- d. Highest and Second-Highest Concentration (Deposition) Output. This category prints tables of the highest and second-highest average concentration or total deposition values calculated at each recep- tor point. Tables are produced for all user-defined combinations of time periods and source groups. For example, suppose 3-and 8-hour time periods and ten source groups (NGROUP equals "1011 ) are specified. Twenty-two tables would be produced by all time periods (tables of. highest values and tables of second-highest values) for a total.. of 220 tables for all source groups for the example problem run. Input parameters ISW(7) through ISW(l4), and NGROUP, NSOG:RP and msoR provide use:r· control. of the desired time periods and source groups, respectivel.y. The employment of this output category is controlled by input parameter ISW(l7). e •. Maxfmum 50 Concentration··(De'Oosi:tion) Output. This category produces tables of the ma;ximnm SO average concentration or to;tal deposition val.ues calculated for· the. problem· run. Each table prints the maximum 50 val.ues incluc:ling :When and a:t :Wich receptor each val.ue occurred. Tables are printed. for all. user-defined combinations of time periods and source groups which are specified· by input: parameters ISW(7) through ISW(l4), and NGROtJP, NSOOBP and .. mSOR, respectively. Input parameter ISW(l8) controls the use. of: this output category. f. Tape Concentration (Deposition) Output. This category writes the resul.ts of average concentration or total deposition calcula- tions to a magnetic tape whose tape device is linked to the program through input parameter ITAP. · If ISW{S) equal.s "l", the program writes to tape records of tbe_average concentration or tot~ deposition values for all user-defined combinations of time periods and source groups for each day of m.eteorologi.cal. data processed by the program. Each tape record includes - the average concentration or total. deposition values cal.cul.ated at each . . receptor point. Also, ill concentration o:r: deposition values generated by the "'3'7-day output· opd.on (see category c above) are written to tape only if the ~'.r'-d.a.y output opt:i~ (ISW(lS).).. is exercised by tile user. 3-33 An ~ustratiou of each of the above print output ca~egoriss is shown iu Section 3.2~4. Also discussed is the order in which the tables and tape records are generated for each output category. 3.2 USER'S INSTRUCTIONS FOR THE ISCST PROGRAM 3.2.1 Program DescriPtion The ISC short-term (ISCST) program .is designed to use hourly meteorological data to calculate ground-level concentration or deposi- t:ion values produced by emissions from. mu~tiple stack, volume and area sources. The receptors at which concentration or deposition values are calculated may be defined on a (X~ Y) right-handed Cartesian coordinate system grid or an (r. 6) polar coordinate system. grid. The polar coor- dinate system defines 360 degrees as north (positive Y-axis), 90 degrees as east (positive X-axis), 180 degrees as south and 270 degrees as west. Discrete or arbitrarily placed receptors may also be defined by the user using either type of ~oordinate system. This program also has the user option of assigning elevations above mean sea level to each source and receptor •. The stack, volume or area sources may be individual~'}" located anywhere, but must be referenced using a Cartesian coordinate sys- tem relative to the origin of the receptor coordinate system. Average concentration or total deposition values may be calcu- lated for 1-, 2-, 3-, 4-, 6-, 8-, 12-or 24-hour time periods. "N 11 -day average concentration or total deposition values for the total number of days of meteorological data processed by the program may also be computed for each receptor. Average concentration or total deposition values may be printed for source groups, where a source group consists of any user-defined combination of sources. The ISCST program accepts hourly meteorological input data in either of two options. One option reads hourly meteorological data from 3-34 [ . ~~, L r~ L~ r~ l. ,. L [ w L L [ c- c [ L [ [ [ E c L B 6 u lJ L -· ., ,,.,...,, a magnetic tape unit or other similar external input device. These data are read in a format compatible with the mateorological data format gen- erated by the preprocessor program (see Appendix G). The other option reads hourly meteorological data from cards in a card image format. The ISCST program produces several categories of output of cal- culated concentration or depos:ltiou values. All: categories of output are optional to the user. Average concentration or total deposition values may be printed for all receptors for· all combinations of time intervals and source groups for any number of· days of meteorological data. The average concentration or total deposition values calculated over an "N"-day period may be prlnted for all source groups defined by the. user. Also, the. highest and second-highest average coneentration or total deposition.values calculated at each receptor for all combinations of time periods and source groups may be. printed.. The maximum 50 calcu- lated average concentration or total deposition values may also be printed for· all. combinations of time periods 'and· source· groups defined by the user. The program may also generate: ali outp~t tape file consisting of all cal- culated concentration or deposition values for each recevtor for each user-defined combination of time periods and source groups for each day of meteorological. data. processed by the program. Additionally, all .average concentration or total deposition values calculated over an "N"- day period may be written to the output tape file for all user-defined source groups. The ISCST program is written in FORTRAN IV. Its design assumes that 4 Hollerith characters can be stored in a computer word. The basic program requires about 21,500. UNIVAC 1100· Series 36-bit words. Another 43,500 words of data storage are currently allocated for a total of 65,000 computer words. With this current allotment of executable storage, the program may be run with up to 400 receptors and 100 sources. The card reader or input device to this program ::.s referenced as FORTRAN log- ical unit 5 and the printer or out:.put device as logical unit:. 6. The 3-35 -···-·----------·-· . --. -----· ······-··--------------·-·--· -·---·. ---·-----·----- ISCST program is composed of a main program (.ISCST), nine subroutines (INCHK, MODEL, DYOUT, MAXOT, MAX50, VER.T, SIGMAZ, Ul'WDiD a,nd E..'!U'X) and a BLOCK DATA subprogram (BLOCK). The source codes for all of these routines are listed in Appendix A. Appendix H contains a logic flow description of the ISCST program. 3.2.2 Control Language·and Data Deck Setup a. Control Language Reauirements. The following example illustrates the required control statement runstream for a typical run on a UNIVAC 1100 Series Operating System: @RUN ISCST, ••• @ASG,A PROGFILE. @ASG.,A ME'!FILE. @USE 9 ,METFTI.E. @ASG,CP .. OUTPUTFUE. f Optional, required only if ISW(S) = 1 @USE 3,0UTPUTFILE. . @XQT PROGFILE.ABSISCST. Card input data deck @Fm The first control statement initiates the runstream with job name ISCST Yhere the parameters following the job name may vary with each computer installation. The second control statement assigns the existing program file PROGFn.E to the run. It is assumed that this file contains the absolute element (executable version) of the program. The third and fourth control statements ass_ign an existing meteorological data input file METFILE and assoc~ate FORTRAN logical unit number 9 with the met- eorological file. These control statements may be optional if the user has provided meteorological data in the card input data deck (accompany- ing the card input data). However, most cases require a meteorological data file which is external to the card input data. The fifth and sixth 3-36 . --··-·-[ [ r , [ [ ~~ L [ c c [ ··Q t [ [ h [ [ [ r~ L [ E c c 6 n ~-·'· c E L [ control statements create an optional output data file OUTPUTFILE for saving calculated ·con.:.enttroatiw L011 depoaitidn~;va.il.ues: and associate fOR'!'R.Al.'i logical unit number 3 with the output data file. These control state- ments are required only if parameter~ ISW(S) equals "l". The ISCST program is ready to execute as performed by the seventh control statement. All card input data required for. the problem run immediately follows the execute card. The fina~ control card terminates the runstream. The following.job control statement runstream is given for a typical run on an IBM 360 Operating System:. IIISCST JOB(l2345),'TYPICAL RUNSTREAM• IIJOBLIE DD DSNAME•PROGFILE,DISP•(OID,PASS) IISTEPl EXEC PGM•ABSISCST I IFTOSFOO l DD DDNAME•SYSIN I IFT06FOOL DD, SYSOUT•A .· I IFT09FOOl DD DSN•M:ETFILE,UNIT-TAPE, I I VOL•SER-ME'r!P ,DCB•RECFM•V, II DISP-OLD I IFT03F001 D?. DSN==OU. 'tPUTFn..E,UNIT•TAPE., l II VOL•SE.R•SAVTP,DCB•RECFM•V, I I DISP•(NE.W,KE.E.P) I /GO. SYSIN DD* Card input data deck 'II Optional, required only if ISW(5)=1. The first job control statement initiates the runstream with job identifica- tion ISCST and account number 12345. The second and third control state- ments obtain the library file PROGFILE in-which the absolute, executable deck ABSISCST is loc.atedw The fourth and fifth control statements link FOR'J:RA!I logical unit numbers OS ·and 06 as the card reader and printer, respectively. Control statement six defines an existing meteorological data input tape file METFILE with a reel identification of METTP and links 3-31 ------·-·------·--·-·-------·-·-------------·------·-···---··-----··--· --------------·-· ·---------[ FORTRAN logical unit 09 with the meteorological file. This file is usually required in a job runstream unless the hourly meteorological data are contained in the card input data deck. Control statement seven define$ a new output tape file OUTPUTFILE wit~ a reel identification of SAVTP and links FORTRAN logical unit number 03 with the output file. This out- put file is optional and is required only if parameter ISW(S) equals "1". The program is executed by control card eight which is illlmediately followed by the card input data deck. The null statement at the end terminates the job runstream. Another example of the required control statements is shown for use on a CDC 6500 Operating System: ISCST, ,. REQUEST,TAPE09,VRNaMETTP,HY. REQUEST, TAPE03, VRN=SAVTP, RW, HY •. ATTACH,ABSISCST,PROGFILE. ABSISCST. 7/8/9 multipunchin card column one Card input data deck { Optional, required only if ISW(5) = 1. 6/7/8/9 multipunch in card column one The first control statement identifies the job name as ISCST where other parameters may be used if desired. The second control statement requests an input tape where the assigned file name TAPE09 is· defined as an input file and is linked'to FORTRAN logical unit number 9 by a CDC FORTRAN program control card. This statement is required only if the hourly meteorological data are not included in the card input data deck. Tne third control statement requests an output tape where the assigned file name TAPE03 is defined as an output file and is linked to FORTRAN logi- cal unit number 3 by a CDC FORTRAN program control card. Tnis control statement is required only if parameter ISW(5) equals "1". The fourth control statement ~ccesses the permanent program file PROGFILE and assigns 3-38 [ ·r L [ [ f' L [ E L [i c· h c· [. [ [ [ r~ L [ E ·- ·~---. 0 [ j the local file name ABSISCST to the runstream. It is assumed that PROGF!LE is an executable version of the. ISCST program. Th.e fifth. con- trol. statement executes the ISCST program. An end-of-record follows as indicated by the 7/8/9 multipunch tn column one~. whicl1 separates the control statements fran the card input data deck. The 6/7/8/9 multi-· punch tn column one terminates the: control statement runstream. Regardless of the operating system~ the control statement run- stream serves three primary functions. First, all necessary program, input and output data files must be assigned or created. Second, FOR.T.RAN logical unit: numbers must be associated with all data files so that the ISCST program can reference. the data.files through the use of the logical unit number parameters (IMET. and rtAP). Third, the ISCST program is executed with an accompanying. card input data deck. b.. Data Deck Setup. The-card. input data required by the ISCST. program depends on the program. options desired by the user. The card. input data may be partitioned into seven major groups of card input. Figure 3-l illustrates the inPut deck ~etup •. · The ·seven card input deck groups are itemized below: (1) Title Card (l card) (2) Program Control. Cards (2. cards) (3) .· Receptor Cards (4) Source Group Data Cards (option~, required only if NGR.OUP > 0) (5) Meteorological-Related and Model Constants Cards (6.} Source Data Cards (7) Hourly Meteorological Data Cards (optional, required only if ISW(l9) "' 2) An ~~ple card input data deck for the ISCST program is presented in Appendix C. A description of the· input format and contents of each of the seven card groups is provided below in Section 3.2.3.a. 3-39 ' ··----~"---·----.......... ---·---~--~--------------------------~··---~-~----- / (7) Hourly Me.t. optional, Data Cards (3) (6) Source Data cards 1' (5) Met.•Belated and Model Constants Cards (4) Source Group t--1.-.-. Data Cards Receptor cards t-"" (2) Program Control r--~ Cards (l) ·Title. Card ,.. ,.. required only if ISW(l9) • 2 optional, required only if NGROUP > 0 FIGURE 3-l. Input data deck setup for the ISCST program. 3-40 [ r r; '[ .[-~ ' _J I , [ [ [ L [ 0 [ B L [ C' [ [ c [ [ [ c [ c 0 c b L 3.2.3 Inpu~ Da~a Description Section 3.1.2 provides a summary description of all input data requirements of the ISCSt program. This section provides the user with the forma~ and order m which the program requires the input data. The input parameter names used in this section correspond to those used in Section 3.1.2. two. forms. of input. data are read by the program. One form is card image input. data (80 characters per record) in which all required input data may be entered. The other form. is magnetic tape which contains hourly meteorological data in a format generated by the preprocessor program. Both forms are discussed below. a. Card Input Requirements.. The ISCst program reads all card image input data 1n a fixed-field format with. the use of FORTRAN "A", "I",. "F" and "E" editing: codes.. The card. input data are partitioned into seven. card groups which ar-e. discussed.; m Section· 3.2.2.b and shown in Figure 3 ... 1. The input: parameters contained in Card Groups (2) and (4) correspond. with those described in: category "a"" of Section 3.1.2. Moreover, Card Groups (l) and (5) corresp~d: with categories "b" and "c", Group (3) with category· "d", Group (6) with category "e" and Group (7) with category "f". Tabla· 3-4-is a list of all card image input data which may be entered. For each input parameter, Table 3-4 provides the Card Group. (and the card number within the Card Group,. if possible),. parameter name, card columns within which the value of the input parameter must reside, FORTRAN editing ~ode.and.a·brief deseription which includes default values or maximum values allowed, if applicable. The order in which the input parameters are listed in Table 3-4 is the order in which the IS CST program reads the input par-ameter-s. The user should note that many card 'input parameters and even entire Card· Groups. are ignored or not read by the program, depending on the options chosen by the user. Card Groups (l) and (2) consist of a total of three cards. Card Group (1) consists of one card and contains the parameter TITLE. 3-41 Card Group, Card. Number 1 2, 1 2, 1 j 2t 1 2, 1 2, 1 ' r-J .ITTJ TABLE 3-4 ISCS'f PROGRAM CARD INPUT PARAMETERS, FORTRAN EDIT CODE (FORMAT) AND DESCRIPTION Parameter Card FORTRAN Edit Code Name Columns {Format) ' . . 'l'I'fLE 1-60 15A4 ISW(1) 1-2 12 ISlH2) 3-4 12 isw(3) 5-6 12 IS\l{4) 7-8 12 ISW{5) 9-10 12 Description 60..;character beading label 1 = calculate concentration 2 a calculate. deposition Default: assumes 1 1 = Cartesian coordinate receptor grid sys- tem 2 ... polar coordinate receptor grtd system 3 ... program generates Cartesian coordinate grid 4 ;:; prQgram gene~ates polar coordin~te grid Default assumes 1 1 "' discrete receptors referenced with Car- tesian coordinate system 2 = discrete receptQJ;'S referenced w!.th polar coordinate system Default assumes 1 0 = no receptor terrain elevations are input 1 = program reads receptor terrain elevations Default assumes 0 0 = no output tape containing concentration or deposition values is written ,-----, J ' I. .I I ! I I I ! I I I I I I I i I w I ~ t,.) Card Group, Card Number 2, I 2, 1 2, 1 Parameter Name . ISW(S) (Cont.) ISW(6) ISW(7) ISW(8) ISW(9) ISW(lO) Card Column~ 9-10 13-H 17-18 19-20 I ,....----, l l u r"1'lll ,;:!1 .J TA~LE 3-4 (Continued) FORTRAN Edit Code ·(Format) 12 12 12 . 12 Descriptioq 1 • o~~p~t tape containiqS conc$ntration or 4epo~ition v~lu~a is writteq to tape on l9gica~ unit ITAP Pefault ~ssumes 0 Q = no input data ~re prtnted • = print all input dat~ except hourly met- eorology data . . 2 = same as 1 but hourly meteorological data are also printed · · Pefault assumes 0 () .. no 1-~our time pf:tr~ods ~ "" 1-Jlour average conceq~p~tion or total deposition calcu~~t$d P,Elfault assumes 0 Q a qo 2-hour time perioqs 1 "" 2-hour ~verage coqceqt~ation or total .deposition calculated. · Default assumes 0 · · 0 • no 3-hour time periods 1 "" 3-hour average concentration or total deposition calculated Default assumes 0 0 ~ no 4-hour time periods 1 = 4-hour average concentration or total deposition calculated Default assumes 0 TABLE 3-4 (Continued) Card Group, Parameter Card FORTRAN Edit Code Description Card Number Name Columns (Format) 2, 1 ISW(ll) 21-22 12 0 = no 6-hour ~ime periods 1 -6-hour average cori~entration or total deposition calculated Default assumes 0 I. 2. i ISW(12) 23-24 12. 0 • no 8-hour time periods l 1 = 8-houf average con~eqtration or total deposition calculated I I Default assumes 0 2, 1 ISW(l3) 25-26 12 0 • no 12-hour time periods 1 • 12-hour average concentration or total """' deposition calculated I -1!'-Default assumes 0 -1!'- 2; 1 ISW(l4) 27-28 I2 0 = no 24-hour time period 1 ... 24-hour average concentration or total deposition calculated Default assumes 0 2, 1 ISW(l5) 29-30 I2 0 "" print no 11N11 -day output tables 1 ... print 11 N11-day average concentration or total deposition output tables Default assumes 0 2, 1 ISW(l6) 31....:32 12 0 .. print no daily time period tables 1 "' print daily average concentration or total deposition tables for each tlme period and source group for each day of meteorological data Default assumes 0 ' '! fard Group, Parameter Card Nu!Jlber Name 2, 1 ISW(l7) 2. 1 I ISW(l8) ' w I .p.. '"" 2, 1 ISW(l9) 2, 1 ISW(20) 2, 1 ISW(21) . r.1 ... ----l . j r---", ~ ' ' < ,) TABLE 3-4 (Continued) Card FORTRAN Edit Code ' Deacripl:ioq Columns (Format) 33-34 12 0 ... print qo highest and second highest tabl(!EI l "" pr~~~ highest and ,econd highes~ aver- ~ge concentration or ~otal deposition calculated at each ~eceptor for each time period and source group ! Pefault ~ssumes 0 35-36 p 0. print no maxi~um 50 tables . . , .... · J "' print the maximu~ 50 average concentra- !·,· tion or total deposition values calcu- ; .. . lated for each ~ime period and source ·-gr~mp '· D~fault assumes 0 ; ~7-38 l2 ., 1 • hourly meteorological data is read from -logical unit IMET in a preprocessed for- ., mat 2 "' h~urly meteorological data. is read from cards Default assumes J 39-4Q 12 0 • Rural Mode Option 1 • Urban Mode-l Option 2 • Urban Mode-2 Option . Default assumes 0 41-42 12 1 "" program provides default wind profile exponent values 2 ... user enters 36 wind profile exponents for 6 wind speed and 6 stability cate- gories Jn Card Group 5 below Card Croup, Card Number 2, 1 2, 1 2, 1 Parameter Name ISW(Zl} (Cont.} ISW(22} ISW(23} ca~d Columns 41-42 43-4/1 TABLE 3-4 (Continued} FORTRAN Edit Code (Format 12 12 Description ' 3 ;::; user enter$ hourly wind profile exponents in Card Group 1 below . Default assumes 1 · 1 = program provides default vertical potential tempterature gradient vaiues . 2 = user enters 36 vertieal potential tempera- ture gradients for 6 wind speed and 6 sta- bility categories · 3 = user enters hourly vertical potential tem- perature gradf:ents in Card Group 7· -below " Default assumes 1 0 = emission rates for all sources do not vary 1 = emission rates vary seasonally for all sources 2 = emission rates vary monthly for all sources 3 = emission.rates vary each hour per day for all sources 4 = emission rates va-,:y by wind speed and sta- bility category for all sources 5 = en1ission rates vary sE!asonally and each hour per day Default assumes 0. A :~fero value entered for this parameter allows the user to vary enais- sion rtltes for individual sources by the use of input parameter QFJ.G ~-----------L---------~------~--~--~------------------------------------------- " LL.J r----'1 l J ·.,..--,. l I . II TABLE 3-4 (ConUnued) Card Group, P~rameter Card FORT RAW ~dit Code l>etJcriptioJ1 Card Number-· Name Columns (Format) 2, 1 ISW(24) 41-48 u· 1 ~ ~rogr~~ uses tinal plume rise for all re- ceptor locations · 2 ~ program computes plume ris~ as a function pf the receptor location · P~taul~ assumes 1 2, 1 lSW(25) 49-50 l2 l ~ physical stack heights ar~ pot modified ' to account for downwash i 2 ~ phys~cal stack heights are m~dified to : account for stack downwash r ; J)~fauH ~sumes 1 . ' ' ' t..l I 2, 2 ., NSOURC* 1-6 16 .~ber of sources ~ , . ..... 2. 2 . ~ NXPNTfi* 7-l2 l6 ~J.DQer qf grtq points in the x-~xis or number ! ' • of .-,:anges (rings) for the receptor grid. A l · 21e.ro va+ue imJ,l:J.ies no receptor ~r~d-I ' " I 2, 2 NYPNTS* 13-18 16 NuJDber of grid points in the Y-axis or number 1 ofdirection radials for the receptor grid. A zero value implies no receptor grid 2, 2 NXWYPT* 19-24 16 Number of discrete receptor points. A zero value implies no discrete receptor points *See Equation (3-1) for the maximum value allowed by the program for this input parameter ' l r--- '' Card Group, Card Number 2, 2 2, 2 2, 2 2, 2 3, 1 Parameter Name NGROUP IPERD NUOURS NDAYS GRID X Card Columns 25-30 31-36 37-42 43-46 1-80 TABLE 3-4 (Continued) FORTJtA,N Edit coc.le (Format) 16 16 16 16 8F10.0 Description Number of source group combinations. A zero value assumes one source group which consists of all sources. Maximum number = 150 Print i'N"th time interval only for all time periods specified for daily table output. Enter "N" in this parameter. Pefault assumes ail intervals for eaclt desired time period are printed. This parameter is ignored if ISW(l6) = 0 Enter number of hours per day of meteorologi- cal data. This parameter is ignored if ISW(l9) '= 1 Enter number of days of meteorological data. This parameter is ignored if ISW(19) = 1 This parameter is not read if NXPNTS or NYPNTS equals 0. Enter NXPNTS X-axis (ISW(2) = 1) or NXPNTS range (ISW(2) = 2 or 4) receptor grid locations (meters). If ISW(2) = 3, enter the ~------------·~----------~--------~--------~----------------------------~~--------------~ ~ l. JJ I Card Group, Card Number 3, 1 3, 2 3, 3 3, 4 Parameter Name· GRIDX (Cont.) GRlDY XDIS YDIS Carq Columns ~-80 l-80 1-80 TABLE 3-4 (Continued) FORTAAN Eqit C. od~ (FOl108tJ 8fJO.O 8.VlQ.9 8Fl0.0 8FIO.O Description . ~tarting X.,-axi~ ~r:J.d local:ion in columns 1-10 ·. an4 t~e incremental-value in colu~ns ll-20 (m~te}:'s). 'This pa~~~~er is pot read if ijKPNTS of wYPNTS , eq~ala · (). Enter N¥fNTS T-axis (ISJ-1(2) ... 1) -.:-ecep!=of s~t~ locat:t.ona (met~ara) of NY~NTS direc~ion T~dial (ISW(2) • 2) locations in · :Jnt~g~t: qegrees with:J,n t}le ra,nge of 1 to 360 degreeq, · If ISW (2) "" 3, ~nt.:er · t.:lte a taTting ·x~s griq location (meters) :f.n columns J-10 and tlte ~ncremental value in columns ll-20 (meters)r If ISW(2) a 4, eqte~ t.:he starting dit:ection t:adial location in columns 1-10 · and the incr~mental.value in columns i1-20. J,!:nter vall!e8 which generate. integer. directions · witltin the range of 1 to 360 degrees. Thi~ pafameter is not read if NXWYPT = 0. Entet: NXW¥PT X (ISW(3) = l) or t:ange ISW(J) ~ 2) disct:e~e receptor locations (meters). TI1ia parameter is not read if NXWYPT = 0. Enter NXWYPT discrete Y receptor locations Card Group, Card Number 3, 4 3, 5 Parameter Name YDIS (Cont.) GRIDZ NSOGRP ··Card Columns 1-80 1-80 1-80 TABLE 3-4 (Co.ntinued) J!'ORTRAN Edit Code (Format) 8F10.0 8Fl0.0 2014 Description in meters (ISW(3) • 1) or NXWYPT discrete di- rection receptor locations in integer degree values (ISW(3) .. 2) within the range of 1 to 360. degrees. This parameter, ~hlch is 8!l array defining receptor elevati.ons ( feet· MSL), is not read if ISW(4) • 0. For the regular receptor grid (if any), r~ceptor elevation Zij corresponds to the ith X coordinate (range) and jth Y co- ordinate (direct.ion radial). Begin with Zn . and enter NXPNTS values (Zll• Z2l' Z31• ••• ). Then, starting with a new card image, enter NXPNTS values (Zl2, Z22• Z32• ••• ). Continue until all regular receptor elevations have been entered. For the .discrete receptor loca- tions (if any), enter NXWYPT elevation values, beginning with a new card image, in the order the discrete receptor locations were entered in XDIS and YDIS. Enter the number of source identification num- bers required to define a source group for each source group combination. Enter NGROUP values. A maximum of 150 values may be en- tered. ! )' ... r-: 'l ; J C":j I::'Jj c-:::1 . IITC'J w I ln t-' : ' Card Group, Card Number 4*, 2 s. 7-12 5, 13 5, 13 .Parameter Name IDS OR P.DEF . ~· ; PTHDEJi' ZR UCATS Card Columns 1-78 ~-tiQ 1-60 . ' ~ 1-10 11-60 r--J ... n . n .. r--:1 TABLE 3~4 (Continued) FORTRAN Ed;J.t Co<te (Format) 1316 ··: 6F10,'0~ .. . .. . ·· ;. i'''· ~ : ' 6F10.0 ··'· . 5F10.0 Pescription Enter the source iden~ification numbert~ used to define a source group for each source group combination, 4 mirius sign preceding a source identification number implies inclu- s;J.ve summing from the previous source number entered to the source number wi~h the minus sign< ·A maximum of 200 values may be entered~ . Th~s P!ilrameter is read oply if. ISW (2 D = 2 • ~nt~r 36 w~nd profil~ ~x.popents~ For each 9f ~he s~x Pasquill ~ta~;J.li~y ca~egories, enter ~ values per card for each of the 6 wind speed categories, This parameter is read only if ISN(22) = 2. Enter· 36 vertical potential temperature grad- ients (degrees l{elvin/meter). For el;lch of the.six Pasquill stability categories, enter 6 values per card for each of the 6 wind speed categories. Enter the wind speed reference height z1 (meters). Default assumes 10.0 meters. Enter the upper bound of the first through fifth wind speed categories (meters/second). Default assumes 1.54, 3.09, 5.14, 8.23 and 10.8 meters per second. *This card group is not read if parameter ~GROUP equals 0. i ! Card Group, Card Number 5, 14 5, 14 5, 14 5, 14 5, 14 5, 14 5. 14 Parameter Name TK' BETA1 BETA2 DECAY IQUN ICIIIUN IMET Card Columns 1-8 9-16 17-24 25-32 33-44 45-72 73-711 TABLE 3-4 (Continued) J.t'ORTRAN ~dit Code (F'ormat) E8.0 F8.0 F8.0 F8.0 JA4 7A4 12 Description Enter the source emission rate conversion fac- tor in order to convert the emission rate units. Default assumes 1.0 x 10 6 for concentration and 1.0 for deposition. Enter the adiabatic entrainment coefficient. Default assumes 0.6 (Briggs; ~975), Enter the stable entrainment coefficient. Default assumes 0.6 (Brig~s. 1975), This parameter is ignored if ISW(l9) = 2. Enter the decay coefficient (seconds-1) for chemical depletion of a pollutant. Default assumes no decay. A 12-character label identifying the emission rate units of all sources. Default assumes (grams/second) for concentration and (grams) for deposition. Units of per square meter are automatically included for area sources, A 28-character label identifying the units of concentration or deposition.· Default assumes (micrograms/cubic meter) for concentration and (grams/square meter) for deposition. FORTRAN logical unit number of hourly meteoro- logical data. Default assumes "9" if ISW(19) = 1 and 11 511 (or current read unit) if ISW(19) . = 2. Tl ! i i' l I I I i w I ln w Card Group. Card Number 5, 14 5, 15-l9 ' 5, 20 5, 20 5, 20 Parameter N;;une !TAP !DAY ISS IUS I' TABLE 3-4 (Continued) FORTRAN. Card EdH Code Columns, (Format) 75~76 :p 7-P ~6 '13-18 16 Descript:f,on VORrRAN lpgical unit number af concentration or depo~ition output tape. Default assumes "3'' ~ Th~s parameter ~s no~ read if.ISW(19) a 2. rhia parameter consists 9t an array of 366 ent~ies where each en~ry C!)fresponds to the 36~ Julian Days ifl a yea~, An entry set to. ''1 11 indicates that the corresponding Julian Day ~ill be processed by the program. For ~ample, ~f lDAY(l40) -, 1 then Julian D.ay 140 w~ll be processed by the pro~ram, Default assumes 0 for all'days. This parameter is not read if ISW(l9) a 2. Enter the surface station number af the ho~rly met~orological data~ T}lis number must match the station number ~ead from the mete- orological tape. This parameter is not read if ISW(19) a 2. Enter· the year (last two digits only) of the surface station meteorological data. The year must matoh the correspond!ng year read from themeteorolog:J.cal t:ape, This parameter is not read if ISW(19) = 2. Enter the upper ai.r statioq number of the hourly meteorological data. The number must: match the station number read from the mete- L_ orological tape. ------~------~--~~--~------------------------~ r-:-:: w I VI ""'" ITJ c:T: Card Group, Card Number 5, 20 6, 1* 6, 1* 6, 1* 6, 1* 6, 1* Paratneter Name IUY NSO I TYPE WAKE NVS QFI.G Card Columns 19-24 1-5 6 1 8-9 10 TABLE 3-lt (Continued) FORTRAN ~dit ·Code (Format) 16 15 11 11 t2 11 Description This par~meter is not read if ISW(19) = 2. Enter the year (last two digits only) of the upper air station meteorological data. The year must match the corresponding year read from the meteorological tape. Ent~r a unique source identification number for the problem run, Must be a positive integer. 0 = stack-type source 1 = volume~type source 2 = area-type source This parameter pertains only to stack~type sources with building wake effects. If 0 is entered or left blank, an 11 upper bound 11 con- centration or deposition is calculated. If 1 is entered, a nlower bound" concentration or deposition is calculated (see Section 2.4.1,1.d). Enter the number of gravitational settling cat- egories, Maximum number allowed ... 20, Default assumes 0, This parameter is ignored if JSW(23} > 0. Enter emission rate variation indicator. See input parameter ISW(23) for options. Default assumes o. -------------~----------~---------~-------J---------------------------------------------~ *Thls card is repeated for each source (NSOURC times). -r:~ DC"] Dl r:-J r::=-J rTJ r--l r"'"l c-.1 c--l r--~ c-l :lll c-r-J r-J i I I I 'l ! w I lll lll ~- Card Gr'oup, .. Parameter Card Number Name 6, 1~ Q ' 6, 1* xs ' ' 6, 1* YS i ' 6, 1* zs ' . I 6, 1* HS ; 6, 1* TS -~- i f TABLE 3-4 (Continued) Card Colum~a, H-1~ l 19-25 . 26-32 33-38. ; ~9-44 45-50 FORTRAN Edit Code (Form~~) FB.G F7.Q " ' •. F7.0 : . •;, ; ¥6~Q· Fq.O ' F6.0 ~~t~~ emissio~ ra~~. fa~ concentration and ~ype 0 and ·1 sources, pn,i~s are ~ass per t~e and for type 2 sources, units are mass per square meter per time~ ·For deposition and type 0 and 1 sources• units are in mass and for type 2 source.~,tnit~:~ are in mass per s~uare JBe~e~. X-coordinaJ:e (east-west loc~tion) in meters of tqe center of a stack or volume source·and the southwest corner of an area source. Y-coordinate (north-south location)in meters of the center of a' st~ck' or volume source and t:he southwest corner of all area source. ~levation of t~e source 4~ the source base (meters above mean sea l~vel). . . En~er source height (meters), For type 0 sources, enter stack height; for type 1 ~ources, enter height: ~t th~ cent~r of the volume source; for type ~ sources, enter the effective emission height. For type 0 sources, enter ~he stack exit temperature (degrees Kelvin); for type 1 sources, enter the initial vertical dimen- sion a in meters. zo *This card is repeated for each source (NSOURC tin1es), L. J w I VI 0\ Card Group, Card Number 6, 1* 6, 1* 6, 1* 6' l* 6, 1* 6, 2* Parameler Name .vs D liB~* IlL** Hw** Pill Card Columns 51-56 57-62 63-68 69-74 75-80 1-80 TABLE 3-lt (Continued)· FORTRAN Edit Code (Format) F6.0 F6.0 F6.0 Description For type 0 sources, enter the stack exit velocity (meters per second); for type 1 sources, enter the initial horizontal dim- ension Oyo in meters; for type 2 sources, enter the width (meters) of a square area source. For type 0 sources, enter the inner stack diameter (meters). For type O.sot.irces, enter the height (meters) of a building adjaeent to thiS stack source. F6.0 ·· ·For type 0 sources, enter the length (meters) of a building adjacent to this·stack source. F6.0 For type 0 sources, ~nter the width (meters) of a building adjacent to this stack source. 8F10.0 This parameter is not read if NVS equals zero from card 1 for a given source.. Enter the mass fraction of particulates for each gravitational settling category. En~er NVS values. L-------------~L----------L--------~-------L------------------------------------------- *Thls card is replllateJ for each source (NSOURC times). **lf non-zero values are entered for parameters un or IlL and IIW, the program automatically uses the bulltllng wake effects option (see Section 2.4.l.l.d). However, if liB, IlL, and IIW are not punched or are equal to "o," wake effects for Lhe respective source are not considered. CTI rn Card Group, Parameter Card Card Number Name columns 6, 3* VSN 1-80 GAMMA ' ~-8Q 6, 5** QTK l-80 TAB~E 3~4 (Continued) FORTRAN Edit Code · (Format) 8Fl0.0 Description ~his parameter is not read if NVS equals zero from card 1 for a given soQrce. . Enter the grav- itat:J.oqal settling velocU:y (Jileters per second) for each gravitational settl~ng category. Enter NVS values. 8fHl, ()' Tpis para~eter is not rea4 :t.f NVS equals zero ·· ~rom card 1 for a given ~ource, Enter the sur- ·face ~eflection coeff:lcient for each gravita- ):iopal settling c,ategory. E~ter NVS values. ·Enter the source emission rate scalars in a man- -h~r dependipg on the value of lSW(23) or QFLG ·.(whichever parameter is appl:lcable). If ISW(23) ,or QFLG "' 1 enter 4 seasonal scalars in the ·~rder of w~nter, spring, summer and fall (1 .card); if ~"~ 2, enter twelve monthly scalar~ begipning with January and ending with December (2 cards); if~ ~. enter 24 scalarq for each ·pour of the day (3 cards); H • 4, enter 6 scalars per card for each wind speed category and 6 cards for each of the ~ix Pasquill stabil- ity categories (A-F) (6 cards); and if= 5, enter 24 hourly scalars for each of the four seasons (12 cards). *This card is repeated for each source (NSOUllC till)es). **This card is not read if ISW(23) = 0 and QFLG "" 0 for all sources. Otherwise if ISW(23) > 0 then this card is read once; if ISW(23) .. 0, this card is read for each source for which QFLG > 0. m---'\1.,.,,,' ,,,. Card Group, Card Number 7* t 1** 7* t 1** 7* J 1** Parameter Name JDAY AFV IS'l' Card Columns 6-a 9-16 56 TABU~ 3-'• (Continued) FORTRAN Edit Code (Format) I3 F8.0 I1 Descr:lptlon Enter the Julian Day of this day of hourly meteorological data. This is used to com- pute the season or month if required for any sources which have variational emission rates. Enter the direction (degrees) toward which the wind is blowing. This value is alsp used as t;.he random wind flow vector by the model. Enter the mean wind speed (meters per second) measured at reference height z1• Enter the height of the top of the surface mixing layer (meters). Enter the ambient air temperature (degrees Kelvin). This parameter is read o~ly if ISW(22) = 3. Enter the vertical potential temperature gradient (degrees Kelvin per meter). Enter the Pasquill stability category (.l = A, 2 = D, 3 = C, etc.) *This card group is not read if ISW(19) .,. 1. If ISW(19) "" 2, this card group is repeated NDAYS times. **This card is repeated for each hour of the day (NliOURS times). CITJ. rr:-::J r:--:r1 -·-··. ,_ .. ,,J .~ L ", J TABLE 3~4 (Continued) Card Group. Parameter Card FORTRAN Edit Code D!=SCri~Uop. Card ~umber Name Columns · (F~·rmat) 1*. 1** p 57-64 F8,0 ·Th:is parameter is read only H lS\H21) = 3. Enter the ~in4 ~rofile ~xpon~nt~ 1*, l** DECAY 65-72 F~~o Enter the ~ecay coefficient (s~conda-1) for chemical removal of a ·pollutant for .th:is taoqr .. Default assumes no d~cay. This value overrides any valu~ en~ered. in llaram- eter DECAY in Card Group 5~ ~This caret grou~ is not read if lSW(l9) • 1, If ~SW(J9) • 2, th:is card group is repeated NDAYS times~ ..., J. .**This card is repeated for each hotJr pf tpe 4ay.(NUOURS times). 4.0 ~ ~ . . . . . . . - ·.:~:; -:.:·:: .. ···-····--···· -·-~ ·-----------······-··----·--··-······-----····· -------------···----·--··-···· Card Group (2) consists of the "ISW" array which contains most of t:he pro- gram's control or specification parameters. Also contained in Card Group (2) are parameters which specify the number of sources (NSOURC), the size of the receptor grid (NXP~~S and N!PNTS), the number of discrete receptors (h"XWYP.T) and the number of source group combi.nations (NGROUP). The maxi- mum number of sources and receptors is not limited to individual param- eters but is a function of four parameters. 'lb.is function can be described as where I...IMIT > NPN'!S • (NAVG • NGitOUP + 2) + NXPNTS + NYPNTS + 2 • NXW!PT + 215 • NSOURC + A + B + C NSOURC • number of input sources (see card columns 1-6 of the second card of Card Group (2)) NXPNTS = number of X points or ranges in the receptor grid (see card columns 7-12 of the second card of Card'Group (2)) NYPNTS = number of Y points or direction radials in the receptor.grid (see card columns 13-18 of the second card of Card Group (2)) NXWYPT = number of discrete receptors (see card columns 19-24 of the second card of Card Group (2)) NPNTS = NXPNTS • NYP~"TS + ~"XWYPT (total number of recep- tors) (3-1) . NAVG = number of time periods. . This equals the number of time period parameters (ISW(7) through ISW(l4) in the first card of Card Group (2)) set to "1" 3-60 [ [ -.r [' [ [ r l= [ c 8 c c [j u "" L [' [: 6 [ c r. Li c E fl_ ld· u t . . _. L L and NGROUP • numbe~ of source group combinations (see card columns 25-30 of the second card of Card Group (2))~ For the purpose of computing the required data storage for a.problem run, assume NGROUP equals "1" in Equation (3-1) if NGROUP equals "O" in Card Group (2) A •· NPNTS ._ NGROUP· if ISW(lS) equals "1" in the first card of Card Group (2); othenri.se A equals "011 B a 4 ... NAVG .. NPNTS •· .NGROUP if· ISW(17) equals "1" in the first card of Card Group (2); otherwise B equals "0" C. • 201 • NAVG • NGROUP if ISW(18) equals "1" in the first card of Card Group (2) ; otherwise C equals "O" tiMtr' ·•· ;: 43 ,soo~ Th:i.s· t.s: the. C:urrent data storage alloca- tion. of. the program: (consult Section 3 .2 •. 1 for modification. of this value) . Card Group (3) consists of parameters. which contain the recep- tor location information:.. If the user. chooses not to define a receptor grid (either NXENTS or NYPNTS • "O"), the program does not read parameters GRIDX and GRIDY~ Likewise, parameters XDIS .and YDIS are not read by the program· if the user chooses not to specify any discrete receptors (NXtVYPT . . •"0") • · All receptor location values are entered in a continuous manner with a values per.card fmage.in fields of 10 columns. Begin a new card image for each parameter input (GRIDX', GRIDY, XDIS and YDIS). Similarly, all receptor terrain elevations are entered into parameter GRIDZ (if . ISW(4) eqUals "l" in Card GJ;oup (2)), with a values per card in 10 column- wide fieldS. A new card image is. started, though, for each set of X-axis (range) locations entered per Y-axis point (radial). This format is described in Table 3-4 and Section 3.1.2.d. 3-61 Card Group (4) contains the parameters which define what sources cons~tute each source group combination. This Card Group is not read by the program if NGROUP equals "O" in the second card of Group (2). Parameter·NsOGRP reads up to 20 integer values per card in 4- column fields. Parameter IDSOR reads up to 13 integer values per card in 6-column fields. · Card Group (5) consists of meteorological-related parameters which remain constant once they are set, and identification labels and model constants. The first parameter in this Card Group (PDEF) consists of six cards, and is . read by the program only if ISW (21) equals "2" in Card Group· (2). Likewise, the second parameter :(DTHDEF) consists of six cards, and read by the program only if ISW(22) equals "2''. The following two cards (cards l3 and 14) are read by the program and contain parameters which have program-provided default values as indicated in Table .3-4. The user should note.that the default values of the units conversion factor (TK), the units label for source emission rates (IQUN) and the units label for concentration or deposition (ICHIUN) are compatible. That is, the default mass units of the source emission rates (grams) is scaled by the default conversion value which is compatible with the default mass units of concentration (micrograms) or deposition (grams). Cards 15 through 19 in this Card Group consist of the IDAY parameter. IDAY is not read by the program if ISW(l9) equals "2" in Card Group (2). This· parameter is an array where each column on the SO-column card image for each card represents a Julian Day. For example, to indicate that Julian Day 140 of the hourly meteorological data is to be processed by the program, IDAY(l40) is set to "1" which is column 60 of the second card of the IDAY parameter. The remaining parameters consist of one card (the 20th possible card-of this Card Group) and are not read if IS"w(l9) equals "2" in Card Group (2). Card Group (6) contains all source data parameters. Except for the last parameter (card 5) in this Card Group (QTK), this Card Group is repeated for each source input (NSOURC times). The first card of this 3-62 [ [ h C;- : [· r L· [ E 0 [ -. ~-. ··-· Card Group consists of the principal parameters used to define the char- acteristics of a source. Cards 2 to 4 pertain to the gravitational settl- ing categories of particulates (parameters PHI. VSN and ~) and are read by the program only when parameter NVS in columns 8-9 of the first card is greater than "O" for a·. given source. If. NVS is greater than non, cards 2 to 4 are read immediately following the first source card for which NVS is greater than "O'".. It should be noted that cards 2 to 4 of thi.s Card Group may actually consist· of more than 3 cards. That is, if NVS is . . -· greater than "8", the program will read more than one card for each of the three settling cat~gory parameters (PHI,. VSN and GAMMA). Hence, depending on the value of NVS, the program reads no cards, 3 cards, 6 cards or 9 cards for parameters PHI, VSN and GAMMA. After the first through fourth cards are read for all. sources, card 5 (consisting of the source emission rate scalar array (QTK.)) is read provided one of two options is exercised by the user. That. :i.s,. either: ISll(23) is greater'~than "0" in Card Group (2) or any· number· of· the QFLG parameter in card 1 of this-Card Group are5 greater: thali "0"' for' all illput sources. If both ISW(23) and QFI.G' are equal.~ t~-. "O't for all source~, .card 5 of this Card Group is not· read by·: the program.. ·. If ISW(23} is. greater .than "O", card 5 is read once and contains-the source emission rate scalars for ,ill. sourceS'. Also,. the. QFLG parameter in card. 1 of . this Card Group is ignored for· all input sources. If ISW(23) equa.l.S' "O", 'card 5 is repeated each time a QFLG. parameter .is greater than. "O" for a source. The source emission rate scalars contained in card 5 of this Card Group allow ·the ·user to · vary emission rates as a )!unction of season*,· month*, hour of the day' wind speed and Pasquil! stability category, or· season atid hour of the day. As mentioned in. the descriptions of parameter QTK in Table 3-4 and Section 3.1.2.e, the value of ISW(23) or QFLG (whichever is ·applicable) governs the number and manne.l:.. in which. the. source emission rate sca.l.8.rs are entered into parameter QTK:. · If ISW(23) ·(or QFLG) equals "1" ;~ QTK .""' *The program determines the season or month based. on the Julian Day ur month value read from the. hourly meteorological data. Consult Table 3-5 for the conversion used by the program of Julian Day to month or season, and month to season. · ·. · .. , __ -; ' 3-63 ' . . ' " '. -·" -,_ ~,-, , Reproduced froln ! best available ,co~y. j ,,, 111ou~r Jan • I feb • 2 Har'• 1 I I I l2 I ,, 2 2 2 )) 2 62 1 1 1 14 1 61 4 4 4 1S 4 64 5 5 5 )6 5 65 6 6 6 l1 6 66 1 1 1 18 1 61 8 8 8 19 8 68 9 9 !I 40 9 6!1 10 10 10 41 10 10 II II II u II 1i 12 12 12 43 12 12 ll ll I I 44 ll 1l 14 14 14 ,, 14 14 15 u n 46 IS 1S 16 16 IIi 41 16 76 11 11 11 48 11 11 18 18 18 49 18 78 19 19 19 so 19 79 20 20 20 " 20 80 21 21 21 S2 21 81 22 22 22 Sl 22 82 21 21 21 S4 2l 81 24 24 24 55 24 84 25 25 2S 56 2S as 26 26 2. SJ 26 86 2l 2J 2J 51 27 81 21 21 28 S!l 21 88 29 29 29 60 29 8!1 10 10 lO '10 ll ll ll !II -'-" 'fABLE 3-5 JULIAN DAY 1'0 MONTH/SEASON OR MONTH TO SEASON CONVERSION CIIART FOR LEAP YEARS* Sprln11 sU..er Apr • 4 . Hay • S Jun • 6 Jul • 1 ,.... • 8 Sep • 9 I 92 I l22 I IU I 1111 I 214 I 24! i 91 2 12) 2 154 2 1114 2 21J 2 246 ) 9~ 1 124 i 155 ) 185 ) 216 l 241 4 95 4 125 4 Ul> 4 I lib 4 217 4 248 5 96 5 121> '~ I Sl s 1117 s 218 5 249 6 97 " Ill " iSII 6 188 , 219 II 250 1 98 1 128 1 IS'J 1 189 1 220 1 251 B 99 B i2ll II 1110 8 190 II 221 II n2 9 100 9 uo 9. 161 'I llfl 9 2l2 9 2H 10 101 10 Ill 10 11>2 IU 19~ 10 221 to 254 li io2 ll IJ2 il lbJ II I'JJ II . 224 il 255 12 101 12 in 12 164 1:! 