HomeMy WebLinkAboutAPA29051—~io~.RESCE~LIERARçAW~O~j~A~EPT.OFINTERIORTABLEOFCONTENTS(H~6SECTION/TITLEPAGE2LISTOFTABLESiinooc{LISTOFFIGURESiii1.0INTRODUCTION12.0EKLUTNALAKESTUDY:DYRESMMODELCALIBRATION1—92.1DataCollection2.2PreviousStudies2.3PresentStudy2.3.1DYRESMModelEnhancements2.3.2EkiutnaLakeTemperatreandIceSimulation3.0WATANARESERVOIRTEMPERATURESTUDY10—123.1DataCollection3.2PreviousStudy3.2.1ReservoirTemperatureProfiles3.2.2.Outflo~t.gmperatures3.3PresentStudy“3~’4.0SUMMARY12—13REFERENCES14—15TABLES16FIGURESLibrala;1:Resoarc01)‘erv~~COrage,AIaSWE
•1•~.~~‘.0w~.—..—.——•1 ~“•••~.i••••
z
—0
0’
-t t-4
A Cl)
(U H
rt
m 0
‘-1m
H.‘1 H
I-i.
0 H
‘-1 I-f
A
tn t-l
pr tn
I—’
C
rt
0’
pr
m
LISTOFFIGURESNO.TITLE1EkiutnaLakeLocationMap2EklutnaLakeStationLocations3,4EkiutnaLakeMeasuredWeatherData5—8EkiutnaLakeClimaticDataAvailability9—11EklutnaLake.ObservedandPredictedTemperatur.eProfiles(AcresResults)12,13EkiutnaLakeOutflowTemperatt~~(AcresResults)14LongwaveRadiationForu4~Comparison15,24EklutnaLakeObservedandPredictedTemperatureProles(Harza—EbascoResults)25EkiutnaLakeMeasredWindspeedandOutflowTemperature26,27EkiutnaL$tOutflowTemperature(Rarza—EbascoResults)28C1~9teStationsinUpperSusitnaBasin29,30ClimaticDataAvailability31,32TalkeetnaStationClimaticDataAvailability33,34WatanaReservoirTemperatureProfiles(AcresResults)35,36WatanaReservoirInflowandOutflowTemperatures(AcresResults)37,38WatanaReservoirTemperatureProfiles(Harza—EbascoResults)39WatanaReservoirInflowandOutflowTemperatures(Harza—EbascoResults)ARLISAlaskaResourcesLibraxy&InformationSen”e~.Anchorage,A1ask-~
1.0INTRODUCTIONAsdescribedintheworkplanofTask42ofSusitnaHydroelectricProject,thereservoirtemperature/icestudiesarerequiredforsupportingtheenvironmentalstudies.ThesestudieswilldeterminethehydrothermalbehavioroftheWatanaandDevilCanyonreservoirsasaffectedbythedesignandoperationoftheprojectandprovidenecessaryinformationforoptimaldesignandoperationofthereservoirs.Itwillalsodeterminethethermalcharacteristicsofthereser’~oiroutflowforthedownstreamrivertemperatureandicestudiesandthesubsequentassessmey~ofthepotentialenvironmentalimpactsduetoprojectoperations.The~amiereservoirsimulationmodelDYRESMasdevelopedbyImbergjr,PattersonandothersoftheUniversityofWesternAustralia(13)1.]wa~electedtosimulatethehydrothermalbehaviorofthereservoirs.Tosimulatethewinterconditionwithiceformations,anicesubroutine%..ØevelopedbyPattersonandHaiublinforCanadianLakeshasbeenincorporat&Iinthemodel.TocalibratethemodelandtoverifyitsappliclitytotheWatanaandDevilCanyonreservoirsundersouth—centralandVnorAlaskanclimaticconditions,theEklutnaLakestudyhasbeencarriedout.Inthisreport,theresultsoftheEklutnaLakestudyandth~~librationoftheDYRESMmodelarediscussed.2•0EKLUTNALAKESTUDY:DYRESMMODELCALIBRATIONTheDYRESMmodelsimulatesaveragereservoirhydrothermalbehaviorthroughparameterizationofvariousphysicalprocessessuchasinflowandoutflowdynamics,mixedlayerdynamics,verticaltransportinthehypolimnionandsurfaceheatandmassexchanges.Thebasictimeincrementofonedayissetbythemodeltopredictdailythermalstructure.However,asmallersub—dailytimeincrementrangingbetweenonequarterhourandtwelvehoursis~Refersthenumbersin“Reference”attheendoftext.—1—
usedtosimulatethemorecomplicatedmixedlayerdynamics.Thisprocedureallowssmalltimeincrementswhenthedynamicssorequireand,inlesscriticalperiods,thetimeincrementexpands,withoutreductioninaccuracy.Hence,detaileddailymeteorologicalandhydrologicaldataarerequiredintheDYRESMsimulation.AdatacollectionprogramwasestablishedinJune,1982forEkiutnaLaketocollectdatabnthethermalstructureofthereservoir,inflowandoutflow.EklutnaLakeislocatedapparoximately30milesnortheastofAnchorage(Fig.1).Aweatherstation(Fig.2)locatednearthesouthernendofthelakewasalsoestablishedtoprovidethenecessarymeteorologicaldatatoDYRESM.2.1DataCollectionTheaveragedailymeteorologicaldataK%clude:—Meanairtemperature—Meanwindspeed(mis);—Airvapor~ress~t(mb);—Precipitation—Cloudcover(skyfractionintenths)or,—Long—w~~~tmosphericradiation(kilojoulesim2);and—Totalshort—waveradiation(insulation)(kilojoulesim2).Thesix—houraveragedwindspeedsalongthemajoraxisofthelakearealsorequiredtocalculatetheinternalmixingduetointernalwaves.Inadditiontometeorologicaldata,thequantityandtemperatureofinflowtothelakeandoutflowfromthelakearerequiredtosimulatethereservoirdynamics(1).Theinflowdataincludingtemperatureandstagewasobtainedbyestablishingtwogagingstationsonthemajortributaries,EastForkandGlacierFork(Fig.2)(1).ForcalibratingtheDYRESMmodel,measurementsoflaketemperatureprofilesweremadeatsevenlocationsonanapproximatetwo—weekinterval(1).Detaileddescriptionsoftheinputdatacollection—2—
programaregivenbyR&M(11).ThequantityandtemperatureofthedailyoutflowthroughtheEkiutnaHydroelectricplantturbineswarefurnishedbytheAlaskaPowerAdministrationoftheU.S.Dept.ofEnergy.Thesedatahave,beencollected,reduced,compiled,andreportedbytheR&MConsultants,Inc.(3,11).ThemonitoringsystemandtheaccuracyofthemeasurementswerealsodescribedbyR&N(1,3,11).ThedatacollectionprogrambeganinJune,1982andwillbeterminatedinearly1984.Periodicmalfunctioningofinstrumentshavebeenexperienced,especiallyinJulyandAugustof1982wheremanydaysofdataarenotrecorded(11),andconsequently,estimationsofthesedatawererequired~edonnearbystationsatPalmerandAnchorage.Theicethicknessmeasurem\~tsweretakenapproximatelyonceamonth.AcomparisonoftherelativehumiditiesmeasuredatAnchorageandTalkeetnabytheNationalOceanicandAtmosp%~cAdministration(NOAA)indicatesthattheEklutnarelativehumiditydata‘~regenerallytoolowandarenotingoodagreementwithotherclitic(especiallyprecipitation)datameasuredatEklutnaLakeStation.efore,theAnchoragerelativehumiditiespublishedbyNOAAwereusedtocomputethevaporpressures.ThedatarecordsavailableatEkiutnaLakestationareplottedandshownonFigs.3and4.TheperiodofrecordeddataattheEklutnaLakeStationareshowninFigs.5—8.2.2PreviousStudiesApreviouseffortbyACRESonthecalibrationandverificationoftheDYRESMmodelwiththeobserveddatahadconcentratedontheperiodofJune,1982throughDecember1982duringwhichthefielddataweremeasured.Adjustmentsweremadeonallwindspeeddata.InDYRESM,thewindspeedsareassumedtobemeasuredataheightofsixmeterswhilethefieldinstru—3—
