HomeMy WebLinkAboutAPA25031-1 -
SUSPENDED SEDIMENT AND TURBIDITY
SETTLING COLUMN STUDY
1184
PREPARED BY
DRAFT REPORT
NOVEMBER 1984
SUSITNA
HYDROELECTRIC PROJECT
R&M CONSULTANTS.INC••NO''''••••••__••~--..._......v ••_.
::ALASKA POWER AUTHORITY =.J
1IllBB1-!'IIJMC1
SUJJ;ITNA JOINT VENTURE
UNDER CONTRACT TO
TK
1425
.sa
A23
no.250J
I}{]&OO~&c §lID&®OO
S itna Joint Venture
Do ument Number
M14/15 1
~
tYJ5
"S?
A;23
nD-~503
SUSITNA HYDROELECTRIC PROJECT
SUSPENDED SEDIMENT AND TURBIDITY
SETTLING COLUMN STUDY
1984
Report By:
R&M Consultants,Inc.
Under Contract to:
HARZA-EBASCO SUSITNA JOI NT VENTURE
Prepared for:
ALASKA POWER AUTHORITY
DRAFT REPORT
November 1984 ARLIS
Alaska Resources
Libra.ry &InformatIon ServIces
Anchorage,Alaska
-
M14/15 2
TABLE OF CONTENTS
Section Title Page
4.0
3.0
2.0
.......
I~............
~
~
ooo
I!)
I!)
I"
M
M
List of Tables
List of Figures
Acknowledgments
1.0--INTRODUCTION
1.1 Objectives
1.2 Scope of Work
METHODS
2.1 Setting Column
2.2 Sampli ng Proced u res
2.3 Field Analysis
2.4 Laboratory Analyses
RESULTS
3.1 Water Temperature
3.2 Total Suspended Solids and Tu rbidity
3.3 Particle Size Distribution
3.4 Mineralogy
3.5 Settli ng Velocities
DISCUSSION
REFERENCES
APPENDIX
ii
iii
v
1
1
3
4
6
7
23
26
28
31
32
49
53
54
ARLIS
--i-
Alaska Resources
Library &InformatIOn ServIces
Anchorage,Alaska
M14/15 3
LIST OF TABLES
-Number Title Page
-Settling Column Run #1 102.1
Water Quality Paramenters
2.2 Settling Column Run #2 11
-Water Quality Parameters
2.3 Settling Column Run #1 12
{P"f!&
Total Suspended Solids and Turbidity
2.4 Settling Column Run #2 13
Total Suspended Solids and Turbidity
3.1 Percent Composition of Mi.nerals 34
in Water Samples
-
-ii -
.....
-
-
"~
-
~-
M.14/154
Number
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
LIST OF FIGURES
Title
Sampling Location and Weather Station Site
Mean Daily Air Temperatures,Daily
Precipitation,and Streamflow at Watana
Water Sampling Apparatus
Water Samples in 5 Gallon Buckets
Field Analysis of Water Samples From Column
Photograph of Settling Column Run #1
at 0 Hour
Photograph of Settling Column Run #1
at 96 Hours
Photograph of Settling Column Run #2
at 0 Hour
Photograph of Settling Column Run #2
at 96 Hours
Settling Column Water Temperatures
Stokes'Law for Fall Velocities
Turbidity vs.Time
Average Turbidity Values vs.Time
Total Suspended Solids vs.Time
Turbidity vs.Suspended Solids
Turbidity vs.Suspended Solids From
Run #1 and Run #2
Total Suspended Solids vs.Sample Depth
Figure A-1 from Reservoir Sedimentation
(R&M,1982b)
Figu re A-2 from Reservoi r Sedimentation
(R&M,1982b)
-iii-
Page
14
15
16
17
18
19
20
21
22
35
36
37
38
39
40
41
42
43
44
c__
M14/15 5
~
LIST OF FIGURES
,~Number Title Page
3.11 Particle Size Analysis fo,'Run #1 45
.-3.12 Particle Size Analysis for Run #2 46
3.13 Percent Removal of Suspended Solids 47
3.14 Percent TSS vs.Actual Settling Velocity 48
4.1 Turbidity vs.Time,Susitna River 1981 51
Settling Column Study
4.2 Tu rbidity vs.Suspended Sediment Concen-52
I~tration,Historical U.S.G.S.Susitna
River Tu rbidity Data
-
-
..-
-
-iv-
..-
~-
.....
I~
..-
M14/15 6
ACKNOWLEDGMENTS
This report has been prepared for the Harza-Ebasco Susitna Joint Venture
under contract to the Alas ka Power Authority.I am grateful for the
assistance provided by the Watana Camp staff and management.Assistance
with coordination of this study was provided by Tom Stuart of
Harza-Ebasco and Jeff Coffin of R&M Consultants.I also thank Jeff
Koenings of ADF&G FRED Division,Michael Bayard of Particle Data
Laboratories,and Dan Bacon of Chemical and Geological Laboratories for
their detailed explainations of procedures and clarification of data.
Carl Schoch
-v-
M14/1S 7
-
1.0 INTRODUCTION
1 .1 Objectives
This report presents the sediment settling characteristics and particle
size data resulting from settling column experiments on Susitna River
water samples.This analysis is pa~t of the glacial lake suspended
sediment and turbidity study which will provide data and information
necessary to calibrate the suspended sediment subroutine of the
DYRESM reservoir/temperature model.In addition,the study will
further define the relationship between total suspended solids and
-t tu rbidity in a glacial river,and will quantify the physical and
chemical characteristics of Susitna River suspended sediment.This
information will be used to analyze with-project reservoir and outlet
tu roidities as well as supplementing previous studies of reservoir
sedimentation and estimates of reservoir trap efficiencies.
1.2 Scope of Work
-
A settling column was constructed at Watana Camp and erected inside
the warehouse.A 265 liter water sample was collected from the
Susitna River and transferred to the collHTln.The sample was moni-
tored for 4 days.At time intervals of 0,4,6,12,24,48,72,and
96 hours,1 liter samples were extracted from each of three ports.
These subsamples were analyzed for tu rbidity,pH,conductivity,
dissolved oxygen,and temperature.The samples were then pre-
served for subsequent laboratory determination of total suspended
solids.Particle size and petrographic analyses were conducted on
s.amples extracted from the top port at 0 hour and 96 hours.Air
temperatu re outside the column was recorded at the time subsamples
were extracted from the column.Upon completion of the first settling
column run,the column was thoroughly cleaned.A second river
sample was obtained,placed in the column and also monitored for 4
-1-
-------;..._------------------..,...-----------------------
-
[~
-
-
M14/15 8
days.The same parameters were measured at the appropriate time
intervals.
Discussion of the individual parameters analyzed from both the river
samples and column samples are included in the following sections.
-2-
......
M14/15 9
2.0 METHODS
2.1 Settling Column
The settling column used for this study was constructed from three
sections of transparent acrylic tubes,each 4 feet long and 1 foot in
diameter,with a wall thickness of 1/8 inch.One hole was drilled
through the wall of each section.A through-hull marine fitting was
used to provide the seal around a length of plastic tubing inserted in
the drilled hole.The plastic tubing extended 3 inches from the wall
towards the column center.This was to ensure that effects by the
wall on settling velocities would not bias the sample du ring
extraction.The interior orifice of the tubing was 1 inch below the
port and oriented downward at a 45 degree angle.The tubing on the
exterior side of the column extended within reach of the ground
where it was sealed with a clamp.
A hole was drilled in the base plate and taped to allow for a valve
fitting.This valve would facilitate draining of the column and aid in
thorough flushing of residual sediments between sample runs.The
acrylic tubes were cemented together and the base plate of 3/8-inch
acrylic was fastened to one end.The total length of the column is
12-feet with sampling ports located at 2-feet,6-feet and 10-feet from
the top edge.The true depth of the sample would depend on the
measured initial height of water within the column.
The extreme height to width ratio caused the column to be rather
unstable when placed vertically on a timber platform.Therefore the
design called for stabilizing guy wi res.The acrylic tubes and the
joints bonding them together were not designed to withstand the
requi red stress for stability,so reinforcement consisted of th ree
1-inch x 2-inch boards,8 feet long,strapped to the outside of the
column wall.The boards were fitted with eyebolts,through which
steel guys were th readed.The cables were anchored to floor
-3-
--
-
M14/15 10
timbers.Tension was applied to the cable and the downward force
acted di rectly on the platform rather than on the column.Lateral
tension was absorbed by the nylon bands holding the boards to the
column wall.This nylon banding distributed the stress around the
circumference of the column rather than concentrating it at any single
point.Sufficient tension could be applied in this manner to prevent
any lateral sway of the column.
-
.....
-
2.2 Sampling Procedu re
,I JIt.....-'
(,V
The Susitna River stage was monitored at the Watana streamgage so
that samples could be obtained at flows exceeding 15,000 cfs.Figure
2.1 shows the locations of weather recorders at Watana,Denali and
Kosina in the upper Susitna River Basin,and the
stre-amgaging/sampling site at Watana.Figure 2.2 presents graphs
showing mean daily air temperature and precipitation from the weather
stations,and the streamflow hydrograph at Watana prior to and
during the suspended sediment sampling.Two separate samp1es were
collected.The first sample was taken on July 31,1984 at a river
flow of 23,500 cfs during a receding hydrograph and the second
sample on August 6,1984 at a flow of 23,000 cfs.The second sample
had a particularly high concentration of sediment due to a warm
period and substantial rainfall at Watana and Kosina.Warm air
temperatures du ring the preceding week increased the glacial melt
rate which subsequently increased the volume of fine sediments in the
river.The heavy rainfall increased the tributary runoff,causing
erosion and adding debris and sediment to the river.
River samples were collected near the proposed Watana damsite at the
streamgaging and stage recorder site (Figure 2.3).Sampling was
conducted near mid-channel.This section of channel represents
relatively high velocities and sediments are probably well mixed
vertically through the water column.Sampling was conducted from a
boat held stationary at this point on the cross section.Ten samples
'"
-4-
M14/1511
were taken at equal -spaced intervals (0.1
electric pump to fill buckets at the surface.
combined in the column and mixed comprising
sample.
x depth),using an
These samples were
the depth -i nteg rated
A separate depth-integrated sample was extracted in order to measure'
the following parameters:
Water Temperatu re
Conductivity
pH
Dissolved Oxygen
-
-
This water quality data is presented in Tables 2.1 and 2.2 for each
sample respectively.
From this river sample,a 1 liter subsample was retained for total
suspended solid (TSS)"and chemical oxygen demand (COD)analysis."
A second 1 liter subsample was preserved by freezing for subsequent
phosphorus analyses.
A third 1 liter subsample was drawn for determination of particle size
distribution and a petrographic anatysis.
The buckets of individual point samples were transferred by helicop-
ter to Watana Camp (Figure 2.4).The column was filled and a
circulating pump mixed the sample for at least 1 hour.Samples were
extracted from each port at the following hour intervals:.
,-
o Hour
3
6
12
24
48
72
96
The 0 hour corresponds to the time when the circulating pump was
turned off.
-5-:
M14/15 12
2.3 Field Analysis
Prior to sampling from the column the height of the water within the
column was noted.This would establish ·the depths of the sample
ports.At the appropriate time intervals,1 liter subsamples were
extracted from each port and the following parameters were measured
(Figure 2.5):
Water temperatu re
Dissolved oxygen
Conductivity
pH
Turbidity
Water temperature was determined using a standard mercury
thermometer.Dissolved oxygen and conductivity were measured with
Yellow Springs I nstruments electronic meters.A VWR electronic pH
meter was used to measu re the pH.A Hach,nephelometer
(turbidimeter)was used for turbidity measurements.All electronic
instruments were calibrated or standardized as per manufacturers
instructions prior to measurements.
Water temperature,0.0,conductivity and pH are presented in Tables
2.1 and 2.2 for each run respectively.
The subsamples were transferred to bottles and stored on ice in a
cooler for shipment to the lab for analysis of total suspended solids
(TSS).In addition to the 3 subsamples at each time int~rval,
separate subsamples were extracted from the top port at 0 hour and
96 hours for subsequent shipment to a laboratory for determination of
particle size and mineralogy.Figures 2.6 to 2.9 are photographs
showing the settling column at the beginning and end of each run.
-6-
f .......p.
-
M14/15 13
2.4 Laboratory Analysis
Chemical and Geological Laboratories of Alaska,'nc.In Anchorage
conducted the analyses of total suspended solids concentrations from
the river water and settling column samples,and of chemical oxygen
demand (COD)for the river samples.These data have been
summarized in Tables 2.3 and 2.4.
Samples from the first run of the settling column,which began on
August 1,1984,were received by the lab on August 2 and August 7.
Samples from the second run which began on August 6,1984 were
received on August 9 and August 13.Determination of total
suspended solids (TSS)was conducted according to method #209 from
V Standard Methods for the Examination of Water and Wastewater (15th
ed ..1980).Sediment particles are initially suspended in a known
quantity of water which is filtered through a glass fiber filter of 0.45
micron mean pore diameter.The non-filterable sediment is then dried
and weighed to get a mass concentration of solids per unit volume of
fluid usually expressed in milligrams or grams per liter.
Phosphorus analyses were conducted by the Alaska Department of
Fish and Game,FRED Division,in Soldotna.Values for the following
were requested:
Organic particulate phosphorus
Inorganic pa rticulate phosphorus
Ortho-phosphorus
Total phosphorus
Organic dissolved phosphorus
As of October 1984 the following data have been received:
-7-
_______________---0 '--_
M14/15 14
Run #1
July 31,1984
(mg/I)
Run #2
August 6,1984
(mg/I)
Total Phosphorus
Ortho-Phosphorus
Dissolved-Phosphorus
T ota I Pa rticu late-P
118.7
15.9
16.9
101.8*
497.6
77.1
82.1
415.5*
analyses are presented as the
sample and the percentage of each
-~
-
*Difference between Total-P and Dissolved-P
The remaining data are pending further'analysis of particulate phos-
phorus.
Particle size distribution,petrographic analyses and microphotography
of the river and settling column samples was conducted by Particle
Data Laboratories in Elmhurst,Illinois.Particle size analysis were
'performed using the well established electrozone method which has
proven satisfactory in previous and on-going glacial lake sediment
studies (R&M 1982).This method produces a good combination of
high resolution,size range and sensitivity.Electrozone analysis is
based on a uniform suspension of particles in an electrolyte.Single
particles flow through a small orifice simultaneously with an electric
current.The resulting sequence of particle pulses are electronically
processed.The amplitude of each pulse is proportional to the
particle volume.Particle diameter is the dimension specified for the
electrozone size and refers to the equivalent spherical diameter,or
the diameter of a sphere of equal volume as the measured particle.
Particle size distribution was provided both by volume and by count.
The resulting data and significance of the distributions are discussed
in the next section of this report.
The results of the petrographic
mineralogic content of the sediment
-8-
,~
M14/15 15
mineral present in the respective samples.
discussed in following sections.
This will also be
-
"""'
Microphotographs of each sample were taken at 100x and 400x in
order to show the relative size and shape of a representative col-
lection of pa rticles.
The complete data record from Particle Data Laboratories is included
in the Appendix.
-9-
,~
M14/15 16
,-~
Table 2.1
.,...Settling Column Run #1
Water Quality Parameters
,~
COD
Water Dissolved Conduc-_(mg/I)
Tempera-Oxygen tivity Total/
ture (CO)(mg/I)CjJmhos)pH Filtered
Susitna River 11.5 90 20/16(7/31/84)
o Hours
Top 15.2 9.0 103-Middle 15.0 9.0 104
Bottom 15.0 8.9 100
3 Hours
Top 17.0 8.9 110
Middle -16.0 9.0 107
Bottom 15.5 9.0 105
~
6 Hours
.Top 17 .5 9.0 110
Middle 16.5 8.9 106
Bottom 15.5 8.8 105
12 Hours.....Top 19.0 8.1 115 7.38
Middle 17.5 9.0 111 7.75
Bottom 16.0 8.8 106 7.74,.,..,
24 Hours
Top 20.0 8.3 117 7.26
Middle 19.5 8.4 116 7.46
Bottom 18.0 8.7 110 7.50
48 Hours
~Top 20.0 8.2 119 7.26
Middle 20.0 8.3 120 7.37
Bottom 18.5 8.4 111 7.45
72 Hours
Top 20.0 7.9 120 7.24
Middle 20.0 7.8 117 7.41
Bottom 18.0 8.2 111 7.41
96 Hours
.~Top 18.6 8.2 119 7.37
Middle 18.4 8.4 115 7.47IBottom18.0 7.8 111 L39!
