Loading...
HomeMy WebLinkAboutAPA29051—~io~.RESCE~LIERARçAW~O~j~A~EPT.OFINTERIORTABLEOFCONTENTS(H~6SECTION/TITLEPAGE2LISTOFTABLESiinooc{LISTOFFIGURESiii1.0INTRODUCTION12.0EKLUTNALAKESTUDY:DYRESMMODELCALIBRATION1—92.1DataCollection2.2PreviousStudies2.3PresentStudy2.3.1DYRESMModelEnhancements2.3.2EkiutnaLakeTemperatreandIceSimulation3.0WATANARESERVOIRTEMPERATURESTUDY10—123.1DataCollection3.2PreviousStudy3.2.1ReservoirTemperatureProfiles3.2.2.Outflo~t.gmperatures3.3PresentStudy“3~’4.0SUMMARY12—13REFERENCES14—15TABLES16FIGURESLibrala;1:Resoarc01)‘erv~~COrage,AIaSWE •1•~.~~‘.0w~.—..—.——•1 ~“•••~.i•••• z —0 0’ -t t-4 A Cl) (U H rt m 0 ‘-1m H.‘1 H I-i. 0 H ‘-1 I-f A tn t-l pr tn I—’ C rt 0’ pr m LISTOFFIGURESNO.TITLE1EkiutnaLakeLocationMap2EklutnaLakeStationLocations3,4EkiutnaLakeMeasuredWeatherData5—8EkiutnaLakeClimaticDataAvailability9—11EklutnaLake.ObservedandPredictedTemperatur.eProfiles(AcresResults)12,13EkiutnaLakeOutflowTemperatt~~(AcresResults)14LongwaveRadiationForu4~Comparison15,24EklutnaLakeObservedandPredictedTemperatureProles(Harza—EbascoResults)25EkiutnaLakeMeasredWindspeedandOutflowTemperature26,27EkiutnaL$tOutflowTemperature(Rarza—EbascoResults)28C1~9teStationsinUpperSusitnaBasin29,30ClimaticDataAvailability31,32TalkeetnaStationClimaticDataAvailability33,34WatanaReservoirTemperatureProfiles(AcresResults)35,36WatanaReservoirInflowandOutflowTemperatures(AcresResults)37,38WatanaReservoirTemperatureProfiles(Harza—EbascoResults)39WatanaReservoirInflowandOutflowTemperatures(Harza—EbascoResults)ARLISAlaskaResourcesLibraxy&InformationSen”e~.Anchorage,A1ask-~ 1.0INTRODUCTIONAsdescribedintheworkplanofTask42ofSusitnaHydroelectricProject,thereservoirtemperature/icestudiesarerequiredforsupportingtheenvironmentalstudies.ThesestudieswilldeterminethehydrothermalbehavioroftheWatanaandDevilCanyonreservoirsasaffectedbythedesignandoperationoftheprojectandprovidenecessaryinformationforoptimaldesignandoperationofthereservoirs.Itwillalsodeterminethethermalcharacteristicsofthereser’~oiroutflowforthedownstreamrivertemperatureandicestudiesandthesubsequentassessmey~ofthepotentialenvironmentalimpactsduetoprojectoperations.The~amiereservoirsimulationmodelDYRESMasdevelopedbyImbergjr,PattersonandothersoftheUniversityofWesternAustralia(13)1.]wa~electedtosimulatethehydrothermalbehaviorofthereservoirs.Tosimulatethewinterconditionwithiceformations,anicesubroutine%..ØevelopedbyPattersonandHaiublinforCanadianLakeshasbeenincorporat&Iinthemodel.TocalibratethemodelandtoverifyitsappliclitytotheWatanaandDevilCanyonreservoirsundersouth—centralandVnorAlaskanclimaticconditions,theEklutnaLakestudyhasbeencarriedout.Inthisreport,theresultsoftheEklutnaLakestudyandth~~librationoftheDYRESMmodelarediscussed.2•0EKLUTNALAKESTUDY:DYRESMMODELCALIBRATIONTheDYRESMmodelsimulatesaveragereservoirhydrothermalbehaviorthroughparameterizationofvariousphysicalprocessessuchasinflowandoutflowdynamics,mixedlayerdynamics,verticaltransportinthehypolimnionandsurfaceheatandmassexchanges.Thebasictimeincrementofonedayissetbythemodeltopredictdailythermalstructure.However,asmallersub—dailytimeincrementrangingbetweenonequarterhourandtwelvehoursis~Refersthenumbersin“Reference”attheendoftext.—1— usedtosimulatethemorecomplicatedmixedlayerdynamics.Thisprocedureallowssmalltimeincrementswhenthedynamicssorequireand,inlesscriticalperiods,thetimeincrementexpands,withoutreductioninaccuracy.Hence,detaileddailymeteorologicalandhydrologicaldataarerequiredintheDYRESMsimulation.AdatacollectionprogramwasestablishedinJune,1982forEkiutnaLaketocollectdatabnthethermalstructureofthereservoir,inflowandoutflow.EklutnaLakeislocatedapparoximately30milesnortheastofAnchorage(Fig.1).Aweatherstation(Fig.2)locatednearthesouthernendofthelakewasalsoestablishedtoprovidethenecessarymeteorologicaldatatoDYRESM.2.1DataCollectionTheaveragedailymeteorologicaldataK%clude:—Meanairtemperature—Meanwindspeed(mis);—Airvapor~ress~t(mb);—Precipitation—Cloudcover(skyfractionintenths)or,—Long—w~~~tmosphericradiation(kilojoulesim2);and—Totalshort—waveradiation(insulation)(kilojoulesim2).Thesix—houraveragedwindspeedsalongthemajoraxisofthelakearealsorequiredtocalculatetheinternalmixingduetointernalwaves.Inadditiontometeorologicaldata,thequantityandtemperatureofinflowtothelakeandoutflowfromthelakearerequiredtosimulatethereservoirdynamics(1).Theinflowdataincludingtemperatureandstagewasobtainedbyestablishingtwogagingstationsonthemajortributaries,EastForkandGlacierFork(Fig.2)(1).ForcalibratingtheDYRESMmodel,measurementsoflaketemperatureprofilesweremadeatsevenlocationsonanapproximatetwo—weekinterval(1).Detaileddescriptionsoftheinputdatacollection—2— programaregivenbyR&M(11).ThequantityandtemperatureofthedailyoutflowthroughtheEkiutnaHydroelectricplantturbineswarefurnishedbytheAlaskaPowerAdministrationoftheU.S.Dept.ofEnergy.Thesedatahave,beencollected,reduced,compiled,andreportedbytheR&MConsultants,Inc.