mentmeasureswindspeedatabouttwometersabovesurroundingscrubvegetation.Therefore,thewindspeedswerecorrectedbasedonthevelocitydistributionintheboundarylayeroftheaircurrent.Theadjustmentproducesanincreaseof17percentinmeasuredwindspeeds.ItwasnotedthattheJulyandAugustfieldmeasurementswerequiteincom—pleteandsignificantamountofthemeteorologicaldatahadtobeestimated(12).Therefore,theEkiutnaLaketemperature/icesimulationwasmadefortheperiodsJune1toAugust25,1982andAugust25toDecember31,1982toLJminimizetheeffectofdatagap.ThesimulatedtemperatureprofilesdidshowreasobleagreementwiththemeasuredtemperaturesexceptunderseverewindconditionssuchasthehighUwindperiodswhichoccuredbetweenSept~er9andSeptember21.Underseverewindcondition,significantmixingcanoccurandwarmerwatercanbeexpectedinthehypolimnion.In~ition,theone—dimensionality.ofthereservoirhydrothermalbehaviori~notstrictlyvalid.Theproblemwasresolvedbyincreasingtverticaldiffusioncoefficientwhichrepresentstheefficiencyofthetortofmassandmomentumfrom0.048to0.096basedontheWedderburnnumbercriterion(13,14).TheWedderburnnumbercharacterizeste—dimensionalityofthereservoirdynamics,withthevaluelessthanindicatingadeparturefromtheone—dimensionalassumption.ThekeyconstantsusedintheDYRESMsimulationaregiveninTable1.Theseconstantsarerelatedtowellidentifiedphysicalprocessesandaredeterminedfromexperimentalorfielddata(13,14).ThesimulatedandmeasuredtemperatureprofilesatStation9intheapproximatecenterofthelakearegiveninFigs.9to11.Ingeneral,mostprofilesaremodeledtowithin0.5°Cwithfewexceptionsthatthedifferencewasuptoabout2°C.ThesimulatedandmeasuredoutflowtemperatureoftheEklutnaLakearegiveninFigs.12and13.Thepredictedoutflowtemperatureis,ingeneral,1to—4—
2°CbelowthemeasuredtemperatureduringtheperiodofJulytomid—September.Frommid—SeptembertoDecember,thepredictedandmeasuredtemperaturesmatchrelativelywell.Thesimulationalsoindicatesthattheice—coverformationwillbegininmid—Novemberandpredicted21inchesofice—coverneartheendofDecember.OnJanuary13,1983,anice—coverofabout16incheswasmeasurednearthecenterofthelake.Hence,thesimulationoverestimatestheice—coverthicknessbyabout5inchesineaflyJanuary1983.2.3PresentStudy2.3.1DYRESMModelEnhancementsTheEkiutnaLaketemperatureandicean~%sesconductedinthepreviousstudyindicatethattheDYRESMmodelperformsrelativelywellinduplicatingtheaveragefieldconditionofth~~kethermalstructure.However,uponfurtherexaminationoftheprevious~~’results,fielddata,andtheconfigurationoftheintakestructe,severalenhancementsand/ormodificationsoftheDYRESMmodelweremadetheyarediscussedasfollows:The“Swinbank”e4~onusedintheDYRESMmodelmaybesignificantlyunderestimatingtheincominglongwaveatmosphericradiationontheLake.SuchobservationwasmadeindependentlybybothDr.P.F.Hamblin,theconsultanttothereservoirtemperatureandicestudy,andR&M.AdditionalanalysesindicatethattheempiricalequationgivenbyAnderson(4)agreeswellwiththemeasuredvaluesatWatanaandwasincorporatedintheDYRESMmodel(Fig.14).TheAnderson’sequationisgivenasHCECT4L.W.awhereHLWisthelong—waveatmosphericradiation(KJ/day),Eaistheatmosphericemissivity,CistheStephenBoltzmanconstant(4.979xio6jcJ/day),andTistheairtemperature(°Kelvin).Theatmospheric—5—
emissivityisdependentuponthecloudinessoftheskyandtherelativehumidityorvaporpressure(3).Theemissivityincreasesasthecloudcoverorvaporpressureincrease.UsingtheAnderson’sequation,closermatchestomeasuredtemperatureprofilestakennearthecenterofthelake(Station9)wereobtainedasshowninFigs.15to24.Withregardtooutflowtemperaturepredictionstherearetwomodifications.Oneforthegeometryoftheintakestructureandtheotherforwindforcingeffects.Thelocalbathymetricconditionandthe,~onfigurationoftheintakestructurearequitedifferentfromtheconditiä~sassumedintheDYRESMmodel.ThemodelassumesthataverticalwallsuchasadamislocatedatthedownstreamendofthereservoirandK~eofftakesarelocatedatthecenterofthedamwidth.However,theintakestructureoftheEklutnapowerhouseislocatednearthenor~..4ndofthelakeonamildslopingbottomandresemblesahorizontalout\hllstructuresituatedonanexcavatedarea.Hence,theEkiutnantakemaydrawmostofthewaterfromthelayersabove,Withthecombinfectsoftheslopingbottom,thehorizontaloutfalltypeintakeandthelocalexcavation,theoutflowtemperaturemaynotbetreated4~ydinglYbytheory.Thewindeffect,especiallyinthemonthsofJuly,AustandSeptember,isclearlyshownintheoutflowtemperatureand6—hrwindplots,giveninFig.25.Itisunderstoodthatsuchoutflowthermalbehaviorhasalsobeenobservedbythepowerhousepersonnel.Whenadowniakewind(towardtheintakearea)occurs,awarmerthannormaloutflowtemperatureisobserved.Suchtemporaldeviationoftheoutflowtemperaturefromitsnormaltrendcanbeattributedtonotonlythesurfacewindshearstressbutalsothebehavioroftheinternalwavesofthestratifiedfluid,thedepthoftheepilimnion,therelativepositionoftheintaketothethermoclineandthelocalbathymetricconfiguration.SincethepresenttimeframedoesnotpermitfurtherdevelopmentoftheDYRESMmodeltotakeintoaccountallthevariablesidentifiedabove,onlythesurfacewind—6—
andthebottomeffectsareconsideredinthecurrentstudyandarediscussedasfollows:Thebathymetricinformationindicatesthatthebottomslopeneartheintakeareaisabout1verticalto100horizontal.Hence,thewithdrawallayer(outflow)distributionmustbemodifiedintheoutflowdynamicscalculation.Throughseveralnumericalexperiments,itwasfoundthatsatisfactoryoutflowtemperaturescanbeobtainedbyassumingthattheofftakedrawswatermainlyfromlayersabovetheintakeandthewithdrawalfromthelowerlayersisinsignificant.Thestrongdowniakewindstendtoincreasethemixglocallyneartheintake.Thestrengthofsuchwindinduced~.xingisconsideredproportionaltothemagnitudeofthewindalongthe1&~raxisofthelaketowardtheintake.Theeffectisconsideredequivalenttothedeepeningoftheepilim—nionattheintakearea.Theequi~ntdeepeningoftheepilimnion’Hiscomputedbythefollowingemperical%quation:H(Intakedepth)ftx[(1—)xC2]~WhereWisthe6’~~~~indinthedownlakedirectionandCIandC2areempiricalconstantsforadjustingthemagnitudeoftheresponses.Itwasfoundthatvaluesof20.0and0.25forClandC2respectivelyproducesatisfactoryresultsforsummer,and7.5and0.25forfall.Sincebetteragreementswereobtainedwiththesemodifications,theadjustmentsbasedonWedderburncriteriaforhighwindconditionasdescribedpreviouslywerenotappliedandaconstantverticaldiffusioncoefficientof0.048wasused.Theinfluenceoficeandsnowontheheattransferacrossthewatersurfaceofareservoiristakenintoaccountbysimulatingthepercentageofsnowandicecoverandtheirthicknessasafunctionoftime.Theeffectofsnowand’iceistoreducetheamountofshortwaveradiationreachingtheupperlayersofthereservoirthroughtheabsorptivepropertiesoficeandsnow—7—
