Loading...
HomeMy WebLinkAboutAPA3415s rr Report by Harza-Ebasco Susitna Joint V~nture Prepared for Alaska Power Authority Final Report 1 .. 1 "'lo .,.) 3,.1 3co2 E:J 4 .. 1 4$2 e 5" ', 5.,2 & Go IONS 2olol Application of the Model 2ol.,2 Conditions Considered 2a3ol Watana ervo:tr 2 .. 3 .. 2 tana Reservoir Mul 1 Intake Selective Withdrawal 2a3o3 Devil Canyon Reservoir 2~3a4 Devil Canyon Reservoir Multi-Level Intake Selective Withdrawal 2a3o5 Outlet Works Effect on Watana Release Temperatures 2o3.6 Effect of Intake Operation on Winter ease Temperature 2a3.7 The Effectiveness of the Multi-Level Intakes SUSPENDED SEDIMENT CONCENTRATION TURBIDITY DYNAMICS~TEMPERATURE AND ICE OF SUSPENDED SEDIMENTS s MODEL SEDIMENT SIMULATION: EXTENDED DYRESM ll. ii 4 1 12 19 22 23 30 ..,,. :J.£. 36 LIST OF L (i> 2 OF 2 1 Model Reservoir 2&3o2 Watana Reservoir Multi-Level Intake Selective Withdrawal Devil Ca,yon Reservoir Devil Canyon Reservoir Multi-Level Intake Seiective Withdrawal Outlet Works Effect on Watana ease Temperatures Effect of Intake Operation on Winter ease Temperature The Effectiveness of the Multi-L~vel Intakes 3ol SUSPENDED SEDIMENT CONCENTRATION 3a2 TURBIDITY 4 .. 1 4,.2 1 ICE SIMULATION: iii vi l 3 3 4 11 15 19 1 23 23 36 1 " 3 ]_]. 3., b," 5 I ' \S)o (b "' 15 al 1 s E s e E-I 1 lan vlatana (S I ) ' ec Intake (S I II)~ Intake (S III)~ ect 1 Project t ana Reservoir ure Profiles Predicted Devil Canyon Reservo T Profiles Predicted Watana Reservoir Outflow Temperatures (Inflot.Y Temperature Matching) for Stage II of Two-Stage ec Predicted Devil Canyon Reservoir Outflow Temperatures ( Temperature Matching) for Stage II of Two-Stage ect Predicted Watana Reservoir Outflow Temperatures Water) for Stage II of Three-Stage Project Predicted Devil Canyon Reservoir Out Temperatures er) for Stage II of Three-Stage Project ect icted Watana Reservoir Outflow Temperatures ( low Temperature ) for Stage III of Project Canyon flow Temperatures ) for Stage III of ect . ~ . l.l.l t 1 (b) 0 27(a) .. (b)., (b),. ( ont Outflow ervoir Outf ) for S II s Size Distribut ana Res Year, Stage I.~~ ted Watana Reservoir Out Year, Stage I, Three-Stage Project ) l ol So ids 9 Predicted tana Reservoir Outflow Suspended Sol Inf Year, Stage II, Three-Stage Projec~ Predicted Devil Canyon Reservoir Outflow Average !nflow Year, Stage II, Three-Stage Project Predicted Watana Reservoir Outflow Suspended Sol Inflow Year, Stage III, Three-Stage Project Predicted Watana Reservoir Outflow Suspended lids, Inflow III~ Three-Stage Project (Cont Predicted Devil Canyon ervoir Outflow Suspended Average Inflow Year, Stage III, Three-Stage Project Predicted Devil Canyon Reservoir Outflow Suspended Average Inflow Year, Stage I~ Three-S ect Eklutna 1 flow Temperatures E utna Out£ libration: Ice Thicknesses cknesses (Cont near ) ted t ( ) t le 1. ze utna s Si Fall ocities v B c E F J L Case E-VI ~ Outf e E-VI, flow Title ect~ Stege 1~ Inflow Temperature t s 1 tage ProjectSJ S II, -..~~~~~·~tage Project~ Stage II, Warmes Pos Case E-VI, ee-Stage ect 9 S I, Inflow ure E , Three-Stage Project, S I, Inflow Temperature Matching and Level -5 Only e E-VI~ Three-Stage Project, S Matching ure Case E=VI~ Three-Stage Project, Stage II 9 Devil Canyon 9-ft Drawdown, Inflow Temperature Matching Case E-VI~ Three-Stage Project, Stage III, Full Capacity, Inflow Temperature Matching Modified Case E-VI (Devil Canyon Min~ WoSc @ El9 1446) Two-Stage Project, Stage II, License Applicat , Inf Temperature Matching Modified Case E-VI (Devil Canyon Min$ So @ Elo Two-Stage Project, Stage II~ License Application, t Poss le Outflow , Two-Stage Project, Stage II, License Possible Outflow Case E-I, Three-Stage Project, Stage II» Inflow Matching Case E-I~ Three-Stage Project, Stage II, Inflow T ching icat vat ent l t i the Susitna is &n ent 1 The s l) 1 t Project ent 1 e it concerns form an env to e 1.on of llect data at E utna ~~~=~"ture mode us ict the temperature the l to Watana Devil Canyon reservoirs<> These ef fly summari 1n this The reservoir us 1n this study 1s outlined the test t of the proposed multi-level intake structures ect operating policies, hydrologic and meteorological env flow requirements is illustrated by several case st eld data collection program has been conducted separately ( , 1982, 1985a, 1985b, 1985c, 1985d and e) .. sh ter t ti~ are l ent hydrologic meteorological data have been collect at three sites; , Watana, Devil Canyon, and Eklutna Lakeo each sit weather station has been installed and operat since collected were ocessed, analyzed 9 and finali in le for the applicationso reservoir ure simulation model was or terson (Imberger Patterson~ ), Har co Susitna Joint Ventureo th lities to simulate iment concentrations in 1 nt t ement -v1ere outf ures ter l test the rese:rvo to ect ect scheme en lity of structures was s ed for di was appl ext per t 1n proposed reservoirs to assist in turbidity., To provide a for test of the 1, ~s Eklutna Lake data ial emphasis ~n suspended sediment May to November l984a t on s 1 "1 GENE USl an exist ~,vas select ariti the requ1r lake of s test DYRESM el to reservcn a successfu test of 1 lar characteristicsa near the 1 because of its c is also a gl f to the proposed reservo1rso Eklutna also located in South-Central tionso The Eklutna Lake study is descr oeiect 1c 1n Sect 5.. " F'oll the su. . ..:cessful testing of the DYRES~1 model with the utna as the enhanc DYRESM 1 was applied to det e :r of the oposed Watana and Devil Canyon reservoirso ication of the DYRESM Model 1 DYRESM simulations of the reservo1r hydrodynamics~ l stratifica- outflow temperatures of the Watana and Devil Canyon reservo have formed for the two-stage project scheme as desc ense ication (Alaska Power Authority~ 1983) and the recently propos stage schemea Fifteen years of hydrologic and meteorological data e been ass led and analyzeda The data collected by R&M (R&M, 1985d and 1 ) at t Watana and Devil Canyon weather stations since 1980 were also used" e ta provide the following basic meteorological input for the l: 1 " Mean air temperature ( oc); 2o Daily and 6-hr wind speed (m/ s); 3 .. Air vapor sure (mb); 4, Prec tat ion (mm); 3 st 1 t cove~ ( t ) ; t (KJ ( co, 1 c) was carried out 0~1, outf reservo reservo r ement cons e r e u 1 t s ~~e :r e t study years were selected for s 1 us se study s were chosen to sent con·- been exposedo Per the project would wet hydrologic itions co conditions t-Jere selected for the simula.tions unct e C downstream flow requirement ( 12, cfs t ed 1n the Susitna Hydroelect 1c ect L enz;.e ( Power Authority, 1983) o Cas selec ive withdrawal capability of the lti-level structures wa.s demonstrated o These simulated outf ures l•le:re used to determine the downstream winter ice regimes ( 1 1985a)c The Case C downstream flow requirement was later Case E-v:;: flow requirement.. The Case E-VI flow requirement as igure 1 re!_")resents a recommended refinement of c~se C as descr report "Evaluation of Alternative Flow Requirementsn ( l ) The Case E-VI hydrothermal and ice regimes of both reservoirs analyzed for both two-stage and three-stage project schemes~ ition, the Case E-I alternative downstream flow requirement as Figure 2 was also investigated o In t~tis report, the cases anal Case E~VI and Case E-1 downstream flow requirements and 1981- meteorol 1 conditio....