(3,11).ThemonitoringsystemandtheaccuracyofthemeasurementswerealsodescribedbyR&N(1,3,11).ThedatacollectionprogrambeganinJune,1982andwillbeterminatedinearly1984.Periodicmalfunctioningofinstrumentshavebeenexperienced,especiallyinJulyandAugustof1982wheremanydaysofdataarenotrecorded(11),andconsequently,estimationsofthesedatawererequired~edonnearbystationsatPalmerandAnchorage.Theicethicknessmeasurem\~tsweretakenapproximatelyonceamonth.AcomparisonoftherelativehumiditiesmeasuredatAnchorageandTalkeetnabytheNationalOceanicandAtmosp%~cAdministration(NOAA)indicatesthattheEklutnarelativehumiditydata‘~regenerallytoolowandarenotingoodagreementwithotherclitic(especiallyprecipitation)datameasuredatEklutnaLakeStation.efore,theAnchoragerelativehumiditiespublishedbyNOAAwereusedtocomputethevaporpressures.ThedatarecordsavailableatEkiutnaLakestationareplottedandshownonFigs.3and4.TheperiodofrecordeddataattheEklutnaLakeStationareshowninFigs.5—8.2.2PreviousStudiesApreviouseffortbyACRESonthecalibrationandverificationoftheDYRESMmodelwiththeobserveddatahadconcentratedontheperiodofJune,1982throughDecember1982duringwhichthefielddataweremeasured.Adjustmentsweremadeonallwindspeeddata.InDYRESM,thewindspeedsareassumedtobemeasuredataheightofsixmeterswhilethefieldinstru—3— mentmeasureswindspeedatabouttwometersabovesurroundingscrubvegetation.Therefore,thewindspeedswerecorrectedbasedonthevelocitydistributionintheboundarylayeroftheaircurrent.Theadjustmentproducesanincreaseof17percentinmeasuredwindspeeds.ItwasnotedthattheJulyandAugustfieldmeasurementswerequiteincom—pleteandsignificantamountofthemeteorologicaldatahadtobeestimated(12).Therefore,theEkiutnaLaketemperature/icesimulationwasmadefortheperiodsJune1toAugust25,1982andAugust25toDecember31,1982toLJminimizetheeffectofdatagap.ThesimulatedtemperatureprofilesdidshowreasobleagreementwiththemeasuredtemperaturesexceptunderseverewindconditionssuchasthehighUwindperiodswhichoccuredbetweenSept~er9andSeptember21.Underseverewindcondition,significantmixingcanoccurandwarmerwatercanbeexpectedinthehypolimnion.In~ition,theone—dimensionality.ofthereservoirhydrothermalbehaviori~notstrictlyvalid.Theproblemwasresolvedbyincreasingtverticaldiffusioncoefficientwhichrepresentstheefficiencyofthetortofmassandmomentumfrom0.048to0.096basedontheWedderburnnumbercriterion(13,14).TheWedderburnnumbercharacterizeste—dimensionalityofthereservoirdynamics,withthevaluelessthanindicatingadeparturefromtheone—dimensionalassumption.ThekeyconstantsusedintheDYRESMsimulationaregiveninTable1.Theseconstantsarerelatedtowellidentifiedphysicalprocessesandaredeterminedfromexperimentalorfielddata(13,14).ThesimulatedandmeasuredtemperatureprofilesatStation9intheapproximatecenterofthelakearegiveninFigs.9to11.Ingeneral,mostprofilesaremodeledtowithin0.5°Cwithfewexceptionsthatthedifferencewasuptoabout2°C.ThesimulatedandmeasuredoutflowtemperatureoftheEklutnaLakearegiveninFigs.12and13.Thepredictedoutflowtemperatureis,ingeneral,1to—4— 2°CbelowthemeasuredtemperatureduringtheperiodofJulytomid—September.Frommid—SeptembertoDecember,thepredictedandmeasuredtemperaturesmatchrelativelywell.Thesimulationalsoindicatesthattheice—coverformationwillbegininmid—Novemberandpredicted21inchesofice—coverneartheendofDecember.OnJanuary13,1983,anice—coverofabout16incheswasmeasurednearthecenterofthelake.Hence,thesimulationoverestimatestheice—coverthicknessbyabout5inchesineaflyJanuary1983.2.3PresentStudy2.3.1DYRESMModelEnhancementsTheEkiutnaLaketemperatureandicean~%sesconductedinthepreviousstudyindicatethattheDYRESMmodelperformsrelativelywellinduplicatingtheaveragefieldconditionofth~~kethermalstructure.However,uponfurtherexaminationoftheprevious~~’results,fielddata,andtheconfigurationoftheintakestructe,severalenhancementsand/ormodificationsoftheDYRESMmodelweremadetheyarediscussedasfollows:The“Swinbank”e4~onusedintheDYRESMmodelmaybesignificantlyunderestimatingtheincominglongwaveatmosphericradiationontheLake.SuchobservationwasmadeindependentlybybothDr.P.F.Hamblin,theconsultanttothereservoirtemperatureandicestudy,andR&M.AdditionalanalysesindicatethattheempiricalequationgivenbyAnderson(4)agreeswellwiththemeasuredvaluesatWatanaandwasincorporatedintheDYRESMmodel(Fig.14).TheAnderson’sequationisgivenasHCECT4L.W.awhereHLWisthelong—waveatmosphericradiation(KJ/day),Eaistheatmosphericemissivity,CistheStephenBoltzmanconstant(4.979xio6jcJ/day),andTistheairtemperature(°Kelvin).Theatmospheric—5— emissivityisdependentuponthecloudinessoftheskyandtherelativehumidityorvaporpressure(3).Theemissivityincreasesasthecloudcoverorvaporpressureincrease.UsingtheAnderson’sequation,closermatchestomeasuredtemperatureprofilestakennearthecenterofthelake(Station9)wereobtainedasshowninFigs.15to24.Withregardtooutflowtemperaturepredictionstherearetwomodifications.Oneforthegeometryoftheintakestructureandtheotherforwindforcingeffects.Thelocalbathymetricconditionandthe,~onfigurationoftheintakestructurearequitedifferentfromtheconditiä~sassumedintheDYRESMmodel.ThemodelassumesthataverticalwallsuchasadamislocatedatthedownstreamendofthereservoirandK~eofftakesarelocatedatthecenterofthedamwidth.However,theintakestructureoftheEklutnapowerhouseislocatednearthenor~..4ndofthelakeonamildslopingbottomandresemblesahorizontalout\hllstructuresituatedonanexcavatedarea.Hence,theEkiutnantakemaydrawmostofthewaterfromthelayersabove,Withthecombinfectsoftheslopingbottom,thehorizontaloutfalltypeintakeandthelocalexcavation,theoutflowtemperaturemaynotbetreated4~ydinglYbytheory.Thewindeffect,especiallyinthemonthsofJuly,AustandSeptember,isclearlyshownintheoutflowtemperatureand6—hrwindplots,giveninFig.25.Itisunderstoodthatsuchoutflowthermalbehaviorhasalsobeenobservedbythepowerhousepersonnel.Whenadowniakewind(towardtheintakearea)occurs,awarmerthannormaloutflowtemperatureisobserved.Suchtemporaldeviationoftheoutflowtemperaturefromitsnormaltrendcanbeattributedtonotonlythesurfacewindshearstressbutalsothebehavioroftheinternalwavesofthestratifiedfluid,thedepthoftheepilimnion,therelativepositionoftheintaketothethermoclineandthelocalbathymetricconfiguration.SincethepresenttimeframedoesnotpermitfurtherdevelopmentoftheDYRESMmodeltotakeintoaccountallthevariablesidentifiedabove,onlythesurfacewind—6— andthebottomeffectsareconsideredinthecurrentstudyandarediscussedasfollows:Thebathymetricinformationindicatesthatthebottomslopeneartheintakeareaisabout1verticalto100horizontal.Hence,thewithdrawallayer(outflow)distributionmustbemodifiedintheoutflowdynamicscalculation.Throughseveralnumericalexperiments,itwasfoundthatsatisfactoryoutflowtemperaturescanbeobtainedbyassumingthattheofftakedrawswatermainlyfromlayersabovetheintakeandthewithdrawalfromthelowerlayersisinsignificant.Thestrongdowniakewindstendtoincreasethemixglocallyneartheintake.Thestrengthofsuchwindinduced~.xingisconsideredproportionaltothemagnitudeofthewindalongthe1&~raxisofthelaketowardtheintake.Theeffectisconsideredequivalenttothedeepeningoftheepilim—nionattheintakearea.Theequi~ntdeepeningoftheepilimnion’Hiscomputedbythefollowingemperical%quation:H(Intakedepth)ftx[(1—)xC2]~WhereWisthe6’~~~~indinthedownlakedirectionandCIandC2areempiricalconstantsforadjustingthemagnitudeoftheresponses.Itwasfoundthatvaluesof20.0and0.25forClandC2respectivelyproducesatisfactoryresultsforsummer,and7.5and0.25forfall.Sincebetteragreementswereobtainedwiththesemodifications,theadjustmentsbasedonWedderburncriteriaforhighwindconditionasdescribedpreviouslywerenotappliedandaconstantverticaldiffusioncoefficientof0.048wasused.Theinfluenceoficeandsnowontheheattransferacrossthewatersurfaceofareservoiristakenintoaccountbysimulatingthepercentageofsnowandicecoverandtheirthicknessasafunctionoftime.Theeffectofsnowand’iceistoreducetheamountofshortwaveradiationreachingtheupperlayersofthereservoirthroughtheabsorptivepropertiesoficeandsnow—7— andtoreducethecoolingofthereservoirsurfacethatwouldotherwiseoccurbyprovidingacoveringlayerofreducedthermalconductivityandbycreatingadditionaliceattheice—waterboundary.Specificphysicalprocessesincorporatedintothemodeloficeandsnoware;1.Minimumicethicknessof10cm.2.Surfac~meltingofeithersnoworiceaswellasicemeltingattheicewaterinterface.3.Reductionofsnoworicethicknessbysurfaceevaporation4.Accountoficeorsnowonsurfacevapor~essure5.Snowalbedoasafunctionofsnowageand”~emperature6.Shortwaveabsorptioninsnowan4ice7.Ice—waterheatfluxduetomole~larconductionacrossice—waterinterfaceplusturbulentsensibleheatfluxduetoinflowandoutflowinducedcurrent~-~heupperlayerofthereservoir’.8.Computationofsurface~mperatureofthesnoworicefromthesurfaceheat-bu,ç~et.9.LimitationofN~~imumsnowthicknessallowablebasedonicebuoyancyrelativetosnowloading10.incor~S~ionoffraziliceinputtototalicevolumeinthereservoir2.3.2EkiutnaLakeTemperatureandIceSimulationOneofthemajorobjectivesintheEklutnaLakecalibrationstudyistodevelopanunderstandingofthecapability,concept,andstructureoftheDYRESMModel.Thisunderstandinghasledtothedevelopmentofseveralprogramenhancementstocalibratethemodelundersouth—centralandinteriorAlaskanclimaticconditionsaspreviouslydiscussed.TheEklutnaLakestudyhasalso,demonstratedtheneedforaccurateclimaticdatatoenablethemodeltoproperlysimulatethehydrothermalbehaviorofthereservoirs.—8— Everyeffortshouldbemadeinthefuturetoinsuretheaccuracyandreliabilityoffieldmeasurementinstrumentsanddatacollectionprocedures.ThestudybyRarza—Ebasco(H/E)consideredtheperiodofJune,1982throughJune,1983.TheH/Esimulationalsoincludeda17%increaseinmeasuredwindspeedstocorrectthevelocitytotheheightabovevegetationassumedbythemodel.TheWedderburnnumbermodificationprocedurewasnotusedinlieuoftheempiricalequationtodeepentheepiliminionattheintakeareaandthemodificationofthewithdrawaldynamics.TheresultsoftheH/EEklutnaLakestudyareshoy~inthetemperatureprofileplots,Figs.15to24,andintheoutflow‘~è*nperaturetimehistoryplots,Figs.26and27.TheresultsofthestudydemonstratethecapabilityfortheDYRESMModeltoproperlysimulat~thehydrothermalbehaviorofareservoirinthesp~cificregionoftheSusitnaProject.Theresultsshowtheaccuratepredictionofwinter~t$lowtemperatureswithinanacceptabletoleranceof±1degreeCelcius&‘STheresultsalsoshowthatthesummeroutflowtemperaturesweremulatedtowithin±1to2degreesCelcius.Theoutflowtemperatureisacipleparameterintherivertemperatureandicestudiestodeterminetheenvironmentalimpactoftheprojectoperations.Theresultsals4~~owanexcellentcorrespondencebetweenmeasuredicethicknessandpreictedicethicknessexceptforonepointinMarchatStation13whichislocatednearthenorthendofthelake.TherewerenoicemeasurementsmadenearthecenterofthelakeinMarch.Therelativelythicki&measuredatStation13inMarchmaybeconsideredduetolocalaccumulationofsnowcausedbydownlakewinds.Therefore,thelargerdifference(Fig.27)showninMarchisnotconsideredasamajorconcern.ItisunderstoodthattheEklutnaLakereservoirdatacollectionprogramwillbeterminatedinearly1984.TheadditionaldatacollectedandcompiledbyR&MwillthenbeavailabletoextendtheEklutnaLaketemperaturesimulation.Theresultsfromthatstudywillbereportedasasupplementtothisreport.