194 i2 ' 225 12 U6 ll 104 I! IJ4 II 165 I) 1!15 II ;t!Ct IJ . l'>l 14 IO~ 14 II\ 14 '"" 14 191! ••• :!2:' 14 ' 2\11 I> 4116 is lib IS 11>7 15 1117 , I} !!d IS ZS'I 16 tin 16 in 11.1 16U lb 1~11 '" 2211 lb :!1>0 11 108 l1 ll8 u lu9 II I !Ill I i 2JO I? 261' 18 109 18 !)9 Ill 110 18 200 Ill ~~~ Ill :!b.! 19 110 19 140 19 Ill Ill 201 19 2l2 Ill !in 20 Ill 20 141 20 112 20 202 20 U'l 20 264 21 112 21 142 21 Ill 21 :.101 21 2)~ 21 2b\ 22 Ill 22 141 22 114 22 204 22 2l5 2J 2b6 21 114 2l 144 21 us 2l 205 21 216 2l :u,; 24 liS 24 i4s 24 116 24 206 24 217 24 2b8 2S 116 2S 146 2S 111 25 207 2S. 218 lS .!t.'l 26 117 26 i41 26 i78 26 208 26 2)9 26 2;0 21 118 27 148 21 i79 21 209 21 240 21 271 28 119 28 149 28 180 28 210 28 241 21i 21:! 29 120 29 150 29 181 29 211 2!1 242 2!1 2iJ lO 121 lO 151 lO 182 10 212 10 243 JO 214 )I U2 'JI 21) ll 244 AU tWill Winter Oct • 10 llov • II llec • 12 I %15 I )06 I Jl6 2 276 2 )07 2 ))1 l 211 :) lOll l ))8 4 2111 4 )09 4 ))9 5 279 s 110 J )40 6 280 6 )II 6 141 1 281 1 )12 1 142 8 282 8 )I) 8 14) 9 281 9 , U4 9 144 10 284 10 115 10 145 II 28) II lib II 146 12 286 12 111 12 147 ll 2117 IJ 118 ll 148 14 2118 14 ll!l 14 J49 ·~ 289 IS 120 n JSU lb 2!10 lb 121 lb )51 17 291 11 122 ll' 152 I If 291 Ill J2J Ill Ul I !I 29J 19 124 I !I 1~4 20 2g4 20 )2~ 20 1~S ~· 29~ 21 l26 21 J56 !:! 2~6 22 l27 22 n1 u 2'17 21 128 21 H8 l!t 2~8 24 ' 129 24 )59 .!i !!I'J 25 no 25 )60 21> JOO :.16 Ill 26 )Ill .. •' 101 21 H2 27 162 211 J02 211 HJ 211 .161 29 lUI 29 114 29 164 'JO 104 10 us 10 li>S II JOS II lb6 •For non-leap years, subtract 1 from Julian Day numbers corresponding to calendar days after Febru- ary 28 • .. ,-----, l . ' I ! i [~ b c [, [ [,. c [ [ [ 0 c E o .. contains 4 seasonal scalars in the order of Winter, Spring. Summer and Fall (1 card). If ISW(23) (or QFLG) equals "2" ,. enter 12 monthly scalars beginning with January and ending with December (2 cards). If ISw(23) · (or QFLG) equals "3", enter 24 scalars for each hour of the day· beginning wi.th hour 1 and ending with hour 24 (3 cards). If ISw(23) (or QFLG) equals n4n, enter· 6 scalars per: card. for each. wind speed category (1 to 6) and 6 cards for each. of the· six. Pasqu:Lll. stability categories (A to F) for: a total. of 36 scalars> (6· cards).. If ISW(23) (or QFLG) equals "5" ,. enter 24-hourly scalars for each hour and 4 sets for each season (12 cards). Hence, card 5 of this, Card Group may actually consist of more than one card depending on the. value of ISW(23) (or QFLG). Card Group (7) contains the hourly meteorological. data param- eters. 'Ibis. Card. Group is not read if ISW(l9) equals "1"; instead all hourly meteorologi-cal.. data are. read:. f.rom~ an:o:input. tape, described in the following paragraph. (Section. 3.Z.3.b). · 'l:b.is. Card: Group· is, repeated for each. day of. meteorological .. data to. be·. pro.cessed. (NDAYS times). AJ.l.. meteorological data. parameters· are, contained on 0ne card. image which is read for each. hour: per day of. meteorologicS.l. data (NRO'ORS times). b-Tape Input· Requ:Lrements:,. . The ISCST program accepts an input tape fUe of· hourly· meteorological data in a format generated by the preprocessor program. (see Appendix. G)·. Although an input tape file is optional, most. problem run cases·· call. for hourly meteorological data contained in this format.. If input parameter ISW(19) equals "1", the program reads hourly meteorology from an input tape fUe. If ISW(19) equals "2", the program reads hourly meteorological data in a card image format,· requ:Lring ·no input. tape fUe. The program reads the input tape fUe from the FOR'l'B.AN logical unit· number specified in parameter IMET • .. The user is required. to assign the input meteorological tape and associ- ate the same logical uni.t nl.Diiber as specified by nt:E'!' to the input tape .(see Section 3. 2. 2.a). The· user must also. provide the surface station number and year, and the upper air station number and year which are specified in parameters· ISS," ISY, IUS and ItlY ,. respectively.. The user does not need to kn~ the specific format of the hourly meteorological 3-65 -------------····------·-· --------·--· ---·----------·-·--·--·------ data contained in the input tape file. For a description of the specific format of the input tape file, the reader is referred to Section G.S of Appendix G. 3.2.4 Program Output Data Description The ISCST program generates several categories of printed out- put and an optional output tape file. The following paragraphs describe the format and content of both forms of program output. a. Printed Output. The ISCST program generates five cat- · egories of printed output, four of which are tables of average concentra- tion or total deposition values. All five categories of printed output are optional to the user. That is, the user must indicate which categories are desired to be printed for a particular problem run. The five cate- gories are: • .. Input Data (Card and Tape) Listing Daily Calculated Average Concentration or Total Deposi- tion Tables • "N"-Day Calculated Average Concentration or Total Depo- sition Tables • -Highest and Second Highest Calculated Average Concentra- tion or Total Deposition Tables • Maximum 50 Calculated Average Concentration or Total Deposition Tables The first line of each page of printed output is a heading used to iden- tify the problem run (see input parameter TITLE in Section 3.2.3.a). 3-66 [ [ [ [ [ [ [ 0 c E --C n [ ~ [ L [ L [ [ [ E c c 6 . ~· .. u D u [ The user may list all input. data parameters used by the program for a particular problem run. If input. parameter ISW(6) equals "l" (discussed in Section 3. 2. 3.a), the program lists all program control parameters, meteorological-related constants and identification labels, receptor data and source data. Fi~e ~2 is an illustration of the content and format of. an input. data listing for. a typical problem run. The first page of the input data listing· mostly consists of the program control parameter· values,. number of input sources and number of receptors. The second and third pages· are a. listing of meteorological-related constants such as the· Julian. Days to be processed by the program (printed only if ISW(l9) equals "1"), wind speed categories, wind: profile exponents and vert_ical potent~ temperature gradients. Also included are the locations of. the receptor grid and discrete receptors. If receptor terrain elevations ara input (ISW(4) equals "1"), a listing· of the receptor ele-vations for all receptors is produced (not shown). The follow.:Lng page is-a listing. of source-. data. parameters for all sources. Subsequent~ pages related to the input:. sourcea,_may be: printed. if NVS or QFt.G, are greater .than ze~o ~ ~f· ~: ~ gr~ata~· t~· zero for an input. source, a listing is. produced of the. mass fraction, settling velocity and surface reflection coefficient for each gravitational. settling category. If Q'F'LG is. greater than zero· for an· 1nput source, a· listing is produced of the. source scalars: used: to: vary the source'"s emission rate. (Also, if ~(23) is greater tnan zero, a listing is produced similar to the listing for QFLG greater than zero.).·.· Additionally, the user may also direct the program to print all hourly meteorology processed. by tha program.. If. ISW(6) equals "2", the program produces a list of the meteorological data for each day processed as shown in Figura .3-3.. Hence; a page is· generated for each. day of meteoro- logy processed by the program (NDAYS pages if ISW(l9) :equals "2" or the number of entries set to "1" in the lD~ array if ISW(l9) ·equals "1"). . . The naxt category of optional printed output are tables of average concentration or total deposition values calculated for each day 3-67 -·--·---·----·---·-··-~------ r---"1 CJ '" I..> I <" 00 LdJ ••• --IIYFOIIIEIICnl fUinSH rro£££5111~ fllilll -~l)NCEIIIRiiriOII -~ ••• r~L£ULAI£ ICOHCENiiAIIOII•I.OEPd~llll)N•21 H£ErfOR 'RIO SUIU CRUIAIIGULAR•I OR ], POLAR•~ OR 0 DISCHIE RHHIOR SHUll IRHIRIICULIIR•I,POLAR•ll IE~-AIN EtErAIIOHS ARE READ IVfS•I.IIO•OI CALCULArl" nS ARE Mill lUll 10 IAU 0£5•1 .tiO•O l LISI llll IHPUI OAIA IIIO•t.'fES•I.ItEJ 011111 IILSO•H COIIPUIE AV£RRCE COHtEIIIRRllOH lOR JOIAL &EPOSIIIOd> UIIH Ill£ fOllOIIIdG JIBE PERIO~SI IIOURLYIY£5•t.IIO•Ol. 2-IIOUR ~ Y£5•1.1111•0 l J-HOUR llES•J,HO•Ol 4-IIOUR IYf&•l,lfO•OI f.-HOUR I Y£S•I.tiii•O l 11-IIOUR IY£5•1,110•01 12-HOUR IYES•IoHO•Ol 24-HOUR IYES•IoHO•Ol PRill! "8"-DAY 1118l£1Sl IVES•J,KO•Ol Plllll Ill£ fOLLO~IHG JY,£1 OF JAIL£& 111105£ 11Kt P£11005 Alt SPH If I [I) BY .15111 1l JIIIOIItH 18111 U I I ~AllY. !AllES IYES•I~HO•Ol HIGHESt & SECOHO KICMEll !AILES CYES•I.HD•O• ftAXIKUII $0 IAllES !YES•l,HO•Ol ftliEORDLOGICAL DAJA INPUf HEIHOO CPRE·PIOCES5EO•I,CAID•Zl RURAL-URBAN OPIIOII IRUIAL•O,URBAN IIOOE I•I.URBAII "ODE 2·~~ UIND PROFILE EXPONENt VALUES COEFAULI5•J,US£1 EHiiRS•ioJ) YtiiiCAL PDI IEIIP. CUOI£111 VALVE& CDUAULI&•J,USU EHIERS,•2ol> SC AU £1115511111 U IU FOR ALL IOUilC£5 I HD•O, YrS>Ol ' . " . PRIGRAII t~LCULAI£6 fiM.L 'LUHE RISE DillY IY£S•I.HD•2) PRD&RQII ADJUSIS All SlAt• NEICHIS fOR DDIIIIUASH CY£6•ZoHO•il MURDER Of IHPUI SOUitES HII118£R Of SOURCE GROUPS I•O.All SOURCES! TIME PERIOD INTERVAL TO 1£ PRIHIED <•O,ALl IHIERVALSI HUIB£R OF X CRAll&£) CRIO VALIIU IIUftBER or Y ITIIEUI UU VALUU HUIIBER Of OISCREIE RECEPTORS SOURCE EIIISSIOII RAIE UHIIS COHVEIIUOH fAtiOR EHIRAIH~EHI COEffiCIEHI fOR UH51A8l£ AIHOSPIIERE EHIRRIKHllll tO£ffiCI£NI FOR SJABLE AIIIOSPHERE HEIGht A&OV£ GROUND AI UHICH UIHO SPEEO UAS IIERSURED lOGICAl UNit HUIIB£1 Of IIEIEOROLOCltAL &AlA ~EC~V CO£ffiCIEHt fOR PHYSICAL OR tHEHICAl DEPL£11011 SURFACE SIATIOH 110. YEAR Of Slll!fRCE OAIA UPPER Ala SIAIIOH HO. YUI! Of UPPER IIIR UIA ftllOCAI£~ DAtA SIORACE I![QUIFEO ~AlA SIORACE FOR INIS PROBLEH RUU 1511(1). ISU<2) • ISIHJI • 1611141. !SlitS l • 1$11(') • I I 2 0 0 l 1511111 • 0 1511181 • . 0 ISVttl • 0 I SUI 10) • 0 IS Ill II I • 0 lUI IU • 0 IIIII IJ.) • 0 ISIIliO • I ISIIIUl • I "asuc U) " I SIIC 11) • IIIII IU • I SIIC I H • 1&11(20 •• UIIUI I • IIIIIU l • ISIIUU • 15111241. 1 sue u 1 • I I 0 I I 0 2 I HSOURC • U HGROU' • 5 IPERD • 0 IIXPHJS • U IIYPHIS • I; IIXU'IFI • H u •. 10000101 8£1U • .600 BEIA2 • .UO Zl • lo 00 METERS UEl • 9 P£1:11\' • . 000000 ISS • lUll ISY • '4 tus • 1 nra IUY • 64 liHII • 4J500 UOIOS Ill HI I • 18211 IIOUS FIGURE 3-2. Example input data listing (ISW(6) option). "-U ..... J LL; .... J en '-""· "~ ,L, J c-o r-1 ·~ c=J c--J ·j I I I ,_" ;---, ~ r--"1 c. J crl r--J :--J r-, l.., ' ' ·~ w I "' 10 • 0 I 0 • 0 0 0 • • 0 0 0 0 • 0 0 0 0 0 • • 9 . o • 0 0 • 0 0 0 0 0 • 0 0 0 0 I • 0 0 0 • • 0 0 0 I 0 0 0 • 0 • • •• a. '. iUIILITY CUUIIV • • c • E F • • • 0 0 0 0 • ••• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o· 1 0 0 o· I • • • 0 ••• a, •• rn HVPOliiETICAl 'OlA&H P~OtE&&ING PLIIN1 -COHCENTIIITI OH -- 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 0 • NUUU a •. 'H UUOIIOLOGIUL DAV& 10 BE PROCEUE·D ••• (! f•l ) 0 0 0 0 o·· 0 • • • 0 0 0 • 0 0 • 0 0 • 0 • 0 0 0 • 0 0 0 0 • 0 0 0 • • 9 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 9 .0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 ; I 0 0 .0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 9 0 • 0 • 0 ~ • • •• • ' 0 • 0 0 0 0 0 0 0 oF IO!JICE IIUI!'E~!I IEDU IRE' CN&O~Rr) TO DJfiN~ SOU ICE ''' .QU8C~ "U"8E~~ DJflliiN~ ~~U~CE G~OUPi ''' .•... ~ ... 0.) . 0 0 0 0 • 0 0 0 0 I 0 0 0 • • 0 0 ' I 0 0 G~OUPG .. , 0 0 0 • 0 0 0 .o 0 0 0 0 0 0 • •• a. -p. ••• UPPEI ~OUND Of fl~~· TNI.UGN 'fifTH ~IND IPEEO ~IJEGOI'E' ''' C!IEIHIIIEC) I . I OOOOt 00 • UOOOtOO ......... • nooo.oo . JOOOOtOO • JOOOOtOO ~~~~~ ·~~~· ~~·~~··' 2 . . ' ·.· .IOOOOtOO :ioOOOtOO • lliOOo.oo .ISUHH .20000t00 .• aooootOO .2liOO.tOo ;aliOOO,tOO . .30000~~· :30000t00 .JOOOOtOO .,009~t00 •· n, 10. ••· • .IOOOOtOO .auoo•oo . aoooo•oo .UOOOtOO .30000•00 .JOOOOtoO ll .IOOOOtOO • UOOOtOO .aooootoo • UOOOtOO . 30000t00 .:iOOOOtOO FIGURE 3-2. (Continued) 0 0 • • 0 0 • 0 0 0 0 0 • ' 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • • 0 0 0 • .IOOOOtOO .!UOOtOO • a:oooo•oo . UOOOtOO . 3oooo .oo . JOOOOtOO 0 0 0 0 0 0 0 0 0 0 I 0 0 0 ooo --NYPOTU£TICAL POTASH PROtfSSIHC PLANT • COHtENlRAJIOH --•·• • •• V£RtltAL POlENIIAl Ulll'fiHilliRE GRAOJENTS ••• (OEIOREES kElVIN P£R liE l£11 l SlAIIlllY Ill NO SPEEI> UlECORY UIECORY I 2 l 4 5 ' A . 00000 . 00000 .00000 .00000 .00000 .00000 I .uooo . 00000 .00000 . 00000 .00000 . 0~000 c .oouo . 00000 . 00000 .00000 .00000 . 0·0000 D .00000 .00000 .00000 .00000 .00000 .00000 E .20000-01 .aoooo-oa .20000·01 . 20000-01 .20000-ill . 20000•91 F .:nooo-01 .:Uo'00-01 . UOOO•OI . :U000-01 . :nooo-o1 . nooo-oa ••• K·COORUNAUI OF REttAIIGVlU Ulf> 8YS1U ••• CIIUERS> -3000.0. -aooo.o. ·1500 .0. -uso.o. -aooo.o. -uo.o. -uo.o. -400.0. -au. o. . o. aoo.o, 4 00. o. 600.0. 800.0. 1000.~. 1250.0, 1500.0, 2000 .o. J•)ot.o. ••• V-to OR 0 IliA IE S OF REtT liN GUlAR uio 6YSTU ••• (,) <liE TUB l I ,,, r},j ...... ·400.0, 0 -Jooo.o. ·2000.0. -uoo .o. -ano.o. -1000. 0• ~eoo.o. ·600.0. -200.0. . o. 200 .o. 400.0. ioo.o, BOO. o. I 000. o, uso.o. 1500.0, aooo.o. 3000 0. ••• RAHGE,JNEJA COORDINATES OF DISCRETE iiiEitiS.OEGREEB> RECEPtoRS ••• :15$ .•• 317.0>. ( uo.o. 318.0), iU.o. uo. OJ. 13$. 0. J22. 0 ), ( eoo.o. JU. 0 >. ...... UJ.OJ, ( too.o. U6 .0 ), ;ao. •• Hl.O>. 940.0. 346.0 ), ( 940.0, 3Sl.OI, tu.o. U6.0), ( tlo.o. I . 0 ), 950. o. '. 0). 1015.0. 11.01. ( 1055 .o. "' 0 ), 1015.0. 2t 0 I, ( a on .o. 26.0). l04S.O, 31. OJ. ns.o. 36.0 ), ( 910 .o. 41 .0). 85$ o. U.OJ. ( 755.0. 45 0). 620. o. 41.01. us.o. U.Ol. ( 4U.o. :11.0). n5.o. 56.01. ( :155.0. ". 0 ), 355. o. U.O>. 355.0. li.O ), ( no.o. U.O), H$ o. IU.U, ( J.n.o. IU.OI. 325 .•• 126 .• ,. 380. o. 136.0 ), ( 420 .o. I 41 .o ,, ·~o.o. 146.0>. ( 480.0. 151.0 ), sos.o. .,,_.,, sn.o • lr.t 0 ), ( 515.0. IH.OI, '2(). o. 111.0), ( Ull .o. I H. 0 1, 7011.0. 181. 0), uo.o. .. ,. 0 ), ( 14$ .o. 191.0) • 755.0. IH.U, ( us.o. 201.0 ), HS .o. 206.0). 130.0. 211 0 ), ( 705.0. 21,.0), ,, •. o. 221.01. ( no. o. 2U .o 1, 6to.o. 2li.OJ. uo.o. 216.01. ( U$ .0. 241 .0), 64$.0. 246. 0). . ( 615.0. 251 '0 ), 575. o. 256,0), no. o. Ul 0 ), ( 41:1.0, 266 .0), 410. o. 211 0), ( :JU.o. 276 0 ) • 165 'o. 286.0), 410.0. 2H.Ol, ( 1.1IGURE 3-2, (Continued) CTJ . C"'""J ,---.. ' . .J I I i ·L ..... J · [lL .. J ..• 111111011 uu nn·•·• · T II CUIIIIIIU Y A MURIII IYP£•1· IOUIU P IC P~ll. · C CIAI./UC) I Y IUIIII ~ I CIT&. ••II llt£1••1 Caltlll. ~111,1,. ,.,. '''~•'' •n~ .,. JUP. fVII•t uu.u 1111 9Eif.tll ILIV. IEIIIT TYPE•I . 'II'IIIU Ultf,llt• UUUU --~ ------. --. -~ ' . . a 1 • :1 I o . 4 I t I I I • • • r 1 t I I t t I t .. .. It ' • u •• u It 14 I t II I t . , .. ' ' ' ' ' ' ' ' ' ' ,. • • • • • • ......... .. u ...... ......... . u ..... . . u ..... . . UtottU . u ...... :uou••• . nou••• . uu•••• <uuottt . anuttl . anu•tl . auoo•u ......... ..... ~ ... HGUltE 3-2. (Continued) ·11.1 .... lit .• •••• .. .. .... n.o · n.t .... .... ..... au .o ..... an .o . ... . . ... . -n·• •• •• •• •• •• •• •• •• ~· •• ·• •• •• •• ··t •• •• ... •• •• •• •• •• • •• ... •• •• •• •• •• . :t .. ... ...... a.u • ••• , .... r.et ..... . I j .:It ..... ..... lf.U u.u u.u u.u ·u.u ..... • •• • ••• • ••• .... .. .. • ••• • ••• .... , ... •••• .. .. u.u . ... ,. u.u u.u Ht·U ••n u-.. lYPE•O CI/IIC) ILII. lDIZ.IIM llllffEI MEI,IT ,,,,.1.1 ·,y,,... ,,,, .• CIETEII~ Clfl'l') C~·TJl,. u.u o.u t.U t.U •. rt t.U .. ,. t.rt .. ,. t.rt ..,. ..... ..... lt.lt ••••• ••••• ... ••• . to • •• ••• ••• • •• ••• ••• ••• ••• ••• • •• ••• ••• , ... ••• ••• ... ... • •• • •• ••• ••• • •• ••• . .. • •• : .. • •• ••• n-•• IUS. ILl,, UIIUII IIIUII JYU•O TYU•t CIIJIII) CIIJEIS) ... ... • •• . .. ••• • •• • •• • •• • •• • •• •••• • •• • •• • •• . .. ••••• . .. . .. ... . .. . .. • •• . .. . .. ••• • •• • •• • •• • •• . .. . .. • •••• ••• KYPOIU£11£Al POIASU PROCESSIH& PLAUt -COHCEHIRAIIOH --••• ••• SOQRCE PARIICULAI£ OAIA ••• ••• SOURCE HUHIER • I ••• IIA&S FIIACI ION • . 10000. 40 000 • 28000. . 12000. .uooo • . 04000, SETTLING Y£lOCITY<H£lERS/S£C) • . 0010. . 0010. . o uo • . ono . . ouo • .0990 • SURFACE RfFLECliOH COEFFICIENT . 1.00000. . uooo. . 12000 • .65000 • . 59000, . soooo • ••• SOURCE HUHIER . 2 ••• 111158 fRActION • . 10000. 40000. . 28000. . uooo • .ouoo • . otooo • SEitLINC YELOClTY<HETEIS/S£C) • . 0010. . ooro • . 0 ItO, . ono. .uto • .uu . SURFACE REFLECIION COEFFICIENT • 1.00000, .uooo. .nooo. . nooo, .stooo. .souo • ••• SOURCE HUIBEI . 3 ••• IIASS FUCJION • . I 0000, .40000. . 28000. .12000 • . 06000 • .04000 • SEtTLING ¥ElOCIIY<IET£RS/SfC) • . ouo. . ooro. .ono • . ono. . ouo • . .,,o, &URFAI:E IEFLECIIOH COEFFICIENI . I. ooooo .. uooo. . nooo. .65000. stooo. .soooo • FIGURE 3-2. (Continued) l{. r--1 "''" . .J I I t I ' w I ...... w ••• --HYPOTHET,CRL POTASH PROCf&&IHG PLANT -COHCEHTRAliOH --••• ••• SOURCE PARTICULATE DAT~ ••• ·~~ SOUIU HUN8U . • ~·~ IIA&S FRACTION . . toooo. . 40000. .28000, .uooo • .o.ooo • . o~ou. &E TTLIHIO Y~LOclrV(N£TER&ISECI . . 6019· . 0070. .0!90· .• no, ...... .ouo • SURFACE REFLECTION COEFFICIENT . t.uou • . 82000 • . uooo • . uoto • . ttooo • . uooo! ••• &OUIC£ HUNIEI . I "' .. US& FIACT ION . • I 0009, . 400.00 • . uooo. . 1 aooo.-.06060. • ••• 00, . .. SETH 'Hii VELOCITY~IETER&IS~C) . . ooto. .0070. .ouo. . ono. . •• ! o. . ou •• &UIIFAC£ R(fLECTIOII COEffiCIENT • t.ooooo. :uooo! · . uooo . . uooo . . t,uo • . $0000, ••• &QUICE NUl~ (I • ' ., . liAS& FIACT ION • . 10000 • . 40000. . 28000. .12096· . uooo, . ...... &ETTLING VELOCITY(NfT£11/&fC) . .ooto. . 0070; . 0 ItO, _.ono. . 061 o. .Otto • $UIIFACE REFLECT ION COEFFICIENT . a.ooooo. . uooo. . 72000. .6,oot • . nooo. . ...... FIGURE 3-2. (GonUnued) ••• --HYPOTHEIICAL POTASH fROCESSJHC PLANT -COHCEHTRATIOH --••• tot SOURC~ rARTICULATE DATA ••• ••• SOURCE HUMBER • 7 ••• RASS FRACT JON • .10000 •. 40000 •. 28000 •. 12000 •. o,ooo •. 04000. SE TiliNG YELOCI TY< METERS/SEC I • . 0010, . OOlC., . 0190, . OJlO, . 061 O, . otto • SURfACE REFLECTION COEFFICilHT • I. ooooo •. 82000 •. 12000, .Uooo •. 59000 •. 50000, ••• SOURCE MUNIER • I ''' HASS FRACIIOH • .toooo, .4oooo •. 28ooo •. 12000 •. o6ooo •. 04000. S, lllllle YELOCITYUEIERS/SECI • . ooto. .oo7o. .ouo, . OHO. . 061 o. . ouo. SURFACE REFLECTION COEFFICIENT • 1. ooooo. . 82 ooo, . 12ooo. . uooo. . !no oo. . soooo. ••• SOURCE MUNIER • ' ... JIASS UACIIOH • . sooot •. 4oooo •. aaooo •. uooo •. uooo •. 040oo~ SETJLIIIG YELOCITYUETERS/SEC I • . 0010 o . 00 70 • . 0 ItO • . 0370o • OU Oo . OUO • SURFACE REFLECTION COEFFICIENT • 1. ooooo, . uooo •. 72ooo •. ,sooo •. stooo •. soooo. FIGURE 3-2 • (Continued) . , L!L _; r---, I •• _ _J w I ...... ln rn::J_ en rn ~·· --KYPOTHEJ!CAL POJAIK raocE&IING PLANJ -COHCEHJIATIOH --••• tot BOUIC~ PAIJJ~ULATE DATA ••• eo t IOUIC[ ,!lUKlE I! • , U tot NaU FIACJ ION • · . 10~oo. . •ooo~. . uooo, . u~oo. .04•0•· . •~ooo. IETTLIHC VELOCITYCHETEIIISEC) • · . oo 1o. . oou. . ouo. . ur•· .. "' •· . ·~''. IUIFACE IEFLECTIDH COEfFICIENT • 1. ooooo. . uo,o, .uooo; . ~uoo. ..,,... . ~otoh .. I I ••! HUI fUCfiOH • .. 10000 •. ~oooo •. 28000 •. 12000· ···~··· ·01090•. ~EJJLIH~ VELDCITVCNETEIIIIEC) • •0010, .00JO! I .OIU• .• u,, ., ... , .tffO! IUIFACE IJFLECJID. COEfFICIENT ! •. OOOOo; .12000• .UOOOo .UOOO, .,,o90! .~oOOo• l?IGURE 3-2. (Continued) [.:::.-] ... J:-::-1.-.L. J HIIUI UAUI HIUI - -.... -... IOUICE MD . I r u It ., . nGURE 3-2. .. • .aooot .. a a ......... • ., ....... 14 ......... u (Continued) L ..... HYFOtHEJICAL POliSH PIOCia&IHC PLAHf • COHCEHliAttOH --... • SOUICE UUUOH UU SC,liUU UHICH VIIY FOI EICR HOUI Of UE DAY • stiiUI KIIUI UAUI KIIUI IeAlA I IIOUI IULAR IIOUI SCALAR --.. -- ......... :J .UOOOtOl • .IOOOOtOI ' .UOUttl ' .uoot•Ol .UOot•OI t .sooottu .. .soouut ll .500tot01 u .SOOUtOI .IUOOtOI u .1000 .... u . IOOOOtU 11 .&OOOOtOI 18 ......... ......... u ......... u ......... n .IOOto•oa u .10000101 .~-. r---'1 L '" .J lET. UTa DAY II .... MVpOTMifi~AL pOf~·M PlltEI·I~~ PLAIT • tiiCJiliAfiOI --., . ' IETEOI,L9~·~1L Dill tDI ~IY II • UIIDOI! fLO I fLOII IIIII ..... , lltUI AUUIJU VUIOI vlnoa I flU lUlU lllp. ,ueuan .......... !IOU I liECIEEfJ CtEIIIEI~ UPI~ un,•H •• u. p CITEUtr $U,~on .,. ---... ""' ... -- I au .• ..... ..... U&.l ..... • • I ..... IU.f 1.u 'Ut.l ..... I I I llt.t u •.• J.U ru.a Ill. I I • • ·~··· Ill. t ... u rio.a au.; • I I ..... ..... '·" . rn.a ..... .. • ' ..... ui.t '.a r . "~·· '"·' • • 1 ••••• ..... .. ., rn. a au.o • .. • ..... n•·• '·" 111~ I an.• • .. ' ..... au.t t.n Ul .. l IU.I I I •• au. • ,. an.• .... , ... , an.r • • II ., ... .,. .. I .14 111 ..• au.t f .. II ..... au.t .. ., 1t4 .. , ... , • f u ..... au .• •. u ltl.t an.r I I w .. ..... ..... .... ••••• . .... .. • I II ., ... ..... '·" ..... ..... t .. ....... ....... " ..... ..... '·" ••••• au.• • .. If ..... ..... i.ar ..... . .... • • • •• ..... an.• •. u IU.t an.• ' I .. ..... '"·• •·u·-...,, au.t I I .. ..... Ul.t t.U ...;. au.t • I II ..... ..... I:U IU.J . .... I I II ..... '"·' ' .... lit:1 au.a I I II ..... IU.t • . II Ul .• III.J I I 14 au.t lfl·t .... 141.1 ..... .. .. FIGURE 3-), Exrunple listing of a day of meteorological data (ISW(6) option). ··----·--···--------· -·---------------·· ------ ("daily") of meteorology processed by the program. If ISW(l6) equals "1", tables are printed for each day for all user-defined combinations of source groups and time periods. As shown in Figure 3-4, each table con- sists of the calculated average concentration or total deposition values for all receptors. Although the concentration or deposition values in the output tables include five decimal places in order to~how low values arising from low emissions or low values relative to the highest values, the results of the model calculations should not be considered to be accurate to five or more significant figures. The calculated concentra- tion or deposition values are printed first for the receptor grid (if any). The heading of the table itidicates the day, time period, time period interval* and sources that represent the printed values. The heading information is also listed in a cryptic format in the upper right-hand corner of the page·.; The maxiinmn average concentration or total deposition value found among the table -of receptor grid values is printed. Ne.."<:t, the calculated values for the di:screte receptors (if any) are printed beginning on a new page with a heading similar to that printed for the receptor grid. The user may direct the program to print tables of calculated concentration averaged over "N"-days or deposition summed over "N"-days w.here "N" represents the total number of days of meteorology processed by the program run. If ISW(15).equals "1", tables are printed for all user-defined source groups. As shown in Figure 3-5, each table consists of the calculated concentration or deposl.tion values for all receptors. The calculated-values are first printed for the receptor grid (if any). The heading of the table. indicates. the number of days over which the table is produced ("N") and which sources contributed to the calculated values. The heading information is listed in a cryptic format in the upper right-hand corner of the page. The maximum value found for the receptor grid is printed. Beginning on. a new page, the calculated *See Table 3-6 for the hours which define a particular time period inter- val. 3-78 J. [ [ r L~ [ [ [ [ ·' rj b [ [ . i j I ' Time Period Interval Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 lS 16. 17 18 19 20 21 22 23 24 kllour Q-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 ·11-12 12-13 . 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 \· TABLE 3-p' .·;:i ·.,· .: :! : TIME P~R~Op l~T~~V4L~ ~ CORRESPO~ING liOURS OF TJIE DAY · Ti.Jne feriod .. 2-Hour 3-tlour 4-Hour 6-Hour 8-Hour ,·. Q-2 . 0-3. 0:-4 0-6 0-8 2-4 3-6 4~8 6-12 9-16 : 4-6 6-9 8-12 12-18 16-24 6-8 9~1~ 12-16 18-24 - 8-10 U-15 t6-20 --10-12 . 15-1~ ~0~24 -. - 12-14 .~8-2{ .. --14-16 21-24 ---16-18 ,.. ---·18-20 ----20-22 ----22-24 ------,.. --.. ----- .· --,.. --------... ;... ----·---------------.. ,.. ----------------.., ~' c J - 12-llou¥-" 24-Hour 0-12 0-24 12-24 --- ---... ------------------------------------- w I OJ 0 Ull.\'1 ,. H·lli/Ft l UROUI't :1 ... --MYtOIHEll,ll tOllSH PIOtEIIIHI PlANT • CQMCEHfllflOH ••• • UllY U·HIUI AVEIACE COHCEHTIAIIOH tlltiGCIAftlltUIIC IIUUI • • E~Oll$ litH HOUI 2i Fll DAY IU • • FIOI IOUICEII 12, t Fll iHE IECEPJOI Clil t -u. •· ftUIIIUII YUill EIUIU ltl.tltli AHO OCtUIIEI u ( aoo.t. -uo .u • Y· AX IS I X-AXII CIIUUU c "E 1£ RS l I -utt.t -auo.o -uoo.t -ano.o ....... ...... -uo.t ...... -200.0 --... -.. JOOO. 0 I ...... . ..... .Ottot •••••• ...... .uooo ...... .ttOOO . ..... 2ot0.0 I ...... .00000 ...... ...... ...... . ..... . ..... .uooo -•••o• 1500.0 I ...... ...... . ..... .00000 • ••••• . ..... . ..... . ..... ...... 1250.0 I ...... .oouo . oooot ...... .ouu .00000 .00000 ...... ...... 1000.0 I ...... . toooo ...... ...... . ..... ...... . ..... . ..... .00000 800.0 I ...... . ..... ...... ...... • ••••• . ..... .ouot ...... .ooou uo.o I ...... • ••••• • ••••• ...... . ..... . ..... .00000 ...... ...... 4to.t I ...... ...... . ..... • ••••• ...... ...... . ..... . ..... . ..... 200.t I . oooot ...... ...... ...... . ..... •••••• •••••• • ••••• . ..... .0 I •••••• ...... • ••••• . ..... . ..... ...... .ooooo ...... .toooo ·20 0. 0 I ...... . 00000 ...... .tttoo ...... ...... ...... . ..... . ..... -400.0 I ...... ....... .oout ...... ...... ...... .oooot . ..... ...... ·600.0 I ...... . ..... . ..... . ..... • ••••• ...... . ..... . ..... .00000 -800.0 I ...... .00000 .otooo .toooo .00000 .ttOOO •••••• ...... . ..... -1000.0 I ...... . ..... .oouo •••••• • ••••• • ••••• . ..... ...... . ..... ·UH.O I ...... . ..... • ••••• .00000 .oooot .oootO .00000 .oouo .tOOot -uoo.o I • ••••• .00000 . ooott ...... ...... .ooooo .uooo .oouo ...... ·2000.0 I . OttOt .00000 .00000 .00000 .ouu ...... .00000 . 00000 .ooou -30 00. 0 I ...... .oouo .0.0000 ...... .ooott ...... . ..... . ..... .ooan. FIGURE 3-4. Example listing of a "daily" average concentration output table (ISW(l6) option). Note that the results in the concentration or deposition output tables are' in fixed point rather than scientific notation for user convenience. No claim of model accuracy to five decimal places is made for this or any concentration or deposition output table. . l l I I i ~ IL.k:ll !:..1 DRilY I Ill 14-HIIPII l lliiiiUP. J ... -.. HYrOlM£JICIL r911~~ r~oC~If,MC rLIHl -CONC£~llll111H ... • DAILY a•-IIOUI AV£11C£ CIIMC£1JIIliOH CIICIOGIIIiiCUII~ ftEUU • t £1DIIC UIJ~ lOIII 14 FOI DAY 51 • t flU lOIII Ul u. -11, . t fOR ll£ IEtEr,oa ,1111 t • IIXIIIU VALUE ,,uau ltl.t1.74 AKII.GCtUIIEO u at •.•• -aot.H • V·AIIll I 11•*111! OIUUU unuu I ·• ato.o ..... ••••• ••••• 1900 .• '"' ·• ...... aooo.o -... --.. " -- Uot.O I ...... ...... ...... ...... ...... . ..... .00000 .00900 . ..... auo.o I ....... ...... ...... . ..... • ••••• . ..... . ..... . ..... . ..... uoo.o I ...... •••••• •••••• ...... . ..... •••••• • ••••• ...... . ..... UU.t I ...... ...... ...... ...... ...... . ..... . ..... . ..... . ..... uu.o I ...... ...... ...... ...... . ..... ...... ...... . ..... .00000 ..... I ...... ...... ...... ...... ...... . ..... . ..... ...... . ..... ..... I ...... ...... ...... ...... . ..... ...... . ..... . ..... . ..... ... ,. I ...... • 00000 ...... ...... •••••• ...... ...... . ..... . ..... aoo. o I ...... •••••• ...... ...... ...... ...... . ..... . ..... . ..... ' . 0 I ...... ...... ...... •••••• . ..... . ..... . ..... . ..... • ••••• -aoo.o I .otooo JOI.tltl4 •. nan ...... .ooou ...... . oooot . ..... .ouoo -400 .• I .uou U.6t4U III.IUU I.IUU ... .,. .ouoo .00000 ...... .00000 w -uo.o I .uau U.U'tU IU.40Jt6 :n.uu• I.UIH .oosu ...... ...... .00000 ! ...... I ... ,., •.• uu u.anu l'l.t11.71 .. n.u~u .61llt UUI .ooooa .uooo -uu.o I .ouu 4.aoou u.snu II.~UU II.UUl 7.41t4t .lti'J4 .00201 .Uott ..... -uu.o I. .tun a.uuo u.uus u.tout · 4t. inu U.64UI 3 .4UU .UUI .Ut01 •UU.t I . non ....... e.uua ........ U.tUU U.UUI U.I45U l.UIU .oun -aooo.o I .ntn .nur I.UUI ..... ,,. n.utn n.auu U.4UU U.IUU .U4U -u ... o I .tH27 .coua· $.uu• ·a. •nu 6.~tHf .,.nus ••.• ,.u Jt.~uu •· au u FIGURE 3-4. (Continued) w I (10 N Y-AX I& I U£ IUS) I 3000.0 I 2000. 0 I uoo. 0 I IUO.O I 1000.0 I uo.o I uo.o I 400.0 I 200.0 I . 0 I -200.0 I -400.0 I -uo. o I -800.0 I -1000.0 I -IUO.O I -uoo. 0 I -2000.0 I ~3000.0 I FIGURE 3-4. 3000 .• .00000 .00600 .ouoo .06600 .toOOt .toooo .00000 .00600 .00000 .ooou .oooot .00000 .OOtOO .00000 .00000 .00000 ...... .ooou .auu ••• --HYPOl~Eli~AL POlAIH PIOCEBII~G PLANT -CDHCEHll.liDH ttt • OIIILY 24-HOUR AVfiAGE COHCENTIATIDN CNICIOCIANI/CUIIC • ENDINC MilK HOUI 24 FOR DAY Sl • • FIOH 80UICEII 12, -U, • F.l tHE IECEPJOI CIID • NElli) • NAXIHUH VALUE EIUALI 20S.tlt74 AND OCCUIIED AT ( I-AXII CHETUU a to. o. • -au . ., • DULY I 51 24-Hftll"D I suourt 3 ------- - ------------ - - ------------------ ------ - ---- (Continued) i I I ,. -.~ ... ~ OAILYI :u 24·111/1'0 I IUOUI'I J ......... IIVI'QliiET IUL I'Qlilll P~QCEIIIN,G I'LAIII -CIIIICEIIUUIOII --, .. • OULY U•IIOI!I AVEiiGE COIICEIItiAIIOI fiiCIO&IAII/CUIIC IElU) • • IIIOIIIG llltH IIOU~·a, fOl 04V II • • FlU IDUIUII u. -u. • fOil IIIE ~·ICIIJI .ECEI'fOI ,.IIIII • -lliiC • -Ul -COli. • II!G • -... -COl. • IIIG --... '" u". ------·------------- n1.o IU.O .UtU UO.t Jll .• . ..... Ul.t Ut.t .OIOOt 731.0 na.t .totoo Itt. I U6.t ...... IU.I Ul.t ...... tot .• U6.t .t•••• Ul.t HI .t ...... ..... Uf.t . ..... ..... na.o .Uttt n1.1 JU :t .tttot ..... ••• . ..... no.o ••• •••••• .. .... .... • ••••• ...... .. .. . ..... IOU.t aa.t ...... un.t u .• ...... ltn.• U.t •••••• ttl .• u.o ...... .. ... . .... .tUtl IU.o U.l ...... 7U.t 41.1 ...... Ut.t u.•. . ..... IU.O .. .. ...... 4U.O :II .• . ..... Ul.l u.t ...... 111.0 "·• •••••• Ul.t U.l ...... n1.9 •••• . ..... no.o .. .. . lOtti Hl.t IU.t .l4t47 ,n.t ..... fi.UU& UI.O aaa.• Ill. 4tt01 uo .• IU.I ua.auu iU.t ULt Ul.fUll t:ll .• . .... IU.4HU 410.0 Ul.t n.una \IOS.t IS ••• •'·'"" n1.o au.t lf.IUU 1n.o '" .. l.latU ..... Ul.t .UUI Ul.t I U. 0 .OU4l i'U.O IU .t .tun '',l no.t ..... ...... ..... I U. 0 . ..... w· lll.t I U .t ...... Ul.t ltf..t ...... us.o IH.t ...... I uo .• a 11 .o .. ...... 7U.t au.t •••••• ..... au.o . ..... 00 w uo.o au.o ...... ••••• na.t · . ..... Ut.t au.o ...... '"·· Ul.t •••••• an.• au.a ...... fll .• au.o . ..... ,, .. au.o •••••• Ut .• uL+ • ••••• HS .0 "•·• ...... 411 .• au.o ...... IH·t H4·t ·~ftt~ ~n.o ~ ..... ...... H•·• ~"·' ...... FIGURE 3-4. (Continued) •11•-DAY lt fAYS IUOUrt a ... --MYPOIIIU JUL POTAIM FIOCEIIIMC PLAMI -toNHHTUJIOII --... • 80-IIAY AYEUGE tOIItEIITIATIOII ClltiOCIAIIICUIIC IIUEI) • • 1'101 IQUIUII a. -11. • fOI 1111 IE&EPTOI IIID • t IAIIIIUI VALUI UUALI lt.SI164 AID OCCUIIEO . , ( att.o. 20t.0) • Y-111118 I It-AXIl CIIElEIU Ul[ HRG l I ....... -aoot.t -noo.t -uu.o -uoo.t -uo.o -uo.o -400.0 -zu.o ... -----... "" ------ lOOO. 0 I .unt .anu . onn .tUU ...... .t0t04 .00000 .uooo .OOQU 2000' 0 I .suss .tiOU. .01144 .Jttll • IUU .oun .t0011 ...... . eo coo uot.o I .nut .uno· .OUOI .outo .nora .42U4 .tun ...... .ouu JUO. 0 I .uua a.anu .27411 .nut· .OHU .sun .nut .UUI .uou 1000.0 I .nut .11510 I.IUII ,,nu .tUtl .... .., .nsu .azou .OtoU BOO. 0 I . nna J.ou:u I. 54121 a.4UOI ....... .IUU .14UO .... ,. .91404 600.0 I .una I.Un$ I.UU1 I.UI'U 1.11221 a .iura .l.tU .UIIf .491121 400 .• I .Ut07 i .neu t.tnn a.naoa 1.ann J.IIUI 1.:U1U I.UIU J.IUU 200' 0 I .non .nuo I.UIU 2.11111 4.Uit7 I.JUU •. lltll II. lUll I. tfiOI .o I .lOUt .:ntoo .6uu ·.nut I~ iSU4 a.nau I.Utol 4.1$111 u.uus -uo.o I .lUll .lUIS .iuu .auu .07122 .nou .tOSU .ooou ...... -400.0 I . uon • OUOI .Otat4 ...... ...... ...... .00000 ...... . ..... -uo o I .00504 .OOUI . hooi .tuoo ...... ...... .00000 .ooooo .tOlH w -aoo.o I .unt . 00000 ...... • ••••• ...... ...... ...... . ..... .tlOU I -1000.0 I ...... ...... ...... .ttOU ...... .00000 .toOot .... ., .OUtS (X) -1250.0 I . Ootto .00000 ...... ...... . ..... .oooo• . 00000 .oun .auu ~ -uoo.e I ...... . uooo . 00000 ...... .otoot ...... . ... ., .OOUI .IUH -2000 .• I ...... .00000 . totoo ...... . ..... .ooua ...... .uarr .Ultl -noo. • I ...... . 00000 .00000 ...... .oton .tun .oaau .ouu .at Ill l f. j FIGURE 3-5. Example listing of an "N"-day average concentration output table (ISW(15) option). ~ ~ l· ' ·' .• . . l ·-J c-1 .. '1 .• J •;! I o '\ j ·~ .1 .' "11"-DAY 10 DAYS GUIIIIPt a ... ~-IIYPOJIEl IUL fllfllll ,~~1:,!11~9 rL .. l -COIICJIIUUUII --··~ • lt-UY .,, .. u Cp!lCUtUIIOfl C!JJUUUI.ICIIIIC IEfEII) ~ • fl.l IOUIC:IIl a. -II· . , .. filE IJC(flPI !illt f • IUIIUI yuu' E~UU~ ••·~~·u up 'C:CUII~p ., C ...... ., ... ) ' I Y· AIC II I x-~1111 unn~ » I Cllt:TUU I • • ..... ..... "~·· ..... • ••••• 12~··· ...... . ..... I -------.......... nu.o 1 ...... .tun ...... .nut .UIII .aun .liiUI .utu .nut I Uot.t I ...... .urn . ..... .10412 . ;nttr .4rna .UIU .UJII .nus ISU.t I .UUt .uau .tnn ...... .UUt ...... 1 .nut •. ISSU .uui 1200.0 I .tUU ...... t.UUI .nut .latU LUlU 1 .nut · l.tUU . ruu I toU.t I ...... I.UIU , .tUit a.aun t.UU7 a.auu a.JHtt I.UUI .UU6 Ut.t I .ouu a.UUI I.UU4 l.lttrt ;w.uuo 1.14141 I .UUI , ...... .nau Ut.t I .uuc I.Ulll I.IUU I.UUJ · 4.uau a.uua I .U1J1 .UIU .IUU Ut.t I ...... t.tun t.IIUS s.unt a. nna J.UtU . JtiOt ·""' .JOUI ~ .... I .U7H tt.UI64 t.Uill .. "'" ......... J .uua .una .+nu .auu ·• I ...... a.ntll ·'"" ·.nul· .uau .uus .IU~t ...... .uua -au .• I .... ,., • .... u c.snu a.uus .HUt .11242 .ttJU .oun .uno -ut.t I • .ouat t.t47tt a.usn ,. Uftl . ....... a.aun .41sn .auu .tUU ., .... I. J.lltlt C.UUI a.ut7t .SUOI '·'"" i.ouu J .U14J .una .usu w -lot. o I a.unt •. nut J.tnu .end .IUit LUlU .uus .UIU .uua I -uu.o 1 l.tUif I.IUU a.uan t.1.7U .una .aun .71602 .uou .UUl CXI c.n -ano.t 1 a.utn a.uao• a. UUI a.cuu ·"•" .anu .auu .un1 .IISU -uu.t 1 a.auu 1.41146 a.nut a.anir .14H' .,nu .ISltl .au12 .UUt •UU.t I .IOIU .71417 1.nu• ·:tun .usn .uau .attn .UU4 .tUU -u•t.t 1 ·•••at .UlU .nn• ,~n•? ··~·~· .urn .JttU .10411 ...... I ; I i FIGURE 3-5. (Continued) w I 00 0\ Y-AICII I UEJERS> I 1000.0 I aooo.o I .,00. 0 I 1250.0 I 1000.0 I 800.0 I uo.o I 400.0 I 200.0 I .0 I -uo. o I •400.0 I -uo.o I -800. 0 I -1000.0 I -1250.0 I ·IUO.O I -2000.0 I ·lOOt. 0 I I!'!CURE '.-5. 1000.0 .uou .iUU .usu .IUU .uou .usu .uuz .zuu .. ,,. .tJtU .... ., .ouu ... ,. .osnt ..... , .uuo .nuz ,.,., .onu ••• --HYPOIHllltAL PIIAIH PIOtlSSIHC PLANt -tOHCENIIAIIlN --••• • lO·OAY AVEIAC£ tOHCEMIIATIOH CNICIO,IAII/CUIIC MEIEI) • • IAXIHUN VALUE EIUALI • fROM IOUIUII a. -11. • FOR JHE RECEPIOI CliO • lt.IS1'4 AMI OCCUIIED AI ( IHIIIII UETEIU aoo.o, --·----:~ au.o• • (Continued) 'i r--, ' •tt•·tAY 10 UYS SI:ROUrl 2 •11•-tAY It UYi ......... 2 ,. .. --11\'POIIUIUL ~lfA.II PIGtEIIIIIG rLAIIf • COIICEIItlllfiOII --.. , • ·~-··· ~VIIUE ~·~~~~~~,,~,••• ~w•c••'·~·~~'uoac IETU~ • ~·, • filii .. UIU:It a. .... • fl~ ,., tJI.CIEfl 'ICEPfl' fllllll • -IUIG • -... -til II. -1111 --,., - .. ~··· -1111 --... -Ull. ---.. ----- 5:U.O ur.o . uno uo.o lU.t .una , .... uo.o .uou · fU.t ua.o .unt ••••• IU.t .run "'·' Ul.t f.IU6i tot.O lU.t .rons tat. I Hl.t. .litlO ..... , .... .ouu uo .• Ul.O . uua us .• ~u.t . .... , , .... ••• .ttatl uo.o '·' .uau uu .• .... .HUI Ull.t .. .. 1.7UU 1011.0 u.t 1 .tun un.o a6.f LIIUI· ....... u.• I.IUU tn.o 36 •• l.7UU ..... .... 1.11141 ..... U.t t.Ulll UI.O .... 6.aun u •.• u .• t.auu 111.1 ..... u.auu uo.o u.t 11. aaou ..... .... ,t.rnu an.• "·· u.una IU.O "' .. ... uut au.o "·• a.ntu no.t u .• .• '.41611 I Hl.t .. , .. I.UIU IU.o IU.t t .suu 121.0 IU.t t.nin I 310 .• IU.t a.uua uo.o au ·•. •·""" .nt.t ..... ,.nan I ..... ISI.O e.ann u:~.o .. , .. e.suu ns.o IH.t • ... uu I I su.o "'·' 7.71SU Ut.t Ul.t. ~.IUU us .• I 76. t ~.nan fU.O Ill .o a.nuo nt.t ..... .lUll 741.0 ltl.O · ... .,. j lA fSI. o '" .. . UU7 111.0 ata.o ...... 741.1 au.o ...... &, no.o Ul.t •••••• US.t .., .. ...... uo.o au.t ...... uo .• au.t • ••••• ..... au.o ...... ..... au.t . ..... ~ us .• IU.t ...... Ul.t au.t ...... .. ... as a. • .tun sn.o au.t .ouu ..... '''·• . ,,14, HS.t au.• a.nu• ..... Ill. t ' ....... lU.t lf6.t .. .••• u JU.f zu .• , .. "''' ...... au .t U.tUIH ncmm 3-5. (Continued) ------·-·---·------------------·-·-. ---------------·------ values for the discrete receptors (if any) are printed with a heading similar to that printed for the receptor grid. The program may also print tables of the highest and second high- est average concentration or total deposition values calculated at each receptor point throughout the duration of the problem run. If ISW(l7) equals "1", a table of the highest and a table of the second highest cal- culated values are printed for all user-defined combinations of source groups and time periods. Figure 3-6 is an illustration of a highest calculated average concentration or total deposition table. The second highest table is not shown but is similar in format. The calculated values are first printed for the receptor grid points (if any). The heading indicates the time period and sources which represent the calcu- lated values. The heading information is listed in a cryptic format in the upper right-hand corner of the page. The maximum value found among the receptor grid values for a given table is printed. The calculated values· for the discrete receptors (if any) are then printed beginning on a new page. Beside each calculated value for all receptors , the day and the·time period interval* are enclosed in parentheses and indicate when the corresponding highest (or second highest) calculated value occurred. The final category of printed output that may be produced are tables of the maximum 50 calculated average concentration .or total depo- sition values found for the problem run. If ISW(l8) equals "1", a table of the 50 maximum values is produced for all user-defined combinations of source groups and time periods. As shown in Figure 3-7, each table consists of a heading and the maximum 50 calculated values. The heading specifies the time period and sources that represent the maximum 50 values. The heading information is also listed in a cryptic format in the upper right-hand corner of the page. For each of the maximum 50 calculated values, the order (rank), the calculated value itself, the *See Table 3-6 for the hours which define a particular time period inter- val. 3-88 [ !1 F -- r LJ ; f' {' L. f' l " [ r· L [ [ r L c r t 'b [ t1 L l FIGURE 3-6. Example listing of a highest average concentration output table (ISW(l7) option). HJCH 24-111 IIUOUI'I ... --IIYPOJHEJJt~L POJAIII PIOtEI&IHC PLANf • tGHCEHJIAJlOH ••• • HI,HE&f 24-IIOUI ~¥[RAGE tOHtEHfiAIIOH CHlCIOCRAIISICUilt HEUIU • • fROB SQUICE&I •• • fill tHE IECEI'JOI CRif • + IUUIIIIUII VALUE UUALI UU1.UtU 11110 OtCUIIED Ill ••• -aoo. o • • Y-RMIS I X-Allll UEUIU I~ETER&l I •100.0 -uo.o -400.0 -au.o .o ... ""' -... 3000 0 I .UI87 c au. II .oun ( lt i. I) .00002 ( ur. II . to&40 uu . I) .nne uet. I) 2000 0 I J .HIU cus. II .2UU ""· I) .00440 Cltl. I) . otOII uu • l I I.OUH c au. II 1500 0 I lii.UUO (us. I) '.sun c aos. ., .nn~ can. I) .tour ( 117. I I a.onu Ult, I I 1250 0 I JU.UUO (us. ., n .nuo c aos. ., I.SOJU ( 111. I) . 00314 cur • I I 3.07051 cut • ., 1000 0 I an.una cus. I) 411 ... .,, (us. ll lS.OStst ( ur. ., . 04UO ( 187 • II S.01164 cut. I I 100 0 I ur.IOOU c 111· II Ul.nrn nos, ., Ill. roUI (Jtll. u .sun ( ur. I I 1 .sou a uu. I I 600 0 I llU.tstU c au. u ua.uou ( aer. u ttt.tHU (us. 11 12.40346 cur. I) U.Hrll C2tt. 1 ) 400.0 I nu .unr (us. I) 3f2J. u 122 cur. I) 4U.UU5 C 111. I) UI.SlSit uu. I) u.attu uu. I I 200 0 I HU.Ittil cau. u SUf.IUll nos. n uu.iuu (us. 11 UU.UUI Clll. I I llt.Utit CUt. I I 0 I 21 U .ltSU uu. ll J~IO.Uf6t uu. II 5UI.OUt4 cau. I I IU24.U703 can. I) .00000 ( o. ., -260.0 I ".nu• <au. II .ntu uu. I) . 00010 ( .. , . u . 00000 un. II unr .nut (337. II -uo o I .UOO.i (187, II .00000 cur. l) .00000 ( l31. 0 .UUI U;Jl, II u~u .1et01 uu. II -uo o I 00000 c nr. H . 00000 CJU, I) . 00000 nn. II tl.tUU nn. II UU.UIU cnr. I) -eoo. o I . 00000 cnr • II .00000 cur. II . uuo nn • II no.uut uu. II Ul1.t1UO cnr. I) w -1000 0 I . oouo cnr • II . 00000 cur • I) . 71112 ( 331. i) tU.tUU uir • II uu.uau nu. II I -12:10 0 I .ooou cur. II .oo4u cur. I) u.uou cur. 81 nr.tUll cnr. II Ul1.04Ut un. I I \0 0 -1~00 0 I . toOU cur • II . 2UU un . I) Sf;UrU cur. ., Ut.OirU un. II ., ......... un. II -200 0 0 I . 12181 (331 • II U.OOIH (331, I) UO.U051 qn. I) IH.U4it un. .. tU.IUIIt (~37. I) -30 9 0 0 I u.nuo (JJ1, II U.U222 cur. ll 2~7. 32t4l c nr. ' ) 3U.211" Cl~r, I I 51l.20028 cur. I) FIGURE 3-6 • ((,!ontinued) . ~ 1...----l r ~· • ;; I I j I i I ·j w I \0 ...... r--;. ' " ···-~ • HICHf&t 14-NOUI AVfRAC£ COHt(HtRATIOII CNICIO~R~NIICU.IC 1£1£1) • t flU IOU lUll ' I, . t fOI lHE !IJC£,181 Clli ' • IIAXIIUII VALU~ f.UIU.II ~~nJ.~HII1 !IIID \IUUUJO uc ••• -a•• ·•, • Y-fiKU I ll·allll <IIU£!110 . (IEfUU I u•·• .... , .. , .. . ... , ...... --....... · ... ... -... ----... - ----------· -- lU4.0 I u.onu Ult, I) n.tnn uu. I) au~ 16H2 c au. I) IU.UIU can. I) U:t. UUI UU. 2000.0 I n.auu C21t. u Ul.anu uu. H n.t.ttna cut. p JU.UUI Uat. I) IU.H1U CUt. UOO.O I Jti.JUft uu. u Ut.Utll (lit, u ua.un• (lit• u tu.uns uu. u ut.tnu nu. 12110.0 I ua.tuu (alt. u ns.1uu uu. u uu.auu can~ n 1U.1Uit uu. ., uu.uns uu. UOO, o I IU4.UIU uu. 0 UU.ItlU (aU, u US6.Uste uu. uu.uou nu . .a, un.nu• uu. UOO I UU.1UU can. u UU.tltU UU, u uu.,un cua. n Ut&.JUU nu .. , , Ua4 .ouu cau. 400.0 I IUO.UU4 uu. u uu.?uu nu. u uu.auu uu. n· uoa.suu CUt. p 4 ;~: :::::: g::: 4U.t I nu.tuu uu. I) S6U.4UU UU. p JUI.SUU «Itt. n uu. tun uu. l) 200. 0 I UIH.tUn uu.·u 111$.1611t (Itt. u su.nua can. l) un.oasu nu. n na .auu nu. .0 I 121.76121 cut. I) UI.UUI <au. u · an:tuh can. l) IU.U1U cut. ., U5.6U4t uu. -ao,.o 1 uu.nut cau. I) Ut7.una cut, I) UU.tU11 CUt~ n en.nua UU. I) no .ouu uu. ·HO. 6 I 7Ut .U07t ( Sl. u UIS.IU70 UU, u •1u. tn7~ • ut. n UH.4,no uu. I) u:u.suu uu. ·600. 0 I .an.snu c u. I) UU.tUU c·u, 0 4tt.SU14 uu. I) us.onu uu. I t uu.snu uu • ·100. 0 I IUS. 721U uu. I) un.uno c u; I) · nt~ usn c u. 0 au.unt uu. l) en .uua uu. -uoo. o I . UU.1UU nu. I) 2171.45711 C IIi. ., 1n.uno c sa. u &U.SOSS7 c sa. u U6.1tUt cut. ·1250.0 I aon.uuo CUf, u liU.1lU1 C u. i) un.oun c u. ., 4U.U2U ( 51. l) ••• ·'''" ( u. -tsoo.o 1 uu.uon cn1. u U4.JUU nn. 0 , .... tun c u. u US.Iltlt c u. I) IU.12tU C 51. •2000.0 I l0tl.t01U CU1. I) S24.UUS nu, I) 101.tUIS ( Slo u fU.2U42 c 11. I) Ut.U4U C u. ·lOOO.O I •n.sun nn. I) fii.UISI nH• p us.nn~ cur. p u,.Jaeo~ nu. n ,.o.una c u . .. FIGURE J,.-6. (Continued) Hila! 24·111 ICflGUI'I I l) l) l) l) l) u I) I) I) I) ., I) u u I) l) I) l) ., HIC:H 24-HR SI:ROUPI ••• --HYPOIHEJ I CAL POJASH PROCE881HC: PLAHJ -CQNCEHJRAJIOH • •• • Hlc:HESJ 24-HOUR AVE RACE COHCEiiJRU I OH CHICROC:R8"SICU81C HEJERI • • FRO" 80IIICU! •• t FOR JHE RECEPJOI C:RlD • • IIAIIIIIUII VALUE IEIUALI aUS7oUU4 AIIO OCCUUIED .. 0 o. -aOOoOI. Y-nXI& I X-AXII CIIEJEI&I (liE T[ R S l I I2Uo0 1500 0 0 UUoO JOOOoO ---.. ---- ----.... ------... --- 3000.0 I na. tU14 c 21t. JOI oiUU uu. ) anoaUU nu. atlo6l136 uu. ) 2000.0 I 388. JOU4 c au. U3o JIU4 c 312. I uoono41 uu. UOo 71:102 uu. I 1500 0 I aas7. SUtC nu. 6Uo6UU c 312. ) 4llotUI1 uu. aUoUIU uu. I 1250 0 I IUoiUJI CJU, Ht o 720U cut. ) U4o uooa cut. Ul.IIUI CU't. ) 1000.0 I tli.70UI can. IUo4l2U cut. I UOoaUtt c au. uo una uu. ) 800 0 I laU.7:UU CUt. 7U.I1H7 un. I au.nut un. IUoSUU nu. I 600 0 I 142. usu can. Ut o 74Ua c u;. I :· iOJoUU7 uu. uonoao nu. I 400.0 I "o4l4t0 (3J2, 44to645U cua. I aUo72Ut uu. USoSt004 uu. I 200.0 I 47& 074021 un. 414.32:155 c au. I . l22oUOIO c au • UoOUU CUt. I .0 ·I uoauu cau. n 0 ouo1 cau. I UoSa4U cut. 24o ll4U uu. I -20 0. 0 I UoUOU cut. lloUOU c 22t. I :Sousor can. 31o00tll uu. ) -4 0 0 0 I U4 Ul41 c a at. Hi o OUS4 c aat. ) 7Zo3UU CUt • 4.aOJU caat. I -600 0 I un. sno1 c aat. 613.32644 C 22t; I 214 0 u;oa caat. Ho 60614 c 22t. II w -800. 0 I 6:11.7S7t7 c au. toi oauu c 22 t ,· I 412 o JU4S CUt. aoa 0 sun CUt• a I a -1000. 0 I 611.7Utt c a at. ) UJotiUI c aat. il U4o02tl7 c au. l10o60JU uu. I I \0 -12:10 0 I IJI.t:l607 c a2t. II UtoSUS1 c 22t. II 3Uo nuo c a at. auo 67601 ( 22t. I I N -ISOO. 0 I sa. usu c s I. II Uo OtJU uu. II auoauu c au. 323oU40a uat. I I -2000. 0 I Itt oSUI1 c sa. II l4oiHS3 c sa. II ·uousos CUt, anolOUa uit. a I -30 0 0. 0 I 35toHUa c sa. II an 0 ouu c S I, II IOo 32tsl c sa. 27o 310454 can. i ) FIGURE 3-6. (Continued) -of' -(,,,,." on r---1· L •-'·•·· 1 r::-: C"T"J rr---'1 U ...... ,.J j j li, I J ... ) ..... ,,,._,_,_,,j J -.. IIIU ·I 24·111 IUOUI'I l I ... --IIYf&JIIETICAL '''''" ,,.,~, ... , pLilll -~OIIC£11Tall1011 --••• I : I • IIUIIIU 24-IIOUa 1¥11111 tDIICEIITIIfllll CIIICI051iiii/CUIIC IIUU) • . I i • filii IOUICIII . J, I • fUI liiJ ~$1C.El£ ~EC£,101 pOINTS • l -.. , --Ill -COli. 4,U,P£1.) -1115 --1111 -CON. c~•V·r£1.) i . ........ -.. . .. --... .... ----... .... ---- -----.--... ---"" ------.. ---..... an.o JU'.O UJ.Ullt c au. I) Ut.O UI.O 211 .4UU C 111. l) iU.O uo .• au.nut C Ill~ u na.• ua.o JU.tU4t n••· u ..... IU.t en.u•u c 101 • I) eu:o Ul.t fU.tUU not. i ) ..... U6.t I i. IU 16 uu; I) no.o ..... i. uno on. I) ..... IU.t .uua Ulf• •• ..... J:U .• .oouo un. D tU.t 116.0 . una cau; u ..... .... u.asda UJt, l) ..... ••• Ut. UIU cut. I) IUI.t .... UU.JUU cut • I) uu.o u .• .... 71166 uu. u 101'1.0 u.o 1064.22111 cut. u un.t u.o UU.tUlt cau. n ••n. • u .• lloi.UUI uu. I) ttl.t u .• UU.tUSI uu. 0 tlt.t u.o 17U.IUU nu. I) en.t .... UH.J04U uu. u no.t n.o UU.IUU nu. I) Ut.t 47 .• Uti.IU41. cut • ., lat .• u.o 6116.tUU uu. u Ut.O. :II.. JIU.II414 c au, H au.t :u .• U2t.UUI c au, I) an.o "·· .., •. uuo uu • .. 111.1 U.t nu .uou qu, u Ul.t .... 6U.70011 uu. I) lit .• "·• Ul.tUU CUt, ., Ul. 0 ..... IULUIIa ·cut. u an.• ..... Ul'U.tUU cau. I) ui.t IU.t UU.Ul'U uu. u uo.t au.o lU1.,UH cu;. l) w 4at.t' au .t uu.uau ' u • .. uo.t ..... aan.nne ( u. I) I ..... Ua .t Ul'l'.Utll ' u. ., ltl.t au.t 7llt.IUlt ' u • .. \0 liU.t ..... Utt.Uttt c 11, ., . HI. t IU .t JUI.UUl can. I) w Ut.t ...... U1&. U't7 CUi'. p •n.o ...... ·IUI.UOU ( :nl. I) 7U.I 111.0 lott.UU1 nn. u no.o ..... ana. utu nn. I) 1U.t ua .