-lls are ~escribed o The e E-VI Power Authori~yws preferred operating condition w1 instream flow requirementso The predicted for Stage I, II e l.S to II coil the ed (year 11 1 0 Case ( (2) ect opera -VI two-s ec I ~ J : :tcy: ( ) Inflow t ure (b) Warmest possible outf ow requ these ( ic ibit s II -(Watana and Devil Canyon): Intake operating policy: the e s t A) B) (a) Inflow temperature matching (Exhibit C) (b) Warmest possible outflow (Exhibit D) ) : 2, Case E-VI with three-stage project: (1) Stage I (Watana only): Intake operating policy: (a) Inflow temperature matching (Exhibit E) (b) Combination of inflow temperature matching only (Exhibit F) (2) Stage II (Watana Devi 1 Canyon): perating policy: (a) Inflow temperature mat (Exh it G) 5 ven (3 II il ) at ) InflO'V'J' t ure ) (4) tage III (Watana Devil ) ( fu ing ity): l.Cy: ( ) low temperature matching (Exhibit I) l e E-VI with two-s project ( ) : (1) Stage II (Watana and Devil )~ Devil Canyon Minimum WeSo at Elw Intake operating policy: (a) Inflow temperature matching (Exhibit J) (b) Warmest possible outflow (Exhibit K) ili 4o Case E-1 with two-stage project (license applicatLon): (1) Stage II (Watana and Devil Canyon): Intake operating policy: (a) Warmest possible water (Exhibit L) 5<& Case with three-stage project~ (1) s II Devil ) : operat icy: (a) t ~~) l ( ) s I I (tvat Devi 11 ili capacity)~ Int pol ( ) Inf t ure mat xh ) ect eted Watana reservo th a total volume reservo1r would have a volume 540 ft" Note t Devil 1n terms of volume wou lrJatana., outlet locat deep in reservo1.r 9 the Devil Canyon reservoir would t Watana reservoir as results., tra 1n the fol is In tage project scheme, the Watana rese!'voir (Figure 3) depth of about 540 feet and a total volume of 1 I..: he first and second stages., The Devil Canyon res (Figure 4) would be completed in Stage II and the ma:x1mum the t;;ame as that of Stage II Watana reservoir o However, vo of ths Devil Canyon reservoir would be about one-quarttr of corresponding Watana reservoir in Stage II., In analyses, a normal allowable drawdown of 50-ft 1n the Devil ervoir was assumed unless stated otherwise as indicat in the The inflow temperature matching ope::.·ation shown under ing policy represents an operation of the intake to release water project with temperatures similar to that of the natural itions~ In ionsl) the natural conditions were represented by the inf con- The warmest pos&ible water operating policy represents a of releasing t-Jarmest near-surface water in the summer us near-surface structure in the s warmer water nea~ the bottom of er using lowest level intake portso 7 ure i f il th are sho"~:~n are ed respect case st 1 res s t 1 cas its e lts these case studies are summar1 as fol s of the project operation schemes and project status (st ) ' Ju reservoir op stratifications in the summer of Overturns would occur 1n spring 1 wou also form in the winter. 6 In summer, a warmer surface mixing layer (epilimnion) would form to surface heatingo Typical predicted summer temperature profiles Figure 8. The surface temperature would vary from about 45 to F (7 to 13 degrees C), and the thickness the epilimnion would vary 60 to 200 feet depending on the weather and project ions considered@ In the underlying thermocline the water t~mperature wou be reduced to near 39 degrees F (4 degrees C) at the top of the more form and colder zone above the reservoir bottom called hypolimnion .. thickness of the thermocline (also called the metalimnion) vary 60 to 180 feet depending upon the conditions in the res Temporal secondary thermoclines may also exist from time to t in metalimnion.. approximately 39 degrees F (4 degrees C) imation would found below a of about 120 to 350 feeto near is 1 condition at approximately 1 1 occur twice ear 8 F ees C) e it a cur e-cover me the onset therxrAal stratif the 11 the onset winter cons st:ratif t ice-cover l.TI reservo1r" me two to five feet can e-cover relatively In in reservoir the 1.ce would near also occur o degrees F (0 1ncrease a F (4 degrees C) at a depth of 150 to e contact upon the weather conditions ior to the surface ze- 1 condition of 39 degrees F (4 degrees C) wou in hypolimnion under normal operat it the hypolimnion would depend on the depth of the res proJec .. Under the Stage I of the three-st ect the reservoir level would be about 200 feet be I level~ and a winter hypolimnion of only about 130 feet In the later stage of the project during which the reservoir winter hypolimnion of up to about 460 feet can be expect Reservoir ti-Level Intake -Selective thdrawal multi-level intake structures proposed for the reservoir project stages provide the project capability to release er from various levels of the stratified water body reser= e can operated: ( 1) to s water at t.:::~~'!Tilnor as 'I;.Yarmes t pos s 1 nat water; temperatures as (3) to discharge sible; (1) to ter at opos ti ures ~ ures can e respons te sur.nmer more ear natura However~ t) the Watan.a t e temperatures 1 l.n times when releases are out inf tures be ( ures the revers stratif ees F (0 ees C) at contact sur e-cover to degrees F (4 degrees C) at of ( discharge temperatures wou natural river conditions .. As a resu range from approximately 41 degrees F (5 degrees C) in the summer and approxima~ sl ect C) to 37 degrees F (3 degrees C) in the winter meteorological conditions, and energy demand levelo 2.,3"3 1 Canyon Reservoir simulation model was applied to predict reservoir in both Watana and Devil Canyon reservoirs for Stage project scheme and Stages II and III of the three-s 1 Hence, ures warmer ( 5 ure two-~ ect The thermal regimes predicted for the Watana reservoir in are similar to that predicted for the Watana only project condit In this section)) only the predicted Devil Canyon reservoir ure are discussed., Watana out and the tributary f tream the t.Jatana are to the Devil Canyon modelo Since Devil cat to ter reservo r 'l?Ja.rmer res lts er eY reservoir are an earlier wou ect $ reservoir, .n le e t Devi early summer ure 1n Figure 9, sect total volume only about one-tenth of ter of the I Stage Also, the level outlets (cone va of about 500 feet below the norm-al 1 reg1me in the Devil Canyon res wou co er wou if st ti more sensitive to the operation of the outlet predicted 1981 September and October profiles The temperature in the hypolimnion would vary degrees F (4 to 10 degrees C) l.n summer .. 2,3,4 Devil Canyon Reservoir Multi-Level Intake -Selective Withdrawal s outf temperature reg1mes of the Devil Canyon reservo1rs have been the Stage II condition of the two-stage project and the S itions of the three-stage project, The two-leve 1 for both the two-stage and three-stage project in the analyses~ A three-level intake with an addit between the two levels proposed originally was also invest However, no obvious advantage was observed in temperatureQ The relatively large summer releases 1 outlet and the thinner epilimnion the less effective in terms of selective wi at 11 was il outf t 1 In f t t t reservo wou outlet reservoi so 2 to 3 weeks until was closer to tom leve ' or until t'i'at leve 1 ports cou s of multi-level int releas "later the Devil Canyon reservoir l.n st e II l.S st 2 t Figures 12 and 13() In mid-June 1 Sl es 't4ere changed from the top-level s to decreased water level and caused a 7 degrees F outf Thus, temperature while the Watana release t Devil Canyon releases can be up to 9 C) colder than the Watana releases in June and July for a to 15 days .. These occurrance 'ti'Ould be significantly e ees F ( 5 when the project is fully developed and when the reservoir e more stable and the operations of the outlet works are less as in late Stage III condition as shown in Figures 14 release temperatures improves as energy demand incre!ase eases decreaseG Effect on Watana outlet are to release f 1 ements when the requirements 15., outlet to meet eas 1 wou control et t res "!?later sur ile re normal res strati cat re ease temperature wou more ff tione shown in Figure 16, near second intake three-st project September of 1981" This l.S e, than in Stage III and, t water re III G) re t let ility of tempera ures these stages is warmer than 1n powerhouse intake to match out temporary climatic changes cause temperatures to rease t inflo-v.r ing periods of outlet works operations~ is high relative to the powerhouse the multi-level intake may not be able to between inflow temperature and outlet works release If As i ustrated in Figure 16 for the Stage-! condition with Case var , the outlet works were not operated in June and July of low temperature varied from 43 to 54 degrees F (6 to 12 i-level from 45 intake was operated to provide releases with to 52 degrees F ( 7 to 11 degrees C) 0 When temperature decreased 11 degrees F (6 degrees C) in mid-August~ a ion in eject outflow temperature of 7 degrees F (4 degrees achieved by operating the lowest intake ports. In August, the outlet were operated to discharge up to 24,000 cfs while the t t s ing at an average flow of 10,200 cfs. The relatively releases the outlet works reduced the effectiveness of the multi-level 1 the outflow temperatureso The effectiveness of the Devil reservoir multi-level intake would be similarly affected by the out releases (Figure 15)o 9 the mu t 1 As o release tream ure ure variat e releases" In July t f t varied to 54 ees F (8 to 12 ure varied simi ily from to F' ( to The general pat tern of var s1.m1. ity duplicated 1.n the s e intake operation" ton was obtained from the simulations of the two-stage project<) These simulations were tream requirement and various meteorological t includ 1971-1977 conditions and both stages of t'{rJO-S ect., 2., @ Effect of Intake Operation on Winter Release Temperature In most of the cases analyzed in this study, two consecutive winter t were simulated to determine the ice-cover thickness and format of the ice-cover .. The ice-cover formation is strongly the meteorological condition prior to the surface freeze-up.. After the 1 overturn, the reservoir destratifies and becomes isothermal with re uniform vertical temperature distributiono Mixing and further 1ng ~:rould continue toward winter until the surface of the reservoir freezes" Freeze-up could occur when the surface water reaches 32 degrees F (0 ees C) on a cold, calm winter night. Ice would form on the reservoir due to a unique property of water that its densi point 1s less than its maximum density which occurs at at the free ees F ( C)o Thus, the water colder than 39 degrees F (4 degrees C) st t res and st 1 s -,VI 9., eal F sur prevent conserves res tr l.n reservoir res ifi 1 int out flo\<~ t II the freeze-up can the to extent~ ures J..ce~cover of inf ure ana reservo1r (two-st ements are tively~ the warmest s le water tream, water in the e-free per s reduced to the free point sooner of the surface water would be at A indicates that, 1n is s s the warmest water downstream the sunmaer i.l s -1)- ~~ t e be induced about two weeks earlier than in case of the intake by matching the inflow temperatures., two weeks sooner, the water body in the reservoir from additional surface mixing and coolingo The \vater the ice-cover would therefore preserve more heat for the winter season and an increase of the out£ about 2 degrees F {1 degree C) would be obtainP-do temperature of up to tiveness of the lti-level s In this section, the effectiveness of the multi-level intake structures the Watana. Devil Canyon dams on selective thdrawal is ciiscus The effectiveness of a i-level intake depends ma1n on the st i ity of stratification in the reservoiro range the hydrologic meteorological condit cons summer stratificati in both Watana Devil reservo ble les 1 tratif s years ements (two-stage r ervo l rE:servo outf s t vert 1 1\.C for reservo s are at t one order crit al ueso Therefore, the Devil reservoirs are expect the vert direction for outflows are not expected to s structure the reservoirso Thus~ a one-dimens iate for analyzing reservoir also indicate that the hydrothermal ,..ond stable under the three-stage project requirements .. The maximum summer releases would be at t reser\roirs would be similarly :stratified .. In Watana Reservoir, the selective withdrawal of reser..·vo1r water accomplished by directing flow from the reservoir through an appr into the intake ports.. Water would be withdrawn :.t multi-level intake at a pre-determined level., To assess the effect s the multi-level intake, the stability of the stratification channel was analyzedo A reservoir operation study carried out for Case C downstream e- ments icates that a maximum winter outflow of about 12 :P for reservoirs 1n th1e months of e extreme outflow conditions were us to st st ilit s b out not \>J'OU 1 strati the outlet channel in two-st water umn water at the channel~ Its ef t t to minimal since the not reach the water surface~ for fore, the flow stratification in the s led ficantlyG However, the resulting outf the outlet works releases due to its e release as shown in Figure ions without outlet works dischargeso il Canyon outlet works intake, which 1s located below the the powerhouse intake, is expected to behave similarly to t co ~~at ana" However~ some mixing in the approach channel would be expec outlet lPlorks intake we!."e raised to the elevation of the upper s as has been suggested!/. Under such conditions, the intake near 11 s its ability to withdraw warmer surface water exclusively.. However, the release temperature would still be above those if a lower intake were us Comments by the National Marine Fishery Service on the Sus ectric Project License Application (Ala Power ) ~ 17 stream ( 1 s it releases:ll C) natural not ou.tflo~.r ure which approach t ible F to vortit:..es"' ure :reduce 1...ce cover ~ ees C) W<Jat o on c e o F easesll poss le to release w~~er at ) or lesso The reservoir strati 1 stability condit in ~ s" 3 .. 1 outflo"11 temperature and the ity level of the rel feet tream fisheriesG The ity I eve lly~fed res or lake appears to mainly on concentration of the water bodyo Therefore, to asse sment of the turbidity effects~ the el to include modeling of the suspended sed concentration s one of the parameters 1n the simulation of reservoir s " A the simulation approach 1S given l.n Sect 4o2o s vers of the DYRE model has been tested with sus a lee ted at the Eklutna Lake by R&M ( 85a 3 1985b per from November 1983 to October 1984" rood agreements on outf s were tained~ After the extended DYRESM model had been ver1 was ied to predict the suspended sediment concentrations of res outflows for the three-stage project scheme o requirements considered$ and 1970 and 1981-1982 meteorological Case E-VI f conditions \i'ere River sediment inflow data were obtained from USGS records Susitna River near Cantwell and at Gold Creek stations... The ticle size distribution of the r1.ver suspended sediments were obta from samples taken at tht Cantwell station as shown in Figure 20o Based on the Eklutna Lake tailrace sediment data and simulations of Watana res r~ show that most material between J and 10 microns settles the reservoir, the suspended sediments 1n the Watana reservoir outf are expected to be comprised primarily of particles of s~ze less microns., Larger size ic les would generally settle out rapid to the bot tom without significantly af feet ing average concentrat levels in the reservoir outflows~ In the analysis~ sediments of to 10 crons The incoming suspended sediments of up to 10 crons were 171 19 1. 3-cron each grour th average representat veloci tl 1 "5 X 1 sec 2,0 X 1 sec were se 1 ec the 1 s respectively., settl velocities were estimated on s utna Lake showed that use of these ve ities result Jl]l] eement measured datao total sediment influent to the Watana reservo1r was est at Gold Creek gaging station and transposed to the Watana reser- \iO co' 19 The particle size distribution curve F us to determine the suspended sediment each oup from the total sediment influent o Fifteen the total sediment influent was assigned to 0-3 to the 3-10 micron sediments, The 1982 operat cron 12 1 Case downstream flow requirements were used l.n the analysis$ Simu~ 1 tions v1ere for Stage I, Stage II and Stage III project it In the Stage I analysis, the 1970 and 1981 flow condit were also tigatedc The 1970' 1981, and 1982 flow conditions represent influent, high sediment influent, and average sediment fl years respectively@ The operation of the multi-level intakes were s to thdraw the near surface water since it allows for withdrawal water w1 lowest level of suspended sediment concentration and is similar to Y9 inflow temperature matching" policy selected for temperature simu t ions o In each case, the corresponding flow and the meteorological conditions were repeated for several years in the simulation in order for the reservoir to reach a ovquasi-equilibrium" state with regard to sediment settling and to study the long term cumulative effect of the