—9— 3.0WATANARESERVOIRTEMPERATURETheDYRESMmodelwasusedtosimulateWatanareservoirtemperaturebehaviorandoutlettemperaturesunderthe1981flowcondition.TheparametervaluesofthemodelusedintheEklutnaLakecalibrationhasbeenapplied.AfieldprogramwasestablishedinApril,1980withintheSusitnaRiverBasin(WatanaCamp)tocollectmeteorologicaldata(5—12)fortheDYRESMmodel.TheclimaticstationsareshowninFig.28.TheperiodsoftheavailablerecordsareshowninFigs.29—32.3.1DataCollectionTherequiredaveragedailymeteorologicaltainclude:—Meanairtemperature(°C);—Meanwindspeed(mis);—Airvaporpresence(tub);—Precipitation—Long—wavera~~ion(U/rn2)orcloudcover(skyfractionintenths);and—Totalst—waveradiation(KJ/m2).3.2PreviousStudyAsdescribedintheLicenseApplication,dailysimulationsweremadebyAcrestopredictthethermalbehavioroftheWatanareservoiroperatingundertheyear2010powerdemand(CaseC;12,000cfsminimumAugustflow).Thesimulationperiodissixmonths(June1throughDecember31,1981).3.2.1ReservoirTemperatureProfilesThesimulatedtemperatureprofilesforthefirstdayofeachmonthofJunethroughDecember1981areshowninFigs.33and34.Stratificationoccurs—10— duringJune,JulyandAugust.Themaximumsurfacetemperaturesimulatedwas10.9DConJuly3andAugust28.CoolinginSeptemberresultsinthegradualdestructionofsummerstratificationandthedeepeningoftheepiliminion.TheprocesscontinuesuntilisothermalconditionsoccurinlateOctober.Isothermalconditionscontinueuntilwaterreachesitsmaximumdensity,afterwhichreversestratificationtakesplace.AweakstratificationoccursinlateNovemberandremainsrelativelystablethroughoutDecember.AfullicecoveroccursonNovember22.IcethicknessonDecember31wasestimatedat31inches.3.2.2OutflowTemperaturesThemultiple—levelintakeatWatanaalloi~theutilitytoprovidevariablewatertemperatureswithinarangedictate’~~ythethermalstructurewithinthereservoir.Thephilosophyofoperatingthisstructureistoprovidewatertemperaturesasclosetoth~ibientrivertemperaturesaspossible.Ingeneral,thisresultsintheiRtakeclosesttothesurfacebeingused,providedhydraulicsubme~c~ncecriteriaaremet.However,onafewdays,deeperintakesareused‘~~~providewatertemperatureswhichareclosertothoserequired.ThesimulatedoutflowtemperaturesareshowninFigs.35and36.Thecomparisonofnaturaltemperatureandsimulatedoutflowtemperatureshowsthatduringsummermonths,theoutflowtemperaturefollowsnaturaltemperaturetrendsbutiscoolerduringJulyandslightlywarmerinAugust.DuringSeptembertomi&November,theresultsshowagradualreductionofoutflowtemperaturefrom9.5°Cto2°Cwhiletheinflowtemperaturedropsmuchsoonerto0.5°Cinmid—September.Stableoutflowtemperatureofaround2°Cstartinmid—NovemberandcontinuethroughoutDecember.—11— 3.3PresentStudyTheinputdatausedinthepreviousstudyandtheparametervaluesofthemodelusedinthecalibrationstudywereusedtosimulatereservoirtemperatureprofilesandoutflowtemperatures.TheselectivewithdrawalcapabilitywhichwasnotrequiredinEkiutnastudywasimplementedtosimulateoperationofthemulti—levelintakes.ThesimulatedtemperatureprofilesandoutflowtemperaturesareshowninPigs.37,38and39.Theitsultsindicatethatthetemperatureprofilesobtainedinthetwostudiesarerelativelysimi~,andthedifferenceinoutflowtemperaturesbetweenthetwostudiesare”~ithin0.5°C(average).Bothstudiesalsopredictedanincreasejfabout6°CinthestreamflowtemperatureinlateSeptemberduetodiscI%gingofwarmerstratifiedwaterfromthereservoir.AfullicecoveroccursonDecember1,10dayslaterthanthepreviousstudy.Iceth~~ssonDecember31wasestimatedabout25inches,6incheslessthanthe’êpreviousstudy.Sincetheiceandsnowmodelyieldedbetterresu~sintheEklutnaLakeStudy,theresultsobtainedinthepresentWatanaStuarealsoconsideredmoreaccurate.4.0SUNNARYInthisstudywehavesimulatedtheEklutnaLakethermalbehaviorandicegrowthbasedontheDYRESMModel,Someoftheinputdatahavebeenimprovedforconsistencywiththenearbyclimaticstations.Theoutflowdynamicshavealsobeenmodifiedtotakeintoaccountthespecialconfigurationofthehorizontalintakestructure,themildslopingbottom,andthewindforcingeffect.AllmodificationsmadetothemodelfortheEklutnaLakestudyarenotnecessarilyrequiredfortheWatanaandDevilCanyonreservoirstudies.Bothreservoirswillhaveverticalmulti—levelpowerintakestructureswithapproachchannels.Theapproaôhchannelswillforcetheintakestowithdrawmorewaterfromtheupperlayers,therefore,theoutflowalgorithmhasbeenmodifiedtoaccomodatesucheffects.Thelongwave—12— radiationformulapresentedbyAndersonwillbeusedintheSusitnaReservoirStudiesasthisequationseemstobetterapplytotheprojectlocation.Themodificationsmadetotheiceandsnowprocesseswillalsoremainandothersmaybeaddedtobettermodeltheeffectsofincomingfraziliceuponthetotalicevolumeinthereservoir.TheresultsoftheEklutnaLakestudyestablishestheapplicabilityoftheDYRESMmodeltoaccuratelysimulatetherma].reservoirprocessesintheSouth—CentralAlaskanclimaticconditions.Thestudyalsodemonstratedtheneedforaccurateclimaticandriverdatatoinsurethecorrectnessofthemodelresults.TheresultingDYRESMmodelcalibratedth~oughtheEklutnaLakeStudyisassumedtobeapplicabletoWatanareseN~irwithminormodificationstotakeintoaccounttheeffectsofapproachchannelsandfraziliceinflows.TheparametervaluesoftheEkl~~modelwereusedtosimulateWatanareservoirtemperatureprofilesandtoutflowtemperatures.ThestudyyieldsimprovedresultsascomPa~~D,withAcres’.