andtoreducethecoolingofthereservoirsurfacethatwouldotherwiseoccurbyprovidingacoveringlayerofreducedthermalconductivityandbycreatingadditionaliceattheice—waterboundary.Specificphysicalprocessesincorporatedintothemodeloficeandsnoware;1.Minimumicethicknessof10cm.2.Surfac~meltingofeithersnoworiceaswellasicemeltingattheicewaterinterface.3.Reductionofsnoworicethicknessbysurfaceevaporation4.Accountoficeorsnowonsurfacevapor~essure5.Snowalbedoasafunctionofsnowageand”~emperature6.Shortwaveabsorptioninsnowan4ice7.Ice—waterheatfluxduetomole~larconductionacrossice—waterinterfaceplusturbulentsensibleheatfluxduetoinflowandoutflowinducedcurrent~-~heupperlayerofthereservoir’.8.Computationofsurface~mperatureofthesnoworicefromthesurfaceheat-bu,ç~et.9.LimitationofN~~imumsnowthicknessallowablebasedonicebuoyancyrelativetosnowloading10.incor~S~ionoffraziliceinputtototalicevolumeinthereservoir2.3.2EkiutnaLakeTemperatureandIceSimulationOneofthemajorobjectivesintheEklutnaLakecalibrationstudyistodevelopanunderstandingofthecapability,concept,andstructureoftheDYRESMModel.Thisunderstandinghasledtothedevelopmentofseveralprogramenhancementstocalibratethemodelundersouth—centralandinteriorAlaskanclimaticconditionsaspreviouslydiscussed.TheEklutnaLakestudyhasalso,demonstratedtheneedforaccurateclimaticdatatoenablethemodeltoproperlysimulatethehydrothermalbehaviorofthereservoirs.—8—
Everyeffortshouldbemadeinthefuturetoinsuretheaccuracyandreliabilityoffieldmeasurementinstrumentsanddatacollectionprocedures.ThestudybyRarza—Ebasco(H/E)consideredtheperiodofJune,1982throughJune,1983.TheH/Esimulationalsoincludeda17%increaseinmeasuredwindspeedstocorrectthevelocitytotheheightabovevegetationassumedbythemodel.TheWedderburnnumbermodificationprocedurewasnotusedinlieuoftheempiricalequationtodeepentheepiliminionattheintakeareaandthemodificationofthewithdrawaldynamics.TheresultsoftheH/EEklutnaLakestudyareshoy~inthetemperatureprofileplots,Figs.15to24,andintheoutflow‘~è*nperaturetimehistoryplots,Figs.26and27.TheresultsofthestudydemonstratethecapabilityfortheDYRESMModeltoproperlysimulat~thehydrothermalbehaviorofareservoirinthesp~cificregionoftheSusitnaProject.Theresultsshowtheaccuratepredictionofwinter~t$lowtemperatureswithinanacceptabletoleranceof±1degreeCelcius&‘STheresultsalsoshowthatthesummeroutflowtemperaturesweremulatedtowithin±1to2degreesCelcius.Theoutflowtemperatureisacipleparameterintherivertemperatureandicestudiestodeterminetheenvironmentalimpactoftheprojectoperations.Theresultsals4~~owanexcellentcorrespondencebetweenmeasuredicethicknessandpreictedicethicknessexceptforonepointinMarchatStation13whichislocatednearthenorthendofthelake.TherewerenoicemeasurementsmadenearthecenterofthelakeinMarch.Therelativelythicki&measuredatStation13inMarchmaybeconsideredduetolocalaccumulationofsnowcausedbydownlakewinds.Therefore,thelargerdifference(Fig.27)showninMarchisnotconsideredasamajorconcern.ItisunderstoodthattheEklutnaLakereservoirdatacollectionprogramwillbeterminatedinearly1984.TheadditionaldatacollectedandcompiledbyR&MwillthenbeavailabletoextendtheEklutnaLaketemperaturesimulation.Theresultsfromthatstudywillbereportedasasupplementtothisreport.—9—
3.0WATANARESERVOIRTEMPERATURETheDYRESMmodelwasusedtosimulateWatanareservoirtemperaturebehaviorandoutlettemperaturesunderthe1981flowcondition.TheparametervaluesofthemodelusedintheEklutnaLakecalibrationhasbeenapplied.AfieldprogramwasestablishedinApril,1980withintheSusitnaRiverBasin(WatanaCamp)tocollectmeteorologicaldata(5—12)fortheDYRESMmodel.TheclimaticstationsareshowninFig.28.TheperiodsoftheavailablerecordsareshowninFigs.29—32.3.1DataCollectionTherequiredaveragedailymeteorologicaltainclude:—Meanairtemperature(°C);—Meanwindspeed(mis);—Airvaporpresence(tub);—Precipitation—Long—wavera~~ion(U/rn2)orcloudcover(skyfractionintenths);and—Totalst—waveradiation(KJ/m2).3.2PreviousStudyAsdescribedintheLicenseApplication,dailysimulationsweremadebyAcrestopredictthethermalbehavioroftheWatanareservoiroperatingundertheyear2010powerdemand(CaseC;12,000cfsminimumAugustflow).Thesimulationperiodissixmonths(June1throughDecember31,1981).3.2.1ReservoirTemperatureProfilesThesimulatedtemperatureprofilesforthefirstdayofeachmonthofJunethroughDecember1981areshowninFigs.33and34.Stratificationoccurs—10—
duringJune,JulyandAugust.Themaximumsurfacetemperaturesimulatedwas10.9DConJuly3andAugust28.CoolinginSeptemberresultsinthegradualdestructionofsummerstratificationandthedeepeningoftheepiliminion.TheprocesscontinuesuntilisothermalconditionsoccurinlateOctober.Isothermalconditionscontinueuntilwaterreachesitsmaximumdensity,afterwhichreversestratificationtakesplace.AweakstratificationoccursinlateNovemberandremainsrelativelystablethroughoutDecember.AfullicecoveroccursonNovember22.IcethicknessonDecember31wasestimatedat31inches.3.2.2OutflowTemperaturesThemultiple—levelintakeatWatanaalloi~theutilitytoprovidevariablewatertemperatureswithinarangedictate’~~ythethermalstructurewithinthereservoir.Thephilosophyofoperatingthisstructureistoprovidewatertemperaturesasclosetoth~ibientrivertemperaturesaspossible.Ingeneral,thisresultsintheiRtakeclosesttothesurfacebeingused,providedhydraulicsubme~c~ncecriteriaaremet.However,onafewdays,deeperintakesareused‘~~~providewatertemperatureswhichareclosertothoserequired.ThesimulatedoutflowtemperaturesareshowninFigs.35and36.Thecomparisonofnaturaltemperatureandsimulatedoutflowtemperatureshowsthatduringsummermonths,theoutflowtemperaturefollowsnaturaltemperaturetrendsbutiscoolerduringJulyandslightlywarmerinAugust.DuringSeptembertomi&November,theresultsshowagradualreductionofoutflowtemperaturefrom9.5°Cto2°Cwhiletheinflowtemperaturedropsmuchsoonerto0.5°Cinmid—September.Stableoutflowtemperatureofaround2°Cstartinmid—NovemberandcontinuethroughoutDecember.—11—