suspended sedim~nts reservoirs., The results indicate that, 1n general, the outf suspended sediment concentration will reach a minimum level of about 10 to /1 March or il and a maximum level of about 100 to 20D /1 1n July or Augustg Due to the larger storage capacity and longer residence res Ju \~OU t s II ect out ~li 11 1 than s e wou a /1 In I ~ the outflO'Y'J sse 1 months ( i 0 "' June October or ) 0 s I t.J'at out s t fluent are :tn the tream sus concentrat more uniform throughout the entire s I outflow sse would early and increase a t 'Wh i 1 e the main-stem sed t inf uent varies /1 :tn October to il to as much as 200~2200 l e resu s are summarized in Table lo iments ich enter the reservoir 1n summer would rema a re 1ve long period of time the winter reservoir outf would continue to The outf of I I 1. la aver t 2 to feet the maximum concentration of about 1 near constant value of 100 mg/1 at to /1 i~ July or end of Oct outf level would continue to decrease in winter value of about 10 to 20 mg/1 in Mayo il Canyon reservo1r would be completed in Stage II and wou suspended sediment influent from the Watana reservoirc Figures Tables 2 and 3 show the predicted project outflow SSC from Watana atJJ.d Devil Canyon reservoirs for Stages II and III Although addit settlement of these suspended sediment influent ana reservo1r is expected to take place in the Devil Canyon res The min :rece to 2 itions" the reservoir is relatively small or the through-flow is relatively strong that only a Devil Canyon., 1 portion of the Watana outflow SSC expect In summary~ thes analyses indicate th t the susp concentration level of the summer release flows from pre-project ition of about 60 to 21 tc settl se ec t 'iiJou mg/l to t In sti ti :re In ter ~ level t'i10U s /1@ Sus s I, would sl t ther ed s III., st PN&D ) a ti turbidity from suspended sed t concentration* from the sediment data For concentrations less than lometric Turbidity Unit) 1.s values expressed in mg/1., In at contract to Har co Susitna Joint Venture per f) of the Susitna River water near s ( test resu s indicated that the turbidity (NTU) would l~:!t outf suspended sediment concentration (mg ) 0 Bas e correlation, it 1s estimated the Susitna idity would vary approximately from 20 to 200 N~U to 400 NTU in summero ons, l.S column on e s ect er to ure strati£ istr the ed Watana res t s 1.on 1 call DYRESM .. lly Patterson ( 81) co Susitna Joint Venture to 1 s operations)) frazzil ice inf A er lee-cover simulat son lin for Canadian lakes was so ed DYRESMi 11 summary provides a general description of the sical processes incorporated and its extension to l suspended sediments0 4 .. 1 DYNAJ:-1ICS -TEMPERATURE AND ICE the formulation of the modelling strategy of the model, DYRESI'-1 ts opers~ Drs., J .. Imberger and J .. Patterson have sought to principal physical processes responsible for the mixing of t ot water quality components., This approach is in contrast to other Sl.mu~· ion models which are largely empirically based o While the ilosophy employed in DYRESM requires a reasonable understanding of processes controlling water quality, so that they may be parameteri lling cor ... rectly, this process related approach to modelling has the advantage that the resulting model may require less calibration and is more 1c le than the empiricclly based methodso A second major consi in model formulation has been to keep the computational overhead as as is possible in order to keep the running costs of the simulation of variables over time periods of up to three years th reason .. necessitated the restriction of spat variability to only one sect ) the 1 tal t t l ter e cases:;~ time intervals as 1 1 ocesses respons even three-dimensional t 1. be represented sa tis ily s 1 st ivides the reservoir or l.n zontal slabs varyi 1 areas 1.n accordance th the thicknesses, volumes escribed reservoir layers to vary accord to vert stribution of heat and salt (not to specified accuracy~ The uppermos layer ~ s surface layer or epilimnion with its e being t line and its top at the lake surface~ This layer is tant as it rece1 ves the direct input of atmospheric fore SlOn eros - to l.S us associated with the largest gradients in water quality propert receives special at tent ion in the model compared to the layerso Within each layer the variables are considered to be uniformc Heat vert form of solar radiation 1s input to each layer accord ics of absorption of short wave radiation (Beer's Law)., to the transfers of heat and salt between the layers are determined by turbulent fluxe~ as specified by the turbulent eddy diffusivity and fferences 1n properties between the layers except between t layer and the layer immediately adjacent to itc The ue of vertical diffusivity l.S not set empirically but follo'1fJS the energy s In is way vertical mixing process the of available for mixing caus by storms ( stirr so by the ential energy released from infl r1.vers" In 24 nee cons l 1 rate on ess o esses t<ih as the treat cons s 0 e convect across e ts :ton at the layer .. of three conservation equations ervation salt turbulent kinetic energy., an estimate of the energy lol!>Ier layers .. A feature of s 1.8 that it accounts for the influence of st mot on the mixing and deepening of the upper f a nat of the wind generation of these internal mot provides an example of how a two and three-dimens 1 e or es in a reservoir is treated within the context of a one-d lo ~fuen the wind starts to blow along the longitudinal axis is initially at rest, the shearing motion at the base of 1s considered to grow at a constant rate until either the ceases or reverses in direction, a period of time equal to one quarter the per the natural seiche has elapsed, or the earth undergoes a peri ution on its axiso When any one of these limits is attained the is set to zero and the build-up of internal motion recommences o s shear may influence the deepening of the thermocline or the thickness and may destabilize the stratification., In the latter case temperature profile would be smoothed to the point where it remains st le w1 respect to shearing motion of the wind forced seicheo inflow dynamics are also two-dimensional Gl If the r:tver ~~ater 1 the ·~ ........ o.,..,...,,..,.ot layer of the lake then it forms a new upper con ac :river d one fl t t is \-later, t sl volumes of ily entra t volumes at 't-Jater 1s lut by lake water unti wallc In some cases, the to that of the jacent 1n to intrude into the main of the res r be ted by viscous-buoyancy forces e this is determined by er depending on the discharges s an mixing strength at the level of insertiono 1 thickness of the inflow and therefore ivided among the existing layers surrounding the er flow- from the reservo1r at a. surface level or up co two e levels are governed by the same parameter which determines the amounts to for each of the layers in the vicinity of the outflow points® To illustrate how this may work in practice it 1s useful to cons two extreme cases, one where the outflow volume is large relative to s ilizing effect of the ambient stratification (inertia/bouyancy e)® In s case the outflow is withdrawn nearly uniformly from all the layerso In the other case a weak outflow occurs (viscous-bouyancy balance)a In s case the density gradient severely confines the vertical range of outf s to those in the immediate vicinity of the offtake® model has been recently extended to include the influence of 1.ce snot'iT cover, a suspended ice concentration in inflowing r1vers as frazil ice .. The conduction of heat and the penetration of so t acrose a composite of two layers~ one the 't•la t er to the exces t ature e 51 ice 1.s creat lat e at the e present"' S the snow or sufficient heat 1s present to the freezing pointo cover,. occurs surfac eva.te sur tee An it ical process incorporated in the tial ice cover either during 1 th ice cover for or tial 1ce cover accounts for the wind act l.n thin l.C that be formed and is based on an assumed Additionally, the thickness of the snow cover on t of 10 cmo ice is 1 ted by the supporting bouyancy force associat c s and density of iceo Finally, the amount of solar tted through the snow layer depends on the thicknessj ure of the snow covero Frazil ice input from the infl used to cool the upper layers if no ~ce 1s esent or is to fraction of partial ice cover or to the thickness of the full e treatment of the ice and snow effects, frazil ice input.