-Afterthecompletionoftheproject,theparametersmustbecheckedatregularinterval~Themodelshouldbere—calibratedafterseveralyearsofprojectoperationssincethechangesinmorphologyandnutrientconditionmaychangetheparametervalues.-—13— REFERENCESNO.TITLES1.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,GlacialLakeStudies,”preparedforAcresAmericanIncorporatedandAlaskaPowerAuthority,December,1982.2.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,DYRESM-InputData,”preparedforHarza—EbascoSusitnaJointVentureandAlaskaPowerAuthority,August,1983.3.J.M.Raphael,“PredictionofTemperatureinRiversandReservoirs,”Proc.,ASCE,3.PowerDiv.,P02,July,1,~&2.4.R&NConsultantsIncorporated,“Susitna’9lydroelectricProject,ProcessedClimaticData,Volume~,1—SusitnaGlacierStation,”preparedforAlaskaPowerAutho,December,1982.5.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,ç4(9lume2—DenaliStation,”prepa;edforAlaskaPowerAuthority,~c~tnber,1982.6.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClima4è~Data,Volume3—TyoneRiverStation,”preparedforAlaskaPower”~Ehority,December,1982.7.R&NColtantsIncorporated,“SusitnaHydroelectricProject,Proces6<dClimaticData,Volume4—KosinaCreekStation,’prepareorAlaskaPowerAuthority,December,1982.8.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume5—WatanaStation,”preparedforAlaskaPowerAuthority,December,1982.9.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume6—DevilCanyonStation,”preparedforAlaskaPowerAuthority,December,1982.10.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume7—ShermanStation,”preparedforAlaskaPowerAuthority,December1982.11.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume8—EkiutnaLakeStation,”preparedforAlaskaPowerAuthority,December,1982.—14— REFERENCES(cont’d)NO.TITLES12.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,FieldDataCollectionandProcessing,Supplement1,”preparedforAlaskaPowerAuthority,December,1982.13.J.Inberger,andJ..C.Patterson,“ADynamicReservoirSimulationModel—DYREStI:5,”TransportModelsforInlandandCoastalWaters,Chapter9,AcademicPress,1981.14.AcresAmericanIncouporated,“SusitnaHydroelectricProject,FeasibilityReport-Supplement:Chapt9~8,”preparedforAlaskaPowerAuthority,1983.—15— TABLE1—DYRESMParametersforEkiutnaLakePARAMETERVALUEConvectiveoverturn,CK0.125Mechanicalstirring,ETA1.230Temporaleffects,CT0.51.0Shearproduction,CS0.200Shearinstability,MGT0.300Diffusionconstant0.048Dragcoefficientofriverinflow0.015\) C)0 0 C C C C C~c a =C.=C =1 0 = •~r;.:;~3:.,*:~9 ..~.,~.~ Figure1L.L..-0oC.-Sa..~,-.a.—i’___i~—:-\---ia.1~~N-&‘D~~k~~enL-~rLV~C2(‘~—--~Luct1&--_.s_--~-C--~ft~j~~~~r.hfr~~J~2‘1~W~JLNM4aso.køi4t~1k~fl~p,:i~aIm~:-g~._~ai~vrgBu~~Vl_rn<.~j.&-~--‘°~~iiJrw9swss*::e~tWMfl~~jJP‘~4r--V~~/f.AI,Y0,4-•%fl~~-_j;A~‘::~:°:-~-.17’____I)‘_•f9:~_______—-MJ-—--ISSTUDYAREA—mA4~}~!.:~U~~n~L-—r•I-~7\‘I-——nil-C,.~stR0NORTHEKLUTNALAKEHARZA—EBASCOSusitnaJointVentureJanuary1984LOCATIONMAP Figure2~~rx>n~~LEGEND•iStationMooringsWeatherStationNORTH8StreamGaugeEKLUTNALAKESTATIONLOCA11ONSHARZA—EBASCOSusitnaJointVenture•January1984 CD CD CD r C CD ~L ~.c~9Y _••.,.0 0 ffJ~~C 10 ‘a ‘0 •0 r 3 N -I ‘C = 0 -J 0 ‘0 —IS ,ID Its 0- 0~5 0 ‘~0 30000 24000 18000 $2000 6000 0 20 $0 jO Its ——Ia ~-20 -30 :__I :—~a ~___I_____V -TO O $2 115 4 0~ ‘0 In 3.ci It II 21 I JUNE H____ -~- II JULY 2$3$IC 20 AUGUST 30 9 ‘9 SEPTEMBER 29 I ‘9 OCTOBER 29 0 IN NOYFTIBER 28 ALASKA POWER AUTNORI’Y IlflITIIA P104C1 0111(011 ICOIL EKLUTNA LAKE MEASURED WEAI9ER DAIA AND OJfFL~JbI TEMPERATuRE HARZA -EBASCO JOIN!VEH1OCIC tSIt5I0I~.IItII I lOll IIj IieI.l~4 loll 12 UI 2.6 I. 5 30 IIIr 0~ 0a 5 0 N C, C, z .30000 24000 3 8000 2000 (3000 0 20 30 -30 20 --Jo -10 In t 0 0 ‘I, 0 r ~__________________ -———~--~~‘--~I - II 21 DECEMBER JANUARY FEBRUARY MARCH MAYAPRIt. ALASKA POWER AUIKORITY ___MObIL EKIUT’4A LAKE MEASURED WFAI’IER DAT” AND OUTFLOW TEMPERATURE HA~IA FBA~CO .l0i’41 VENTuRI .ILIIUI•~~II~.[....M4MTD2 c_P c;:j C.~ca ~~,.c.9.c~.~.°~!~;CR SHORT WAVE RADIATION SKY COVER AIR TEMPERATURE 0 WIND SPEED 2Z PRECIPITATION 4 RELATIVE HUMIDITY 3—HOUR WIND SPEED EKLUTNA LAKE ‘.,tIMATIC DATA AVAILABILITY z 0 I- 4 SKY COVER JANUARY 5 tO 15 20 25 30 AIR TEMPERATURE WIND SPEED METEOROLOGICAL AND STREAM FLOW DATA SHORTWAVE RADIATION OUTFLOW AND TEMPERATURE FEBRUARY 5 10 15 20 25 PRECIPITATION I9R2 MARCH 5 10 15 20 25 30 wV5 4z I— 3 VLU RELATIVE HUMIDITY S 3—HOUR WINO SPEED APRIL 10 15 20 25 LAKE LEVEL MAY 5 1015 202530 INFLOWS AND TEMPERATURE JUNE 5 10 15 20 23 •Ear Fork •Glaciw Fork Other. ~11 [0 C -Iro 01HAHZA--EBASCO Susitna JOiIlt Venture •January 1984 SHORT WAVE RADIATION DECEMBER 5 10 15 20 25 30 METEOROLOGICAL AND STREAM FLOW DATA SHORTWAVE RADIATION SKY COVER z0 I4 Cl, LUI’ 2 I D-J )4C LU JULY 5 10 15 20 25 30 I.I Si 444 Iii S AUGUST 10 15 20 25 30 AIR TEMPERATURE WIND SPEED PRECIPITATION I 1982 SEPTEMBER 5 10 IS 20 25 RELATIVE HUMIDITY 3—HOUR WIND SPEED a a a44 I. OCTOBER 5 10 15 20 25 30 a —I — OUTFLOW AND TEMPERATURE I I; I ~I4 Ii a a LAKE LEVEL I NOVEMBER 5 10 15 20 25 T .1.! II :1 a S a si a a aanaanaaaaaaan 4 IIII4,...I.1141Ii~I41i1,1LI.~I .111 iIlII’IIi lj{jiIlI 1111.11.1 iiiaaaaa INFLOWS AND TEMPERATURE Ear Foik Glacier Fork 4’’. •Others .4’ .S a ~a a It SKY COVER IS AIR TEMPERATURE LU C, 4It0 I U 24 a II 4 II a WIND SPEED liii PRECIPITATION ~~Ii 1111 ~i!