-10-
M14/15 17
-11 -
M14/15 18
r-
Table 2.3
Settl i ng Col umn Run #1
Total Suspended Solids and Turbidity
Avg*
TSS Avg Percent Turbi.dity Avg
(mg/D TSS Remaining (NTU)Turbidity
Susitna River 181
~(7131/84)
o Hours
Top 117 172
Middle 146 124 100 174 165
Bottom 108 148
3 Hours
Top 120 134
Middle 115 119 96 154 141
Bottom 122 136
6 Hours
Top 63 144
Middle 105 93 75 125 138
Bottom 111 144
12 Hours
Top 49 100
Middle 85 78 63 118 115
Bottom 100 126
24 Hours
Top 34 90
Middle 64 57 46 108 101
Bottom 74 104
48 Hours
Top 32 90
Middle 59 52 42 110 104
Bottom 66 112
72 Hours
Top 34 76
Middle 48 50 41 112 103
Bottom 69 120
96 Hours
Top 38 90
Middle 49 48 39 94 96
Bottom 56 104
..Average TSS at Time (T)x 100F"'9 *Average Percent Remaining =
Average TSS at Time 0
-12-
~
M14/15 19
Table 2.4
Settling Column Run #2
Total Suspended Solids and Turbidity
Avg*
TSS Avg Percent Turbidity Avg
(mg/I)TSS Remaining (NTU)Turbidity
Susitna River 410
(8/6/84)
o Hours.....Top Part 320 308
Middle Part 355 342 100 308 304
Bottom Part 350 296
~3 Hours
Top 230 304
Middle 300 283 83 280 300
Bottom 320 316
-
6 Hours
'f~Top 190 280
Middle 260 243 71 316 291
Bottom 280 276
12 Hours
Top 160 232 "(Middle 245 215 63 240 228
""'"Bottom 240 212
24 Hours
Top 145 244
~Middle 220 190 55 280 268
Bottom 205 280
48 Hours
Top 155 240
Middle 175 167 49 244 241
Bottom 170 240
72 Hours
Top 93 220
Middle 122 112 33 268 247
Bottom 120 252
96 Hours
Top 78 204
Middle 106 101 .30 208 210
Bottom 119 220
.,Average TSS at Time (T)x 100*Average Percent Remaining =.
Average TSS'at Time 0
-13-
---------.-...._-------_.....'"~._-~_..---~~....-
M14/15 19
PRINCE WILLIA M
SOUND
LOCATION MAP
~II ~v_
O~~o
f..l(SAMPLING LOCATION AND WEATHER STATION SITES
j~v 20 0 20 60
FIGURE 2.1 i !~SCALE IN MILES
---
-
-
R&M CONSULTANTS,INC.
•MOIN.....a.aOLoc.sTB P\..a-N....A.•.....ve..a ••
lIfJlJW ~IElfJj?:J~®
SUSITNA JOINT VENTURE
14
MEAN DAILY AIR TEMPERATURE AND PRECIPITATION
FROM WEATHER STATIONS IN THE UPPER SUSITN'A BASIN
-I
JUI.15
I
"'UL II
I
A\II.I
Time (Days)
,
AUG If
R&M CONSULTANTS,INC.
ENC.N£ERS GEQLCGtSTS PI.o.ANNEt=I!S SURVEVOt=lS
FIGURE·2.2
15
IKfJjtJliJ ~IEJBi1~&®
SUSITNA JOINT VENTURE
--
M14/15 19
-
Water Sampling Appa ratus
on August 6,1984 at a flow of 23,000 cfs
FIGURE 2.3
R&M CONSUL.TANTS,INC.
ENGINEERS GEOr...CGIST&PLANNERS SURVEYORS
16
DllM~~JE~£ij~@@
SUSITNA JOINT VENTURE
-----_.---_._---_._-------------------
M14/15 19
.....
-
-
\r-'
Water Samples in 5 Gallon Buckets
Awaiting Transfer to Watana Camp
FIGURE 2.4
-~:;;----------
R&M CONSULTANTS INC
ENOtNEERS GEDL,DG'ST&PL,...NNEAlS S~RVIiVD.:
17
n!;1,'.ID /'E')~,'/j'Q'~,an:':ID 8J.@{fJ11!m,"U13ifillil~J ~~~@Pt1?i@
SUS1TNA JOINT VENTURE
-'~-----_.--_.__.~------_._~..._~-------_.._--_..------_._---
M14/15 21
-Field Analysis of Subsamples From Column
FIGURE 2.6
-!~:;:;----------
~&M CONSULTANTS INC
ENG'NEERS OEIQLQOtST&PLANNERS &~R\1EVaR~
18
ODJJWJ ~JEfJffil~(fj@
SUS/TNA JO/NT VENTURE
-
-
-
M14/15 22
Settling Column Run #1
Sample from July 31,1984 at 0 Hour
FIGURE'2.8
R&M CONSULTANTS INC
ENGtNIE£As OEQL.QGtSTS PL....NNERS SlJRIJEVOA':
19
lKlJJlrJUJ d IEllJlJ~fC@
SUSITNA JOINT VENTURE
•••'••__,•__"_~""'~J~'-_"_.'__•_._..__~-_,......._.k ·~,~_·_.....~_~'__•··_
M14/15 23
Settling Column Run #1
Sample from Jl:/}Y 3]-!1984 at 96 Hou rs
FIGURE 2.7
~o;;-----------
R&M CONSULTANTS INC::
ENGINEERS OEO~DGIST&PL.ANNE-RS Sl.,RVE"'Dt=I~
20
l1fjIilfJUJ ~IEiJbJ~~(g)
SUSITNA JOINT VENTURE
----_._-------------------------------------_.._..-_.,_.---_....-.
M14/15 24
Settling Column Run #2
Sample from August 6,1984 at 0 Hou r
FIGURE 2.8
R&M CONSULTANTS INC
ENGINEERS Gfi:CLDGIST&PLANNERS SlJRVIEYC":
21
~~@7J m.:I ~.®~@~fii:lff]lUill1~J ~Ww,@~tW
SUS/TNA JO/NT VENTURE
.-
.-
i'
--
·_------------------------_.~--_.'-'-'-'~---
1\114/15 25
Settling Column Run #2
.$ample from August 6,1984 at 96 Hours
FIGURE 2.9
-
R&M CONSULTANTS INC
£NGtNEEJ:lIS OECLQGISTS PLANNEI:llS S~AVEVOR:
22
"*i
11rl ~lKlI.'If rJ ~."~:J))m.@..~tmJJ1lifll.{;J J;1!2P1A1t£H~\W
SUS/TNA JOINT VENTURE
M14/15 28
3.0 RESULTS
....
I
3.1 Water Temperature
Ideally,the temperature of the water sample within the settling
column should approximate the conditions of the river/reservoir
system.This type of temperature control,however,proved to be
impractical with a column 12 feet high and exposed to ambient ai r
temperature.The column was placed indoors to avoid the direct
influence of solar radiation but temperature variation could not be
totally avoided.The effect of fluctuating air temperatures is shown
in Figure 3.1.
Concerns about temperature control of the water sample stem from the
potentially significant effects of the fluid temperature on fall velocity
and physical/chemical characteristics of sediment particles.The
settling column was kept as cool as possible.The large hangar-type
door on the east side of the Watana Camp warehouse was kept open
during the experiments so that air could circulate and moderate the
column temperatures,especially near the warehouse ceiling.On
sunny days the air temperature near the top of the column increased
sharply.Water temperatu res subsequently increased relative to the
height above the ground.During the first run the temperature
gradually increased about 5°C near the top port over the fou r day
test period.Sunny weather during the second run caused the water
temperatu re to increase about GOC at the top port and 3.5°C at the
bottom port.The graphs in Figure 3.1 show the stratification of
temperatu re over time for both samples.Note that the temperatu re of
the bottom samples never exceeded that of the middle and upper
samples.If this had occurred,then thermal circulation could have
been expected to alter the rate of settlement.The temperature
pattern within the column remained relatively stable throughout each
experiment,so no circulation should have occu rred.
-23-
M14/15 29
Water temperatu re will generally affect fall velocities according to
Stokes'law:
w =gd 2
18
(l -l )s
v
Where:w =
g =
d =
1 =s
1 =
v =
Fall velocity (m/sec)
9.8 m/sec 2
particle diameter (m)
particle density
density of water at temperatu re Toe
kinematic viscosity at temperature Toe
..-
i
The variables affected by water temperature therefore are water
visc_osity and density.Fall velocities were computed for water
temperatures at 5,10,15 and 20 oe,corresponding to temperatures
measured in the column and to temperatures which could be expected
in the proposed river/reservoir system.Figure 3.2 shows the fall
velocities for various temperatures and particle densities according to
Stokes'Law.
The graph shows a greater variation in fall velocity with respect to
temperatu re than to specific gravity of the particle.At a fixed
temperatu re of 5°e the fall velocity ranges from about 1.42 x 10-7
m/sec for a 0.5 micron particle with a density of 2.6,to 1.95 x 10-7
m/sec for the same size particle with a higher density of 3.2.The
same 0.5 micron particle of density 2.6 will fall at a rate of
2.2 x 10-7 m/sec at a temperature of 20o e.
The range in particle densities from 2.6 to 3.2 is relatively high
compared to the widely accepted average of 2.65.This range
represented the mineral densities of the suspended sediment samples
found by petrographic analysis (Section 3.4).
-24-
-
....
M14/15 30
The following concepts should be considered when reviewing water
temperature data and settling velocities:
1.An increase in water temperatu re will increase the solubility of
particles.Minerals will generally dissolve more readily in warm-
ing water,decreasing the particle size,and precipitate in
cooling water,increasing the particle concentration.
2.An increase in water temperature decreases the water viscosity.
Particles will generally fall faster in warmer water.
3.An increase in water temperature decreases the specific gravity
of water.Warm water is less dense than cool water down to
4°e.Below 4°e the water density decreases as it cools.
4.An increase in water temperatu re increases the rate of chemical
reactions,generally on the order of 2-3 times for every 1Qoe
increase in temperature.
5.An increase in water temperature will increase the Brownian
Movement.This pertains specifically to colloidal suspensions,to
which Stokes'Law does not apply,but this was essentially the
condition in the column after about the 48 hour interval.When
particles in a colloid are viewed under a microscope they are
seen as tiny specks of light moving in random di rections.It is
believed that this motion is due to a bombardment of the
suspended particles by molecules in the solution.The molecules
in a liquid move at relatively high speeds.When they collide
with a larger particle (of colloidal size),the particle is moved in
one direction or another.The net result is a zigzag motion.
This Brownian Movement is a stability factor of colloidal
solutions.The particles are kept from settling out because of
this ceaseless molecular bombardment.An increase in temp-
erature also increases the rate at which molecules move,which
-25-
-
~-
""'"
-
,-
..-
M14/15 31
increases the number of collisions as well as the force of impact.
If follows then,that in warm water the Brownian movement will
increase and subsequently larger particles will remain in susp,'m-
sion for longer period of time.
6.An increase in temperature will most likely decrease particle size
!
by brea king down agglomerate~.The petrographic analysis
shows a high concentration of colloidal silica.These gel-like
pa rticles act to bond or cement together relatively la rge pa rti-
c1es.In doing so,the ratio of ,specific gravity to particle size
decreases.In cold water,a heavy mineral such as magnetite
with a high specific gravity of 5.2 may agglomerate to several
larger particles of quartz (s.g.2.6)so that the average density
of the agglomerate is less than the original particle of magnetite.
The relative diameter of the particle has now increased and the
settling velocity will therefore decrease with respect to the
original grain of magnetite.When the temperature of the fluid
medium is increased,the silica gel cementing the particles
together may break down and the agglomerate will separate into
the constituent particles.
3.2 Total Suspended Solids and Turbidity·
A water sample was extracted from each port of the settling column at
the specified time intervals.Usually the tu rbidity was in excess of
the range the turbidimeter was capable of measuring.In order to
standardize the procedure and minimize errors in measurement,all
samples were diluted by a factor of 4.All the samples required
dilution to some extent and a great deal of uncertainty would have
resulted if the turbidity of a 50%dilution was compared to a 25%
dilution .
As indicated by Figure 3.3,turbidity values were fairly erratic
initially when the sample was well mixed.After approximately",24
-26-
.-
-
M14/15 32
hour's for the first run the values stabilized at about 100 NTU and
decreased little for the remaining 72 hou rs.Average tu rbidity values
were,relatively ordered at the beginning of the second run and then
became erratic at 12 hours and did not appear to stabilize for'the
duration of the run.However,the general trend is similar to run #1
as the averages indicate in Figu re 3.4.Note on this graph the
higher values of turbidity for the se,cond run.Most values for run
#2 are over twice those of run #1.These higher turbidities are due
to a higher concentration of total suspended solids (TSS).
Figure 3.5 shows the plot of TSS versus time for the two runs.Run
#1 again shows an initial erratic pattern which stabilizes after 12
hour's.Run #2 appears to have stabilized immediately,perhaps due
to the relatively high concentration of coarse sediment.Values which
appear anomalous can be attributed to the initial instability of
sediments in suspension and also to the variation in concentration of
particles,not only with depth but also horizontally across a section of
the column.Varying concentrations of sediment could be seen as
intermixed swirls of dark and lighter colored bands when viewed
through the graduated cylinder,indicating that turbidity and
sediment concentration,were probably not uniform in any area at any
time in the column.
The graphs show the steep initial slope indicating a major reduction
of sediments within the first 24 hours and a more gradual settling
rate for the remaining 72 hours.This trend is similar to the plot of
tu rbidities for the respective ru ns.
Turbidity was plotted versus total suspended solids for each run on
Figure 3.6.A fairly good correlation exists for the first run with an
initial turbidity to TSS ratio of about 1:1 and a final ratio of about
3:1.For the second run the relationship is similar but the
correlation is poor as indicated by the coefficient r 2 of 0.60.The
initial tu rbidity to TSS ratio is again about 1:1 and the final is about
-27-
M14/15 33
3:1.Figure 3.7 shows the data from both runs plotted together.
The correlation is now better than either of the separate runs with an
r 2 ()f 0.83.The least squares fit for the curves shown on the
figures follow the"form:
NTU =a (TSS)b
Values for the coefficients a and b are shown on the figures.Figure
3.8 shows the relationship between TSS and depth for all the
sampling time intervals.Run #2,with the higher initial sediment
concentration,had a very orderly reduction of concentration during
the entire 96 hours.In contrast,run #1 initially showed a slower
decr'ease in concentration followed by a rapid reduction between 3
hour's and 24 hours.After the 24 hour interval very little change in
conc:entration occu rred at any port depth.This is in contrast to
Figures A-l and A-2 in the report "Reservoir Sedimentation",(R&M
Consultants 1982b).These figures are reproduced in this report as
Figures 3.9 and 3.10.There is a distinct difference in both rate of
settling and TSS concentration at 72 hours.
3.3 Particle Size Distribution
Samples were collected from the top port at 0 hour and at 96 hours
for each run and analyzed for particle count,volume,and size
distributions.The data as received from the lab are included in the
Appendix.
Size distributions are presented in two formats,one as a percent by
count and the other as a percent by volume.Since mass or weight is
generally the standard unit in sediment analysis,the percent by
volume is more applicable.The percent by volume refers to the
relative volume of all the particles of a specific size compared to the
total volume of all the particles in the sample.The larger particles
-28-
M14/15 34
account for the majority of the volume even though the number of
largl~particles in these samples was small.
For the 0 hour sample from run #1 the partial breakdown of particle
size by volume is as follows:
Particle Size Distribution for Run #1 (0 Hour)
1.6'%<0.24 microns colloidal size (83.0)
11.4'%0.24-1.0 microns fine clay (15.9)
15.0%1.0-2.0 microns medium clay (1.0)
72.0%>2.0 microns coarse clay (0.1)
The numbers in parentheses are the percentage of the actual number
of particles of the respective size counted in the sample.Therefore,
while 83%of the particles counted were less than 0.24 microns in size
and these accounted for only 1.6%of the total sediment volume.Of
the particles counted,only 0.1%were greater than 2 microns but
these represented 72%of the volume.