~~ ttom ux~ and suspended sediments are explained further 1n the following is cuss up s 1 1 ts the count t s surface reduced thermal esses incorporated into ice ickness of 10 em 1s as melting of either snow or ice on melt at the ice water interface are s ac t 1 1 of 1ce oc. creat snow surface as ~rell lat exclusion of salt from the 1ce upon freezing is simulat 4e The reduction of snow or 1ce thicknesses by surface evaporat consideredo e to e 5" The effect of ice or snow on surface vapor pressure 1s considered .. 6.. The snow albedo 1s allowed to vary as a function of snow temperature., 7.. The absorption of short wave radiation in snow and ice 1s considered" The ice-water heat flux due to molecu conduction across e-water interface plus turbulent sens le heat flux t 10., 1 "' sur surface to snow outf current are simulat ure of the snot-1 or ice snow thickness 1s 1 t The frazil 1ce input in the inf :tnc volume in reservoir .. e ice re ed 1.n total The ss of frazil ice cont 1.n the inflow is computed to existing ice thickness in both the cases of full or 1 that input the volume of frazil ice x.s ided as a 1. inflowo In the case of a partial 1ce cover the frazil 1.ce es percentage of ice cover until full ice cover is 1 ice left over 1n the daily time step 1s then added to the 1.ce volume of the lakee In the event of frazil ice input to an ice free 1 the frazil ice is assumed to be melted in the daily time step by with the upper layers o First, the uppermost layer 1.s coo 1 ed if necessary~ to the freezing pointe Any frazil ice remaining 1s us the next lower layerc This process 1s continued until all the frazil for the day is melted" Fr.cudl ice input is likely to be most at the onset of ice formation in the lake since, after that time, frazil ice 1n the r1ver upstream of the reservoir will likely contribute to the river ice cover and not reach the reservoirm Bottom Heat Flux not considered to very important 1n deep reservoirs, tom flux is account for in the model by a s le conduct ion across con.t t ure respect t sus sus estimat ter ture across ttom sed amount ,....,,,.,,...~ted lly the new ity of water at the year" model bottom ts port layer the heat ux ure 1s calcu constant ttom temperature the to const 1n a northern lake are 10"8 degrees F (6 ) version of DYRESM simulation model has so 1 e the modeling of horizontally averaged 1 to As th temperature and total diss~lved sol iment profile is prescribed initially from field ta and th~reafter daily inflow values of suspended 0111 1 t concentration from up to 4 rivers are input .. Suspended sediment profiles are in the model by three processes, namely by mixing» by convective overturn and by settlingo The convective adjustment includes the cont t to water density due to the suspended sedimento Density invers are and unstable layers are mixeda A has been incorporated to determine the change in suspended sed concentration in any layer due to setting .. The vertical distance ic of sediment sinks at a prescribed setting velocity 1s ich a to minimum layer thickness"' If this distance is greater than the layer thickness then the subdaily time step 1s divided by a factor of 2 success until the particle no longer sink~ through the layer.. In refined ly time step the suspended sediment leav the and removed from the layer" The port ion of this sediment 1. l to i 1 1 next to Ekl 19 tes veri s \vat ~1as sel e ject site, to te on a 1 Canyon reservo1rsc ens fiel t ac t e of t re t E utna 1 1 ed for hydroelectr oduc ion s ) to that of tana reservoir limnol 1 a collection we a station establi at Consultants, Inc .. was responsible of the ta" The collection of ta began unti 1 December 1984 .. The Eklutna Lake data have been summarized and reported by R&M ( 1!)82, )e These data include inflow and outflow discharges s lr!Tas ·-east t ili utn~t 1 utna rs) t ures, vert 1 temperature and turbidity profiles, and pertinent meteorol a such as solar radiation, air temperature, relative humidity, testir5 of the DYRESM model was performed in two phases, In ba~ c n-... RESM model for temperature ~nd ice simulation was test In e II, the suspended sediment opt ion was added to the 1 test of the model was conducted in conjunction with an r iment sampling and turbidity data collection This was started in 1984 and continued until 1 17 TESTING OF THE IC DYRESM model was applied to s te the average ture s tribu-~ l.U Ekl e for the starti June l $ inf outf met ical ta collect l::Jere us An analysis of the initial results to several These improvements inc 1 icat 1 ong -\'lave t ion equation inst of Swinbank equat :ton ition and incorporation of intake des est outflow temperaturesQ The results the Phase I study jre descr t entitled "Eklutna Lake erature and Ice S reservo:tr outflow temperature 1s a r urej and river ice st 1es lnc le I.ng ter taken to det oject effects on the natural thermal regime of the Susitna fore~ c e agreement between simulated and meast~xed outflow temper le~ The simulated and observed outflow temperatures E shown Figures 28 (a) & (b)@ The Jifferences between e pr served winter outflow temperatures were within one degree However, short term deviations of up to about + 3.,5 degrees F (2 ures utna ict Celc eet> e ne :lS and ) also occurred, especially during and after high wind periods. The surface shear effects and the internal wave motions near the take structure are extremely diffirult to model with a one-dimens 1 three-dimensional moci~ling 1s not considered practical~~ The differences between observed and simulated results on a wee~ly average 1s are considered small and the model 1s considered to be satisfac ory for predicting the effects of ~Jatana and Devil Canyon., The resu s of the s1mu tion also thickness and predict an excellent correspondence between measured 1ce ice thickness except f0r one observation There was no ice measurementci near the center of the lake 1.n The relatively th e measured at Station 13 1n March be cons iderE~d to Therefore servation 1 accu~ulation of rafted ice caused by istent down nds .. e relatively 1 rge difference (Figure 2 ( )) bet en t shottln ch is not consi s1 ificant~ a sus He as mg/1 su on the te usitna trate the ectco ility the reservo the SUSPENDED SEDIMENT SIMULATION: 1 has also been tested us icability to predict utna sedimeut concentrat Susitna oject@ The hydrol ical meteorol collect pr was continued by R&M th spec1a l.S sediment s 1ng for the period from May to November 19 sus sediment concentrations ranged 0., 15 to 0 streams!) from 0 G 1 to 200 mg/1 the and from Oo to the outf Peak values l.fl the inflow occurred te Ju to 1 on or y t ' the lake lfa. dbout September (as a depth concentra- tion at Station 9)' and 1n the outflow l.n late July to Inl. t ,. the nter, inflow, lake and outflow suspended sediment concentrat on the order of 0&1 mg/lo During the summer, the average sus concentrations were substantially higher than winter values e were 1.ncreas further following large rainfall events or periods of significant acial melt .. ity values generally followed the trends 1.n the suspended sed concentration, dropping off in the winter at inflow, lake, and outflow sites peaking in mid-to-late summer .. Observed values ranged from Oe5 to 1n the inflow streams, from lo8 to 220 NTU in the lake, and from 3o0 to 46 NTU in the outflow~ The total suspended sediment influent to the lake were determined bas on the total suspendei sediments obtained from Glacier Fork and East sus s vJere irst oups sent ng e ffecent particle s1ze ranges .. These part le size selected ~"'ere 10 crons greater than 1 mic s t runs :tnd t particles gr ter than 10 crons settle very to the bot tom of the lake have 1 itt 1 e e f t on the aver age t str eater 1 cron were 1n the study .. suspended sediments of particle size est t weight particle s1ze distributions t from East Fork and 1er Fork as shown in F 28 !i October 23, 84o The daily particle s1ze distr erpolated from these three basic distributions" To y 1 of settl lj it was necessary to specify an initial vert sediment, the particle settling velocity, particles .. The settling velocity str a part le accordance with the Stoke 1 s Law as shown 1n Figure l., velocity of 1 .. 