~ RELATIVE HUMIDITY .h 3—HOUR WIND SPEED IiILtillaaaisaa nnaa..u.aflaa~~a.aaaaa.aaa ~ ~~~~~a aaaaaaaa Mlcaáisa aaaaaa a~aflaaaaaaa aaaainaiwiisaa ~.i~—~~ assamsaaaaaaaaaflafl~aaanaflaaaaaaaaaa a__a LI II y .1 L fjft ttt~It’ I’! ii —II a H th~it i~t a~ —-~L2~4 ~J ..j U4~————- h IIIIIiIIIIIIWiHiL,; —— Al ‘Ill — II 444~ —I liii IIARZA—EBASCO Susilna Joint Venture January 1984 I. II. III. 4I~ ~A Ui iii il-li Li liii I’ll dJj ‘44 lilt ;III• 41. ill 4I~l IL L ‘I I.’. ,4J1 J.. 441k 4141 II 11 I. B ~4!~ II Ii’ I I Ijil ~~~I’I I~i-~ H iIIIljIliIl mull Ui’~JJLIIJUnLU.LULUU EKLIJTNA LAKE IJMATIC DATA AVAILABILITY iii m Co C CD 0) .i~:--:t/-:r ~-.:~.~.~~.1 cz ~0 0 ~~2 C:C I.’ a II. Ii Ii’ EKLIJTNA LAKE .,.tIMATIC DATA AVAILABILITY 2 0 4 METEOROLOGICAL AND STREAM FLOW DATA JANUARY FEBRUARY MARCH 5 10 IS 202530 5 10152025 5 1015 202530 ‘I’.it,, 1983 SHORT WAVE RADIATION SKY COVER AIR TEMPERATURE WIND SPEED PRECIPITATION RELATIVE HUMIDITY 3—HOUR WIND SPEED OUTFLOW AND TEMPERATURE ,,.~,,a ‘U 5 4z ID -J “I 5 1:Ii APRIL 10 15 20 25 III~~wfl aaaaaa a~i iLli Lji ~I ~~ I ft hi ~..........I ii.a a ~a a LAKE LEVEL MAY JUNE 5 101520 2530 5 10152023 ii!! INFLOWS AND TEMPERATURE Ii lIlt Ent Fork [I 6I.cI~r Fork Ill III~iI!~I!!!IIII ill!IlFI •Othwi N a ——a a ——t —t —a a a a a a a a a anWaa~a aaaaaaaaaa aaaa .a a a a —a a a a a a a a a i~ •i,.Ii I~I 1 ~1u~I N SHORT WAVE RADIATION a’ ‘I) SKY COVER II Iii ‘U AIR TEMPERATURE 0 WIND SPEEDx PRECIPITATION4 RELATIVE HUMIDITY 3—HOUR WIND SPEED .1•~4I 414 a a a a a a a a a a a a a a a a a a a a a a it a a i~a —a a —a a a a a it~ ~l~a~fl ~H~H~fl a a t a ~a a ~a a a a i~a iiia 4144!~~111 4! 1’ A ilL 4th 111111k NI ~!4!III NI IIU ili illi fit I’ll 114 a a liii -Il 02 It -JHARZAEL3ASCOSusitnaJointVenture•January 1984 z0 METEOROLOGICAL AND STREAM FLOW DATA SHORT WAVE RADIATION SKY COVER AIR TEMPERATURE JULY 5 10 15 20 25 30 AUGUST 5 10 15 20 25 30 19B3 SEPTEMLIE R 5 10 15 20 25 WIND SPEED PRECIPITATION RELATIVE HUMIDITY --______ ‘I’ 5 z I. D -J)1w lu OCTOBER 5 10 15 20 25 30 3—HOUR WIND SPEED OUTFLOW AND TEMPERATURE LAKE LEVEL nnaa n fl aaaaanSfl~ a a a ~—a a —a —a a ~a a a a a a a a a a a I, INFLOWS AND TEMPERATURE Enl Fork •Glecier Fork i’ •Otheri NOVEMBER DECEMBER 510152025 51015202530 II aaaaa~p,a~aaaaflfl ~s~_~~Iaaa a asn ii! i~L ~ F I Hil’II liD’’~iIii liii Iii Iii I.iii . liii liii jill . lilt S.... .iIiII:iiIii;~i.IIiii I III SHORT WAVE RADIATION SKY COVER ~AIR TEMPERATURE 0 WIND SPEED I ~PRECIPITATION < RELATIVE HUMIDITY 3—HOUR WIND SPEED .aa.w ~a,m —a —a a a — ~~~HII11IIiIIUIIMIIIIiilIb a. IH .i “ii IIIliii ta~aa aasiaaa II ‘jil !~l~ [11111111 U ii’ ill 41i ml ‘~I1UII~~IIM~ 41 ~ItaIthIththb~ ii lH-~B [Bill!WI’!11111111 .~.:.tl[I ‘III~‘~{‘III~II i~ If H Hi’I •~.Jj IL 4].,fl .~41 III jut L un i_I_U LIII I Ii I - j.I .11- .1 Li •. 4~I H lilt Ili fill •iiJ I .i ~ it Hliii ‘‘I tljiii ‘‘4. •aII 11i4 1.1~~ .111 Li. 1.4. J1U U .1 I’, ‘Iii IL 1144 ed Si4’ .41 14 ‘ill ij lii 141.i Ii ILL IL iii ciii Li.iii FIARZA--EI3ASCO S~isitna Joint venture •January 1984 ii ii EKLUTNA LAKE ..,L.IMATIC DATA AVAILABILITY m InC CD co 41 •.~41 ... EC r ~~~...!~F.?!R ~.~~ TEMPERATURE 1°C) EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES JUNE /JIJLY (Acres) IC C CD TEMPERATURE 1°C) EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES AUGUST /SEPTEMBER (Acres) (I~ ‘*3 0 m ‘C C CD 0 (C.:.:.:~...~~•.:~:..:~~•~;.~:~r çzJ..C)C).0 CD.C)CD fl ~C C C ~.0 (.:00Ir—----i —,•-~~~1~-I - EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES OCTOBER 4~ us I0m us ~30 a us I ___x60.____ (~____—_.__.1~0x 0 ——- 0 x 0 50 ) 0 0 I ‘C is Oi I 01 - 4U 01 F’ ~i JO’ El 4 AV —Ø c~t~S ‘C I Z(—LEGEND’— I ‘C 1 0 ~OCTOBER 14-MEASUREDOCTOBER14-PREDICTED 10 I_____——/‘C NOVEMBER4-MEASURED —.I NOVEMBER 4 -PREDICTED I 0 JANUARY 31-MEASUREDI———DECEMBER 31-PREDICTED ~-I9S2DATAr ‘do 2 4 TEMPERATURE 1°C) 6 1~1 to C ~1(a B 9 /DECEMBER (Acres) K) Ii -n CD C ~1CD -1 “3 It I U bi 4 a 0 II 21 31 9 19 29 6 II 20JUNEJULYAUGUSTSEPTEMOEM MONTH NOTES: I)TIME SCALE ‘SIN INCSEMENTS OF ID DAYS ~)OASED ON lilt CATA.nit) EKLUTNA LAKE RESERVOIR TEMPREATURE SIMULATION JUNE /SEPTEMBER (Acres Study,1982—1983) f~~~~T ~.~...:.:..:.::.:...:~~ r:.....~.,18.18.14,14.198219821982I982[VriyuicI—’160uiII150~.-1~j~~9’(LU:flIJLU40EL.0ri~F—[:i[i:~.•:1:~030~[9IiLU~~r0~J•~~*frt~~-_20;:;::I~UCD—rjLUi~?.J=1045.6789100LEGEND:•JUNEJUNEJULYJULYTEMPERATURE(CELCIUS)11121314-MEASURED—PREDICTED-MEASURED—PREDICTEDALASKAPOWERAUTHORITYSUSITIdAPROJECTDYRESMMODELEKLUTNALAKEOBSERVEDANDPREDICTEDTEMPERATUREPROFILESHARZA—EBASCOJOINTVENTUREcfl1CflD.ILLIIOISDECS31563.142HTP1Z 0 -S 0 HEIGHT ABOVE BOTTOM (METERS) I\)(hi (11 0 0 Cr’ 0 0 (3 L3,.:~ (0 En w co>> mrnrnncc -o -o ~-u o c,o -~-I-I-Icc nmmmcno~ flfl—I-I nr’nnrn—-~ 1’)CD CD •-(DID (0 CD Ct 0) (‘310 II I I II orvnm> fl>OC0-.C oU,—cnx n:0-srnmo —in rio omoo 0 0~’ 0) 0 0 -“4 03 —I m -o m C m n 0m r 0 ‘-4 C C’) CD 0 -S “I rn0, COn 0 I0 z -I -Crnz -4 :0rn r\) 0 -40, 171 C/) i:ri1):0 171 0 in C:>~i z 1~I 0 -U -~ o rn ‘1 0 r c) 171 —.In 171 0 m r C—Iz > r 171 t1C Ii, -S 0 Lp.n C -4 p. ~1 Cp. >r >En > -U 0 in C -I 0 —I Cal ~.