• •••·•un on. u 7U.o IU .t ......... uj7, I) 111.1 au.t J.Unt jan. p i'U.t au.t .ouu uu. I) nt.t a 11. • ...... can • u 1U.t au.t .00000 un • u Ut.t Ul.t ...... nn~ u Ut.t au.o ·••o•• CUi', I) ,,., 0 U&.t ...... CIU,·I) . uo.t ~~··· •••••• uu. l) Uil. t 141.0 ...... ( ..... .. us.o au.o .00244 un. I) 6U.t 211.0 . UUi' cua • u 171.t au.o ••.• uu uu. I) nt.t au .t 7tl.IUU cau. I) tn.t au .o :nu.utn cau. I) ..... au .• uu .• uu cua. u IU.t all .• tut.nau uu. I) a61.6 au .t uu•. a,n• c~u; p ..... at6.t un.uou nu. I) FIGURE 3-6. (Continued) w I 1.0 ~ -''" IIU U U·KR scuure ... -~ IIYPlll HE IIUL POIAtH PIOCEIIIHG PLAHI -tOIItEHliAliOH ••• • SO IIAXIIIUll 24-HOUI AVERAGE tOII,lliiiAJJON tllltlliiiAIII/tUIIC IIEIIU ' • fiDll SOUitUI 12 • -u. I Y<KUUU X YUEUIS) 01 01 Ill .. lUGE DIRUiiDII IlliG[ URI UlliN RANI 1:311. PEl. DAY CIEU'II) :uuuu 111111: 1:011. Pll. DAY tiEl US) UURUU ............. ---- I JU .lUll Ut HS.O IU.O u 174.71U6 I ua 600.0 400.0 2 U7.13UI Ul 200.0 -aoo .o u IU.IIU4 I lOS -uo.o a .. ,o a IU.IUU JU JS$.0 ".o 2t uo.oun i JU 4U.O ill .0 4 UI.UUO au ns.o U.t It nt.1nn I Ut 400.0 -aoo .• ' U4.1UU J:U UO.t •400 .• u 1U.n1n I 262 -200.0 •• ' U0.4U08 Sl us.o UI.O Jl IU.4UU 1 Sl 4\'10.0 aU.t 1 UI.IUU II :no.o au.o n 14S.U4SJ I nr uo.o 141.0 • 2n.sun Ul us.o au .o n IU.4UU I Sl 400.0 -uo.o t ne.tun nt ..... ..... u an. nut I JIJ sn.o u.o 10 ni.tnu 20$ -aoo.o uo.o n IJ4.Ut04 I 221 ns.o IU.O II no.snu Ul 410.0 IU.O u U:l.tUU I Itt ..... 400.0 u au.suu 312 .... 0 au.o n IU.UOH I lU 200.0 -IU.O u aU.IUU 2U ns.o u.o u no.ouu I 312 uo.o uo.o It ai1 .auu Ul sn.o IU.t Jt Ut.aU71 I Ill JU.O au.o 1$ 21S.Uill Sl 411 .o 141.0 ... IU.IIU74 I au 460.0 SI.O u 214.1lU4 Ua .0 ~0 41 ue.sro:u I itt ..... .400 .• ll aiJ.tO<IU l12 ns.o u.o 4i IU.IUIU I lll 410.0 IH.O .. lOS. tltH 5t 200.0 -aoo.o u IU.U4U I 2U ., ... 0 aoo.o It au.nrn 2U us.o 2U.O' 44 US.UUJ I II 400 .• -400.0 ao IU.tlllt nr no.o IU.t n 124 .Ulf2 I ,,a 410 .• au .o 21 IU.UUI Ul uo.o ., .... u IU. 24ttl I au :~n.o au.o 22 114.liiU4 28t 200.0 an.o u lU.ISSil I 2U 4U.O 400.0 2l au.oun 2U 600.0 -au.o 41 uo.uon I los ..... au.o l4 1n.snu 2U ns.o 56.0 u .... , .. u I us -uo.o 400.0 u IU.ISUI Ul Slli.O au .o so IU.tuu. I Ill -aoo.o 200.0 FIGURE 3-7. Example listing of a maximum 50 average concentrations output table (ISW(18) option) • ,....._.,.., L ' ..l . ; -:----- .J J J [ c [ [ .' [ L [ ' [ E c [ 8 r. W· L .. .., time period interval*, the day and the receptor location are listed. This information allows the. user to identify when and where the calcu- lated value occurred. In genet:al,. the. order in-which.. the printed output is listed corresponds to the order that tha five. categories of print output have been mentioned. in. the preceding. paragraphs. First,. all input data parameters,. excluding the hourly meteorological data, are optionally listed. if ISW(6) equals "1".. Tables, of the average concentration or total deposition. calculated for each. time-period/source-group combination for each day ("daily") of meteorological data processed are. then listed. Also printed for each day, if ISW(6) equals '•zn, are the hourly meteoro- logy for that.<i:!-Y•· _The. number· of. tables. of daily average concentration or total deposition. values· is governed by the number of source groups (specified in parameterNGROUP), time· periods (specified in parameters ISW(7) through ISW(14)) and time, period .. intervals (parameter· IPERD). The order in which· the daily' tables of averageh:oncentration or total. deposi- tion are produced is best described:by ~example. ; Suppose we. have five source groups, desire average concentrations for 1-., 3-,. 1.2-and. 24-hour time periods,· and all. time period. intervals are. to· be printed. For a given. day,. the following set.of. tables· arecproduced:. .(1) fot: Hour one, 5 tables of :!-hour averages for source. groups l through 5 are printed; ' • • • I • ~ -o (2) for Hour two, 5 tables-of'. 1-~our· averages. are. printed for the. 5 source groups; (3) for Hour three, a.l-hour average. table followed by a 3-hour average table are printed for source group. 1. Similarly, 1-hour and 3-hour average tables are alternately printed for the second through fifth source groups; (4) for Hour four, 5 tables of 1-hour averages for source groups 1 through 5 are_printed; · (5) for Hour five, the same format is printed as that· for Hoursl one, •t:wo and four; (6) for Hour . . . , . six, the same foma.i is. printed as that for Hour three. This format is continued for each hour of the day... Fot: Hour twelve, 1-hour, 3-hour and 12-hoF~ tables are printed for each of tha five source .groups. For Hour *See Table 3-6 for the hours which define a. particular time period interval. 3-95 ewenty four, 1-hour, 3-hour, 12-hour and 24-hour eables are printed for each of ehe five source groups. This format is repeated for each day of meeeorological data. Hence, if ISW(6) equals "2" and ISW(16) equals "1", a liseing of the meeeorological. data and a set of daily tables would be alternately printed for each day of meteorological data processed by the progrma.. After all hourly meteorological data have been processed by the program, the "N"-day tables, highest and second highest tables and the maximum 50 tables are alternately printed for each source group for each specified time interval. The number of tables is governed by the number of source groups (NGROUP) ·and time periods (ISW(7) through IS"w(l4)) specified. · For each source group, ehe "N"-day, highest· and second highest and the max:fmum 50 tables are listed in this order: For source group l: Print "N"-day table (only if ISW(15) • l) For the l-hour time period (only if ISW(7) • l): Print highest and second highest tables (only if ISW(17) • 1) Print ma:rlmum SO table. (only if ISW(l8} • l) · For the 2-hour time period (only if ISW(S) • l): Print highest and second highest .tables (only if ISW(l7) • 1) Print maximum 50 table (only if ISW(18) • l) "· For. the 3-hour time period (only if ISW(9) • 1): Print highest and second highest tables (only if ISW(l7) "' 1) Print maximum 50 table (only if ISW(lS) • 1) For the 24-hour time period (only if ISW(l4) • l) Print highest and second highest tables (only if ISW( 17) = 1) Print maximum 50 table (only if ISW(18) • l) The order and number of tables printed according to the above format is repeated for all source groups. 3-96 [ [ f~ ·L:l [ [ [ c c [ E ·c r= ~~ [ [ L [ [ . [ [' . [ L. [ c [ L -· [ -· -.. -· c c 6 ~ :; 0·· .. ' u [ L L b. Tape Output. The ISCst program is capable of generat- ing an output tape file containing the calculated average concentration or total deposition values based on the selected time periods and source groups. If ISW(S) equals "1", this output tape file is generated. The user must assign. an output file and associate the logical unit number specified in parameter I'J:AP to the output We (see Section 3.2.2.a). The output file is written with a FOB.TIAN unformatted (binary) WRITE statement and consists of constant length records whose lengths equal the total number of receptor points (NPNTS) plus 3 words. Words 4 through NPNTS + 3 contain. the calculated average concentration or total deposition values for all receptors. The values calculated for the . receptor grid (if any) are written first followed by the values calcu-. .. lated at the discrete. receptors· (if any). Starting·with the first Y point (direction radial) of theY-axis (radial) grid, the calculated values are writt:en for the X-axis (ranges) in the same order that receptor locations were. entered: in·.parameter~.GRIDX (see .Section 3.2.3.a). For each· successive Y-axis. (radial) ,: the-values: ·are .writ:ten for the X-a:x:is (ranges). After the calculated values have been writ:ten for the receptor grid, the calculated values ar~ Written for the discrete point:s in the order the discrete points were entered in parameters XDIS and YDIS (see Sect:ion 3.2.3.a).. Word 1 of each record contains the hour at: which t:he corresponding values • were calculat:ed in words 4-to NPNTS + 3. Word 2 contains t:he Julian Day and word l contains the s~ce group number. . . . ' ., The content: and number of records· pro~uced is governed_ by the _number of source groups (specified in parameter.NGROUP) and time periods (specified in parameters ISW(7) througn ISW(l4)). For each day of meteorological data processed by the program. and for each hour, the program generates records of calculated values 'for·all ·applicable time period intervals for· all source groups. For Hour one, a 1-hour record of calculated •" . . ~ vaiues for source group l, followed by ·a 1-hour · record of calculated values for source group Z, up to a 1-hour record of calculated values for the last source group are written to the output file. For Hour two, a 1-hour and a 2-hour record are written to the output file for each 3-97 source group. For Hour three, a 1-hour and 3-hour record are written to the output file for each source group. For Hour four, a 1-hour, 2-hour and 4-hour record of calculated values are written to the output file for each source group. This format is continued for each hour of the day. The applicable time period interval records that are written depend on parameters ISW(7') through ISW(l4) •. For example, if there is one source group and only 24-hour average concentrations are calculated in a problem run, only one record per day of meteorological data processed is written to the output file. If ISW(l5) equals "1", records of the "N"-day average concentration or total deposition values are additionally written to the output file for.all source groups after the program has processed all "N" days of meteorological data. At the conclusion of the problem run, two end-of-file marks are written at the end of the output tape file. 3.2.5 Program Run Time. Page and Tape Outnut Estimates This section provies the user with equations which estimate the amount of run time required and program output generated for a given problem run. The equations describing the amount of printed output data (in pages) and tape output data (in words) can be quite accurately estimated. The run time estimate is less accurate because of unknowns such as the nature of the hourly meteorology and wake effects. These unknowns may affect the run time estimate by several minutes for a large problem run. a. Run Time. The amount of time a problem takes to execute is primarily governed by six factors. These factors are: (1) the number of hours in a day of meteorological data (NHOURS); (2) the number of days of meteorological data processed (NDAYS); (3) the number of sources (NSOURC); (4) the number of source groups.~NGROUP); (5) the .!':!' number of receptor points (NPNTS); and (6) the number of time periods (NAVG). Using these factors, the following equation estimates the run time in minutes: 3-98 [ [ [ I f' [ r L [ [ c c .n 'b r: l l [ c [ f'· u [1 . L [ c [ [ [ c [ [ t L No. of Minutes .. C • (_NDAYS + 1) • ( l + NHOURS • ( 1 + 0. 8 • NSOURC • (1 + 0.6 • NPNTS + 0.1 • NGROUP • NAV~)) where -5 c .. 2.1 ., 10 The constant, Clt is derived. from problem-rut1.S' made on a. UNIVAC 1108 computer and is different. for other computer models. b. Page Output. The number of pages of printer output (3-2) produced. by a problem run is primarily controlled by which categories of output are desired. by the user. The· content of these categories of. program print output are discussed in· Secti-on 3.2.4.a. Input: parameters ISW(6), ISW(lS), · ISW(l6) ~ ISW(l7) and ISW(lS) ,. discus.sed in Section 3.2.3.a, control. which categories of program.. print: output are produced. Other fac- tors. Which determilie th~i aJilOuUt of p~t outl_)ut are. the number of receptor points, numh~r-of source. groups and the: number. of· time periods for which average concentration· or: • total: depositi~, values are. computed. ~f ISW(6) equals "l'",. all. input data are. printed, producing about 5 pages of print output.. For. sources with gravitational settling categories (NVS greater than zero) or . variational. emission rates (QFLG greater than: zero),. add one third of a page per source •. I£ ISW(6) equals "2", aLL meteorological data processed by the program are printed •. Add. one page for every day of meteorological data processed • . I£ ISW~lS) equals "l", tables of. the ''N"-day average concentra- tion or t_otal deposition values are printed. The number of tables printed equals the number of source groups desired by the user (NGROUP). If parameter NGROlJlf is specified as "O", one table will. be printed. The num- ber of pages produced for each "N"-day table is given by the following equation: 3-99 ~----------- ___________ ...... --_______ .. where NXPNTS • the number of X points on the X-axis grid or the ntimber of grid ranges NYPNTS • the number of Y points on the Y-axis grid or the number of grid direction radials NXWYPT • the number of discrete receptor points (3-3) Round up any fractional number in each ter.m to the nearest whole number. If ISW(l6) equals "l", tables of average concentration or total deposition for user-defined combinations of source groups and time periods for each day of meteorological data processed by the program are printed. The number of .tables produced by this output category for each day is given by the following equation: No. of Tables where NGR.OUP IPERD -NGROUP • [C24/IPERD) • ISW(7) + (12/IPERD) • ISW(8) + (8/IPERD) • ISW(9) + (6/IPERD) • ISW(lO) + (4/IPERD) • ISW( 11) (3-4) + (3/IPERD) • ISW(l2) + (2/IPERD) • ISW(l3) + (1/IPERD) • ISW(l4~ • number of source groups as specified by input parameter NGROUP. If NGROUP is specified as "O", assume a value of "l" for this equation = "N"th time interval for all time periods as spec- ified by input parameter IPERD. Note that if IPERD· is set to "O", the term (j /IPERD) • ISW(i) equals (j) • ISW(i). If IPERD is set greater than "O", the term (j/IPERD) • ISW(i) equals (1) • ISW(i) if (j/IPERD) is greater than or equal to 11 111 ; otherwise, it equals (0) • ISW (i) if (j /IPERD) is less than "1". 3-100 [ [ [ [ [ [ c [ 6 ··C L L [ [; [ [ [ [ [ c [ L t r lj L .' • the corresponding 1-, 2-, 3-, 4-, 6-~ 8-, 12-ISW(7)- ISW(14) and 24-hour time per:iods as spec:ified by input parameters ISW(7) through ISW(l4). The "ln or "O"'values specified by the user in these param- eters are the numer:ic values used. in the equation The number· of pages. produced by-· each table is given. in Equation (3-3). Renee, the total.numbe~of· pages generated by this print output option. (ISW(l6)) equals the product of the number of days processed by the progr~ for a proble. run. the number of tables printed according to Equation (3-4) and the.number of pages produced per table according to Equation (3-3) •. If ISW(l7). equal& "l",. tables of:· the highest and second highest average concentration o~ total. deposition values found at each receptor are printed for all user-defined. combinations of source groups and time per:iods.. The number of tablea printed equals. twice the number of time per:iods speci.f:f.eti' (the ~~~~-of input. pa;amete~s. ISW(7). through ISW(l4) set t:o "l") multiplied. by the: .number of: source groups desired.. If no . . source groups. are specified (input paramet:er NGROUP equals "O"), assume one source group for t:he purpose. of. computing the number of tables printed by· this option (ISW(l7))-The number of' pages. each t:able pro- duces is given by the following equat:ion: (3-5). where NXPNTS, .· NYPNTS and NXii'YPT are defined fallowing Equat:ion ( 3-3) • Round up any fractional number in each term to the nearest whole number. Renee, t:?e number of. pages printed by this out:put category equals two times the product of the number of time per:iods, the number of source groups and the number of pages ·produced per table according t:o Equation (3-5). If ISW(l8) equalS "1", tables of the maximum 50 average concen- t:ration or total deposition values calculated are printed for all user- 3-101 _,_ _____ , ___ _ defi.lJ.ed combinations of source groups and time periods. Because each table printed produces only one page of, output, the total number of pages printed by this output category equals the number of time periods specified (the number of input parameters (ISW(7) through ISW(l4) set to "1") multiplied by the number of source groups specified. Again, if no source groups are specified (input parameter NGROUP equal to zero), assume one source group. 'rhus, the total number of pages of output produced by the pro- gram equals the sum of the number of pages produced by each optional print output category desired by the user for a problem run. c. Tape Output.. Values of average concentration or total deposition are written by a FORTRAN unformatted WRITE statement to an out- put tape file only if parameter ISW (5) equals "1". Otherwise, the program does not generate an output tape file. It is not practical to discuss the physical amount (length of magnetic tape or number of tracks or sectors of mass storage) generated since this introduces factors which · depend on the computer installation. Instead, the number of computer words generated by a problem run is discussed. The user may then equate this number to a physical amount for the particular storage device being used. The output tape is written in records, where the length of .. each record equals the number of receptor points (NPNTS) plus 3 for a total of NPNTS +. 3 computer words for a given problem run. For each day of meteorological data processed, the number of records written to the output tape file is governed by the number of source groups and time periods specified by the user. If we substitute the term "Tables" used in Equation (3-4) with the word, "Records" and set IPERD equal to "O", Equation (3-4) gives the number of records written to the output tape file for each day of meteorological data processed. All variables used to formulate Equation (3-4) maintain the same definition. Hence, 3-102 .. [ [ .[ [ c [ [ [ ··C c t L [ [ [ c·· [ [ [ c [ [ ~ ...... c >· ..... .... 0 c - B c c E [ - L the number of records equals the value computed from Equation (3-4) multiplied by the number of days of meteorological data processed by· the program for a problem run. Also, if input parameter ISW(l5) equals "1", additional records containing "N"~ay average concentration or total deposition values are written to the· output tape file depending on the number of source· groups: specified by· input: parameter NGROUP (If NGROUP equals "O",. assume one source group). Hence". the total number of com- puter words written to the output tape file equals the number of records generated, multiplied by· (NPNTS +"3) computer words per record for a problem run. 3.2.6 Program Diagnostic Messages The ISCST program prints diagnostic messages when certain con- ditions occur during. a: problem run. 'lb.e diagnostic. messages consist of two types. .. . ~e first. typ«a,: is; _.a tab!e forlllS.t. that }nforms the user of. the conditions· found,: but: dOes not teminate· program~ execution. T'ne second tYPe is an err~r message wh:f.ch informs the user of the condition. The run_ is terminated: after the· error~ message is printed • The diagnostic: messaga in a: table format informs the user wh~ a receptor is. located within 100 meters or· three building heights (or three effective building widths) of a source.. As shown in Figure 3-8, the table lists all source-receptor combinations for which this condition has occurred. The ·table lists the source number, receptor location and calculated distance between the corresponding source and receptor. A negative distance value implies that the receptor is lo- cated within the dimensions of· a volume or area source. Five types of diagnostic error messages may be printed by the program. If the allocated data storage is not sufficient for the data required by a problem run, an error message is printed (Figure 3-9 (a)). An error message is printed if the station numbers or years read from . ··--·--····.··-··-···-· ----------·-· ··----· w I ...... 0 s:- ••• --BYPOHif:JICAl POlASII rnor.ESSING PlAIIJ -COUC~NJRATIOH --••• • SOUHCE-RECEPfOH COII.,ItiATIOI~S lFSS lUAtl 100 f.!ETERS 0'1 TUREE BUILDING tlf.IGHTS JH OISTANCF.:. No AVERAGE CONCENTRATION TS CALC~ATEO • • -RECEPTOR LOCATION • • X Y CUElERSI DlSTAuCE SOURCE OR RANGE OR DJREClJON ~lT~EEN NUMBER CMETERSI CDEGREESI CHf;TFRSt ~------------·-.---------.-----~ 1 2 l lj l) 6 7 8 9 10 10 .. ll l2 l2 ll ... 15 16 .o .• o .o .o .o .o .o ;.0 .o .o 1.00.0 .o aoo.o .o 200.0 aoo.o 200~0 li!OO,Q 200.0 .o .o .o .u .o .o .o .o .o •" .o .o .o .o .o .o ;o .o .o -15.01 ,9e90 l9e90 29e90 !O•'IO fl8e90 58.90 6Ro90 7lle90 8<h90 «10.90 98.90 ft0o90 97.78 55.76 :52.78 9·78 -1:5·22 loOO FIGURE 3-8. Example listing of a diagnostic message table printed when source-receptor distances are less than the maximum of 100 meters and three building heights or three building widths. ...--., .J .,..-.., j I r---'1 l '·" ','• ,; .. ***ERROR*** CALCULATED STOaAGE ALLOCATION ~IMIT EQUALS n~nnQD AND EXCEEDS TilE MAXI~ S',fORAG~ ALJ.OCATION l.<IMIT OF mmll!JDDill\ RON TERMINATED. . . ***ERROR*** MET DATA REQUESTJD ppES ~OT ~TCII ~T DATA READ. 'REQUE~TED/READ' VALQ~S 4RE;, . . . . . SURFACE STATIO~ ~o, ~ ~~~~!~/j~jsj~ l~ 0)? SuaFACE DATA • i~s/jy~ UPPER AIR STATION NO. ~ ~~1~~~/jqjujq Y~ Of VPP~~ AI~ DATA. ~ ~uy/juy RUN TERMINATED, · · . . . .. . . . ***ERROR**-* NUM1SEB. Oli' ~WU~C~S T,O ]}¥ ~ EqUAL,S ~BRO. ~UN TEIQtiN4'.fBD! <c.> ***ERROR**~ PHYSICAL STACK HEIGHT OJ ·soURCE nnnnn 18 LOWER THAN.THE l'EaBAI~,~~ATlON.FOR l'HE RECEPTOR LOCATED AT . (XXXXXJPC. ¥ l Y,yyyyy ~ y) , .. ·. llUN TJi:RMINJ\TBD. (4) ***ERROR*** SOURCE NUMnER nnnnn HAS NO GRAVITATIONAL SETTLING CATEGORIES WITH WHICH TO CALCULATE DEPOSITION •· Rtffl TERMINATED. . .. (e) FIGURE 3-9. (a) through (e) 5how the five types of error messages printed by the ISCST Program. The run is terml~ated after an error message is printed. _·, .. ...... ""-... ···-.. the ~eteorological data input tape do not match the corresponding station ncmbers or years specified by the user in parameters ISS, ISY, IUS, IUY (Figu::e 3-9(b)). If the number of input sources equals "O", an error message is printed (Figure 3-9(c)). If the physical stack height of any source is lower in elevat~on than the terrain elevation of any receptor, an error message is printed (Figure 3-9 (d)). Finally, if there are no gravitational settling categories to calculate deposition for any source, an error message is printed as shown in Figure 3-9(e). 3.2.7 Program MOdification for Computers Other than UNIVAC 1100 Series COffiPuters The ISCST program, which is written in FORT.R.A.N IV, provides easy transport and adaptation for use on other computer models. The program design requires that: (l) At least four Hollerith characters can be stored in one computer word; (2~ The computer word lengths of integer and real type variables are the same; and, (3) At least 132 characters per line can be printed on a page with 57 lines per page. The program requires about 65,000 words of executable storage, 21,500 of which consist of the program itself compiled on a UNIVAC 1108 Computer. The size of the compiled prog:t;am will vary depending on the FORTRAN IV compiler and computer installation. The remaining 43,500 words consist of data storage used by the program for storing the input data values, intermediate values and output results of a given problem run. If it is necessary to adjust the current allocnent of 43,500 words of data storage, only two FORTRAN statements in the ISCST program need to be modified. Line 601 (see page A-17) in Appendix A) of the main program allocates the data storage in array QF. Also, the value assigned to the variable LIMIT in line 609 must agree with the value used in array QF. The program assumes FORTRAN logical unit 5 for the card reader and logical unit 6 for the printer. These logical unit numbers may be modified on lines 616 and 617 in the main section of the program. 3-106 [ c [ [ r L [ [ c [ '[ c 6 L [ [ [: f c· [ [. [ c [ [ [ 0 [ G " . D: -· c E [ L ~ '" ~ :;; ~ .,.., ..... -,;,. SEC'.tiON 4 USER'S INSTRUCTIONS FOR THE ISC LONG-TERM (ISC'LT) MODEL PROGRAM 4 .1 SUMMARY. OF PROGRAM OPTIONS, DATA. REQUIREMEN·TS AND Oll'r.PU'! 4.1 .. 1 Summary of ISC'LT" ·Program. Opcions 'Ihe program op"tions of "the ISC Dispersion Model long-term com- puter program ISCLT consist: of three· general ca"tegories: • Meteorological data input options • Dispersion-model. options, • · Ou"tput options Each category is discussed separately below. -· a... Meceorological Data Input= Options. Table 4-1 lists the meceorological. data input op"tions. for tha ISCLT.computer program. Ali meteorological:. data may be input. by card:. deck or by a magnetic tape inventory previously generated by ISC'LT' (see.-Section 4.l.l.c below). ISCLT accepts~ STAR summaries with·, siX, Pasquill stability Ca.tegories (A through F) or five l'asquill stability categories (A through E with the E and F categories ·combined).. Site-specific. mixing heights and ambient air temperatures are ISCLT input requireme:nts rather than options. Suggested procedures for developing these· inputs··· are given in Section 2.2.1.2. 'Ihe remaining meteorologic..al data input options listed in Table 4-1 ·are identical to the. ISCST meteorological data input options " " discussed in Section 3.l.l.a.- b. Dispersion Model Options.· Table 4-2 list:s the dispersion model options for the ISCLT computer program. In general, these options correspond to the .ISCST dispersion-model options discussed 4-1 ·---~-------____ .. _____ ,_ '!'ABLE 4-1 METEOROLOGICAL DA~ INPUT OPTIONS FOR ISCLT !npu~ of all meteorological data by card. deck or by magnetic tape inven- tory previously g~erated by.ISCLT STAR summaries with five or six Pasquill stability categories Site-specific.mixing heights Site-specific·ambient air temperatures Sit~specific wind~profile exponents ! Sit~specific vertical potential temperature gradients j Rural Mode or Urban Mode 1 or 2 Entrainment coefficients other than the Briggs (1975) coefficients Final or distance dependent plume rise ·Wind system measurement height other than 10 meters TABLE 4-2 DISPERSION-MODEL OPTIONS FOR ISCLT Concent:ration or dry deposition calculations Inclusion of the effects of gravitational settling and/or dry deposi- tion in concentration calculations · Inclusion of terrain effects (concentration calculations only) Cartesian or polar receptor system Discrete receptors (Cartesian or polar system) Stack, volume and area sources Pollutant emission .rates ·held constant or varied by season or by wind speed and stability Time-dependent exponential decay of pollutants Inclusion of building wake and stack-tip downwash effec~s 'rime periods fc.t-which concetitrat::ton or ~d~position cia.lcul:at'ions are to to be made (seasonal and/or annual) 4-2 r [ [ [ f ., c [ [ [ c . c B . . ·[ [ L L~ [ [ [ [ [ [ [ [ [ [ [· r t L in Section 3.l.l.b. ·Pollutant emission rates may be held constant or varied. by season or by wind speed and. stability in ISCLT calculations. The. program. uses seasonal STAR summaries to calculate seasonal and/or annual concentration or deposition values or an annual STAR summary to calculate. annual concentration or deposition values. Additionally, month~y STAJlsummaries may b~used. to calculate monthly concentration or deposition values. c. Output Options •. Table 4-3 lists the ISCLT program output options.. A more. detailed discussion. of the ISCI.T output infon:~a­ tion is-given. in Section 4.1.3 •. The ISCL'!.. program has the· capability· to generate a master tape inventory· containing all.. meteorological. and. source inputs and the results of all concentration-or deposition. calculations. This tape can then be used as input: to future upd~te runs. For· example, assume that the user wishes to add a new source and modify ail' ensting source at a previously modeled industriaJ: source. complex.. Concentration or deposition calcula- tions are made for thes~ormodified. sources alone and. the results of these calculations in combinatioawith select. sources from the original tape inventory are used to generate an updated. inventory. That is, it is not necessary to repeat the. concentration or-deposition calculations for the unaffected sources in: the industrial source complex in order to obtain an updated estimate of the concentration or deposition values for the combined emissions. The optional master tape inventory is discussed in detail in Section 4.2.4.b. tables: The ISCLT user may elect to print one or more of the follow~ng •· •• Theprogram:control parameters, meteorological input data and receptor data The source input data 4-3 ----------------------------------------- TABLE 4-3 ISCLT OUTPUT OPTIONS Master tapa inventory of meteorological and source inputs and the results of the concentration or deposition calculations Printout of program control parameters. meteorological data and recep- tor .dau Printout of tables of source input data Printout of seasonal and/or annual average concentrations or total sea- sonal and/or annual deposition values calculated at each receptor for each source or far the combined emissions from a select group of all sources Printout of the contributions of the individual sources to the 10 highest concentration or deposition values calculated for the com- bined emissions from a select .group of all sources or the contribu- tions of the individual sources to the. total concentration or deposi- tion v.alues calculaeed -for the combined emissions from a select group of all sources a't 10 user-specified recep'tors 4-4 [ c [ [ [ [ [ [ [ c c -[ b [ L [ [ [ r .. ···· .. · ... 1 .. ... J c ' [ I L. c [ [ [ c c E D-- L ti c [ • The seasonal. and/or annual. average concentration or total deposition values. calculated at each receptor f?r each source or for the combined emissions. from select source.groups or all sources • The contributions of the individual. sources to t:he 10 receptors with highest concentratiou (or·deposition) val.ues obtained from the combined em:J.ssions of select groups of sources;. or the contributions of each individual. source, as well as the combined sources, to a select 4.1.2 group of user specified receptor points; or the maximum 10 concentration (or deposition) values for each source and. for the combined sources, determined independently of each. other Data Input Requirements This section provides a description. ot all input data paramet:ers required by the ISCL'! pr.ogram. The user should note that some input parameters are not read or are ignored by the program, depending on t:he values assigned t:o the. control parameters (options) by the user. a. Program Cont:rol Parameter· Data. These data contain parameters which provide user-control over all program options. Parameter Name ISW(l) Concentration/Deposition Option --Directs the program to calculat:e either average concentration· or t:otal deposit:ion. A value of "l" indicates average concentration is to be calculated and a value of "2" indicat:es t:otal deposition is to be calculated. If this parameter is not punched, the program defaults to "1" or concentration. 4-5 Parameeer Name ISw(2:) . ISW(3) ISW(4) ISW(S) 1 Re~epeO%-· Referenc_e-Grid s·yseem Opeion -Specifies wheeher a righe-ha.n.ded receangular Careesian coordinate system or a polar system is to be input to the program to fom the receptor reference grid system. A value of "1" indicates a Cartesian reference: grid system i-s being i.nput and a value of "2" indicates a polar reference grid system is being input. If this parameter is not punched; the program will default to a value of "l". Discrete Receptor-Option--Specifies whether a right- handed rectangular Cartesian reference system or polar reference system is used to reference the input discrete receptor points. A value of "l"' indicates that the Car- tesi.an reference system is used a:D.d a value of nzu indi- cates that a polar reference system· is used. If this parameter is not punched, the program will default to a value of "l". Receptor Terrain Elevation Option --Specifies whether the user desires to input the terrain elevations for each receptor point or to use the program as a flat terrain model. A value of "0" indicates terrain elevations are not to be input and a value of "1" indicates terrain ele- vations for each receptor point are to be input. Note that terrain elevations cannot be used with the deposition model. The default for this parameter is no terrain or "O". Input/Output Tape Option --Specifies whether tape input and/or output is to be used. A value of "O" indicates no 4-6 [ [ IJ c L [ [J _[ [ [ c [ E [ [ c [ [ [j L L Parameter Name ISW(5) (Cont.) ISW(6) ISW(7) ISW(8) tape input or output:. A value of "1" indicates an output tape or data file. is to be produced on the output unit: specified by ISW(lS). A value of "2" indicates an input tape or data file is-required on the input unit: specified. by ISW(14). A value of "3" indicates both input and· output tape or data files-are being used •. Default for this parameter is no tapes or files. It is the-user's responsibility to insure that the correct tapes or files are mounted on the correct units • . Print: Input Data Option· -Specifies what input data are to be printed. A value of "O" indicates no input data are to be printed.. A value of "1" indicates only the control parameters, receptor points and meteorological da.:tac are: to be p:ri:Jlt:ed. A. value of' "2" indicates only the source: input data ue. to be printed and a value of "3" ind.icates all input data are to be printed. The default for this parameter is "0". · Seasonal/ A:cnual Print Option -Specifies whether seasonal concentration (or deposition) values are to be printed, or annual values only, or both seasonal and annual values. An ISW(7) value of "1" indicates only seasonal output: is to be printed, a value of "2" indicates only annual output: is to be printed, and a value of "3" indicates both seasonal and a:anual output are to be printed. If this parameter is not punched or is "O", the program defaul t:s to "3" • Individual/Combined Sources Print Option --Speciiies whether output for individual sources or the combined 4-7 Parameter Name ISW(8) (Cont.) ISW(9) sources (sum of sources) or both is to be pri:lted. An ISW(S) value of "1" indicates output for individual sources only is to be printed, a value of "2" indicates output for the combined sources only is to be printed, and a value of "3" indicates output for both individual and combined sources is to be printed. The default for this parameter is "3". This parameter is used in con- junction with the parameter NGROUP below. If NGROUP equals "0", all sources input to the program are con- sidered for output under ISW(S). However, if NGROUP is greater than "0", only those sources explicitly or implicitly defined under NGROUP are considered for out- put under ISW(S). Also, a single source defined under NGROUP is logically treated as combined source output when ISW(S) equals "2" or "3". Rural/Urban Opt~an.--'Specifies whether rural or urban modes of adjustment of stability categories are to, be used (see Table 2-3). A value of "1" specifies Urban Mode 1 and the E and F stability categories are redefined as D. A value of "2" specifies Urban Mode 2 and stability categories A and B are redefined as A, C becomes B, D becomes C, and E and F become D. A value of "3" specifies the Rural Mode and does not redefine the stability cate- gories. If this parameter is not punched or is "O", the program defaults to "3". If tape input is used, the program defaults to the value saved on tape.. The param- eter lSW(9) is only used for card input sources and/or tape input sources when ISW(12) equals "1". It should be noted that the use of Urban Mode 2 generally is not recommended for regulatory purposes. 4-8 [ [ [ [ [ c r L [ [ c L [ L [ ~ L I [ [ c E o~ [ u L L Parameter Name ISW(lO) ISW(ll) Maximum 10 Print Option --Specifies whether the maximum 10 values of concentration or deposition only are to be printed, or the results of the calculations for all recepcors only,. or both are to be printed. A value of "l" directs the program to calculate· and print only the maximum 10 values. and receptors according to ISW(ll) or ISW(l2) below. Values at receptors other than the maximum 10 are not printed if this. option equals "l". A . value of "O" directs the program to print the results of the calculations at all receptors; the maximum 10 values are. not produced. A value of "2" directs the program to print the results of the: calculations at all receptor locations.;,as well.,-as-th~ ~-10 •.. The default for this parameter is· "O". The ISCL'! program will print less. than 10 values· in cases where there are less than 10 concentration: (deposition) values greater than zero calculated. Maximum 10 Calculation Option l -·This option directs the program· to use one of two methods to calculate and print maximum 10 concentration (or deposition) values. If this option is used, option ISW(l2) must equal "0". The program determines the· maximum values and receptor locations from the set of all receptors input. Method.l: A value of "1" directs the program to calculate and print the maximum 10 values and respective receptors for each individual source and to calculate and print the maximum 10 values and respective receptors for the combined sources independently of each other. The output 4-9 Parameter Name ISW(ll) (Cont.) for individual sources and combined sources will in general show a different· set·of receptors. Method 2; A value of "2" directs the program to first calculate and print the maxjmum 10 values and respective receptors for the combined sources (sum of sources) and then print the contribution at each receptor of each individual source to the combined sources maximum 10. This option can only be used if one or more of the following conditions is met: Condition a --The run uses an output tape or data file (user must specify NOFILE, if tape) Condition b --The run uses an .input tape or data file, but has no input data card sources (all are taken from tape) (user must specify NOFILE, i£ tape) ConditiOn c --The total number of input sources is less than or equal to the minimum of I and J, where J = 300 and I = 4-10 (4-1) . [ [ [ [ [ D c [ [ r [ -:!' j [ . ' [ c [ [ [ [. c [ G C· L Parameter Name ISW(ll) (Cont.,) ISW(l2) E . .. the total amount of program. data storage in B~' COMMON. 'nle design size· is 40,000 • N -number of points in the input X- X axis of the receptor grid system (NXPN'l'S) N .. number of paints in the input Y-y axis of the receptor grid sys.tem (N'fPN'l'S) Nx:y • number of· discrete. (arbitrarily placed) input receptors {NXWYPT) N 9 • number of seasons in. the input meteorological data (NSEASN) lC N • (N •N + N ) S X y x:y - if ISW(4) • "O" - if ISW(4) =-"l" Maximum 10 Calculation Option 2 --This option directs the program to calculate concentration or deposition at a special. set of user supp-lied discrete (arbitrarily placed) receptor points. If this option is used, option ISW(ll) must equal '~1)". A value· of "1" directs the program to .___, ______ "_. __ -~·-----·---------~--·------·--·----" --------- . -. -·---~--·------~~--~--~--·--·---------·-.-·---····--------· ----~·--··-· -· ·--·--·---------···-- Parameter Name ISW(l2) (Cont.) ISW(l3) ISW(l4) expect to read from 10 to 50 special receptors at which concent=ation or deposition is to be calculated. If this option is selected and 10 special receptors are input, both seasonal and annual concentration or deposi- tion values for individual sources and combined sources are printed for the 10 user-specified receptors. If more than 10 special receptors are input, the program assumes the first 10 points are for season 1, the second 10 points are for.season 2 and the last 10 points are for annual tables. This option requires the parameter NXWYPT given below to be a multiple of 10. All input tape or data file sources are recalculated with this option. Also, if an input tape is being used, the recep- tor grid system, discrete receptors and their elevations input from the tape are discarded and the user inputs the new special set of receptor points (with elevations if ISW(4) equals "1") via data card. Print Output Unit Option --This option is provided to enable the. user to print the program output on a unit other than print unit "6". If this value is not ptmched or a "O" is punched, all print output goes to unit "6". Otherwise, print output goes to the specified unit. Also, if this value is punched non-zero positive, ~wo end-of- file marks are written at the end of the print file. If ISW(l3) is a negative value, the end-of-file marks are not written. Optional Tape Input Unit Number ---This option is provided to enable the user to assign the unit number from which tape or data file data are read under ISW(5). If ISW(l4) 4-12 [ [ r L~ [ [ [ r L r [ c [ b c L n [ [.~.' . ? [ [ .. ., j n L b- . " L L Parameter Name ISW(l4) (Cont.) ISW(IS) ISW(l6) is not punched or is "O", the program defaults to unit "2n. If the input data are being read from. a mass- storage fil.e, ISW(l4) must be set to a negative value. A positive value implies: magnetic tape. Note that ISW(l4) is the interual file name used by the program to reference . the data file and must be equated with the external file name used to assign the file (see Section 4.2.2) . . Optional Tape Output Unit Numbet: --This option is pro- vided. to enable. the user to assign the un:f.t number to which. tape ot: output file. data. are written under ISW(S). If ISW(l5) is n.ot punched or is "O", the program defaults toi un:f.t "3," •. If. the. outpu;_ da~ are. being written to a _mass-storage file, ISW(lS) imlSt be: set to a negative value. A. positive value, implies magnetic tape. Note that ISW(l5) is the internal file name used by the pro- gram: to reference. the· data file and must be equated with the exterual file name used to assign the file (see Section 4.2.2). Print Output Paging. Option. --This option enables the user to mdnimize the number of print output pages. A value of "1" directs the program to minimize the output pages by not starting a new page:with each type of output . . . table.. If this option is n.ot punched or. is "0", the program will start each unrelated output table on a new page. The user is cautioned not to exercise this option until. familiar with the output format because the con- densed listing may be confusing. 4-13 Parameter Na::ne ISW(l7) ISW(18) ISW(l9) ISW(20) Lines Per Page Option --This option is provided to enable the user to specify the number of print lines per page on the output printer. The correct number of lines per page is necessary for the program to maintain the output format. If this value is not punched or is "O", the program defaults to 57 print lines per page. Optional Format for Joint Frequency of Occurrence --Tnis parameter is a switch used to inform the program ~hether it is to use a default format to read the joint frequency of occurrance of speed and direction (FREQ) or to input the format via data card. If this option is not punched or is "O", the prC)gram uses the default format given under FMT below. · If this option is set to a value of "1", the array FMT belo~ is read by the program. Option to Calculate P·lume Rise as a Function of Do~wind Distance --This option is ·applicable to all stack sources and if set equal to "O" or not punched, the do~wind dis- tance is not considered in calculating the plume rise. If ISW(l9).is set equal to "1", the plume rise calcu- lation is a function of downwind distance. Option to Add the Briggs (1973) Stack-Tip Do~~ash Correc- tion to Stack Sources --This option is applicable to all stack sources and if set equal to "O" or not punched, no do~wash correction is made •. If ISW(20) is set equal to "1", the Briggs (1973) do~~sh correction is applied to the stack height for all stack sources. . 4-14 [ c [ T' L__l -· r .L I ! r L,. r ~-~ [ r [ c [ ·.' B J c L F _, E L [ [ [~ [ [ .. [ [ c [ [ [ c [ E 0 . c . 6 [ L ·- -·""''"' ,,{·~"· Parameter Name NSOURC NGROtlP Number of Data Card Input Sources --This parameter specifies the number· of input card image sources. This includes card images that specify a new source being entered and card images that specify·modifications or deletions-to sources: input from· tape or data file. If this-value is not punched or is· "O"·. the program assumes all. sources are input from tape or data file. Also, if a negative value is punched for this parameter, the program will continue to read source data card images until it encounters an end-of-f1le or a negative source identifi- cation number in the parameter NIJMS below. There is no limit to the number of sources the program can process • Number of Source Combination Groups --This par~ter is ; _. "•' .... -, -·-. . . . . . . ,, ... .. ~· ..• used-.. to;, setect: concentration' (deposition) calculations for .. . .---' . . . specific sources or source. combinations to be print:ed under the parameter ISW(S) above. A source combination consists of ona or more sources· and is the sum of the concentrations (deposition) calculated. for those sources. If the user de- sires only individual source output or only all sources combined or both, the parameter NGROtlP is not punched or is set equal to 11 011 and ISW(S) is set according to which option the. user desires. Also, if NGROtlP is not punched or is set equal to "O", the parameters NOCOMB and IDSOR below are omitted from the input data. However, if NGROtlP is set greater· than zero, the program assumes the user desires to r.estrict the output of concentration tables to select individual sources or select combinations of sources or both, depending on ISW(S). The maximum value for NGROUP is 20. If more than 20 source combinations are desired they must be produced in multiple runs of ISCLT. This can be 4-15 ---------··. ···-----· ---.