53 X Io-6 meter per second was used for the e sediments and 4 .. 00 X Io-5 meter per second for the 10 micron s, A particle density of 2.,60 was used l.D the study ile density varied from 2"50 to 3oQO., The DYRESM simulations ·were for micron sediments and 3-10 micron sediments were made separately, resulting outflow suspended sediments of these two separate analyses were then combined to indicate the total outflow suspended concentrations as shown in Figure 32o The predicted outflow suspended sediment concentrations were in good agreement with data obtained from the powerhouse tailraces In two occasions, the field data sh0wed temporary increases in sediment concentrations that were not predicted by the SM The cause of these temporary deviations was probably due to the occurrences relatively heavy rains prior to these events., A small stream which flows into the lake near intake have carried signif sed ts and caused the suspended sediment concentrat locally and temporarily near the intake areao 171 amount of to 1.ncrea.s f{es r ure ~ e sus sed t s tions have Watan~)-Devil tion reservo us the enhanc c reservoir s s tions for evEd uat ion of s ~1a t er t concentrat Sus na tream the Sus i tna ect site Jtent 1 effec s Susitna Hydroelectric ect ldlife resources, 1 ~ 1.n ition to its capac1 to s e t ure 1ce en ext it ions 1.n a reservo1.r, has ilities to simulate suspended iment concentrat 1.on of a multi-level intake .. The test were using the data collected at utna of properties 1.n common ~1i th the proposed reservo1.rs,. ments t.'lere tained between the simulated and observed outf ow general, the differences between the predicted s outf ow temperatures were within 0.5 degrees Co In surmner~ a di up to 2,0 per1. ees C were obtained occasionally during and after The results also showed an excellent correspondence measured and predicted 1.ce thicknesses. The predicted outflow sed concentrations were also in reasonable agreement with data the Eklutna powerhouse tailraceG The results of these testings strate the applicability of the DYRESM model to simulate the behavior of the proposed Susitna reservo1rs~ ee-~ \',d .. nt er e tween l!ined 1 Fifteen years hydrologic and meteorological data collected at the Susitn.a of the Basin 1 Q been assembled and processed for the applicat the or inal two-stage project scheme the current three-stage project scheme have been stud The simu tions Case E~VI (the ka Power ity*s preferred condition) and e E-I tream flow requirements 1 1 19 inf meteorol al ar cuss s cons ed l: all the two-s age pr resu:ts e st th ~Jatana il servo icate stratific t regardless of the summer ect operat June, Ju t Overturns w;ou occur 1.n spr fal dur 0 temper:atur t'eservo st er., The ~Jatana release t ure s ter tural river conditions d range ( 33 to 37 degrees F)., In the summer, the Wat vlOUld 5 to 12 degrees C (41 to 11 il to meteorol 1 ltions .. Devi oject also exhibit e 1 ttern of early summer :ton fall to winter cool by a reservoir surface freeze-up.. The reservoir, especially in the 1 imnion s "t-lOU e operation of the outlet works than Wat smaller res volume .. Therefore, the Devil Canyon rele~se 1 t :rm warmer .. 5 to rel ) ure up to 5 degrees C (9 degrees F) colder than Wa,ana re eas temporarily :tn June and July when the intake port level is chan~ed ..:o of the reservoiro summer outlet works operations and the relatively thin epilimnion wou e the effectiveness of selective withdrawal us1ng the multi-level s 1n both reservoirs, especially 1n the Devil Canyon res of release temperatures 1mproves as f;nergy demand increases ion of outlet works decreaseso suspended sediment concentration level of the summer pr ect releases decrease from the pre-project condition of about to about 50 to 200 In the winter~ the concentration level se from a range of 1 to /1 to a range of 10 to 100 mg/1 .. It so est that the correspond Susitna projf!Ct outf wou ely 20 to 200 NTU (Nephelomet t) er to 1 to summer a 71 F F Har Authori , ica.t oelectric eral Energy Project Noo es American Inc, the eral :ton for ectric Project Venture~ License~ Project Grace 3 Jr o 11 Selective Investigation,u Waterways Experiment i, 1983, Dra ), pr awal Technical Station:. EoJe List~ R,C.,Y., Koh, Jo Imberger, N,Ho stal Waters., Academic Presso tory The co o, 1981., Trans ls for inland and coastal waterso Proco of <> on Predictive Abilityo Academic Presso co Susitna Joint Venture., 1984a., F.~lutna Temperature vli six months simulation for Watana Reservoir" itna oe ectric Project., Prepared for Alaska Power Authority, il@ co Susitna Joint Venture .. Susitna Hydroelectric project., October .. 1984b.. Instream Ice S Prepared for Alaska Harza co Susitna Joint Venture., 1984c .. Evaluation of Alternative F ements .. Final Report., Prepared for Alaska Power Authority .. Harza-Ebasco Susitna Joint Venture.. 1985as Instream Ice Simulat ernentary Studies for Middle Susitna River .. Susitna Hydroelectric Prepared for Alaska Power Authority .. July .. za-Ebasco Susitna Rf~gime.. Susitna A.uthorityG Joint Venture o 1985b .. Hydroelectric Project~ Case E-VI Prepared Alternative for Alaska F Harza-Ebasco Susitna Joint Venture.. 1985c., Weekly Strt~am F1_ows F Duration Curves at Watana, Devil Canyon, Gold cr(~ek, Sunshine Susitna Station, ThreE·.-Stage Project, Volumes 1 and 2, pr for Alaska Power Authority, December .. za-Ebasco Susitna Joint Venture., 1985d, Effects of The Propos ect on Suspended Sedimr~nt Con':!entrat ion.. Prepared for Alaska Power Authority, December., Per a Press., t 111 els linl) J., Vertical nensi ' 29(4), Study<) Novembero ervo:ur Coas lOU H L a Susitna Reserve for Acres s Inc l.l:; Consultants, Inc o 19 o Glacial Lake Studies, Inter Susitna lecL:ric ect., Prepared for Acres 1can~ ity .. December. Inc., 19 a., 1 Lake ical ka .. V::.l•ll,Je 1 -Report., Susitna Prepared unJ~r Jntract to Harza-Ebasco Susitna ure Power X..tthor t t June .. Consultants, Jnco 1J~S~ tiacial Lake Phys s: utna , Alasl<a.. Volume 2 Appendices., Sus i tna r1.c ectu Prepared under contract to Harza-Ebasco itna Joint Venture Alaska Auttoritya Juneo s, Inc.. 1985c.. Processed Climatic Data, Oct 1984, Eklutna Lake Station (No., 0686,.5), Volume 7e Susitna ~u~~~=lectric Projectv Prepared under contract to Har sco Susitna Venture for Alaska Power Authority. Junee Consultants, Inco 1985d0 Processed Climatic Data, October December 1984, Watana Station (Noa 0650)o Volume 4o Susi oelectric Project~ Prepared under contract to Harza-Ebasco Susitna Venture for Alaska Power AuthorityG Junee Consultants, !nco 1985e. Pr0cessed Climatic Data, October 1 December 1984, Devil Canyon Stat ion (No o 0660)" Volume 5" Sus itna Hydroelectric Projecto Prepared under contract to Harza-Ebasco Sus Joint Venture for Alaska Power Authority" June. Consultants, Inc.. 1985fo Suspended Sediment and Column Study .. Prepared for Rarza-Ebasco Susitna Alaska Power Authorityo Turbidity Settling Joint Venture Jan l11!ar Ju.n Jul s Oct Nov Dec 1/ 3/ le Concent:rat in Reservoir Releas of Observed Range of Estimated 1970 1 Concentrationl/ Concentration2/ 1-8 2-55 "' 65 65 85 2-93 40 55 65 1-6 2-23 30 40 45 N/A 2-183 25 50 65-1,110 5-1,480 20 45 151-1,860 620-1,705 75 90 100-2,790 506-2,062 105 130 110 158-1,040 198-2,150 105 110 165 23-812 5-1,511 95 90 130 7-140 2-144 85 100 125 N/A 2-71 90 95 115 N/A 3--47 80 85 95 Based on data from the Susitna River near Cantwell (period 1962-72~ 1980-82) 1 74-82) Q Estimated from daily sediment transport in tons per day and corresponding mean 3t Watana, 1970~ 81 and 82 flow conditionso Based on simulation results~ 4 N/A = not available~ 22 171/TBL 701 40-90 L~5-85 70 10-50 20-60 10-40 5-50 35-90 85-115 11.5 1 8 05 1 80-1 I 75-100 at Gold C ek ( riod 19 i ly dis cfs Hon.th Feb Mar Jun Jul Sep Oct Nov Dec 1 Table 2 SUSPENDED SEDIMENT CONCENTRATIONS ( ) WATANA -DEVIL CANYON OPERATION~ STAGE II Average R~nge of erved Range of trationl/ Concentration.