~.c~c~~1 ~~~ HEIGHT ABOVE BOTTOM (METERS) in 10in I0 0 0 M (A (31 0) 0 0 0 0 0 0 S,G zz00 0000 <<-1-1mmooflwwwwrnmmm~ CD CD CD CD r’orQr~)r~) liii xirnumn>n> 0(000)—c—cc~)VoU-im-irnmono 00 —I m -o in > -H C in n C-) in r C~) -4 CIn 0 (J~1 0~) 03 - -__ V & ~h ii a a in •—‘—— “GO 0 -G~GJO° —4 Ph Ph > —4 C p1 -U ~3 0-n p1 U) x N Ph UI > U, C.) 0 C C z -1 P1z -4 C :0 In •1 C -t a CI., Cl a -4 In 3 a P1 0 0) Ph -C Ph ci z 0 p1 0 C) —4 Ph 0 i-n r C -4 z r i-n r U) -D 0 p1 > C -1 0 —I -C Figure186050403020100TEMPERATURE-COELCIUS)LEGENDt0MEASUREDTEMPERATUREDISTRIBUTIONACRESSIMULATION(ESOS1)H/ESIMULATIONALASKAPOWERAUTHORITYSUSITNAPROJECTDTRESPIRODEI.EKLUTNALAKEMODELCALIBRATION18JUNE1982HARZA—EBASCOJOINTVENTUREOICAGO.ILLIWaZI2*DCC•~11563.142IIIDI4567.89101112 =CD 0 0 _C c 00 C C ~.C 02.0 0 Ci Im IC, In ic; 0 0 HEIGHT ABOVE BOTTOM-(METERS) I’J .CAJ 0 (11 0 0 xfl~-.,cfl no,(ncnc — :.t(nnc—c; —Cr, —fl O-4U ou fl -1 r_Cmucnn C(no —U, -4 -4 U, C -1 0 a ()1 0 a 0 03 m :K-om 23 -I C 23 m n 0rnr 0 -4 C(n (0 -a 0 —a ro C-, U, 4$, C-, 0 C— 0 -4 C Phz -4 C ph 0 Phr Ph 7;r C -4 I 7; Ph C•1 -I 0 Lp. 0 0 -I p.‘a 3 C p.r >r > U, 7; > -u 0 C Ph C —4 C -4 —4 II ir~I ‘C-, I ‘m 0G‘ HEIGHT ABOVE BOTTOM-(METERS) CAJ 0 0 0 0 01 0 a 0 ~om flU)cncnc —mmc—cr3 -irpi —fl 0-4~0z—m 0:;, -I —C cnn 0(no —Ixl cx, C —4 0z —‘I co ‘~0 —1 m -El m > -1 C rn C-)mr 0 C (I) 0 --r GG~ -________________________ -____________ -________________________ -________________________ lie — G - -p ro (A Cr1 -n Co C •~1CD tO 0 ===~=00 C C 0 0 ~0 0 ———n irn ‘C,irr, ‘a i0 0 0 HEIGHT ABOVE BOTTOM-(METERS) ro 03 0 01 0 0I, mu,(ncnc — ronc—c >c-1—ti-rn —fl 0-1-va—rn a> -1 rnv (nfl 0(no —-4 •-~(0 -l a, C -4 -4 0a a 01 0 a 0 00 —1 rn -om > —4 C m n 0m I C) C Cl) CD -b 0 -S -S -s (A ir ‘C, im I0 0 Cu 0 HEIGHT ABOVE BOTTOM-(METERS) 1\)(A 0 a 0~0tO cm P1W W(nC — :rnrnc—c >c—J-irrn ->z0—I-U :z—rnoU —I —C cmOlin 0 (~n0 —-4 -4 U, C -4 — 0 z 01 0 a 0 (0 -A 0 -1 m -U m > -4 C m n C)mr C) C Cl) —a —A -A N) -Ti toC 0 1’)tO C ~C c;;~c,~C 0 c•:.0 •.C. HEIGHT ABOVE BOTTOM-(METERS) N)(A CR CR a, o —a, 0 0 0 0 0 0 0 I irIinIIC) tn xfl‘son nflrun (n(nc — ztcnnc—o —‘nfl 0-4-u ou -1 ‘—Cnu (nm 0 010 —-4 —1 ‘-4 UI C -1 -4 0 CD rn -Um > -I C m n 0mr C-) -4 C(n CD -A 0 -a ‘ii r C -4 z :R r > rn > 4.-i Fl ID I,) C-) 0 C~. 0 -4 Illz -4 C Ill CD En cli -u -1 mn 2U, rn CD 0, F’-, 2 0 0cli C, >r -4 U, > -4 -4 0 InCIn -4z 0IInCl a -4 InInZ1 g aInC- >r En > -v 0 Ccli C —4 0 —4 -C -s (A ~li Co C ~1It C.) •706050403020100TEMPERATURE-(CELCIUS)LEGEND0MEASUREDTEMPERATUREDISTRIBUTIONACRESSIMULATION(E5051)H/ESIMULATIONALASKAPOWERAUTHORITYPROJECTDYRESPIMODELEKLUTNALAKtMODELCALIBRATION21SEPTEMBER1982KARZA—EBASCOJOINTVENTUREENItACO.ILLINOISflDEC13jI563.142I1T075678910 0 C ~),=,~~r C:C•’C.=~0 ~.a:0 ~=-—.—-——..-—I —...- (j~ ‘C 0 w w 0~ (I) 0 C) Iii a: D a: Ui 0~ Ui 1— 0 -J IL 0 0 I “ft TO 5 0 —5 -10 20 ‘5 l0 5 0 A I ~~H ~1~y Nr NOTE’MEASURED 6-HOUR WIHOSPEED AND OUTFLOW TEMPERATuRES FROM GLACIAL LAKES STUDIES PREPARED BT K K M CONSULTANTS. 2!30 TO 20 30 9 19 29 8 18 28 JULY AUGUST SEPTEMBER I 982 ALASKA POWER AUTHORITY EKLUINA LAKE MEASURE!)WINOSPEED AND ~YJ ~ HARZA-EaaSCO JOINI VEKIORE H”’-F C’; ~11 CD C -C ID M (3 o I Lii a— r Lii I— 0 -J U- D 0 r Lii C) 0 20 ‘5 I0 5 0 LEGEND’ MEASURED OUTFLOW TEMPERATURE ACRES SIMULAF ION H/I SIIIULAIION JUNE JULY AUGUST SEPTEMBER 1982 OCTOBER NOVEMBER ALASKA POWER AUTHORITY EKIUTHA LAKE MODEL CALIDRATION I 01 2 IIAR2A-EOASCO JOIHI VCWTLME ~ ‘1 CD, C C0 a) c;a.=.~..~ca q•.=.c ~ca F..~•..~~a ~~~ r C) w 0 I a:: w a w 0 -J I-I I— 0 0 0 I 10 20 30 9 19 29 8 DECEMBER JANUARY MEASURED OUTFLOW TEIIPERATURE ACRES SIMULAF ION lifE SIMULATION MEASURE ICE THICKNESS sTATIoN S MEASURE ICE THICKNESS SIATION 9 MEASURE ICE THICKNESS STATION IIMEASUREICETHICKNESSSTAtION13 1982 w C) 0 20 Is 10 S I E CE NO . a 4 FEBRUARY APR IL 1983 MAY 18 0 10 20 30 9 19 29 9 MARCH ALASKA POWER AUtHORItY EKLUINA LAKE MODEL CALIBRATION ≥or 2 PIAAZA-EOASCO JOIN!YTNIURE ‘1 ID. C ~1 CD M 0NORTHFigure28CLIMATICSTATIONSHARZA—EBASCOSusititaJointVenture•January1984INUPPERSUSITNABASIN p ç=çJ~=cL cz.ca c•~~c~0 ~:[~~ JANUARY 5 10 15 20 25 30 SUSITNA HYDROELECTRIC PROJECT CLIMATIC DATA AVAILABILITY z 0 I—II~4 METEOROLOGICAL DATA SHORT WAVE RADIAl ION SKY COVER Iz ‘C AIR TEMPERATURE II WIND SPEED FERRUARY 5 10 15 20 25 ill PRECIPITATION .1 lDfll fill ~I II 1 I’ll MARCH 5 10 15 20 25 30 RELATIVE HUMIDITY 11 1k S 3—HOUR WIND SPEED ~;i~’~; H ~~;1 SHORT WAVE RADIATION SKY COVER APRIL MAY JUNE 10152025 5 1015202530 5 10152025 fl3ErrT]1)‘]~]~]1II,I!IIiIIHIJIIiII:.I ;,nrTlT ]11 It fl9 TT~! IIIi z0 >-z 3 -1 ‘Li C AIR TEMPERATURE iiIIiIiiiI’i 1111111 hF liii i~Bi~I ~ihi~lliiiu1ll W1Ih1fi~IIIllhIktll i~IIihiJ~~ WIND SPEED -4 ‘_—_!.,——~C rw~nflê ~*II I ~~~~ir,.~ •.i~~~Io•~I L4III4I.I4~I I!’114 nfl!.:.,,;lI41J*ILI—. •hIll ~w 144 41 ~is ~~“‘~~~jjJt~j~ PRECIPITATION I II RELATIVE HUMIDITY lb I’ll II 111111 ii II liii U 1111111 I IIlIIiIIIIiiiiiiIU~ 3—HOUR WIND SPEED II,III SHORT WAVE RADIATION :1 IT 711 I I Il II I 11111 F 1111111 III I I I II 1[iiII I Ii I llllillhullIiI-II1Iil1[1ti1III11II1iIIIiIhhiiI SKY COVER I.’’’ L~) 0 AIR TEMPERATURE ‘-H 11111111 liii liii WIND SPEED ‘II.’’,’ I [11111111111 I huh PRECIPITATION IF. Iii iii di i{u RELATIVE HUMIDITY I I 1111 I III I N I N —-4,‘-4 I-, II II ii’ Itittlifit 3—HOUR WIND SPEED .1. illi ii III I II II II III II liii Ii 1N ~II II I I I i~I I II III Ii III ti111~iiiiiiiiiiiiiiiiiiiiiiiiiiiii III ii~:1~ll ii’I 1111 III NI III I I ~I I I ‘‘‘‘‘III’’’’’’ Ii I,•~‘~~ii’i~i ~.