----~------------------- ?ara:neter Na.me NGROUP. {Cone.) .. · done by specifying an output tape or data file on the first execution. The user would then use this tape for input: on subsequent runs to produce the remaining desired source combinations. Also, only a few of the data cards and values from the initial data deck are required on subsequent runs. The parameter NGROU? cannot be used or punched non-zero unless one or mare of the following conditions is met: Condi.i.ton a -The rtm. uses an output tape or da t:a file {user must specify NOFILE, if tape) Condition b --.The run uses an input tape or data filet but has no input data card sources (all are taken from tape, NSOURC • "0") (user must specify NOFILE, if tape). Condition c -The total ·number of input sources (NSOtmC + input .tape sources) is less than or equal to the minimum of I and .1, where .1 = 300 and I = All of the variables in this equation except K are the same as those defined under ISW(ll) above. 4-16 (4-2) '· [ [ f r r· [ r· l.,,: [ [ L r· L c [ t L L [ I c ' ' ' c: ~··4I c [ r~ [j -~ c [ (' -~ u 0 8 G C- L E L ' L ' Parameter Name NGROUP (Cont.) NXPNTS 0 K • , H· ( N •N _ +H _) .· S'· x. Y' xy if ISW(S)•l and ISW(ll)+2 if ISW(S)+l or ISW(ll)•2 X-Axis/Range Receptor Grid Size --This parameter specifies the number of east-west receptor grid locations for the Car'tesian coordinate system. X-axis, or the number of receptor grid ranges (rings) in the polar coordinate system., depending on which receptor grid system. is chosen by the: user under parameter ISW(2) ·-This is the number . of X-axi.s: points' to be input. or the number of X-axis points to be automatically generated by· the: program. A value of ... •. ---,-·-· --; .. -. ' .-•.- "0" ·(not punched} , di.rects: the·.' program. to assume there is no regular receptor grid. being used. The. maximum value of · this· parameter· is related' to other· paramet:er values and is given by the equat:ion E > [N +N +2N ] + f<K•N +I) (N •N +N )] . X y . xy . L s X y xy (4-3) where all. variables: in the above equation are the same as those defined under ISW(ll) above except K and I, which are defined as • if ISW(S)•l and ISW(ll);'2 ( if· ISW(S)+l or ISW(ll)•2 ~ 4-17 Parameter N~e NXPNTS (Cont.) ~"YPNTS Nn."YPT if ISW(4)•0 (no I .. if ISW(4)•1 This parameter is ignored by the program if tape or data file input is being used. Y-Axis/Azimuth Receptor Grid Size --This parameter spec- ifieS the numb~r of north-south receptor grid locations for the Cartesian coordinate system Y-axis, or the number of receptor .. azimuth bearings from the origin in the polar coordinate system, depending on which receptor grid sys- tem is chosen by the -user under parameter ISW(2). This is the number of Y-axis points to be input or the number of Y-axis points to be automatically generated by the [ r I , r- r: ·' I . [ [ program. If the parameter NXPNTS is set nem-zero, the par am-. ' r· eter NYPNTS must also be non-zero. The maximum value of this L parameter is given by the equation under 1~NTS above. The parameter NYPNTS is ignored by the program if tape or data file input is being used. Number of Discrete (Arbitrarily Placed) Receptors --This parameter specifies the total number of discrete receptor points to be input to the program. A value of "0" (not punched) directs the program to assume no discrete recep- tors are being used. This parameter must qe set to a multiple of 10 if option ISW(l2) above is selected. Also, the maximum value of this parameter is limited by the equation given under NXPNTS above. This parameter is ignored by the program if input tape or data file is being used, except in the case where the ISW(l2) option has been selected. 4-18 [ c [ L [ L [ c [l c [ [ i ' [ [ - ' c ; [ [ c [ G C· u 6 [ . L '" ~-:.~ "':' -~:...· ... :'" Parameter Name NSEASN NSPEED NST.BLE Number of Seasons --This parameter specifies the number of seasons or months in the. input meteorological data. A value. of "0" (not punched) defaults to "l". Also~ if annual. meteorological data are being used, a value of "l" should be specified. The maximum value of this parameter is "4". If monthly STAR summaries and seasonal average mix:ing. heights and ambient air temperatures are used to calculate monthly concentration or deposition v.alues for ea~ month of the year, four separate program runs, each containing three "seasons" -(months), .. are requi.red. This parameter is ignored. by the program if an input tape or data file is being used. :--· Number of Wind Speed Categorlea'' ~ This parameter specifies the number .. of_ wind speed categories in the input joint frequency of occurrence. of wind speed and direction (FREQ). A value of "O" (not punched) causes the. program to default to "6" (maximum). This parameter· is ignored by the program if an input tape or data file is being used. Number of Pasquill Stability Categories --This parameter specifies the number of Pasquill stability categories in the· input joint frequency of occurrence of wind speed and direction (FR.EQ). A value of "O" (not punched) causes the program to default to "6" (maximum). This parameter is ignored by the program if an input tape or data file is being used. 4-19 ------. ·····------ Na:me NSCTOR .NOFII.E NO COMB Number of Wind Direction Sector Categories --This param- eter specifies the number ·of wind direction sector cate- gories in the input joint frequency of occurrence of wind speed and direction (FREQ). A value of "O" (not punched) causes the program to assume the standard 11 16" (maximum) sectors are to be used (see Section 2.2.1.2). This param- eter is ignored by the program if an input tape or data file is being used. · Tape Data Set File Number --This parameter specifies the output tape file number or, if only an input tape is being used, the input tape file number. This parameter is used by the ISCLT program to position the tape at the correct ·file if multiple passes through the data are required. This parameter· must be input if the user is using Condi- tion a or Condition b under ISW(ll) and/or under NGR.OUP. This parameter does not apply to runs that use mass-stor- age (assumed one file) or runs that satisfy Condition c under ISW(ll) and/or NGR.OUP. Also, the user must posi- tion input and output tapes at the correct files prior to executing the ISCLT program. Number of Sources Defining Combined Source Groups --This parameter is not read by the program if the parameter NGR.OUP above is zero or not punched. Otherwise, this parameter is an array of NGROUP values where each value gives the number of source identification numbers used to define a source combination. The source identification number is that number assigned to each source by the user under the source input parameter NOMS below. An example 4-20 [ [ E [ [ [ 0 [ p u {j c .[ L [: [ c [J c r~ ;.>-'_ 0' [·- c D· c E c L Parameter Name NOCOMB (Cont.) IDS OR and. a more detailed discussion of the use of this parameter is. given. under IDSORC. below. A maximum of 20 values is provided for this array. Combined Source Group Defining Sources --This parameter is not read by the program if the parameter NGROUP above is zero or not punched. Otherwise, this parameter is an array of source identification numbers that define each combined source group to be output. The values punched into the array NOCOMB above indicate how many source identifi~tion numbers are punched into this array sue~ cessi vely for each · combined source output. The source . identification. nlmibers ·_can.· be pul1ched in· two· ways • The . first is-to punch a positive value· directing the program to. include that specific source in tha combined output. The second is to punch a negative value •. When a negative value is. punched, the program includes all sources with identification numbers: less than· or equal to it in abso- lute _value; Also, if the negative value is preceded by a positive value in the same defining group, •that source is also included with those defined by the nega- tive number, but no sources with a lesser source identi- fication number are included. For example, assume NGROUP above. is set equal to 4 and the array NOCOMB contains the values 3, 2, _1; 0. Also, assume the entire set of input sources is'defined by the source identification numbers 5, 72., 123, 223, 901, 902, 1201, 1202, 1205, 1206 and 1207. To this point we have a total of 11 input sou1 .::es and we desire to see 4 combinations of sources taken from these 11. Also, the array NOCOMB indicates that the first 3 4-21 Parameter Name IDS OR (Cont.) FMT values in the array IDSORC define the first source combina- tion, the-next.2-val~es (4th and 5th) in IDSORC define the second combination, the 6th value in IDSORC defines the third combination and the last combination has no de- fining (0) sources so the program assumes all 11 sources are used. Similarly, let the array IDSORC be set equal to the values 5, 72, -223, 1201, -1207, -902.. The program wi.ll first produce combined source output for source 5, and all sources from 72 through 223. The second combined source output will include sources 1201 through 1207. The third will include source numbers 1 through 902 and the last will include all sources input. Note that the source identification numbers in each defining group are in ascending ord~r of absolute value. Also, if ISW(S) equals "2" (combined output only) and there are groups v."ith only one positive source number (individual sources)., the program logically treats these individual sources as combined sources. Optional Format for Joint Frequency of Occurrence --This parameter is an array which is read by the program only if ISW(l8) is set to a value of "1". The array niT is used to specify the format of the joint frequency of oc- currence of wi.nd speed and direction data (FREQ, STAR summary, fi . k 11 in Table 2-4). The format punched, if ,J' , ..... used, must include leading and ending parentheses. If ISW(l8) is not punched or is set to a value of "O", the parameter FMT is omitted from the input deck and the program uses the default format "(6FlO.O)". This default format specifies that there are 6 real values per card occupying 10 columns each, including the decimal point (period), and the first value is punched in columns one through ten. If the user has received the STAR data £rom 4-22 .. ,. [ c [ I' L [. r L [ c [ c [ t L L [ [ u c [ [ c c- n.· w'·- C L Parameter Name FMT (Cont.) an outside source, the deck must also be checked for the proper order as well as format and, if the order is not correct, the data must be repunched. The correct order of. the STAR data is given under FREQ below. An example of. a STAR deck punched in a formae noe compatible with the default format for FMT is Th:l.s example shows· i:he seability and direction categories '· punched. in. columns 1 through; 17 and the frequency of oc- currence data occupying columns 20 through 73. To input these daea the user would set ISW(lS) equal. to "l" and punch the format (FMT). as shown on the following example input data card This format directs the ISCLT program to skip the first · 19 colum:DS on each frequency·of oeeunence ·card read and 4-23 Reproduced from best available copy. Paramet:er Name FMT. (Cont.) b. to read six equally-spaced real values from the card. Each value occupies 9 columns including the decimal point (period) • The first value begins in column 20. The program interprets the leading blank character of each value as zero. Receptor Data. These data consist of the (X,Y) or (range~ azimuth) locations of all receptor points as well as the eleva- tions of the receptors above mean sea level. Parameter Name X Receptor Grid System X-:-Ax:f.s or Range -This parameter is read by the program only if the parameters NXPNTS and h~NTS are non-zero and only if an input tape or data file is not being used. This parameter is an array of values in ascending order that defines the X-axis or ranges (=ings) (depending on ISW(2)) of the receptor grid system in meters. If only the first 2 values on the input card are punched and the parameter NXPNTS is greater than 2, the program assumes the X-axis (range) is to be generated automatically and assumes t;he first value punched is the starting coordin- ate and the second value punched is an increment used to generate the remaining NXPNTS evenly-spaced points. If all receptor points are being input, NXPNTS values must be punched. The origin of the grid system is defined by the user and can be anywhere. 4-24. [ [ L [ [ [ c [ [ L [ [ r~ [ 1 ; [ [ [ [ r LJ [ [ ......... ---c c c L L c [ L Parameter Name y X (Discrete) Receptor Grid System Y-Axis or Azimuth --This parameter is read by the program only if· the parameters NXPNTS and NYPNTS are. non-zuo. and· only if an input tape or data file:. is not. being used. This parameter is an array of values in ascending order that defines the Y-axis or azi- muth bearings (depending on ISW(2)) of the receptor grid system. in meters or degrees. If only the first 2 values on the input card are punched (third and fourth values are zero) and. the parameter NYPNTS is greater than 2, the program. assumes the first value punched is the starting coordinate and the second: value punched is the increment used to generate the remaining NYPNTS evenly-spaced (rectangUlar or. angUlar)' points.· U all receptor points ·are being input' NYPNTS.values must be punched. If polar coordinates are being used,. Y is measured clockwi.se from zero degrees (north) • Discrete (Arbitrarily Placed) Receptor X or Range --This parameter is not read by the program if the parameter NXWfi'T. is zero or· if the program is using· an input tape or data file with the ISW(l2) option set to zero. This parameter is an array defining all of the discrete receptor X points. The values are either· east-west distances or radial distances in meters, depending on the type of reference system specified by ISW(3). ·· NXWYPT points are read by the program. The origin of these points is the same as the origin of the regular (non-discrete) grid system if one is used. Otherwise, the origin is defined by the user and can be located anywhere. 4-25. ·-·--·-·-· --··---------· ·-·.------·----··-· ------------,----··---·· Parameter Name y (D:rscrete.) z ---··---· ------------·· ~~--·-~---~~--~--·--4------~--·· . . ( Discrete (Arbitrarily Placed) Receptor Y or Azimuth -- This parameter. is not read by the program if the param- eter NXWYPT is zero or if the program is using an input tape or data file with the ISW(12) option set to zero. This parameter is an array defining all of the discrete receptor Y points in meters or degrees. The values are either north-south distances or azimuth bearings (angular distances) measured clockwise from zero degrees (north) depending on the type of reference system specified by ISW(3). NX.WYPT points are read by the program. Elevation of. Grid System Receptors --This parameter is not read by the program if the parameter I~w(4) is zero or if an input tape is being used or if NXPNTS or NYPNTS equals zero.. .This parameter is an array specif)..-ing the terrain elevation: in feet · above mean sea level at each receptor of the Cartesian or polar grid system. There are NXPNTS .. NYPNTS v~ues read into this array. The program starts the input of values with the first Y coordinate specified and reads the elevations for each X coordinate at that Y in the same order as the X coor- dinates were input. A new data card is started for each ' Y value and the NXPNTS elevations for that Y are read. The program w:Lll expect NYPNTS groups of data cards with NXPNTS elevation values punched in each group. For example, assume we have a 5 by 5 Cartesian or polar receptor array: 4-26 [ c [ l~ [ [ [ [ r L [ r L Q [ [j ··C L E [ L [: c: [' .. : ' [: [: ! c~ c: [! [ 0 [ R u r. L Parameter Name ·,. z (Cont.) y 4- y 2 Rectangular z6 Z7 za Zg zl. Zz ZJ z4. ~ • .-. > -X5 -X4 -X:3 2 -X2 -Xl 4-2.7 _.....;__ ---·---------· Paramete:r Name z (Cont.) z (Discrete) c. ··-·--··-··-·····----------·. ·-·---------·-·······-·-··-----·-·--··--·-·--·· The values z 1 through z5 are read from the first card group, the values z6 through z10 from the second card group and z21 through z25 from the last card group. Elevation of the Discrete (Arbitrarily Placed) Receptors -- This parameter is not read by the program if the parameter ISW(4) is zero or if the parameter N'X:WYPT equals zero or if an input tape is being used with the ISW(l2) option equal to zero. This parameter, which is an array spec- ifying the terrain elevation 1n .feet at each of the NXW!PT discrete receptors, is input in the same order as the discrete .receptors. Identification Labels and Model Constants. T'nese data consist of parameters. pertaining to heading and identification labels and program constants. These data except for TITLE are not read by the program if an input tape or data .file is being used. Parameter Name TITLE UNITS Page Heading Label --This parameter is an array that allows up to 80 characters of title information to be printed as the first line of each output page. Concentration/Deposition and Source Units Label --This parameter is an array used for the optional input of two units labels. The first 40 characters of this array are provided for an optional output units label for concen- t::-ation or deposition. This label is defaulted to "micro- grams per cubic meter" for concentration and "grams per 4-28 [ F "G LJ ·[ [ [ [ [ c [ [ L [ [ [ D [ c c [j Parameter Name UNITS (Cont.) ROTATE TK square metet:." for deposit:ion.,. i:f the parameter TK below is not punched or is "O" •.. The second 40 characters of this array are provided for an optional source input units label. This label is defaulted to "grams per second" for concentration or "grams" for deposition for stacks and volume sources and to "grams per second per square meter" or "grams per square meter" foTr area sources, if the parameter TK below is. not punched or is "O". Wind Direction Correction Angle --This parameter is used to correct for any difference between north as defined by the· X.,. Y reference grid system· and. north as defined by . .the l!Jeather station at which the wind direction data were . ' •, . ' ··. . ... -.. · recorded.. The. .. value of. ROTATE (degrees) is subtracted · frout each wind-direction sector angle (THETA) • This parameter: is positive: i:f the positive y· axis of the reference grid. system points to the right of north as defined by the weather station. Most weather stations record direction relative to true north and the center of most. grid systems are relative to true north. However, some weather stations record direction relative to magnetic north and the. ends of some UtM (Universal Transverse Mercator) zones are not: oriented towards true north. The user is cautioned to check the wind data as errors in the wind direction distribution will lead to erroneous program results. The default value of ROTATE is zero·. Model Units Conversion Factor --This parameter is pro- vided to give the user flexibility in the source input units used and the. concentration or deposition output units desired., Th:l.s parameter is a direct multiplier of . 4-29 _ .. ______ _ Parameter Name TK (Cont.) ZR BETAl the concentration or deposition equation. If this param- eter is not·punched or is set to a value of "0", the program defaults to "1 x 10 6 " micrograms per gram for concentration and to "1" for deposition. This default assumes the user desires concentration in micrograms per cubic meter or deposition in grams per square meter and the input source units are grams per second or total grams for stack and volume sources and grams per second per square meter or grams per square meter for area sources, depending on whether the program is to calculate concentration or deposition. Also, if the default value for this parameter .is selected, the program defaults the units labels in the array UNITS above. If the user chooses to input this parameter for other units, he must also .input the units labels in UNITS above. This param- eter corresponds to K in Equations (2-46), (2-53), (2-54) and (2-55). Weather Station Recording Height --This parameter is the height above ground level in meters at which the meteoro- logical data vere recorded. If this parameter is not punched or has a value of "0", the program defaults to "10" meters. This parameter corresponds to z1 in Equa- tion (2-10). Adiabatic/Unstable En~rainment Coefficient --This param- eter, which is used in plume rise calculations, is the.air entrainment coefficient for an adiabatic or unstable atmo- sphere. If this value is not punched or is "0", the pro- gram uses "0.6" as the default value. This parameter corresponds to S, in Equation (2-4) • ... 4-30 [ [ [ _[ [ [ L [ [ c r~ [ [ E [ [ ---- [ 0 ··-.....,.. [ c < [, c < ~ 6 [ [ Parameter Name B.ETA2 G DECAY Stable Entraimnent Coefficient --This parameter, which is used< in the plume rise calculations, is the air entrain- ment coefficient for a stable< atmosphere. If this value is ·not punehed or---is-"0<"",.-the· program:-uses.-"O. 6" as the default value. This parameter corresponds to a2 in Equation (2-7) • Acceleration Due to Gravity -This parameter, which is used in the plume< rise calculations, is the acceleration due to gravity. If this parameter is not punched or has a value. of< "O", the<program.uses "9.8" meters per second squared as the default value. '!his parameter correspond's to g· in Equation <Z-2). · .... , : ~. ;' : ' : . . ' Decay· Coeff:f,cient _, This parameter. is the coefficient ' '-1 <' <. '' .. '' ' ' (seconds. ) of time-dependent pollutant. removal by phys- ical or· chemical processes (Equations (2-13), (2-14)). The default for th:Ls parameter: is "O". d~ Meteorological Data. These data are the meteorologi- cal input parameters classified according to one or more of the categories ' ' of wind sp~~d, Pasquill.stability, wind direction and season or annual. These parameters are not read by the program if an input tape or data fUe is being used. Parameter Name FREQ Joint Frequency of Occurrence ---This parameter array consists of the seasonal or annual joint frequency of 4-31 ----, .. ·-<---···--·-·- Parameter Name FREQ (Cont.) ·------··------·-···~---'. -·---., occurrence of wind-speed and wind-direction categories classified according to the Pasquill stability categories (S'!AR summary, · fi . · k 11 in '!able 2-4). '!his parameter ,J' .... has no default and must be input in the correct _order. '!he program begins by reading the joint frequency table for season 1 (winter) and stability category 1 (Pasquill A stability). '!he first data card contains the joint frequencies of wind speed categories 1 through 6 (1 through NSPEED) for the first wind direction category (north). '!he second data card contains the joint frequencies of wind speed categories 1 through 6 for the second wind direction ·category (north~northeast). '!he program con- tinues in this manner until the joint frequencies of the last direction category (north-northwest) for stability category 1, season 1 have. been read. The program then . repeats this .same read sequence for stability category 2 (Pasquill B stability) 'and season 1. When all of the stability category values for season 1 have been read, the program repeats the read sequence for season 2, season 3, etc. , until all of the joint frequency values have been read. '!here are a total of NSPEED*NSC'!OR*NS'!BLE*NSEASN values read in this data card group and a total of NSC'!OR* NS'!BLE*NSEASN data cards. If the total sum of the joint frequency of occurrences for any season (or annual) does not add up to 1, the program will automatically normalize the joint frequency distribution by dividing each joint frequency by the total sum. Also, the program assumes stability categories 1 through 6 are Pasquill stabilities A through F. Seasons 1 t:l..cough 4 are no:rmally winter, spring, summer and fall. See the parameter FMT above for the format of these data. 4-32 [ c [' u [ [ [ 0 [ L [ i Ci ' ' [ 0 u [. ; Parameter Name HM DPDZ Average Ambient Air Temperature --This parameter consists of the average ambient air· temperatures in Table 2-4), classified according to season (or array (Ta;k,~ annual) and stability category,. in. degrees Kelvin. One data card is read for each season ( 1 to NSEASN) with the temperature values for stability. categories 1 through NSTBLE punched across the card. When the program. has completed reading these data cards, it will scan. all of the values in the c;>rder. of input· and,. if any value is not punched or is zero. the program will default to the last non-zero value of tA it encountered. Mixing Iie;!.ghts.-This. parameter arr~ consists of the . · :~eO:±<m;~~~;-~;~~::~ight ~ me~ers (H in . . . . . · m;i,k,~ Table .z;..4) classified. accqrding to wind speed, stability and season (or annuS.l.) • The program begins reading the mixing layex:. heights. for season 1.. The program reads the mixing· layer height values for each wind speed category (l to NSPEED) from· each card. There are NSTBLE ( 1 through NSTBLE) cards read for each season~ The program scans each value input iii the order of input and, for each sea- son, ·if a zero or non-punched value. is found, the program defaults to the last non-zero value encountered within the· values for that season. The ISCLT program automati- cally uses a mixing height value of 10000 meters for the E and F stability categories when the program is run in the Rural Mode. Poten~ial Temperature Gradient --This parameter array consists of the vertical gradients of potential temperature 4-33' Parameter Name DPDZ (Cont.) UBAR (ae in Table_ 2-4) classified according to wind az. k J., speed and stability category in units of degrees Kelvin per meter. There are NSTBLE (1 through NSTBLE) data cards read with the values for wind speed categories 1 through NSPEED read from each card. If the first value on a data card is not punched or is zero for cards 1 through 4 (Pasquill stability A through D), the potential temper- ature gradients are set equal to zero by the program for these stability categories. If the first value on cards 5 or 6 (E and F) is zero or not punched the program defaults to a value of 0,02 for card 5 (E stability) and 0.035 for card 6 (F stability). Also, if the second - through last value on any card is zero or not punched, the program defaults to the last non-zero value found in a scan of the data ·card. Wind Speed --This parameter array consists of the median wind speeds in meters per second (u 1 in Table 2-4) for the wind-speed categories used in the calculation of the joint frequency of occurrence of wind speed and direction (STAR summary). There are NSPEED values read from this card and if any value is not punched or is zero, the pro- gram defaults to the following set of values: 0.75, 2.5, 4.3, 6.8, 9.5 and 12.5 meters per second. Wind Direction --This parameter array consists of the median wind direction angles in degrees for the wind- direction categories used in the calculation o£ the joint frequency of occurrence of wind speed and direction (S~~ summary). There are NSCTOR values read from 1 to 2 data 4-34 [ [ L [ [ c [ [ [ D [ '[1 ~ c E L [ c [ c c '~· [ [ ; G [ [ [ 0 [ c c., c L Pat:ametet: Name THETA (Cont.) p cards and if the fit:st two values of this array ue not . punched or are zero, the program defaults to the follow- ing standat:d set of values: o. 22.5 •. 45, 67.5, 90, • • ,. 337 .• 5 degrees (N,. NNE,: NE,. ·-• • ,. NNW). The wind · cttrectiou is that angle from which the wind is blowing, measured clockwise from zero degrees (north) • Wind Speed Power Law-Exponent -This parameter array consists of· the wind speed powet: law exponents (p in Equation (2-10)) classified according to wind speed and stability category. There are· NSPEED (1 through NSPEED) values read per data card. for stability· categories 1 through NS'l'.BLX. If the first value on any data card in thiS. ~et:. iii; .AQt ~~ed: ~r~ :fs zerb ~ the program defaults to th~-vdua; f~em: tlle . fo'~g. set of values: A • 0. l, 1r •'.0.15, C: • 0.2·, D • 0.25; E •· 0.3,. F • 0.3 depending on the stability category A through F.. Also, if any of the second. through last-value on a card is not punched or is zero, the:value is defaulted to the previous non-zero value on the data card~ ~· Source Data.. These data consist of all necessary information required for each source. These data are divided into three groups: ( l) par am.eters that ue required for all source cypes , ( 2) parameters that are required· for stack type sources, and (3) parameters that ue :.required for volume. sources and area sources. The order of input of these parameters is given at the end of this section. 4-3.5 -------,------------------------ Parameter Name NUMS DISP Source Identification Number !his parameter is the source identification number and is a 1-to 3-digit inte- ger. If this number is negative, the program assumes NOMS is only a flag to terminate the card source input data. Also, if NOMS is not. punched or is zero, the pro- graM will default NUMS to the relative sequence number of the source input. This number cannot be defaulted if source data are also being input from tape or data file. Sources must be input in ascending ·order of the source identification number. Source Disposition --This paraMeter is a flag that tells the program what to do with the source. If this param- eter is not punched or has a value of "O", the program assumes this is ~ new source for which concentration or deposition is to be calculated. Also, if the program is using an input . tape or data· file, this new source will be merged into the old sources from tape or will replace a tape source with the same source identification number. If the parameter DISP has a value of "1" , the program assumes that the tape input source having the same source identification number is to be deleted from the source inventory. The program removes the source as well as the concentration or deposition arrays for the source. if the parametel: DISP has a value of "2", the program assumes the. source strengths to be read from data card for this source are to be used to rescale the concentra- tion or deposition values of the tape inpu~ source with the same source identification number. The new source strengths input from card replace the old values taken 4-36 [ [ [ [ [ [ [ [ [ [ [ r t [ c [1 ~ .. [ [ D [ [ c 0 c 6 G c 6 [ L · .. .. ·- ·-·- -. Parameter Name DISP (Cont.) TYPE DX from the input tape and the concentration or deposition arrays taken from tape are. multiplied by the ratio of the new and. old. source strengths. The DISP option equal to "2" can only be used if QFLG equals zero and the tape input· source has QFLG equal to zero. ·Source Type .-This parameter is a flag that tells the program what type of source. is being input. If this param- eter is not punched. or is· "O", the program assumes a stack source. If this parameter has a value of "1", the program assumes a. volume source. Sim::l.larly, if this parameter has a value. of "z"·, an: area. source is assumed. ·Source. Emissions Option'~· Ibis • parameter is a flag that -. . . . . tells the· program hmr the input source emissions are varied. If this. value, is:· not punched or is "O", the pro- gram assumes the source emissions vary by season (or anuual) and only tha NSEASN values are read by the program. If this parameter has a value of "1" , the program assumes the. source emissions vary by stability category and season. . . If this parameter has a value of "2", the program assumes the source emissions vary by wind speed category and sea- son. If this parameter ·has a value of "3", the program assumes the source emissions vary by wind speed category, stability category and. season. The order of input of the source strengths under each of these options is discussed under. the parameter Q below. Source X Coordinate --This pa~ameter gives the Cartesian X (east-west) coordinate in meters of the source center ~37 ---~---. ···-~---~·---···--·----- Parameter Name DX (Cont.) DY H zs Q for stack and volume sources and the southwest corner for area sources (X in Table. 2-6) relative to the origin of the. reference gri.d system being used. Source Y Coordinate --This parameter gives the. Cartesian Y (north-south) coordinate iu meters of the source center for stack and volume sources and the southwest corner for area sources (Y iu Table 2-6) relative to the origin of the reference grid system being used • .Height of Emission -This parameter gives the height above ground iu meters of the pollutant emission. For volume sources, this is the height to the center of the source. Source ElevatiOn .__ This parameter gives the terrain ele- vation in meters above mean sea level at the. source loca- tion·and.is not used by the program unless receptor ter- rain elevations (ISW(4)) are being used. Source Emission --This parameter array gives the emis- sion rate of the source for each category specified by QFLG above. If QFLG above is "O", NSEASN values are read from one data card. If QFLG is. "1", NSEASN data cards are read with the source emission yalues for stability categories 1 through NSTBLE read from each card. If QFLG is "2", NSEASN data cards are read with the source emis- sion values for wind speed categories 1 through NSPEED read from each card. Ii QFLG is "3", NSPEED (1 through 4...;38 [ [ [ [ [ r L [ [ c [ [ [ [ c [ [ [ c . [ c [ : Parameter Name Q (Cont •. ) NV'S ~----....-~c __ NSPEED) source emission values are read from each data card and there are NS!BLE (l through NSTBLE) data cards read for each season. There are no default values pro- vided for· the· parameter· Q and the program assumes "O" is a va.li.d source emission. The input units of source · emission are: Source Type Concentration Deposition stack.: or ·mass per unit time total mass volume:· (g/se.c)* (g)* mass per unit time total mass per unit area· per unit area area f (g/ (sec•m2) )* (g/m2)* *D~afaule Wlits Number of Particulate Sue Categories -This parameter gives the number-of particulate size categories in the particulate distribution used in calculating ground-level deposition. or concentration with deposition occurring. If ground-level deposition (ISW(l) • "2") is being calcu- lated,· this parameter must be punched and has a maximum value of 20. A.lso,. if the program is calculating concen- tration and: this value is punched greater than zero, con- centration with deposition occurring is calculated. If the parameter NVS'is greater· than zero, the program reads NVS values for each of the parameter variables VS, FRQ and GAMMA ·below. 4-39 -·------------.. , __________ _ Parameter Name VS FRQ Stack Source Parameters TS Settling Velocity --This parameter array is read only if NVS above is greater than zero. This parameter is the settling velocity in meters per second for each particulate size category (l through NVS). No default values are pro- vided for this parameter. Mass Fraction of Particles -Thi.s parameter array is read only if NVS above is greater than zero. This param- eter is the mass fraction of particulates contained in each particulate size category (1· through NVS). No default values are provided for this parameter. Surface Reflection Coefficient --.This parameter array ' . is read · only if NVS above is greater than zero. This parameter is the surface reflection coefficient for each particulate size category (1 through NVS). A value of "0" indicates no surface reflection (total retention) • A value of "1" indicates complete reflection from the surface. The reflection coefficient range is from 0 to 1 and no defaul.t values are provided. Stack Gas Exit Temperature --This parameter gives the stack gas exit temperature (T in Table 2-6) in degrees s Kelvin. If this parameter is zero, the exit temperature is set equal to the ambient air temperature. If this parameter is. negative, its absolute value is added to the ambient air temperature to form the stack gas exit temper- ature. Fe.: example, if the stack gas exit temperature is 15 degreeS Celsius above the ambient temperature, enter TS as -15 (the minus sign is used by the program only as a flag). 4-40 n [ c r L [ [ c [ [ [ c t r t: L ~: I ; [! i ' ~! ! [ [ [ [ [ c [ ;. [ [ ... .. ·-., .. _ c [ E c~ lJ E b L Stack Source Parameters Stack Gas Exit Velocity --This parameter gives the stack VEL g_as exit velocity in meters per second. No plume rise is calculated if VEL is equal to zero •. D HB BW WAKE Stack Diameter -This parameter· gives the inner stack diameter· in meters and no default is provided. Building Height --This parameter gives the height above ground leveL in meters of the building adjacent to the stack. This parameter and BW beZobJ aont;zoo7, the wake effeats option. If HB. and BW a:zoe punched non-zero., wake effeats for the respective source a:re aonsidered. However, if HB and BW are.· not· punched. or: both. equal. "O", wake effects for the · respectiv;e source are not. considered (seeSection 2.4.l.l.d). Building. Width -This parameter gives the width in meters of: the b.uilding.adjacent to the stack. If the building is not: square, input the diameter of a circular building of equal. horizontal. area. If. HB is not punched or is zero, this value should not be punched. Supersquat Building Wake Effects Equation Option ·--'This option is used to control the equations used in the calcula- tion of the lateral virtual distance (Equations (2-31) and (2-33)) when the effective building.width to height ratio. (BWiHB) is greater than 5. If this parameter is not punched or has a value of "O" and the width to height ratio is. greater than 5, the program will use Equation (2-31) to calculate the lateral virtual· distance produc- ing the upper bound of the concentration or deposition for the source. If this parameter has a value of "1", the 4-41 .... --·-----··-··-····----------------· --- Stack Source Parame-cers WAKE (Cont.) Volume Source Parameters SIGYO SIGZO Area Source Parameters xo f. program uses Equation (2-33) producing the lower bound of the concentration or deposition for the source. The appro- priate value for this parameter depends on building shape and stack placement with respect to the building (see Section 2.4.1.l.d) ·- Standard Deviation of the Crosswind Distribution --This parameter gives the standard deviation of the crosswind distribution of the volume source (a in Table 2-6) in yo meters. See Section 2.4.2.3 to determine the correct value for this parameter. No default value is provided. Standard Deviation of the Vertical Distribution --This parameter gives the standard deviation of the vertical distribution of the volume source (a in Table 2-6) in zo meters. See Section 2·.4.2.3 to determine the correct value for this parameter. this parameter. No default value is provided for Width of Area Source -This parameter gives the width of the area source (x in Table 2-6) in meters. This param-o eter should be the length of one side of the approximately square area source. No default is provided for this param- eter. Source Data .Innut Order. There are from one to four data input card groups of one or more cards each required to input the 4-42 [ [ [ r L- [ [ D L t L 11 i L [ [ [' L [ [ c l c [ c E L [ ...... . ·:;.~ source data. The data cards and parameters required depend on the source type (TYPE) and on the parameters DISP, QFI.G, NVS and the concentration/ deposition option parameter ISW(1). Card Group 17 is always included in the input deck for each source input (1 to NSOURC). Card Groups 17a through 17 c are included only if NVS on Card Group 17 is non-zero. Card Group l.7d is included only if DISP on. card Group 17' equals "O" or "2". The· order of input: of these· source cards-is Car~ Group 17 ·followed by those used from 17a. through 17d. for each successive source input. DO NOT stack all of 17 together, all of 17a together, etc. or the program will terminate in error. Source Input Card Group 17 Required Source Parameters for Card Group 17 -The param- eters read from the first data card for each source and their order are: Stack Sources -· NOMS, DISP ,. TYPE,. QFLG, DX, DY, H, ZS,. TS, VEL,. D, HB, BW~ WAKE, NVS Volume Sources -NOMS,. DISP, TYPE, QFLG, DX, DY, H, ZS,. SIGYO,. SIGZO, NVS Area Sources -NDMS, DISP, TYPE, QFLG, DX, DY, H, ZS, XO, NVS ' . If the parameter DISP on this card is set to value of "O", all parameters on this card are expected to have the cor- rect value and the program may read Card Groups 17a, 17b and 17c (depending on NVS) and will read Card Group 17d. If DISP is set to a value of "1", only the parameters NOMS and DISP are referenced (required) on this card, the program assumes it is to delete an incoming tape or data file source and only this data card is read for this 4-43 Source Input Card Group 17 (Cont.) Source Input Card Groups 17a, 17b and 17c ·source Input Card Group 17d source. If DISP is set to a value of "2", on.+y the param- eters NOMS, DISP and QFLG are referenced (required) on this card because the program assumes it is _to-. read the source sttengths from Card Group 17d and to. rescale the concentration or deposition of an incoming tape or data file source. Parameters not referenced on this first data card are set from tape or data file source data by the program. Source Particulate Distribution pata --This card group consists of three sets of one or more data cards each and is read by the program only if DISP is set to "O" and the parameter NVS is set to a value greater than zero for concentration calculations with deposition occuring or ,. for deposition calculations. The first data card(s) con-· tains the values of the parameter array VS, the second contains the values of the parameter array FRQ and the third contains the values of the parameter array GAMMA. A total of NVS values are read from each set of cards. Source emissions --the last input card group for a source contains the source emission values for the source. This 4-44 ... [ [ r [_" [ [ J r--L_; r L. [ [ c [ L . . t L : . _j L c- e: •. [ [' ' I i c c [ [ c [ [··~ ':i r L.· I [ ' [j L Source Input Card Group 17d (Cont.) 4.1.3 card group consists of ona or more data cards and is read only if the parameter DISP is .!!E.£. equal to "1". The num- ber o:f cards required and the order of values input depends on tha parameters QFLG and is given under the source strength parameter Q above. Output Information. The ISCLT. program· generates f:f.ve categories of program output. Each category is opt:f.onal to. the user. That is, the user controls what output other than war:ni:ng and error messages tha program generates for a g:f.ven run. In. the following paragraphs,.. each category of output is related to tha spec:f.f:f.c input parameter that controls. the output category. All prograui outpUt are pnnted: ~Ce'(J~ fo~C~glie~c tape'or. data file out:.. put. are. Input:' Parameters. Output.· The ISCLT program• will print: all of the input data except for source data :f.£ the paramet:er ISW(6) is set equal to a value of "1" or "3" •. An example of this output is shown in Figure 4..o4 of Seet:f.on 4.2.4 and in the example problems given in Appen- dix D •. b. Source Parameters Output. The ISCLT program will print the input card and tape source data if the parameter ISW(6) is set to a value of "2" or "3". An example of the printed source data is shown in Figure 4-3 of Section 4.2.4 and in the example problems given in Appendix D. 4-4.5 • - c. Seasonal/Annual Concent=ation or Deposition. :he paramete= ISW(l) specifies whether the program is to calculate concentration or depo- sition and the parameter NSEASN specifies if seasonal or annual input meteorological data is being used. The option ISW(7) is used to specify whether seasonal output or annual output or both is to be generated. If the input meteorological data are seasonal (winter,-spring, summer, fall), the program can be directed to produce tables of seasonal as well as annual concentration or deposition by setting the parameter ISW(7) equal to "O" or "3". Also, only seasonal tables are produced if ISW(7) equals "1". If the parameter NSEASN is set equal to a value of "1" and only annual output is selected (ISW(7)="2"), the program labels the output concentration or deposition as annual calculations. However, if seasonal output is selected with NSEASN equal to "1", the output tables are labeled seasonal. Also, all seasonal output is labeled season 1, season 2, etc.,- requiring the.user to keep track of the actual meteorological season. Example seasona~ an4 annual output tables are shown in Figures 4-4 and 4-5 in Section 4. 2. 4 as well as Appendix D. d. Concentration or Deposition Printed for the Maximum 10 and/or All Rece~tor Points. The ISCLT program.is cabable of printing the concentration or deposition calculations for each receptor point input to the program o= printing only the maximum 10 of those receptors or both. The parameter ISW(lO) is used to determine which calculations are to be printed. If ISW(lO) is set equal to "1", only the maximum 10 values and receptors determined by ISW(ll) or ISW(l2) are printed. If ISW(lO) is set equal to "O", the results of calculations at all receptors are printed and the maximum 10 are not printed. If ISW(lO) i~ set equal to "2", the program prints .the .results of calculations at all receptors in addition to the maximum 10. Examples of output tables giving the calculations at all points and the maximum 10 are given in Figures 4-4 through 4-10 of Section 4.2.4 and in Appendix D. e. Magnetic Tane or Data File Outnut. The ISCLT program will write all input data and all concentration (deposition) calculations 4-46 [ [ [ [ f' L L [ r: [ E L L r l : r:! l ~- (" L [ [ c [ E [: [1 t E L to magnetic tape or data file. These data are written to the logical unit number specified by the parameter ISW(lS). This tape or data file must be assigned to the run prior to the execution of the ISCLT program, positioned to the correct file and must be equated to the logical unit number _given .in ISW(lS). ISW(lS) must be a positive value for magnetic tape or a negative: value for mass storage. If: seasonal meteorological input data are used~· the program saves only seasonal concentration (deposition) on the output file and if. input is annual, only annual calculations are saved. This output file can be read back into the ISCLT program to print tables not output in the original run and/or to modify the source inventory for corrections or updates in the source emissions. The instructions on how to assign the output magnetic tape or file are given in Section 4.2.2 and. approximations as to the length of magnetic tape required. are given in Section 4.2.5.c. A IIICre detailed description of the contents and. fo1:111at of the output tape file is given in Section 4 •. 