The partial breakdown for the 96 hour sample from run #1 is:
Particle Size Distribution for Run #1 (96 Hour)
4.5%
31.0%
24.0%
40.0%
<0.24 microns
0.24-1.0 microns
1.0-2.0 microns
>2.0 microns
colloidal size
fine clay
medium clay
coarse clay
(79.0)
(20.3)
(0.5)
(0.2)
Particle volume versus size was plotted on log/probability paper,
Figure 3.11.This graph shows a 44%relative reduction in particles
of 2.microns or greater in four days,a 181%relative increase in
particles less than 0.24 microns and a 171%relative increase in
particles between 0.24 and 1 iicron.This shift in particle size
-29-
,..,.,
M14/1535
dist"ibution indicates that particles less than about 2 microns
essentially did not settle out of the top 1 foot of the column in the 4
day period and even particles of 2-10 microns were settling out of
this zone slowly.-
For the second settling column run with a higher TSS concentration
the partial breakdown is:
Particle Size Distribution for Run #2
o Hour Sample
0.1%
3.9%
11.0%
85.0%
3.0%
50.0%
12.0%
35.0%
<0.24 microns
0.24 ""1.0 microns
1.0 -2.0 microns
>2.0 microns
96 Hou r Sample
<0.24 microns
0.24 -1.0 microns
1.0 -2.0 microns
>2.0 microns
colloidal size
fine clay
medium clay
coarse clay
collodial size
fine clay
medium clay
coarse clay
(38.0)
(49.0)
(12.0)
(1.0)
(79.0)
(20.0)
(0.5)
(0.5)
The suspended sediment size analysis,Figure 3.12,shows a 58%
reduction of volume in particles of greater than 2 microns,a 2900%
relative increase in particles less than 0.24 microns and a 1182%
relative increase in particles between 0.24 and 1 micron in size.This
rather dramatic example shows that a vast majority of the sediment
grealter than 2.0 microns settled out of the top 1 foot in the column
during the 4 day period.Particles with sizes of less than 1.0 micron
accounted for most of the volume in the 96 hour sample.This is also
reflected by the high tur:bidity of the top port sample at 96 hours
(204 NTU),and relatively low TSS (78 mg/l).
-30-
-
M14/15 36
3.4 Mineralogy
Petr()graphic analyses were conducted on samples taken from the top
port of the settling column at 0 hours and 96 hours for both runs,as
well as on a sample taken from the tailrace of Eklutna Reservoir.
Elkutna Reservoir is currently being studied in order to define a
suspended sediment and turbidity relationship in a glacial lake.
Scanning electron microscopy,electron microprobe and petrographic
microscopy techniques were used in the petrographic analyses.
Because of the small particle sizes encountered,some mineral species
were blended together,making precise identification difficult.Thus
mineral identification was taken through general groups such as
pyroxenes and feldspars.Most of the particles were combined grains
of several minerals,primarily quartz containing inclusions of
magrletite.Table 3.1 summarizes the mineralogical composition of the
various samples.The following notes should be considered when re-
viewing this information.
1.There is a distinct similarity between the Eklutna Tailrace sample
and the 96 hour samples from the settling column.The mineral
calcite stands out in the Eklutna data since this mineral was not
significantly present in the Susitna River samples .
.2.The relative difference in percentages of quartz,feldspar and
pyroxene for the 0 hou r sample and the 96 hour sample from
both runs indicates that these minerals settled out from the
upper zone of the settling column.Quartz content in particular
is reduced by over 50%in the first run.These minerals then
probably constitute the particles greater than 2 microns in size
as discussed in Section 3.3.The percentage of magnetite
increased between 0 hour and 96 hours in both runs,indicating
that this mineral did not settle very much,which is unusual
considering it has the highest specific gravity of all the minerals
-31-
~----------_._.,..,...---------....,.------------.......
M14/15 37
present in the samples.
presented in Section 3.1.
A possible explanation for this was
....
....
3.The high concentration of colloidal silica in the 96 hour samples
indicates that sediment consolidation may be on-going with the
:silicon acting to cement particles together.
3.5 Settli ng Velocities
Analysis of settling velocities in the column,and comparisons to theo-
retical settling velocities is beyond the scope of this preliminary
report but could be included in the final version.
SomE~analysis was performed to determine the rate at which natural
particles of various sizes would settle under quiescent conditions.In
order to most accurately approximate the true settling velocity,a
coefficient must be applied to the theoretical fall velocity (which
usually assumes a spherical shape)in order to account for various
particle configu rations.Natu ral particles are ra rely spherical and
therefore the actual fall velocity would be less than the theoretical.
The simplest and most commonly used coefficient is the Corey shape
fact()r (CSF),(Dietrich,1982)
CSF =c
(ab)t
whelre a,b,and c are the longest,intermediate,and shortest axis of
the particle,respectively and are mutually perpendicular.Values for
CSF range from greater than zero to 1.0 and correspond to the ratio
of the cross sectional area of a sphere to the maximum cross sectional
area of an ellipsoid.
-32-
..-,
.....
.....
.-
I
M14/1538
The result of the computed velocity using the Corey shape factor can
be compared to the actual settling rates observed in the column.
Knowing the mineral species which settled out and the rate of settling
measured in the column,the effective particle diameter can be
computed using Stokes'Law.By comparing this value to the
spherical equivalent particle diameter with the same settling velocity,
a cOI!fficient can be computed to relate the difference in fall velocity
to pclrticle shape and roundness.
Figu re 3.13 shows a plot of column depth versus time with the
perc1ent of suspended solids removed for each run.Figu re 3.14
shows percent TSS remaining versus the observed settling velocity of
the entire sediment mass in the column.The settling velocity was
computed by dividing the sample depth by the total elapsed time since
o hour.For run #1 the line shows that none of the particles had an
average velocity faster than 2.80 x 10-4 m/sec.The'plot of Stokes'
Law (Figure 3.2)shows that this rate corresponds to a particle size
range of 16-22 microns depending on fluid temperature and particle
density.The electrozone analysis by PDL counted exactly 4 particles
of this size range and these accounted for only 0.7%of the total
sediment volume.There were essentially no particles larger than this
detected by PDL.Therefore,the first run conforms closely to the
theoretical behavior of particles settling in a fluid medium.In run
#2,again,none of the particles traveled faster than 2.80 x 10-4
m/sec.The PDL analysis,however,shows that 264 particles larger
than this size range were counted and they represent 1.34%of the
total volume.This indicates that particle shape and roundness
probably kept these particles in suspension longer than what Stokes'
Law allowed,and a coefficient should be computed to account for this
diffE!rence.The second sample had a much higher particle
concentration and this may have significantly effected the rate of
settlement .
-33-
J -)
R20/1j
j 1 1 ..r ]-;l ;1 1
TABLE 3.1
PERCENT COMPOSITION
Eklutna Tai I race Settl ing Column #1 Settl ing Column #1 Settl ing Column
Settl ing Column #2
Mi nera I (Density)7/21/84 o Hours 96 Hours o Hours
Qua rtz
(2.65)10 40 15 30
Feldspars
(2.6 -3.0)10 20 10 15
Pyroxenes
(2.5 -3.3)5 10 5 15
Magnetite
(5.18)20 15 25 15
Limon i te
(2.7 -4.3)3 5 5 10
Clays
(2.65)2 2 3 1
Co II 0 i da lSi Ii ca
I (2.17 -2.20)30 2 30w
~
I Calcite
(2.70)20 -3
Mica
Biotite &Muscovite
(2.77 -2.88)-5 -15
"
96 Hours
15
10
10
25
5
l'
35
~
'-r
t
~l'
.~
1 I 1 J l ..i l 'J 1 ~I l I i 1 )
I I II I I I
10000
I I I I
-----PARTICLES WITH SPECIFIC GRAVITY OF 5.2
----.PARTICLES WITH SPECIFIC GRAVITY OF 2.8
I I I I I I I
1000
I I I I I
100
FALLING VELOCITY X uiT m/eeo
I II
10
Il~OC
20°C
10°C
I zooc -.-1l0C
1
(/)
F
-f
t62-
STOKES LAW FOR FA,LL VELOCITIES
V ARIATIONS WITH RESPECT TO
TEMPERATURE AND PARTICLE DENSITY ~~
/~d/~~£~~~~/~/?~
£~£~~~~~~/..r<.~0"~0-~~~~"'~0~~~
0.&0-((I!I':I~.J I II
6 10~II>I&OCr--
"1J 10->:u
-f-()
r-m
(/)
Nm
""...-Ii)a
c n
:u ..
0
"'~..
Co).....
I\,)1.0_
11 0
aD62!rn~C
~~Uj
12
=...
II OJc..m_
~2inII.
~.j:1~~~~~-.It!'~.:
)l;~.c..~o l!~IiiLt""'\~
~~=i!:@;i)~~~~.~1l1(§
\.AIm
..
f
z W
t~=e =e
~-:,
I-:...•0 "U >
CJ >
Z I---Q...-ן-m
I-a::
W ~
U)I--
-I ...
-It
z
~a::
TURBIDITY (NTU)
~..
f•
=~i i
/I
I i
//
/ I
I i//
I /
//
\ I\ i
\I
\ I, i
\.,\
\l
~'\\\1,
j)
-7"/
","'/'..../",................-----'
TURBIDITY (NTU)
....o....o..
--g •..
%...
-•..
%...
loll
~...
FIGURE 3.3:
C:;&M ::::CI\ISULTANTS,IN::::.
ENGINEIi:RS GEClLQGISTS PLANNERS SUAVEVClAS
37
DflJj1r1VJ ~IElBj~fCtm
SUS/TNA JOINT VENTURE
-
SETTLING COLUMN
AVERAGE TURBIDITY VALUES vs.TIME
350-
o
RUN +2
200-
>!:e
CDa:
~
~
RUN +1
50-
o-t,"·----11----,------;-------:----------
o ~~~~~
TIME (Hr.)
R&M CONSUL.TANTS,INC•
..NO.N....A.I3Ea~aOlsTB !IlI'l-ANNEA&_UAVE"'IQRS
FIGURE 3.4
38
fUil ,.li1l~:~)'7JE:\.:J\.::/re,Ti)m.@~tm1fJiJll!l\1JJ~J ~oolAl@~\W
SUS/TNA JO/NT VENTURE
.. ......o 0.. ....~..~g
:i
o-e
w
~
~,
-•:»
III
Q-
-•:»
III
Q-
-&
-~
o-e
-&
o •-.
-~
....
f ~....
~../g
i
/i
/ 1
/i
I i
/ i
(;
1 I\ i
\ i, i, i, i
) i
I i
J i
"iI ;
/i
.,..,.",1",..,.,,).,.,,,,.,,....,...
",~./
".""....:.....~~'*'.----::,......".
TOTAL SUSPENDED SOLIDS (mall)
~
it
Z:::»a:
I
I i
I i
U
11;
,,)
.1"/
//
//
~/.~.~/:;,
/1
/1
/1i1
"1/1
//I I,.I
./,/'
/,,/
/"/"";~;I,'
""."/"--.r..:::.~..::.:.::.=:::.:./;-----=~::==:~,~=========-'7I------....:...--:--------~,-O~!~0
w
:E-I-
0
Z CD
~:>
II:Im0
0
Z Q or
:E -...~0...m0
(J Q
WCo'Q
Z Z-W...
I-0.
I-mw:::»
0 m...-e
I-O.1-'"".
Io
!
'---;-----"-'.,;==-::.-=.:.-:.-----;-..:>....:-:.:-==----;-,-----.----7',-----;,------:,-0
!;:~
TOT AL SUSPENDED SOLIDS (mgll)
FIGURE 3.5
I=a&M CONSULTANTS,INC.
ENGtNiEl!:AS DEClLCGIS't'S PLANNI5IllfS SUatVEVDRS SUS/TNA JOINT VENTURE
39
TURBIDITY vs.SUSPENDED SOLIDS
FROM SETTLING COLUMN
400-
RUN +1-,
~::»
I-z->te
CDa:::»100-I-
TaI9.548ITSS)0.422
,2 aO.81
-40-11-------------1-1-1-------------------1-1-1
20 100 1000
TOT AL SUSPENDED SOLIDS (mg/l)
1000-
.-::»
I-
Z-
500-RUN +2
>I--e
CDa:::»
I-
T =70.752 ITSS)0.247
r 2 =0.80
I I I
1000
100-1...------------------------------------1 I I I
20 100
TOTAL SUSPENDED SOLIDS (mgll)
.....
R&M CONSULTANTS,INC.
ENIl:iliINEEA&IIEDI..OOISTS _IL.ANNEA&SUAVE"f'ClIIIS
FIGURE'3.8'
SUS/TNA JOINT VENTURE
40
-
.....
TURBIDITY v s.SUSPENDED SOL IDS
FROM SETTLING COLUMN RUN 1 and 2
'000-
--:»
t-z->!:
Q
IIIa::»..
100-
o
o
o
00
T ..10.320 (TSS )0.59!!
,2 ..0.83
o RUN #•
•RUN #2
30 -r-I--,--'-"---;---;1---;.---;".------;-----:----:---------
20 100 I 1 • 1.000
TOT AL SUSPENDED SOLIDS (mg/l)
R&M CONSULTANTS,INC.
ENCHNEEAS BECLDOIBTS ~LANNI!AB &U.VEVDIIllS
FIGURE 3.7
41
lKiJj1J,lIJ ~lEJIJj~~@
SUSITNA JOINT VENTURE
SETTLING COLUMN
TOTAL SUSPENDED SOLIDS vs.SAMPLE DEPTH
.-
TO'-
....
~
.2-..o
CL
......ID01.I-
X...
Q,
W
Q
RUN #1
I
D
I
III
I
40
I
8D
,
lID
I
100
I,...I
'40
--....
~
.2--it
0ICL rMtoo1.l-...
X...
Q,
W
Q
.-TO'-
TOTAL SUSPENDED SOLIDS (mg/l)
RUN #2
,
lID
I
ODD
,
,aD I
ZOO
I
ZlO
,
!DD
I
SSO
I
400
TOTAL SUSPENDED SOLiDS (mg/O
FIGURE 3.8
R&M CONSULTANTS.INC.
ENGINe-ERIi GEcu.oalST&PL.ANN.R&.uAVIE ....a ...
42
---_._------------,
SUS/TNA JOINT VENTURE
t=...........
1 1 1 1 1 J )1 ]i '&
I
j,
I
I'I!
l'I
1\,..
i,
I'
1\
1\
\1
I
i
\
I
II
1\
II
j
I
·FIGURE.A-1 ·FROM RESERVOIR SEDIMENTATION
(RaM,1982b)
SUSPENDED SEDIMENT CONCENTRATION (mg /11
.:I;d :1 !:,I f I~i jill i II !Il ~I I III ~~01 111 T q,4q i II !II Hq IIII i II ~~ol j'!:II :!3do;1!ii,4)0 :
(1",°,:'7~4lCl " : I ,i ,!;I!I \.I j I I'I ,.:I'"I !:!.i I I !,i I I·.I I I ,i!I I ,.I'"I I I ,i'I,:I I ;I "!
I i I I':;I "I I I I I :*1.1'""I.I II I I I'!I··I !II ;I !i \.:,:I ,I I ::I:.'I •I 'I 1 I I i I'I ,.t 'I I I :I I ' • "I:I
,I,:!II ,',1'1 .I I I I II I I,1 1 1'1 I I:.':.iII 1 ,I •.,I I I', ," .~,',,'I I ' I I'I '"I :,,,''.
I !Ii:III :·1 lr'l II,,.II ...I II I"I~,III !I i I ;!II:,i I,'j!Ii.''!
1 t.2 I I i I:'::.H'I ,+.,-1 I .l'-~I .Ii'I r.~.-!.j'.t Ii;ii,;r :I:!-i :I:I ,~'.•i I:l .:,I '1 'I I I I I , \I I,':I !.I,.i 'i I:'I i II:,:1.11.1 'I!'"II..:.i I .I I I .I I I"i !'I I ;1"::',.: i :I •
I I I "I ' , • ,I
-!.....c'.LJ..f+..l ..;..;.w ~d.'~-_I l.J '[[I-l-+l>-r"'-[+-t·T---l'-l '...._.-~-'-,----I i-I •
I Ii:I!I''1'[')'"I I I i I I I II ~I.~..'~I I \1 I I;I I·i I !I ;II !:;;I I:I :-.I'i :!i I"
II 'i I!I 1\""'\I I I I I I '"I I I'.'I I ,'!,!I I I I I I'I I .",! I !'!I
"[4 'l'r'"'f'.I.j .._J .....f-·-..~.:.l......,1....,.~'I ,}ll'J:'l':II.·,'ll I!:I·I,,!,
I .!'I I'I ~I f \1··I I .I.I I:'0,,:I .I .'
I ,;I .I!I '~"I 0 I,I I,I,i :.I i
i 1:,il !!'i !II .II I 1 .....~:I I ~I,ll,'!,I I,;l~:il!~i!!:!.I;:I!
I I'I II .I I'I Ij I I I 1-l~II I _:).,I I I !.,, ,'I'.,i I I'~.'II ,.'I!I II I I -I -'..'I'I,!i'I I i I:'(:':;I:'\i I . :,;Ii'!Ii
I I I!I I·I !i !I I:!:',!,I,i .
····-!-·'6 1.1.\.111 1--:l.[1./...·1-··-1·1-..--.----_.....-_...1
1
.1 1 t·;:--1-J::!,!'I '~II ,\..;\
I,I I ~I"!'I i I I I I I I I I·I ",I .I I II i I I':i ~!:.:!:I'. ;:;!!II..I'I I I I I I I "I.".I ,I'.i .I!::I!:I,I I I I I .--.1 I,'!I !I !!::""i:" "i';'!