3.3PresentStudyTheinputdatausedinthepreviousstudyandtheparametervaluesofthemodelusedinthecalibrationstudywereusedtosimulatereservoirtemperatureprofilesandoutflowtemperatures.TheselectivewithdrawalcapabilitywhichwasnotrequiredinEkiutnastudywasimplementedtosimulateoperationofthemulti—levelintakes.ThesimulatedtemperatureprofilesandoutflowtemperaturesareshowninPigs.37,38and39.Theitsultsindicatethatthetemperatureprofilesobtainedinthetwostudiesarerelativelysimi~,andthedifferenceinoutflowtemperaturesbetweenthetwostudiesare”~ithin0.5°C(average).Bothstudiesalsopredictedanincreasejfabout6°CinthestreamflowtemperatureinlateSeptemberduetodiscI%gingofwarmerstratifiedwaterfromthereservoir.AfullicecoveroccursonDecember1,10dayslaterthanthepreviousstudy.Iceth~~ssonDecember31wasestimatedabout25inches,6incheslessthanthe’êpreviousstudy.Sincetheiceandsnowmodelyieldedbetterresu~sintheEklutnaLakeStudy,theresultsobtainedinthepresentWatanaStuarealsoconsideredmoreaccurate.4.0SUNNARYInthisstudywehavesimulatedtheEklutnaLakethermalbehaviorandicegrowthbasedontheDYRESMModel,Someoftheinputdatahavebeenimprovedforconsistencywiththenearbyclimaticstations.Theoutflowdynamicshavealsobeenmodifiedtotakeintoaccountthespecialconfigurationofthehorizontalintakestructure,themildslopingbottom,andthewindforcingeffect.AllmodificationsmadetothemodelfortheEklutnaLakestudyarenotnecessarilyrequiredfortheWatanaandDevilCanyonreservoirstudies.Bothreservoirswillhaveverticalmulti—levelpowerintakestructureswithapproachchannels.Theapproaôhchannelswillforcetheintakestowithdrawmorewaterfromtheupperlayers,therefore,theoutflowalgorithmhasbeenmodifiedtoaccomodatesucheffects.Thelongwave—12—
radiationformulapresentedbyAndersonwillbeusedintheSusitnaReservoirStudiesasthisequationseemstobetterapplytotheprojectlocation.Themodificationsmadetotheiceandsnowprocesseswillalsoremainandothersmaybeaddedtobettermodeltheeffectsofincomingfraziliceuponthetotalicevolumeinthereservoir.TheresultsoftheEklutnaLakestudyestablishestheapplicabilityoftheDYRESMmodeltoaccuratelysimulatetherma].reservoirprocessesintheSouth—CentralAlaskanclimaticconditions.Thestudyalsodemonstratedtheneedforaccurateclimaticandriverdatatoinsurethecorrectnessofthemodelresults.TheresultingDYRESMmodelcalibratedth~oughtheEklutnaLakeStudyisassumedtobeapplicabletoWatanareseN~irwithminormodificationstotakeintoaccounttheeffectsofapproachchannelsandfraziliceinflows.TheparametervaluesoftheEkl~~modelwereusedtosimulateWatanareservoirtemperatureprofilesandtoutflowtemperatures.ThestudyyieldsimprovedresultsascomPa~~D,withAcres’.-Afterthecompletionoftheproject,theparametersmustbecheckedatregularinterval~Themodelshouldbere—calibratedafterseveralyearsofprojectoperationssincethechangesinmorphologyandnutrientconditionmaychangetheparametervalues.-—13—
REFERENCESNO.TITLES1.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,GlacialLakeStudies,”preparedforAcresAmericanIncorporatedandAlaskaPowerAuthority,December,1982.2.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,DYRESM-InputData,”preparedforHarza—EbascoSusitnaJointVentureandAlaskaPowerAuthority,August,1983.3.J.M.Raphael,“PredictionofTemperatureinRiversandReservoirs,”Proc.,ASCE,3.PowerDiv.,P02,July,1,~&2.4.R&NConsultantsIncorporated,“Susitna’9lydroelectricProject,ProcessedClimaticData,Volume~,1—SusitnaGlacierStation,”preparedforAlaskaPowerAutho,December,1982.5.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,ç4(9lume2—DenaliStation,”prepa;edforAlaskaPowerAuthority,~c~tnber,1982.6.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClima4è~Data,Volume3—TyoneRiverStation,”preparedforAlaskaPower”~Ehority,December,1982.7.R&NColtantsIncorporated,“SusitnaHydroelectricProject,Proces6<dClimaticData,Volume4—KosinaCreekStation,’prepareorAlaskaPowerAuthority,December,1982.8.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume5—WatanaStation,”preparedforAlaskaPowerAuthority,December,1982.9.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume6—DevilCanyonStation,”preparedforAlaskaPowerAuthority,December,1982.10.R&NConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume7—ShermanStation,”preparedforAlaskaPowerAuthority,December1982.11.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,ProcessedClimaticData,Volume8—EkiutnaLakeStation,”preparedforAlaskaPowerAuthority,December,1982.—14—
REFERENCES(cont’d)NO.TITLES12.R&MConsultantsIncorporated,“SusitnaHydroelectricProject,FieldDataCollectionandProcessing,Supplement1,”preparedforAlaskaPowerAuthority,December,1982.13.J.Inberger,andJ..C.Patterson,“ADynamicReservoirSimulationModel—DYREStI:5,”TransportModelsforInlandandCoastalWaters,Chapter9,AcademicPress,1981.14.AcresAmericanIncouporated,“SusitnaHydroelectricProject,FeasibilityReport-Supplement:Chapt9~8,”preparedforAlaskaPowerAuthority,1983.—15—
TABLE1—DYRESMParametersforEkiutnaLakePARAMETERVALUEConvectiveoverturn,CK0.125Mechanicalstirring,ETA1.230Temporaleffects,CT0.51.0Shearproduction,CS0.200Shearinstability,MGT0.300Diffusionconstant0.048Dragcoefficientofriverinflow0.015\)
C)0 0 C C C C C~c a =C.=C =1 0 =
•~r;.:;~3:.,*:~9 ..~.,~.~
Figure1L.L..-0oC.-Sa..~,-.a.—i’___i~—:-\---ia.1~~N-&‘D~~k~~enL-~rLV~C2(‘~—--~Luct1&--_.s_--~-C--~ft~j~~~~r.hfr~~J~2‘1~W~JLNM4aso.køi4t~1k~fl~p,:i~aIm~:-g~._~ai~vrgBu~~Vl_rn<.~j.&-~--‘°~~iiJrw9swss*::e~tWMfl~~jJP‘~4r--V~~/f.AI,Y0,4-•%fl~~-_j;A~‘::~:°:-~-.17’____I)‘_•f9:~_______—-MJ-—--ISSTUDYAREA—mA4~}~!.:~U~~n~L-—r•I-~7\‘I-——nil-C,.~stR0NORTHEKLUTNALAKEHARZA—EBASCOSusitnaJointVentureJanuary1984LOCATIONMAP
Figure2~~rx>n~~LEGEND•iStationMooringsWeatherStationNORTH8StreamGaugeEKLUTNALAKESTATIONLOCA11ONSHARZA—EBASCOSusitnaJointVenture•January1984
CD CD CD r C CD ~L ~.c~9Y _••.,.0 0 ffJ~~C
10
‘a
‘0
•0
r
3
N
-I
‘C
=
0
-J
0
‘0
—IS
,ID
Its
0-
0~5
0
‘~0
30000
24000
18000
$2000
6000
0
20
$0
jO
Its
——Ia
~-20
-30
:__I
:—~a
~___I_____V
-TO
O $2
115
4
0~
‘0
In
3.ci
It
II 21 I
JUNE
H____
-~-
II
JULY
2$3$IC 20
AUGUST
30 9 ‘9
SEPTEMBER
29 I ‘9
OCTOBER
29 0 IN
NOYFTIBER
28
ALASKA POWER AUTNORI’Y
IlflITIIA P104C1 0111(011 ICOIL
EKLUTNA LAKE
MEASURED WEAI9ER DAIA
AND OJfFL~JbI TEMPERATuRE
HARZA -EBASCO JOIN!VEH1OCIC
tSIt5I0I~.IItII I lOll IIj IieI.l~4 loll
12
UI
2.6
I.
5
30
IIIr
0~
0a
5
0
N
C,
C,
z
.30000
24000
3 8000
2000
(3000
0
20
30
-30
20
--Jo
-10
In
t
0
0
‘I,
0
r
~__________________
-———~--~~‘--~I -
II 21
DECEMBER JANUARY FEBRUARY MARCH MAYAPRIt.
ALASKA POWER AUIKORITY
___MObIL
EKIUT’4A LAKE
MEASURED WFAI’IER DAT”
AND OUTFLOW TEMPERATURE
HA~IA FBA~CO .l0i’41 VENTuRI
.ILIIUI•~~II~.[....M4MTD2
c_P c;:j C.~ca ~~,.c.9.c~.~.°~!~;CR
SHORT WAVE RADIATION
SKY COVER
AIR TEMPERATURE
0 WIND SPEED
2Z
PRECIPITATION
4
RELATIVE HUMIDITY
3—HOUR WIND SPEED
EKLUTNA LAKE
‘.,tIMATIC DATA AVAILABILITY
z
0
I-
4
SKY COVER
JANUARY
5 tO 15 20 25 30
AIR TEMPERATURE
WIND SPEED
METEOROLOGICAL AND
STREAM FLOW DATA
SHORTWAVE RADIATION
OUTFLOW AND TEMPERATURE
FEBRUARY
5 10 15 20 25
PRECIPITATION
I9R2
MARCH
5 10 15 20 25 30
wV5
4z
I—
3
VLU
RELATIVE HUMIDITY
S
3—HOUR WINO SPEED
APRIL
10 15 20 25
LAKE LEVEL
MAY
5 1015 202530
INFLOWS AND TEMPERATURE
JUNE
5 10 15 20 23
•Ear Fork
•Glaciw Fork
Other.