2. 4. . . . , . . . . . 4.2. USER'S INSTRUCTIONS. FOR TBE. ISCLT· PROGRAM 4 •. 2..1. Program Description The rsc· long-term (ISCLT) program-is designed to calculate ground-level average concentration or total deposition values-· produced ·by '·emissions from multiple stack~ volume and area sources • . The g~ound-level concentration or·total deposition values can be calcu-· lated on a seasonal (monthly) or· annuai basis or both for an unlimited number of . sources. The program is capable of producing the seasonal and/or· annual results for eaCh individual source input as well as for the combined (summed) seasonat and/or ·annual results from multiple groups -of user-selected sources. The program calculations of concentra- tion·or deposition are performed for an input set of receptor coordinates defining a fixed receptor grid system and/or for discrete (arbitra~ily placed) receptor points. The receptor grid system may be a right-handed Cartesian coordinate system or a polar coordinate system. In either 4-47 -------·--------.... case, zero degrees (north) is defined as the positive Y axis and ninety degrees (east) is defined as the positive X axis and all points are rela~ive to a user-defined hypothetical origin (normally (X=O, Y=O), although the Universal Transverse Mer.cator (U'IM) coordinates may be used as the Cartesian coordinate system). Capabilities of the ISCLT program. include: • • • • •• The capability to calculate either ground-level average concentration or total deposition The capability ta process an unlimited number of sources The capability to model stacks; volume sources and area sources in the same execution The capability to specify source locations anywhere within or outside of th~ receptor grid system or discrete rec·eptor points The capability .to produce either seasonal or annual results or both The capability to display concentration or deposition from individual sources • The capability to display combined (summed) concentra- tion or deposition from multiple user-related subsets of the sources or from all sources The capability of saving the results of all calculations, the source data and the meteorological data on a master source/concentration (deposition) inventory magnetic tape or data file 4-48 [ [ r L [ ~.­ [ r~ I L [ [ c [ r L [' L E L [ ! c [ Q . ' [ [ [ : C· E [ [ 0 L \ 0 c c t E [ .. _,. • !he capability of updating (adding to, modifying or deleting from) a master source/concentration (deposi- tion) inventory magnetic tape or data file •· The capability to specify· a regular receptor array or a set of discrete (arbitrarily placed) points or both ., The capability to specify a right-handed Cartesian coor- dinate system. or a polar coordinate system for the regular receptor array or for the discrete (arbitrarily placed) receptors •· The capability to specify· terrain elevations for each re- ceptor· and source for concentration calculations .. The: capability· to specify either an urban or a rural •-The cap&bU:t.ey· of: displiiiying the IIWidmum.-10 coucentra- . tion or· depositiOn;. values ·and their-locations for each indiv:ldual. source and for the combined (summed) sources • The capability of displaying the 10 values of concentra- ,: tion or deposition from each source that contributes to the maximum 10 · for the combined (summed) sources e-The capability of let.ting· the program. determine the maxi- mum 10 locations or letting the user specify a select group of 10 locations on a seasonal or annual baS.is ' • The capability of using either seasonal or annual mete- orological data -:---··· --· -·· ----- • • The capability of specifying the number of wind speed, Pasquill stability and wind direction categories in the meteorological data The capability to vary source emissions by season, by Pasquill stability category and season, by wind speed category and season or by wind speed category, ·Pas quill stability category and season (season is defined as winter, spring, summer and fall or annual only) The ISCLT computer program is written in FORTRAN, is designed for use on a UNIVAC 1110 computer and is compat~ble with both the UNIVAC FORTRAN V and ASCII compilers. However, the program is also designed to execute on most medium to large scale computers with minimal or no modifications. Program modifications necessary for computers other than the L~IVAC 1100 series-computers are given below in Section 4.2.7. The program requires approximately:65,000 words (UNIVAC 1110) of executable core for instruction and data storage. The program design assumes a minimum of 32 bits per variable word and a minimum of four character bytes per computer word. The program also requires from two to four input/output devices, depending on whether the tape input/output options are used. Input card image data is referenced as logical unit 5 and print output, which requires ·132-character print columns, is referenced as logical unit 6. The optional tape or data file input is referenced as logical unit 2 and the output is referenced as logical unit 3. The user has the option of either using the default logical unit numbers given here or specifying alternate logical unit numbers. The computer program consists of a mai~ program (ISCLT) and 15 subroutines (MODEL, Oli'TPT, HEADNG, MXIMUM, CHECKR, SUMMER, TITLR, DISTR, FUNCT, VERTCl, VERTC2, VERTC3, SIGMAZ, VIRTZ and VIRTY). The FORTRAN source code for each of these routines is given in Appendix B and a logic flow descrip- tion of the ISCLT program is given in Appendix I. 4-50 [ [ [ r L .0 [ [ c r L ·C .r~ Li E L [ [ [ [ ,. r: [ c [' L [ . ·~" ;;.i [ ~r.. ·" c [ [ L t c L L 4.2.2 Con~rol Language and Data Deck Setup a. Control Language Requirements. The following illus- trates the required ECL control statement runsteam for a typical run on a UNIVAC lllO Operating System: l. @RUN,priority jobid,acr:ount.userid, time,pages 2. @PASSWD user-password 3. @ASG,A prog-file •. 4. 5. @ASG,T input-tape-file.,l6N.reel-number @USE an,input-tape-file .. or @ASG,A input-file·. @USE mi.input.;..file. @ASG,TF/W output-tape-file.,l6N,reel- number @USE mm,output-tape-file. @MOVE output-tape;_file.,t or ~51 } May be necessary with batch runs, depending on system } Optional, required only if ISW(S)-2·;.·or · l and data is on tape } Optional, requir~d only if data is the Jl. th file on tape, Jl.> 1 } Optional, required only if ISW(5)•2 or 3 and data is on mass storage file } Optional, required only if ISW(S)•l or 3 and data is output to tape } Optional, required only if data output file t is greater .than 1 ------··------------- 6. 7. s. ---···-··--·----·-· ··-----·~-····-··-·-··--·····--·--. @ASG,CP output-file. @USE mm, output-file. or @ASG, T output flle. @USE mm,output-file. @XQT prog-file.ISCLT card-input-data @FIN where priority jobid account use rid time - - - = = job run priority Optional, required only if ISW(5)=l or 3 and data is output to a mass storage file to be catalogued and saved at the end of the run Optional, required only if ISW(5)=1 or 3 and data is output to a temporary mass storage file to be deleted at the end of the run six-character use~ supplied job iden- t~fication. May also specify core usage requirements, check with your system consultant account number, assign by installation accounting six-character user identification code execution time required 4-32 " ,. [ c [ c ' r· .. ~ .l r· [ [, [ [ c t·-, .J J __ -:. L L [ c [ [ [ L L c [ [ c [ [ ... ---' [ t L pages • maximum number of output pages user-password • password, assigned by installation accounting prog-file • is the name of the program file. This illustration assumes the user (installation) has assembled and collected (linked) the long-term program into this file and called the absolute program ISCLT. input-tape-file • a user supplied file name used to reference the optional source/con- centration (deposition) inventory input tape. This tape was created .. ·.~ .. by a:> previ.Ous run of· the ISCLT· pro- .'· .. gram. reel-number -the· physical tape reel-number as- nn - signed by the installation tape li- brarian. Each tape reel-number is unique. the FORTRAN logical unit number with which the ISCLT program is to reference (read) the input tape. · This number is defined under the ISW(l4) parameter input option and is always positive here. 1 • the number of file-marks to space over·on t~e input tape to position the tape at: the desired input data set:. 'The MOVE card is only required if 1>1. 4-53 . . ---·-----------·--------·--·-· --------·---------.... -·· -........ . input-file output-tape-file mm. output-file = = the_name of a catalogued file con- taining the input source/concentra- tion (deposition) inventory. This assignment assumes the file was created by a previous run of the ISCLT program. a user supplied file name used to reference the optional source/con- centration (deposition) inventory output tape. = ·the FORTRAN logical unit number with which the ISCLT program is to refer- ence (write) the output tape. This number is defined under the ISW(l5) parameter input option and is always positive here. = the name of a catalogued or temporary file to which the output source/con- centration (deposition) inventory is to be written. card-input-data = that card deck consisting of all necessary data cards defined in Section 4.1.2 above and shown in Figure 4-l, Section 4.2.2.b. The JCL control statement runstream for a typical run on an I~~ 360 Operating System is given below: l. //jobid JOB(account),'name' ,Time=time 4-54 [ [ [ [ r L [ [ [ c ·[ E L c [ [ [ c [ [ L 2. 3. 4. 5. 6 •. 7. 8. 9. 10. //JOBLIB DD DSNAME-prog-file,DISP•(OLD,PASS) //STEPl EXEC PGM•ISCLT //FT05F001 DD DDNAME•SYSIN //FT06F001 DD SYSOUT•A //FTnnFOOl DD DSN-taput-tape-file,UNIT-TAPE,VOL•SER•reel-number, DCB•RECFM•V,DISP=OLD //FTmmFOOl DD DSN-output-tape-file,UNIT~E,VO~SER•reel-number, DCB-RECFM•V,DISP•(NEW,KEEP) //GO.SYSIN DD * card-input-data · "•'-'" I* ··.···. where the lower case names and letters are defined the same as under the UNIVAC ECL definitions. Thia illustration assumes the user has as- sembled the ISCLTprogram. into-an absolute-deck located in a catalogued library "prog-file" and that the absolute deck is called ISCLT. Also, cards 6 and 7 are optional input and output tapes. The control statement runstream for a typical run on a CDC 6500 Operating System is given by: 1. job-card (s) · 2. REQUEST, IAPEnn,VR.N-reel-number,HY -Optional input tape 3. REQUEST,~Emm,VRN-reel-number,mN,HY -Optional output tape 4-55 .. ------···--··----·----· 4. 5. 6. 7. 8. 9. .. ·. ' ATTACH, IS CLT, prog-file (,options] z:a.o. ISCLT. 879} Card Column One card-input-data 8~9l s Card Column One where job-card(s) • job card or cards that consist of the job name, account, password, etc. depending on the installation. The remaining lower case names and letters are defined the same as under the UNIVAC ECL definitions. .The illustration assumes the user has assembled the ISCLT program into an absolute deck located in a catalogued file "prog-file" and that the absolute deck, which is called ISCLT, is used as the LGO (load and .go) file. b. Data Deck Setun. The card input data required by the ISCLT program depends on the program options desired by the user. The card input deck may be partitioned into five major groups of card data. Figure 4-l illustrates the input deck setup. The five major input deck groups are: 1. Title Card (1 data card) 2. Program Option and Control Cards (2 to 5 data cards) 4-56 [ [ E c r" r L L [ f I c i ! ! [ c [ ·1 Lj [ c [ • [ [ - ....... . '" c [ c [ .. . c .. t u L (2) (ll(n= (5) NOMS. DISP, etc. (t:his deck consists of all. source ,dat:a. cards (Card Groups 17 through 17 d) a.D.d is in- cluded in t:he dat:a. deck. onl.y if NSOIJRC ·> 0). Group Card Groups 17 t:hrough l7d together for each source •. FMT {this deck. consists of parameter card groups FMT (group 9) through (4) parameter card group P (group 16) aud is . incl.ude.d ill the data deck. ouly if ISW(S) ~ 1) A ( z (elevations deck.) I . ( Y (arbj,traril.y spaced Y points deck) (.3). A .· .. 1 ·. · ( Y ·(grid system Y-axis deck.) A· 1 ( X (arbitrarily spaced X points deck) A f x· (grid system x-axis deck) UNITS (read. oUly if ISW(S) ~ 1) IDSORC (read ouly if NGROUP > 0) NOCOMB (read onl.y if NGROUP > 0) FIGURE 4-1. . Input data deck setup for the ISCLT program • 4-57 . ----·----·· ····· ----·-··--------------- 3. Receptor Data Cards (the number of data cards included in this group depends on the parameters ISW(4), ISW(5), ISW(l2), NXPNTS, NYPNTS and NXWYPT) 4. Meteorological Data Cards (this card deck is included in the input deck only if ISW(S) is less than or equal to "1") 5. Source Data Cards (this card deck is included in the in- put deck only if NSOURC is greater than zero) 4.2.3 Input Data Description Section 4.1.2 provides a summary description of all input data parameter requirements for the ISCLT program. This section provides the user with the FORTRAN format and order in which the program requires the input data parameters. The input parameter names used in t~~s section are· the same as those introduced in Section 4.1.2. Two forms of input data may be input to the program. One form is card image input data (80 characters per record) in which all required input data may be en- tered. The other form is magnetic tape or mass storage on which some of the required input data was stored as part of a previous run of the ISCLT program. Both forms of input are discussed below. a. Card Input Reauirements. The ISCLT program reads all card image input data in a fixed-field format with the use of a FORTRAN "A", "I" or "F'' editing code (format). Each parameter value must be punched in a fixed-field on the data card defined by the start and end card columns specified for the variable. Table 4-4 identifies each variable by name and respective card group. Also, Table 4-4 specifies the card columns (fixed-field) for the parameter value and the editing code ("A", "I" or "F") used to interpret the parameter value. Parameters using an "A" editing code are alpha-numeric data items used primarily for 4-58 [ [ r [' J [ I' [' c f~ L_; r -.-J [ .. c [ [• .. _j -[ c t [ L ' i I I l ·j I i I ~ I I ln 1.0 I I ' i Card· Parame~er Group Name 1 TITLE 2 ISW(1) 'lc 'lc ISW(2) 'lc ISW(l) 'lc lSW(4) ISW(5) C"'l .. ·r-1 ··c--J r--1· ·. l: I , .. TABL~ 4-4 ISCLT PROGRAM C4RJ) INPUT PARAMETERS, FORMAT ANP. p~SCRIPTION Car4 Colullllls· 1 -SQ 2 4 ~ 8 .. 10 FORTRAN Edit Code ·(Format) p IJ :u ~.t.~Jnk, 0 or 1 "'! c::alculate concentration 2 .., c~lcQlf4te d~~ostt1o11 )>lank, 0 or J • Cartes~all coor4tq.~te receptor srid Iii)' Stem ~ • folar ~oordioat• receptor grid sys- tem l • Cartesian discrete placed) rec~ptor~ ~ • Polar diacret~ receptofs (arbitrarily . 'flJ.ank 0" 0 -no terrain elevation data · 1 • terrain elevat!oq 4ata ' l>hnk or 0 "'! no input or output tape J • output tape only 2 a inp~t tape only 3 • both input and output tapes *These parameters are set automatically l>Y t.he pr.ogram and cannot be changed if tape input ISW(5) = 2 or 3) is being used. L f "' 0 Card Group 2 (Cont.) :~ Parameter Name ISW(6) ISW(7) ISW(8) ISW(9) ISW(lO) Card ·Columns 12 14 16 ; 18 20 TABLE 4-4 (Continued) FORTRAN Edit Code Description (Format) 11 blank or 0-.input data are not printed 1 -print all but source input data 2 .. print source input data only 3 .. print all input data 11 1 .. print seasonal (monthly) calculations only 2 ... print annual calculations only blank. 0 or 3 • print both seasonal and annual cal- culations 11 1 .. print only concentration (deposition) from individual sources 2 ... print only concl;lntration (deposit ion) ' ~rom combined sources blank, 0 or 3 • print concent~ation (deposition) from both individual and co1nbined sourcea 11 1 "" Urban Mode 1 2 = Urban Mode 2 blank, 0 or 3 .. Rural Mode if ISW(5) = 0 OL" 1 blank or 0 = Value from input tape if ISW(5) = 2 or 3 11 blank or 0 • maximum 10 concentration (deposition) values are not calculated 1 "' maximum 10 concentration (deposit:ion) values are calculated according to ISW (ll) or ISH(Jn and only these calcula- tions are printed .------.. ' j t 0\ ..... ~ 11::,, .. ; Card Group 2 (Cont.) Parameter Name ISW(lO) (Cont.) ISW(ll) ISW(l2) ISW(13) ISW(l4) Card Columns 24 25 -26 27 .... 28 TABLE 4-4 (Continued) fO~TRAN Edit Coqe (lltl'I"~A t" \ 12' 12 Pescriptioq 2 • ~aximum 10 concentration. (qeposition) values are calculateq according to lSW(ll or lSW(l2) and these as well as the con- centr~tion (deposit!on) values at all otller receptors are pdnted . !l~~nk Of 0 • see ISW(l2) if lSW(lO) > 0 · .· · l "" program determines maximum 10 of each ~nd~vidual source ~d source combina- tion independently Qf eacp other 2 • prog~a~ determines maximum 10 of com- bined sources and pr!nts those as well as tpe contributions of each individual source to those r~ceptora ~l~qk or 0 ~ see JSW(11) if ISW(lO) > 0 · ~ 1 ~ user specifies maxi~~ 10 or special 10 ·receptors ~l~nk or 0 • print outpu~ goes to fORTRAN loaical unit 6 (printer) · · n > 0 "" print output soes ~P fORTRAN logical unit n followed by two end-of-file marks n < 0 m print output goes to FORTRAN logical unit ll. with no end-of-Hle marks blank or 0 "" tape input data is read from FORTRAN logical unit 2 n > 0 ... input data is read from magnetic tape on FORTRAN logical unit n n < 0 "" input data is read f~om mass-storage on FORT.RAN logical unit n Card Group Parameter Name Card Columns TABLE 4-4 (Continued) FOitl'RAN Description EMt Code (Format\ ----------1------------~f-----------·-~~~~l-t-----------------------------~-------------------------4 2 (Cont.) ISW(15) ISW(l6) ISW(l7) 1SW(l8) ISW(l9) ISW(20) 29 -30 12 32 Il 33 -34 12 35 -36 12 38 Il 40 Il blank or 0 = tape output data is written to FORTRAN logical unit 3 (magnetic tape) n > 0 = output data is written to magnetic tape on FORTRAN logical unit n ·· n < 0 -output data is written to mass storage on FORTRAN logical unit n blank or 0 • each new output table starts on a new page 1 = program minimizes number of output pages by not starting a new page even though successive tables are not related. blank ot 0 • the program prints 57 lines per page before ejecting to a new page n > 0 • the program prints n linea per page before ejecting to a new page blank or 0 "" the Jlrogram reads Card Group 9a using a 6no.o format 1 = the program reads Card Group 9 which speci- fies the format the program is to use to read Card Group 9a blank or 0 = plume rise is independent of downwind distances 1 = plume rise is dependent on downwind distance blank or 0 a no stack~tip downwasb correction is made at the stack height l "' the Brlggs (1973) downwasb correction Js applied to the stack height Card Group 3 Parameter Name NSOURC NGROUP NXPNTS* NYPNTS* · NXWYPT NSEASN* Card Columns 1 - 4 s -8 9 -12 13 -l6 17 -20 21 -24 -L -J ;:- TABLE 4~4 (Coptinued) FORTRAN Ed~t Code (Format) 14 14 14 Description Numbef of card image input S04fces to be read 4ndef Card Gr~up 17 to 17d below. lf negative . ~he program w~ll continue to read Card Group ~1 to J.7d until a negative ~OUfCe JD-number 1~ read from Card Group 17. Number of different source combinations used ~~ pr~nt concentra~ion (derosition) calcula- ~~0~~ (the maximum is 20). If se~ to zero Cafd Gr 0 ups 4 and 4a are omitted fro~ the in- put card decl<,. H~mber of receptors in the X-axia of the·recep- ~or grid system. (The numbef ot rings in polar .·.coordinates.) l<fumber of receptors in the Y-axis ot the recep- tor grid sy~t~. (The numbe~ of rad~als in polar coordin~tes.) Number of discrete (arbitr~rilY placed) recep- tor points. This parameter is not used if · ISW(5) • 2 or 3 unless JSW(12) ~~ non-zero. Number of seasons (months) in the input mete- orological data. The maximum for this param- eter is 4 and if blank or 0 the default is 1. *Theoe parwqeters are set automatically by the program and cannot be changed if tape input (IS\1(5) ,.. 2 or 3) is being used. l. . J TABLE 4-4 (Continued) Card Parameter Card FORTRAN Group Name Columns Edit Code Description (Format) 3 NSPEED* 25 -28 14 Number of wind speed categories in tbe joint (Cont.) frequency of occurrence of wind speed and direction. The maximum is 6 and 6 is the default value if blank or o. NSTBLE* 29 -32 14 Number of Pasquill stability categories in the joint frequency of occurrence of wind speed and direction. The maximum is 6 and the default'is 6 if blank or 0. NSCTOR* 33 -36 14 Number of wind direction sector categories in the joint frequency of occurrence of wind speed and direction.· The maximum is 16 and the default is 16 if blank or 0. NOFILE 37 -40 14 Output file number of output tape or if no output tape, then input file number of input tape. Applicable to magnetic tape only, wben Condition a or Condition b is being used under ISW(ll) or NGROUP. *These parameters are set automatically by the program and cannot be changed if tape input (ISW(5) m 2 or J) is being used. rr. -l.~' r:--1 .. .:.L••'-.. -)' ~ L .J Cr.~cd Parameter Group . Name 4 NO COMB ' ' 4ft tDSORC ! UNITS Card· ColumniJ 1 -4 5 -8 71-80 1 - 6 . 7 -l2. • • • 73 -78 (fof eachr card) 1-40. 41 -80 .. ··r.-1 FOltTRAN Edit;: Code Description (Form.at) 2014 Ar{ay used to specify the number of source 1D-num- ~ers you are using to define each source combination. ' ~he~e are NGROUP valu~s read qef~, This data card is ()mlJ;fed from t:he inJ~ut card decft if NGROUP "' O. 131~ JO.M 10M. .Ar"!aY use4 to specify the source ID-numbers to use :f..q·.forming the combined sQurce output and individual ~ource output. There is a maximu~ of 200 values ~h.~t ~an be input here. This data card group is m,ai.lted ffom the input card deck if NGllOUP "" 0. ,0.; charactefs &iving the coQcentration (deposition) pr:f..nt ou~put units. This label is automatically filled if the parameter TK Qn Card Group 13 ia 4~faulte4. If this label is punched, start in columQ . ~~ . 40 characters giving the source strength input units. This label is automatically f~lled if the parameter TK on Card Group 13 is defaulted. If this label is punched, start in column 41. This card group is omi.tted from the input deck if tape input (ISW(5) • 2 or 3) is being used. · **theae card groups are omitted from the input card deck if tape input (1SW(5) • 2 or 3) is being used. The infonnation for these parameters is f;aken from the input tape. Card Grour• 6a 7** Parameter Name X X y TABLE 4-4 (Continued) Card FORTRAN ~columns Edit Code (Format) 1 -10 8Fl0.0 11 -20 71 -80 (for each cant) 1 -10 11 -20 71 -80 (for each card) 8F10.0 1 -10 8Fl0.0 11 -20 71 -80 (for each card) Descdption Array of NXPNTS receptor points in meters in ascending order defining the X-axis of the receptor grid system or the distances to the rings in polar coordinates. If only two values are punched and NXPNTS is greater than 2, the program assumes the first is the start of the axis and the second is the increment it uses to generate the remaining points. This card group is omitted from dte input data deck if NXPNTS ... 0. Array of NXWYPT discrete receptor points in meters. This c~rd group is omitted from the input data deck if NXWYPT • 0 or if an input tape is being used and ISW(l2) a 0. Array of NYPNTS receptor points in meters or degrees, depending on ISW(2), in ascending order defining the Y-axis of the receptor grid system or the radials in polar coordinates. If only two values are punched and NYPNTS is greater than 2, the program assumes the first is the start of the axis and the second is the increment used to generate the remaining points. This card group is omitted from the input data deck if NYPNTS = 0. **These card groups are omitted from the input card deck if tape input (ISW(5) = 2 or 3) is being used. The 1nfonuation for these parameters is taken frolll the input tape. ............ l ~ I I 0\ ....., l l .I i• Card Group 7a a•• 8a r---1 ~~. .... 1'"'''"' Parameter .Name y z z ,, ; T4BLE 4-4 (Continue4) Card Columna . 1 -lP 11 -20 • • • n ... 8o (for each card) li'OltTW Edit Code (Format) 8F10.0 1 -10 8F~O.O 11 -20 71 -8() (for ea~b card) 1 -10 8FlO.O 11 .. 20 71 -80 (for eacn card) Deacriptiop Arr~y of N~PT discrete receptor points in meters o~ degrees depending on lSW(l). This c~t4 group is omftted from the ~nput data deck if ~PT • 0 pr ff ~n input ~ape is p~ing used and It;WU~> ... o. · 4rray of terrain elevations in · f~et for each recep- tor ·.of th~ NXPNTS by NYPNTS gr:td system. This card group is omitted from the input 4ata decf.t if either lSWJ4) "" 0 or an inpu~ t:ape is being use4. See the ~~~~ f~f ~~e Of4er of values input to this card group. ArrciY ot te'J":J,"aln elevat:lons tn feet for each dis- crt=f;:e recept:or~ This card gro\lp is om~tted from the inp\lt car4 deck if JSW(4) ~ P or NXWYPT ; 0 or. an ~nput tape is being used and lSW(.l2) == 0. ** These card groups are omitted from the input card deck if tape input (ISW(5) .. 2 or 3) is being used. The information for these parameters is taken from the input tape. Card Group 9** 9a** lOU ll** Parameter Name FM'f FREQ · TA liM Card Columns 1 -80 1 -10** 11 -20 51 .:. 6o (for each card) 1 -10 11 -20 51 -60 (for each card) i -10 11 -20 51 -60 (for each card) TABLE 4-4 (Continued) FORTRAN Edit Code (Format) 20A4 FM'f 6.F10.0 6FIO.O Description Array specifying the format used to read Card Group 9a (not read if ISW(l8)= O, default format is 6Fl0. O) · Array giving the joint frequency of occurrence of the wind speed and direction for each stability category and each seasonexpressed as a percentage or as a fraction. See the text for the order of .fnput values. Array of ambient air temperatures in degrees Kelvin as a function of stability category and season. See the text for the order of input values. Array of mixing layer heights in meters as a function of wind speed and stability category and season. See the text for the order of input values. L------L~-------~---------~------~~-------------------------~------~----·--·--- **These card grou1)s are omitted from the input card deck if tape input (ISW(5) = 2 or 3) is being used. The information for these parameters is taken from the input tape. ***TI1ese are the default card columns used for this array and are not applicable if FMT on Card Gcoup 9 is input. ,.----, l . j i ' . I I i . ' I ·I i Card Group 12** 13** Parameter ~ame nrnz ROTATE TK Card Columna . 1 -10 11 -20 • • • 51 -60 (fof each card) 1 -10 11 '"" 20 TABLE 4-4 (Continued) FORTRAN Edit Code (Fo~mat) 6Fl0.0 flO,O FlQ.O Deacriptiop Array of the vertical grad:t,ent of potential tempera- tur~ in degrees Kelv·in per meter as a function of ~fn4 ~peed and stahili~y ca~egofy. See the text f!lr the cn·4er !lf input values • Wind 4il-"e~ti!ln correction par~eter used ~o correct for any difference in north as defined by the refer- eqc~ ~ecep~or grid ayatem and nor~~ as defined by ~~e ·weather station at which the weat~er data we~e recorded. ·The yalue of ROTAT~ ~a uubtracted from e4ch ~ind 4ir~c~ion categorf~ Model units conversion factor used to produce the des~red o~tput concentration (deposition) units from the f..nput .source strength units. The concen- tration default for TK is 1 x J06 J!licrograms per gram assuming output in micrograms per cullic meter and input source units in grams per second for stack and volume sources and grams per secon4 per square meter for area sources. The deposi~ion default for TK is 1 assuming output in grams per square meter and input source units in total grams for stack and volume sources and 8rams per square meter for a.rea sources. L-------~--------~----~--~------~~---------------------------------------------~ **These card groups are omitted from the input card deck if tape input (ISW(5) a.2 or 3) is being used. The in-ormation for these parameters is taken from.the input tape. ""' I " 0 Card Group 13 ** (Cont-) 14 ** Parameter Name TK (Cont.) ZR BETAl BE'fA2 G DECAY UBAR Card Columns 21 -30 . 31 -40 41 -50 51 -60 61 -70 1 -10 11 -20 51 -60 TABL~ 4-4 (Continued) FORTRAN ~dit Code !(Format) FlO.O FlO.O FlO.O FlO.O FlO.O 6F10.0 Description If the default is chosen, the parameter UNITS above on Card Group 5 is automatically set. . !Ieight in meters above ground at airport or weather station at which the wind speed was measured. The default value islO.O meters • Air entrainment coefficient for an adiabatic or unstable atmosphere. The default is 0.6. Air entrainment coefficient for a stable atmosphere. The default is 0.6. Acceleration due to gravity in meters per second squared. The default is 9.8 m/sec2. Coefficient (seconds-1} of time dependent pollutant removal by physical ox ch61llical processes. Default is zero or no decay. Array containing the median value of each wind speed category in meters per second. The default values are 0.75, 2.5, 4.3, 6.8, 9.5 and 12.5 m/sec for the standard STAR summary wind-speed categories. u These card groups are omitted from the input card deck if tape input (ISW(5) .. 2 or 3) is being used. The information for these parameters is taken from the input tape. i I • I I --, .. .J t ...... ..... nr--1 -. ·r0 ll.Li! TABLE 4-4 (Continued) Card Parameter Card FORTRAN Edit Code Description Group . Name Columns ICFormat} r---·----~-----------r----------~~~~~r-----------------------------~---------------------i 1.5 "'* THET4 16 ** p 17 NUMS 1 -10 ' 11 -20 71 "": 8Q' (for each cax-d) 1 -10 11 -20 51 -60, (for each card) 1 -s 8F10,0 . , 6FlP.Q 4rray of ~ind direction sector angles in degrees beg~nnipg with the first directio~ cateaory used in .~he joint frequency of o~currence of wind speed and 4:l.rect1on (normally zero degrees north). NSCTOR values are read and,if the first ~wo values are zero ~his array is defaulted to ~he standard direction angles o.o. 22.5, 4s.o ••• ~· 3~7.5 degrees • 4rray of wind speed power law ~ponents as a function ofwind speed and stability cateaories. See the text for the or4er of values and ·default values. SQ~rce iqe~~ificat~on pumb~r. Jnput alt sources jn a$cending ordef of the 14~ntif1cat1op pumber. If the number is pegative, source input is terminated, If thi~ pumber.is zero, the. program defaults the rela.- tive position of this source in t~e source input €leek., Card Groups 17 through 17d are 0111itted from the input data deck if NSOURC equals zero, Remem- ber to group Card Groups 17 through 17d togeth~r as a set for each input source. ** These card groups are omitted from the input card dec~ if tape input (ISW(5) = 2 or 3} is bein~ used. 'fhe information for these parameters is taken fr(>in the im)Ut tape. Card Group 17 (Cont.) Parameter Name . DISP TYPE QFLG DX DY II Card Columns 6 7 a 9 -18 19 -28 TABLE 4-4 (Continued) FORTRAN Edlt Code (lt'ormat) Il 11 II FIO.O FlO.O F7.0 Description Source disposition. blank or 0 • new input source or replace old source if it has same 10 -number 1 ... delete incoming tape source with same ID-number (next card group read is 17) 2 .., rescale concentration (deposition} values for this source using input so1,1rce strengths (next card group read is 17d} (poly if QFLG = 0} Source type. blank or 0 = stack 1 ... volume 2 = area Source emissions variation flag. blank or 0 • source emission varies with season (month) only 1 • source emission varies with stability category and season 2 "" source emission varies with wind speed category and season 3 "" source emission varies with wind speed and stability category and season Cartesian X-coordinate of the source in meters. (source center for building ~nd stack sources and southwest corner for area sources) Cartesian Y-coordin<\te of the source in meters. (source center for building and stack sources and southwest corner for area sources) .lleight above. the ground of the emission in meters j I I .I I I Card Group 17 (Cont~) Paramete'-", . Name zs TS or SIGYO or xo VEL or SIGZO D HB Card Columns 36 -42 43 -49 50 -56 57 -63 64 -70 TABLE 4-4 (ConUnued). FOR'rR.Atl E4it Code (Format)· F7,0 F7.0 f7,0 F7.0 F7.0 Description ~l.ev~~ion iQ met~rs above J!lean sea level at the source location. '.fhis field depends on the sourc::e ~ype --if 1YP~ a 0~ TS • stack gas exit ~emper4ture iq degrees l{elvin TYfE • J, SIGYO • standard devi4~ton of the cross- win4 sourc~ di~~ribution in meters TVf~ • 2, XO • width of the a~~a $ource in meters T~is. field depepds on the sourc~ ~ype --if TYfE • o, VEL ~ stack gas ~t~ velocity in meters ·, per second TYrE "' J, SlGZO • standard deviation of the verti- .. cal sourc~ distJ=ibt.H:lon tn JDeters TVPE ~ 2, ~his field is l~~t blan~ This field depends on the source type --if TYPE "' O, J) • tnner stack dl41ne~er in meters TYPE "' ~ or 2, this field i~ l.~ft blank this field depends on the source type --if TYP~ ~ O, HB • 0• Wake effects are not considered for this source . liB > o. height above ground in meters of . · · the building adjacent to the stacL for tha consideration of wake effects for ~his source TYPE "' 1 or 2, this field is left blank """' I ...... """' Card Group 17 (Coot.) r---"' L:Li. ' IJ Parameter Card Name Columns BW 71 -17 WAKE 78 NVS 79 -80 TABLE 4-4 (Continued) fORTRAN Edit Code Description (Format) F7.0 This field depends on the source type --if TYPE • 0, BW • 0 1 wake effects are not con- sidered for this source BW > o. width of the building in meters adjacent to the stack for the consideration of wake effects for this source TYPE • 1 or 2 1 this field is left blank 11 This field depends on the source type --if TYPE • 0, WAKE is a super squat building wake effects equation option, If the building width to height ratio is greater than 5 and WAKE is blank • or O, the program uses the equation of lateral virtual distance (Equa- tion (2-31) that will produce the upper bound of concentration or deposition. If WAKE is 1 1 the equation of lateral virtual dis- tance (Equation (2-33)) that will produce the lower bound of the con- centration or deposition calcula- tion is used (see Section 2.4.1.l.d) TYPE 1 or 2 1 this field is left blank 12 Number of particulate size c·ategories in the particulate distribution for deposition or con- centration wltb depletion due to dry deposition. The maxin1um value of this parameter is 20. Card Parameter i Group Name ! ! . I 17a vs 17b FRQ 17c GAMMA 17d Q Card Columns 1 -10 11 -~0 71 -80 (for each card) 1 -10 11 -20 . • ' 71 -80 (for each card) 1 -10 11 -20 71 -80 (for each card) 1 -10 11 ..,. 20 51 -60 (for each card) TABLE 4-4 (Contiqued) FORTRAN Edit; Code (Format) 8PJO,O 8F1Q,O · 6F10.0 Deacript~on 4~r~Y of settl~ng veloc~tiea ~~ meters per sec- . oqd for each particulate dze cat;egory. · This ·card g~:oup is omitted fr()m th~. inp~t; data deck H NVS ~ 0, 4!ray ot mass t.:·actioQ of the pafticulate dia- t:!ibution foF each category. Th~ sum of the fractions in this array should tqtal 1 (100% .of the distribution). This card sroup it;~ o~itted from the input data de~~ if NVS a O. Array of surface feflectton c()efficients (frac- tion, 0 ~o 1) for each particula~e stze cate- g()ry. A value of 0 is no reflectio~t a value of 1 ~s complete reflection, This card group ia om~tted from the data deck ~f NVS ~ 0. Array of source emissions in units ~ndicated by the parameters UNITS and T~ above, The number of values input in this card group is detef- mined by QFLG on Card Group 17 and the order of input is given in the text. This card group is omitted from the input data deck if DISP on Card Croup 17 equals "1". labeling purposes. These data items can be punched anywhere in the speci- fied data columns and can consist of any character information. If not punched, these data items are interpreted as blanks. Parameters using an "I" editing code are integer (whole number) data items. These data items must be numeric ptmches only and must be punched (right justified) so the units digit of the number is in the right most column of the field. If the punch field for the variable is not punched (left blank), it is interpreted as zero. Parameters using an "F" editing code are real number data items. These data items can be punched like integer ("I") data items (right justified) if they are whole numbers. However, they must be punched with a decimal point (".") if they contain a fractional part. Card Group 1 in Table 4-4 gives the print output page heading ' and is, Cillways included in the input data deck. Any information to iden- tify the output listing or data case may be punched into this card. If the card is left blank, the heading will consist of only the output page number or the heading will be taken from the input tape or data file, if used. Card Group 2 gives the values of the program option array ISW. This card is always included in the input data deck. However, the values of ISW(l) through ISW(4) are automatically set by the program if you are using an input (source/concentration or deposition inventory) tape. The options on this card that determine whether or not some card groups are included in the input data deck are: ISW(4), ISW(S), ISW(l2) and ISW(lS). If ISW(4) is left blank or punched zero, Card Groups S and Sa are omitted from the input data deck. If ISW(5) is equal to "2" or "3" (indicating an input data tape), Card Groups 5, 6, 7, Sand 9 through 16 are omitted from the input data deck. Also, Card Groups 6a 7a, and Sa are omitted if the ISW(l2) option is not used or equals blank or zero. If ISW(lS) is left blank or punched zero, Card Group 9 I 1 ; r l j [ c [ ,•, [ [ c [ [ [ [ L L [ ~· [ . ~· •.:.. •: L . [ L [ c -' [ - [' - -. ....-;., .... [ c [ c - [. [ E E L is omitted from the input card deck. The ISW(lO) option on this card must be set to "1" or "2" if either the ISW(ll) or ISW(l2) option is chosen. Also, if the ISW(ll) option equals "2", one or m.ore of the following conditions must be met:- Condition a -The run. uses: an output tape or data file. This tape or file-may be a permanent catalogued file or may be temporary, lasting only for the duration of the run. If this condition is selected and the output medi.um is tape,. the parameter NOF!LE on Card ·Group 3 must .be input.- Condition b -The run~ uses-an input tape.. or catalogued data file, but has no input data card sources (NSOURC eqtial.s zero). ··. If th:is: condi:tion· is· selected and tha inp·ut. medi-um is tape, ihe para:me~er NOFTI.E oU: Card Group 3· must be input. Condition c --The total number of non-deleted input sources from data card and tape (data file) is less than or equal to the ndnilDitm of I and J, where: and. rE I =-[ (NXPNTS+NYPNTS+2*NxtVYPT) - K -tl NSEASN* (NXPNTS*NYPNTS+NXWYPT) J E "" the total amount of program data storage in BLANK COMMON. The program design size is 40,000. 4-77 (4-4) K • NSEASN*(NXPNTS*NYPNTS+NXWYPT) if ISW(4) • 0 L if ISW(4) = 1 the remaining variables are input parameters defined on Card Group 3. Also, the option ISW(9) must always be set correctly when card input sources are used or if tape sources are used when IS"w(l2) equals "1". Card Group 3 contains the ~arameters that specify the number of input card sources, size of receptor arrays and the number of categories in the input meteorological data. These parameters are regarded as options because, if any are zero, a particular function is not performed. AZZ of the parameters on this card e=aept NOFIZE may alter the fonn of the input deak because they specify how may data items to input to the program. The parameter NSOURC specifies how many data card sources to input or how many times the program is to read Card Groups 17 through 17d. If NSOURC is set to a negative value ("-1"), the program will continue to read source data from Card Groups 17 through l7d until a negative source ID-number (NUMS) is read from Card Group 17. If NSOURC is zero, Card Groups 17 through l7d are omitted from the input data deck. The parameter NGROUP is used to group selected sources into a combined output by summing the concentration or deposition arrays of the selected sources. The user may specify up to a maximum of 20 different source combinations. If NGROUP is left blank or punched zero, the program uses all sources in any combined source output, prints all sources for any individual source output, and Card Groups 4 and 4a are omitted from the input card deck. If NGROUP is greater than zero, it specifies how may values are to be read from Card Groups 4 and 4a. Also 4-18 [ [ [ [ r· L r L c [ [ ·[ [ L [ L 4 [ [ [ [ [ n w c [·· [ h L E L : NGROUP cannot be set to a non-zero value unless one or more of the following conditions is met: Condition a -The run uses an output tape or data file. This tape or file may be· a permanent catalogued file or may be temporary, lasting only for the duration of the run. If this condition is selected and the out- put medium is tape,. the parameter NOFILE on this card group must be input .. Condition b -The run uses an input tape or data file, but no input card sources (NSOURC equals zero). If this condition is selected and the input medium is tape, the parameter NOFILE on this card. group must be input. Condition. c.-The. total number of ·input> card and tape sources is less than. or equal to the m.:f.nimum of I and J where: J ... 300 and (4-5) I -E -(NXPN1S+NYPNTS+2*NXWYPT) - K - L NSEASN*(NlPNTS*NYPNTS+NXWYPT) E .. the total amount of program data storage in BLANK COMMON. The program design size is 40,000. 0 if ISW(S)=l and IS'W' ( 11 ) ;' 2 K • NSEASN* (NlPNTS*NYPNTS+NXWYPT) ; if IS'W' ( 8) ;' l or ISW(ll)=2 4-79 --------·-~·- --· -·---~-.. ~-·····----·'-~-----···.----~-----------. -. _ _,__. ---·--·-·. L { 0 . NXPNTS*N!PNT&HIXWYPT: if ISW(4) = 0 if ISW(4) = 1 The parameters NXPNTS, NYPNTS and NXWYPT define the size of the program receptor point arrays. The maximum values of these parameters are limited by the core-use equation (4-3) given under NXPNTS in Section 4~1.2. If an input tape is being used, these parameters are normally ignored by the program because these values are taken from the input tape. However, if the ISW(12) option is selected, the parameter NXWYPT must be set to a multiple of 10 as outlined in Section 4.1.2. When ISW(12) is choosen and an input tape is being used, the original receptor points from the incoming tape are destroyed and replaced by a new set of discrete (arbi- trarily placed) points indicated by NXWYPT. This necessitates a new set of calculations for the special points and requires ISW(9) to be set correctly. An output tape produced under these conditions contains only the calculations for the discrete receptors. The parameters NSEASN, NSPEED, NSTBLE and NSCTOR specify the number of seasons (NSEASN), the number of wind speed categories (NSPEED), the number of stability categories (NSTBLE) and the number of wind direction categories (NSCTOR) in the input meteorological data. These parameters are set automatically by the program when an input tape is being used. The parameter NOFILE must be specified if the user is using input and/or output tape and is apply- ing Condition a or Condition b given under ISW(11) and/or NGROUP. This parameter is the output file number of the file to be written to tape (ISt~(S) = "1" or "3") or the input tape file number, if no output file is geing generated (ISW(5) = "2"). The program uses this parameter to cor- rectly position the tape if additional passes through the tape data are required. Card Groups 4 and 4a always occur together and are included in the input card deck only if NGROUP is greater than zero. Card Group 4 is the array NOCOMB used to specify the number of source ID-numbers used 4-80 [ [ I l. ... [ [ [ [ c [ E L [ [ [ [ [ [ [ [ c [ u t E L -- . " --~-·,c,, to define each source combination.. Each value in NOCOMB specifies the number of source ID-numbers to be read from Card Group 4a (IDSORC) in consecutive order for each source combination. A positive source In- number punched into the array IDSORC ind:f.cates to include. that source in the. combination ... A negative. source ID-number indicates to include that source. as we.ll as. all source ID-numbers less in absolute value 9 up to and including the. previous positive source ID-number punched if it is part of the same set of ID-numbers defining a combination. If the negative value is the first ID-number of a group of ID-numbers 9 it as we.ll as all sources less in absolute values of ID-number are included in the source combination. Se~ the example· given under NOCOMB and IDSORC in Section 4.1.2 and the· example problems in Appendix D. The data values are. read from. Card Group 4 using 4 card columns per value wi.th a max~ of 20 values and from Card Group 4a using 6 card columns per value~. 13 values per· card with, a maximum of. 200 values or 16 data cards. Card Group, 5 is an. array (UNITS) used to. specify the labels printed for concentration. or deposition. output uni..ts and for the input source· strength un:i.ts. This card group is. omitted from the. input card deck if tape or data file input. is used. ·card Groups 6 through Sa specify the X9 Y and Z coordinates of all receptor points. Card Groups 6, 7 and S are omitted from the input card deck if the parameters NXPN'IS and NYPN'IS equal zero or if an input tape is being used. Also, Card Group S is omitted if ISW(4) equals "O" or no terrain elevations ~re being used.