I,I '!Ii!I :I jl I I I ,!J I I ii,I!I I I : , ' ':f 'I.'.,. I ,,I I I V I I'I,, . ,I ..I I I'I I ,!1 'I I I I I;Ii'Ii·'I \I :,I I I,~I ,Ij 8!ll i !'iJ i III I I II v ,·,1 I -,...~III I 'I I:I ll:.1,:,:T :II,,'I'I,Ii
Ill!I I I I,!I II 'I I ,I I,il I I I I II'I::',;I ;I Ii'ill!.I,I':I I j .I ;!'I i I I!ii'jill ·II ~I:::I : I i I :I,'f
'Ill ,i II I I J ,I f rt l I·f otl I I I lil l
I II " :I,:.•'I I I
I ,~.~d .T ;-·f!I'L ..,-,"-11-1'1'-.,..,'.-I-i-'J1 ....1+-.".--t 1111:l.!t·1 ·l:;I !',i ';::I'.:I·'.\! :I I II I II!II!Ii I I.I.II.I j I I I,I I !!:I !I·.,..I :I .'
SAMPLE GOLLECTED ON 29 JULY '98', ,MILE ABOVE WATANA DAM S'TE
WATER TEMPERATURE (7/29/8'.=50·F
-t-
LL
~
I.IJ
U
c(
LL
""
0::
::>
.c:.G)(J)
IN C
:JJ ~~
(0)
w.m
t;I :t:
t-
~
n.§I II~
::1 b'~.'
c...~e I!
~Ii-ui~.~~~(%)~aۤ)
l'1 "I ~1 'f 1 r 1 1 J 1 1 1 I J I "I 1 1
FIGURE A-2 FROM RESERVOIR ,SEDIMENTATION
(RaM,1982b)
11-----
SAMPLE COLLECTED ON 3 SEPT.1981 ,I MILE ABOVE WATANA DAM SITE
WATER TEMPERATURE (9/3/81)=46-F
i,.
I
I
I
1::,
,.I
I
I,
~......
.l:>-._---------"'::;
Jl
SUSPENDED SEDIMENT CONCENTRATION (mg/l)-'
! '-"jl ,:..."\..;:I·i»
I 'I ~~o "~:3~O,:.4 0 .I
I I I I L I,I \'.'1~, I "K .o.p !0 -:-TIMEl (HOUR I
,!,I 1\~,!.I. I ' ,I I
, , I "Il'I I t[I I I ~Ij I I "1 "\I t tl 'lilt ",I'.II , ',~,!I:1"I I ,.'.\.'..-~'~,I':,'i'l II !i '.\I .'I !..''I ,._.......I I I . I I I I
t-=I I"I !.i".....,/.\.-I ..··-..-.ILL -I,'.....,<'•.....-....\T I i ~".j ~.!.[,;:I ''..
LL I I ,I I I I'I I '..'"II"I '"1 I I II !,;I"~I I :'•...,.,-...I I •,I I,/.
I ::!:II I,,.-II·.,...../,...I L"-I 'I I'Ii;~:I !w,.,.I 1 '.~l"'..,I "
u I'~1_:_;..~,·!..r .p-l +.,-L.!"--tt-iF.-',J
1
H'-I +~.-;-~;-'!-P-I-f :'~'''I''-<t ;II:I,II I'...I II ..I ,•II'I':!i . ; .~I':I,"I:I,!..i .'.:1 ....'..'.,-Ii.II.i I ~.'::>I.I .,',.".,.,I.
I .,I II ...,I'.I I I !
.I ' I .I .'I .==!:",.I I ...../.,.."...,1,1 ..:'I!'.o :I,''..,...."II·I:,I:.,i
m t 'I ':!'I I 'l I ,I II'I',".'I'IIIItI.'.,I I''.,.
:::I::I ,:I ! ;I !j i;!':"I !"~I,,I jl L I -\'1.1 ..r"""-,1\''...-...".,..1.1-/..\,I;II :.''.1 :I ;,I ':I~I i II!II.I I I I I,I,I,,II I I !.:;:.I'I
o ,!'I'I"I".I I'I I I III I,i I !i l i: " I I I ·1 "I I I I I ", ,
, I II I''.j I I,'I I III ..II 1'1't I I",I ,III!I If'\~I'·I I,!,;I III ",II ...Ir",,.I ·1·,I'...! , : ,Ii:I 'i',,, I I I'"I I .'I I I I !I',I ,I "',
IO!lLI"-.1-~·I ..L ..J_..,t"'-I·'·I·_1-1-~'-"I---''...I..lI-'-__'_I'_.11::1':';[:i,:~I:"1
, I I tl I -/I I I I I III'II I I I I I I'ii'I I I .'I", I :,I ,I I I I I ., . I ,~I I I'!.!:';,i .'!
n]I~O~~~e~~•lin
~o62~tn~c
lIG
iJ;
~2
1-1
10m
C"
11_~2gO••
'TI-G)
c:um
(0)•..o
~I"tII-"c:'~
~-bl
~,.~~
(..~.0 /l
~riLl"-i~
~~~@il
<:~~@).
........
I I •~I
100
PARTICl.E SIZE DISTRIBUTION
SAMPLE:SETTl.ING COl.UMN
AUG.I •19B4 0 HRS
t I I •i I i
10
PARTICLE SIZE DISTRIBUTION
SETTLING COLUMN
RUN+1
·PARTICLE SIZE (Microns)
I •fl'I ,
1.0
100
'3&
98
95
....90~-z:80
<70
::t:60t-
IE:50
III 40
Z 30-II.20
t-
Z 10III
0 5IE:
III
Q"2
I
0.1
0.01
0.1
100 .
-
,...
.'#-Z 8<::t:
t-
IE:
III
Z-II.
.~20
Z
III 10o
~5
III
Q"2
I
0.1-
PARTICLE SIZE DISTRIBUTION
SAMPl.E:SETTLING COLUMN
AUG.5,19B4 96
100
O.OI-!---....-....--:--;,,,,;-;-,"';',"";,..,-----;---;--.,---;',.....,"";,....,-.,-r-----r---:-r--:-,..-.,",;,,-,;""'1'0
0.\1.0 10
PARTICLE SIZE (Microns)
;::::;&M :::OI\ISU!...TANTE.IN:::.
ENGINeEQS GEC&.C1GrSTS ~L.ANNERS SUIiltVEYOAS
FIGURE 3.11-
SUSITNA JOINT VENTURE
4S
i~
100 PARTICLE SIZE DISTRIBUTION
SETTLING COLUMN RUN#'2
,PARTICLE SIZE (Microns)
..-
.....
m
98
9et-90--Z 80
C 70:c.60I-
a:SO
IU 40
!30
II.20
I-,
IZ10I
111 I
0 ISa:
111a.2
I
~J ....
0.01
_0.1
100
I I I I I
1.0 ••I I I
10
PARTICLE SIZE DISTRIBUTION
SAMPLE::SETTLING COLUMN
AUG.7,1984 0 HRS
l I I I
100
0.011+---.....---;---:---:',--:',-:-,-:-,,,,:,,-r--~--r---:---:-,--:"',""':,-:-,":",.,...---r--~:---;-"",......,"....,'"
0.1 1.0 10 100
PARTICLE SIZE (Microns)
!'-99
9El
95---90-Z 80
C PARTICLE SIZE DIS"TRIBUnON:c.70-I-SAMPLE:SETTLING COLUMN&0
a:&0 AUG.II.1984 96
IU 40Z-30Ii.
~2Cl
Z I
IIU10I0
a:IS
111a.2,
-
--=V;:::;fi\'v,lt~})C:.1\./1
;:::;&M :::::JNSU~TANTE.IN:::.
E"'GI....I=EAS GEQL.CGt5"~PL,P.NNEIaS !&URVE..,OR!'=o
FIGURE 3.12
SUS/TNA JOINT VENTURE
46
--------_._..~,.,..""",'...,~,..,.'-,..~,..,",
PERCENT REMO VAL OF SUSPENDED SOLIDS
SETTLING COLUMN
1.0
,..-~-
3:5.0-...a..w
Q
'10.0-
o
2.1
9
,2.8
9
50 "/0 60"/0
58 71 ~I 61'
48
RUN +1
RUN #215
;5.0-
a..
W
Q
,..-~-
I ,I ,I I
,,I ,,I
2 3 4 5 6 7 B 9'0 100
\~TIME (Hrs)
28 40%.55 52.60'"/0 .71 .761.0
!!2~3}51 66 6~10.0-
',...
,I I I I I I I 1 I I I
2 3 4 5 6 78910 100
TIME (Hrs)
R&M CONSUL.TANTS.INC.
ENG-tNIi Ii AS GECLUGISTS PLANNER~SU_VIiE;¥DAS
FIGURE 3.13
SUSITNA JOINT VENTURE
47
SETTLING COLUMN
PERCENT TSS Ys.ACTUAL SETTLING VELOCITIES
.-
100
gO
Cl 80
Z
!70
<
:Ew 60-a:
0 50o
l-
I-40-
Z
W
°30-a:
W
4.20-
10-
RUN +1
P"14.13InY-13.1
r 2 aO.86
0-:-.---,-,-7"1.1,I.i:'l."---1--'---'---;1---;.;-;.-;-.II••------::---~---;:---:-.---:-,--:-.""",,,....,.....,.,I
10 100 1000 10000
SETTLING VELOCITY X 10-1 m/sec
,-.
I
I
I
.-
90
c:J 80
~
!70
<
:Ew 60-a:
(I)50(I)
~
~40
Z
W
°3a:
W
Do 20-
10-
RUN +2
psll.96 InY-4.98
r 2 .O.86
0-:-,---,-1-11,1,11lie.IIII---'--'---'---'1---;';-;'-;-'11••------;---,-----:;--:-.---:-.--:-,""",,,...,....,..I
10 100 1000 10000
SETTLING VELOCITY X 10-1 m/s8C
R&M CONSULTANTS,INC•
•NGtNIE.I!R'S GECt..oatST&Pt..ANNI!R&&UIA\lI!VQR&
FIGURE:3.14
'f8
48
IYeJwJ~lE/lJ~~~@
SUSITNA JOINT VENTURE
M14/15 39
4.0 DISCUSSION
The results of the latest series of experiments on sediment settling
rates in a quiescent column differ considerably from earlier studies.
Figure 6.3 from "Reservoir Sedimentation",(R&M,1982b),reproduced
here as Figure 4.1 serves to illustrate the difference.Turbidity is
plotted against time for 2 settling c~lumn runs conducted in 1981.
The initial turbidities for each run in 1981 are almost twice the initial
values in the 1984 settling column
however,a re a fraction of the
experiments .
runs.The final 1981 val ues,
final tu rbidities in the 1984
No particle size analysis was conducted on the 1981 samples so the
information gained form those studies are limited to suspended
sediment concentrations and turbidities.It appears from the data
however that the 1981 samples contained a high concentration of
coarse particles which rapidJy settled out,and a low concentration of
fines.This would.explain the decrease in turbidity from about 500
NTU to less than 80 NTU in 72 hou rs.
The 1982 suspended sediment samples conversely contained a high
concentration of fine particles and a low concentration of coarse
particles.This e~plains the graph (Figure 3.4)of turbidity versus
time,which indicates a rapid decrease in turbidity in the first 24
hours but subsequently a period of about 36 hours with little or no
change in turbidity followed by a slight decrease of turbidity in the
96 hours sample.The most dramatic difference between the 1981
samples and the 1984 samples lies in the relative decrease in turbidity
between a hour and 96 hours.The 1984 samples only decreased
about 75 NTU over the 96 hour period whereas the 1981 samples
decreased over 400 NTU in 72 hou rs.
A possible explanation for the high fine particle concentration in the
1984 samples is illustrated in Figure 2.2.Warm air temperatures
~49-
-
,.-
M14/15 40
prevailed over the upper basin prior to sampling.This may have
stimulated increased runoff from the glaciers which subsequently
would contribute more fine sediment.
The 1981 sample was collected further upstream than the 1984 sample.
That sampling site has generally more tu rbulence and higher water
velocities.This may have caused a I~rger volume of coarse particles
to enter the sample.This,however,does not explain the absence of
fines from either of those particular samples.
The high concentration of fines in the 1984 sample may not be a
natu ral condition.Figu re 4.2 is a reproduction from "Susitna
Reservoi r Sedimentation and Water Qual ity Study",(Peratrovich,
Nottingham &Drage,1982),also included the FERC license
apprication.This shows historical turbidity data for the river versus
suspended sediment concentrations.This graph is not directly
compatible with similar plots presented in this report (Figures 3.6 and
3.7)since it represents river tu rbidities and this report considers
column (quiescent)turbidities,however,the lack of fine particles is
evident.Fine particles are generally responsible for high tu rbidities
at low suspended sediment concentrations.The plot on Figure 4.2
shows low turbidities even at high suspended sediment concentrations
which would be expected if the majority of the sediments were coarse.
Therefore,given the historical data base and the plot of that data,it
appears that fine particles are generally in much lower concentrations
than those measured in the 1984 settling column samples.
-50-
1 -1 1 1 1 1 l 1 i 1 1 -1 l 1 ~.....J.)
TURBIDITY VS TIME
\'.
1981 SETTLIN'G COLUMN STUDY
PREPARED
U1......
llnaD
~2~UJ=c
~['f
Hi
l2
l-i
.UJ
c~
D_
=2Kn
til.
'TI...
Ii)
c·
:D
III...•~
~~It;,~:~'bl~.~~o 11
~fii!l""1~
~~:<:fr!~~0,;:;:'"~~",(§)
, 'T~·~~11 I '!,I'I',,'!':I ,i I I I'I I:i-,',T-'~T I ~\'.'i i ~IT;I I "~,I I I',"I I:, , , ' I ':,.I I I "I I I ,!';,I "
1/'::,1\.:,1";1,'I 11!lill'lll,'I!:1 1,1'-1 ,!'I-l\,"I,--tll1-'-r ~'·+f·-..~·1·--·r-.·.1·rlt Itrr"~"-,l':11"1'in
"., . I ,I I "I,'I I I I I I I !I'I I " ' I I'!,I:I,.I I I I I Ii;,i I'I:I I I'!i .....I I ,::i 'I 'I !':;
I "I :'",.I I I I I'I'I I ' ,'I 1 I ' I I ' ;I
"I I ,I'."I 'I I ,I .'.II"I'iii j ,I,'
I ;':,\I I ,i:,I:I I 'I III I II I'·I I,I'·..1 I '.'i I'"I I Ii "'I'•I''I I .I "I 1 I I " "
I :i:.\::I ::'I:!;!!I l I I I I I'I,I I .........I'I':II I:;I I,'!i I'~1 '.,I'I I"I I ,I ,I I I I 'I I 1
I
'...:,I ;. , .I :I.1 I : 'II,i I I'..._.., -_.'.....-"1-......-.."_...."."j I r"'.;l I i I ;I :.t I I""'I 'I!I 'I:I ,I !,I I'I'I ,I I I '.,.Ii'".,I I I,• I I I I I '.''•
.I ' ;1 I Ii"I I I I .I I l'I .I .I I"·!I :,.i ''i 'I I ,I I I"I ',I '."II 'I'. ",I ' .,I I'Ii,:', "I ':,,&,I I I"'!1 :!I !I I I I I I I I I,I I,I.' ,I
1 ..·40·.,..I ....•.I...\....11'1+'!""·......-1·1i-1.."[TI-1-]..'1-.J'T'I..~-'1'"'-,..--.-~.....l_......··-.....-1.,','. I , I I I I I I I 'I;I I'~I ,--1 .I I'"I',,'
I.i '1 ' .I ,'I'I .1 I!I I .'.I . I \'i'..,
· )i,I':,1,·1 "I:I!I'I I ,I:I I"..,..II I iii,I ;\1.;:
, ' I I I I ' •I I I :I I fl"":,I I '!:I "i I
I :I !:I.\1 I::II'!I I'~!:III j !1111 I"I'''!11 L,~L l-L ....l~...:,.,..ttl.'I I !'11 f I:!'I
, I I l ,!:,I !I:i I II I I I I i I I I
I I''j::I,~',li'lll:ll '1;lll!I'lt III II .····TI·I -If''fI''I Ii'""--'3.0-'""~'l'\""._.I.I ....~._._...•+.....,.....1.1...1......._...,._....L
1
··-i-+-I-T~..l·-.....-.J-.-+-··-+-1'1'lil..1........_1.""....,............-'1'~
I"'I ;,'r,,!1,1'fl ' I I 'I I'I'I'I 1,1 1 1 1 '1 '",iZ.;I I",::I''I I I I i 1
1
,..-......._."1'..,.."1'..I I I'" '"
I
" .1\", ".,'I .'I I I 1 I ' "I I·--I·,I . : :I I I".'I I .........._....., I I'I '.,I,.I'" .I I I I'"1 I'I I..,,.I I ',.I'...-...-..-'1'I !I I I "I I II ",I I ".!",,)-I I :,i I I;Ii"I i I :,I I I .1 .."...I I 'I!'I 'i:..;I
...j..l;'j I :,i I~.I"""'.';l'I!·'I;"!"'1'.j ...d..._.-'1'....1 ..·_···--I TI ..··-_H[L -"1-.J.j
--r-_'Ot 'i"r '1'·[.J.:..1 ..;I:.'-'j:':!i'\I :;'[till"I'!I I:J iii ..-".'-''1'',.....,.'11'I i I I ;i ;Ii,I 'o Ii'I I :I I'.!I I I!I I ...-_.-.',I I I;I:I:i I
- i I I I!,I.~:"I I ,I'I,.I 'j II I I··....."1--"~I"I'.-I ,I I I;i"!;I I.!,',m 'I I I,I .,.I"I I ,I '"•"1 ,......,..-'. I ,I,I'I I I"' , 'I I 'I ,I:I I I 'I t I!I!I i f ~.I''.;
.....-,_..2 ..0 1-.--.-'-"I·~-r \/.- ' ,rmt~·_,·l'"J)-l"-l"U·-··i+r '1-'..++.---1"".,_-.....,....:..+..".~.--.-'-"-'~-"""'.....I', . I I '.I.II"I '1 1 I I j .:I'!I II I"I",'I'" I .I.....;.I I 'I ;.~'1 .;I ' " .,I .."_.-..:......I':,.I .I .I:I'~t.' ,I I .•.'f I I'.I I
'-,'"I·I ;,' \,I"I 'i I'I I I " I .,.............·1·....·I··I'!~I""I'I!''1 :,'..,--I I I I,i"')'I .I I ."I I I •i'I·l,I:I I :I I I'Ii;!.I I::I I I ~.!,I !!I I ,.II I I .."1-11......j..,I I,.;I;I ,.,'..i ',.