~./ 1-8 1-20 60 N/A!±/ 1-30 45 l-6 1-20 40 N/A 30-170 30 65-1~110 130-1,270 30 15 1,860 930-1,470 55 100-'l,790 600-1,600 110 1 1,040 200-1,070 110 23-182 2 00-1 '530 90 7-140 1-30 80 ~/A 1-30 80 N/A 1-30 75 Based on data for the Susitna River near Cantwell (period 1962-72~ 1 Creek (period 1974-82)~ of 50-75 30-60 10-35 20-100 70- 80-130 70-130 ) and at Gol Estimated from daily sediment transport in tons per day and corresponding mean da ly scharge in cfs at Watana, 1982 flow conditions (average year)o Based on DYRESM simulation for 1982, releases from Devil Canyon Reservoir, N/A = not availableo 228171/TBL 1 Honth .Jan Jun Jul Sep t Nov Dec Tab e 3 SUSPENDED SEDIMENT CONCENTRATIONS ( ) WATANA Range of Observed Concentrationl/ 1-8 N!A!±I 1-6 N/A 1,110 151-1,860 100-2,790 158-1,040 23-182 7-140 N/A N/A DEVIL CANYON OPERATION, LATE STAGE III Range of Concentrationl:./ 1-20 1-30 1-20 30-170 130-1,270 930-1~470 600-1:;600 200-1~070 200-1,530 1-30 1-30 1-30 55 50 25 25 20 35 75 75 55 50 70 65 f 55-70 1 Based on data for the Susitna River near Cantwell (period 1962-72, 1980-82) and at Go Creek {period 1974-82). Estimated from daily sediment transpcrt in tons per day and corresponding mean daily charge in cfs at Watana, 1982 flo~ conditions (average year). Based on DYRESM simulation for 1982, releases from Devil Canyon Reservoiro 4/ N/A = not availablec 228171/TBL 701 !.3;)'1'£• S fM~ l M!lfcliM:'S 18 !i>IAOC"' ~t'lll!!. 10<1:)1! '»\tCl.!.\Yili'G l.ill y,_~_ll!i')= <1:£~­ GU.IOE Ul11131.,JlCK !HP!t~Ll wg~~!il~·'h ll S(CTIOW$1 C'OIUSUill!: nqutr 100\.tsiOI<iAO-~ ITTPI 11\R.~ME~!l CiAft SHUUUI- /"' ouruv-' faCtLITI($ I~TAK!£ ISH ""litE Fill . I PLAN AT EL. 2040 IT r-f I' J. II ! '' I& tt II II II PlAN AT EL. 2116 S£CTIOH !:H!! ,, !l -· il'IA'fHifi!G 11::( 6S<Jii:l {\. !111:) T~-~· H>:ATEO IC£ 000"' $ '. 0 OIIUWLIE IVY PI · -- MINIIIUM IW£1lAfiNG 1t1 l £L 1!1~0 ~--~-----~ El179'!1 •. -·----~llYI!I -----~ ._._ r---- ~.o-- -----!I'IITtllt[ 4!AT[ rz:owr.24'-0" f'05T • T[~ION£0 AOC;;QA. TYP iA!lO\o'EI -- mYA;<£ GAr£ --- ACCESS $MAVT TO EL.I!IOIHn;>J --- lllTA!t£ GAY£ ACC£1111 1:1040- llfT~ftll ----------.., I t---- J<UT£0 IC£ !!ODU-~ i I l I I I I I I I I I I I I I I I I I l I I I I I 'Ill riMSIIlUlCKHTP) \~· i '· I I I ~LOr~ H lf')P PLAM AT EL. 1812 OU'fl.IH VACII.ITIIl$ \ \ ~t_fit"f~')n;!!IA§ 11?.:U"t0-liii li'll!lD l ~::~::';',i - ..... n~ •" ,.,, r l r-·---~~~~====:::::::::t=======±::==i=::::::l==::::l-- ! Oll l~'OJ.Ill ~ z Oll )JO~ltsl i ~~~AGAH \ TRASHf.lACK 1. GUIOlOS SECTI0!\1 A-A w > ~~00 0 0 _......... _,r-~ !( , I I 1 l , p J .. w_/ I--" ~ '" -·~ ~ ~ ~ v_.,.. ,. I "' I I". • • - I I I I ! I I l 5 10 TEMPERATURE-CCELSlUSi CASE• •• WA81ZOE -W~TANA OPERATtON W/OEVIL CANVCN IN 2020 fCRSE E-Sl LEOENOe TEMPERATURE PROFlLES: 1981 1981 1981 = ! 2 ! I ( I 2 ~ -~ .z I -' .il ~ ·S Ul -- , __ I 15 I R c; . 1 "',.-... j i f i' t * I -:r -r ~ ~ - ~ ' ;I I .... l I -. "' , I ' ' _,) I ' l ' I & ·-I if I I . ·-· I I ! ' . I I . I l I I ' I ' -----'-·-I f I I 1 ·--I---·-,...--·- I I ' I l I j I ' j L • -' 1 . I I BLUNt. I I I I ! I 0 '' l 'I 0 s 10 15 TEMPERATURE-(CELS!USJ OC8120E-DEVIL CANYON OPER~T[CN WIWAT~NA IN 2020 ICASE E-Gl s~ lLES~ 15 u !..&J ~'10 ~ a. a: LJ 0.. l: w b-G a .....1 u. 1'1- :J 0 0 L 2. 21. 4. G. li. I ... , ' !5 U) ~ -I , r ~ -l M 3: l) M J] :D -! ~ 15 u I I I . '~ LlJ I ~lO ..... a a: w Ci. T- l&J ,_ s 2i ...J u. 1- :J 0 0 ' ,, .3~ Ml lO Ml ~---- 15 10 s Q c -f T1 r Q l: -~ (Tl 3: rii ...u D -1 c ~ n n.~ fi 0~~ _no - 15 u; ~ -; "VI r I u I ~ I wiD ~ ""' a ~ w Q r w I-6 ~ u. n ~ ::J 0 IS u w rr 110 :J ~-a a: w Q. :;:: w :- & ~ .J u. .... :> 0 0 CaNYOhi IN PROJEtr ·~ 'ltl r, 0 c """i "'" r §? -i 171 :J: ;:g Xl '"D -1 c A) rn n 15 u w ~ lD 'l--a 0:: w u 7 w 1-6 ! ~ I _j l!. ~ • a 0 (') i.O f1"i 0.0 15 9 ._ ..... 'T1 r· ~ 10 -~ fl"l -~ u m .u 1.J c. ~ ;o (TI n rs u !.!J sm i- 0:: cr w a :i: w ~ fi J u.. J- '::3 0 L ~­tJ. 4. ~. e. '· !0 s I& BS 0 u c -f ., r ~ 10 Hl -; f'1 3: "'0 SB D -1 s ,. i -r? s f1 fl1 ...J u. 1-I :J 0 0 ,, 0 15 H~ u ~ ~ , r Ui ~ S'o 10 .... a or &AJ Q. :E w i-' G a ..J u. ..... n :;::, 0 0 .. ~· ..._, , •. , _.'....;I::.::L....;.. __ _ .~!:·~---i~·-·--------------------T----- , l..t:.;.~'.;.· ..;.=----~------ !:t~~: . L ,_ J , I; .1.'. .• t .. .J..... ~-""-'"i,.'t": l t;.'f •"'I q t~ n..-i: U.'f :! tt>,. ~~ \_~·r .J ~ ,...~.,~t., 1-l' ... ,. ' , ... ~ .. n· >!t "r l •t: l ';/ L 1f -.... ' I .. .. .....} ... .,.-. liS • ., --• .._ r a .. mvc_~-: llP!~P lrl J 1 '.'H' .: . e.I.I'J'H.: n1:=-r ~h r: I. l,....;~ k·. i'm ~· ~~ f.' .. "'l . I. -~-. &·m :''1 :1 ~ --4 ·"· I ... .r: ~-. i 'j'-1 ~·· l ~.-t : ~- lb''l';'.. ~ .: <iL. -. r : c~ .. 2 1-4', ~~ 5:JVc:)-!ClN 2~M: ~1' rt.;,;.l "I 11, ... L -... -1>lf"' pr- ..... b s.-..... '"-""' .... . ·-----'J··:~~ •.r. r.~l.".:,. E •• :I ~~--~----.---~--~~~--~--~~--~--~~--~,---~~~r-~1r 2~~----~----~-----+-----+----~----~-----t~---,r----- .... . "<!w I I I I r-4 li'1 I ! PREDiCTED OUTFLOW SUSP. SED. CONCENTRATION I DNFLOW SUSP. CONCENTRATION PREDICTED OUTFLOW SUSP. SED. CONCENTRATION STAGE I INFLOW SUSP. SED. CONCENTRATION c-~@0 z 1&8 ! Q E"'o fM.,J U2l ..... (!) 0'2 W"""' usc c z zo W""' .t~..Ca w< ::l!O:: Wit-z ~ w 100 oo w z ..,0 00 0:: L ~ ~ !1: !PREDICTED OUTflOW SUSP. SED. """'"'""'Iii.~ iNFLOW CONCENTRATION SED. CONCENTRATION CONCENTRATION $USP. SEC. 1\#VR...,!Jii.f"'l """'.-m_...,_ SUSP. SED. CONCENTRATION I- ~ w ~ ! > Q""" W...ll 0 0~ 0 (!) z O:JE 0 W<:ld rn Oz 1333 ~ zo 21) LIB..., }l> Lt-<>il 0<( :;)Q!! 0 00~ z 11-z g~ UJO "'llZ oo ~;:tO m ~ &;: :t ""11 II- i PREDICTED OUTflOW SUSP. SED. CONCENTRAT~ON 8NFL.OW SUSP. SED. CO~CENTRAltON ~ z w ! 1~~H Q w,.,.,.. 0::! od w:l c-aoo-'i3~3 zz wo a.- ({iii"" ::;< 00:: G-·1 ll-Z ow u,.oO "'::lZ 00 41:0 ~ l: 100 !: ~ 6. PREDICTED OUTFLOW SED. CONCENTRA Tl0t4 iNFlOW SU$P. S£0. CONC!NTRil'fiON --···--···-------·--- PftEDtCTEO OUTFLOW SUSP. SED. OO~tCEI~TR INFLOW SUSP. SED. CONCENTRATION AT WATANA STAGE m: l JULY - .. "'" ,!' • • .,--·, ....... "".. , .... l - \ II 21 31 E .. -~$0~ .. I .......... ~ .. _ • .P"'IL ... ~-~· .. - ll 30 9 FEBR ... .,s_., __ '"""* ,.m_""'"'"""'""' AIC!I&"-GDIIIIII -- II l + .. .. .. .. -.. ... .. ...... .... -~c::.~ Ca.!<o("So c,4"'~ 'I Git•a., I ~ - % gem•"•- ~ II II 21 31 10 10 20 ll MAY 1983 L PART Sl 0 0 m ~~-------+----~~------------+-----~------------~r-----~----------~ "'" ..... z m m ::u """"' 0 0 f5*1!li~ § e G • g c 6 0 a D BO IOC ·· ·~ F LL \ '•.1 f 1 t c D E F* I J* K* L* M N SIMULATED RESERVOIR TEMPERATURE PROFILE OUTFLOW TEMPERATURES Tit Case E=VI~ Two-Stage Project~ Stage 1~ Inf Match u.re Case E-VI~ Two-Stage Project, Stage I~ Warmest Poss le Outflow Case E-VI~ Two-Stage Project, Stage II, Inflow T=~·~=~ Matching u.re Case E-VI, Two-Stage Project, Stage II~ Warmest Possible Outflow Case E-VI, Three-Stage Project, Stage I~ Inflow Matching Case E-VI, Three-Stage Project, Stage I, Inflow T~-v~=~ Matching and Level -5 Only Case E-VI, Three-Stage Project, Stage II~ Inflow TQ=r,gr Matching Case E-VI, Three-Stage Project, ~tage II, Devil Canyon Drawdown, Inflow Temperature Matching Case E-VI, Three-Stage Project, Stage III, Full Generat Capacity 3 Inflow Temperature Matching Modified Case E-VI, Two-Stage Project, Stage II, License Application, Inflow Temperature Matching Modified Case E-VI, Two-Stage Project, Stage II, License Application, Warmest Possible Outflow Case E-I, Two-Stage Project, Stage II~ License Application Warmest Possible Outflow Case E-I, Three-Stage Project, Stage II, Inflow Temperature Matching Case E-I, Three-Stage Project, Stage II, Inflow Temperature Matching * Reservoir temperature profiles not included 228171 t5 IS u w s•o HO c-a a: 1d Q. X: w &-; s 2} ..J Y.. ~ ;::) n 0 0 us liS u UJ ~110 Ul! ~ ([ a w 0.. ::It: Ld a-G ' i3 ..J u. ...... 0 :::;) 0 0 £CEL5lUSD I ... TEMPERATURE-(CEL51U61 IN 20CU tCELSHJSB 2001 CCELSX tN tCELSlUS! (CEL51USD IN 20CU ~ i UlO .....,.. _ ___,1---......... -........Jj!