· Card Groups 6a 9 7a and Sa are also omitted from the input card deck if the. parameter NXW!PT is zero or if an input tape is being used with ISW(l2) equal to "O". Card Group Sa is also omitted if ISW(4) equals "a"·. Each of these card groups uses a 10 column field for each receptor value and 8 values per data card. The number of data cards required for each card group is defined by the ~81 ... --------··------·-·-···-·-·-· ·----·-----·---·--·-··--------- values of the paramet:ers NX?NTS, NYPNTS and NXWYPT. Values input on Card Groups 6 and 7 are always in ascending order (west to east, south to north~ 0 to 360 degrees). The terrain elevations for the g=id system on Card Group 8 begin in the southwest corner of the grid system or at 0 degrees for polar coordinates. The first data card(s) contain ·the eleva- tions for each receptor on the X axis (1 to NXPNTS) for the first Y receptor coordinate. A new data card is started for the elevations for each successive Y receptor coordinate. A total of NYPNTS groups of data cards containing NXPNTS values each is required for Card Group 8. The elevations for the discrete receptors in Card Group Sa are punched across the card for as many cards as required to satisfy NXWYPT ele- vation values. See the discussion given for parameter Z in Section 4.l.Z.b for examples of the order of input for receptor elevations in Cartesian and polar systems. Card Groups .9 through 16 specify the meteorological data and model constants and are. included in the input data deck only i.f an input tape or data file is not being used~ Card Group 9 is input only if !SW(18) equals "1" and specifies the format (FMT) which the program uses to read the card data in Card Group 9a. If Card Group 9 is omitted from the input deck (ISW(lS.) equals "O") ~ the program assumes the format is (6F10.0) or there are 6 values per card occupying 10 columns each includ- ing the decimal point (period). Card Group 9a is the set of data cards giving the joint frequency_of occurrence of the wind speed and wind direction (FREQ) by season and Pasquill stability category, The values for each wind speed category (1 to NSPEED) are punched across the card and are read using the format given in Card Group 9 or the default format used when Card Group 9 is omitted. The first card is for dir- ection category 1 (no:rm:ally north) , the second card for direction cat- egory 2 (normally north-northeast), down to the las; direction category (normally north-northwest). Starting with season 1 (normally winter), -· [ c [" '[ [ r L [ I' L l ., -__ j t [ [ [ c [ [ [ . ' [ ! L c f -, •' [ [ c [ [ [. c t [ L the card group contains a set of these (NSCTOR) cards for each stability category, l through NSTBLE. The program requires NSCTOR*NSTBLE*NSEASN data cards in this card group. This data deck is normally produced by the STAR program of the National Climatic Center (NCC). Card Group 10 is the average ambient air· temperature (!A). NSTBLE values are read from each data card in this group and there is. one data card for each season, 1 through NSEASN. Card Group 11 is the median mixing layer height (HM) for each speed and stability category and season. The program requires NSPEED values per data card and one data card for each stability category, 1 to NSTBLE. A group of these cards is required for each season (1 to NSEASN) for a. total of NSTBLE*NSEASN data cards in Card Group 11. Card Group 12 is the vertical gradient of potential temper.ature (DPDZ) for each wind speed and stability category. NSPEED values are punched across the card. and NSTBLE cards (1 to NSTBLE) are punched for this group. Card Group 13 contains meteorological and model constants; a . . . . ' .. _ '· . detailed descri'Ption: of these parameters (ROTATE,. TK, ZR;. BE'!Al., BETA2, G and DECAY) is given in Section 4.1.2 above. Card Group 14 is the median wind speed for each wind speed category (UBAR) and there are NSPEED values read from this card group. Card Group: 15 is the median wind direction for each wind direction category (THETA). There are 8 values read from each data card in this group up to a maximum of NSCTOR (normally 16) values. Card Group· 16, the. last of the meteorological input card. gro~ps, :provid~· the wind 8peed power law exponents (P) for each wind speed and stability category. There are NSPEED values read per data card and NSTBLE (1 to NSTBLE) cards read in this group. The last card groups in the input data deck, Card Groups 17 through 17d, consist of source related information. Card Groups 17 through 17d are always input as a set of cards for each individual source and each of. these sets (17 through 17d) are input in ascending order of the source ID-number (NUMS). Card Group 17 provides the source 4-83 ID-number (~"UMS), the source type (TYPE) the source disposition (DISl?) , etc. This data card is included in the input card deck for each card input source, 1 to NSOURC. As shown in Table 4-4, some of the card columns (43 through 78) on this card may or may not contain parameter values, depending on·the source type. The last parameter (NVS) on this card determines whether Card Groups 17a through 17c are read or not. These card groups are not included in the input card deck if NVS equals zero. The last card group, Card Group 17d, contains the source emissions (Q). This card group is not included in the input deck if the parameter DISP on Card Group 17 equals 11 111 • The number of cards and values in this card group depends on the parameter QFLG on Card Group 17 • If QFLG equals blank or zero, the source emissions are a function of season only and one data card is read with NSEASN values punched across it. If QFLG is equal to "1 11 , the program ass.umes the source emissions are a function of stability category and season. In this case, NSEASN data cards (1 through NSEASN) are required with NSTBLE values per card. If QFLG is equal.to "2", the program·assumes the source emissions are a function of wind speed and season. There are NSEASN data cards read with NSPEED values per card. If QFLG is equal to "311 , the program assumes the source emissions are a function of wind speed, stability and season. In this last case, the program reads NSTBLE data cards containing NSPEED values for each season (1 to NSEASN) for a total of NSTBLE*NSEASN data cards.. The program continues to read sets of data Card Groups 17 .. through 17d until a negative source ID-number is encountered or until it has read these cards.NSOURC times. b. Taoe Inuut Reauirements. The ISCLT program accepts an input source/concentration (deposition) inventory tape (catalogued data file) previously created by the ISCLT program. This tape is a binary tape written using the FORTRAN I/0 routines and created as an 4-84 -· [ c r_, L. [ l-, r~ { '-·' [ [ [ [ c l' ·-!-, L~ I[ c [ r , r~ L [ I [ I [~ f .. , _, c [ [ [ c [ L [: L t L L ~-~--- ~-- output tape on. a. pr.evious run of the ISCI.'! program. 'This tape contains all of the program options that affect how the model concentration or deposition calculations were performed (except ISW(9)), all of the re- ceptor: and. elevation. data, al~ o£: the·.meteorologi~ data, al~ of the source input data and: the results of the seasonal. (annual) concentration or deposition. ~culations at each: receptor· point:. The program reads the data from: the FOR'l'RAN logical. un1t number specified. by ISW(l4). The tape data. are: read only if option· ISW(5) equals "2" or "3". The input tape requires the user to emit specified &:r:t;a;. card groups from the input deak and makes the input of sane ~ete1! va'Lues u.mecessa:ry. The omitted Card. Groups and. unnecessary parameters are indicated by a·* or ** in·. the. Card Group and. Parameter Name. columns of Table. 4-4.. The format and exact: contents of the· input tape are· discussed in Section 4.2.4.b below. Program Output Data Description The: ISCI.'J! program· generates several: categories· of printed output .. and an: optional output: source/concentration: or· deposition inven- tory tape or· data _file. The. following: paragraphs describe the format and content of both. forms of program-output• ·: .a ... ,_-::: Printed Output. The ISCI.T. program generates ll categories of printed output, 8 of· whi.ch· are tables of average ground- level concentration or total ground-lev~ deposition. All program printed . output is optional except warning. and error messages. The printed output. categories are: •· Input Source Data • Input Data Other· than Source. Data • Seasonal Concentration (Deposition) from Individual Sources . 4-85· • • • • Seasonal Concentration (Deposition) from Combined Sou~ces Annual Concentration (Deposition) from Individual Sources Annual Concentration (Deposition) from Combined Sources Seasonal Maximum 10 Concentration (Deposition) Values from Individual Sources • Seasonal Maximum 10 Concentration (Deposition) Values from • • • Combined Sources Annual }laximum 10 Concentration (Deposition) Values from Individual Sources Annual Maximum 10 Concentration (Deposition) Values from Combined Sources Warning and Error Messages The first line of each page of output contains the run title (TITLE) and page number followed by the major heading of the type or category of out- put table. The first category of printed output is the input card data ex- cept for the source data. This output is optional and is selected.by the option parameter ISW(6). Figure. 4-2 shows an example of the printed input data. The example output shown in this section is output generated from an example problem given in Section .2.6. The second category of printed output is the source input data. Figure 4-3 shows an example of the source input data table. This example shows each input source listed down the page. However, if the user is printing tables for individual sources, the source input data may be printed prior to each concentration or depo- sition output table for each source. The third through tenth categories of output tables are concentration or deposition tables. Figures 4-4 through 4-10 show an example of each type of output table. These tables are defined by their respective headings and are all optional, depending on the parameters ISW(7), !SW(S), I~w(lO) and ISW(ll) or ISW(l2). Also,. the ISCLT program has an option (ISW(l6)) of compressing the output tables by minimizing the number of new pages started by new tables. This option will save on the paper output, but the user should become familiar 4-86 [ [ [ [ _[ [ [ c L t L L ·······["J •••• ISClJ t••••t''''!'' MYPOlHEIICAL rOti~M rtDtJS.ll~ PLAIT ··fiCLT !IIPUI PAU- •••••••• 1'4110£ I •••• UIIUTI! KUIIEI Of SOUIC£1 • 14 ··· NUIB£1 8f K AKII lilt IYIIII POINTS • MUIIll tf Y AXIl CIID SYSIEI POliTI ' HUllER lf IPECIAL POliTI • I HUUtll Of UUOIII • 4 NUIIEI If 1111 SPEED £LiliES • ., NUII£11 Of IIAIIL11Y tliiSEI • '6 It It HUllER Of liND DIIEttlDII £LA~IE. • 16 filE MUliER Of DATI fiLl USED fQI lifOIJ' tHE I'IOCIAI II RUN IN IURAL lODE COIICEMTIATIOM CIEPOSITIII) UNI18 CDIVII.ll~ fACt9~ t . ·••••!tt•t~l ACC(lEIAllOI Df CIAVllY CIETIII/SEC•oa) • t.I,O HEI,HT Of IEIIUI£1111 Of 1110 IPEED CIIIEII) • ••·••• EMIIAIHIEIT PAIAIEJEI fOI UlfiiiLE COIIITIOMI' ·:, ••.. EHJI~IMI£11 PIIAIEJEI fOI IJAIL,. CDMOiliONS ·~ .• 00 . tOIIECTIOI ANGlE FOI GilD IYITEI. VEISU$ OIIJ~ll-11 ···~ ~-~l~ C,,~,~~~· • »£CAY tOEfFICIEII • .. 00000000 . . UOCaan OPTION SIII1CKEI • I• I• a, o, o. J, I• 1 1 J, 2• 2• !• t• t• 9• •• t• •• 1 1 0• &OUICES Ulil JO FOil IDUICE.COIIIMATIOII I liE • . lo SOUICEI UIEI lO FOil SOUICE tiiiiMIIIIII ~ AlE • 2• ·~II• SOUitU UIU tO FOU IOUitE tDIIIIIIUUII J AU • Ja, .... ,,, SOUitfS USEI 10 FOil IOUitE COIIIIIATIOI t liE • &6; SOUitES UIEI II fOil SlUICE £011111&1101. ~ AlE .-a•• . ouuuE a uu un nuu !'OIMU uun~ ~~. -~•••·•••. "'J•••·••· · -nu.u. -JUt oo. -•ttt·••· -~oo.o~. -600.00. ~....... -······· .••• ,, •.•• ~ ••••••• •••.••• • ••.• ,. ,....... 1210.00· 1100.00. ••••.••• ,....... . . . .. IAIIGt X ~PE£1AL OlltiEfE POIMJI (IEJEII •• altl.o •• ~ . OISTAICE Y lXII Gill SYif(l POINtS CIEJEI~ )• ·JOtf.OO• ~1000.00. ·IIOO.tO. •til• oo. •1000.00. •IOO.OOo -uo.u. •UO.IO. -a ... oo. ' .••• ,OO.tF 10t.u. . uo .• t. IIU.Ot, Jn~·••· . auq., •• asoo.oo. aeoe.oo.-'1ooo.oo,' IEIIIII' Y IPECIIL IISCIEIE PDIIIll COEGIEEI)• lt.tt.-. . . -: UUUil All UIPEUTU~[ UEUi[SI£-.YHP • lfUILIIY UUILIU JTUILIT'I ITIIIU.UT IJUILIJ'I IUIILIIY CUEGGIY I cuuu., J UIUOIY I C:UEUIY 4 UUCIU I UJUIIY 6 IIUSOII I Ul.UOO U7.UOO · an.uoo uo.uu an. uo~ an.uu UUOM a 117.2ttt Ul.UU an.uu no.uot llt; I tOO Ut .Utt UUOI I ur.aooo au.uoo an .uoo au .• ou ~,. ..... an.1ooo UUGI 4 111 .aooo an.uu au.uoo no.1ooo an, •••• ,, .1000 FIGURE 4-2. Example listing ~f input data for the calcu~ation of seasonal and annual ground-level particulate concentration from a hypothetical potash processing plant. • • •• I stl 1 ••••••••••••• KYfOlHliiCAl fOIASK PROCESSIII& PUH1 o •• •• ••• I'AH a •••• • IBCll IKPUI DATA 1 con. , - • lliiiHI: LAYU HU"Il 01El£RS) - SUSOII I Ill MD II"EU IIIHD &PUll 1111111 sruo IIINO IPEU llliiD SPUD 111110 SPUD cuuon 1 uucon a UIEIOUY 3 CU£URY 4 UlUOIY S CUUOIY 6 S U81ll JY CUHORY I .UJ00 .. 04 .IUOOOU4 .&nooo•u .l1JOOOtt4 .17UUtU .11UUt04 SIABILIIY CAI£C:ORY I .11UOOt04 .IUOOOtU .11U00•04 .UJ000 .. 4 .lUOOOtH .11U0 .. 04 SIAIILITY UIUORY I .tuooo•u .ltUOOU4 .IUSUU4 .unot•H .UtsUtU .IUSOU04 SIABILITY C:UUORY 4 .uooouu .UOOOOtOl ........ u .tuooo•u ........ ., ........ u STA8llllY tlllfi:OIY s .IOOOOOtU ........ ., ........ ., ........ ., .uooottn ........ ., 51 ABILITY ttllf:I:ORY ' ........ ., ........ u .lOOOOOtOS ......... ., ........ ., ........ ., UUOII 2 Ill liD IPEU 111110 IPEU IIIIID IPUD 111111 IP U: D 111110 IPEU IIUD IPEU tAUGDIY I CAUCGIY a UtE1181Y 3 CAUCUY 4 uncur s · Ulf:CIIRY ' SUBILIJY cuu;on I .11JOOOt04 .11JOUt04 .1130UtU .11Uott04 .IUOUt04 .lUUOt04 SUBILIJY CA tf.&OIY a .11JOOOU4 .11JOUU4 .Hltto••• .11Uttt04 .11J00tt04 .IUOOtt04 uu•u n tllfECOIY I .tUOOOtt3 .UUOOtt4 .UUOOt04 .uno .. u .untttu .UUtOt04 SIAIILIIY til 1£C:OIU 4 .JUOOOtOJ .SOOOOOtU .UOOOOtU .IUOOOtOJ ........ u ........ OJ $11181lll\' CAtEGORY s .I OOOOt•U .IOOOOOtOS ......... , .uotoo•os ........ ., .IOUOOtU SIIIIILIIY I:AffC:ORY ' .I ooooo•n .IOOOOttOS ........ ., : lOOUttOi ........ ., ........ ., SUSDH J IIINII IPUO Ill MD IP££0 IIIHD 8PE£D 1111111 SPEU IIIHO SPEED IIIHD II'UD uur.:on 1 tAUIOOIY 2 CUUORY J cuuon 4 UlECOU S C4JlCOll I .,.. s IA81ll TY CAHI:ORY I .IUUOt04 .lnooo•u .11JOOOtOt .uuoo•ot .l7JOU•04 .17Ut0t04 I StU!liiY tAU: GORY 2 .11JOOOtt4 .UJOOOtot . 11 JOOO• 04 .11UOOttt .IUOOOtU .IUOOOtU CXl SIA81LITY CUUUY l .UOOOOtU .IUSOOtot .UUOOt04 .nnouot .IUSOOt04 .UU00tt4 CXl SlAB Ill tY CAl £CORY • .UOOOOtOl .HOOOOtU .14000010! .iUOOhtJ ........ OJ ........ OJ SIUILI IV UltCORY s ........ ., ........ ., . ....... ., ........ ., ........ ., ........ ., SlAB II. ltV I:A TEI:ORY ' ......... , .IOOOOOtU ........ ., ........ ., ........ ., .IUUOtOS SUIOII 4 llllfD IPEU 111110 IIPUD 111n uno IIIU IPUO IIIHo sruo IIIIID IPEU C Ill£ I:OU · I UlUOIY 2 UUCORY J cuuou t uncoeu s uncon' STABILitY UTEI:ORY I .173000+04 .17UOOt04 .11l00 .. 0.4 .uuo .... . IUOUtH .ltJUOt04 SIA81li!Y UUCOIY I .I UOOOt04 .17Jot0t04 .IUOOOt04 .UUUt04 .IUOOttt4 .11JUOt04 SIAIIILI rY CAlEI:OU :J .tUOtotOJ .IUUOt04 .IHSOOtU .IUSOO•ot .IUSOttU .IUUOtU S TIIB Ill tY tATlCOIY 4 .lUOOOtOJ .SOOUttU ........ u ........ OJ ........ u ........ OJ STUll ltV I:AlEI:OU ~ .IUUOtOS ........ ., ........ ., .IOOUOtOS ........ ., ........ u STUll In UTEGOIY ' ........ ., .ioou .. os ........ ., .IOOOUtU .I UOUtOS ........ ., FlGURJ:; 4-2. (Continued) .p. I CXI \0 i I ! i I I ! •••• lS&ll ~·••••t••~••t } . ~ ' • l : MVPDIMllltal POI.IM 'IOCEIIJ~C ,LINT ~ IIC~J IMP~J DATA (CQNJ. ~ ~ • fiUUUCV Of OCCIIIU:IIU Of 111119 IPU9• DJI!EtHO!J 1!111 UA~ILUV • IUIOII I IJIII~IlV·C~JECOIY I 111111 IPI£11 IIU IPUII IIUII uno I IIIII IPlU 1111111 IPIID !IIIII 'PIU uuun 1 c:nuan a UJEUU J C4JECOIV 4 C.IECOIY $ UU:GOIY I HUttiOII .UUIPIH < ll£&1JU) a.UUIIPIIH •. :100 •• ,. )~ f. u•o•r• u ·'. u to•r• u 'a ·•••••r~ • ... . uuzuo ......... . ouuou ......... ......... .oooootoo u.uo uouu• .ooooouo . OUtOOtt ......... ......... .outooto 4$ 000 . uouuo ••••••••• . ououu ···~··· .. ... , ..... . ........ u.uo .ottUUO . uouou ......... ......... ......... ......... u.uo. . ttttZUt ......... . ttOOOott ......... .......... ......... IU.UO .uooauo . uouooo .ouooou ......... ......... .uooouo an uo . uouuo ......... ......... ......... . uuuot ......... IH no . uouuo ......... ......... ......... ....... 0 • ........ 0 110 ... . UUZIU ......... .tooooou .tottUot .UOtttot .UoUUt 202 uo . uouuo ......... ......... .ooutooo ., ••• Ottt .ttoooou 22:..000 .uuuu . uoooooo ......... ......... ........... .0 ....... 2H Ut . uoouu ......... ......... .OOOtOOH . noutot ......... 210 ••• .UUZIU .uouou .00000000 .ouooou ; ........ .utooooo ua uo . ooouno ......... ........ 0 . ououu .• 0 ...... . ........ us .ooo . uouno ......... ......... ......... ......... . ........ U7 .:UO ··••uno . ......... .tooouu ··~··••o•. : ........ . ........ IUIDII I IJa~l~llY'C~(EC,,y ~ 111111 IPUD 111110 IPIU IIIID IPJU 1,111 IUE!t liiMD IPUD IIIMDirfU UUGOU I UJUDU I j:I'IEUfiV J Calt:,tiY i ClliCGIY. $ C:llEtOIY ' DIIHfiDII .7Ut!IPIH a.uouruc •. uourpc 4-~•••~r'~ t·*o•o•r•~la.pooo•••) II>UIEEU ... . uauuo ......... ...... ., .. . tooo•••• .tttOotot ······••o u .100. .oounu .oooanu . 00000000 .oouoou .uuooot ......... n ... .uuuoo . ouuuo • •••••••• . ........ ·••••oooo ......... H uo .OOIUUO . OUUJOO . UOIIUO .. , ...... . ........ .. ttottU • ,. Ott .. ttUttU ......... ......... ......... ......... .Otto tOto IU 100 .UU.ttiO .UOIIOU .ooouno ......... ......... .uotttoo IU ... .oounu . oounoo ......... ......... .ououoo ........ 0 157 uo .ooanno .ooouno .tunas• .oooooou .oooouot ........ o 180 •••• ..... ,. .. .ooouuo .ooonno .jloottoot .toooooot . ....... 0 au uo .OOU:UIO . uouuo ......... ......... .00000000 .tootoooo 2U ... . OtUUOO ..... ., .. .tOOjl0009 .toOOttoo ·.ttUUot .OtOOtOOo 247 100 .00144070 .UUUIO .OUIUIO .oouttoo ......... ......... 210 ... .ounno .ouuuo . OOUUIO .OtotOOtt ......... .00000000 2t2 ... .OUUOIO . UOIUU ......... .ououu .uootttt . ........ 315 . 000 .ounuo .Utttooo .000:14730 .OOOttOOt ......... ......... Ul :uo . oounu ..... ., .. .OOOIIUO .00010000 .oouooot ......... FIGURE 4-2. (Continued) fttttttt PfiCI I •••• •••• 15CL1 ••••••••••••• HYPOTHETICAL POTASH PIDCEIIIMC PLANT . .. . . . .. ,,,[ f •••• -ISCLI INPUT DAr II ( COHT. I - -FIEIIUEIICY OF. OCCURRENCE OF YIHD &PEED, DIRECTION AHD SJAIILIIY- IUSOH I STIIIILITY CATEGORY J YIU IPEU IIIIID IPEED Ill HD SPEED YIIID 1P EED YIHD IPUD IIIIID IPEEO ., UUCUY I CUEUIY Z CATEGORY J UTECDIY 4 CAUGDIY S UUGOIY 6 I> I REt II OH . 7SOtiiPI IC Z. SOOOIJPS IC 4 ~UOOMPI)( ' ......... )( t.50001PIICIZ.5000IPII CDECUESI 000 .00061010 .00081030 . ooouioo . ........ ......... .00000000 22 500 .OOOSJIOO .OOOUJOO . OOOJHU .OOOIISIO .00000000 .00000000 n 000 .OtOZtJOO .00051110 .uuuu .OOOOoOOO .toOUOOO .00000000 " soo .ooonuo .OUJI510 . ooonno ......... .Uttooot ......... : 90 .000 .00016110 • ounno . U4U110 ......... .00000000 ......... I 112 .soo .ttlt4UO .00511110 .UHUto . ooouooo .ooouooo ......... I JJ5 .000 .uosuoo .00405140 .uunu .ooonuo .oooouoo .ouooooo I U1 soo . 00011210 .OOUJOZO .t04UI1t .tOOOUU .ooouooo .oooooou 180 000 .toiHilO .UUtllt .OOUIIH .oooooou .ooouooo ........ 0 i 202 soo .OOIUUO .oouuu . oo uitoo .00000000 .00000000 .ooouooo I 22:1 000 . UOitUO .UUISIO • oouuoo .ooo1uU ......... . ........ I I 247 500 .00016110 .onisuo .OOIS0410 ......... .o6oooooo .ooouuo 210 .000 .UISIUO .00310410 . OOJUUO .OOOIISU ......... .ououu 292 500 .00016510 .OtltUIO .tollJUO .tOOIISIO .00000000 .ooouou JJ:i 000 . OOOJIUO .oootuoo .OOOIIOJO .ooooooto . oooooou ......... JJ1.SOO .uonuo .00115150 . ooouuo . 00000000 .00000000 .ouooooo IUIOII I ""' ITIIIILITY CAJECDiY 4 I \.0 IIIU IPUD 111110 SPEED IIIHD IPEED IIIHO IPElD 111110 SPEED IIIU IPUD 0 UUGOIY I CIIJE,OIY 2 UJHORY J UJECOU 4 UTUOIY S cuuou ' DIRHIIOH . 1SOOIIP8 IC 2. 500 OIIPS )( 4 .JOOOIIPIIC 6. 800011PS IC t.5000HPIICIZ.500011PSI IDECAE£5) I ~:, .. <t, . 000 .ototOHO . 00 IUUO . tOUUIO .OJIIOUO . OUitUO .01016510 :·r! 22 soo .00011l10 .oounu .tot:i1UO ....... ,. ·.oo1U100 .ouuuo r ·!I,; n .ooo .00050260 .00162060 .oouuao .OOUIUO .oouuu .ouuuo 61.500 .uouno .oounto • 00111 uo .00341260 .00034130 .00000000 ! I 90.000 .tOIIU40 .OotUUO .OIUI110 . OOUIUO .totUUO .uoooooo 112 500 .00Ut110 .oounzo .011t41tl . 00t12UO . OOIJUOO .uuuso 135.000 .00011210 .oouuto .tOIUUO .ouuuo .OOUJISO .uouooo IH 500 .00061540 .OOJU5U . 00511110 . ooueato . 0002JI , • .uoooooo 180 .000 .00126420 .tOU5UO .OOU11U . 00115210 . OOOZJ ISO .00006000 202 500 .ooouuo .OOUII40 . OOZUOIO .00104110 .06051110 .OOOHllO 225 000 .OOOHUO .00150410 . 00211110 . 0030oti0 .00115150 .00011030 241 500 .00046000 . 00 2U2 JO . oounzo . 0012t2U . 0020IJU .OOIU110 210 000 .OOIUUO .005tOUO . o1 uuao .0241UU .ouuuo .onnuo 2t2 500 . 001 JS2SO . 00219UO .00111610 . Ol t2i521 .01152011 .01214110 ll s .000 .00044110 .0024]080 . OOU2410 . OIOU1to .oonauo .OOUUJO Jl1 500 . 00010060 .00254660 . 00625070 .oounoo . 00211110 .oouuu FIGURE 4-2. (Continued) r--"1 ... -' J :----"1 L_ j .; 4::- I \0 ..... r---1. L ,,, J •••• ISCLl •••••••••••'~ !. HYPOINEIICAL POIAIH riOtEIIIMG PLAMl -IICL' ••ru• •••& cc~Nl. •- -fiEIUENCY Of OCCUIIENCE Of WINO IPEEOi O~IECJ'O~ AM~ IJA,lllll • • YIU IPEEO unun ~ IIIIUJIQII ( . liUI!PI ~c CIIEUU8) . •••• ......... u.uo. ......... f$.010 . ........ u.s .. ......... ,. .000 ......... IU.:tot . oououo IU.UO .ttOttott IH 500 ......... IIO.Oot ......... 2U.UO ......... us 000 . 00000000 2U.UO . tOO Ott tO no.ou ......... 2u.uo . uooouo Jl\1.000 ......... Ul.UO ......... 1111111 IPEEI UU:UIY I Oilfi:JUII· . noo•r•u Cf>UIU:Il .... . tttUUt u.su .uunu n.uo .ouuuo U.IU . toUUtt ...... .ttlttUt IU.UO . ouuuo IU.OOO .to<UIItt 151 \100 .UUU.20 ...... . onuuo 202 .uo . oouuoo 22!1.000 .OOUUIO 247.1100 .tonouo 210.0110 .tUUUI an uo .oUU4U U5 tOO .uunoo Ul.UO .Ut17UO FIGURE 4-2. (Continued) UUOII I IIAIILI'V Cll£GOIY ' IIIUIUEO IIIlO IPiU 111111 •nq· IIINII IPEEO IIIID IPEEI cuuon a UU:GIIIl I UTEUIIV • hnun :~ UJEIOOIY 6 '·'••••••u '. :JOo•••pc f. '"nr• H ••. , .. ,..,,,c 1 a . ., .. ~.,.) . onnuo .ouuuo .......... . ........ . ........ . uuuu .ttnnto ......... . ........ . ........ . uouno .tunu• ......... . .......... . ........ .tUUO .. . tonuu ....... ,. ......... . ........ . OtlUIU .oonuu ........ 0 . ........ . ........ .. ouuau .U~IUH ......... . : ......... ......... . onuuo .unuu .......... .......... ......... . tUUUO .OUJISU ••••••••• .......... . ........ . onuuo .oouuu ......... ......... . ....... o .OOUiUO .ouuno .......... .. toooouo ...... 0 .. . ttiUUO . outo"t ......... ··.ttUOtot ......... . ouuuo .tUU7U ......... ··~.OOUOtot ......... . ttUU;JO .ouuuo .......... .......... ......... . oonuu · .oonuso ......... ·: ......... . ........ .oonuu .ouauu ••••••••• . ........ ......... . oonnu .totiHU ·•! ..... , .......... ......... •uu11 a ''*lillY' c~·~~·•v f · IIIID IPUI 11110 IPEEO 1111!1 IPEU. tii!ID IP!'EO 11110 IPU:!I UUUIY 2 cnuon J ~lliGII' 4 ~IJIGOIY :1 CAJICOIY 6 i.IOUI!I'UC •. IOUII'~H •. ••••~rur·;. so•••u ~c 1 a ...... ,.) .ouuilu ......... ..... ~000 .......... .uouooo .uunu .ouooou • ootttooo .......... .uouuo .tUUUt .ououoo .OttttOOt ......... . ........ .tt.\IIUt .uoooooo ......... ......... . ........ . uuuu .00000000 .OUttOOt :, ........ . ........ ...... ,,. ......... . ••o•·•·· . ........ ......... . tHU4H .00000000 ......... ......... ......... . onuno . 00000000 ........... ' ........ o. . ........ .00144040 .. oouoooo .......... . · .. uooo••• ......... .00:167200 ......... ......... ......... ......... . tUUHO .00000000 .00000000 .uooouo ......... . ouuno ......... ......... . ........ .ttoOOOOO .oannu .ttoOOOtO . tOOttooo ......... ......... ......... . tOOtOOtO . ..... 0 .. .oooootoo .......... . ouauu ......... .ouooou .uuuoo .ooouuo .ouuno ......... ........ 0 .tOOOUOt . ........ 5 ·~·· ""' I ID N •••• ISCll ••••••••••••• HYPOlHtlltAl PO YUH PIIOCEUIHC PLAII1 -IStLI urUliiRtA CtOHT.) • • UUUUtY OF OttURREMtt OF MIND SPEED, DllfttiQM AIIO 611111ll tY - ouu;HoH (0EUH6) ,.000 u 500 45.000 " 100 90 000 112.500 135 '000 IH.SOO uo 000 202 uo zu.ooo ZH.SOO 210 000 212.500 315.000 331.500 DIIEtliOII UECRU:6) . Oto 22.500 u 000 u 500 to 000 112.500 135.000 IH 500 180 000 202 '~00 2n. 000 2H . :no uo 000 2U :100 315 ooo 337 .500 l"'GURE 4-2, r--r-, '· l, J : -r--"'"1 La_. ,,.1; 111110 SPUD UTUOIY I ( .. 7UOiiP·8 IC .00000000 .ooouuo .tOotHU .OOOIJUO · .OOOUJOO .00041740 .UOU170 .uunu .ooonou .ooouou .00021220 .toouuo .nouuo .00000000 .uoouu .oouauo 1111111 Sf'EU. CIITUO'RY I c . UOOIIPIIC .ooouuo .ooun .. .00001100 .oounzo . 001 tliUO .00&71310 ...... .,. .002l80St .OOHUOO .OUOIUO .00107190 .OOIHHO .002U:UO .00148850 .UI011to .ooouno (Continued) SEAIOM I 81AIIlllY CRttCOIY I ..... sun MIND IPUO VIIID IPEU UUUIY 2 CUUOIY J cuu.en 4 2.1000NP&H t.JOOtHP&H '.IOOOIIPI )( .ooouuo .00000000 .oooouoo .OOOIIUO .00000000 .00000000 .OOOUiU .oooouoo . 00000000 .oouuu .·00000000 ·.00000000 .ooouuo .00000000 .00000000 .0Utt510 . 00000000 .00000000 .00022640 .00000000 • 00000000 .uunu .onooou .00000000 .uon:uo . OOOotOot .......... .ooosuu .toooooot .00000000 .oousuo . oouoooo ......... .00011120 . uoooooo . 00000000 .ooouuo . ooouooo ......... .00000000 . tooooooo ......... .00022640 .00000000 .oouoooo .00022640 • 00000000 .00000000 SUIOII Z 81AIIlltY tRfEG~RY 2 litHO SPUD unun 2 t.SOOOIIPBH .OOltltOO .oounu . ooouuo .ouuuo .00411910 oououo .onuuo .OOJI70JO .00418UO .00ll10JO .oouuoo .002HUO .oououo .OOIHUO .OOIOUOO .oouoseo uao buo UUGIRY J t .UOOIIPSH ... .,., .. .OU7tUO .OOOUt10 . ooousu .ooutno .oouuao .oouuu . OOJI10l0 . 0022iUO .ooornu . OOOUtU . OOIOitOO .OOIUUO . ooouuo . ooontro .oounro ,..........--, L .. J 111110 IPE£0 CUUOIY 4 ' ...... ,. )( .00000000 . ......... . 00000000 . OotOOOOO .00000000 . 00000000 • 00000000 . uoooooo .00090000 . 00000000 .00000000 .00000000 .00000000 ......... .00000000 .00000000 :I.<!·'-: litaio aru:o VIIIO IPEU CUUOIY ' Uf£UIIY ' t.SOOOIIPI)CJI.,OOOIIPS) .otoootoo .oooooou ......... . oooototo ·.uoooooo ......... .oouuoo .00000000 .·oooooooo .00000000 .00000000 .otooouo .oouuoo ......... ......... .otooouo ....... 0. .OOOUOtO .tooouot .00000000 .00000000 .......... ·.tooooooo .......... . ........ .00000000 ......... ......... .00000000 .00000000 . 00000000 .00000000 Ill MD aHn IIIID IPEED UTUOIY 5 CIITUOIY I t.5000KP8)112.SOOOKP8) . hooooot ........ 0 .00000000 ,ooooouo .ooooooot .00000000 ......... ......... .OOOtOOOO .uuoooo . 00000000 ......... . 00000000 .00000000 . 00000000 .00000000 .00000000 . 00000000 . 00000000 .00000000 .00000000 .00000000 .00000000 .00600000 . 00000000 00000000 .00000000 .00000000 . 00000000 . 00000000 . 00000000 .00000000 .CJ. •••••••• rAG£ ' .... l . ! •••• ISCLI ••tt••••••••• IIVPOIIIflltA~ POTAIN PIOCESIIIIG P~AIIT -18£LI IIIP~J D~JA CCOIII.) ~ I'IIIUTIOII C &liOIEU) ou ~2 uo "' ... u 100 ,. too IU.SOO IU 000 15l :Ito 110 000 202.:100 au ooo Ul :100 210 .... au uo JU 900 331.:10~ lllllfC II Oil UHU£8) ... u :100 45 uo H uo ,. 000 112 $00 135 000 151 :109 180 000 2'02 .:100 225 000 Ul UO 270 000 2' 2 500 315 000 Ul 500 FIGURE 4-2. -FlfiUENeY OF O'CUIIIIICE OF 111110 SPEJDo PIIECI(OII:AIID llA,fLITl - IUIOII 2 IIAilL.JY CAfiGO~Y ~. · · IIIIID IPEO IIIII UUD 111110 IPEU Ill liD sr,~D I[IJIID IP(f:D 111111! lifU:D CAlEGOIY I CITEGOIY a CIIEGDIY J £ATEGOIY 4 CllfGOIY I CITEGOIY 6 C .lUOIPUC a.U00!1Pp4 4.l00011Ppt , .• OOOI!P.~c. fUoOIPfUU.~OOOIPU .uouno .OOUIUO .o .. n:uo ... ., .... .uuuu .00011110 .UOIIUO ..... ,.,. .00071110 .ooOUOIO ... ., .. ,. .oouuu .uonuo .ooouuo .UUSS40 .toOUilo .UU:IIlo .uotouo .OOOUSIO .OOIUUO .ou:uno .oonuu .on uno .OtllfOOO .onuuo .onauso .ooonuo ·.oouzuo .ouuno .00&24110 ......... .uouno . OotUIU .oouuu . OOUUlo .(IOUUU .OOUHH .oonuu .ouuou .oounu .UU21U .oouuao .ouuou .OtUUU .OtUUOI .OU4HU .OtiJ:IIlO .ottsnao IUIDII. a .oooaa6t~· ··.oooooooo .oooi&Jao · .ooo1i1ao . tiouzu· .. oooooou .ooUUU. :.00000000 . 0004Ut0 /0001 I :UO .ooatate.i ,eoo2a••~ .ou11ut .. ·.oooauao .ooatatao ,oooJJtro .oounu · .ooouuo .ojoJJtlO· .00~00100 .ootJJt7o .ooo2a••• . ojotUIO · : .. toO I& Ut .OOUUJo.· .•. UHUU • 0007UU. .:oOUSUo · .oooJJtro.· ,oooooooo .tooa•J•+ . ,,ooa~t•~ 1lii1Lil~ ~·lEG,.Y • .00000000 .oounzo ......... .00040000 ......... .uoooooo ......... . oohoooo .00000000 .OOOUt7o .ooonuo .oououo .uouaio .honuo . 000 II :UO ......... IIIU IPUD II liD IPUD 1111111 lf'E£11 ·~liD II!',Ui':: WIU IPUD IIIIID IPEED cnuan 1 UlUDIV a UTEGOIY 1 cuuon 4 ··cUIGOI¥ s ~•nun ' .UUIPUC Z.:IOOOIIPUC t.:Jtto!IP.H •. l,too11PfWt~90t!IP.)(U.SoOOIPU .OOOtiHO .oouuu .oooiouo .uunu .oonnao .ooouuo . OOOUJOO .ooauno .OUltUO .UOUISO .ooonuo .OOUOIIO . 00122tl0 . 000117100 .uuuu .OOOSUto (Continued) .onuuo .ouuou .ooiuuo .uuuu .oouuu .o~uuri .OUOU&O .OOJOS110 .UHUJO .ooauuo .OOUUIO .ooouuo .oonuoo .OOOtOIU .UIUUO .002UOto .outo,71 .oonnu .onuui .OliiUti .ouuau ... uuoa .OOitH71 .oounu . 00:12011 I .ouuou .oouauo .00411141 · oOUHtl .00464221 . OOJUUO . OOliUZI ... -; .otJ6,)o2 .;tl2aZIJI .OI6tl3f2.: .OOt214tl .ootiJJ2t. · ~ooaJlllo .00160511' :ojl6tlf0 . oaontoa .oouna• .o1naua· .oouuu .OIUHI& .OtUlUO .ootlltl*' .•oaeJo'j .~Oil~t6j ,ooa8JO'O .ooaaoeja · .:oo!llOJo .OOI17tjl •00407610 .00111831 c00668131 .ol46o6oa· ;OIIJ2251 .OI347J71 .OOtl$051 .006JtO'I .ooa6oizo ·•••oootl ,ooa••J~o .ouuna .00141281 .ooouuo .uo:nno .ooo:nno .uuouo .UOIIUO .ooouuo .OOUISIO .0013:1110 .onnuo .OOIOtlll .oouuu .00611411 .OOJJtUO .ounoto '''" ••• P*GE 1 •••• •••• ISCll ••••••••••••• MYPOJIIEUtAl tOUS.M PROCESSIIUi PLAI!f •••••••• PACE ••••• -I Stll IIIPUI DAIA 0:0111.)- -fiUUIHtY Or lttURR£HtE Of VIHD SPEED, DIREtllOM AIID UAIIL I TY - lfAUII 2 SIAIILIIY t•IE,ORY $ IIIHIIP£U 111111 lrllU 111111 IPEU VIIIO SPUD IIIID trEED 111110 IPEEI uucon a CAUUIY ~ CAlECUY J tAIEIOOU f UlUOIV 5 CIHEURY i D I lift TIOH .nuus u 2. IIOOOIIPI H f.lOOOUUC I .IUUPS U t.SOOOIIPS)CI2.SOOONPI) C fi£GREU) 000 ......... .unuso .ouuut .ooooouo .OtoOOtOO . ........ 22 soo .onooooo .OOUIIU .OHOIUI :ouooooo .OtOOttU ......... 45.000 ......... . ooottuo .OUUUI ......... . ........ ......... H SOO ......... · .ouonoo . 00714&41 .ouooooo .ououoo ......... u.ooo .tOOtOOOO . oonuu .oothtu ......... ••••••••• .ooottooo 112 .HO ......... .nunu .onuno .oouuoo ......... .UOotOU 135.000 . nuouo . OOIOUOO .002UIOO ......... .00000000 ......... 151.100 .00000000 .00124550 . ooanno ......... .uooouo .ooouuo 180 000 .otooouo . OOIUUO . 00 II Silt ......... .UOOOtOO .otooto .. 202 $00 .onuooo .ouuuo .001$1$10 ... 000000 .tOOOUOO .00000000 225 000 .01000000 .OOiiUU ..... ,. .. .00000000 . ........ .uoouoo 2H.500 ......... . oouueo . oouuoo ......... ......... ......... 270 0 00 . uoooooo .OOUOIU .oonnai • 00000000 ......... .00000000 2U. 500 ......... .oououo . oouent ......... ......... .uoooooo 31' 000 . oooouoo . OOIU510 .U12ti4l ......... ......... ......... 3H 500 . uooouo .oozuno .00115221 :ouooooo .00000000 ......... IEAUII 2 -1:-&fAIILIIV CAIECIIY & I IJ) lflliD nuo IIIKD IPEU liMO SPUD vue IPEU Ill NO SPEED IIIII SPUD -1:-UUCOIY I UlUOIY a curun 1 Ul[COU f CIIE,OIY 5 CAllCOIY i OUHJIOH . 7SOOIPS H 2. SOOOIIPS H 4 .lOOOIIPIIC &.UOUPI U t.SOOO.PI)Cli.SOOO.P8) ID£UHU Oot .unuu .ootonu .00·000000 ......... .00000000 .00000000 u soo .tU11120 .oosonu .00000000 .oouoooo .00000000 .uouooo 45 000 .OOIUUO .oo.Jtuto .00000000 .00000000 .00000000 ......... " .500 .OUIS140 .OOJJU70 . 00000000 ·.oouoooo ........ 0 .00000000 ,. ... .oonnu OOSUUI .00000000 .oooouu ......... .uuoooo 112 500 .oouuu .oonuoo . 00000000 .00000000 .00000000 .ooooouo llS 000 .UUIIOO .0022USO • 00000000 .ouooooo . 00000000 .otooouo U7 .500 .00211580 .oounro .00000000 .oooooooo ......... .uoooooo 180 000 .OU7401l .002117U . ooouooo . 00000000 .00000000 .oouoooo 202 . 500 .oouza u .OOJ28J50 . 00000000 .00000000 . 00000100 .00000000 225 000 .00114l80 .OUHUO . 00000000 . 00000000 . 00000000 ......... 2H uo .OOU4000 007U511 . 00000000 .00000000 . otoooooo .00000000 210 ooo .OOi2U41 .0141SJU . 00000000 . 00000000 .uoooou .00000000 2'2 300 .o-t58J1lt .OotO,etl .00000000 • 00000000 .00000000 .00000000 liS 000 .00444180 .Ooti71U . 00000000 .00000000 .00000000 .00000000 JJ7 500 .OOU5UI .OIIUUI . 00000000 .00000000 . 00000000 .00000000 FIGURE !1-2. (Continued) r-- l ·,. •J ; } I •••• IS(ll ••~•••••••••• IIYI'UIIEHUL I'UUij PUJ;U$,11C PlAIIJ -IICLI INPUT tAT. (tDMJ.) - DIIEC Jl Dll UUifU) .... u.s .. 41.000 u.su u.ooo IU UO ll5 .... an:uo 110.000 202.500 us.uo 241 500 210 000 2ti.UO llii.OOO nr.uo IIRUTIOII UUIUU .... u uo 41.000 H UO u.ooo 112 uo Ill 000 157.500 180.000 202.UO 2U 000 247.:100 210 000 U2 UO JU.OOO lll :lot FIGURE 4-2. -FIEOUIIICY Of OttUIIEIICE OF Willi &PEEl, Pl-ECil~ll AND ITAIILITY - UUOII 3 81AIILIJV t•IEGOIV I 111111 IPEED 111111 IPifl IIIIID IPEEI IIIIID IPEfl 111110 IPEEt IIINI'IPIED tAIICIIV l c•IEGDIW-a tAlEGOIV ' £AT£GD-V .• CAIEGOIW 5 CAIEGOIY ' .1500IP,)C a.~ttOip-~( •. ,o~·IP,)C •. ,.0,~1'·)( •. SOOti,,HII.IOtoiP.) .uouuo .o:.oadlo .uouuo .UOUHO .00011480 . tttiiUO .tousuo .ttitUIO .toU11lt .ounno . oooaauo .00011410 .o .. uuo . OOUUlO :oouuot .UOHUt .UOHOU .••• ,.0 .. .tOOSUIO .U05UIO .uuuu . ouuno .ounno . ttaUUt .tUUflt . OOUIUO .tonuu .ouuuo .ouuno .tOOUOU . oou uu .ooouo .. ........ 9 . ........ ......... . OOoUOU ......... ......... .ouuooo ......... . oouotu ......... ......... .ouuou .00000000 .00000000 .oooooou .oooo.ou .OfOOUU . ••••••oo .oootoo.t . ·~OttOOO ·•••••o•• ••••••••• .00000000 ......... ......... · . .......... . tooooooo ......... ......... ......... .......... ·tH•••H IUIOH I lli~ILif,'CAJf~!-( a ......... ......... • •••••••• ......... ......... .tOOOOOtt ......... ......... . ooiootot ......... .tooouoo . oooouu .uo••••• ......... . oouuoo .ooooo••• .00000000 . 00000000 ......... .00000000 . ....... . .ooooooot ......... . ...... .. . ....... . .00000000 .00000000 . ....... . .ooooooto ......... ......... .ooooouo VIMD IIIII VIVO IPEED ~lMI IPEE~ .IUD tPEED · ·11111 IPI£1 MIMI IPEID CIJEGOIW I CllEGIIV I CATECGIY ~ CIIEGIIV • ·calfGDIY 5 ClllGOIY 6 .liOtiPIJC I.Stttl,l)f·~.,tOOIP.)C .;.O!OI~j~t···~·•••fHII.~ttoiP~l ... ., .... .touuao .ooouuo .o•o:nuo .uuuu .... ,, ... .ttl U140 .onu:uo .U:UU40 .oonuoo . OOU401o .00213120 .oouauo .otutno .ooueno .ooouuo .ouuoao .ourouo .ouuoao .OOIHUO .ooaouu ......... .ounou .OOIOUlO .OUUHO .oosuou .oounu .oounu .OOUto60 .ooaouu .ooouou :OOIJU2t .ooauno .oohnso ·•••nuo .00112100 .toUUto .oounio ouuuo .ouauu .oouuu .oozanu .oounu .OOIIUU . OOIUUO .OOit2100 . ooonuo . ooonno .•••••••• ;: .. •o•••••• ·•••••••• .. otooo••• ........ 0. .ooo••••• ......... :.·· .oooooooo .ooootooo· · .. uoouoo . ........... oooouoo .ooottooo · .ootooooo .oootoooo .00000000 . oooooooo ····••ooo .00009000 .00000000 .00000000 .00000000 .oooooooo .00000900 .•••••••• .0~000000 .00000000 .00000000 .00000000 .00000000 .00000000 .00000000 .ttooouo .00000000 .otuoooo .00000000 .. uouooo .00000000 .ooouooo ......... .00000000 .00000000 .00000000 .00000000 .oooooooo .00000000 .00000000 .00000000 ·~···~·· '''" t •••• ""' I \,() (J\ •••• lStlT ••••••••••••• HYPOIHEIICAL POIA&H PROCESSING PLANT 0 IRE C Tl OH < OHRHS I 000 22.500 4~ 000 61 $00 tO 000 112 HO U5 .000 U7 500 lBO . 000 202 500 225 0 00 241.$00 270 000 2t2.500 Jl5 0 00 JJ 1 $00 PIRECJIOH IPECIEESI 000 22 500 45 000 H .500 to.ooo 112 HO IJ$.000 U7 500 180 000 202 500 22S 000 241 50Q 270 000 272 50~ 315 000 JH $00 FIGURE 4-2. -ISCLI IHPUI DATA CCONT. I - -FREQUENCY OF OCCURRENCE OF VIHO SPEED, DIRECIION AHD SJRIILITY - &E AIOH J STAIILIIY CAIECORY J Ill HD SPEED II I Nil SPEED MIHD SPEED UJHD I PHD IIIND SPEED IIIHD &PHD CATEGORY I tATHORY 2 tAIEGORY J UIECORY 4 CAIECOIY 5 CAtEGORY 6 c . noonrs IC Z.UOUPSIC 4 . J 00 0 ftP 6 )( '.IOOOftPS IC t. $000NPS IC II. 500UPS I . ooo uno .00010680 . 00204040 .OOOJ4010 .OOOIIHO . 00000000 .00017UO .OOOltUO .0021U70 . 00l24UO . OOOfSJ40 .00000000 .oooznao .00061010 .OOIUJH . 00l24UO .to0ll340 .00000000 .ooouuo .ooonno . 002U040 .ooouuo • 00022670 .00000000 .OOOHUO .OOIIJUO . 00476010 . 001700JO .00022670 . 0 00 0 00 00 .ooouuo .OOIIIJU . Oot401JO .00612110 .OOOJ4010 .00000000 .ooouuo .0021U70 .Oiot8840 .00172120 .toOUUO .00000000 .00021410 .OOJI7UO . 01212880 . 007U7t0 .OOOUHO .00000000 . ooonuo .OOJI7UO . 00600770 .001700JO .UOJ40lt .OOOIIHO . 0002 42 tO . 002J8040 . 00204040 .OOOUOIO .OOOUJ4t .00000000 .OOOJOUO .oouuto .OOIHUO .00l24UO .OOOIIJ40 .OOOIIHO . 0006 4710 .OOJZI720 . 0024tUO .tol02020 . ooosuu .OOOUHO .OOotlltO .0021JJIO :oo7027to .00112700 .UOHOIO .OOOSUIO .OOOU7JO . 00215J70 .OOUHU . 00 1'02020 . OOOUUt .00022670 .OOOJOUO .OOI2Uto .00215370 .OOOJ4010 . 00022670 .. 00000000 .ooouno .OOIHHO . 00102020 .OOOHOIO .00000000 .00000000 SEASON J STAIILIIY CAIECOIY 4 IIIHD 8PHD Ill MD I PHD MIND SPEED IIJHD SPEED IIIlO &PHD IIIND IPEED CATEGORY I CAIEGORY Z CAlHORY J CUUOIY 4 UHCOIY 5 UlEGORY 6 c . 7500ftf6 )( 2.UOOKPUC 4 . JOO OftPS )( 6.1000ftPSIC t.5000HPSICI2.5000HPSI .00061600 .OOIHUO . 007UUO .01251220 .otuuoo .oouoou .OOOIU80 .0012Uto . 007U470 . OIUUiO .oououo .00401070 .00010600 .OOIIUU .00521420 . 00511440 . 00272050 .OOOHOIO . OOOUHO .OOJ17UO . OOU8780 . 00712140 . 001100JO .OOOHOIO .OOOUIIO .OOUZ7JO . 01201540 .OIUUJO .002UJ8t .OOUUIO . 00011550 .OOUUIO .01111870 .oanzuo . 00571100 .00061010 .00047250 .00112100 .001tH70 .OI7UUO . 00238040 .00045340 .oonuoo .00147UO . 00600770 . OOtll UO .00124690 .OOOJ4010 . 0004t240 .00226110 . 00442010 .00511440 . 001 U020 .00056610 .00021t30 .OOI700JO . 0021$370 . 00328720 . 00066010 .00000000 .ooouuo .00011UO .0028)380 . 00351390 . 00it2700 .OOOIIJ40 .00027t70 .00068010 . oounu . OOJ40060 .ooonno .00068010 00041220 .00214720 oounoo .01020180 .00260710 .00158690 .ooonno .OOUUto .. 01167540 .01054180 .00555430 .OOJI7UO .OOOIUJO .0007USO :oon1no .00838810 . 00231040 . OoOJ40 I 0 . OOOitt$0 .00102020 .OOUIUO .OOSUHO . OOJ21120 .000to680 (Continued) ;. • • • •• • • t fA C£ 10 •••• -l < ..,.. 1 \0 ...... •••• l&Cll ••••••••••••• ' rl HVPDlHliiC.L pDI~I· PIDCEIIIIG PLIII -UCLf UIPIH ~~~~ C Ulll.) - • fiEIUEMCV IF ICCUIIEICE Df MilD IPEJD• PI~ECIIDI ~~' .IIII~ITY -. IEIIDI I . lllllLll' CllEGO'y 1 . . 'UU IPUI Mill IPUI Mllll IPUI 11111: I~EU IIUD IPIU MINI IPEED ~IIEUU I uuun a UIUIIV I FllEGOU .4 CUUDIY S UIUIIY. UlftlUN ( .n•••" u a.utur•H i ·~·····')( f.fttti!P~H •...... ,.,,., ..... ~·~) (I[GUU) .... ......... . uuuu . tUUUt ......... ·: ........ . ........ U.IUO ......... . uuuu ......... ......... • ••••••••• . ........ 45 .... ......... .tUUUt . onuou ......... ........ ~ ......... u.uo ......... . uanou .. ., ... , . ......... ......... . ........ ...... ......... : ........ • UISUOO ......... ......... . ........ IU lot ••••••••• . uunu ..... 14 .. . ........ .......... . ........ IU.OOO ......... . UUU20 .OtUUU ......... ......... . ........ IU.SOO ......... . uunu . tou:uso ......... . ........... . ........ ....... ......... . ttiUlU . ttiUOU ......... .......... . ........ au.uo ......... . uiuut .tuoaou ......... . ......... ......... an.ou ......... . UISIUt . ttllUU ......... ......... ......... 24l.UO ......... . UU~lU .toUUU .......... ........ , ......... au.uo ......... .UlUIU . tttsUU .......... ; ........ : ........ au.uo ......... .uunu • UUf4SO ............ ; ........ • •••••••• JU.UO ......... .ouuou .OUU770 ......... ~. ·;········ ......... u1.11ot ••••••••• ........ , ........ , .. .,.,,, .. , .! ........ . ........ Ullllll J llt·l~lf. ~·l~~9~Y t 111111 IPIUO Mllll IPUO IIUI IPEU 11110 lfEE' · ¥~110 IPEft 111111 ann unun I UUGIU a c•nuu ' ~~11'''' • ~.,, •••• ' UTUIIY 6 OIIEC l Ill! .I'UtRPIH .~ .• ttoRU~C i·~·u~ruc •·,!tt•~•~~:'·''''~''"''·'~•••ra» UECIU:U .. '' ~ •••• ,oonnao ......... ......... . .... , ... -~ ........ . ........ u.uo . tnaun .tUUlU • •••••••• ......... • •••••••• • •••••••• n uo .. ooauuo . uuor4o ......... ......... ; ........ . ........ n.uo . uanut . ttlliUO ......... ......... ; ........ ......... u.ooo . uuuu . tUS1Ut ......... .......... . ......... ......... 112.100 ,UJUUO . uuuu ......... .......... ••••••••• ......... tn uo .unotto . ttltaltl ......... ••••••••• . , ........ . ........ IS1.UO · .uauuo . uuuu ......... ......... . ........ . ........ ... . 000 . ouuno . otii,OIO ......... ......... · ;oioooho . ........ aoa no ......... . uauuo ......... .......... ; ........ . ........ au ooo . ttatSS40 .. ., ..... ......... .......... .......... . ........ an su . OtUlllO .ounuo ......... ••••••••• . ........ . ........ 210.000 . UIUUO . uuuu ......... ......... ;, ........ ......... 2U SOO .uuuu .OUlUU · . ........ ' ......... ,. ........ .. , ...... Jill ... ......... .tuoono ......... . ........ . ......... . ........ JH.SOO .oou:noo .OUIUtt .oooouoo .... , ... , ·•Hooooo ......... FIGURE 4-2. (Continued) on••••• fAG£ H •••• .J::- I \0 co •••• ISCll ••••••••••••• HYPOlHEliCAl POIBSH PIOCEI81MC PLANt -Ut:LI INPIIT UJA UOIIT.) - -fRfOU£NCf Of OttUIIEHCE Of MIND SPEED, ~IRECIIOM AHO IJABILIJ' - IIIND IPEEO tUECOlY I ~~ UtliOH . UttiiPS H < DfUEU) 000 .ottUUt 22 HO .OOOUIU ., 000 .OOOIUU i1 uo .oouuu to ... .ouuuo 112 ,.. .otOUUt us 000 .UtUih .,. soo . oouuu 110 000 . 00012160 202 500 .OtOUIU 225 000 . OOOI.UU 247 . ,.. .OOOUIU 270 000 .OOOIUU 2t2 500 .uouuo Jl5 .000 . uouuo Hl 500 .ooouuo MillO aruo uncon 1 Ill REt II 011 .UUIPIH ( Dl&UES) ooo .UtHUO 22 300 ......... 45 000 .uuuao " , .. .UIOUIO ,. 000 . 00211440 112 soo .OOI75tt0 IU 0 00 .ooznuo U7 500 .uunto 180 000 .OUUJOO 202 500 .oououo 22:1 000 .oounu 2H uo .oouuu uo 000 .oououo 292 5 00 .oon:nu 315 ooo .OOtiS2JO JJ7 uo .ooonno FIGURE 4-2. (Continued) &USOH 4 SIAIILIJY CAI[GOIY I YIIID IPEU UltO IPEEO Mill~ IPU:D CATII:OIY 2 UIUORY J CUEUIY 4 ll. ,. .... ,. )( 4.UOOIIPSH '.IOOOIIPI U . OOOtOOOO ......... ......... . ooouooo ......... ......... • OtootOOO . 00000000 ......... .uoooooo . toOOOtOO • ooouou . ttOtOtOt ......... ......... .ooouooo .OtOUOOO . oouooot .uoooooo ......... .00000000 . uoooooo . tOOOOOOO ......... .00000000 ......... .oouoooo .ouootoo .00·000000 .uuoooo .tOOOOOtO .tOOtOOOO .OtUtOOO .oOOtOOOO . 00000000 .00000000 .oooooou . ooouou .oooouoo .ooouooo . 00000000 .00000000 ......... . 00000000 .oouuoo ......... .ooouooo . 00000000 IUIOH 4 8lAIIlllY tAJEG~RY J IIIIIDIPEU IIIID IPEU II liD IPUt unun a UTEUIY I uncon 4 2. SOOOIPS H 4 .JUOIIPSH , ...... ,.,, • OOIOJOU . OUIIUO .ootttooo .OOIIUlO . ooonooo .oooooou .ooouuo .00000000 .ooouooo :ooanno .toouno .00000000 .uuaon .ooouno .00000000 .uuun .oouruo .00000000 .oouaou .ua4uio .00000000 .otUUIO .OOIUUO .00000000 .00572140 . 00111100 .ooouou .OOUitU .oouuu .oouoooo 0.0 llllOO .oounu . 00000000 .00 IU2U .oourno .00000000 .00148810 .oouneo .00000000 .00114470 . 000451t0 .oooooou . OOIU020 .oouuu .00000000 .ooonno .000228to . ooooooot 11110 IPEEI MillO 8PEU UflCOIY S tAUCOiY 5 t.SOOONPilCII.SOOOIPI) .ouuooo OOOOOUt ......... .tOOOtOOO ......... .ooouooo ......... .00000000 • oooouu ......... ......... .00000000 .totoOOOt ......... ......... .00000000 .oooootot .oooouu .. uooooot .00000000 ......... .00000000 ......... .tooooooo . 00000000 ......... . toooooot .......... .OOOOOtOt . 00000000 .ouooooo .00000000 111110 8PEU 111110 IPUII UU:GOIY S UUUIY' t.IOOtNPilCIZ.SOOONPI) ......... ......... .00000000 . ........ .oouuoo .00000000 ......... .00000000 ......... .ooooouo .00000000 . 00000000 . 00000000 ......... . 00000000 .00000000 .uooooot .00000000 .00000000 .00000000 .00000000 .00000000 .00000000 .00000000 .00000000 .UOOOOtO . ooooooto .00000000 . .00000000 . 00000000 . ooooouo .00000000 •••••••• PAG£ u •••• l I . I r ' •••• IIIU l ••••••••••••• MYPIIHEliC~L PllAIM P~IC~IJ-~Ii PUIIT ~'•••H• Pll'f u .... --IIUI IIIPUI IAJI CCOMI. l - -fUIIUIIItY If DCtUII£~Ci Of Mlllt 5P£Eio .,IJtiiOM Ul IU.IJ.'U - . .,.... . . fiAIILIIY'talE,,II I II lilt U£11 IIIIIDIPt:U 1!1111 trEED 111111 arlJt. ~iu ann lllHD IPEU CUIIIOIIV I UIEGUV I UUGOIY I UU:IiOIY 4 CUEiiDU I UUiiOU I. DIIUTIOII . llttiPI H I.UUIPUC 4 .IOUIIP. H , ........ u ·······-···'''·~······· ( DEGIUI) .000 .ttUUOt . ouuut . uouu• ......... ......... ......... u.uo .uunn .tUUOU . uauau .tottUU· .......... . ........ n.ooo .ttUUIO ....... u ...... , . ......... ......... . ........ u.:iu .ttUJIU . tUUUt .... ,.,. .. .ttU21tt ......... ......... u.ou ..... ,., . . uuuu .UUIIIO . nuuu ......... ......... IU.Ut ... ., .... .tUUliO . uuuu .uunu ..... ,. .. ••••••••• IU.Oto ......... .uauu• . oUUUt .uunu ......... ......... lll.UO .ttU1Ut .tUlUU . uun•• .uuuu .......... ......... uo.ooo ......... . unaau .unnu ..... ., .. . ......... • ...... to au.soo .UIIIUO .uuuu . tUlH:U ••••••••• . ·'· ........ ......... au.ooo ..... ,.. .. .tUilUt .UUUit .uouuo ·-········ ......... an.uo .tOIHUO .oUUIU . otUtlto ......... .. ........ . ........ 210 ' ••• .tOUIUt ......... . uuuu .OUUUt :: ......... . ........ au.uo ......... .ouuuo ,tOUUU . tUiUU. . ......... . ........ IU.OOt . ton au• ....... ,. . uuuu ......... --~ ........ ......... nr.uo ·••urno ......... . tuaan• .oo..outt -......... . ........ auau·• "" ·····~··· '*'''''' • I \,£) MIU IPUI 111111 IPEU 111111 tPEU 111110 auu ..... ""' 111111 IPUI ..0 UllliiiY ·a UIICIU J ~uuou 1 CUII;OU'. ~·U:UIV I CAUiiUV ' IHIEI:llll!l ( .l$tt1PIH ........ , .. , •-~••••''~' ':••·•~''"' •·~••••r''''a·•••••••> (DUUU> •••• .ttiUltO .tUIUU ·. ttonoro ·"'""' .• o•anno ...... ,. . U.Ut . UtiUU .tiiUtlt ......... .tllltUI .unuu .uuuu n.uo .uunu .ttiiiiU . ttlUtiO .ttUUit ......... .ttt411t0 f.l.SU ..... u .. .... .,..,. .OtUUU ·••Htnt ·:uuun .UtiiUt ...... .ttntuo .ttlttllt ......... .unoau .Uf6UU ......... III.UO .ouauu .uunu .OUIUU .tUtUU .• tOltiUO .uount an.ou .ttiOUU .ounuo .... , .... .OIISUH .ttUUU .uuauo ISl.StO . ttUlliO . uuuu ... ,. .... .tonuu ....... , . ......... ....... .ttlttUO .ouusu .'tUUOto .uuuu :.un1nt .unn .. aoz.au ......... . onuuo ....... ,. ......... .ouun• .UOUitt au.ooo . ouusoo . uuuoo ......... ......... ...... u. .OOUUtt 241.100 .tOUlloO .ttiUOH . oouuu .... uuo .00111110 .uouau 210 000 .tOIUliO .tUtUU .... .,.,. .tiOUIIl ...... ,. .. .OUUUt au.uo .UUilOO .tUltlJO .tUUIJO .tUIOlJI .UUtUO .uuuu 311.000 .t0U0020 .uuuu .OUUIU .ouauu ......... .oounu Ul 100 ......... .tUUUO .tOSUlto .oonuu ......... . ........ ' ' FIGURE 4-2. (Continued) "" I ..... 0 0 •••• ISCLT ••••••••••••• HYPOTHETICAl PDIAIII PIDt[S91H; PLAHI DIRUJIOH < DEGIIHS) 000 22.500 45 000 67 uo ,. . 000 112 100 13!1.000 151 100 180.000 202 uo us 000 2H 100 210.000 2H 100 311 000 JH. 100 DIIIH fl Oil UECIU$) .000 22.100 4:1.000 61.500 to.tto 112 .no Ill!. 090 1:17 uo .... 000 20Z.~OO 22$ 000 HI UO 270.000 2!2 uo Jl5.000 JH.!IOO FIGURE lt-2. • Utll INPUt UU HOIIT.) • • FR£8UEHtY Of OCtUIIENCl OF YIRD IPE£0, DIAEtliOII 8110 SJAIILIJV • GUION·· SIAIILIIY CAJE;.Ry 9 IIIHD IPEED Ill MD I PEED IIIHD ann YIHD II PEED 111811 SPUD 111110 SPEU uu;on. 1 cuuou 2 UlUOIY J CUUOIY 4 l:llllCORY S C:AU:UIY ' ( . noun )C 2. SOOOIIP U t 4 .UUIII'IH '. ltotltPI )( t.5000IIPI)Cl2.SOOOIIPS) .OOOOtoOO .oouuu . OIUUOI .00000000 .tooooooo .uouooo .0+000000 .OOUOSIO . ounna . 