·1 I ' I I,:I;!.,I I I I .•I I I s,MP Ei IA -~l d-'....··1,I .,I·'I t I I ..:::;I :'1.i,1+':,I'I',:i '.'."'!:i I::~l'.,.H-:L:.·r~"·j fl\,'~...Jr ..1?';."f-'l 0..\..i··,.'-'+'1"1 --I!J 11'+'I'''r I.!i::f:"::./
'..' I I .I '"1 11 .'I I'I'I I~I II I I .......\I"111'"I:'..l .,::;I';i::'I ;::;~~,I!;II :I', I I I rtt++1.:I··..',_.."''',!I',',.~.,.iI'!::!::-';
, I ",.I ....,','I I II H ......j ...\I .•.,I· I ! .I ' I . I .I • • ••I I •I ,.r
: : i ;!:;I 'i ,!i ::!':!I ;'I I :I I-~!I ''i I:!'.,I !I!I ,,,;-,10,·t....;";.i ,.,....,';-'....!....j i"'n"----l'-HT .-oT'-T .._..I It+r'r-·Tl.·-1·T !"j r-;-'..i-.......·....·r ..--····..·'!'I :,I';.!;~~lllj Ill!!I'!I'l'r II I'I,i:11 !!~!I;~",
'I''.'"''''''-.1,.'I I,·I.'~""I
.'I I ',;;'1'1.1::i'I:!.~~I-III;Ii,'ISIAM'PIL't1a:"n.I'Ojlft,.1 I Illi :,':;:.:'!I'.,,'I 1 I".,....,I '..T·..•'~\'..I,,'I,,'I..~"l'.i ."I;:I:l'.1.\.I,'I·t..:1 .._1-(';;.,.,.._.-'\"-1--'"-.:..I-.,·.....,..l.........1·..l·..I~·I"..,·I.t..j.,'-I "';'.'I ..".,I I I 't-l h-tti·,"Itt'I I I I'..':.I
:',,::'.:i I .'I :';-:I I ':j I'iii:'1'I '.'-f-+,-',~~1-'4.H-i r+~t'~i:':"I,;;,.i",I i'I I,I I!I I ':I I I .I I ,"I . I "','
11 iii:ill iii:I;:I:!:I i 'j 1 Iii II!!Iii:II I II ti rI 1'11 1 i!;:i i:::::,I'1''-';''''0''......' "I .I !.,",I II I 'I I ..!I' "...!.!'I I ;.I.I I'I _.',.I I I •;,.',.; ,
·';i .h I '~!I : :!I to,1 i I I;I ;2~1 I :III!,I f3P (',i!i!114~!I I /111'5101 II!I 'I !610'II ;I;!:710 ;..j ,I ,e~)'
:;.i T I',! ,':I ,'!I ! ' ,I ,!I I I j'I :!,I I I :I!I ;.I I I.!,,.!,I'I ,
•TI ME (HOURS)
Ii,.,;
I'~ilr-'
IiI:
"!
"~:
il
I:
t\;
i!
h
"P;j;
!
f
Ii
IiI!.1I~
Ii
~
1,
..j
I
"I!il
11
!1
II
Iir
\
·_-,------------_._----__..,_-
M14/15 20
:!"""
100
90
80
70
60
40
)=1-:'-'
-'1---::::;t=
t -::7.........
.-
,,
7 8
,
6
•::;:=:.'.
-=
-->-
?"--~-'--;:'·';'.::;:=::'~E·:'::·
-/-
....-;,
1=••
;,~
;,I;
,f'
3 4 5 6 7-8 9 100 2 3 4
SUSPENDED SEDIMENT CONCENTRATION (lng/l)
2
1-
I-.:-........./'I---4-----;-+-..:...:+-..-+-:~......,..,.:'r-;..'.;.;+.,~,'++,......,.,..j~"'·i/A-.,.-l,-",+.--""'+-"""""",-i-,-IT'~:.()~1·~~5T(SC)·U'.89:U--+---.-t-'----I
!.l;";1 Jj:l ":1'iL".I "..",;f',,;.·1---,".;.1-------1,----'+..;-.-;-;..++,""'.,,....+-<·.....;.;..IF ,4"c.+,..~,:.;.;__h-+~I"'~/.."...:.j.,....;",,-h+-,,:+,,';';,,+--4++-+,-1,-,'""IH.~'-:.l.r\':"'9:ri',:,';".,.,
:':;:;:i ::,:':.:hH ~;jV':..~t,.c.:,-+:.;.;,'';'';+i'':'':I~,I.,..::;..,:I'''''''''-'-'''';''..L-j...:..-i-i'-'~-:~'''''I,-+'::I:;::!!"":~-"".'olrLj-,-.,.'+,:+i;;-t..;.':-,'+.--1-+---1
:.....:7f.":-rz·."
:1-..-==-=:....,T ::::._.
"':;::'L _.•." .
5
TUm:;SICITV YS SUSLOENCEC SECIMENT
CONC:=N7RATICN
R&M CONSUL.TANTS,INC.
ENG1NE'I!AS DEOf.,OGtSTS-P4",ANNEAS .UAVEYCtAS
FIGURE 4.2 IK1lim a IEllJlfl4~~(O)
SUS/TNA JOINT VENTURE
52
M14/15 41
REFERENCES
Deer,W.A.,R.A.Howie and J.Zussman.1974.An Introduction to the
Rock-Forming Minerals.Longman Group Limited,London.
Dietrich,William E.1982.Settling Velocity of Natural Particles.Water
Resources Research,Vol.18,No.16.
Karuhn,R.F.and R.H.Berg.1982.Practical Aspects of Electrozone
Size Analysis.Particle Data Laboratori.es,Elmhurst,Illinois.
Morris,Henry M.and James M.Wiggert.1972.Applied Hydraulic in
Engineering,2nd Edition.Ronald Press company,New York.
Peratrovich,Nottingham and Drage,Inc.1982.Susitna Reservoir
Sedimentation and Water Clarity Study.Anchorage,Alaska.Alaska
Power Authority.Susitna Hydroelectric Project.Report for Acres
American,Inc.Vol.1.
R&M Consultants,Inc.1982.Placer Mining Wastewater,Settling Pond
Dem~nstration Project.Report for State of Alaska,Department of
Environmental Conservation.
R&M Consultants,Inc.1982.Reservoir Sedimentation.Anchorage,
Alaska.Alaska Power Authority.Susitna Hydroelectric Project.
Report for Acres American,Inc.Vol.1.
Wadell,Hakon.1932.Volume,SHape and Roundness of Rock Particles.
Jou rnal of Geology,Volume 40.
-53-
.-
M14/15 42
APPENDIX
-54-
I
PARTICLE SIZE ANALYSIS BY ELZONE KETKOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELKHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R &tI CONSULTANTS
SAMPLE:SETTLING COLUMN 8/7/84 0 HRS
VOLUME (HASS)DISTRIBUTION FROtl DISPLAY AREA:4
-====================
INDICES
VOLUtlE HDDE =6.12 MEDIAN =5.09 MICRONS AND LARGER
6 SEP 84 :DATE
8213 :JOB NUHBER
GEOHETRIC VOLUKE HEAN =4.70 +/-5.95 (126.52%)SKEWNESS =-.24
ARITHMETIC VOLUME HEAN =6.38 +/-5.25 (82.28%)SKEWNESS =.05
FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
00.1%
01.0%
06.0%
22.0%
50.0%
78.0%
94.0%
99.0%
99.9%
OF VOLUME IS AT
OF VOLUHE IS AT
OF VOLUME IS AT
OF VOLUME IS AT
OF VOLUttE IS AT
OF VOLUME IS AT
OF VOLUHE IS AT
OF VOLutlE IS AT
OF VOLUIfE IS AT
40.73 HICROHS AND LARGER
26.87 MICRONS AND LARGER
14.74 IfICRONS AND LARGER
8.86 HICRONS AND LARGER
5.09 HICRONS AND LARGER
2.55 IfICRONS AND LARGER
1.22 KICRONS AND LARGER
.61 HICRONS AND LARGER
.35 tlICRONS AND LARGER
COUNT (FREQUENCY>DISTRIBUTION FROIt DISPLAY AREA:5
====-===--=====-_.===
INDICES
COUNTS HODE =.33 KEDIAN =.33 HICRONS AND LARGER
GEOHETRIC COUNTS HEAN =.33 +/-.54 <163.02%)SKEWNESS =.00
ARITHIfETIC COUNTS HEAN =.54 +/-.67 (124.78%)SKEWNESS =.31
FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:00.1%OF COUNTS IS AT
PERCENTILE:01.0%OF COUNTS IS AT
PERCENTILE:06.0%OF COUNTS IS AT
PERCENTILE:22.0%OF COUNTS IS AT
PERCENTILE:50.0%OF COUNTS IS AT
PERCENTILE:.78.0%OF COUNTS IS AT
PERCENTILE:94.0%OF COUNTS IS AT
PERCENTILE:99.0%OF COUNTS IS AT
PERCENTILE:·99.9%OF COUNTS IS AT
6.87 MICRONS AND LARGER
3.15 HICRONS AND LARGER
1.58 MICRONS AND LARGER
.72 MICRONS AND LARGER
.33 tlICRONS AND LARGER
.15 HICRONS AND LARGER
.08 HICRONS AND LARGER
.04 MICRONS AND LARGER
.02 tlICRONS AND LARGER
55
.-PARTICLE SIZE ANALYSIS
115 HAHN STREET
BY ELZDHE METHOD--PARTICLE DATA LABORATORIES,
-ELHHURST,IL.60126 -TELEPHONE:(312)832-5658
LTD •
-CLIENT:R &H CONSULTANTS
SAMPLE:SETTLING COLUKM 817/64 0 HRS
PARTICLE SIZE VS.COUNTS
ENClOSING
lOW AT 1 .02 70185 HIGH AT 90 46.25 1
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL COUNTS FROH CHANNEL
6 SEP 84 :DATE
8213 :JOB HUHBER
1 TO 90,AND SKIP:2
!•••••••••!•..•.•••.!•••••••••!•••••••••!.•••...••!•••••••••!••.•••••.!•••e •••••!•••••••••!•••••••••!....%"AX SIZE 0 10 20 30 40 50 60 70 80 90 100
---,----------------------------------'----ofll
.....
-
1.7
3.4
6.6
11.8
19.7
30.5
44.0
5'1.1
74.1
86.4
93.9
95.0
89.5
78.5
64.6
49.2
34.8
22.9
14.3
7.'1
4.2
2.2
1.1
.5
.2
.0
.0
.0
.0
.0
.02>-*
.03>-*•
.03}----t
.05>- - --.
.06>-,
.08>---tI
.10>~--------------ofl.
.13>- - --- - - - - - - - - - -
.17>••
.21>- - - - - -.28)-------------
.36)
.47>--
.61>- -- - - - - - -
.79>-----------
1.02>- - - - - - - -
1.33}--II
1.72>- -•
2.23>--II.
2.89>-t
3.75}-1.
4.86>-tI
6.30H
8.18>*
10.60>-
13.75)'
17.83>*
23.12>'
29.99)*
38.89>*
-I.
-I.
-I
I.
...--to.
- 1
!•••••••••!.•••••.••!•••••••••!•••••••••!•••••••••!•••••••••J •••••••••!•••••••••!•••••••••!•••••••••!
X"AX SIZE 0 10 20 30 so 60 70 80 90 100
"
PARTICLE SIZE ANALYSIS BY ELZONE HETHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET .-ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R &HCONSULTANTS
SAMPLE:SETTLING COLUMN 8/7/8~0 HRS
6 SEP 8~:IlATE
8213 :JOB NUMBER
"TOTAL IN TABULATION:TOTAL COUNT OR VOLUME IN ANALYSIS
TABULATION
DATA ID 8213 DATE 6 SEP
SIZE-NORMALIZED COUNTS DISTRIBUTION
TOTAL =1.12727E 8
"...CHHL SIZE COUNTS 7.>CHNL SIZE COUNTS %>CHHL SIZE COUNTS %>-.<'..f.'f\......·,
1 .02 70185 100.00 31 .28 3937326 58.95 61 3.75 176766 .74
2 .02 90005 99.9~32 .30 398~239 55.~5 62 4.09 143227 .59
3 .02 111515 99.86 33 .33 4000000 51.92 63'4.~6 117978 .~6
~.03 144553 99.76 34 .36 3984239 ~8.37 6~4.86 93207 .35
5 .03 181035 99.63 35 .39 3937326 44.8~65 5.30 73207 .27
6 .03 224941 99.47 36 .43 3860361 41.34 66 5.78 58847 .21
7 .03 2n298 99.27 37 .47 3755133 37.92 67 6.30 46330 .15
8 .~339152 99.02 38 .51 3624043 34.59 6S 6.87 35069 .11
9 .04 411541 98.72 39 .56 3470020 31.37 69 7.50 26359 .08.....10 .05 495453 98.36 40 .61 3291358 28.30 70 8.18 20146 .06
11 .05 591783 97.92 41 .66 3089423 25~38 71 8.92 15379 .04
12 .05 701282 97.39 42 .72 2907472 22.64 72 9.72 10821 .03-13 .06 824506 96.77 43 .79 2710070 20.06 73 10.60 7163 .02
14 .06 961759 96.0~44 .86 2487019 17.65 74 11.56 4851 .01
15 .07 111303~95.18 45 .9~2262861 15.~5 75 12.61 3120 .01
16 .08 1277973 94.20 46 1.02 2062328 13.44 76 13.75 1915 .00
17 .08 1455813 93.06 47 1.11 1875017 11.61 77 14.99 1195 .00
18 .09 1645358 91.77 48 1.22 1662017 9.95 78 16.35 736 .00
19 .10 1844954 90.31 49 1.33 1459987 8.47 79 17.83 450 .00
20 .11 2052492 88.68 50 1.45 1299668 7.18 80 19.44 267 .00
21 .12 2265417 86.86 51 1.58 1139867 6.02 81 21.20 161 .00
22 .13 2480763 84.85 52 1.72 958727 5.01 82 23.12 106 .00
'fII!lI!IM 23 .14 2695215 82.64 53 1.87 813642 4.16 .83 25.22 66 .00
24 .15 2905173 80.25 54 2.04 70n47 3.44 84 27.50 40 .00
2S .17 3106857 77.68 55 2.23 599970 2.81 85 29.99 24 .00
26 .18 3296411 74.92 56 2.43 498933 2.28 86 32.70 14 .00
27 .20 3470020 72.00 57 2.65 407443 1.84 87 35.66 8 .00
28 .21 362~043 68.92 58 2.89 331991 1.48 88 38.89 3·.00
29 .23 3755133 65.70 59 3.15 273888 1.18 89 42.41 2 ~oo,....30 .26 3860361 62.37 60 3.44 220161 .9~90 46.25 1 .00
DISPLAY AREA:4-
57
LTD.DAT~LABOR~TORIES,
-TELEPHONE:(312)832-5658
BY ELlONE METHOD--PARTICLE
-ELMHURST,IL.60126
P~RTICLE SIZE ANAlYSIS
115 HAHN STREET
,-
~,
CLIENT:R I HCONSUlTAHTS
SAMPLE:SETTLIHG COLWlH 817/84 0 HRS
6 SEP 84 :DATE
8213 :JOB NUMBER
PARTICLE SIZE liS.VOLUflE
ENCLOSING
LDW AT 1 .30 39353 HIGH AT 113 53.74 2974
f •••••••••!•••••••••!.••••••••!•••••••••!•••••••••!•....••••!•••••••••!••••••~••!•••••••••!•••••••••!