~11
[0
C
-Iro
01HAHZA--EBASCO Susitna JOiIlt Venture •January 1984
SHORT WAVE RADIATION
DECEMBER
5 10 15 20 25 30
METEOROLOGICAL AND
STREAM FLOW DATA
SHORTWAVE RADIATION
SKY COVER
z0
I4
Cl,
LUI’
2
I
D-J
)4C
LU
JULY
5 10 15 20 25 30
I.I Si
444
Iii
S
AUGUST
10 15 20 25 30
AIR TEMPERATURE
WIND SPEED
PRECIPITATION
I
1982
SEPTEMBER
5 10 IS 20 25
RELATIVE HUMIDITY
3—HOUR WIND SPEED
a
a
a44
I.
OCTOBER
5 10 15 20 25 30
a
—I
—
OUTFLOW AND TEMPERATURE
I
I;
I
~I4
Ii
a
a
LAKE LEVEL
I
NOVEMBER
5 10 15 20 25
T
.1.!
II
:1
a
S
a si
a a
aanaanaaaaaaan
4 IIII4,...I.1141Ii~I41i1,1LI.~I .111 iIlII’IIi lj{jiIlI 1111.11.1 iiiaaaaa
INFLOWS AND TEMPERATURE
Ear Foik
Glacier Fork
4’’.
•Others
.4’
.S a ~a a
It
SKY COVER
IS
AIR TEMPERATURE
LU
C,
4It0
I
U
24
a
II
4 II
a
WIND SPEED
liii
PRECIPITATION
~~Ii 1111 ~i!~
RELATIVE HUMIDITY
.h
3—HOUR WIND SPEED
IiILtillaaaisaa
nnaa..u.aflaa~~a.aaaaa.aaa ~
~~~~~a aaaaaaaa
Mlcaáisa aaaaaa a~aflaaaaaaa aaaainaiwiisaa
~.i~—~~
assamsaaaaaaaaaflafl~aaanaflaaaaaaaaaa
a__a
LI
II
y
.1 L fjft ttt~It’
I’!
ii
—II
a
H th~it i~t
a~
—-~L2~4 ~J ..j U4~————-
h IIIIIiIIIIIIWiHiL,;
——
Al
‘Ill
—
II
444~
—I
liii
IIARZA—EBASCO Susilna Joint Venture January 1984
I.
II.
III.
4I~
~A Ui
iii
il-li
Li
liii
I’ll
dJj
‘44
lilt
;III•
41.
ill
4I~l
IL
L
‘I
I.’.
,4J1 J..
441k
4141
II
11
I.
B ~4!~
II
Ii’
I I Ijil
~~~I’I I~i-~
H iIIIljIliIl mull
Ui’~JJLIIJUnLU.LULUU
EKLIJTNA LAKE
IJMATIC DATA AVAILABILITY
iii
m
Co
C
CD
0)
.i~:--:t/-:r ~-.:~.~.~~.1
cz ~0 0 ~~2 C:C I.’
a
II.
Ii
Ii’
EKLIJTNA LAKE
.,.tIMATIC DATA AVAILABILITY
2
0
4 METEOROLOGICAL AND
STREAM FLOW DATA
JANUARY FEBRUARY MARCH
5 10 IS 202530 5 10152025 5 1015 202530
‘I’.it,,
1983
SHORT WAVE RADIATION
SKY COVER
AIR TEMPERATURE
WIND SPEED
PRECIPITATION
RELATIVE HUMIDITY
3—HOUR WIND SPEED
OUTFLOW AND TEMPERATURE
,,.~,,a
‘U
5
4z
ID
-J
“I
5
1:Ii
APRIL
10 15 20 25
III~~wfl
aaaaaa a~i
iLli Lji ~I ~~
I ft hi ~..........I
ii.a a ~a a
LAKE LEVEL
MAY JUNE
5 101520 2530 5 10152023
ii!!
INFLOWS AND TEMPERATURE
Ii
lIlt
Ent Fork
[I
6I.cI~r Fork
Ill III~iI!~I!!!IIII ill!IlFI
•Othwi
N
a ——a a ——t —t —a a a a a a a a a
anWaa~a aaaaaaaaaa aaaa
.a a a a —a a a a a a a a a i~
•i,.Ii I~I 1
~1u~I N
SHORT WAVE RADIATION
a’
‘I)
SKY COVER
II Iii
‘U
AIR TEMPERATURE
0 WIND SPEEDx
PRECIPITATION4
RELATIVE HUMIDITY
3—HOUR WIND SPEED
.1•~4I 414
a
a a a a a a a a a a a a a a a a a a
a a a it a a i~a —a a —a a a a a it~
~l~a~fl ~H~H~fl
a a t a ~a a ~a a a a i~a iiia
4144!~~111 4!
1’
A
ilL 4th 111111k NI ~!4!III NI IIU ili illi fit I’ll 114
a a
liii
-Il
02
It
-JHARZAEL3ASCOSusitnaJointVenture•January 1984
z0
METEOROLOGICAL AND
STREAM FLOW DATA
SHORT WAVE RADIATION
SKY COVER
AIR TEMPERATURE
JULY
5 10 15 20 25 30
AUGUST
5 10 15 20 25 30
19B3
SEPTEMLIE R
5 10 15 20 25
WIND SPEED
PRECIPITATION
RELATIVE HUMIDITY --______
‘I’
5
z
I.
D
-J)1w
lu
OCTOBER
5 10 15 20 25 30
3—HOUR WIND SPEED
OUTFLOW AND TEMPERATURE
LAKE LEVEL
nnaa n fl aaaaanSfl~
a a a ~—a a —a —a a ~a a a a a a a a a a a
I,
INFLOWS AND TEMPERATURE
Enl Fork
•Glecier Fork
i’
•Otheri
NOVEMBER DECEMBER
510152025 51015202530
II
aaaaa~p,a~aaaaflfl
~s~_~~Iaaa a asn
ii!
i~L ~
F I Hil’II liD’’~iIii liii
Iii Iii I.iii
.
liii liii jill
.
lilt
S....
.iIiII:iiIii;~i.IIiii I III
SHORT WAVE RADIATION
SKY COVER
~AIR TEMPERATURE
0 WIND SPEED
I
~PRECIPITATION
<
RELATIVE HUMIDITY
3—HOUR WIND SPEED
.aa.w ~a,m —a —a a a —
~~~HII11IIiIIUIIMIIIIiilIb
a.
IH .i “ii IIIliii
ta~aa aasiaaa
II
‘jil !~l~
[11111111
U
ii’
ill
41i
ml
‘~I1UII~~IIM~
41 ~ItaIthIththb~
ii lH-~B [Bill!WI’!11111111
.~.:.tl[I ‘III~‘~{‘III~II i~
If H Hi’I
•~.Jj IL 4].,fl
.~41 III jut L un
i_I_U LIII I Ii I -
j.I .11-
.1 Li
•.
4~I H
lilt Ili fill
•iiJ I .i ~
it
Hliii
‘‘I
tljiii
‘‘4.
•aII
11i4
1.1~~
.111
Li.
1.4.
J1U
U .1
I’,
‘Iii
IL
1144
ed
Si4’
.41
14
‘ill ij lii
141.i Ii ILL
IL iii ciii
Li.iii
FIARZA--EI3ASCO S~isitna Joint venture •January 1984
ii
ii
EKLUTNA LAKE
..,L.IMATIC DATA AVAILABILITY
m
InC
CD
co
41 •.~41 ...