00000000 ......... ......... . uoootoo .ouuno .0010t110 .oootoooo ......... .UOtootO ......... .OOllUU . OOUlS40 ......... .toOOOtoO ......... .oououo .oonnu . u out•• .oooouoo .oooootot . 00000000 ......... . OOUOJU ......... .00000000 .00000000 .tootoooo .00000000 .OOIIJIU .unnu .OOOtotOO .ootooooo .00000000 . 00000000 .002SIIJO .ousun .ooootoot ......... .00000000 .OOOOtOOO .00251110 . ttl2st2t .tttootto .tottotOO .00000000 .tooooooo .OOHIUO .OOIUilO .OtOOtOOO .tOtOOOOO .toooouo .00000000 . OOIUUO .OOIUUO .ooootoot .00000000 ......... .ooouuo .OUJlUO .OO:UU40 .00000000 .toOOOttO .00000000 .00000000 . onuuo .Oto,Ui& .oooooooo ......... .00000000 .oouoooo .OHUOto .007UUO .ooooooot .oouoooo .00000000 • oootoooo .002tlUO .OOSUHO ......... .00000000 .00000000 .00000000 .OOUlSJO . OUSOotO .oooooou .tooooooo ......... IUION 4 IJAIIlllY CAfElDIY ' 111110 trElD IIIH!I IPEU IIINII SrlU IIUD SrEU IIIID IPEU 111110 SPEED UU:UIY I CUEURY 2 CAIEGOIIY J UlUOIY 4 CUUIIIY S unun' . 150 till'S )( 2. SOOOIIPSH 4 .HOOIII'SH '.IOOOIIPS )( t. :stOUPS)( U. liOOOIIPS l .onuuo .OlU0221 . oooooo•• .00000000 .ooooouo .00000000 .00Jt7UO .onuuo .00000000 • 00000000 ......... .00000000 .ooauuo .00fl2ot0 .Ootttott . Ottooooo .OOOOtUO .ooouooo .00421110 .ottuno .oootoott .00000000 .tOUOott .OtOtOOOO .Ot54UIO .ounut .00000000 ......... ......... .00000000 .ounuo . oountt . 00000000 .00000000 .00000000 .OOOOOotO .oonuu .002U210 .00000000 .00000000 .tottOOOO .ooooooto .una no .onuuo .ooouooo .00000000 ......... .ttUOOOO .004Uit0 .OOUOSIO .00000000 .ouooooo .00000000 .00000000 .Ot:IUOOO .OOSUliO .00000000 . 00000000 . -oooooooo . 00000000 .OOJH240 .ouuno 00000000 .00000000 .00000000 .ouooooo .oouuoo .OIIUifl .ooooouo . 00000000 . 00000000 .uoooou .014Ul71 .H7701SI . OHOOOOO . 00000000 .00000000 .00000000 .00712070 .OIH2lll .00000000 . 00000000 . 000 000 00 .ooouooo .OOH41f0 .OOUU81 . 0000000 0 . 00000000 . 00000000 . 00000000 .ooauno .OilH7U . 00000000 . 00000000 . 00000000 .00000000 (Continued) • •••• ••• I' AGE 14 •••• t ..... s •••• IStll ••••••••••••• ,. ..... :r NVPOTNEIICAL POlAIN PIIC~IIINC PLAMf -IICLf ···~1 •• ,. CC.NI., - • VIITIC&L PITIMIIAL lllfEIATU'E CIIIIIMT 41J&IIEI IELVlNI~ET£1)- 111111 IPEU lUND IPEU lilt IPUI !llllt IPIU 111110 IUJI 111111 ~PEEl CUIUIY I UUUIY I unnn 1 CUUUY i CUEUiy • UUUIY 4 IUIILI IV CAIUOIY a ....... . ....... ....... ....... . ...... ~ ...... llAIILI JY CUUOIY a ....... ....... ....... ........ . ...... ....... UUILIIY CAIECOIY J ••••••• ....... ....... ....... . ...... . ...... IUIILITY CUECDIY • ....... ....... ....... ....... ....... . ....... IUULITY UIEGOIY I . uouo-u .......... .......... . uuu-u . uuu-u .,. ....... IUilLII'I CUECOIY 4. . nuu-tl .UtUt-U .as••••-•• ·••••••·•• ·••••••-•• .u ....... -.... ruFI~J rillE' Ll¥ UriiiiJI ~ 111111 IPEU lllllt IPIU lllllllflrEU llllt IPEU IIIII IPEU • ... 11110 CUUOIY I CUEUIY a UUUIY I UfUIIW f CUUOIY t cnnon t lit AIIL 111 UIECII'I l .......... .......... .......... ·~ UOttttOt .......... . ......... UUILJIY cuuon a .nouuu . UOUhtO .......... .n•••••u . noto•••• .u ....... llUILIIY UUCOIY J .......... . uoou ... .......... .......... .......... .......... UIIILIIY UUCOIY • .......... . UtOUttO .u ....... .iuou .. o . nun••• .......... IUIILIIY CUEllO IV I . u ....... . u ....... . :u ....... • lit ....... . u ....... .u ....... IUIILIIY CUECOIY ' . u ....... . u ....... . ,~., ..... ., ........ ' .......... . ........ ~ FIGURE 4-2. (Continued) •••••••• PAI:E u •••• .j::- 1 ...... 0 N •••• IStll ••••••••••••• C 1 SOURCE SOURCE A A HUftBER lYrE R p D E M CODIDINAU (I) y COOUIHAU cu HYPOIHEIICAL POtASH PIOtESIIHC PLANI •••••••• PACE EIIIISIOH HEICH I (II) -SOUIICE INPUI DAJA - lASE I ELEV-I IHIDN I CNI I -&DUlCE DEIAILI DEPENDING OM IYPE - ,, •• t. --------------------------------------------------------------------------------------------------------------------------------AREA -IJ.JO -IJ.JO 10.00 IPEEII CAJECOIY I 2 3 4 ; ' 8P£U CATEGORY I 2 :r 4 5 ' IPEU CA IECOIY I 2 3 4 5 ' IPE£11 CATECOIY I 2 :r 4 5 ' .Ot YIDIH Of AIEl Cll• 26.10 -PAIJICULATE I 2 FAll VELDCIIY CKP81 .0010 .0070 RAil FUC liON . ltOO . 4000 IEFLECIIOH CDEFFICIEHI 1.0000 .1200 CATECDRIE& • J 4 .OUO .OJ10 . 2800 . 1200 .1200 .6500 ' . ouo . 0400 . 5000 IOUICE &IIEHCIHS C CIANI PER SEC PEA IIUAIE -SEASON I - 5 .0610 . 0600 .suo RETE I , - (I) 4. 00000-tl 5.toooo-u t. otOOO 0. 00000 0. OOOOt 0. 00000 Cl.l 4. Otoot-01 S.Oto00-01 0. OtoOO 0.00000 o.ouoo 0 ...... . Cl, 4.00000-01 5. 00000-01 0.00000 0.00000 0.00000 0.00000 (I) 4.00000-01 5. 00000-0 I 0.00100 0.00000 0.00000 0.00000 (21 :t.toooo-01 4 .U000-01 5. uooo-01 0.00000 t.toooo o .otooo (Z) J .OOOU·tl 4 .00000-tl 5.00000-01 0.00000 0 .uooo 0.00000 ,121 3.00000-01 4.to0to-OI S.tooOt-01 0.00000 0.00000 0 .OtoOO ( 2, J.00000-01 4.00000-01 5.00000-01 0.00000 0.00000 0.00000 -SJIIILIIY CA1EGOIIE& -u, (4, 2.00000-tl l.toooo-01 3.00000-01 2.50000-01 4.00000-01 5.00000-01 5.00000-01 5.00000-01 7.00000-01 7.00000-01 I.OOOOOtOO I.OOOOOtOO -SEASON 2 - -IIAIIliJY CA1ECDRIES - Cll (4) 2.00000-01 1.00000-01 J.00000-01 2.50000-01 4.00000-01 5.00000-01 5.oooot-tl 5.ooooo-o• 7.00000-01 7.tOOOO-OI l.ttOOOtOO I.OOOOOtOO -SUSOH J - -SIAIILIIY CATECOIIEI - Ul C4 I 2.00000-01 1.00000-01 3.0000t-tl 2.50000-01 4.000t0-0I 5.00000-01 5.00000-tl 5.00000-01 7.00000-01 7.00000-01 I .OOOOO•OO 1.00000•00 • &U6UH 4 - -SIAIILIIY CATECDIIE& - (J) (4) 2.00000-01 1.00000-01 J 00000-01 2.50000·01 4.00000-01 5.00000-0I 5.00000-01 5.00000-01 7.00000-01 7.0~000-01 1.00000•00 1.00000•00 C5, 0.00000 2. 00000·01 2. 50000-01 0.00000 0.00000 0.00000 C5) 0.00000 2.00000·01 2.50000-01 0.00000 0.00000 0.00000 <51 0.00000 2. 00000-01 2.50000-01 0.00000 0.00000 0 00 0 00 ( 5I 0 00000 2.00000-01 2.50000·01 0.00000 0.00000 0.00000 (6) 5.00000-U I. OOOtO·Ol 0.00000 o .oouo 0.00000 0.00000 (6) 5. 00000-02 1 .. 00000-01 0.00000 o.ootot 0.00000 0.00000 (" 5. 00000-02 I. 00000-01 0.00000 0.00000 0. 00000 0. 00000 (6) 5.00000-02 I. 00000-01 0. 00000 0.00000 0. 00000 0.00000 UARHIHC -DISlAHCE BE1~EEN SOURCE I AHD POIHI x,y. .oo. . 00 IS LESS THAN PERftlliED FIGURE 4-3. Example listing of input sources used in the calculation of seasonal and annual ground- level particulate concentration from a hypothetical potash processing plant. .p. I ..... 8 I I ! lJ -· .]!. .. ~.-_c--J ___ ::---:J.-···---r-:-1---····--CJJ-··----~ •••• JSCLl ••••••~•••••• ll •••• I y C l SOURCE IOUIC£ A I MURIEl lYPE I p CODIDIIIATJ· COOIIIIIAJE (I) . cu £11111011 IIIE I IIUCIII ELEV~ I . Ul UIOII I cu I • IOUIC£ DilAILI DEPEIIPIIIC 011 JYPE - ~ i ~----------~~-------·---------------------------------------~--~--~-~---~-------------------------------~-----------------------II . a VOLUU 20 .•• YAIIIIMC -DISJAIICE IEl~EEII &DUlCE FIGURE 4-3. (Continued) '.. . .. lpE~D ''"' IPE£D IPUD ~~·~~~~~' I a J • II 4 ~u,uav • a J 4 II t c•l~'•n I a J • II ' UH~DU I a J t 5 ' .o, SlAIIIAID 1£V1Alllll OF llli C:IDISMIIID SOUIC£ OISliiiUliDII Cll• .IAIIJ~I· ''~····~· .F Jill VilliCAL &DUlCE DISIIIIUJIDII 'Ill• . ·-PAIIICULAJE CAJECDIIEI -. . ~. 70 I. 00 I a 3 . t I uu. ·vu:oclh n•u ..... . oou . o1to .euo .euo ' .otto 1li11 ,.UC:HDII · · · .1ooo .tooo .aeoo .aaoo .ouo IIEfLUllll CDUFU:U:IIl a.tooo .UOO .1200 .61ot .U~o -ff!U~C:£ 'JIEIICJIII 4 CIAI. ,£1 Sit . , ..... .uoo · -SEASOII I - cu 1.:auu-u· 1 ........ . ....... . ...... ....... ....... cu ., I. ltttt-:-t_l .. , .... _ .. • •••••• ....... ....... t·tHH "" cu ........... a .uou-oa -.1 ........ . ••••••• • ·-..... . •·tHH .·--cu ....... -.. :-........ .. .......... ••••••• • · ........ . ........ CU IU l.u•••-u-.. 1.uou-u 1······-·1 ·········-·· ······· . ·········-·· •·••••• •.• tOOt . ••••••• ••••••• ·······. , .... ~. (I) J.JtoU-91 1 .uou-oi ....... ....... t.ooooo ••• 0000 (2) , ........ , ' ....... .. 1.uooo-u . ...... o.ooooo ....... -IIIIILIIY CAJEGDIIIJ' -cu co •·•••••-•a •·•••••-•a ~.aoooo-o1 1.oooot-t1 l.toott-ol i.Jooo•-•• 1.•••••-ol 1.60000-tl ·········I l.tooot-ol a.a••~•-•• a.2ooo•-•• -UUDII a • -llAIILflV ClliGDII'I -cu co •·•••••-•a •·••••·-·~ 1 .aoou-u i. oooto-u 1.•••••·•1 a.Jooo•-•• ·········I 1.60oo•-•• l.ttitt-tl l.tooo•-•• a.atoU-tl a.aoooo-tl . --., ..... J - -IIAIILIIY CAIEGD~IJ. cu ct) •·•••••-•a •·•••••-•a l.ateoo-tl l.ooooo-oi •·•••••-•• a.Joooo-ol 1 .•••••.• 1 1.60000-0I l.ltooo-tl 1.10000-0I a.aoott-tl 2.2oooo-ia ----IEAIOII t - -lliiiLilY CAliGDI!il - CJ) -Ctl . e.ooooo-oa t.ooooo-oa 1 .aoooe-01 1. ooooo-tl I. 40000-tl I. 30000-U Cit o.ooooo ;.ooooo-02 1 .ooooo-oa ...... -. ..... . , ..... . Clll . ...... •· •••oo-oz I ....... .. ....... . ....... ....... Cll~ ....... •· ooooo-02 I. tOOU-ol ....... ....... , .... 0. Clll 0.00000 t.ooooo-oa I. 00000-01 •. 00000 1 .uooo-01 1. uooo-01 l.toooo-o& 1.toooo-o1 o.ooooo 2.2oooo-o1 2.aoo~o-oa o ooo~o ' - cu Z.OOOto•U s ._uooo-oa ....... •. 00000 •. ooooo . ...... cu a.ootot-u l.tuu-u 0 ...... ....... . ...... ....... ,., a.ooou-u 1.oouo-u 0.09000 .. 0 ...... o.ooooo . ...... "' a.ooooo-oa 1. ooou-oa o.ooooo 0.00000 0.00000 0.00000 a ~~~~ PDIIIJ x,y. ••• II LiS& IHAII Pii.ITJEO : -! •••• JSCL1 ••••••••••••• HYPOIHEII~Al PDIASH PROCESSING PLAN! •••••••• PACE 18 •••• • SOURCE IHPUI OAIA - C I SOURCE SOURCE X Y ENIIIIOH DABE I A A NUftBEA IYPE COOIOIHAIE COORDIHAIE HEIGH! ELEV-( -&OUICE DEtAILS OEPEHUIHG ON IYPE - A P Ul l C Rl U l U IOil I D E , Ull I . ---------------~-----------·-----------------------------------------------------------------------------------------------------J VOLUftE 10 .. 00 UARHIHC -DISIANtE IEIWEEH IOUAtE FIGURE 4-3. (Continued) .00 a.u IPEEO CUUOIY I :i j 4 I ~ SPEED UIEUIY I a J 4 5 ' SPEED CAIEUIY I a J 4 I ' &PEEP UIECOIY I 2 J • 3 6 .00 81-NDAID DEVIAIIOH Of THE CIOIIMIMD IOURCE DISTIIBUIIOM CNl• 81AHDAID DEVIAIIOH Of IHE VEIIICAL IOUICE DIIIIIIUTIDM Cftl• 4.10 1.00 . -PAIIICULATE CATEGORIES - I 2 J • fAll VELOCIIY CftPSI .OOit .ttlO .OitO .OJ10 iAII fiACTIOM .1000 .4000 .2800 .1200 IEflECTIDH CDEFfiCIEMI I.OOOt .120t .7200 .6100 -IDUICE IIIEMCIHI C CIAftl PEl SEC CU i.JotU·tl .. , ....... t.oooot t,ttOOt o.tOOOt t.OtoOt (I) J.UOot·tl 1. uoot-OJ ....... o.ootoo ....... • '00000 (I) I.JUOO·tl I. 60000-01 0. 00000 0.00000 0.00000 0.00000 Cll I.J0000-01 1.60000-01 0. 00000 0.00000 0.00000 0.00000 CZI I .OOtOO·OI I.Utoo-ta I .Uot0-01 t.otooo o.uooo O.tOotO (2) 1.00000-tl I.UOOt-01 I.UOU·tl o.ouoo o.ttoot t.UOtO (2) l.to000-01 I.J0000-01 I.Uott-tl .... 000 0.00000 O.otooo C 2 I 1.10000-01 I .J0000-01 1.60000-01 t. OOOQO 0.00000 0.00000 -SUIDM I - -IIAillllY CATEGORIES - Ul C41 . l.ottto·t2 4.ooooo-o2 1.20ttt·tl 1.00000-01 1.4tttt·tl I.J0000-01 •. ,....... 1.60000-01 l.ttOtt·tl l.tOOOt-01 2.2tttt-ol z.aoooo-01 • stASOH 2 - -IIAIILITY tATEGOIIE& - (J) C41 e.otoot-tz 4.ooooo-oa I.Uttt-tl 1.00000-tl 1.4t0tt-tl I.JOOOt·tl 1.6tOtt-tl 1.600tt-tl l.tottt·tl I.UOU·tl a.aoott-tl a.aooto-•• -SEASON J - -IIAIILITY CAIEGORIES - (J) (41 1.ooooo-o2 4.toooo-oa 1.2000t-tl 1.00000-01 I.UOot-01 I. J0000-01 1.60000-0I 1.60000-01 l.tooot-ol 1.9oooo-ol 2.20000-tl a.aooo0-01 -SUSOH 4 - -IIAIILIIY CATEGORIES - ( J) (4) I.OOOOt·t2 4.00000-0a 1.20000-01 I. 00000-01 I .t0000-01 I.J0000-01 I .60000-01 1.60000·01 I .t0000-01 1.90000-01 a.2t000-01 2.aoOOO-OI ' ' .ouo . OHO . 0600 .uoo . Otot . 3000 Ul 0. 00000 1. ooou-oa I. OOOOt-tl ...... 0 0.00000 o.ooooo (, 0.00000 I. 00000-02 I. OOttt-tl ....... 0. OOtto o.ooou Ul 0. 00000 1.00000-02 I. 00000·01 0.00000 0.00000 0.00000 ( 5 I 0.00000 1.00000•02 1.00000-01 0.00000 0.00000 0.00000 ) - Ul 2. t0000-02 '. ooooo-oa •. 00000 0 ...... t.oooo• t.OOOOO Ul a. ooou-u 11. uooo-u 0 ..... . . ..... . 0 ..... . •. tOUt Ul a. oouo-u '. Oo000-02 0.00000 0.00000 o.uooo 0. ooou (6 I 2. 00000-ta s.ooooo-oa 0.00000 ~. 00000 0.00000 0.00000 J AND POINT x.y. . 00. . 00 IS lESS IHAN PERftiTIED :--1' ! . .,... I ..... 0 lJ1 .... : •••• JSCLI o•••••••••••• •••••••• PACE •••••• -··~~~~' ' .. ,.,~ ·~·~~ -c t iOUICt SOU ICE • ' 1111111111 UIE I II a IIUUU tYPi CDUDIIIUE CDDIDIIUi IIIIUI u:.n-1 -,aU~CE DIIAILS DEPEIIOIII' 011 IYPE -• • (I) ~~~ (I~ UIDIJ I D t (I) I ••-••••------------------•••••-•••--••••••••••-••••~-------~----••P~-----~-----------•••••••-•••••••-••---~---~-----------•-•••• X 4 VIIL UIE 40 .•• YARNIHC -DISIIIHCE liliEiH IOUICE FIGURE 4-3. (Continued) ••• IUU ~UE~DH I • J • :1 • .,,ED UH~·~· I a I 4 :1 ~ •PIH cu~~·•• I a I 4 s t IPIED UUiiOIY I a 3 4 s .•• I~AIIDIIID DE~IAIIOIJ Df tlli CIOSIUIIID IDUIC~ OIII~I~UtiDII Cl)• ·~~IIDIII. p~VIIIIID~ Of 1111 VEIIICAL &OUICE.Dl&IIIIUfiOII Clll• -,.~fiCULAT~ CIIIE~~~~~-·- 1 a . I 4 ' 4.70 I. 0 0 ULL liELDCITY CI!HI .otto .0010 .OUO .0310 s .uao . otto .... '14t11DII .1000 . uoo . uoo .1200 I!Jfl'fHDI tDEffiCIIIII I. out .1200 . UOO .noo ••••• .UOt '0400 . 50 00 ·. • -8.U.tE lf.INGI~$ C Glllll tEl SEC (I) a.uoo•-•• I .Utft·ti ....... . ....... ....... ... ,. .. ~I) • .u•••·••• I . 6ttoo-~ I. ....... . ••••••• . ..... ~ ••••••• Cll I .IOOH·tl'· .. , ....... . ....... ~-···oo ..... 00 ....... en I .JOOOO·tl· I. 60000-tl 0.00000 •. 00000 0.00000 ' cu ,,, .... 00-tl · a.utoo-u .......... . ........ . : ..... .. , .. , ... cu , ....... .. ,a.uooo-u ,., ........ 1 ...... 00 ........ _, ...... cu .''a.uooo-u i .uou-oa 'i ....... .. ........ :t.UOOO •••••••• ca, 1.00000-01 i.uooo-oa ' ....... .. . -lEASON I - -IIIIILIJY CIITEGOIIEJ ·CU C4l. •·•••••-•z •·•••••-oa 1 .auu-u a. ooooo-oa I. 40000·01 I. 30000-fl a.uooo-u a.uooo.,oa ·······-·· ·······-·· a. uou-oa a. aoooo-oa . . -&iASOII a - c:l) ....... 1. ootoo-u ' ........ . . ...... . ....... ....... -IIAIIL,TY ClltEGDIIEt -cu· ua · ,.ootoo-ta 4.ooooo-oa a.a~·····l ·······-·· ·······-·· 1.30000-tl 1.600t0-tl 1.60000-tl a.toooo-oa a.ioooo-01 a.aoooo-ta a.aooot-tl ' . . -$EASOIJ I ~ c:p • ... oot •. 00000-0it a. oooot·•• • oooot ....... ....... -llAIILilY tiiiE5DIIE. - Cl) ,., ''•••••-•a •·•••••-•a i .uou-oa a. ooooo-o1 I .Uttt·tl I. IOOOO·t! 1 .uooo-u a. uooo-ta .......... J.to000-01 a.atoo•-•• a.aooo•-•• -IUIOII 4 - -IIAIILIIY CAIE,DIIES (3) . (4) a.ooooo-oa t.ooooo-oa a.a••••-•• a.ooooo-oa i.t0000-01 I.JOOOO·tl a.uooo-01 a.uooo-91 1.10000-01 1.10000-01 c:l) 0.00000 •. otooo-u ........... . 0.00000 •. OOOtO ....... ( :1) 0.00000 ) - cu a.ooou-u I.OtoOO·U ....... 0 ...... o.ooooo • .• OOOt (6) a. ooou-u s.ooou-u •. 00000 0.00000 . .... .. . ..... . cu a. ooooo-u :1. oooto-u ....... . ' ..... •. 00000 . ...... ' 4 811D POIHI 0. •oo•• x,y. -~·· ....... ....... .... 000 2.20000-01 a.aoooo-01 .oo II lEI. IHAM PEIRITIED • '00000-02 1.90000-01 0. 00000 0.00000 0.00000 (6) a.ooooo-oa S. OOOot-U O.OOOOt 0.00000 0.00000 0.00000 •••• 15Cl 1 ••••••••••••• HYtBTH£11tAl POTASH PROtESSIHC PLAHJ •••••••• tACE 20 .... -9BUktE I !IPII I DAI A - c 1 &(•UH[ SOURt£ II y UISSIBH uu' A A HUKOH IYI'E UOI!DIIIU £ CBOIIDINAt£ liE I CHI HEV-I • SBbRtE ~£!AILS OEPEHDIHC OH IYPE - R , (Ill (H) (U AITON I D l (It) ' 5 VOl UHE 4t. 00 .00 '· .. .oo SIAHDARO OEVIAJIOH Of IHE tiOIIMIHO SOUR&£ OISfRIIIITIOH 1111• 4.70 IIAIIOAIO OEVIAIIOH Of filE ¥EilltAL IOURt[ OllliiiOIIOH 1111• .... • PlllltULAIE tAIECOIIES • I a ) • 5 6 Filll YEUt II\' UP& I .oou . 0070 . OIU .ouo .uu . otto IIIIS fiAtliOII .1000 .4000 .2800 .uoo .ouo .ouo IEFLEtliOII tDEFFICIEIIf 1.0000 .1200 .7200 .uoo .uu .liUO • SOVIt£ SIIEHCIHI ( GIANI PER SEt I . • &UIOH I - SPEU UJEGDIV • S1AIILITY tAIEGORIES • Cll (2) l:U (4) ($) (6) I 1. uooo-01. 1.00000-0I 1.00000·02 •. to000-02 ....... 2. OUU-02 2 I.UOto•OI t.JUoo-01 I.UOOO·OI l.ooooo-oa 1. uooo-u 5.00000-U 3 o.ooooo i .uooo-01 1.4fOOO-OI I.UUO·Ol 1.00000-01 0. 00000 4 0.00000 0.00000 I .UOU·OI 1.60000·01 0. 00000 0. 00000 s o.ooooo .... 000 .......... I. toOOO·OI 0.00000 •. 00000 ' o.ooooo 0.00000 2 .20000·01 2.20000·01 0.00000 0. 00000 -sEASDH I -uno UIEGOIY • 11AIILIIY tATECOIIES • -1-' I II Ul IU (4) <51 cu I I I .10000·.01 1.00000-0l •. oouo-u 4. 00000-02 •. 00000 2 ouoo-oz ..... 2 J.UOot·OI 1.10000-GI 1.2oooo-ot I. 00000-01 ...... o~oa s. 00000-02 0 J o.ooooo I.UOOO·Ol I .40000·01 .. J0000-01 1.00000·01 o.uooo 0\ 4 0 .. 00000 ....... l.UOU-01 1.60000·01 0.00000 0.00000 5 0.00000 .... 000 l.UOOO·U 1. toooo-ot 0 ...... O.OtoOO ' o •. oout 0.00000 a.uoto-ot 2. 20000-01 0.00000 • . 00000 -IEASOII J • I PUll tUEIIOIY -lfAIILilY tAlECOII£8 -en (2) (3) (4) Ul IU I I. uooo-ot l.OotU-01 •. 00000-02 •· uooo-tz 0.00000 2. ooooo-u 2 1.60000·01 I.U000-01 I. 20000·01 I. OUOO·OI •. 00t00•02 a.ooooo-u 3 0. ooooo I.Uoot-01 i .UOU-01 I. JOOOO·OI I. OOOOO·Ol 0.00000 4 0. 00000 •. ooooe I .UUO·OI l.UOU-Ol 0.00000 0.00000 5 0.00000 o.uooe a. tooot-ol I. tot00-01 0.00000 0. 00000 ' 0.00000 O.OOotO a.zooto·tl 2.20000-01 •. 00000 0.00000 -SUSBN 4 . SPUD tiiiUOIY • IIAIILIJY CAIECORI£1 • (I) Ul I Jl <41 ( 5I 15) I I. 10000·01 I. 00000·01 •. 00000·02 4:uooo-oz 0. 00000 2. 00900·f2 2 I.U000-01 I. 10000·01 1 .uooo-01 1.00000-01 8. 00000·02 5.00000•02 3 ....... I.UOU-01 l.HOOO·OI J.HOOO·OI. . 1.00000·01 0.00000 4 o.ooeoo 0.00000 l .60000·01 I.UOOO·OI 0.00000 0.00000 s 0. ooou o.ooooo 1.toooo-01 I. UOOO·OI 0 00000 o.ootoo ' 0. OOoot .... 000 a .uooo-01 2. 20000-01 0.00000 0 ...... UARHIHG -OISIAHCE BEIVEEN SOUICE 5 AND PO lllf K,Y• . oo. .00 IS LE$S IHAH PERftiiiED FIGURE 4-3. (Continued) -L" ,J •••• ·lStll ••••••••••••• t J 50U~Ci 50Uiti A A HUISH lYrE . .. I> t: X C:OOUIIIUE . CIU y UDIDIIIAU (I) HYPUHIHUL PIHIISII PIOtESUIC PUIIl • touMC:' 'IIPUl DAJA ~ EIIUUON USE I IIUUJ U£V-I CIU. UIDIC I (ft) I -IQUI~E DEtAIL& DfPfiiDIHt ~~ TYPI • 21 .... --~~-------~-----·----··-------------~----------------·~--~---------~·~------------~----------------------·------~--------------X ' VOLIIIIE n. •• VAININt -UISTaHt£ B£li£1H IOUit£ FIGURE 4-3. (Continued) ... "EU un,on I ' J 4 • ' I PEED C:UUII~Y I ' J .. • f IPUD u·~~on I a J .. I ft IPUtUUIIOiY I a J . 1 • :'1 ' ' uo ,un .00 IJAIIDAID DEVIATIIII Of THE '111111110 IDUitf DISTIIIUJIOII tl)~ lla•tal~ tJ¥,~liQII Qf lllf VfiTICAL $0UIC:f DilfiiiUliQII lll)• 4 .lo 1.00 • PAifltULAT~ taTE~II.£1 • a a l 4 fALL ¥ELDC1lY CIIPI. .OttO .0010 .0110 .0110 1411 fiAtliDN .tttt .tooo .aaoo .aaoo IEfLitlllll COEffltllllf l.tOOO .aato .J2ot .~lot .. -llultC ff~CIISlll ~ IIAII& PEl lEt . . · . -5£11011 I - (I) . .. ~ .. ••~•• a.uooo·tl ....... ....... ....... ....... ... cu .a.:uooo·•• ........... t:.toou-o 1 ....... • ••••••• ....... co · .·cu a.Jo•••-•• •~•••••-•• ....... ~ ..... ,:, ..... .. ······· .......... .. ······· ··~····· ······· .. . ...... . ....... .: ..... .. c 1) . .; c a) a.uo••.,.•• ·t,tuo~-u I .UOOO·OI ·· •.• JUU·U 0. ooooo . . · LUOU·AI ....... . ...... .. o.ouoo · .•.• 0000 o.ot••• , ..••••• (l) I .10000·01 I. 't000-01 ........ o.uooo ....... ....... ·.cu .......... 1.10000•01 .......... ....... . •••••••• •.• 0000 . . . .. -lliiiLITY tllE50IIES • CH <4) •·•••••-oz 1.ooooo-•a • .auu-ot a.oooo•-•• I.HOU-tl l· JOUO·Ol , .• 0000-0l 1.60000-01 ..,....... .., .... ~·· •. aoooo-•• a.aooot-O! . . SEAIOK 2 - -IJIIILITV CITEGIIIEI • cu . cu .. ·······-·· ·······-·~ ········01 ·······-·· l.tOttt•OI &.IOtOO·tl •. ,....... ..,0000-tl l.ttttt-01 &.tOOOO·tl a.a••••-•• z.aoooo-tt • UUOII J • -ITAIILITY tAJEG~IIIJ • Cl) cu t.ooooo-oz 1.ooooo-oa .......... •. 00000-01 I. UOU·tl . I. JOOtt·OI 1. uou-oa a. uooe-u l.to•••·•• 1.toooo-o1 ~-·····-·· 2.20000-0l -IU80H 4 - · lllllliTY tAlEGOIIEI • (I) cu •·•••••·•a •. ooooo-oa a.ao•••-•• ,.ooooo-oa ·······-·· j.J0000-01 I .ittoo·Ol l.,ooot-01 l.tot00-01 l.toOOO·tl a.aoooo-oa 2.2oooo-oa II LEi$ 1HAM PEINIIfED !I ..... ..... ..... ' ..,. ..... • :1000 .. ~ ....... e.ooooo-u .......... . ... Of. ....... •· o, ... (I) ....... ......... ~ •· ...... .. ....... •.• uoo . : ..... ($) ....... t.ooooo-u .......... ••••••• o.ooooo ....... (:'I) 0. 00000 8. ooooo-U .......... 0. 00000 0, ..... 0.00000 ) - (.) a. OOOOO"OZ s.uooo-u ....... O.OtUO ....... • . 00000 cu 2. OOOOt·U s. ooooo-u . .... .. . ..... . . ..... . o.ooou Ul 2. 00000·02 ~. ooooo-n ....... . ....... •. 00000 . ...... ") 2. ooou-u S. 00000-U • . 0000 0 0.00000 0. 00000 0. 00000 "" I ~ p 00 ••••ISClJ+•••••••••••• HVPOIHEIICAL POIASH PROCESSING PLAHT o • • • • • •• PACE 22 e: ••• • SOURCE INPUT DAU • c I SOURCE SOURCE M y UJSSION USE I. A A HU"BER (Vp[ COORD I HA IE CDOIDINAIE HEICHJ ELEV-I -SOURCE DEIAILS DEPEHOINC ON JYPE - R p 1111 Ul D E X 7 VOLUME " ... ' UARHIHC -OISIANCE 8EIUEEH SOURCE FIGURE 4-3. (Continued) r:-'"-, '· Ul AI IOH I CNI I .00 '· 60 .00 iTANDAID DEVIAIIDH OF IHE CIOISIIID SOURCE DIIIIJIUfiDN <II• ifAHDARD DEVIAJION OF JHE VERtiCAl SOURCE DISJI18UJION CHI• 4.70 I. 00 IPEEDUTEC:OIY I 2 J 4 s ' IPEED CAIEGOIY I a 3 .4 s ~ SPEED CUE~OIY I 2 3 4 s ' SPEED UIHDIY 1 AND , I 2 J .4 s ' PO 1M I x,y. -PAiiiCUlAJE CAIECDRIES • I 2 3 4 FAll VELOCIJY (IPII .0010 .0070 .OitO .0370 MASS FRACIIOII .1000 .4000 .2800 .1200 REFLECTION COEFFICIENJ 1.0000 .1200 .7200 .,SOO -SOURCE SJIEN~JHI C ClAWS PEl SEC en I. J0000-01 I. fOOOO·ol 0.00000 •. 00000 0.00000 0.00000 (I) j. 30000-01 a.uooo-u ....... 0. 00000 0.00000 0.00000 (I) 1.30000·01 I. 60000-01 0.00000 0.00000 0.00000 0. 00 00 0 (J) I. 30000-01 1. ioooo-01 0.00000 0.00000 0.00000 0.00000 .oo. cu a.ooooo-u 1.30000-01 a.uooo-u 0. 00000 0.00000 0.00000 (2) 1.ooooo-oa I.UOU-01 l.Utto-01 .... 000 ....... •. 00000 (2) I.OOOU-01 1.10000-01 I .60000·01 0.00000 0.00000 0.00000 (2) I .00000-01 1.30000-0I 1.60000-01 0.00000 0.00000 -SEASON I - -IIAIILIIY CAIECDRIES -cu (41 1.ooooo-o2 4.ooooo-oa 1.20000-tl 1.00000-01 1.40000-tl 1.30000-01 •. , •••••• 1 1.60000-01 I. U000-01 1.10000-01 2.2oooo-oi 2.2oooo-o1 -SUIOH a - -IIAIJLITY CAlfCDIIES - (3) (4) 1.ooooo-o2 4.ooooo-o2 1.20000-01 1.00000-01 l.tt000-01 1.30000-0I I.UOot-01 I.U000-01 l.t0000-01 l.t0000-01 2.10000-01 2.20000-01 IEABOH J - -ITAIILITY CAIECOIIES - CJ) (4) •-•••••·•2 t.ooooo-o2 I .20000-01 I. 00000-01 I.U000-01 I. 30000·01 1.60000-01 1.60000-0l l.toooo-oa l.toooo-oa 2.20000-01 2.20000-01 -&USOH 4 - -STIIILIJY CAIE~OIIES - (J) (41 a.ooooo-02 4.ooooo-oz 1.20000-01 1.00000·01 1.40000-01 I.Jooo0-01 1.60000-01 1.60000-01 l.toooo-•1 1.toooo-o1 0. 0 0 00 0 2.20000-01 2.20000-01 .00 IS LESS JUAN PERnlllED r-----, L I s 6 . 0610 .0600 ., .. . ouo . 0400 .sooo <S I 0.00000 1. ooooo-oz 1.00000-01 0.00000 0.00000 0.00000 CSI 0. 00000 •. 00000-02 1.00000•01 0.00000 0.00000 0.00000 cs) 0.00000 s.ooooe-n I . 00 000-0 I 0.00000 0.00000 0,00000 0.00000 •. 00000·02 1.00000·01 0.00000 0.00000 0.00000 I - 161 2.00000-U s.ooooo-u 0.00000 0.00000 0.00000 0.00000 '" 2.ooooo-02 S. 00000-02 •. 00000 0.00000 0.00000 0.00000 (" 2.00000-02 5.00000·02 0. 00000 0.00000 t.ootoo 0.00000 "' 2 00000-02 5.00000-02 0.00000 0.00000 0.00000 0.00000 -1)- J.. 0 fQ •••• ISCL1 ••••••••••••• • y -&DUlCE INPUl O~{A· • EIIIIIOM IAIE ( ···~···· ,.~E aJ •••• C T &OUIC£ IOUICE A A HUIIB[J! TYPE I p tDDIDIIAlE tOOIOIIAlE NEIUl ELEV· I D l CU UION I cu ( .~u . cu -~---------------------·----·--------------------------------~~---~-~~~---------------------------------~-----------------------K II VO~UIIE lt .•• ••• II. u • •• lllllall IEVIaliiN IF liE tiOIIVIN~ IOUitE DllliiiUTIDN CNI• •. 10 •laNDalt IEYiall-1 IF liE VEIJitaL IDUitE DllfiiiUJION Ill• I. 00 -PalfltULATE talEiii~·EI - . . . - a a J • II ' rau· YELUilY ·c~PI~ .ouo .ttH .tau .ouo .ouo . o•u lUI FUtllDN. . .IUO .tOOt . UOO .1~00 .ouo .ouo l~f~f~liDN tllffltiEIJ l.tOtO .latt .12~0 .~ ... ·~~0~ ..ooo . . . • pDUICI ''~fl~fNI f liiAI~ r~l lEt ) - . : -118101 I -''H' UHiiOIY -ITIIIL,TV taTEGOIIEI - Cll Ul Ul cu cu (6) . I I.U .. t-tl I;UOOI-tl a.ouu-u t.oou•-oa ...... 0 a.oouo-u a 1., •••••• 1 I .I.Utl-tl 1.attu-u l.tooot-01 ........ u s.•uu-oa I ....... .......... a.4oou-u I.Uoot-01 1 ......... • 'ouoo • ....... ....... ,.uou-u 1.60000-01 t.ouo• ..... o • II ...... 0 ••••••• I.UtU-01 I. UOOO-tl o.ototO o ...... ' ...... , o,tH•• .......... a.aoo .. ·oi ....... O.OttOO • UUON a -.. ~,. ~~TIIiOn -ITAIILITW taTEGDII~I - (I) HI CJ) (4) Cll cu I I.JUtt-01 ·· .1 ......... a.oouo-u t.ooooo-oa o.otooo a.ouu-u a .. , ....... , l.uuo-ta l.attu-tl I.OOoot-01 •·•uoo-oa s.ototo-u J t.ou•• ... ........... 1 ......... I. JOOU·OI •.• ooot-tt t.ooou • ....... ....... 0 . ......... I.UOOt.-01 ..OOoOt •.• Ottt I ....... ....... l.ttou-u I. toOOt·tl O.tOOOt •.• uoo ' t.O~O·· .. , .... a.u•••·tl a. aoooo-o1 o.oouo 0.00000 -111101 l - IPEE~ tUUO~W • lfiiiLITY taTEiiOIIEI . ,., '· cu cu (4) Ul "' I I.U .. t-U •.. totu-oa I.OotU-ta t.oout-n o.ooooo a.ooou-u a I .Uttt·tl 1 ......... l.auu-tl I.U.tt-01 a.oooot-u ~ ........ , :a ....... ' i ,, ....... 1 ......... I.Utot·tl a.~oo•o-u ....... • ....... . ...... I.UUt-11 I. 60000-tl •. oooot t.OUU I ....... ......... 1 ......... I. toOOt-01 •. 00000 O.OtOOt ' ....... ........ ~.auu-tl a. aoooo-•1 ~-OUO. O.tueo • IUION 4 -IPUD UlUOIT • llA~ILilW tAlEGOIIE~ • ,., cu cu (4) cu '" I ,.utto-u 1 ......... a.euu-oa 4.00000-02 0.00000 a.ooou-u a .. , ....... 1 ......... I.UOU-01 1.00000-01 a. ooooo-oa ~.ooooo-u I .... oot 1.6uu-ti I.UOOO-U I. U000-01 1.00000-01 •. 00000 • ....... . ...... I.UUt-01 I. 60000-01 0.00000 0.00000 ' ~ ....... o.uou I.UtU-01 I. to000-01 0.00000 0' 00000 ' t.OUtt ....... a .aoou-u a.aoooo-oa 0. 00000 0.00000 WAIN IHii -DI&IAHtE lflMfEN IOUIU I! AN~ POINT I·Y• .u. • •• II LEU llllil PEUIHED FIGURE 4-3. (Continued) ~ I ..... ..... 0 •••• &Stll ••••••••••••• t I SOURCE &OUICE A A IIUftBER IYPE R p D E X ' VOLUftE x· COORD I HUE cu ., . tO HYPOTHETICAL POTASH PIOCE&SINC PLANT •••••••• PAGE 24 •••• -SOURCE INPUT DATA - y COORDINATE cu UIISI 011 HEIGHT CIU lASE I UEV-I 111011 I CJU I -IOUICE DETAILS DEPEHOIH~ 011 TYPE - .00 u.oo .tO ITAHDIIO DEVIITIIH OF THE CIOIIIIHD SOURCE DI&TIIIUTIOH CHI• 4. 10 IIAIIDAID DEVIATION OF THE VUTIUL BOUICE DIITIIBUIIOH C II I• I. 00 -PAIJICULATE tATE~DIIE& - I 2 l 4 I ' FILL VELOCITY CNP81 . 0010 . 0010 . 0 ItO .ouo .0610 . otto uu FUCTIQII .1000 .4000 • 2800 .1200 .0600 .0400 IEFLECTIDH COEFFICIENT I. 0000 .1200 . 7200 .uoo .stoo .sooo -IOUICE ITIUUHS ( GUlli PER SEt I --&UIOH I - I PEED tATUORY • IIAIILITY CATE~ORIES • C I I ( 21 Ul (4) ($1 (6) I 1.30000-0i I .00000-01 1. ooooo-02 4.00000-02 0.00000 2. 00000-02 2 1.6oooo-o1 I.:UOU-01 1.20000-01 1.00000-01 1.00000-02 s. 00000-02 3 0.00000 1.60000·01 1.40000-0I I. 30000-01 I. 00000-01 0.00000 4 0.009,0 0.00000 l.UOU-tl J.U000-01 0. 00000 0.00000 s 0.00000 0.00000 1 .toooo-01 1. toooo-u 0.00000 0.00000 ' o.ooooo 0.00000 2.20ou-o1 2.20000-01 0. 00000 0.00000 -SEA&OH 2 - IPEU CATUDIY -8TAIILITY tATEGOIIES - (I) (21 (I) (4) CS I cu I I. 3tOOO•tl 1.00000-01 1 .ooooo-02 4.00000-02 0.00000 2,00000-02 2 l.uoot-01 1.10000-01 I .uooo-01 1.00000-01 8.00000-02 s.ooooo-oz 3 0. 00000 I .60000-01 I .400U-tl 1.10000-01 1.00000-01 0.00000 4 0.00000 0.00000 I .60000-0I I. 60000-01 0.00000 0.00000 5 0. 00000 0.00000 1.toooo-o1 I. to000-01 0.00000 0.00000 ' 0.00000 .... 000 2.20000-01 2.20000-01 0.00000 0.00000 -IUSOH l - SPUD tUEGOIY -ITAIILITY CAJE~ORIEI - (I) Clil (3) (4) CS I cu I I. 30000-01 1.00000-0i I.OOOU-02 4. 00000-02 0. 00000 2. oo ooo-u 2 I. 60000-01 1.30000-01 a.20ou-o1 1.00000-01 1.00000-02 s.ooooo-u 3 0.00000 I.Uot0-01 1.40000~01 I. 30000-01 I. 00000-tl 0.00000 4 0.00000 0.00000 1.60000-01 I. 60000-01 0.00000 0.00000 s 0.00000 0.00000 1.10000-01 I. to000-01 0.00000 0.00000 ' 0. 00000 0.00000 2.20000-01 2. 20000-01 0.00000 0. 00000 -6£ASOH 4 - I PEED CATEGOI!Y -&TAIILITY CATEGORIES - C I I (21 (3) (4) (a) Ul I '1. 30000-01 1.00000-01 1. o oo o o-02 4. 00000-02 0.00000 2.00000-02 2 1.60000-01 1.30000-01 1.20000-01 1.00000-01 8.00000-02 s.ooooo-u 3 0.00000 1.60000-01 1.40000-01 I.J0000-01 1.00000-01 0. 00000 4 0.00000 0.00000 1.60000-01 1.60000-01 0.00000 O.OODOO 5 0.00000 0.00000 l.to000-01 I. toOOo-01 0.00000 0.00000 ' 0.00000 0.00000 2.20000-01 2.20000-01 0.00000 0. 00000 UARHIHC -OISIAIICE BE 1 UEEH SOURCE ' AHD PO lllr x,y. .oo. .00 IS L£8S TIIAN PERRI flED FIGURE 4-3 • (Continued) . r;y;. r----1 ~ .... ' .I ,..---., ' J ·-.lj ·I I ! j. -~---c-J-----:---l----~----r--l •••• I5CLI totoooooooooo .. , ., .. , ""~ 2~ .... -UUitE IIII'UJ uu- c ' SOUJtCi IUUIU • y UIIIIOII IAIE I A 1111 HURBU . TYP~ CUOIDI .. fE CDOIDIIIAH HEIGIIf EUV· I • p ,., cu ,., ~TIOI! I 0 E cu I -------------------------------~-------------------------~---------·------------------------------------------------------------X 10 VOLUaE tt.Ot .00 14·10 .ot .lOIIDOID DE~I~~IOII 0, TNE tiOIIIIIIID IOUICE DISTIIIUTIO" Cll)~ 4.7. ···~~··~ ·~¥,~J,.II fF lNE VEitiCOL IOUICE DIITIIIUTIO" CIJj• 1.0~ I a J f ' • I a J • II t I a I 4 s ' • fD.lltULAT' CATECQRIES " a · · a· J · · · • ULL VELOCITY· 411rH .0010 .,010 .OIU .0uo .. ,, fUCliOII .1000 .4000 .UOO .1200 Unft;YIOII CIEfFICIEIIT l.tOtt .1200 .7200 .• :100 · -~~u~e~' .,~EIIGflll C ~~Alii PEl IEC c.,. 1.uou-u I.Uoo.·tl • • ••••• ....... .. -.... , .. .,., cu •. Jt40t·tl .. , ....... ........ • • ••••• ....... ....... (U ,; ........ i.uou-ti . i :-, ....... .t:hooo · ....... t~tHH . 'a~ ........... ............ ', ....... 1 ....... ••••••• ....... -liEUOII I · • ITOIILITY C_l,G-·IJI - U) CU . •·••o•o-oa 4.0000t-ta I. UtU·tl I. 00000·01 1-·····-·· ,.10000-01 1.600tt-tl 1-60900-ol ·········I ·········I ,., •••••• 1 a.aoooo-., UO,OII 2 • ~ llDillllV t.l,GOIIEI • ,,.. (4)'" .. ·······-·· •.• oo••-•• 1.~····-·· I.OOOtO-tl l.tO~tt·tl I.JOOOt•tl •. ,....... 1.60000-01 1......... l.t0000-01 ~·~••••·•I a.aoooo-01 . .. ' . • 1~01011 J • s • . ouo .. , .. .u., . Otto ..... .$000 cu 0.00000 1. oooot-oa a.ooooo-oi ........ . ...... ••••••• cu o.oouo •· ooooo-u • ........ 1 o.ooooo •. tOOOt , ..... . cu 2. 0000t"02 S.OtOOO·U 0.00000 . ....... o. toooo •.• oou cu a .ooooo-u . ....... .. ....... o.ooou o.ooou ~ ...... • llOIILITY.CATEGOIIJI ~ cu 1. JOUt·U. •.• uoo-tl ........... ....... •.• uoo i.ooooo cu I.UOOt·tl I.UOU-tl a.uou-u o ...... . ....... • ··••oo ,.,.. . . cu •·•••••-oa •.• oooo-ta a.atott-41 a.ooooo·tl 1.4tOtO-OI 1.10000-01 1.6t0tt-tl 1.60000-tl I.UOOt·OI l.toOOO·OI· a.ao•••·•l a.aoooo-o1 . . • IEIION 4 -· cu 0.00000 o. ooooo-u a.ootot-01 0. 00000 0. ooooo 0. 00000 cu 2. 00000-U :a.ooooo-u 0. 00000 0.00000 •. 00000 0.00000 IPEEI} UUUU • ITAIILITY COTECDIIEI • UARNINC -DISTANCE IETYEEII IOUitE UARNIHC -DISTANCE IEIYEEN IOUICE FIGURE 4-3. (Continued) I a I 4 s ' 10 AND POINJ 10 AND PDIIH cu I.JOOU·tl I.UOOO·tl •. 00000 . •. 00000 0. 00000 •. ooou x.v. .oo. aoo.oo. x.y. cu 1.00000-01 I.UOOt•tl I.UOOO·tl ....... 0.00000 o.ouoo . .00 ... cu cu a.ooooo-oa 4.ooooo-o2 I .20000-01 1. 00000-01 1.400tt·OI I.J0000-01 I .60000-01 I. 60000·01 i.ttoot-OI 1.toooo-o1 2.20000-01 2.20000-01 II LEIS THAN PERftllTEO II LESS THAN PERftllTED cu 0.00000 1.00000-0a I. 00000·0 I 0. 00000 o.uooo 0.00000 cu 2. 00000-02 :1.00000-02 0.00000 0.00000 0 00000 0.00000 ..,.. I .... .... 1-.J •••• ISCll ••••••••••••• HYPOJNftiCAl POJAIN PROtEISIIC PLANT tHUtu PIIGE 2i .... -SOURCE IHPUJ DAtA • C I SOURCE SOURCE A A IIU HBE R 1Y 1'£ II COORDUU£ CN) y COORDIHAI£ til} UUSIOH Ill IGHI (ft) USE I ELEV-I U I liM I (Ill I • &GUICE DEJIIIL& DEPENDING 811 tYPE - R I' 0 E X II VOLIIIIE IU.OO .00 uso .00 IIAHOAIO IEYIAtiOH Of IHE CIQIIIIIO SOURCE OISlRIBUIIOH tftl• 4. 10 IIAHOARO OEVIAIIQH Of tME VERtiCAl SOURCE DISllltUtiOH till• 1.00 • PARtiCULAtE ClllECOIIES • I 2 l • s ' FALL YELQtiiY tiiPII .0010 .OOH .ouo .0310 . ouo . ono lUllS fUC HOM . 1000 .4000 .2800 .1200 .ouo .ouo lfflECIIOM COEffltlEMt I. 0000 .uoo .noo .noo .IIUO .suo -IOUICI 11111&1111 ( CIANI PEl SEt I • -IEAIOIC I - SPUD UJUOIY • llAIILIJY tAT[QOIIES • (I) (2) tU tU ( Sl (it I 1.uooo-u l.toooo-u 1.00000·02 4.00000·02 0. 00000 2. 00000-02 II .......... I .JOOOO·U l·.toooo~u I .00000·01 I.Oot00-02 11.00000-02 3 •. 00000 I.UOU-01 I .UOU·OI l.UOOO·tl l.OOOOO•OI o. 00000 • o.otooo •.• OOoO 1.6ooo~-u I. UOOO·OI o.ooooo o. 00000 s 0. 00000 o.OtotO 1 .uooo-o1 1.10000-01 ....... 0.00000 ' 0.00000 •• 00000 a.uooo.·oi 2.20000-01 0.00000 0.00000 -fi£1111011 2 - SPUD CATUOIY • •tAIILilY CATECOIIE& - (II U) cu (4) ($1 tU I 1.10000-01 1.00000-01 l.oou•-•-• 4.00000-U 0.00000 t.uooo-n 2 1.60000·01 1.uou-u 1 .uooo-o1 I. 00000 -·· e.ooooo;..u s .ooooo-oa 3 o.ooooo l.UOOO•OI 1 .4oioo-u I.UOOO··I 1.00000-U 0.00000 • 0. 00000 o.ohoo I.Uoto-01 1.60000·01 0.00000 0. 00000 ' 0.00000 •. 00000 I. toOOO•OI I. 10000•01 0.00000 o.uooo ' o.ooooo. .... 000 2.11tOU·OI a.uooo-01 o.ooooo 0 .oouo • IUIOH J -uuo CATEUU • ITAIIliJY tATE~OIJ£1 -cu u; Ul (4) ($) Ul I s.nooo-01 •. 00000·01 1.00000-U 4.000ot·02 •. 00000 2. 00000•01 2 I. 60000·01 a.:uooo-u 1.20000•01 1.00000·01 •. 00000·02 s.ooou-u 3 0. 0000. a .uooo-01 I .40UO·OI I. 10000-01 l. 00000·01 0. 00000 • 0.00000 o.oouo I .UotO·OI 1.60000·01 0. 00000 o.ooou II 0.00000 o.uuo I .tootO·OI l.toooo-oa 0.00000 0. ooou ' 0. 00009 0.00000 2 .20000·01 2. 20000·01 0. 00000 0. 00000 • SUIOH 4 -SPEED UJUOIY -IJAIILIJY CAfE~ORI£5 • (I) (21 Ul (U (!I) Ul l I. JOOOO·OI I .00000·01 1.00000·01 4.toooo-n 0.00000 2.00000·02 2 I. 50000•01 I. 30000·01 l. zoooo-o I I 00000-01 1. ooooo-n II.OOOU·U J 0.00000 I .60000·01 I. 40000·01 I 30000·01 1.00000-01 0. 00000 4 0. 00000 0.00000 1.60000-01 I. UOOO·Ol 0.00000 0. 00000 :s l 0.00000 o.uooo l.toOOO·OI l.toooo-01 o.oouo 0. 00000 ' 0.00000 0.00000 2.20000-01 2.aoooo-oa 0.00000 0.00000 UIIRHIRG -DISUNtE BEl liEU IOU AtE tl A liD POl Ill II.Y• •••• .00 IS LUS tHIN PUIIIHU IIIIRNIHC · 0 I SUNCE 1£ tilE Ell SOURCE II AH& PQfHt x~Y· zot.oo. .00 IS LEU filA II PUll I J1 £& FIGURE lt-3. (Continued) ~--. ! ' ! I . f I ! r---. L J ~ lou• ,,. d .,.. I t:: w ,·. I i I '· ~ L.~-" ''·I• r-1 ... r;"J. •••• litll ••••••••••••• IYPOJNEliCAL POl~ll PIOC~I·I~& PLI~f • •••' ··~ PAI:E ll •••• · -IO!IICE 'NP!IJ ~-·· • ~ 1 SBUICE IBUIC£ I Y £1111111 IIIE I A A HUIIil .JVPE CIOIOIIITE CIOIDIIAIE NEICMi ELEV-I • !IUICJ ~ETIILI DfP£1011& 01 JVf~ • I P qu . . n• CU UUII I IE . •" CU I . ------------------·-----------------------------~---~·-------~-~-~-·----~--~-~-------------------------~-------~--~-------------II MAlliN& -llllAICE IETUEEI IIUICE IIAIIIIIG • llllfAICE IUIIEU IOUICE II U VOLUIE 44,.11 IAIIIIG -IIITINCE 1111£11 IOUICE II lf ¥0li11E ur.oo UAIIIII!G -. IIIUICE IITIIEEI IIUICE II Ill V.ILUIE ...... IIAIIIH& • OltliHC£ 1£111£11 IOUI~E II .. n•u I" .tt IAIIIHC -IIITIICE IETIIEEI fOUICE FIGURE 4-3. (Continued) .•• 11.1~ .•• II All POIIT I·Y~ ,, ••• POIIJ •• ,~ ... ~···· .. , U 4111 POIIT ...... ••• ., ... .... J4 Alii POI!II ... , .... ,.,. • •• n ••• ,.,., II•Y• ..... ..... . .. .. ··~ ,.,., ~··~ ITAMIIII DEVI~TIOI If Til Clllllllt IGUICE IIITIIIUTIDI Cl)• 10.10 · .1111·1· UV,IIJIIII If Ul VllliC.L IIUIU 1.1111'-YtiOij Ut• ,a.u . -'""u· IJit:lltllll C U .. l f~l IIC . ) -. . !I~UIII I IUIIII ~· SEllON J IUIOI t •-•~•••·•~ a.6Jttt••• a.6lo••••• J.6Jtt•••• . It• .. · ·: ..•• II UU lUI rEIIITUD . ~······ ••••• ~Ill Jill fllllllll lf-11111 IIVIIIJIO~ If fiE CIIIIIIID IOUICE Dllfiii~JIOI 41)• 10.10 ~f·ll·~~·.:::::':::,::,::'c':::::·~~=·~:~E DIITIJIUYIIH C~~· !i.~t, _ . , ·: .111111 l Ullll a 1111011 1 UUIII I . f:t1•····· •·•••••••• '····~···· •.••• , •••• Ul. tt• . ·· '. ' .U II UU lUI PEIUTH:O STIIDIII IEVtlJIII If TIE Cllllllll IIUICE IIITIIIUllOI Cl)• lt.IO • •••• aip ti.IITIOII OF tal VEitiUL SDUIU IUJIIIUTIDI ciu• ft·H ". IOiliCI. UIEI&U. C CUll PU IEC ) - ... lUlU I,, , lUI II I ' lUlGI I lEI ION f .. ~·~••••••• ~~~~•••••• a:•l•••~•• •·•••••••• ltt.tl• . . .ft II LEII Till PIIIIJTID .IIIDAII.IIVIIJIIII If liE CIIIIIIID IDUICE lliTIIIUTIOI Cl•• lt.lt ltlloA't IIIIATIII Of till VIITICIL IOUICE DIITIIIUIIOI! C~~· ., .•• • IIUI~I· ITIIItTII C IIIII PEI.IEC ) - . • : 11U011 • suu• a auu1 1 uuo• • .. · . ., 1-fJt••••• •. ,....... 1.,~······ ·:·~······ IOI.IIo : · . .ot II LEIS Till P£111ffiD IU 1,1 .. ,,., :Uili '~' Ut. to, Ui U II VEL: UIIE!l h t. It, IUC:~ U•IJUI. CIP• l.ott• IIEUIJ If AUO. ·lll~. CU• as .• o. 'IPJ!I Of UfO. ~L=:~~~:·; .. ::,;:i :·::.::':::· .:~IG • t . . . . ) - IIAIOII l IEAIII a . IIAIDI J IEAIOI 4 ··•··•···· ·········· ·········~ •········· ~···00• .•• II llll Jill PillllJED •••• JSCl T ••••••••••••• HYPOIHEIICAL POtASH P-OCESSIHC PLAHJ •• SEASONAL CROUND LEYEL CONCEHIRAJIOH I HICROCIAHS PEl CUBIC nEIEI SUSOH I -GRID SYSIEH I[CEPIORS - -X AKIS <DI8TAHCE, HE IUS) - -3000.000 -2000.000 -ISOO.OOO . -12SO.OOO . -1000.000 Y AKI& <DISIAHC[ , HEIER& I . COHCEHIIAIIOH 1000.000 2000.000 ISOO.OOO 1250 000 1000.000 BOO 000 600.000 400 000 HO 000 .000 -200.000 -400.000 -600.000 -800.000 -1000.000 -1250.000 -1500.000 -2000 000 -JOOO 000 Y AKI& IOISIAHC[ ll.UUU U. 7U020 2t.OI8U4 ll. 007U4 H.SI2721 JS. ll071S H.U8UI l1. UU12 l1.114110 JI.40J270 JS.IH141 U.U20U U.IS2404 27.00SI41 24.12UJS ao. 7UU7 18.l7400S 14.USUI t.IIUU .000 , IIEIUS U.IIOUI 27.SI4UI 40.117167 48. 404156 S7. 741243 u.anus 70.2USI2 1J.S021U 7S. 3JS7U 77.141260 67.4l1lll u. uun :10. uauo 42.S7S1S2 U.UH1t Jl. 112017 26.488SU U.741U7 18. llll77 200.000 ) u.nuu u.unn 4S.1111U S7.11UJS 74. 4au43 U.UIIto 101. lot7" 116.706010 IU.UIISO IU.H2t4S IOS.UU21 87. UIOU 70. 2078U 56.71U10 U.OJUII JI.SOJ121 U.Uil11 IJ.USU6 at.ss;an u.ansas H.89J120 U.SSIOII ,3.220172 u.nuu ios.suou IJI.UUH IS4 .427160 IU.UI'U an .2nou Ul .ISI114 10f.711141 II. t IIUI U .S7U11 S4.1844U 44.U7JU U.2SIOOI U.OJJ7SI 21.1USU U .toUS6 37.111612 U.IUHO ".17107t U.tUSS6 IU.OSI4S2 IU .UUU ZII.IUHI au. au us UJ.UU17 UO.tUIU 141.711312 aoa.nuu n.uiuo u.uun U.72114S SI.72U40 u.unu U .01Z04S -CIID IYSJEH IECEPJOII - -X Akll UIITAMCE, NETEIS> - 400.000· 600.000 100.000 COHCEKIUIIOH I DUE 10 SOURCE -100.000 u.unu u.unn 60.434178 77.tH7U IOZ.IUOIO IU.JOUH lti.UUH Ut.1JII71 ua.nsuo us.nuu UI.SIUIS 161.011717 123.2UHO u. 117122 u.nuu 13.44UIS · 1J. 7IOUS u.oauu H.7"7U IOU.OOO -uo. ooo 21.2ti7U 41.300342 6S.06otU IS.ISHU 117.l004U IS4.UUSI UJ. t14U1 JSS. 318420 S31. UUU 617.214340 :i7S.1S1UI UJ.USUO 165. 7SUI1 IH.OUOIS ui.uu6o 108.UIUI t4.140171 U.OU7U 37.407102 uso. 000 o ootooto PAG£ -400.000 21.602114 U.2UUa U.71UU U.OUH7 IH .40SUf IU.6UU5 271. tUZIS U5.UUI2 141.4104St IIU.UUI4 Sll.SISOS2 3U .IU2U no. tntot 218.UOUO 111.122156 IU.Il4UO III.UIS56 n. uuoa U.IJS4U ISOO.OOO •• 28 •••• -zoo.ooo 21 .nun ... 461115 n. unu IOO.UOI10 I4S.771SU 211.UUU UI.SUUI SBI .211101 148l. JOOUO 2tii.IIUU IOZI.S01Sl1 Ul .441624 HI .UUU U4.UUU an .nuu IU.IUUt 127.242US 10.114131 41 .UHU 20t0. 000 ------------------------------------------------------~------------------------------------------------------------- JOOO 000 2000.000 1500.0U 1250 000 1000.000 800 000 600.000 400.000 290 000 000 -200 000 -400 000 -600 000 -800.000 -1000 000 -1250 000 -1500 000 -2000 ooo FIGURE 4-4. 22.17027t 4S.IUUJ 77.124822 107.0Uill I St. 4SJ201 au. SJ0056 401.2011U 1U. 07UH aoU.5UJIS . 000000 zus.uaua 1287. U7t1t UJ. HUH 420.551243 Z85.1t1Ut IU. UUU lt4.806110 18.78201t 20. 11S027 U.ISUIO U.ltoUS t2.06UU I Jl. 4tl SH IU.11UI7 28l.4248U 441.28to42 1022.100116 4105. U18U 18U.Sl1U4 804. t601Sf S07. UUJZ HO. HHH 242. 878l87 11l.1U4SI 110.UIIU 12 IIS741 U.UOUI 31.644134 U.4UISS 18.11UU lot.US2U I U. 82tUI IU.I04121 U6.UU8l UO.OZOHJ 21U.SOt71S lilt. lotUS ns. ousoo ll2.ll1074 261. UU11 201.017183 IS0.7H020 I U. t51111 16.275244 II.IIUU U.toUIO U.UOUJ U.2UII1 u.ssun lot .SUIU uo.unn 21t. to2UO 606 .tUilO IIU .SIOU6 ItO. UJtSt SOl. 6777SO 122 .824SU au .uuu 111 .15SOS8 l28.688l54 102 .UStBI u.uaus 17.U04ot u.uosn 4S .20Uot 56.441184 10 .112'11 ,. . 701244 IU.7UOU Ut. UOU6 4t7.17UU 710. OOJ108 '" .264SJ4 US.47U01 au .U7t86 IH .1867U IU IU260 114 .11JIU tl .UIIIt 62.171820 u.uuu 27 .US417 U.IUU4 U.OUIOO n.zouu tl.IUOII IU. Ul700 21l.IIU67 U7.USI12 484.540111 401. 760103 JH. OS10tl 2l7.1UIIS 114.SUUa ll1.115456 100. 21USJ 82. 431SU S1.UUOO 14. usuo zs.oanu n.naooo 42.110441 u. 01140t 14. 71H04 112. 6USU 178604177 2SI.S4Ul8 Jlf.l16414 2tl.I11U2 au. SJUS7 In. 2282U IH.4HOJi ai' autos 8~.181461 11 l8Stl0 H.1UIIS U.UOSH 22.1SIS77 u.unu u. Oti8U 58.t45675 n.uuu 104. tsUH 148.11UII IU.J17US 245.722200 uo. nun .,, . ll241 4 161. UUIS an. seun lot.OHJ1t 8l.UUH 64 .IZIU4 41. 22UJO 11.103tU 11 .osuoa JO.UUU U.002ZJO ~t .IOIUI U.IUIOI U.HIIU IOS.IIUS4 IU.UUIO ISO.HIU2 IU.1UJSO IZ8.HUSt IIS.UUII au .asuu 86 .6JSto1 11.1U126 S8.10IOJI U.JJUto Example listing of seasonal ground-level particulate concentration for the winter sea- son due to a single source. ,...---,--, l LJ I ·L"l--··lJ' ll--···-c-l-----ll--r-1·· ~ ''I •••• IStll ~·••••••••••• oooooo~o PACE at •• •• •• IEA&OMAL GROUND LEVEL CIMCEMlllliOM I IICIOGIA-1 P~l C~IJ' IEJEI . '&EAIOM ., . . I CCIIMJ.) •• &liD IVIfEI I~CEPJOII • II AUI CUIUUE, UTUU -.too aot.ooo ~oo.tot · · 6io.ooo · aoo.oto Y Allli CD II TANC' • UUU ) . . C.IICEIHIIIU I liM 1500.000 ~000.000 -Jooo .too 44.UU5~ ~o. ":un U.41525t 1000.900 • CIJD IVIJEI I£CEPJOII • -II Ill'' (~JITIM~Ji IEJE~I) • Y ~XII CDISTAHCE , IEJEII CO!ICIEII!.IU JIM --------------------------------------------------~-~---~----------------------------------------------------------- uu.uo ao~o.ooo 1500 000 1250.000 IOOO 000 800.000 600.000 400 .ooo 200 .ooo .ooo -aoo .ooo -400.ot0 -600 .oto -lot.Oto -1000.000 -u5o.ooo ·1500.000 -aooo ooo -JOOO 000 •. lt2J41 ll.l$1741 24.667104 at.UitU U.2lt461 41. UIOU u.uuu u.uuu 6l.U05U U.UI4U ll.t41211 U. UIIU 64.UU4t 60.411541 u.oauu u.uuoo u.in046 u.uun lt.5UUt •• IEAIDIIAL GIOUMD LEVEL COMCE~JIAJIOJI C I!CI·G·~-·.:::o~U'~~ ~ETEI -DlltREJE.IECEPJOII- ) !IUE lO SOU~CE V CDMCEMTIAJIOII II V 'tii!ICJilllllliOM II V AllftUTH lANCE AliiUJI . . . . . lANGE AZIIUJH BEARING IUIJMG IUIJMG CMETUU UEUUU UEJEIU CDEUEEU_ CUU~U CDEUEEU I lCONJ. • •• --------------------------~-------------------------------------------------------------------~--------------------- 2108.0 14.0 U.4U2to FIGURE 4-4. (Continued) .j:- 1 ..... ..... 0\ •••• ISCll ••••••••••••• HYPOIHEIItAL POfASH PROCESSIHC PLAHf •• S£ASOHAL 'IOUND LEVEL tOHtENI•AIIOH ( IIICROCRAIIS PER CUBIC NEIER l DUE 10 SOURCE FIGURE 4-4. SEASON I -10 tOHIRIBUIIH' VALUES 10 PROGRAM DETERIIINED NAXIIIUII 10 OF COHBIHED IOURCES J, (Continued) • t90RDIIIAIE ~HEIEIS l 200.00 -aoo. oo .00 400.00 . 00 200.00 -200.00 .00 -40o.to 400.00 y COORDINATE <liEf Ell l .00 .00 -2U.OO ... 200.00 -aoo. oo 200.00 -400.00 .. 00 -200.00 CONCENrRAT lOll H05.U71U UII.IIUU 2et5. tutu UU.Sot1U 20tt. SU315 11Jt.511U4 1413.300430 IU7.U7tlt llto.JU214 lll4.70t5t5 oooooooo PACE JO •••• I <tOHf. l oo . ' I I ~ tt;,,;.,,n.,.,i •••• litll ••••• ,.~····· •• ANNUAL GIOUMO LEVEL CONCEiliAJitN C NICIDCIIII PER CUIIC IET£1 ·'liD lfiTEI.I[CfPTOii ~ • • *XII COIITIICff-IITIII) • • ,ooo.ooo ~a•••·••• -~~······ ~1210.000 ·. -········ V AXIS <DIIIAKC£ .• II lEU ) • _cOMCIHJI~IIOH • r-J ... nn,••• PAGE 40 ., •• ) OUE U SDUIC£ I c UMI.) •• ........ -aoo.ou ~--·~-~~---•-•••------••••••--~•••••-•••-•p•••••~·~---~~-~·••••••~•••••••~------•••-•••-•••••~--••••~••••••·-------- UOO .HO 2000 .... IUO .000 uu .000 1000.000 100 .000 600.000 400.000 200 000 .000 ·200 .too -uo.ooo -uo.uo -eoo.uo ·IUO.too -uu.uo -noo.ooo ·2000 .000 -uoo.ou n.au6u n.uuu U. UIIU ll.tUtU ll.7UJU u.uuu u. 464014 u. iusu 41.UJ011 u.uuu U.UlUI u.nuu u.unu u.uun u.uuu aa.uun n.uun u.uuu u.uua, II .lUlU U.tUIU u.nuu n.uun u.ontu 71.tiUU u.nuu U.UOUI n.uun U.UI4U 7t.'U14U u.unu u.uuu U.llliOO u.unn n.unu U.tltt:ll a1. nnu U.71UO. ·••• aoo.ooo • UfUI ) 20. IUI10 :11.1Uitl ••-•2usi U .JUU4 u.onru u.unu JU.IUUt Ill .4UUI 1)4.UUU l40.UUll IU.UUU u.uun u. unu 61.1UUI u.uuu u.aoUH U.IUIII U.IUU1 a •• OIOH1 U. tUitl Z I. UIIOI U.IHU6 · • U UIUI SS.S44ill . il.lllata 1t.lll044 11.111101 ta.,,,,,l 1os.ltJt1• IJ6.a11111 lll.tllilt 14 •. 2tiiOt IJI.tJISit llt.JOIIOl IIJ.I717S1 tll.latJit · llt.1Sit2J lti.Jit146 27t.JIOISI lll.lt6t4t ltt.IIJIOI Jlt.llOatl ISI.tlllll 11.127711 .. tl).t17171 rl.staaii. er.artitt , •.• atOll. 71.011117 U.UUU · · ~1.UUi7 46.1it011 ·~-162111 ••. 6~01Jj · ••. it7i1. Jt.lif~l· ~,., ••• ,. ... -ca•• •~•tt:• aic~,,••• --~ ~-·· (·~·~·~~'i ~-·~··· -•••. 0.~ ••o.ooo . 109 .•• 0 -~••uen~atlllll - JI.Ut414 u.uun U.lttU6 IJ.HUII lll.lt2471 11i.nuu au.uuu 2U.Ut161 Ul ... llll 4H.UUU u6.anni IU.U041t IH.UUOO ....... ,.. tl.uuu lt.IUJU n.auuo u.nuu n.,,uu u.uuu U.UIOU· 71. atl16. u.uuu ui.uuu us.nud au. 41UH ns.nuu sn. tuur 6U.1401U Ut.IU4U 244-aouu III.UUI4 III.OOUU U1.4U4tl llt.unn . tt. UUH U.tiUU n.un•• uu.ooo U.SI4U7 u.uuu 1:LIIUU UI.UotU au.uun au. lUlU Ul .4U7i1 SU.IU212 tU.41U04 1122.6tU07 UI.UIU;t na.u.uu UO. Ut121 ua.uoou 1ti.IU7U 146. IUSU tn ... un J4 .7USU Jt.nun uoo.ooo 23 .HII4t 46.501Ul n.uuu 107.0UI41 Ill .IUUI na.uun na.uuu 6U .tUtU Jrto.OIUU un.nun u:u.uun lOt.UUH 4U.U09U JIO.IUUI aii.UIIU ul.744106 ur .auau to.uun u.uuu auo.ou ...... -~---.................................. "!' -----.......... ------------"':' --... ~-~---.·.-----------...... -----.......... -----............... -~------.... -----....... -----_._ ...... ... lOOO.UO aooo.oo• · uu uo la5o.ooo 1000.000 800 000 uo.ooo 400.000 UO."H .~00 -a oo. ooo ~uo. ooo -600.000 .... 000 ·1000 ... -1 no ooo ·IHO 000 -2000 ou ·JOU.OOO u.nuu 4l.UUt1 . lf.UUli IH.ti!IU au.uun .IU.lltaU Ut.tUU4 IU.OOUU UOI. 4:11141 .000000 uu.rusoa IUl.UitU '". 6~UIO 410.04UU ara. nuot IU.UOUS 141.1U110 11. oouu u.toun u.auoaa u.unn u.tnou n.uuu IU.IUJU Ul. 111171 au. uuat UI.OotiU tn.anuo 31U.IIItll UU.UlOll 706.441254 Ut.IUIOI JII.UUU :ut. ouna IU.101U3 124.U7Ut u.unn U.IUUt :U.IUU4 .u.orun 60. tl4tU lt.:SU1U .... 216111 U1.1Uttl in .nnoa IU.UUU lti.IUU7 1Ul.Ut121 too. nun ut.unu UJ.U14U au.auau 111.Utllt IU.UaU4 iot.UUOf U.U7U~ n.uun II. tlltU JS.OJUII. 11.tun1· n.1usoi u.ouut 102.U7274 144.UJlU · .40 .UUit UO.JU4" lli.UUU n:a.uuu JU.UUU 114 .aUIU ua.:anou 146.tl8lU 113.141066 n.1uou 54 .tUOU u .4n,u H .Ut7lt ,o.nuu ·. u.uuu iJ ·'""' n.i-tuu .i4.UUU 1u.auno &ti .u4ua IU.It4UI . uo .uaou tu.uuu lt1.07UU 101.111201 an.sonn Itt .unu · tl.IIOtot · lt. :UIOa'l u.uaOOI H-Htltl U.UUII ll.tUUI n.uont U.460UI u.nuu 7i.IU7U 1u.:uuu Ut.IUIH an.ruuo UI.OI6UO Ul.41110l Ut.2UUI an.uaou an.uun IU.UHU II. UU84 U.:I147U u.uuu u.onuo u.~au.a n.euon u.nasu H.IHOU U.UOIIt li.SU7U U.UUOI IU.IUIU n•. nuu au.unu UO. IIIUI IU.IHOU IU.UtlU IU.4Ul01 ti. unu ". 611401 Sl.IU7U H.UUSO ~7.tUUl a~.nuu ao.nuu u.ttnu u.uuu 4t .Utt4S ta.ltUto u.unu I U. 146:141 itt. i:IIIU us.nuoe us.unu IU.ISUU U4.24tUI tt.IIUU U.UI517 n.nnro SO. SIIUH u.uuu U.'JUiU FIGURE 4-5. Example listing of annual ground-level concentration due to a single source. 