GRAPH OF DIAHETER SIZES liS.DIFFERENTIAL VOLUME FROM CHANNEL 1 TO 113,AHD SKIP:2
-%HAX SIZE 0 10 20 30 40 50 70 80 90 100
..
-I.
-I.
I
-I.
I
,---------------1
--I
•
•
-I.
------------1
•-·1
-I
-------------------------------------1.
-I•
.30>-*
.35>*
.40>--1
.46>-* .
.53>---1.
.61>---*
.70>--
.80>-----*.92>,--------II
1.06>-
1.22>-----
1.40>-
1.60>------------.--,
1.84>-
2.12)---
2.43>
2.79>----------'-------------------'---1
3.21>- - -(-
3.68>-------------..;....---·------------·-,1.
4.23>-- - - - ---
4.86>....------
5.58>---
6.41>---------------------------,----------1
7.37>- - -
8.46>------------,--------
9.72>- -
11.17>-----,-----,--------------------,1
12.83>- - - -
14.74>-~--------lt
16.93>- - -I
19.44>---'----II
22.34>------I
25.66>----1 •
29.47>- --I
33.85>-1
38.89>-I
44.67>-*
51.31>I
.9
1.4
2.1
3.1
4.4
6.2
8.5
11.5
15.2
19.7
25.0
31.1
38.0
43.7
52.6
60.0
65.8
72.6
78.9
84.4
89.0
94.0
95.0
93.7
90.2
82.6
65.3
48.0
36.0
23.5
16.1
11.6
B.O
5.5
3.4
2.2
.9
.6
.....
!•••••••••!.••••••••!!•••••••••t •••••••••!•••••••••!•••••••••!•••••••••!•••••••••~•••••••••!
%flAX SIZE 0 10 20 30 '"'0 50 60 70 80 90 100
58
,..,.
L
•PARTICLE SIZE ANALYSIS BY ELZONE HETHOD--PARTICLE DATA LABORATORIES,LTD •
~115 HAHN STREET -ELnHURST,IL.b0126 -TELEPHONE:(312)832-5658
CLIENT:R 1 MCONSULTANTS 6 SEP 84 :DATE
SAMPLE:SETILING COLUMN 817/84 0 HRS 8213 :JOB HUMBER
~
"TOTAL IN TABULATION=TOTAL COUNT OR VOLUME IN ANALYSIS
TABULATI@
DATA ID 8213 DATE 6 SEPr-SIZE-HORHALIZED VOLUME DISTRIBUTION
TOTAL =74151578
i"""CHHL SIZE VOLUME 7.>CHHL SIZE VOLUK£%>CHNL SIZE VOLUME %>
1 .30 39353 100.00 39 1.76 1730196 87.94 77 10.18 3211820 17.71
2 .32 45316 99.98 40 1.84 1831440 86.95 78 10.66 3085651 15.87-3 .33 52070 99.95 41 1.93 2004484 85.90 79 11.17 2736946 14.09
4 .35 59700 99.92 42 2.02 2082473 84.75 80 11.70 2467802 12.52
5 .37 68298 99.89 43 2.12 2207398 83.55 81 12.25 2195155 11.11
f~6 .38 77962 99.85 41 2.22 2303797 82.28 82 12.83 2015185 9.84
7 .40 88801 99.80 'IS 2.32 2341329 80.96 83 13.44 1775377 8.69
8 .42 100924 99.75 <46 2.43 2518098 79.62 ~4 14.07 1607986 7.67
9 .44 114453 99.69 47 2.55 2664804 78.17 85 14.74 1508167 6.74
10 .46 129512 99.63 <48 2.67 2689056 76.64 86 15.43 1300600 5.88
11 .48 146230 99.55 <49 2.79 2760247 75.10 87 16.16 1130109 5.13
12 .51 164748 99.47 50 2.92 2761569 73.51 88 16.93 985532 <4.48
13 .53 185204 99.38 51 3.06 2890776 71.93 89 17.73 831255 3.92
14 .55 207744 99.27 52 3.21 3044353 70.27 90 18.5'7 727594 3.44
15 .58 232520 99.15 53 3.36 3038264 68.52 91 19.44 676463 3.02
16 .61 259680 99.02 54 3.52 3193066 66.77 92 20.36 589393 2.63.....
17 .64 289380 98.87 55 3.68 3308363 64.94 93 21.33 538004 2.30
18 .67 321771 98.70 56 3.86 3242379 63.04 94 22.34 487497 1.99
19 .70 357007 98.52 'S7 4.04 3426549 61.18 9S 23.39 433426 1.71
~.20 .n 395236 98.31 58 4.23 3541622 59.21 96 24.50 381573 1.46
21 .77 436603 98.08 59 4.43 3525277 57.18 97 25.66 335156 1.24
22 .80 481244 97.83 60 4.64 3678918 55.15 98 26.87 288085 1.05-23 .84 529291 97.56 61 4.86 3731954 53.0.4 99 29.14 262298 .88
24 .88 580863 97.25 62 5.09 3840626 SO.90 100 29.47 231788 .73
25 .92 636068 96.92 63 5.33 3871866 48.69 101 30.87 210363 .60
26 .96 694996 96.55 64 5.58 3942851 46.47 102 32.33 185100 .48
27 1.01 757724 96.16 65 5.85 3938553 44.20 103 33.85 140577 .37
28 1.06 824308 95.72 66 6.12 4000000 41.94 104 35.46 104377 .29
29 1.11 894784 95.25 67 6.41 3985599 39.65 105 37.13 88547 .23
30 1.16 969164 94.73 68 6.72 3974594 37.36 106 38.89 92108 .18
31 1.22 1047430 94.18 69 7.04 3960428 35.08 107 40.73 45009 .13
32 1.27 1129545 93.58 70 7.37 3929233 32.80 loa 42.65 46970 .10
33 1.33 1215436 92.93 71 7.72 3929956 30.55 109 44.67 38170 .07-34 1.40 1304999 92.23 72 8.08 3823995 28.29 110 46.i8 36791 .05
35 1.46 1398100 91.48 73 8.46 3782693 26.09 111 49.00 23790 .03
36 1.53 1494570 90.68 74 8.86 3735761 23.92 112 51.31 24246 .02
37 1.60 1594205 89.82 75 9.28 3615426 21.78 113 53.74 2974 .00
38 1.68 1671362 88.90 76 9.72 3465100 19.70
•-,.
jil'ilI!'IllI
59
.....
!
.'
PARTICLE SIZE ANALYSIS BY Ell ONE HETHOD--PARTICLE DATA LABORATORIES,LTD •
115 HAHN STREET -ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R &It CONSULTANTS 7 SEP 84 :DATE
SAItPLE:SETTLING COLUMH 8/11/84 96 HRS 8213:JOB NUMBER
VOlUKE (HASS)DISTRIBUTION FROIt DISPLAY AREA:4
-=====================
INDICES
VOLUME MODE =.80 MEDIAN =.86 MICRONS AND LARGER
GEOItETRIC VOLUME ItEAN =1.07 +/-2.71 (252.70%)SKEWNESS =.10
ARITHMETIC VOLUME ItEAN =6.33 +/-22.80 (360.27%)SKEWNESS =.24
FOR PLOTTING PROBABILITY ON LOG PAPER:
OF VOLUME IS AT 145.14 ItICRONS AND LARGER
OF VOLUHE IS AT 126.35 MICRONS AND LARGER
--
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCEHTILE :
PERCENTILE:
PERCEtnILE:
PERCENTILE:
PERCENTILE:
00.1%
01.0%
06.0%
22.0%
50.0%
78.0%
94.0%
99.0%
99.9%
OF lJOLUKE IS AT
OF VOLUME IS AT
OF VOLUME IS AT
OF VOLUME IS AT
OF VOLUME IS AT
OF VOLUME IS AT
OF VOLUME IS AT
10.42 MICRONS AND LARGER
1.50 MICRONS AND LARGER
.86 MICRONS AND LARGER
.49 MICRONS AND LARGER
.30 MICRONS AND LARGER
.19 MICRONS AND LARGER
.12 MICRONS AND LARGER
COUNT (FREQUENCY>DISTRIBUTION FR1JK DISPLAY AREA:5
=--=========--===========
INDICES
COUNTS MODE =.23 MEDIAN =.23 MICRONS AND LARGER
GEOMETRIC COUNTS MEAN =.23 +/-.22 (92.67%)SKEWNESS =-.01
ARITHKETIC COUNTS HEAN =.29 +/-.21 (72.39%)SKEWNESS =.26
,....FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:00.1%OF COUl'!T5 IS AT 1.72 MICRONS AND LARGER
PERCENTILE:01.0%OF COUNTS IS AT 1.02 MICRONS AND LARGER
PERCENTILE:06.0%OF COUNTS IS AT .66 HICRONS AND LARGER
PERCENTILE:22.0%OF COUNTS IS AT .39 HICRONS AND LARGER
PERCENTILE:50.0%OF COUNTS IS AT .23 MICRONS AND LARGER
'"'"'PERCENTILE:78.0%OF COUNTS IS AT .14 MICRONS AND LARGER
PERCENTILE:94.0%OF COUNTS IS AT .08 MICROHS AND LARGER
PERCENTILE:99.0%OF COUNTS IS AT .05 MICRONS AND LARGER
PERCENTILE:99.9%OF COUNTS IS AT .03 MICRONS AND LARGER
60
-
LTD.BY ELZONE HETHOD--PARTICLE DATA LABORATORIES,
ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
AHALYSIS
HAHN STREET
PARTICLE SIZE
115
"
CLIENT:R &MCONSUlTANTS
SAMPLE:SETTLING COLUMN 8/11/84 96 HRS
7 SEP 84 :DATE
8213 :JOB HUMBER
PARTICLE SIZE VS.COUNTS
ENCLOSING
LOW AT 1 .03 31573 HIGH AT 78 23.12 2
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL COUNTS FROM CHANNEL 1 TO 78,AND SKIP:2
%MAX SIZE 0 10 20 30 40 60 70 80 90 100
!.•.•..•..!•••••••••!•••••••••!•.•...•••!•....••.•!....••.••!••.••••••!•••.•••••!•••••••••!•••••••••!
--ll
--it
*
'.
--it
II
-----__If .--it •
.03>-*
.04)-it
.05>---it
.06>- -
•08}------,
.11>- -
.14>--,----'----~--------_·----
.18>- - - - - - - - -
.23}--,-------------------------·-----,---
.30>- - --- - - - -
.39>----,---,----,---------------111
.51>- -
.66>-,---~----it
.86>- -
1.11>--11
1.45>-II
1.87>11
2.43}1I
3.15}1I
4.0i1}11
5.30>11
6.87)11
8.92>*
11.56}11
14.99>*
19.44>*
.8
2.3
~6.3
14.4
28.4
48.3
70.5
88.4
95.4
88.4
71.7
47.9
26.9
12.8
5.4
1.8
.5
.2
.0
.0
.0
.0
.0
.0
.0
.0
!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••f •••••••••!•••••••••!...•.•.•.!•••••••••!•••••••••!
%KAX SIZE 0 10 20 30 40 60 70 80 90 100
61
s.
PARTICLE SIZE ANALYSIS BY ELZOWE METHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
ClIENT:R &If CONSULTANTS 7 SfP 84 :DATE
SAKPLE:SETTLIHG COLUMN 8/11/84 96 HRS 8213:JOB HUHBER
'10TAL IN TABULATION=TOTAL COUNT DR VOLUME IN ANALYSIS
TABULATION
DATA II)8213 DATE 2 FEB
SIZE-NORMALIZED COUNTS DISTRIBUTION
TOTAL =7.67200E 7
CHHL SIZE COUNTS 7.>CHHL SIZE COUNTS 7.>CHNl SIZE COUNTS %>
-1 .03 31573 100.00 27 .28 3867743 41.90 53 2.65 3487 .01
2 .03 46869 99.96 28 .30 3708553 36.86 54 2.89 2075 .01
3 .03 68417 99.90 29 .33 3496635 32.03 55 3.15 1241 .00
4 .04 98207 99.81 3Q .36 3241864 27.47 56 3.44 727 .00
5 .04 138617 99.68 31 .39 3006819 23.24 57 3.75 392 .00
6 .05 192393 99.50 32 .43 2671360 19.32 58 4.09 228 .00
7 .05 262581 99.25 33 .47 2325401 15.84 59 4.46 129 .00
8 .05 352398 98.91 34 .51 2009107 12.81 60 4.86 68 .00
9 .06 465055 98.45 35 .56 1705792 10.19 61 5.30 34 .00
10 .06 603494 97;84 36 .61 1401248 7.97 62 5.78 20 .00
11 .07 770089 97.05 37 .66 1127904 6.14 63 6.30 12 .00.-12 .08 966289 96.05 38 .72 906942 4.67 64 6.87 7 .00
13 .08 1192263 94.79 39 .79 716043 3.49 65 7.50 6 .00
14 .09 1446560 93.24 40 .86 538106 2.56 66 8.18 4 .00....15 .10 1725834 91.35 41 .94 408182 1.B5 67 8.92 3 .00
16 .11 2024698 89.10 42 1.02 307221 1.32 68 9.n 2 .00
17 .12 2335720 86.46 43 1.11 225243 .92 69 10.60 3 .00
18 .13 2649598 83.42 44 1.22 163035 .63 70 11.56 2 .00-19 .14 2955548 79.97 45 1.33 107086 .42 71 12.61 2 .00
20 .15 3241864 76.11 46 1.45 73476 .28 72 13.75 2 .00
21 .17 3496635 71.89 47 1.58 4sm .18 73 14.99 1 .00,
22 .18 3708553 67.33 48 1.72 29321 .12 74 16.35 2 .00....
23 .20 3867743 62.50 49 1.87 20316 .os 75 17.83 1 .00
24 .21 3966518 57.45 50 2.04 14919 .05 76 19.44 1 .00
25 .23 4000000 52.28 51 2.23 9977 .03 77 21.20 1 .00-26 .26 3966518 47.07 52 2.43 6407 .02 78 23.12 2 .00
.-DISPLAY AREA:4
62
LTD.METHOD--PARTICLE DATA LABORATORIES,
-TELEPHONE:(312)832-5658
BY ELZOHE
ELMHURST,IL.60126
SIZE ANALYSIS
HAHN STREET
PARTICLE
115
,.
CLIENT:R &MCONSULTANTS
SAMPLE:SETTLING COLUMN 8/11/84 96 HRS
7 SEP 84 :DATE
8213 :JOB NUMBER
PARTICLE SIZE VS.VOLUME
ENCLOSING
LOW kf 1 .09 11990 HIGH AT 108 155.55 32173
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL VOLUME FROM CHANNEL 1 TO 108,AND SKIP:2
SIZE 0 10 20 30 40 so 60 70 ao 90 100
!•••••••••!•••••••••!......•..!•.......•!•••••••••!•••••.•••!•••••••••!•........!•••••••••!•••••••••!
!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••f ••••••~••!•••••••••~•••~•••••!•••••••••!
.09)*
.12>It
.14>-*
.17>- -II
.21>---*
10090
."-.
8070
II
60
·_----------11--II
504030
-II
20
•
10SIZE0
.26}- - - - - - -
.33>-------·-------11.
.40}
.49)·-------
.61}- - - - - - - - - - - - -II
.75>--.•-----.---------.-.----------*
.92>- - - - - - - - - - - - - - - - - - -- - - - - -II
1.13>-----...:--------·-----·----·..---------·---·------11
1.40>
1.72)>------------------11
2.12>- - - - - - - - --II
2.60)-------11.
3.21>- - --II
3.95>-*
4.86>-II
5.98}-f
7.37>II
9.07}-f
11.17>II
13.75>-11
16.93>II
20.84>-*
25.66>II
31.59>-11
38.89>II
47.88>-*
58.94>-II
72.57}-II.