~II ~i ~ -n (C) C; 0) r’-)ci,HARZA —EBASCO Susitlia Joint Venture •January 1984 METEOROLOGICAL DATA SHORTWAVE RADIATION SKY COVER AIR TEMPERATURE WIND SPEED PRECIPITATION RELATIVE HUMIDITY 3—HOUR WIND SPEED SI-IORT WAVE RADIATION SKY COVER AIR TEMPERATURE WIND SPEED PRECIPITATION RELATIVE HUMIDITY 3—HOUR WIND SPEED SHORT WAVE RADIATION AIR TEMPERATURE WIND SPEED PRECIPITATION RELATIVE HUMIDITY 3—HOUR WIND SPEED SL)SITNA HYDROELECTRIC PROJECT ¶.tIMATIC DATA AVAILABILITY z 0 I-4 4z4 4 JULY 5 10 IS 20 25 30 ~—a —a AUGUST 5 10 15 20 25 30 1ORI SEPTEMBER 5 10 15 20 25 OCTOBER 5 10 15 20 25 30 1W h NOVEMBER 5 10 15 20 25 rcrrrn rr~T111r ala ii iii; 5 s_fl —IIIuIIIL dii I4~ z0 z 5 -3 >lii 0 II DECEMBER 10 15 20 25 30 Ii i—i,’ Ihi nh I N HIII It LI Iiil~Lii~~~i~ii 141 1iIiiiBI~flJ11lllLW8i1 ~~11llL t~ I~fl ~ IIJ ———~Ii ~hi ~-.“.~..I .1.II.,{_4 .I~I~-.II 114,1.1-11- U~~I~~daa ~kh fl ~ lii:ti;l •Iii]iiiii III 111111I—— iIl~1111 liii liii l~4 dii [IiI hI~II—I .1. —— 111111111 111111111 Wi-il —I II I I ii In .4z 0, 0 S SKY COVER —I BiIldIliIIilihi .JI~ S IIi~iilihii till li-il S a a liii øh I II~ N hiIih1ill~JllJ a III in .1 !lll!l 2 ~I 11mI ——•IIIIfl S II U aaIII~~~‘n~~i~llhi 1i~ii ~iu ml II’li-I’liii 1ft14111ai-li — II 111111 Uli ill IIF’4 I~~t am S III~Iii~I~II Hdtttll I, ,,II,,,II •II.L II.,,llIi ,IhL ..~.~.— I ill }l~I i11tihllli I, II II II —I ififfi’ ¶ II II II lu I m COC -I CT~ 0 HARZA--EBASCO Susitna Joint Venture •January 1984 0 C -E ~.~~:~~C a.C ~ MAY JUNE -- 1015 202530 5 ID 157025 z 0 I 4I 01 METEOROLOGICAL DATA SHORT WAVE RADIATION JANUARY 5 10 15 20 25 30 SKY COVER AIR TEMPERATURE 4 zIww -I WIND SPEED EAF1UARY 5 ID IS 20 25 PRECIPITATION 19111 I.,.. MARCH 5 10.15 202530 5 RELATIVE HUMIDITY 3—NOV11 WIND SPEED APRIL ID 15 20 25 il_I ,ii)L ._..uI.I,Iiw I. ..a nanaaaaa nnnnnn flrn::j ~ti~I~I~~~— I. I,...1 ‘It II IIIi 44 _________________________________________________________________________________________I ‘It’ _________fl~itfllith III —I——I——I —In ‘Ii liii ii III, I I‘‘‘‘‘I ii’ii lift 4[IIIiIllIlltIB I II 4’lII1T~hftdkTi ill! 444 ID I’ll If ‘Ii II nil ‘II, ifi II III II’’ I;II,!,...II 1,1 i 1._i III. I: ‘Ill’’ ill III ia.w.~i1idui II UIi Iii liii wi II -n (0 SUSITNA HYDROELECTRIC PROJECT ~ ‘DcIMATIC DATA AVAILABILITY ~HAR7_A--EBASCO Susitna Joint Venture •January 1984 ‘Cz I “SUS -J -CI— 3—HOUR WIND SPEED I, ii Ii ‘I II III, SUSITNA HYDROELECTRIC PROJECT CLIMATIC DATA AVAILABILITY SHORTWAVE RADIATION SKY COVER AIR TEMPERATURE WIND SPEED ~~1•~—1981 ~JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER ~METEOROLOGICALDATA 5 10 15 20 2530 5 10 15 20 2530 5 10 15 20 25 5 10 IS 20 2530 5 10 15 20 25 510 15 202530 PRECIPITATION RELATIVE HUMIDITY Lii. :~:;2:;~:z .IJ..1ZI........I..f... !IWIlIiiIiill~!ii .1 I~nnnnnnnaa aannn I —a a a Na msliaHH ala jalista atHaffa H ——H HH I~_~•a~————~~ liii ill1iIll~~[iiI~I1lIIii1 4, iiiI III,., ii I IIII I’ll ~~Ii!~IIM~~IIAU[ Fllllllllillllllllfl I DhJIIli Ii II Ii III] II,I —II U •i1 I 4-I jtji I, .11 III’4I4f 4 IL{ ‘iiJ 1~ Ii LII, .li•~1~’~th .1111 .iJI .itti Iii, SI-i LB _Jj I. liii. 44 —‘at liii 41+1] ;LII~ Lu “LII FlAIR/A FI3ASCO Susjtp,a Joint Venture •January 1984 -‘II I 1.~ I-ft.’, [IIH -Ti CDC -ICD (.3M -1~.~~.]~~.~*~............;~S ,~.;...~ 2200215021002050I-.‘U‘UU.2000‘U-J‘U79501900185018001750Figure33I2345676910II12NOTE;TEMPERATUREPROFILESWATERTEMPERATURE(°C)SIMULATEDUSING1981DATA.WATANARESERVOIRTEMPERATUREPROFILESJUNEIAUGUST(Acres) 2200215021002050I‘a‘a2000I‘a‘a195019001850t8001750Figure34I2345678910II12NOTE:TEMPERATUREPROFiLESWATERTEMPERATURE(°C)SIMULATEDUSING1981DATA.WATANARESERVOIRTEMPERATUREPROFILESSEPTEMBER/DECEMBER(Acres) C C C]~=C =~0 ci :.~~.E~C~fl I..=A 1 .——.——..~._,i...........,......._.,•,_—. I)TIME SCALE IS IN INCREMENTS OF 10 DAYS. 2)DASED ON 1951 DAIA.WATANA OPERATION 3)RUN W4O20~WITH OUTFlOW TEMPERATURE FOLLOWING INFI~0W 1EMPERATURE. 4)JULY INFLOW TEMPERAIURES ESTIMATED WATANA RESERVOIR INFLOW AND OUTFLOW TEMPERATURES JUNE /SFPTEMBER ~T1 CA) (31 II TIME SCALE IS IN INCREMENTS OF 10 DT1. 2)aRSED ON 1981 DATA,WATANA OPERATION 3)RL*1 W402%WITH OUTFLOW TEMPERATURE FOLLOWING INFLCW TEMPERATURE. WATANA RESERVOIR INFLOW AND OUTFLOW TEMPERATURES OCTOBER /DECEMBER p .. -I CD C C ~•~.c~.~C ca ~:.~:~~:~.•I,~~fl C HEIGHT ABOVE BOTTUMR~E o Cfl 0 0 (31 0 (31 I,!~CA 0 0 0 0 >Lc ccc c-cmC,, -1~-~ 01 (0(0 —ma,—~rn m > m noDC-)mr C) __~~(0C >Cl) ~,r-~, ~—1 -. N fl >— 0 C,—l >-.0oC c.mmo -tm > —.Co< .ç ‘10 I-fl —~:1zr~0 —.~~xi PU rn -C Fin,irp~RzCDw=250200150100500LEGEND012345678910TEMPERATURE(CELCIUS)ALASKAPOWERAUTHORITYSEPTEMBER1.1981SUS1TNAflOJECIDTR~Sn?tDELOCTOBER1•1981WATANARESERVOIRNOVEMBER1.1981DECEMBER1.1981TEMPERATUREPROFILESDECEMBER3L1981HARZA-EBASCOJOINTVENTUREnet.11I —i__~. C) I-li I— Ct w a ~JJ 0 -J LI D 0 LEGEND’ —--fl -- z 0 20 ‘5 10 5 0 3? JUNE 9 ¶9 29 9 19 29 8 18 28 JULY AUGUST MEASURED INFLOW TEMPERATURE ACRES PREDICrED OUTFLOW TEMPERATURE Fl/C PREDICTED OUTFLOW TEMPERATURE •SEPTEMBER OCTOBER 1981 7 17 27 7 17 27 6 16 26 6 16 26 NOVEMBER DECEMBER ALASKA POWER AUTHORITY sutuwRnIJtcIT_OIPCSM.~OEL WATANA RESERVOIR INFLOW AND OUTFLOW TEMPERATURE I~ARZAE~ASCO JOINT VENTURE ~