EC r ~~~...!~F.?!R ~.~~
TEMPERATURE 1°C)
EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES JUNE /JIJLY (Acres)
IC
C
CD
TEMPERATURE 1°C)
EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES AUGUST /SEPTEMBER (Acres)
(I~
‘*3
0
m
‘C
C
CD
0
(C.:.:.:~...~~•.:~:..:~~•~;.~:~r
çzJ..C)C).0 CD.C)CD fl ~C C C ~.0 (.:00Ir—----i —,•-~~~1~-I -
EKLUTNA LAKE OBSERVED AND PREDICTED TEMPERATURE PROFILES OCTOBER
4~
us
I0m
us
~30
a
us
I
___x60.____
(~____—_.__.1~0x
0 ——-
0 x
0
50 )
0
0 I ‘C is
Oi I
01 -
4U 01 F’
~i JO’
El
4
AV —Ø
c~t~S
‘C I
Z(—LEGEND’—
I ‘C 1 0 ~OCTOBER 14-MEASUREDOCTOBER14-PREDICTED
10 I_____——/‘C NOVEMBER4-MEASURED —.I NOVEMBER 4 -PREDICTED
I 0 JANUARY 31-MEASUREDI———DECEMBER 31-PREDICTED
~-I9S2DATAr
‘do 2 4
TEMPERATURE 1°C)
6 1~1
to
C
~1(a
B 9
/DECEMBER (Acres)
K)
Ii
-n
CD
C
~1CD
-1
“3
It
I
U
bi
4
a
0
II 21 31 9 19 29 6 II 20JUNEJULYAUGUSTSEPTEMOEM
MONTH
NOTES:
I)TIME SCALE ‘SIN INCSEMENTS OF ID DAYS
~)OASED ON lilt CATA.nit)
EKLUTNA LAKE RESERVOIR TEMPREATURE SIMULATION JUNE /SEPTEMBER
(Acres Study,1982—1983)
f~~~~T ~.~...:.:..:.::.:...:~~
r:.....~.,18.18.14,14.198219821982I982[VriyuicI—’160uiII150~.-1~j~~9’(LU:flIJLU40EL.0ri~F—[:i[i:~.•:1:~030~[9IiLU~~r0~J•~~*frt~~-_20;:;::I~UCD—rjLUi~?.J=1045.6789100LEGEND:•JUNEJUNEJULYJULYTEMPERATURE(CELCIUS)11121314-MEASURED—PREDICTED-MEASURED—PREDICTEDALASKAPOWERAUTHORITYSUSITIdAPROJECTDYRESMMODELEKLUTNALAKEOBSERVEDANDPREDICTEDTEMPERATUREPROFILESHARZA—EBASCOJOINTVENTUREcfl1CflD.ILLIIOISDECS31563.142HTP1Z
0 -S
0
HEIGHT ABOVE BOTTOM (METERS)
I\)(hi (11
0 0
Cr’
0 0
(3 L3,.:~
(0 En w co>>
mrnrnncc
-o -o ~-u o c,o
-~-I-I-Icc
nmmmcno~
flfl—I-I
nr’nnrn—-~
1’)CD CD
•-(DID
(0 CD Ct 0)
(‘310 II
I I
II
orvnm>
fl>OC0-.C
oU,—cnx
n:0-srnmo
—in rio omoo
0
0~’
0)
0 0
-“4
03
—I
m
-o
m
C
m
n
0m
r
0
‘-4
C
C’)
CD
0
-S
“I
rn0,
COn
0
I0
z
-I
-Crnz
-4
:0rn
r\)
0
-40,
171 C/)
i:ri1):0
171
0 in
C:>~i z
1~I 0
-U -~
o rn
‘1 0
r c)
171 —.In 171
0
m
r
C—Iz
>
r
171
t1C
Ii,
-S
0
Lp.n
C
-4
p.
~1
Cp.
>r
>En
>
-U
0
in
C
-I
0
—I
Cal
~.~.c~c~~1 ~~~
HEIGHT ABOVE BOTTOM (METERS)
in
10in
I0
0
0
M (A (31 0)
0 0 0 0 0 0
S,G
zz00
0000
<<-1-1mmooflwwwwrnmmm~
CD CD CD CD
r’orQr~)r~)
liii
xirnumn>n>
0(000)—c—cc~)VoU-im-irnmono
00
—I
m
-o
in
>
-H
C
in
n
C-)
in
r
C~)
-4
CIn
0
(J~1
0~)
03
-
-__
V
&
~h ii a a in
•—‘——
“GO 0 -G~GJO°
—4
Ph
Ph
>
—4
C
p1
-U
~3
0-n
p1
U)
x
N
Ph
UI
>
U,
C.)
0
C
C
z
-1
P1z
-4
C
:0
In
•1
C
-t
a
CI.,
Cl
a
-4
In
3
a
P1
0
0)
Ph
-C
Ph
ci
z
0
p1
0
C)
—4
Ph
0
i-n
r
C
-4
z
r
i-n
r
U)
-D
0
p1
>
C
-1
0
—I
-C
Figure186050403020100TEMPERATURE-COELCIUS)LEGENDt0MEASUREDTEMPERATUREDISTRIBUTIONACRESSIMULATION(ESOS1)H/ESIMULATIONALASKAPOWERAUTHORITYSUSITNAPROJECTDTRESPIRODEI.EKLUTNALAKEMODELCALIBRATION18JUNE1982HARZA—EBASCOJOINTVENTUREOICAGO.ILLIWaZI2*DCC•~11563.142IIIDI4567.89101112
=CD 0 0 _C c 00 C C ~.C 02.0 0 Ci
Im
IC,
In
ic;
0
0
HEIGHT ABOVE BOTTOM-(METERS)
I’J .CAJ
0
(11
0 0
xfl~-.,cfl
no,(ncnc
—
:.t(nnc—c;
—Cr,
—fl
O-4U
ou
fl
-1
r_Cmucnn
C(no
—U,
-4
-4
U,
C
-1
0
a
()1
0
a
0
03
m
:K-om
23
-I
C
23
m
n
0rnr
0
-4
C(n
(0
-a
0
—a
ro
C-,
U,
4$,
C-,
0
C—
0
-4
C
Phz
-4
C
ph
0
Phr
Ph
7;r
C
-4
I
7;
Ph
C•1
-I
0
Lp.
0
0
-I
p.‘a
3
C
p.r
>r
>
U,
7;
>
-u
0
C
Ph
C
—4
C
-4
—4
II ir~I ‘C-,
I ‘m 0G‘
HEIGHT ABOVE BOTTOM-(METERS)
CAJ
0 0 0 0
01
0
a
0
~om
flU)cncnc
—mmc—cr3
-irpi
—fl
0-4~0z—m
0:;,
-I
—C
cnn
0(no
—Ixl
cx,
C
—4
0z
—‘I
co
‘~0
—1
m
-El
m
>
-1
C
rn
C-)mr
0
C
(I)
0
--r
GG~
-________________________
-____________
-________________________
-________________________
lie
—
G
-
-p
ro
(A
Cr1
-n
Co
C
•~1CD
tO
0
===~=00 C C 0 0 ~0 0
———n
irn
‘C,irr,
‘a
i0
0
0
HEIGHT ABOVE BOTTOM-(METERS)
ro 03
0
01
0 0I,
mu,(ncnc
—
ronc—c
>c-1—ti-rn
—fl
0-1-va—rn
a>
-1
rnv
(nfl
0(no
—-4
•-~(0
-l
a,
C
-4
-4
0a
a
01
0
a
0
00
—1
rn
-om
>
—4
C
m
n
0m
I
C)
C
Cl)
CD
-b
0
-S
-S
-s
(A
ir
‘C,
im
I0
0
Cu
0
HEIGHT ABOVE BOTTOM-(METERS)
1\)(A
0
a
0~0tO
cm P1W
W(nC
—
:rnrnc—c
>c—J-irrn
->z0—I-U
:z—rnoU
—I
—C
cmOlin
0
(~n0
—-4
-4
U,
C
-4
—
0
z
01
0
a
0
(0
-A
0
-1
m
-U
m
>
-4
C
m
n
C)mr
C)
C
Cl)
—a
—A
-A
N)
-Ti
toC
0
1’)tO
C ~C c;;~c,~C 0 c•:.0 •.C.