89.~>- - -
109.99)---------11
135.42>- - -II
%MAX
.3
.8
2.2
5.1
10.8
20.3
34.3
52.1
70-.9.....86.6
94.8
93.5
83.4
63.2
40.1
31.9
18.9
9.9
4.9
2.1
•9
.7
•5
.7
.9
1.3
1.3
1.0
1.1
1.3
.9
2.2
4.4
8.7
14.8
7.2
63
-
..
PARTICLE SIZE ANALYSIS BY ELZONE METHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R &MCONSULTANTS 7 SEP 84 :DATE
SAMPLE:SETTLING COLUMN 8/11/84 96 HRS 8213:JOB HUMBER
"TOTAL IN TABULATION=TOTAL COUNT OR VOLUME IN ANALYSIS
TABULATION ..
~~DATA ID 8213 DATE 2 FEB
SIZE-NORMALIZED VOLUME DISTRIBUTION
TOTAL =9.80708E 7
.....
CHNL SIZE VOLUME %>CHHL SIZE VOLUME %>CHHL SIZE VOLUME %>
1 .09 11990 100.00 37 1.13 3500139 35.83 73 13.75 39830 5.88
~2 .10 17338 99.99 38 1.22 3388515 32.26 74 14.74 43976 5.84
3 .11 24769 99.97 39 1.30 2986344 28.81 75 15.79 55901 5.80
4 .12 34959 99.94 40 1.40 2652174 25.76 76 16.93 55769 5.74
5 .12 48750 99.91 41 1.50 2427106 23.06 77 18.14 51999 5.68
6 .13 67164 99.86 42 1.60 2042363 20.58 78 19.44 51772 5.63
7 .14 91419 99.79 43 1.72 1679877 18.50 79 20.84 55065 5.58
8 .15 122940 99.70 44 1.84 1551571 16.79 80 22.34 52290 5.52
9 .16 163342 99.57 45 1.971567995 15.21 81 23.94 44930 5.47
10 .17 214414 99.-41 46 2.12 1337741 13.61 82 25.66 41731 5.42
11 .19 278070 99.19 47 2.27 1216495 12.24 83 27.50 41049 5.38
12 .20 356292 98.90 48 2.43 1061986 11.00 84 29.47 49985 5.34
13 .21 451031 98.54 49 2.60 793547 9.92 85 31.59 44764 5.29
14 .23 564097 98.08 50 2.79 645475 9.11 86 33.85 41467 5.24
15 .25 697030 97.51 51 2.99 490663 8.45 87 36.28 43812 5.20
16 .26 850937 96.79 52 3.21 416708 7.95 88 38.~52924 5.16
17 .2B 1026342 95.93 53 3.44 336824 7.53 89 41.68 30176 5.10
18 .30 1223026 94.88 54 3.68 254007 7.18 90 44.67 32668 5.07
19 •33 1439884 93.63 .55 3.95 199762 6.92 91 47.88 37176 5.04
20 .35 1674822 92.17 56 4.23 152540 6.72 92 51.31 52785 5.00
21 .37 1924679 90.,46 57 4.54 11~75 6.56 93 55.00 63146 4.95
i-'22 .40 2185226 88.49 58 4.86 87655 6.44 94 58.94 93001 4.88
!23 .43 2451226 86.27 59 5.21 63058 6.35 95 63.17 88845 4.79
24 .46 2716560 83.77 60 5.58 47413 6.29 96 67.71 102199 4.70
25 .49 2974431 81.00 61 5.98 38391 6.24 97 72.57 186534 4.59
26 .53 3217637 77.'~6 62 6.41 30854 6.20 98 77.78 255492 4.40
27 .57 3438897 74.68 63 6.87 27286 6.17 99 83.36 401454 4.14
28 .61 3631197 71.18 64 7.37 28068 6.14 100 89.34 362880 3.73
29 .65 3788168 67.,47 65 7.90 24216 6.11 101 95.75 436016 3.36
30 .70 3904428 63.61 66 8.46 22553 6.09 102 102.63 561766 2.92
31 .75 3975890 59.63 67 9.07 21922 6.07 103 109.99 620450 2.34
32 .80 4000000 55.58 68 9.72 24373 6.04 104 117.89 674084 1.71
33 .86 3922810 51.50 69 10.42 32318 6.02 105 126.35 563076 1.02
34 .92 3921127 47.50 70 11.17 30602 5.99 106 135.42 303970 .45
35 .99 3871263 43.50 71 11.97 34531 5.96 107 145.14 105114 .14
36 1.00 3648823 39.55 72 12.83 35506 5.92 108 155.55 32173 .03
,.
64
..
J"
PARTICLE SIZE ANALYSIS BY ELZONE HETHOD--PARTICLE DATA LABORATORIES!LTD.
i15 HAHN STREET -ELMHURST,IL.60126 -TELEPHONE~(312)832-5658
CLIENT~R &/'I CONSULTANTS
SAItPLE:SEffiING COLUMN 8/5/84 96 HRS
VOLUHE (HASS)DISTRIBUTION FROM DISPLAY AREA:4
=================--====
INDICES
VOLUME HODE =3.13 HEDIAN =1.56 MICRONS AND LARGER
6 SEP 84 :DATE
8213 :JOB NUHBER
.~
GEOMETRIC VOLUME MEAN =1.52 +/-2.94 (193.50%)SKEWNESS =-.55
ARITHMETIC VOLUME MEAN =2.79 +/-4.72 tI68.82%)SKEWNESS =-.07
~FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:00.1%OF VOLUl1E IS AT 56.76 !HCRONS AND LARGER
PERCENTILE:01.0%OF VOLUME IS AT 25.02 HICRONS t\HD LARGER
PERCENTILE:06.0%OF vnLUHE IS AT 6.66 MICRONS AND LARGER
PERCENTILE:22.0%OF VOLUME IS AT 3.55 KICRONS AND LARGER
PERCENTILE:50.0%OF VOLUKE IS AT 1.56 KICRONS AND LARGER
PERCENTILE:78.0%OF VOLUHEIS AT .61 MICRONS AND LARGER
PERCENTILE:94.0%OF VOLUME IS AT .29 MICRONS AND LARGER
PERCENTILE:99.0%OF VOLUME IS AT .15 KICRONS AND LARGER
.....PERCENTILE:99.9%(IF VOLUKE IS AT .10 MICRONS AND LARGER
COUNT (FREQUENCy)DISTRIBUTION FRO"DISPlAY AREA:5
-====================-===
INDICES
COUNTS HODE =.14 KEDIAN =.15·KICRONS AND LARGER
i"...!GEOHETRIC COUNTS KEAH =.15 +/-.13 (86.53%)SKEWNESS =.11
ARITHMETIC COUNTS HEAN =.19 +/-.17 t 89.55%)SKEWNESS =.31
:r-
FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:00.1%OF COUNTS IS AT
PERCENTILE:01.0%OF COUNTS IS AT
PERCENTILE:06.0%OF COUNTS IS AT
PERCENTILE:22.0%OF COUNTS IS AT
PERCENTILE:.50.0%OF COUNTS IS AT
PERCENTILE:78.0%OF COUNTS IS AT
PERCENTILE:94.0%OF COUNTS IS AT
PERCEHTILE:99.0%OF COUNTS IS A~
PERCENTILE:99.9%OF COUNTS IS AT
1.87 MICRONS AND LARGER
.86 KICRONS AND LARGER
.43 MICRONS AND LARGER
.23 MICRONS AND LARGER
.15 MICRONS AND LARGER
.10 MICRONS AND LARGER
.06 MICRONS AND LARGER
.04 HICRONS AND LARGER
.03 MICRONS AND LARGER
65
LTD.BY ELZONE HETHOD--PARTICLE DATA LABORATORIES~
STREET'-ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
SIZE ANALYSIS
HAHN
PARTICLE
115·"
CLIENT:R 1 HCONSULTANTS
SAMPLE:SETTLING COLUHN 8/5/84 96 HRS
6 SEP 84 :DATE
8213 :JOB HUMBER
PARTICLE SIZE VS.COUNTS
ENCLOSING
LOW AT 1 .02 4887 HIGH AT 81 21.20 1
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL COUNTS FROM CHANNEL 1 TO 81,AND SKIP:2
%MAX SIZE 0 10 20 30 40 50 60 70 80 90 100
!•••••••••~•••••••••!••••••~••!•••••••••!•••••••••!•••••••••!•••••••••!••••....•!•••••••••!•••••••••!
1009080
- - - ---*•
70
*
60
-------------------*
50
-f
30
---*
._---_._------_._--------------,-*
20
*.
10
.. . . .. . . .
!•••••••••!•••••••••!••.•.....!•••••••••!..••..•••!•••••••••!•••••••••!•••••••••!•••••••••l •••••••••!
.02>*
.03>*
.03>---*•
•05>- -*.
.06>--------·-------*.
.OS>-
.10)>------
•13>
.17)--------·-------------
.21>
.28>----.------.------------*.
.36>
.47)-----.--f
.61)- - -
•79}---
1.02)--
1.33}--
1.72>*
2.23>*
2~89>*
3.75>*
4.86>*
6.30>*
8.18>*
10.60>*
13.75>*
17.83>*
SIZE 0
.1
.6
2.7
9.2
23.9
48.4
76.4
94.1
90.2
67.4
44.1
28.0
17.1
9.5
4.9
2.4
1.0
.5
.2
.1
.1
.0
.0
.0
.0
.0
.0
%MAX
66
PARTICLE SIZE ANALYSIS BY ELZONE nETHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET.-ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R I n CONSULTAHTS
SAMPLE:SETTLI~G COLUKH 8/5/84 96 HRS
6 SEP 84 :DATE
8213 :JOB HUKBER
"TOTAL IN TABULATION=TOTAL COUNT OR VOLUME IN ANALYSIS
TABULATION
DATA ID 8213 DATE 5 SEP
SIZE-NORMALIZED COUNTS DISTRIBUTION
TOTAL =6.54574E 7
CHHL SIZE COUNTS 7.>CHNL SIZE COUNTS %>CHNL SIZE COUNTS %>
1 .02 4887 100.00 28 .21 2828749 28.85 55 2.23 9208 .06
2 .02 8B69 99.99 29 .23 2428788 24.53 56 2.43 7260 .05
3 .02 15654 99.98 30 .26 2098721 20.82 57 2.65 5774 .04
4 .03 26875 99.96 31 .28 1849334 17.61 58 2.89 4674 .03
5 .03 44878 99.91 32 .30 1595375 14.79 59 3.15 3725 .02
6 .03 72892 99.85 33 .33 1363933 12.35 60 3.44 2918 .02
7 .03 115158 99.73 34 .36 1174488 10.27 61 3.75 2245 .01
8 .04 176959 99.56 35 .39 1003649 8.47 62 4.09 1691 .01
9 .04 264491 99.29 36 .43 851020 6.94 63 4.46 1207 .01
10 .05 384515 98.88 37 .47 715821 5.64 64 4.86 799 .00
11 .05 543725 98.30 38 .51 597211 4.55 65 5.30 508 .00
12 .05 747837 97.47 39 .56 494236 3.63 66 5.78 325 .00
13 .06 1000456 96.32 40 .61 396767 2.88 67 6.30 203 .00
.14 .06 1301823 94.79 41 .66 314004 2.27 68 6.87 121 .00
15 .07 1647663 92.81 42 .72 254698 1.79 69 7.50 71 .00-16 .08 2028372 .90.29 43 .79 204537 1.40 70 8.18 42 .00
17 .•08 2428788 87.19 44 .86 162327 1.09 71 8.92 24 .00
18 .09 2828749 83.48 45 .94 127969 .84 72 9.72 13 .00
19 .10 3204514 79.16 46 1.02 100332 .65 73 10.60 7 .00
20 .11 3530957 74.26 47 1.11 78108 .49 74 11.56 6 .00
21 .12 3784300 68.87 48 1.22 58069 .37 75 12.61 '".00
22 .13 3944949 63.09 49 1.33 42766 .29 76 13.75 3 .00
23 .14 4000000 57.06 50 1.45 32669 .22 n 14.99 2 .00
24 .15 3944949 50.95 51 1.58 25037 .17 78 16.35 3 .00
25 .17 3784300 44.92 52 1.72 19309 .13 79 17.83 2 .00
26 .18 3530957 39.14 .53 1.87 14955 .10 80 19.44 1 .00
!.-27 .20 3204514 33.75 54 2.04 11649 .08 81 21.20 1 .00Ie,
DISPlAY AREA:4
67
LTD.METHOD--PARTICLE DATA LABORATDRIES,
-TELEPHONE:(312)832-5658
BY ELZONE
-ELMHURST,IL.60126
PARTICLE SIZE ANALYSIS
115 HAHN STREET
CLIENT:R &MCONSULTANTS
SAMPLE:SETILIHG COLUMN 8/5/84 96 HRS
6 SEf'84 :DATE
8213 :JDB HUMBER
PARTICLE SIZE VS.VQLUHE
ENCLOSING
LOW AT 1 .09 52875 HIGH AT 107 73.03 148
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL VOLUHE FROH CHANNEL 1 TO 107,AND SKIP:2
%HAX SIZE 0 10 20 30 40 60 70 80 90 100
!•••••••••!•••••••••!•••••••••!...•.••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••1
-I.
I
-I •
- -I
---->-----....
------*.
•
----I
-t.'-----1.
*
..t.
*
*
- I
---->--------11 .
I.
.09H
.11>--I•
•13}-----1 •
.16>- - - - - -1 •
.20}-----1 •
.24>- - - - -
.29>-------------11
.34>-
•42»----
.50>
.61»-----------
•73>
.89>--------------------------->------
1.07}- - - -
1.29)---------------
1.56>
1.89>
2.28>
2.76}---->------.--->---------------------""--------------1
3.33>- -
4.02>->-------~----------------
4.86>- - - - - - -
5.87>---
7.09>-
8.57>
10.35>
12.51>----1 •
15.11>- --I
18.26>---1
22.06>- --I
26.65>--1.
32.19>--I.
38.89>-1
46.98>-1 •
56.76>--1
6B.57>1
1.3
4.0
7.8
12.5
18.0
24.9
33.2
42.8
52.9
62.8
72.1
79.2
82.8
85.0
82.6
79.5
78.2
81.3
90.7
94.2
91.9
73.7
48.6
26.8
14.4
8.4
8.0
6.2
6.1
5.6
4.3
3.8
1.9
2.6
1.9
.1
'~
.....r
!•••••••••!•••••••••!••••••.••!.•••••...!•••••••••!•••••••••,••••••-•••f •••••••••~•••••••••!•••••••••l
%/'lAX SIZE 0 10 20 30 40 50 60 70 80 90 100
68
.....