11.1141U u.aouu U.tUOU u.uun 4t.Ul4U u.nun U.tUIU 11.20312:1 t6.111114 an.uun IU .UUIO n.unn n .1uus n.unli u .4114$5 n.nuu U.U2HO lO 64 U 111 21.4UOU •••• ISCt 1 ••••••••••••• KYPDIUtllt•l POTASH PROCESSING PLANI • •• • • • •• r •c£ •• -HNUAL &ROIMD LEVEL tOHtEHJRAIIIH C IICAO&RAHS PER CUBIC HEIER I DUE TO SOURCE I C CIIHI . l • • -&RID SYSllH REtlFIORS - • II AXIS CDI81AIIC£, IU:UU l • uoo.uo Y AMIS (DISIAHCt , ft'llRS tolltEIIIIU ION JOOO 000 7.UUU 2000 000 U.UHU 15 00 000 20. 2UUI 12 50 000 U.HUU 1000 000 l0.2UU4 BOO 000 JS. U1t81 600 000 H.SPtUt 40~. 000 45. UIOU 20d 000 IO.UUU 000 U.UUH -aoo 000 5J. Ulllt -400 000 so. nnu -uo 000 41. OIU11 -800 no 44.711216 -I 000 0011 41. UU1t -12,0 000 J1.U\Ul4 -1500 000 u.nuu -2000.000 U HUU -3000 000 IS.UHU • • A.HIIUAl UOUIIO U:Yf:l C UlltEIIliR 11 011 OUE to SOURCE I CCOIII. l •• K y COICUJUJIUII HICRDCIIHI PEl cutlt HEIER -Olit~ElE IEtEPIORI " I Y tOIICEHIIAilON I Y COIICUUU1 io11 RANCE A·ZtiiU111 BE AI I Kit UUERSI C DEiiiUII RANCE AZIIIUIII IUUHC CIIEJEIIU UE.UUU lANCE AZIIUIM tEAIIIIC CHEtEil) (0ECIE£S) 2108.0 14.0 .,,,,,,,, • 10 tOHliiiiiiiiiC VALIIEI tO PROGRAI OEJEilliiiED IIAIIftUI IO Of CtiiiiMEt IOUitES FIGURE 4-5. (Continued) CIIUEU l 200. 00 -uo. oo .oo .00 ·200.00 uo. oo 200.00 -400.00 y COOIDiiiiiH C IIETEIS > .00 .00 -200.00 zoo. 00 200.00 . 00 -200.00 ... CIHCEIHRAIIOII J1U.ISit11 UU.UfUJ UU fUSOI uu.n:nn I110.U4UO IUI.Utl21 un.urou uu. unor ,, '· ... . ... i i 1 I l I I I I I I •••• IS£Ll ••••••••••••• •• ANNUAL GIDUMO LEVEL £8NtEil1Allll ( lf£10,111& PEl ~Uilt 1£1£1 ) OUE lD SDURt[ !t'IGURE 4-5. • If £0Nlii8UIIMG VllUf& lD P~D,tAI D£l£t~IN~f llkiiUI It If tDIIIME& IDUit[S 1. (Continued) I Y ~oMtJNTIITION tDDID,MIT£ tOO.DIMAlE .u -·~~· .. -•u.u -Ht-9~ un.uuu JHf.uun '''no •• !'AGf 42 .... ' t COIH. l • • •••• ISCLI ••••••••••••• HYfDIHEIICAL POTASH PIDCE6SING PLANT •• Sl~SOHAL GROUND LEVEL COHCENIRAIIOH ( niCROGRAIIS PEl CUBIC NEIER . &USDH 4 -GRID &Y&IEII RECEPTORS - -II AXIS <DISTANCE, IIEIERS I - -1000.000 ·2000.000 -JSOO.OOO -1250.000 -1000.000 Y AXIS IDISIANCE , HilliS ) CDNCEHIRAIION JOU lOO 2000.000 1500.000 1250.000 1000 000 800.000 600.000 400 000 200.000 000 -200.000 • 400 000 -600.000 -800.000 ·1000.000 ·1250 .000 -1500.000 -2000.000 -1000.000 Y AXIS 10151AHCE 3000.000 2000.000 1500 000 1250.000 1000 000 BOO 000 60,0 000 40·0 000 200 .000 000 -200 000 -4 00 000 -600 000 -BOO 000 -1000 000 -I 250 000 -1500 000 -2000.000 .oonn .012122 . OUJSS .OI8U7 .OUH7 .020610 . 021JU .OZitSS .OUU7 . 02217t .021012 .ouuz .017736 .01Stt7 .OIUU . 012276 .010762 . 008702 . 0 05516 .000 , RETEll .OIIIU .023277 . OUU5 .OSSlot . 011024 .IUJ.U .217762 .unn I. 648651 .000000 2.102750 .646170 .115817 .unu .127HS .017771 . 064444 . 0Jt547 . OotU7 . OISU4 . ousu . OZ725t . OUU4 .OHJZt .040IU .042574 .0442JJ . 045t06 . 0402U . OJSJH . 030200 .025074 . 02 JJ07 .011221 .OISU5 .011110 .OotSIZ 200.000 ) .010711 . 02 ltZO .OJUU .OUU3 .07228t .IOUH .usus .2U27t . 647881 J.UHst . U7274 . tS3522 .250t7J .162225 .111872 .080UI .ostn2 .017442 .OIOJH . 011061 .OZSJU .OJUU ..... , .nona . 0610 IS . ouou . 07lSJ4 . 015411 .UJZU .OSZJIS . 0412 Jt .OJU74 . 021082 . 022421 . 018211 .016421 .012273 .010712 .011688 .021002 .035077 .047244 .osuu .074011 .oanu .uuu .lUlU .oann .OUJU .041216 .ouna .onus .oauu .021216 .ozoou .. 01 Jail .011011 .021121 .011728 .ousu . OS2161 .uuu .otZJU .121141 .JUJU .151617 .115151 .011506 . t60145 .OUIIJ .OUIU ,OjJ4JO .U04U .024111 .0154JJ -GilD IYITER IECEPTDII - -X Ull CDISUNCE, IIllER&) - 400.000 600.000 100.000 CDHCUIUI ION .010111 .OotiZS .001274 .020440 .OIUU .OIU75 .onsu .021143 .unoo . OUtU . 0351" .OUOSI . OS U J8 .045712 . OJSUO .077414 .056716 .04Zt71 . lOIS at .074463 . OU224 .164165 .IUOU .102854 . 361765 .210463 .I UU2 I. lOst; I .SittH . 105715 .SIUit .JUSU . 227SOJ .ZUllO .lt321t .IU35S .171062 .122tU .100846 :121072 .ot2402 .07ZJU .. _., Jt77 .074128 ,0,224 .OUJJZ .0Ht40 .041164 . 051449 .046148 .OUH6 . OlU58 .Oll422 .027UO I flUE TO SOURCE -·~0.000 . 011246 .022106 .nu11 . 044511 .OSIUt . 077SII .110026 .ISJUS .111656 .225011 .151264 .100011 .07Jit4 .nnn . ouin . 04JIU .nnu . 021712 .OIUIS 1000.000 . 001676 .014741 .020174 .U3571 . 0212tl .040441 .151441 . OUIU .143714 . ZOUJJ . 161521 . 124111 . OIStSt . ouua .041441 .040056 . 014007 . 0247t4 -o>oo.ooo . 011177 . 022817 .017716 . OUOI4 .0617JJ .OIUII .IJOU4 . 206421 . 312275 .usus .2JOIU .JJSOOt . ot0610 . 076512 .OU61S . 054804 . 047410 . OJ 167 2 .otnH 1250.000 . 007t60 . OJZUt .016174 . OI8U6 . 027011 . OJUU . 048126 .07U63 . 104512 .1Ht70 . 114872 .ousu . 06U77 . onus .041014 . OJ2451 . 02 7tH .02U7t FIGURE /1-6. Example listing of seasonal ground-level concentration for the fall •••••••• PA'£ 52 .... 2 (CONI. I t • ·400.000 ·200.000 .OIUU . 021415 . 011716 . OS248t .077841 .107161 .161217 . 277112 .s2nn . 7UJOO . 144057 .IUUI .144147 .II USI .OHIU .UU24 . osun .0146l7 . 011417 1500.000 .007140 .01077S .OIJJU .011258 . 025226 . 012047 . 044018 . OU2U .07t405 . otUOJ . 08597 2 . 072742 . osnu . 04UJ4 . OJ85U .02UU . OZJH I .011761 season due .OIIZU . 021514 . 011707 .nsou .OIISU .120112 .lUlU .171408 .Ht780 2.440tts ·" 1172 .170172 .2UU4 .lUlU .111806 .07tiJ2 .05UH .017212 .OitZIS 2000.000 .00~115 . 007114 .OJZtzt .016407 .020414 .OUIIJ .OJJtU .OUJ25 . 0505U .OHU5 .O~HU . 047,5 .041125 .015171 .OZU8t . 02,.01 .020625 .014140 to a single source with a maximum 10 table showing the contribution of this source to the maximum 10 r----1 l ..... J receptors of. the indicated combined r----. L .. J sources. . r--:. I •••• lltlJ ••••••••••••• IIYPDJII£11UL PIIUIII ,ltOCEUIIIG PUIIl •• IEAIOMAL GIOUIIO LEVEL COMCEMliATIDII C ll£,0Gilll 1:::o;ul:c IEJ~I -Gilt IYIT£11 IECEPTIII - -K AIIJ Ctii.AMCE •. IfTERi)- ··••• zoo.oot ·~·-••t ~·•·•••· . •~•-••• V Agl& IPI&J.IIC£ , IITEII ) ·. COIIC,~T~AJIIM •JOOO.UO ....... 3ou.oo• .oann . oaun &lit IYITEII lltJPTIII • • I Allf Cti'.TANC,, .,,, •• ~ J. ~! •••• 1' C cOIH. > • • ........ 12110 .... ·~······ 2000.000 .... , .. .uuu Y AKI~ IDISJA~~~-------=-~~!~!~------·····················-=--~~~~~~!~!!!~~---············-··--------·-············--·····-·····- Jooo.ooo uoo.ou uoo 000 IUO.OOO aooo.uo .... 000 iOO.toO 400.000 200.000 .000 -zoo .ooo -400 000 ·UO .OU •800 000 -ltoO 000 -uu.ou -uoo ooo -aooo. ooc. -J090 .... .oonu .001411 .010111 .OiltU .unu .OIIOU .0201U .oa;uu .unn .UtiU .Ul4tl .uuu .021117 .021111 .oaun .uuu • 01$007 . 011121 .OUtU X Y C:OIII:£11JUJIOII UIIG£ ill lliUlll IUIIIIIC I II£ TEll& l ( UIOIUU 2108 0 14.0 .uuu FIGURE 4-6. (Continued) ) UE fO IIOIIIU ~ C UHf.) II'~JIG,AIIf PEl CUIJC lfJJ.I IUitll • . •• • oliCIEtt 'a[CJpJDJI • v • ~·~~···~···~~~ U IIIUTII IUIIMC K Y 'IMtEIII~·fiOH ,.u, u lllllfH UUIIIG CtEUEU~ UUUU COEUUU •••• ISCll ttttooooootoo HYP8lHETitAl POJASH PIOtESSIHG PLANT •• SEASONAl GROUND lEVEl tOHCENTRAJIOH ( HICROSIAft8 PER tUIIC HEIER l DUE TO SOURCE F'IGURE 4-6. SEUOH 4 -lO COHTIJIUTJHS VALUES TO PIOGIAH D[IEIHIHED JAXIftUH IO OF tOHIIHED 80URt£S 2• (Continued) X y tODIDIHAlE to81DIHATE C,IIEUII) 206.06 -206.00 '.00 .oo fOt.OO uo.u -200 . .0 au.oo ....... ...... UEUU) • 00 .60 -zoo. 00 200.00 .00 -ah.u 200.00 200.00 .oo .oo CIINCENJ RAT ION J. UJUt a.Hotn a. toano a.uuu l.lOUtl . UU74 . t1tl80 .647111 .unot . 51,.; • •••••••• PAGE ~4 •••• 2 <COHJ. l u ~ I ..... N w •••• ISClT ••••••••••••• HVPOlHEIIC~L POIAGM PIGtESSllt PL~Nl •• $EA5&HAL GIOUKG LEVEL CGHCEKIIAIIOM ( ~ICIGGI~Ii PEl CUll' "ET£1 &UIOH I • till IVIT£1 IEC£PTGII • • II AXH UI8UIIC£, IUUU • ·Jtoo.ooo .~ooo.ooo -•~••·•oo· -a~so:ooo ·looo.ooo Y AXIS <DISTAIICE . . , UUU ) . CIIICEIIU~llU looo.ooo 2000.000 1500.000 12liO.Uo 1000.000 ....... uo.ooo HO.OOO aoo.ooo .ooo -aoo .ooo •400 .000 -uo .ooo -800.000 -1000.000 •IUO .000 -uoo .ooo -2000.000 -uoo .uo .unu .uun .nnu .IOtU .IUUI . unto .uuu .uuu .uuu . 112407 .uuu . uuu .lUlU· .uuu .IUU4 .IOUH .un•' .H:UU .H,iJl . Ulllll .uuu . uuu .unu .ansu .Ult14 .uuu :nun .UUit .nnu .uun .uuu . 244 ou . 20UU .unu .IUliJl .autn :nun ... u., .OtotU .&Uitt .auou .nuu .lUlU ....... ...... , .nun .sun a .,. .... .uuu ....... .nun .auuo .uuu .. 1141U .IUSU .unu ..... 1. .uuu .uiut .nun· .auue .uena .uant .uuu .hs1u .7UU4 .nuu .641604 .IIUUI .IIIU •. .UUai .au oat .aUU1 .. ,. ... .liUlt .,anu .uuu .uuu .anus ·.UUU .nun ·.UUU .. nuu .nun ·a.uuu J.Uu4• .UUII .unu .uuu .IU'OI .uuao .UUII .anue .uun ·•tH*t ~ u" unu IJC,PJIU - • I tl'l CGIIIAIICE, Mlllll) • ·~too.ooo .UHI& .UaUI .uuu .nuu ,ffllla .UU06 .1nau a.uuu a.nnu l.UOHI l.IUU6 .nuu .suu• .uuu .nun .JUIU .uuu .unu .uuu •••••••• PAGE fiOft £0181~£0 &GUICES -600. ooo .IOUU .20411:J .:suau .uau, .nun .nun l.UUU 1. uauo a.ausu a.ssrut I.UUU I. OIIIU · .uuu . nun .SHU6 .uuu .uuu .anus .lfUa, -uo. ooo . lotll't .unu .uuie .unro .UtiU . ·~·~" J.au:n' a.onus ~.fHIU •. rua~s a.sonu a.naou a.ousn .toUH .Utl41 . , .. , It .uouo .noou .anna a. I j;J • • •• -11. .llllU .aunt lUlU .UU40 .714042 1.014220 l.SUIU a.uuu s.nson II.HlllU I.UUU 2.U24U a.nuaa a.uuu l.llUII .f4UU ·'""' .unoo .unu .••• '201.000 •••.••• ,...... . •••.••• ,.oo.ooo l2llt.otO ·~······ zooo.ooo Y IIIIUi CGI8UM~E • Ul£11 ) . ' . . . CIIIICJ!Illl.ll!ll! ~-·~·-·~--------------------~-------·----~-------~--~--:·~~----------~-----------------------·-~-------------------- 1000 000 ~000 000 1500 ... 12so.ooo 1000.000 100.000 600.000 400.000 ~00. 000 .000 -200.000 -400.000 -600 000 -no .ooo -1000 000 -1250.000 -1500 000 -2000.000 FIGURE 4-7. .IIUU .uuu .uuu .uun .nuu I.UHU t.UUU J.UUU t.nuu .oooou li.UUU 4.UUU 2.744621 LH21141 l.UU1J .tUtU .UIOlt .uaan .UU06 .aaun .JUJU . uuu .unu l.UIIat I.UUU a. IU2llll I.IIIUU u.noou ·t.unu t.IOIJU 2 UUH l.UUU l. 220241 .IUUO .uuu .nnu Example listing of bined sources. .nun .aouu .uuu .nun .ni11u .... ,., J. SU7U t.UtlU I.ISUH u.tUU7 ,.utou a.auau a.uuu I.UUU a.unu .7UUI .l1Utl4 · · . UUSI seasonal .unu .liiUI .a uno .:~6uu · .Hn4t .6140:14 .IUUO, l.HUU J.HU:U 6.UIUO 4.nuu a.nuu l.U6Ut a.anau .tiuu .f.uou .nun .nun ground,.. level .Ot4lJJ .Oil'tJO ·••••'a .111417 .246lll7 .117012 .J••••• .a,aJsa .:huu . uuu .476,10 .• ,.,,J .76llla .70J, •• a.a4oat4 1 102112 a.tt,llt a.eJ&llta J.ttttil a.'''J'a l.t,tt21 a.aeoatt a.04:117l •. ,ttltl a.JI'''' a.ao'''s .t74l&t .18Jlt' .716617 ·''2t42 .u.uu. .nuoo .till'' .tJ178S .J26t06 .I020tJ concentration for .• una .anon -lUlU .aunt .uuu .unu 601&12 .uuu I.UUU &.106412 l.lltiOU a auau ....... .nuu .UHU . unu . ntou .a7UU the winter .9JUU ....... .lUlU .uuu ·. J07U2 .nun .SUIU .U41H a.unu l.UUU I.ISUU I.OOIOU .. uuu uuu .546487 ....... .U7111 .uuu season .ouou .uuu .uun .aoun .uuu .unn .nun .snut .uauo .111110 .uuao .UUII .noon .SIUU .428215 .nuu .UJIU .IUOU from com- -i .p. I ..... N .p. t••• ISCLI ••••••••••••• .••• 200.000 Y AXIS (~ISIAHC£ , IIEUIS ) HYPOTH£TitAL POtASH PROtE&SIHC: PLANT -II 400.000 P£1 CUDIC I'I£TER UUOH I C:RID S~STEft RECEPTORS AXI& UIS.IAIItE, IEJEIIU - , ••.• 00 100.000 COHCENUAIIIIII ••• o oo •• PACE IH otu ) (CONI.) FROft COftBIHlD SOURCES -II, , ....... 1:$00.000 2000.000 ---·-·-~~-·-------~---------------~--------------------------------------------~--~---------~--·~·-------~~·--·----- -3000 000 . 200044 . 201306 .lltl'U .111112 -C:RID SY&l£11 lltlPTOIS - -II Altll COIIUIIC[, RETEllS) - 30110.000 AKIS <DISJAHt£ , IIE1ERS COIICliiJUJIOH JOOO 000 • 044111 2000 000 .Ot28U 1500 000 .128U:S 12,0 000 .uuu 1000 000 .lt12U 800 000 .UHU uo .uo .212491 400 .000 . JI04U 200 . 0 Of! .unu . 000 .nun -200 000 . U7450 -400 . 000 . l412U -600.000 . nun -eoo''ooo . lOo:!U -1000 000 .21UU -12 50 000 .2421 u -1500.000 uuu -2000.000 .U7SU -1000 000 .OtUU •• HASOIIAl UOUIII uvu tONCEIITRIH IDH ( IICROCRAft& PEl tUIIt ltEtEl IUIOH I X Y COHtEHTIAIIOH RANGE Al IIIUTH 8URIHI: I liE IE RS I < UGRHU 2 I o 0 o 14.0 .lto121 FIGURE l1-1. (Continued) ~ lL ,_j -DIBtiEl£ IEtEPlORS - I Y tONCENTIAtiOH UIIU UUUIH lUliNG UETU ~) C Df.CIU: &I --.J -J .1121U . U IOU .IIUIOI (CIHJ.) FlOH tOIIIIHED SDURCES X. Y COHtEIIIIAIIOH UHC:E Al IIIUJH lURING UETUU CUCRU6) ,.---. z. .I :UJIS -I I, r....._._, : J . I j I I .p. I ..... N ln •••• IICLl ••••••~•••••' fU~t••• PACE •• &EA&OHA~ 510UHD lEVEL CONCENTIITIOH C ··~~····~~ PE! c::!~a:E•:· ) CC~~J.) fiOft tqi~I~E~ &UUIC~~ •'- ), (Continued) -f~~'.IAI PiJE~~·~~~ ~~IIIU~ !~ VI~U£. - · au.oo H+·•• ... ' ... ":"Ht·•• • • •• au.ot •••. u •••••• -i ..... · a••·H '•: • • •• •••• -a••·•• ' ... . ,. .... . . -~·•·H ..... -a ... ••· ,. ... . , .... ~ !•. ~J.UU71 u.uuu H.nuti 11.111U~ ,.JUIU t. IUtU . '· f.UIUO ..uuu I.UUU I.IUttf an •••• •••• ISCll ••••••••••••• HYPOIHEliCAl PDIASH PIOtESSIMC PLAHI •• ANNUAl CAOUHD lEVEl COHtEHlRAllOH ( KICIOGRAKS PEI.CUIIC HEIER -GilD SYSIEH IECEPJOII • -X AXIS (Dl.JAHCE. HEIEIS)- -lOOO.OOO ·2000.000 •ISOO.OOO -~210.000 ·1000.000 y AK IS <DIS !AliCE , KUUS ) CllHCEIITIAI Ull 3UO 000 2000 000 I 300 000 IUO .000 1000.000 800.000 600.000 400 00 0 200 00 0 .000 -aoo.ooo -400 000 -uo.ooo -800.000 -1000.000 -1250.000 -uu.ooo -2000.000 -JOOO. 000 Y AXIS tDISIAHC£ JOOO 000 uoo .000 l $00 000 12~0 000 1000.000 &oO.OOO HO.OOO 400 000 200 000 000 -200.000 -400 000 -600 000 -800.000 -1000 000 -IHO 000 -IHO 000 -2000 000 -Jooo on .uuu .IIJIU .lUlU .uuu .1101U .11711, .UHll .Ut7U .nun .lUlU .lUlU . lUlU .uuu .anna .uuao . 107160 .nuu .onru .osuu . ouou . Ut4S7 . 20 114t .uuu .uun .311415 .JUJU . JU041 .usno . Jatolt .HHJI . JOUU .uone .. aunt . lUlU .uun .auan .OttiU .uuu .ooo aoo.oot , IUEIS ) .101461 . 2UOit .318124 .USOS1 .nun l. lUlU l.UIIU J.tiUU II.UUU .000000 12. HUH S. OU4U 2. H1S$S 1.n:neo 1.2040H . 142Ht .UUt7 .lUlU .lt18H .106111 . 2U1H .usuo .4UtU .roun 1. 02S4U 1.,11510 2.tlltol ::I.UUU U.OUUI 1. nuu 4. JU851 a.nuos l.U01U I. 164288 .8228U .614631 .384210 . U1212 .nuu .auru .uun .uuu . 3UUI .nun . Ill Utl .!IUUI .SUISf .uun .nuu .uuu .nuu .217103 .anna .uuu .uoru . IU01t . a une .unto .111311 .nun .ussu .unn .unu .uuu . .733111 .rnuo .ennt .unn .unu .uuu .HUtl .Utili .uun .uuu .1143tl .1 uu7 .101215 .ltllll .usuo .nun .fUfiO .unu .71Silt .nun l.llttU I.UUU .nuu .nuu .sura' .Hun .317211 .nain .uuu .221411 .IU41t -Cll. JY1JEft IECI~lOIS - -K AXIl CDIIIANtl,· IIETEII) - 400.000 ,...... 100.000 .l0l1U . .200322 .JIUIJ . 420402 .nnu .110220 I.OUUI 1.54:\!IU 3. 340tll ••. 111014 4.tlt4U 2. U4U7 1.1t12U 1.12nu .uuu .ranu .S:ItoU .lUlU .IBHI I . tOIIUIHUJIOII .otUit ....... .UU1t . HUit .HUU .liUto!l .1UUO a.nnn 2.121108 s.unu 3.U13U 1.uun 1 .nun I .OOUU .nun .unn .UOIU .330811 .. 180761 .uout .uuu .nun .Usttl .nnu .tltOU .6UU6 I.OJUlll l.tU1H J.010160 a.noon l.SSU24 I.OUUo .71UU .649183 .1122420 .UJIU .anon .l1013t ooototoo I'A&E ) (£0HI .) FR&" COMBINED SOURCES • 800.000 . l047S2 .UOlU .uun . 3t17U .UUIO .uasn .tUUf a. auuo 1.161640 l.f41SU l.UifU .uuu . UlliH .UflU . 41Uto .uun .3401124 .unu .UIUS 1000.000 ....... .I US If .uuu .nun .anus .3tslst .uuu .UUSl I. UUI4 2.0Ullt I.UUU 1.274112 . tiUU . UlOOS .1124111 .HotiJ .nun . uuao . I :ltiH -uo. ooo .107432 . 210Ul . UJIH .4J88H . sttoU .110$16 l.lUUI i .U70lll 2.114124 2.7UtU I. 1t0753 I. .. ,, • .1HUt .uuu .SUIU . ., .... .tauu .301441 . 1720111 nso.ooo . OliOH .unu .IUUt . 114tll .uun .JU211 · .4U8t4 .nun I. OfUSl 1.311161 l.llUH . tU llt2 .741UI .lltUH . U22t2 . nun . JOIIUI . U'HU .145911 ·400.000 . 10tl84 .21tt11 .nuu .41UI4 .6761101 .nuu I.JU780 z.nttu 4. on no S.IU'tt 2.UHU l .Ut882 1. nssn .uuu .8001U .UUI4 . so sua .UU87 .182212 ISOO. 000 . OUU4 .101104 .unu ....... .asuu .JUSlf . 440U8 . "106:1 . 7tl2t0 . tUSOO .anon . 7$4016 .630214 .$0JtU .41UU . 320314 . 2liU 41 .UUIO .lUlU FIGURE 4-8. Example listing of an~ual ground-level concentration from combined sources. 205 •••• a. -11. -200.000 .10tl12 .225UI .37111' .SIIIU .1HSti I. 076431 1.1U7U 3.022126 ,,,S$715 u.uun t .01Utl a.7077U 2.0UOU 1.41UU I.OJUU .lSUtt .unu .3uu' .Ullll 2000.000 .uuu .nun .unu .lUlU .aonu .uun .3U21t .UU81 .unu .nun .54:13U .4UU2 .nuu .JBOl:SO .J2otH .ZUlU .222772 .1$5410 112UI --1 ' I. J _J •••• ISCLI ••••••••••••• •••••••• PAU au •••• .. AKKUAl GIOUMD lEVEl COMCEMTIATIOM IICIOGIAIS PEl CUll( IEIEI ) ~CONI.) FIOII COIIIIH[O 60Uitll ·I I • • GilD iYiiEI IECEPIOI& • • ll Alii' ·colliUIIU• IHUU • lot0.090 Y UU <DUUIIC£ , ·uuu tONU.lUlllll ----~-~--·---~---------~------------·------------------·-----~~*--·-~·----~~~------------~------------------~------- uoo '000 uoo.ooo 1500 000 12$0.000 1000 000 800 .ou ,00 ••• 400 000 200 000 .000 •UO 000 •400 ooo -uo .ooo -800.000 •1000 ... -u~o .ou ·lUO.OU -2900 ' ... •3006.090 .unto .nun ..... ., .uuu .IS$251 .uuu .UoiU .U1U4 .uuu .uun .anuo .uuu .atlUl .uuu .2t:IIU6 ....... .uuu .uuu .uuu •• AMKUAl SIOUID LEVEl CONCEIIIAlltl X Y UNI:£111UIUJ! IIAIIGE AliiiUII IUUIIG Ut:IIIISl COUIUU ( IICIOG~II~ fEI CUIIC ~Elf~ · '-eu~un: uuruu - 1 1 ' ... ,QNCEill.lfOII U!I~E UliUII .. ·. . . .. . . IUIIIIIG CMEJ£1~) UJ:U('U ) CCQNT.I flO~ CIII!N~~ 'DUitf~ I ~ UMniiUAHOII UIISE liZ INUHI lt:AIIIIG CIEJEII) (IEGIEfl) -11. -----~~---------------------------------------~-----·---~-----~---------·------~-----------------------------------· uu.o l4. 0 .uuu FIGURE 4-8. (Continued) -PIIGIA. DEJ¥'~··~· ·~I,IUI It VaLUES • X Y f·8~l~I~All011 ''I~IIIATE fO~I·I·IlJ. aoo oo -aoo.u ... .00 400.00 200.00 -aoo.oo aoo. oo ••• ••• -uo.oo , ..... • • •• -uo.oo 200.00 aoo.oo U.oUUI u.ouoat u.uuu II.UUU 10. IU01t 1.1iUH ,.nun 5.4UUl -' t ..... N 00 •••~ JSCli ••••••••••••• HYPOIHtfiCRL POftSH PROCESSIKC flRKf •••••••• PA&E. .. ANHUil CROUHO lEVEl tOKCEKIIAJIOH ( HltiOtiAHS PER CUll£ HfJEI ) (tONI.) FROH COHBIMED SOURCE& l!'IGURE 4-8. (Continued) -PR~GRAH tfJERKIMEt KAXIHUH 10 VAlUES - X tOOIOIIIAJE Cll£1 ERS) -Ho.oo 600.00 · .. '. y C08RD I HAlE OIEUIS ) .ot . 00 tlliiCEMtiiATIOII 5.14Utt S.IUSU '· 207 •••• 2 • -II • :\ •••• ISCt1 ••••••••••••• HYPIIHEJICAL POlAIH ,~OCIISIIS PLAMl •• 5UIOIIIIL GIIOUND Lli\IEL UHCfllliAHIN ( IUUOGUII rn CIIUC IUU . . . IU&OII 4 J DU~ IO 50UU£ -tO tiMllltUllMG VALUEI lO rtDGI~-tElf~III~ID IIIIIUI If Of EIIIJNED IOUICES ,, ,: I V CONCJNliiTIOII COOI~!~Il~ COO.DINITJ UUUI) au.oo -aoo.oo • • •• ... -au.oo ...... ....... , ..... ••• -~····· ••• .to -uo.u uo.oo , ..... ••• ••• -au.oo -uo.oo -aoo.n t.nuu a. nun J.IUU, I.IUIU .uuu ,.itnu .lllUI •. uuu .uun .UIUf •••t••n PAGE 316 •••• 4 U:OIU.) tt FIGURE 4-9. Example listing of the 10 value$ o~ seasonal ground-level concentration from a single source that contribute to the maximum 10 receptors of the indicated coftlbined sources for the fall season. ,, """ I f-o w 0 tttt ISClf ••••••••••••• HYPOTHETICAl POTASH PROCESIIN~ PLANI •• ANNUAl GROUND LEVEL CONCENIRAliOH C HICROGRAHS PER CUBIC REIER ) OUE TO SOURCE -10 COHTIIBUIIH~ VALUES TO PIOGRAK DETERKIHED HAXIKUH 10 OF COMBINED SOURCES -16, • COORD I HA IE (11[1[11) zoo. 00 -200.00 .00 .00 -zoo. oo 400.00 zoo. 00 -400.00 .00 -200.00 y COOIDIHAIE CUTE IS l .00 .00 -200 ... 200.00 200.00 .to -zoo. to .00 -400.00 -200.00 COHCEHJIAT ION 4.J4JOlll I. BOUU 1.812556 I. 4186111 . 828512 1.18Ull 1.044206 .UUtl . "11JO .524J17 o •• •• o •• PACE J 17 •••• 4 C CONI. l to FIGURE '•-10. Example listing of the 10 values of annual ground-level concentration for a single source that contribute to the maximum 10 receptors of the indicated combined sources. r--r-' l. :._! ~ ' ' ,---. .I I [ r ' [ [ ! .. [ [ [ c [ [ [ [j c [ L u t L L with the program output format before using it. Also, the program has the option (ISW(l7)) of specifying the number of lines the printer prints per page. This value must be correct in order for the program to maintain a correct oueput format. the program defaults to 57 iines per printed. page. If the printer at your installation is different, input the cor-. rect value into ISW(l7) on Card Group 2. the warning and error messages produced by the program are generated by data: errors within the. ISCLT program and are not associated with errors detected by the computer system on which the program is being: run. These errors are given in Section 4.2.6 below. b. Master Tape Inventory Output. The ISCLT program will, on option, generate an. output master source/ concentration or deposition inventory tape or data file. This file may be a permanent file or a temporary file, depending on what the user desires and. requirements of the program. tlrl.s data tape is written only if the. parameter ISW(S) equals · "111 or ''3" and the ·data are 'Written to the·::FORTRANlogical unit speci- fied. by ISW(lS). The data. are writ:ten using·. t:he· FORTRAN binary write routines and tapes should:~.be assigned high densit:y, odd parit:y with the write-ring in. These assigri opt:ions are: normally t:he default: options on nine-t:rack tape unit:s, except: for th~write-ring option. These tapes are not transferable between computers of a different manufact:urer and may not: be transferable between computers o£ a different series and same manufact:urer. Also, if the ISCLT program has been compiled under the UNIVAC FORTRAN V compiler, tapes generated by the program are not compat:ible with t:he ISCLT program compiled under· the UNIVAC ASCII compiler and vice versa. Check with your installat:ion to see if these FORTRAN generated binary t:apes can be t:ransferred. The format: and contents of the ISCLT input/output tape are shown iiJ.. Table 4-s· .. ~ This t:a.ble gives t:he Logical Record, Word Number, Parameter Name and whether the data are in an integer or floating point (real) format• The logical record gives the order the respective data records are written to tape and does not imply the physical {block) lengt:h actually on the tape. The physical block length of binary unformatted data depends on the. computer {FORTRAN) on which the ISCLT program 4-131 ···---·------------·-·----··----~--- * Tape Logical Record 1 2 3 4* .. 5 TABLE 4-5 INPUT/OUTPUT TAPE FOBMA.T Relative Parameter Word Name Number 1. NSOURC 2 NXPNTS 3 NYPNTS 4 NXWYPT 5 NSEASN 6 NSPEED 7 NST:BLE 8 NSCTOB. 9 -28 Iml 29-48 UNITS 49 -68 TITLE 1 -NXPNTS+NXWYPT X 1 -NYPNTS+NXWYPT y 1 -NXPNTS*NYPNTS z +NXWYPT .. 1 -2304 FREQ 2305 -2328 TA 2329 -2472 HM 2473 -2508 DPDZ 2509 -2514 U:BA:R Integer (I)/ Floating Point (FP) I I I I I I I I I I I FP FP .. FP FP .FP FP FP FP "Tape logical record 4 is on the tape only if the parameter ISW(4) equals one. 4-132 . . [ [ [ [~ [ [ [ [ D ·L r l c [ [r ' i [ [ [ r~ i L. L [ [ r L [ c [ [ [ L t L L T.ABLE4-5 (CQntinued) Tape Relative. Parameter Integer (I)/ Logical Word Name Floating Point (FP) Record Number 5 2515 -··2550 p FP (Cont.) .. 2551. ~ 2.566~ THETA FP 2.567 ROTATE FP 2.568 G FP 2569 ZR FP 2570 BETA! FP 2571 BEn2 FP 2.572 DECAY FP 2573 TK FP ** -t 6 l . NUMS· ~:. ' : .· .2 Tn'K· I .. 3 DX FP 4-DY'. FP . -: ..... , s H: FP -6. zs FP -FP ·7 TS ~··· .. 8 VEL. FP 9 D FP 10 HB FP 11 BW FP 12 BL FP 13 NVS I 14 --33 vs FP 34 -53 FRQ FP **Records 6 through 10 are repeated for each source input to the program. 4-133 ·---------------------·--· --------·· !ABLE 4-S·(Continued) Tape Relative Parameter Integer (I)/ Logical Word Name Floating Point (FP) Record Number 6** 54-73 GAMMA FP (Cont.) 74 -217 Q FP .2l8 QFLG ! 219 WAKE T ... 7** 1 -NXPN'l'S*NYPNTS CON FP +NXWYPT 8** 1 -NXPNTS*NYPNTS CON FP +NXWYP'1' 9** 1 -NXPNTS*NYPNTS CON FP +NXWYPT .tO** 1 -NXPN'l'S*NYPNTS CON FP +NXWYPT . . . . . . last . 1 . 999999 . I **Records 6 through lO are repeated for each source input to the program and 8 through lO are omitted if the input data is annual. [ [ [ c L L L [ ' r~ [ [ [ L [ [ [ [ [ c L [ L [ l L l~ is being run. The maximum physical block length on UN'l.VAC 1100 series computers is 224 words per block. Some of the logical records shown in Table 4-5 may or may not be present. on the tape~ depending on the options ISW(4) and NSEASN. Logical record 4 is not on the tape if the parameter ISW(4) is zero. Also, records 7 through 10 are concentration or deposi- tion records and depend on the number of seasons, NSEASN. If the user is using annual.. data, only record 7 out of records· 7 through 10 will be on the tape. Records 6 through 10 are written to the tape for each source input to the program.. The last record written for a program run has an integer 999999 in word 1 (NUMS) of the record and two end of file marks (magnetic tape only) are written after this record. The program does not check these tapes for. labels, nor does it write a leading label file on the tape. Also,. if you desire to write more than one data case (run) to an output tape,. make sure the tape is positioned between the two end of file marks after the last case written to the·. tape. See Section 4.2.2 for the correct. tape or data. file assign: cards., 4.2.5 . Program Run Time; Page and Tape· Output Estimates This section gives approximations to the computer run time, tape output and page output. for the ISCL'I. program.. Because of the vari- ability of problem runs· and .input parameters., the equations in this sec- tion are meant only to. give· an app~oximation. of the. upper limit of the time, page or tape usage.. function .. · a. Run Time. The total run time required for a problem run using card input sources is given by .Time (Seconds) (N • {N • N + N ) • N · • N s x y . X'/ . se st • N •· (N + 1) • f) ~ 120 sp vs 4-135 {4-6) where N X N y N xy N se Nst N sp N VS f - .. ... ... --- • the total number of sources from card for wnich con- centration (deposition) calculations are to be made, NSOURC the total number of points in the grid system X-axis~ NXPNTS the total number of points in the grid system Y-axis~ NYPNTS the total number of discrete (arbitrarily placed) points NXWYP"1: the number of seasons, NSEASN the number of stability categories, NSTBLE the number of wind speed categories, NSPEED the maximum number of particulate categories for any source if deposition or concentration with deple- tion due to deposition is being calculated; otherwise N is zero· vs -t: 10-4; for concentration calculations for deposition or concentration .. wi!:h deple-· tion due to deposition . ·~ ~ .... The variable f given above was calculated from example runs on a UNIVAC 1108 computer. If you are using a different computer or if. the values of f given here are not accurate for your runs, recalculate f and replace it with a more representative value. If N in Equation (4-6) is zero s (all sources £rom tape), use the following equation to approximate the time; Time (seconds) N + N ) • N • Ng • k) _> 120 y xy se (4-7) 4-136 [ [ [ [ [ [ [ f" L [J [ [ [ [ L [ [ ; [ [ ! [ I [ [ c [ ' [ [ 0 L F -- ~ E~ [ t b l' where N' .. , total number of input sources from tape or data file s N -number of source combinations to be prlnted~ NGROUP g k -4 X 10-3 - The variable k is an approximation-from-a. few example runs and. the user may want to substitute a value that: works better ori. his/her computer. Also, if t:he system on wb:f.ch the user is running t:his program aborts runs (jobs) that: max-time,. be generous rlth t:he time estimate. b. Page Output. 'l:he total tiumber of pages of output from the long-term ISCLX program depends on the problem being run and is given by: where*· .. 0 16. N . s Pages: ;· .. .. ,... ; ... ,,~ . ' -. i£ the-~rogram input data is not printed i£ input. data other t:ha:n source data is prlnted: (ISW(6) • "1 ") if source· data only is prlnted (!SW(6) :a "2.") (4-8) :16-+ N ; s if aU input data is printed (ISW(6) = (4-9) "3") and (ISW(4.)· • ~'O") ll no terrain data 16 Hs + [:x1• [(NtN:: 19)j + t3 (N:x: llJ li all input data is printed (ISW(6) = "3") and. (ISW(4) • "l") terrain data are used • total number of sources input to the program. However~ if concentration or deposition from individual sources is not bli!ing printed (ISW(8) • "2") use Ns. ,. [N/~ *'l:he [ l symbols indicate to ro\Uld, up to the next largest integer if there is any fractional part. 4-137 ·------·-··--·-------------·-------· --------- B I N c· N X N y N xy K = = = = = = .. = Number of print lines per page (ISW(17)), default is 57. I • (Ni +NJ• (~-x ·__....._-----1 (4-10) + ~ • <:7-lld + ' number of seasons for which concentration or deposi- tion is to be printed. If seasonal output only, then I • NSEASN; if annual output only, then I= 1; if both seasonal and annual output, then ·I : NSEASN+l. total number of individual source concentration or deposition tables being printed. If ISWf$3) equals "2", then Ni is set to zero. If ISW(8) equals "1" or "3", then Ni is the total number of source ID-numbers defined tmder the parameter _IDSORC. This includes both implied and explicily punched source ID-numbers in IDSORC. Count each source ID-number only once. If the parameter NGROUP is "O" and the arra.v IDSORC is not input, then Ni·is·the total number of card plus tape inp\lt sources. Also, if maximum 10 calcu- lations are.being made via ISW(11) or ISW(12), add Ni pages to the total pages in Equation (4-8) above for the individual source contributions to the com- bined maximum 10. total number· of combined source concentration or deposition tables being printed (NGROUP). Do not count single sources if they are already counted in Ni" NXPNTS NYPNTS NXWYPT if maximum 10 values are not printed (ISI-1(10) -0) if maximum 10 values are printed (ISW(10) > O) 4-138 [ [ ,, L [ B L f ·-, -· L L- ·.;; ' .• ~ l [ L ' [ [ [ c [ [ ll u [ [ [. c E L C Oii the number of pages expected from the system plus other processing within the. job The above equations may not cover·everyoption in the ISCLT program and~ if the system the user is using aborts runs that maL-page, be generous with the page approximation. c. Taoe Output. '!he to~ amouut. of tape used by a problem -run depends on the type of computer, the installation standard block length for unformatted FORTRAN records •. the number· of-tape recording tracks, the tape recording density and the options and data· input to the problem run. This section provides. the user with the total number of computer words outpu~ to tape or data file and an,approximation. to the tape length used in. feet. '!ha total number of computer words output to tape is given by where I N -s N -se N . --X N -y N .. xy .· +· N (220 +N (N •N + N +1):\\ . s: . se x y xy-'J) ~ 0 ; i! option ISW(4) =-0 l N •N + N +1 ;-if option ISW(4) • 1 X y xy . - the total number of carci and I or tape input the number of seasons, NSEASN NXPNTS NYPNTS NXWYPT sources (4-ll) Add 28 to the total number of words written for UNIVAC 1100 series computers. 4-139 The user can approximate the length of tape required by !..ength (feet) where B • the number of bits per computer word. IBM 360, etc. is 32, UNIVAC 1100 series is 36 and CDC 6000 series is 60. D • the tape recording density choosen by the user or required by the I/0 device, 200, 556, 800 or 1600 bpi. (4-12) B1 • the number of words per physical tape block for unfor- matted FORXRAN records on the user's computer system. Use 224 for UNIVAC 1100 series computers. = "6" for 7 track tape or "S" for 9 track tape The values 0.75 and 6.0 inches are used assuming the interrecord gap is 0.75 and the end-of-file is 6 inches. 4.2.6 Program Diagnostic Messages The diagnostic messages produced by the !SCLT program are associated only with data and processing errors within the program and should not be confused with those produced by the computer system on which the ISCLT program is run. All messages begin with either the--word- ERROR or the word WARNING. All ERROR messages terminate the execution of the program and WARNING messages allow the program to continue. How- ever, WARNING messages could indicate data errors and should be examined thoroughly when they occur. A list of the messages are given in Table 4-6 with the probable cause of the respective message. 4-140 [ [ [ [ L. [ [ [ [ ·[ c [ [ . ... t L L [ [ [ [ [ : [ [ c [ [ [ c E D c~ c t u L ·-. .. ·- T.ABLZ 4-6 I.SCI.t WARNING AND EltROR MESSAGES l.. EBROR -·MAX: ST.ORAGE. • n, USER REQUESTED m REDUCE' NO •. OF CALC. POINTS. the: prograa. execution. is' teminated. because the rw1 required n locations. of BI.A.N'lC COMMON and only m are available. See Equation. (4-l) in Section 4.1.2 forthecoreusage equation. See, also. Equations (4-2) and (4-3) that may place additional restric- tions on the user •. 2. EBB.OR -NOMBER OF SE'I'!LING VELOCITIES FOR. SOURCE n IS ZERO. Deposi- tion is being calculated. and. the· parameter NVS on Carel Group 17 . is zero for source n. ·See NVS to the. number of settlillg velocity cat- egories and rerw1 .. ,-, __ ,-; 3. WAlUflNG. -FREQ •. OF OCCUlUENCE. 01! SPD VS •. Dill IS Not 1. 0 FOR SEASON n, PROG DIVIDES BY' xxx.x. TO·'NOBMALIZE.. the:: sum over all categories of~ the joint. frequency of occurrence of· wind speed and wind direc- tion for season n; is, not. exact:ly 1.0, and. the program normalizes the frequency distribution. by· the: factor '.ll::lCX•X; execution continues. 4. WARNING · ~ DISTANCE BE'!'WEEN SOURCE n AND POINT X, Y • xx .x, yy. y IS . LESS THAN PEBMI'J:TED. l'his is a warning mess~ge to infom the user that the program attempted to-calculate concentration or deposition at the point. xx.x,. yy.y for source n, but the d.istauce is less thau the model allows and no calculations were made, but execution contin- ues~ ... :The ueer should ignore calculations at xx.x,yy.y for source n or any source-combination including source: n •. 4-141 .............. -... ----· --·--- TABLE 4-6 (Continued) 5. ERROR-ELEVATION zzz.z EXCEEDS SOURCE EMISSION ELEVATION FOR SOURCE n, PROG. TERMINATED. If any elevation exceeds a source -emission elevation, program execution is terminated •. 6. EBROR -DISP CANNOT EQUAL 2 WHEN QFLCLIS GREATER THAN 0, OFFENDING SOURCE • n, P'ROG. TE'RMINATED. An attempt was made to rescale con- centrations that do not vary only by season. The program saves only seasonal concentration on tape and cannot rescale with source strengths that vary by wind speed and/or stability. Input all of the source data ~.a card setting DISP equel to zero and NUMS equal to the respective tape input source ID-number. The tape source will be replaced by the card source. 7. ERROR -DISP GREATER THAN 0 FOR SOURCE n, NO MORE TAPE SOURCES, PROG. TERMINATED. The program has found a source input card (Card Group 17) that indicates it is to update or delete a tape source, but it has run out of tape sources. Check your input source deck and make sure you have the correct input tape. 8. ERROR -DISP GREATER IRAN 0 FOR SOURCE n, CANNOT FL~ CORRESPONDING TAPE SOURCE, PROG. TERMINATED. The program has found an input source card (Card Group 17) that indicates it is to update or delete source n, but that source is not on the tape. Check the sequence of the input source data as they must be in ascending order of the source ID-number. Also, make sure you have the cor- rect input tape. 4-142 [ [ [ [ [ [ [ c [ [ [ D [ [ { [ [ [ L [ I c ! [ [ [ r: [ [ c [ [ c c [ [. t [ L TABLE 4-6 (Continued) 9. WARNING -HW/RB > 5 FOR SOURCE n,. PROG. USES LATERAL VIRTUAL DIST. FOR UPPER BOUND OF CONCENTILUION. (DEPOSITION) • The program is informing the user that the supersquat building wake effects option. (WAKE). on Card Group 17 was set~ to blank, "O" and the pro- gram defaulted to those equations· for: the lateral virtual distance that produce the upper bound on the concentration or deposition. The lower bound may be calculated in another run by setting WAKE -1. 10. ERROR -AVAILABLE. CORE • n, PROBLEM REQUIRES m OR MORE LOCATIONS. The program has determined that m locations of BLANK COMMON are required for the run, but onl}' n locations are available. See -Equations (4-1)., (4-2) and (t.-:3) in Section 4.1.2. 1 L ERROR :.. iw: .. NO. OF SOURCES ttCEEDED FOR NGROUP OF ISW (ll) -2 OPTION. The number of: sources the program. has input. exceeds the number the program is capable of processing under the special con- dition c, under the parameters NGROUP or ISW(ll) • "2". See Equa- tions (4-2) and (4-3) in. Section. 4.1.2 or-Equations (4-4) and (4-5) in Section 4.2.3. 12. ERROR -STACK DIAMETER < • 0 FOR SOURCE n. Stack sources require a stack diameter greater than zero. Check the order of the input -source deck .. 13. W~ING -EXIT VELOCITY IS < • 0 FOR SOURCE n, PROG. SETS TO l.OE-5 AND CONTINUES. ·The program sets a. zero exit velocity for stacks to l.OE-5, because it is used as a divisor in the plum€ rise equations. If you did not intend· to set the exit velocity to zero for no plume rise, check the offending card and the order of the input source deck. 4-143 ------------------------------------ TABU: 4-6 (Continued) 14. EBROR -SIGYO ~ 0 FOR SOURCE n. Volume sources must have SIGYO greater than zero. Check the order of the input source deck. 15. ERROR -SIGZO ~ 0 FOR SOURCE n. Volume sources must have SIGZO greater than zero. Check the order of ·the input source deck. 16. ERROR -XO ~ 0 FOR SOURCE n. Area sources must have. XO greater than ZERO. Check the order of the input source deck. 17. ERROR -SOURCE n LESS IN VALtJE '!HAN LAST SOURCE n READ. Source input deck is out of order or mi.ss punched. 18. ERRoR -DISP CODE FOR SOURCE n IS OUT OF RANGE. The parameter DISP must equal 0, l or 2. Check card and order of input source deck. 19. ERROR -TYPE CODE FOR SOURCE n IS OOT OF RANGE. The parameter TYPE must equal 0, l or 2. · Check card and order of source input deck. 19. ERROR . .;.. QFLG CODE FOR SOURCE n IS OUT OF. RANGE. The parameter QFLG . must equal 0, l, 2 or 3. Check card and order of source input deck. 4-144 [ [ [ [ [ [ [ [ r L [ [ R c .[ .r. t_; 1'. l L [ [ [ [ ['' c [ [ [ c [ [ L 4.2.7. Program Modifications for Computers other than UNIVAC 1100 Series Computers The ISCL'I program is written in the FOR'IR.AN language and uses the FOR'IRAN features compatible with standard ANSI FOR'IRAN. 'lbe program can ba implemented on most computers that meet the following requirements: • Must have the equivalent of' 65,000 UNIVAC 1110 words of executable core storage Must use 32 or more bits per-computer word Must use 4 or more characters (bytes) per computer word Must allow obj ece time dimension::Lng (FOR'IRAN) Must have a 132 column line printer '-'·' ·. ,., '·"·:· . . . !he program also· assumes: the. iriput card derl.ce is iogical unit . ' ··. ', . . . . S, the output printer is: l,c,g:Lc.al unit-6, the input tape unit is logical unit 2. and the output. tape· unit is· logical unit. j. However, all but. unit S can be-overridden with an alternate·· unit· number by inpue option. If the user must change unitS to an-alternate number for the··card input device., he must' change the· variable IUNT in. the main: program.. This vari- able appears after the input comments· section in the· FORTRAN listing of the main program •. The·user may also adjust the computer core required by the pro- gram by reducing or increasing the dimension (size) of BLANK COMMON in the program. This is the first statement in· the main program and, if changed,:. the user must also change the value of the variable IEND in the main program. The variable IEND appears after the input comments section in the main program. Also, the user must change the value of E in Equations (4-l), (4-2), (4-3), (4-4) and (4-5) in the body of this text. Program capabilities can be severly restricted if the size of BLANK COMMON is reduced. 4-145 It is not possible to give all changes required to implement this program on all computers. However, changes necessary to implement this program on IBM and CDC medium to large scale computers are given below: Changes required for use on IBM 360 or above computers: • Change the call ACOS to ARCOS in subroutine DISTR on the 17th line Changes required for use on CDC 6000 or above series computers: • Add the following line on the first line of the main pro- gram PROGRAM ISCLT (INPUT, OUTPUT, '!APE nn, TAPE mm) Where '!APEtm and TAPEmm are the names used on the tape REQUEST card and nn and mm are the logical unit numbers used to reference the input arid output tapes, r-espectively. See the CDC FORTRAN Extended Reference Manual for your machine for variations in this card and alterations of this card by the LGO runstream card • The program uses the END= clause in the read statement for card source input data READ (IONT, 9023, END = 1120) NUMSl, DISP. etc. If your FORTRAN does not recognize this statement, remove the ",END • 1120" from this statement on line 612 of sub- routine MODEL. Also, if this clause is remc. ··ed from this 4-146 [ [ [ [ .. [ [ [ c r L [ [ 0 [ E { c L [ L c [ . r [ ' r [ [ c [ [ [ 0 c [ [. . c .. ' t E ~ L - ~-- -~- -~ statement, the user must insure che program never trys to read beyond the last input card source or the program will error off. Also, the END-clause is used in some of the tape read statements at program listing sequence Il1llilbers -50107820,. 50205430, 50205920 and 50205990. If your FORTRAN does not recognize· the END• clause, it must be removed. from chese statements. The removal of the END-clause from these statements will eliminate the capabilitT of the ISCLT program in some cases to position a tape to the correct file via the input parameter NOFILE when. multiple passes are. required through the tape data. This problem can be overcome by writting the ISCLT out- put dat&. to a mass-storage f~e and then copying the. mass- storage· file to an output tape file when the program has terminated •. •. ··.Two succ:.essiva· fi.le m.ar:tts:·a.re: Written at:-the end of exe- cution •.. The program.U:ses·th~·FORTBAN BACKSPACE command to .. baC.k. the: ()Utput tape·. back ove:c the. last end of file mark. wri.tten. If your FORTRAN BACKSPACE command does not back over end of file marks, the tape will be left positioned after the second end of· file mark at the end of exec:.ution. However, if. the program must make multiple passes through the tape for the output reports, the tape . will be left positioned after the first file mark at the end of the data set. The program will make multiple passes through the data file, if Condition c under ISW{ll) orNGROUP does not apply to ;he run and Condition a was selected {see Section 4.1.2.a). 4-147 ---··--·-·------·-,_. _____ -------- [ L L [J [ [ [ E E [ REFEIWJCES Barry, P. J. 1 1964; Estimation of downwinci concentration of airborne effluents discha.rgeci in the neighborhood of buildings. ~ Report No. 2043, Atomic. Energy of C.mada, Ltd., Chalk River, Ontario. Briggs,. G~ A., 197l: Some· recent .malyses of plume rise observations, !!!. Proceedings of the Second International Clean Air Congress~ Aca- demic Press, New York. Briggs, G. A. 1 1973 :· Diffusion estimates for small e::nissions. ATDL Con- tribution File No~ (Draft) 79, Air Resources Atmospheric Turbu- lence ~d Diffusion. Laboratories, Oak Ridge, Tennessee. Briggs, G. A., 1975: Plume rise predictions.. In Lectures on Air Pollu- tion attd Environmental Impact Analysis, American Meteorological Society, Boston,. Massachusetts~ Budney, L. J. ,. 1977:-Guidelines: for· air qual.ity maintenance planning and. analysis, Volume. 10 (revised):. Procedures for evaluating air qual,...· ity impact of· new stationary· sources·. EPA Report No. EPA-450/4-77-. 001; U. s·~. Ei:LV±rOmiiental. Protectiou Agency, Research Triangle Park, North: Carolln&. ·· · · · Cramer, H. E., et: al.·,. -1972:::: Development. of. dosage mociels and. concepts. Final. Repott u:r:i.d.er Contract: DA.All09-67:..C-0020 (R) nth the U. S. A.:1:my, Deseret Test Center Report DTC-TR.-609, Fort Douglas, Utah. Dumbauld~ R. K .. a:nci .r.: R. Bjorklund, 197'5: NASA/MSFC multilayer diffusion mociels anci computer· programs. --·version 5. NASA Contractor Reuort No. NASA CR.-2631, National Aeronautics and Space Administrat:ion, George C.. Marshall Space Canter, Alabama. Dumbauld, R. K•, J. E. Rafferty·and H. E. Cram.er1 1976: Dispersion-deposi- tion from aerial spray releases. Prenrint Volume for the Third Symposium on Atmospheric "Diffusion and Air Qciil.i£!, American Met- eorolosic.al Society, Boston, Massachusetts. Environmental Protection Agency," 1977: User's manual for single source (CR.S'rEB.) model. EPA Report No. EPA-450/2-77-013, u. s. Environ- mental Protection Agency,. Research Triangle Park, North Carolina • .. Halitsky, J., 1963: Gas diffusion near buildings. ASHRAE Transcrillt 69, Paper No. 1855, 464-485. Halitsky, J., 1978: Comment on a stack downwash prediction formula. !!:!.· ~·, _g, 1575-1576. 5-1 Holzworth, G. C., 1972: Mixing heights, wi:ld speeds and potential for urban air pol1utiou throughout the contiguous United States. Publication No. AP-101, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina. Huber, A. H. and W. H. Snyder, 1976: Building wake effects on short stack effluents. Preprint Volume for the Third Svmoosium on At:mosoheric Diffusion and Ai.r Quality, American Me:teorological Society, Boston, Massachusetts. Huber, A. H., 1977: Incorporating building/terrain wake effects on stack effluents. Preorint Volume for the Joint Conference on Anplica- tions of Air Pollution Meteorology, American Meteorological Society, Boston, Massachusetts. McDonald, J. E., 1960: An aid to computation of ter.minal fall velocities of spheres. J. Met •. , 1:1• 463. National Climatic Center, 1970: Card Deck 144 WEAN Hourly Surface Observa- tions Reference Manual 1970 t available from the National Climatic Center, Ashevil1e, North Carolina 27711. Sherlock, R. H. and F. A. Stalker, 1941: A study of flow phenomena in the wake of smokestacks. En2. Res. Bull. No. 29, Department of Engi- neering, University of. Michigan, Ann Arbor, Michigan. Slade, D. H. (ed.), 1968: Meteorology and Atomic Energy. Prepared by Air Resources Laboratories,,. E~SA, for u~. s. Atomic Energy Commission, 44.5. . .. Turner, D. B., 1970: Workbook of Atmospheric Dispersion Estimates. PHS Publication No. 999-AP-26, U. S. Department of Health, Education and Welfare, National Air Pollution Control Administration, Cin- cinnati, Ohio. Turner, D. B. and A. Busse, 1973: User's guide to the interactive versions of three point source dispersion programs: PTMAX, PTDIS and PTMPT. Draft EPA Report, Meteorology Laboratory, U. S. Environmental Pro- tection Agency, Research Triangle Park, North Carolina. Vincent, J. A., 1977: Model experiments on the nature of air pollution transport near buildings. ~· !::.!.·, 1:1(8), 765-774. 5-2 u [ [J [ [J [J n u D ·B ' ·[· i .. ! i 0 [ [ [ [ . i [ ll'-.i t [ l [ [ [ 0 [ c [ .. u 6 [} L Oat& . Chief, Environmental Applications Branch Meteorology and Assessment Division {M0-80) U.S. Environmental Protection Agency RESRCH TRI PK, NC 27711 r·would like to receive· future. revisions to the User• s GuideJor, . .rsc, .. Vc);l~ I. and. Vol. H. · Name ~----------~---------------------------- Address -------------------------------- City----------State: ___ ___;Zip _____ _ ,. Phone (Optional) {_)