HEIGHT ABOVE BOTTOM-(METERS)
N)(A CR
CR
a,
o —a,
0 0 0 0 0 0 0
I irIinIIC)
tn
xfl‘son
nflrun
(n(nc
—
ztcnnc—o
—‘nfl
0-4-u
ou
-1
‘—Cnu
(nm
0
010
—-4
—1
‘-4
UI
C
-1
-4
0
CD
rn
-Um
>
-I
C
m
n
0mr
C-)
-4
C(n
CD
-A
0
-a
‘ii
r
C
-4
z
:R
r
>
rn
>
4.-i
Fl
ID
I,)
C-)
0
C~.
0
-4
Illz
-4
C
Ill
CD
En
cli
-u
-1
mn
2U,
rn
CD
0,
F’-,
2
0
0cli
C,
>r
-4
U,
>
-4
-4
0
InCIn
-4z
0IInCl
a
-4
InInZ1
g
aInC-
>r
En
>
-v
0
Ccli
C
—4
0
—4
-C
-s
(A
~li
Co
C
~1It
C.)
•706050403020100TEMPERATURE-(CELCIUS)LEGEND0MEASUREDTEMPERATUREDISTRIBUTIONACRESSIMULATION(E5051)H/ESIMULATIONALASKAPOWERAUTHORITYPROJECTDYRESPIMODELEKLUTNALAKtMODELCALIBRATION21SEPTEMBER1982KARZA—EBASCOJOINTVENTUREENItACO.ILLINOISflDEC13jI563.142I1T075678910
0 C ~),=,~~r C:C•’C.=~0 ~.a:0 ~=-—.—-——..-—I —...-
(j~
‘C
0
w
w
0~
(I)
0
C)
Iii
a:
D
a:
Ui
0~
Ui
1—
0
-J
IL
0
0
I “ft
TO
5
0
—5
-10
20
‘5
l0
5
0
A
I ~~H ~1~y Nr
NOTE’MEASURED 6-HOUR WIHOSPEED AND OUTFLOW TEMPERATuRES
FROM GLACIAL LAKES STUDIES PREPARED BT K K M CONSULTANTS.
2!30 TO 20 30 9 19 29 8 18 28
JULY AUGUST SEPTEMBER
I 982
ALASKA POWER AUTHORITY
EKLUINA LAKE
MEASURE!)WINOSPEED AND
~YJ ~
HARZA-EaaSCO JOINI VEKIORE
H”’-F
C’;
~11
CD
C
-C
ID
M
(3
o
I
Lii
a—
r
Lii
I—
0
-J
U-
D
0
r
Lii
C)
0
20
‘5
I0
5
0
LEGEND’
MEASURED OUTFLOW TEMPERATURE
ACRES SIMULAF ION
H/I SIIIULAIION
JUNE JULY AUGUST SEPTEMBER
1982
OCTOBER NOVEMBER
ALASKA POWER AUTHORITY
EKIUTHA LAKE
MODEL CALIDRATION
I 01 2
IIAR2A-EOASCO JOIHI VCWTLME
~
‘1
CD,
C
C0
a)
c;a.=.~..~ca q•.=.c ~ca F..~•..~~a ~~~
r
C)
w
0
I
a::
w
a
w
0
-J
I-I
I—
0
0
0
I 10 20 30 9 19 29 8
DECEMBER JANUARY
MEASURED OUTFLOW TEIIPERATURE
ACRES SIMULAF ION
lifE SIMULATION
MEASURE ICE THICKNESS sTATIoN S
MEASURE ICE THICKNESS SIATION 9
MEASURE ICE THICKNESS STATION IIMEASUREICETHICKNESSSTAtION13
1982
w
C)
0
20
Is
10
S
I E CE NO
.
a
4
FEBRUARY APR IL
1983
MAY
18 0 10 20 30 9 19 29 9
MARCH
ALASKA POWER AUtHORItY
EKLUINA LAKE
MODEL CALIBRATION
≥or 2
PIAAZA-EOASCO JOIN!YTNIURE
‘1
ID.
C
~1
CD
M
0NORTHFigure28CLIMATICSTATIONSHARZA—EBASCOSusititaJointVenture•January1984INUPPERSUSITNABASIN
p ç=çJ~=cL cz.ca c•~~c~0 ~:[~~
JANUARY
5 10 15 20 25 30
SUSITNA HYDROELECTRIC PROJECT
CLIMATIC DATA AVAILABILITY
z
0
I—II~4 METEOROLOGICAL DATA
SHORT WAVE RADIAl ION
SKY COVER
Iz
‘C
AIR TEMPERATURE
II
WIND SPEED
FERRUARY
5 10 15 20 25
ill
PRECIPITATION
.1
lDfll
fill ~I II 1 I’ll
MARCH
5 10 15 20 25 30
RELATIVE HUMIDITY
11 1k
S
3—HOUR WIND SPEED
~;i~’~;
H ~~;1
SHORT WAVE RADIATION
SKY COVER
APRIL MAY JUNE
10152025 5 1015202530 5 10152025
fl3ErrT]1)‘]~]~]1II,I!IIiIIHIJIIiII:.I ;,nrTlT ]11 It fl9 TT~!
IIIi
z0
>-z
3
-1
‘Li
C
AIR TEMPERATURE
iiIIiIiiiI’i 1111111 hF liii i~Bi~I ~ihi~lliiiu1ll W1Ih1fi~IIIllhIktll i~IIihiJ~~
WIND SPEED
-4
‘_—_!.,——~C rw~nflê ~*II I
~~~~ir,.~
•.i~~~Io•~I L4III4I.I4~I I!’114 nfl!.:.,,;lI41J*ILI—.
•hIll ~w 144 41 ~is
~~“‘~~~jjJt~j~
PRECIPITATION I II
RELATIVE HUMIDITY
lb
I’ll
II 111111 ii II liii U 1111111 I IIlIIiIIIIiiiiiiIU~
3—HOUR WIND SPEED
II,III
SHORT WAVE RADIATION
:1 IT 711 I I Il II I 11111 F 1111111 III I I I II 1[iiII I Ii I llllillhullIiI-II1Iil1[1ti1III11II1iIIIiIhhiiI
SKY COVER
I.’’’
L~)
0
AIR TEMPERATURE
‘-H
11111111 liii liii
WIND SPEED
‘II.’’,’
I [11111111111 I huh
PRECIPITATION
IF.
Iii iii
di i{u
RELATIVE HUMIDITY
I I 1111 I III I N I N
—-4,‘-4
I-,
II
II ii’
Itittlifit
3—HOUR WIND SPEED
.1.
illi ii
III I II II II III II
liii
Ii
1N ~II II
I I I i~I I II III
Ii III
ti111~iiiiiiiiiiiiiiiiiiiiiiiiiiiii
III
ii~:1~ll ii’I 1111
III
NI III
I I ~I I I
‘‘‘‘‘III’’’’’’
Ii I,•~‘~~ii’i~i ~.~II ~i ~
-n
(C)
C;
0)
r’-)ci,HARZA —EBASCO Susitlia Joint Venture •January 1984
METEOROLOGICAL DATA
SHORTWAVE RADIATION
SKY COVER
AIR TEMPERATURE
WIND SPEED
PRECIPITATION
RELATIVE HUMIDITY
3—HOUR WIND SPEED
SI-IORT WAVE RADIATION
SKY COVER
AIR TEMPERATURE
WIND SPEED
PRECIPITATION
RELATIVE HUMIDITY
3—HOUR WIND SPEED
SHORT WAVE RADIATION
AIR TEMPERATURE
WIND SPEED
PRECIPITATION
RELATIVE HUMIDITY
3—HOUR WIND SPEED
SL)SITNA HYDROELECTRIC PROJECT
¶.tIMATIC DATA AVAILABILITY
z
0
I-4
4z4
4
JULY
5 10 IS 20 25 30
~—a —a
AUGUST
5 10 15 20 25 30
1ORI
SEPTEMBER
5 10 15 20 25
OCTOBER
5 10 15 20 25 30
1W h
NOVEMBER
5 10 15 20 25
rcrrrn rr~T111r
ala ii
iii;
5
s_fl —IIIuIIIL dii I4~
z0
z
5
-3
>lii
0
II
DECEMBER
10 15 20 25 30
Ii
i—i,’
Ihi nh
I N HIII
It LI
Iiil~Lii~~~i~ii 141
1iIiiiBI~flJ11lllLW8i1 ~~11llL
t~
I~fl ~
IIJ ———~Ii ~hi ~-.“.~..I .1.II.,{_4 .I~I~-.II 114,1.1-11-
U~~I~~daa ~kh fl
~
lii:ti;l •Iii]iiiii III 111111I——
iIl~1111 liii liii l~4 dii [IiI hI~II—I .1.