I
PARTICLE SIZE ANALYSIS BY ELZD~E HETHDD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET·-ELMHURST,IL.60126 -TELEPHONE:(312)B32-S658
CLIENT:R t HCONSULTANTS
SAHPLE:SETTLING COLUHH 8/5/84 96 HRS
6 SEP 84 :MTE
8213 :JOB NUM8ER
'70TAl IN TABULATION=TOTAL COUNT OR VOLUME IN ANALYSIS
TABUlATION
DATA ID 8213 DATE 5 SEP
SIZE-NORMALIZED VOLUME DISTRIBUTION
TOTAL =7478BOO5
'"""CHHL SIZE VOlUME 7.>CHNL SIZE VOLUME ic>CHNl SIZE VOLUME 7.>
1 .O~52875 100.00 37 .89 3474456 68.45 73 8.57 604227 4.13
!,~2 .10 75506 99.97 38 .94 3524712 66.46 74 9.13 480480 3.78
3 .10 118165 99.~3 39 1.01 3546310 64.45 75 9.72 388446 3.51
4 .11 165824 99.86 40 1.07 3563448 62.42 76 10.35 350573 3.29
5 .12 215050 99.70 41 1.14 3568376 60.38 77 11.03 340559 3.09
6 .13 256399 99.64 42 1.22 3524658 58.34 78 11.75 346869 2.89
7 .13 326770 99.49 43 1.29 3466136 56.32 79 12.51 334422 2.69
8 .14 399222 99.31 44 1.38 3417287 54.34 80 13.32 302447 2.50
.....9 .15 458624 99.08 45 1.47 3329219 52.38 81 14.19 261676 2.33
10 .16 524640 9.8.82 46 1.56 3333544 50.48 82 15.11 260650 2.18
11 .17 594697 98.52 47 1.67 3278697 48.57 83 16.09 258093 2.03
12 .18 671220 98..18 48 1.77 3264377 46.69 84 17.14 268360 1.88
13 .20 754355 97.79 49 1.89 3281955 44.83 85 18.26 256468 1.73
14 .21 844184 97.36 50 2.01 3284519 42.95 86 19.44 235402 1.58
15 .22 940711 96.88 51 2.14 3308251 41.07 87 20.71 243379 f.45
16 .24 1043858 96.34 52 2.28 3409022 39.18 a8 22.06 235313 1.31
17 .25 1153446 95.74 53 2.43 3532149 37.23 a9 23.49 220587 1.17
18 .27 1269201 95.0B 54 2.59 3668379.35.21 90 25.02 204371 1.05
19 .29 1390739 94.36 55 2.76 3803594 33.11 91 26.65 178591 .93
F 20 .30 1522631 93.56 S6 2.94 3873404 30.93 92 28.38 137866 .83
21 .32 1659622 92.69 57 3.13 4000000 28.72 93 30.22 141167 .75
22 .34 1795511 91.74 58 3.33 3950478 26.43 94 32.19 159761 .67
23 .37 1934335 90.71 59 3.SS 3995776 24.17 95 34.28 146163 .58
24 .39 2075133 89.61 60 3.78 3927924 21.88 96 36.51 102249 .49
25 .42 2216847 88.42 61 4.02 3855716 19.63 97 38.89 78231 .44
(~26 .44 2358333 87.15 62 4.29 3691225 17.43 98 41.42 72449 .39
:27 .47 2498379 BS.80 63 4.56 3349253 15.32 99 44.11 95322 .35
i 28 .50 2635712 84.37 64 4.86 3090380 13.40 100 46.98 108421 .30
29 .54 2769025 82.86 65 5.18 2774699 11.63 101 50.04 106482 .23
30 .57 2896996 .81.28 66 5.51 2401320 10.04 102 53.29 107666 .17
31 .61 3024757 79.62 67 5.87 2038807 .8.67 103 56.76 78967 .11
32 .65 3118897 77.89 68 6.25 1709471 7.50 104 60.45 63724 .07
33 .69 3220189 76.11 69 6.66 1399331 6.53 105'·64.38 44291 .03
34 .73 3322028 74.26 70·7.09 1125381 5.72 106 68.57 6030 .00
35 .78 3390248 72.36 71 7.56 910027 5.0B 107 73.03 148 .00
36 .83 3450472 70.42 72 B.05 751273 4.56.
j
,-
69
----------_._---------~---"_._--------------
4,"PARTICLE SIZE ANALYSIS ~Y ELZONE METHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELHHURST,IL.60126 -TELEPHOHE:(312)832-5658
CLIENT:R 1 H CONSULTANTS
SAMPLE:SETTLING COLUMN 8/1/84 OHRS
'"",VOLUHE (HASS)DISTRIBUTION FROIl DISPLAY AREA:4
==========================
INDICES.....
VOLUME KODE =5.58 KEDIAN =4.23 HICRONS AND LARGER
6 SEP 84 :DATE
8213 :JOB NUKBER
GEOKETRIC VOLUHE HEAN =3.64 +1-7.20 (197.96%)SKEWNESS =-.27
ARITHMETIC VOlUME HEAN =6.05 +1-6.72 (111.01%)SKEWNESS =.07
FOR PLOTTING PROBABILITY ON LOG PAPER:
-
.....
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
PERCEtlTILE:
PERCENTILE:
PERCENTILE:
PERCENTILE:
00.1%OF VOLUKE IS AT
01.0%OF VOLUHE IS AT
06.0%OF VOLUME IS AT
22.0%OF VOLUKE IS AT
50.0%DF VOLUME IS AT
78.0%OF IJOLUKE IS AT
94.0%OF VOLUKE IS AT
99.0%OF VOLUKE IS AT
99.9%OFVOLUHE IS AT
55.00 KICRONS AND LARGER
33.85 KICRONS AHD LARGER
16.93 KICRONS AND LARGER
8.46 MICRONS AND LARGER
4.23 KICRONS AND LARGER
1.60 KICRONS AND LARGER
.57 MICRONS AND LARGER
.19 MICRONS AND LARGER
.09 MICRDNS AND LARGER
COUNT (FREQUENCY)DISTRIBUTION FROK DISPLAY AREA:5
==--=========--=--==========
INDICES
COUNTS KODE =.08 KEDIAN =.12 HICRONS AND LARGER
GEOMETRIC CDUNTS HEAN =.15 +1-.11 (75.07%)SKEWNESS =.59
ARITHKETIC COUNTS KEAN =.18 +/-.21 (115.47%)SKEWNESS =.48
FOR PLOTTING PROBABILITY ON LOG PAPER:
PERCENTILE:00.1%OF COUHTS IS AT
PERCENTILE:01.0%OF COUNTS IS AT
PERCENTILE:06.0%OF COUNTS IS AT
PERCENTILE:22.0%OF COUNTS IS AT
PERCENTILE:50.0%OF COUNTS IS AT
PERCENTILE:78.0%OF COUNTS IS AT
PERCENTILE:.94.0%OF COUNTS IS AT
PERCENTILE:99.0%DF COUNTS IS AT
PERCENTILE:99.9%OF COUNTS IS AT
2.43 HICRONS AND LARGER
.99 HICRONS AND LARGER
.40 HICRONS AND LARGER
.20 KICRONS AND LARGER
.12 HICRONS AND LARGER
.09 HICRONS AND LARGER
.08 HICRONS AND LARGER
.08 HICRONS AND LARGER
.08 IlICRONS AND LARGER
70
PARTICLE
115
LTD.HETHOD--PARTICLE DATA LABORATORIES,
-TELEPHONE:{312}832-5658
BY EqONE
-ELHHURST,IL.60126
SIZE ANALYSIS
HAHN STREET
CLIENT:R &MCONSULTANTS
SAMPLE:SETTLING COLUMN 8/1/84 OHRS
6 SEP 84 :DATE
8213 :JOB NUMBER
PARTICLE SIZE W.COUNTS
ENCLOSING
LOW AT 1 .08 4000000 HIGH AT 85 27.50 1
'-GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL COUNTS FROM CHANNEL 1 TO 85,AND SKIP:2
%MAX SIZE 0 10 20 30 40 so 60 70 80 90 100
~•••••••••!•••••••••~•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!•••••••••!
.
!•••••••••!•••••••••!•••••••.•!••.•.••.•!•••••••••!•••••••••!•••••••••!••..•••..!•••••••••!•••••••••!
.08>----------------------------':'------------*
.10>- - - - - - - - - - - - - - - - - - - - - - - - - - - -I
.12>------·-----··••••---------------If
.15>- - - - - - - - - - - - - - - - --*
.19>----~---------*.
.23>- - - - - - - - - -*
.28>-------------lf
.35>- - - - -*
•43>-----lf
.53>- -*
.65>-.
.80>-I
.99>-*
1.22>*
1.50>-*
1.84>*
2.27>*
2.79>*
3.44>*
4.23>*
5.21>*
6.41>*
7.90>*
9.72>*
11.97>*
14.74>*
18.14>*
22.34>*
27.50>*
95.4
72.6
54.5
40.4
29.5
21.2
15.1
10.5
].3
5.0
3.3
2.2
1.4
.9
.6
.4
.2
.1
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,.,..,
I~
%t1AX SIZE 0 10 20 30 40 50 60 70 80 90 100
71
,.PARTICLE SIZE ANALYSIS BY ELZONE METHOD--PARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
CLIENT:R &H CONSULTANTS
SAMPLE:SETTLING COLUMN 8/1/84 OHRS
6 SEP 84 :DATE
8213 :JOB NUHBER
"TOTAL IN TABULATION=TDTAL COUNT OR VOLUME IN ANALYSIS-TABULATION
DATA ID 8213 DATE 6SEP
SIZE-NORMALIZED COUNTS DISTRIBUTION.-TOTAL =41155654
CHNL SIZE COUNTS :t >CHHL SIZE COUNTS %>CHNL SIZE CDUNTS %>
~
1 .09 4000000 100.00 30 .61 159688 2.89 59 4.5-4 1668 .02
2 .09 3658082 90.28 31 .65 139621 2.50 60 4.86 1405 .02
3 .09 3340176 81.39 32 .70 121884 2.16 61 5.21 1179 .01-4 .10 3045200 73.28 33 .75 106235 1.87 62 5.58 977 .01
5 .11 2771964 65.88 34 .eo 92453 1.61 63 5.98 791 .01
6 .12 2519319 59.14 35 .86 80333 1.39 64 6.41 627 .01
7 .12 2286187 53.02 36 .92 69694 1.19 65 6.87 490 .00
8 .13 2070884 47.47 37 .99 60370 1.02 66 7.37 380 .00
9 .14 1873699 42.43 38 1.06 52213 .87 67 7.90 295 .00
10 .15 1692521 37.88 39 1.13 450B8 .75 6B 8.46 227 .00
11 .16 1526427 33.77 40 1.22 38875 .64 69 9.07 170 .>00
12 .17 1374476 30.06 41 1.30 33466 .54 70 9.72 124 .00
13 .19 1235732 26.72 42 1.40 28765 .46 71 10.42 92 .GO
14 .20 1109270 23~72 43 1.50 24687 .39 72 11.17 68 .00
15 .21 994206 21.02 44 1.60 21154 .33 73 11.97 50 .00
16 .23 889698 18.61 45 1.72 18099 .2B 74 12.83 36 .00
17 .25 794942 16.44 46 1.84 15752 .24 75 13.75 25 .00
18 .26 709003 14.51 47 1.97 13256 .20 76 14.74 19 .00
19 .28 631628 12.79 48 2.12 10962 .17 n 15.79 14 .00
20 .30 561775 11.26 49 2.27 9278 .14 78 16.93 10 .00
I"""21 .33 498854 9.89 50 2.43 7960 .12 79 18.14 7 .00
22 .35 442286 8.6B 51 2.60 6672 .10 80 19.44 5 .00
23 .37 391523 7.60 52 2.79 5699 .08 81 20.84 3 .00
24 .40 346049 6.65 53 2.99 481S·.07 82 22.34 2 .00-25 .43 305383 5.81 54 3.21 4030!.06 83 23.94 2 .00
26 .46 269079 5.07 55 3.44 3389 .05 84 25.66 1 .00
27 .49 236723 4.42 56 3.6B 2856 .04 85 27.50 1 .00
~28 .53 207884 3.84 57 3.95 2383 .03
I 29 .57 182349 3.34 58 4.23 1990 .03
~DISPLAY AREA:4
-
72
PARTICLE SIZE ANALYSIS
115 HAHN STREET
BY ELZOHE nETHOD--PARTICLE DATA LABORATORIES,
-ELMHURST,IL.60126 -TELEPHONE:(312)832-5658
LTD.
CLIENT:R 1 It CONSULTANTS
SAMPLE:SETTLING COLUMN 8/1/84 OHRS
6 SEP 84 :DATE
8213 :JOB NUMBER
PARTICLE SIZE VS.VOLUME
ENCLOSING
LOW AT 1 .08 50715 HIGH AT 99 72.57 347
GRAPH OF DIAMETER SIZES VS.DIFFERENTIAL VOLUME FROM CHANNEL 1 TO 99,AND SKIP:2
%MAX SIZE ()10 20 30 40 50 60 70 80 90 100
!••••••••.!•••••••••!•••••••••!•••••••••!.•••.•••.!•••••••••!•••••••••!•••••••••!•••••••••~•••••••••!
.43)-----------*.
.35)- - - - -*
.08>-*
.10>-*
.12>--*
.15)-*•
.19)--*
.23)- --*
.26>-----*.
*----*
*._....----*
-*.
-------------*
I
-*.
*.53>- - - - - -
.65)------------••••••*
.80>- - - - - - - - - - - - -*
.99>----------..-.---*•
1.22>- - - - - - - - - --*.
1.50>--------------------·----*
1.84)- -;.- - - - - - - - - - - - - - - - -*
2.27>----------------·-------------·-----'"*l
2.79>- - - - - - - - - - - - - - -
3.44)-------·...----
4.23>- - - - - -5.21}----,-----------,--·-----------,--------
6.41>- - - -
7.90)'0 -
9.72)- - - -
11.97)-----------
14.74)- - - - - -
16.14>--------------*.
22.34>- - - - - - --*
27.50>----------*
33.85>- - -*
41.68)---*.
51.31>-*
63.17>-*
1.2
3.3
.9
4.2
1.7
2.4
3.3
4.5
6.1
8.1
10.5
13.6
17.2
21.6
26.7
32.5
39.1
46.3
55.2
60.6
69.5
n.l
84.5
93.5
92.7
81.5
63.9
48.3
33.9
24.1
15.9
12.0
7.1
,..,..
!•••••••••!•.•.•.•••!•••••••••!...•..•.•!..•.....•!•••••••••!.......•.!•••••••••!•••••••••!•••••••••~
%"AX SIZE 0 10 20 30.40 50 60 70 80 90 100
73
,PARTICLE SIZE ANALYSIS BY ELZONE KETHOD--f'ARTICLE DATA LABORATORIES,LTD.
115 HAHN STREET -ELMHURST,IL.60126 -TELEPHOHE:(312)832-565B
CLIENT:R t K CONSULTANTS
SAKPLE:SETTLING COLUMN B/1/84 OHRS
"SEP 8-4 :DATE
8213 :JOB NUttiER
''TOTAL IN TABULATION=TOTAL COUNT OR VOLU!1E IN ANALYSIS
TABULATION
DATA ID 8213 DATE 6 SEP
SIZE-NORMALIZED VOLUME DISTRIBUTION
·TOTAl =1.33654E e
CHHl SIZE VOLUKE 7.>CHNL SIZE IJOLU!1E 7.>CHHL SIZE VOLUME X>
1 .OB 50715 100.00 34 .80 1119924 90.73 67 7.90 3420035 25.12
2 .09 57100 99.96 35 .B6 1198045 89.90 68 8.46 3241642 22.56
3 .09 64189 99.92 36 .92 1279629 89.00 69 9.07 2991651 20.14-4 .10 72047 99.87 37 .99 1364652 88.04 70 9.72 2681446 17.90
5 .11 80741 99.82 38 1.06 1453071 87.02 71 10.42 2462352 15.89
6 .12 90345 99.76 39 1.13 1544822 85.93 72 11.17 2250145 14.05
7 .12 100934 99.69 40 1.22 1639823 84.78 73 11.97 2025156 12.37
8 .13 112590 99.61 41 1.30 1737970 83.55 74 12.83 1783136 10.85
9 .14 125396 99.53 42 1.40 1839138 82.25 75 13.75 1572611 9.52
10 .15 139445 99.44 43 1.50 1943180 80.87 76 14.74 1420928 8.34-11 .16 154825 99.33 44 1.60 2049928 79.42 77 15.791274026 7.28
12 .17 171636 99.22 45 1.72 2159190 17.89 78 16.93 1142854 6.33
13 .19 189979 99.09 46 1.84 2313398 76.27 79 18.141012720 5.47
I"""14 .20 209956 98~95 47 1.97 2396056 74.54 80 19.44 879522 "4.71
I,15 .21 231673 98.79 48 2.12 2440407 72.75 81 20.B4 767042 4.06I
I 16 .23 255241 9B.61 't9 2.27 2543040 70.92 82 22.34 666256 3.48
17 .25 280772 98.42 50 2.43 2686229 69.02 83 23.94 582667 2.9B
:~IS .26 308377 98.21 51 2.60 2772025 67.01 &4 25.66 519668 2.55
19 .28 338171 97.98 52 2.79 2914732 64.94 85 27.50 504330 2.16
20 .30 370271 97.73 53 2.99 3032021 62.75 86 29.47 417987 1.78
21 .33 404789 97.45 54 3.21 3124155 60.49 87 31.59 348679 1.47
22 .35 441840 97.15 55 3.44 3234236 58.15 88 33.85·299055 1.21
23 .37 481536 96.82 56 3.68 3355297 55.73 89 36.28 262075 .98
24 .40 5239B4 96.46 57 3.95 3445808-53.22 90 38.89 216682 .79
25 .4.3 569291 96.07 58 4.23 3545078 SO.64 91 41.68 176611 .63
26 .46 617558 95.64 59 4.54 3657879 47.99 92 44.67 17B205 .49
27 .49 668879 95.18 60 4.86 3793431 45.25 93 47.88 158646 .36
i~28 .53 723343 94.68 61 5.21 3919813 42.41 94 51.31 136993 .24
29 .57 781031 94.14 62 5.58 4000000 39.48 95 55.00 17782 .14
30 .61 B42013 93.55 63 5.98 3984266 36.49 96 58.94 63922 .08
31 .65 906350 92.92 64 6.41 3B87571 33.51 97 63.17 36970 .03
32 .70 974092 92.24 65 6.87 3746196 30.60 98 67.71 6824 .01
33 .75 1045276 91.52 66 7.37 3569392 27.79 99 72.57 347 .00
•
74
"""">---_..............._------------------------~--------------