——
111111111 111111111 Wi-il
—I II I I
ii
In
.4z
0,
0
S
SKY COVER —I BiIldIliIIilihi .JI~
S
IIi~iilihii till li-il
S a a
liii
øh
I II~
N
hiIih1ill~JllJ
a
III
in
.1
!lll!l 2
~I 11mI ——•IIIIfl S II U aaIII~~~‘n~~i~llhi 1i~ii ~iu ml II’li-I’liii
1ft14111ai-li —
II
111111 Uli ill
IIF’4 I~~t
am S
III~Iii~I~II
Hdtttll
I,
,,II,,,II •II.L II.,,llIi ,IhL ..~.~.—
I ill
}l~I
i11tihllli
I,
II II
II
—I
ififfi’
¶
II II II lu I
m
COC
-I
CT~
0
HARZA--EBASCO Susitna Joint Venture •January 1984
0 C -E ~.~~:~~C a.C ~
MAY JUNE --
1015 202530 5 ID 157025
z
0
I
4I
01 METEOROLOGICAL DATA
SHORT WAVE RADIATION
JANUARY
5 10 15 20 25 30
SKY COVER
AIR TEMPERATURE
4
zIww
-I
WIND SPEED
EAF1UARY
5 ID IS 20 25
PRECIPITATION
19111
I.,..
MARCH
5 10.15 202530 5
RELATIVE HUMIDITY
3—NOV11 WIND SPEED
APRIL
ID 15 20 25
il_I ,ii)L ._..uI.I,Iiw
I.
..a nanaaaaa nnnnnn flrn::j ~ti~I~I~~~—
I.
I,...1
‘It
II
IIIi 44
_________________________________________________________________________________________I
‘It’
_________fl~itfllith
III
—I——I——I
—In
‘Ii
liii
ii
III,
I I‘‘‘‘‘I
ii’ii lift 4[IIIiIllIlltIB I II 4’lII1T~hftdkTi
ill!
444 ID
I’ll
If
‘Ii
II
nil
‘II,
ifi
II III
II’’
I;II,!,...II
1,1
i 1._i
III.
I:
‘Ill’’
ill III
ia.w.~i1idui
II
UIi
Iii
liii
wi II
-n
(0
SUSITNA HYDROELECTRIC PROJECT ~
‘DcIMATIC DATA AVAILABILITY ~HAR7_A--EBASCO Susitna Joint Venture •January 1984
‘Cz
I
“SUS
-J
-CI—
3—HOUR WIND SPEED
I,
ii
Ii
‘I
II
III,
SUSITNA HYDROELECTRIC PROJECT
CLIMATIC DATA AVAILABILITY
SHORTWAVE RADIATION
SKY COVER
AIR TEMPERATURE
WIND SPEED
~~1•~—1981
~JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER
~METEOROLOGICALDATA 5 10 15 20 2530 5 10 15 20 2530 5 10 15 20 25 5 10 IS 20 2530 5 10 15 20 25 510 15 202530
PRECIPITATION
RELATIVE HUMIDITY
Lii.
:~:;2:;~:z .IJ..1ZI........I..f...
!IWIlIiiIiill~!ii
.1
I~nnnnnnnaa aannn
I —a a a Na msliaHH ala jalista atHaffa H ——H HH
I~_~•a~————~~
liii ill1iIll~~[iiI~I1lIIii1
4,
iiiI
III,.,
ii
I IIII
I’ll
~~Ii!~IIM~~IIAU[
Fllllllllillllllllfl I DhJIIli
Ii
II
Ii
III]
II,I
—II
U
•i1
I 4-I
jtji
I,
.11
III’4I4f
4 IL{
‘iiJ
1~
Ii
LII,
.li•~1~’~th
.1111
.iJI
.itti
Iii,
SI-i
LB
_Jj I.
liii.
44
—‘at
liii
41+1]
;LII~
Lu
“LII
FlAIR/A FI3ASCO Susjtp,a Joint Venture •January 1984
-‘II
I
1.~
I-ft.’,
[IIH
-Ti
CDC
-ICD
(.3M
-1~.~~.]~~.~*~............;~S ,~.;...~
2200215021002050I-.‘U‘UU.2000‘U-J‘U79501900185018001750Figure33I2345676910II12NOTE;TEMPERATUREPROFILESWATERTEMPERATURE(°C)SIMULATEDUSING1981DATA.WATANARESERVOIRTEMPERATUREPROFILESJUNEIAUGUST(Acres)
2200215021002050I‘a‘a2000I‘a‘a195019001850t8001750Figure34I2345678910II12NOTE:TEMPERATUREPROFiLESWATERTEMPERATURE(°C)SIMULATEDUSING1981DATA.WATANARESERVOIRTEMPERATUREPROFILESSEPTEMBER/DECEMBER(Acres)
C C C]~=C =~0 ci :.~~.E~C~fl I..=A 1 .——.——..~._,i...........,......._.,•,_—.
I)TIME SCALE IS IN INCREMENTS OF 10 DAYS.
2)DASED ON 1951 DAIA.WATANA OPERATION
3)RUN W4O20~WITH OUTFlOW TEMPERATURE
FOLLOWING INFI~0W 1EMPERATURE.
4)JULY INFLOW TEMPERAIURES ESTIMATED
WATANA RESERVOIR INFLOW AND OUTFLOW TEMPERATURES JUNE /SFPTEMBER
~T1
CA)
(31
II TIME SCALE IS IN INCREMENTS OF 10 DT1.
2)aRSED ON 1981 DATA,WATANA OPERATION
3)RL*1 W402%WITH OUTFLOW TEMPERATURE
FOLLOWING INFLCW TEMPERATURE.
WATANA RESERVOIR INFLOW AND OUTFLOW TEMPERATURES OCTOBER /DECEMBER
p ..
-I
CD
C
C
~•~.c~.~C ca ~:.~:~~:~.•I,~~fl C
HEIGHT ABOVE BOTTUMR~E
o Cfl
0 0 (31 0 (31
I,!~CA 0 0 0 0
>Lc
ccc
c-cmC,,
-1~-~
01
(0(0
—ma,—~rn
m
>
m
noDC-)mr
C)
__~~(0C
>Cl)
~,r-~,
~—1 -.
N fl
>—
0
C,—l >-.0oC
c.mmo
-tm >
—.Co<
.ç ‘10
I-fl —~:1zr~0
—.~~xi PU
rn -C
Fin,irp~RzCDw=250200150100500LEGEND012345678910TEMPERATURE(CELCIUS)ALASKAPOWERAUTHORITYSEPTEMBER1.1981SUS1TNAflOJECIDTR~Sn?tDELOCTOBER1•1981WATANARESERVOIRNOVEMBER1.1981DECEMBER1.1981TEMPERATUREPROFILESDECEMBER3L1981HARZA-EBASCOJOINTVENTUREnet.11I
—i__~.
C)
I-li
I—
Ct
w
a
~JJ
0
-J
LI
D
0
LEGEND’
—--fl --
z
0
20
‘5
10
5
0
3?
JUNE
9 ¶9 29 9 19 29 8 18 28
JULY AUGUST
MEASURED INFLOW TEMPERATURE
ACRES PREDICrED OUTFLOW TEMPERATURE
Fl/C PREDICTED OUTFLOW TEMPERATURE
•SEPTEMBER OCTOBER
1981
7 17 27 7 17 27 6 16 26 6 16 26
NOVEMBER DECEMBER
ALASKA POWER AUTHORITY
sutuwRnIJtcIT_OIPCSM.~OEL
WATANA RESERVOIR
INFLOW AND OUTFLOW
TEMPERATURE
I~ARZAE~ASCO JOINT VENTURE
~