- USJ IN 2001 1 15 Ui u w ~liD 1/1--a ~ w a. 2: w &-6 & ~ ...J u.. ~ :::J 0 0 15 BS u ~10 RO 1-a a: w Q. ::r w e-& s ~ u. ;-n ::) 0 0 w > ~-00~----~---+----+----+----+----+----+---~----~--~~--~----~--~----+---~ TEMPERATURE-CCELS!US» ECELSHJSI 0""""'-- TEMPERATURE-£CELS1USl CJ:SE!! s TEHPERATURE-lCELSJ CE-tJI) ) lS 15 fiS u UJ ~ao 1-a a:: YJ 0.. :r.: w ~ IS s. ~ _J u.. ll-0 :J 0 0 0 ~5~------------~--------------~------------~------------~--------------~------------~as ------+---------+---·------+-------_) --------·+--------·- u g -~ , r Q w ~ ~~0~------------~------------~------------~----------~~------------~----------~~eo s-a 0! l.IJ u. :c w ---+------------~ &-r--------------~--------------~--------------4-------------~---------------+--------------~~ e5 .....1 I.!. ~ :::J 0 0 ~~--~~----~----~------~--~F-~~.-----~----~----~~---.----~~~~F 249~----~F-----+------+------+-----~----~------4-=----+------+-----~----~------~ -as~------~----~------P-----~----~------~----~~----- 1 24~--------~~----~------~~------~------~--------~------~----~ ~ 12' 0 15 u ~---- t I Uj I ~ .... I ~10 I\ ., J-a. a:: w Q T-w t-s ~ .J u. ~ :l 0 0 U•f 2002 r~JI•H'-' ln·~r "~J,., ; §5 \\0 ~ n (~ u ts-r------~----~------,-----~------~------r------r------T-----~------~----~-------~15 ~~~~~~rr4-=-----t--=----+-------~------~------+-----~-------+--·----~IO -f M :1!: ~ .l) -4 ~~----~-----+----~----~----~~~--~~-*~---4----~~ ~ 0 0 0 l E-I!E l w > ~BOO 0 0 ', ... ,.. ,, 6 t )• -.. ........ _ ... . . I I '-D 5 TEHPERAlURE-€CELSlU5l C~Eo ~-WRBi02J-WAT~NR OPERATION W/OEVIL C~NVON IN 2002 •~ «E-VIl LEGENOB PROF'lLES: F I . - - :-B - '2 4 \=f= \ I \ l t=1 . -------c • --f= r --- I ' 10 Ui TEMPERATURE-«CElSlU5) TEMPERATURE-tCEL51USJ ~ I I 8 :~· I ~-~ : =E 5 10 %5 WA&i02.J - PRtF'JlESs ~ t- ~ i :1!: 0 ._ 1- ~-00 w ; .. -.. I l __ .. - ~ i .. .. .. \ 1", .. 11 'J:>- ' ~ ~ ~ s 10 TEMPEF~TURE-(CElSlUSl CASEs ~-OCSUJ2.J ... DEVIL CRNYON OPERRTtON W/Wf=rf~ ~N 2002 ~l:Fil UE-VJ B LEOENJe I IB c ;z --~ 15 I I im ! ! fi \ ~; r- """ lz 1'\ ~ = !00 I ·- I I 0 s tO s TEMPERATURE-«CELSIUSJ DCBD02J -DEVIl CANYON OPERRTIG~ WIWRl~ KN 2002 ~ I J ,-=f_:--~ ~--~ ---!-" ---------... co II : c ~ I"" ~ ~ I ------~"' ~--H-I I I Ul; ~ t = t= ' ' . ' I -~ I c I I 0 ' lO 5 -OEYKL CANYON OPERATION WIWATANR UN lEOENJs r I ~ I I =t~ ?4= R - J : '!j ' I • I ~ :, •, • i ~ I, ,s / l I I J I . I I . I p I t .. I ' I il I J --I I I . I I o~ I ~·- I I r-a I I I I 0 TEMPERATURE-CCELSlUSP OCSi02J -OEVtL CRNYON OPERRliON WIWRTANR DN t= I I• F i .... -,:. ~--':.~l. rr .. i ~ ... . 1 I ........ ~ .. '"· z ....... ,_ .. _, • I I I :/ r :- - -~ 0 I t= I ! I DO as DCS!OZJ -DEVIL CANYON OPERAitON -~ ~~ = ; < : lz 2 ~ u . I -~ 0 10 s TEHPERAlURE-lCELSlUS~ OCBi02J -OE~KL CRNVON OPERATKON IN 2002 = --R ~ ~ \ .. ------.--1£11 .... -""" ---~ ... . -_....!! i --~-1-o- u w \ I L--· ---~ __,. i---I \ ,,.. lz ~ " I ~ I I I ·"'"'~ R I T I 6 ~ ,_ ., II ,, ,, 50 * II .. 2 J -~ I I; go 15 TEMPERATURE-(CELSJUS~ OCB102.J -OEViL CRNVON OPERATION IN E-Vll PROFILES: -1 ~ ~ t-fiJtoo w i ~ I I i = = i OC9! Oz..J -OEV I L CAt~ VON OPERRT J t I I J . I J s I J ( I . I I ' I I I I I I I • § !l ~ .,( l f, f /: I 9 j : .. r • r ' . , I t I . I I I I . I , a I ! -D I I ~ . • 10 w's KS u; u LiiJ (J!iO 10 :J 1-cr Cl: L4J 0. r5 ~ '5 2i ..J LL s- ::J n c ~1r--~~r-----~--~-;ae--~~--~~~--~ra~~~~~~~~~~~~~------~~~~i.6 i~1F----·-r-----t-----+----~----~----~~--~~~~~~--+-----~~~-~--~--J Q") z48 -iS I 24 t1l2 0 ·---t------·--.....-i-------11---·----- u 0 ~! ~t 1'1&<1 OC9i02&'\ -DEVIL CANYON 0~110~ L4.1WA1QNQ fN 2002 ~i~ biMUl.s=!TlON ---WQmE.GT we:rTER IF'ULL Y£AA I ----~(CfE'O OUT~LC'Jd Tl£HPERJO!~ • ... -----tt'odFLOW ~RQT!JR£ NIYfltS• 1. IN'f~ri POR"i L£\IEL 1 Rl faEVQTlON i42$ t:T t . 34 2. l Nf~ POQ'f 1.. £\f£1. 2 AT El...tVC:n UJN t 27£ t::l I l 0 3. COf£ V~\f£ ~T El.EVQ'TION 990 1=1' l#Ot. '75 t-n 4. SPII.J...I.4~V CR£ST AT £1...£\IIQT!ON 1404 FT U27.94 i¥lJ i .o 0.6 i O.IJ u ·-+-------- 33 ±=t .. ..... ll : I cl--'Z -~..., 3 ...... .. . I I t • l t=1 ........ ' .. t ~ I = i s 10 Ui TEMPERATURE-tCEL5lU51 0 10 TEMPERATURE-lCfLSliUSi CRSE~t est I ~ .......__ ..... " ~~ I ' = . -- ,;-..... ~"" ! ~ TEMPERRTURE-CCELSJUSJ f=l ~~~ - 10 • Ui 2 3 I I s . J Q . h 2 31 -~- # -... -... =r - - - I 0 Hl TEMPERATURE-CCELSlUSJ PROFlLESx . -~--:.: r--- . ~~ I ::::c ---.... --.. ---Fl ' -~ ! 5 TEMPERAlURE-(CELSlUSJ PRCFlLES! t= t= uo 1 2 3 w > ~too ) CRSEu tl3f3 LEGEND a ................... f I -- 6 !0 Ui TEHPERATl.JRE-l CELS l US I TEMPERATURE-tCELSlUSi LE.Sg TEMPERRTURE-KCELSlUSJ = R • I i -.. --' --llilllll: """" I I il .. ~I . "" 2 '\ •, "'-t ~ .. = ... - - - : 5 ! TEHPERATURE-(CELS1U5~ N PROFlLES: ,.. 0 .. ' ~ ... - • 1\ . .._ . . = I I 5 TEMPERATURE-(CELSJUSJ -OEV[L C~NVON OPERAT MUL~TIQN ---WARMEST PRE.OlCTEO l FEBRURRV i MRRCH ~ APRiL PRCFlLE5: c I ! ~ ~ z z «J) I ·- : ~ ~ 15 fE-Vll I ' -----f:"-... -.... ~-. -----------~-- i .,. ----! I r t ~ ---· ~------... --------z -~ ,. ''\ -~· \ ..... \ --\.~j I 0 s lO TEMPERATURE-tCELSJUSJ ~ ~-w ~ I :i'1: 0 Go- t- ~;oo 0 I I I ,_ -'" i i J F=+ .1:--t£-· : I , I I ' 1 I . I I I i l ' I I f I I J I ' } . I l I I I I ll 1 ; . il r I I ' r I I t I ! I J ! I I • I s 10 TEMPERATURE-tCELSJU51 PROFILES: W/~AT~f~ iN 2002 !FULL YEAR~ B l ! =tl ~ m l -z -4 ~ m -- ~~ I i I iS ---1'.>-f.;"',:""! _ ... _, Qi:: 0 0 LEGEJ\DM I ~ "!.~ -~ ~- ~ I I I f I 5 TEMPERATURE-CCELSJUS) tl C~NVON OPERRTION W/WAT~NR N tON ---WRRMEST W~TER tFULL PROFILES: B -- H~ -z -s --~ Ul ·- I -- - ll.UNt. !0 15 fE-VI l w i 0 CReEr LEGENOs ~ i I L .. "'! ~ ., - ~· I z 2 ~ ~ u I -~ - 5 10 IS TEMPERAiURE-CCELSJUSJ PRCFl o-r 0 w ::::t50 0 0 CHSEe aw DC8t02K -DEVIL W~T~~ SJHULATION --- LEOENOl I --.. -,.---.-. -... _, ------~ I ~-.. -,.. --1--- 'I _ .. ~---- .v -T I ! I i I I ; ~ ' I -r I . I' I I .... I I I I I I 6 10 TEMPERATURE-tCELSIUSJ PROFILES= W/WATRNA N lFULL i --~ ~·~ --- 2 e-e z --il ~ Ul -- ------- -~~, iS 1 l I =F ~ ± / I l .. f I ~ ,1 .. 'I I l ,' f K I , . ' j I t I I ' I -w :rso " . I : l l~-' I ' I I I I I :' I I • I I l t I 0 I 0 TEMPERATURE-CCELS1USJ CASEs •• OC8i02K -OEVtl C~NYON OPERAT WATANR SlMULRTtON ---W~EST I 1 I .......-l '"' .. ~-i --.. , z f t~Jw.; 10 CASE E-VI I fliiO L& -2'4 --!a ioO 8 24 i 0.15 - U' ~ 0 0.0 ~:-,.. 15 ns u ~ -i , r w i? ~to \lG t-cr C'C U1 0.. 'J,C w ..... 5 & ~ u. $-n ::J 0 0 w > ~100 0 i e---- ' I t I I • .. <II -... ..... I I I l !' ·- \ ----1-· . . \ . \ I f ' i I if I s ao TEMPERATURE-iCELSlUS) CRSEc WAStOtO -~TAN~ OPERAT[QN AlONE iN 2001 «CRSE E-S STAG£ i l ~w lEOft\Do InfttJtvinJ Temp. Nafch;1,d PROF1LE5: c.v = =t • IS w :r 0 0 CRSEa LEGEI\D a ' ~. ~:' .. ~ ---~~l'i. If \ l \ \ \ \ I TEMPERATURE-CCELSJUSI WQ810l0-WRTANA OPERRTtON ALONE [N 2001 lCRSE E-S STAGE il Inflt:Jw k*"?· fch, TEMPERATURE llES' 1981 1961 198! l a c v 3 -- eli I C. i t __ _. lS -'· w :r so \ '- I , .. =-~ '\ \ \ \ \ fi -~ --- I -----~ --;:.;...:: ---~:::.. I.,./ .'I ., t I . ~ 5 TEMPERATURE-CCELSJUSJ C~£o •• WAB\010 -WAT~N~ OPERRilON ALONE IN 200~ fCRSE flow TewJp, f""ie:t fcJ'~;rl q lLES~ . ' 8~ --c '1/' f 3 - _, 4 ~0 !5 Sl~CE J i:HI L= . .... .... I ~ I , i -~---· l ---- I ~ . -. 3 ,A, • ,, -r--· ~ -.Iii ~-~-'& f/ "-·· ·~ ·~~·-"·-= ± ~ ~. 0 ! 10 Ui TEMPERATURf-(CfLSJUSJ 2001 ! -S STACE I •• PROF] w > ~100 0 ....... , 0 LEL1ENJ i \ I . \.. ... ~ . ~ """" ... ' --... "" .. , " r \. \ ' ' \ - 5 10 TEMPERATUR£-(CELS!USJ WA910!0-W~T~NA OPERQT[QN ~lONE IN 2001 fCASE E-S ST~GE II PREDICTED TEMPERRTURE PROFlLES: l NOVEMBER 1981 1 DECEMBER 198l l .JQN.J~RY 1962 I = iS w > ~too e-x 0 w I 0 0 2 c "-;--._ 3 ,,_ ~ ~--~ \ ~ l \ ... --1--· I 5 lO TEMPERRTURE-(CELSJU51 WABt010 -WQTQNA OPERQT[ON ALONE lN 2001 fCQSE E-6 STAGE i I ~~ ILES: ill f-- w r -;-lSIJ z: 0 t- ~ w r. 100 !---- 0 CASE~ LEOENOs f= R I I r .... - Q t--~ : 2' t-* ----3 .. / r 'I I \ ./ .'---1---~ '5 .. \ -""-' l \ I r---- I 5 TEMPfRATURE-CCELS1U51 W~B1010 -W~TANA OPERQT[ON PLONE IN 200J ICQSE £-S STACE ! l PROFILES: w > ~100 I- I (.) w I a 0 CASE• LEGE!\Ot - ! I • I ~r .....- ~ , .. -.., ~ / u..~f -·· - .,-""'" ~ -:-:-.. - -r---- I - 10 TEMPERATURE-(C[L5lU5J W~SlOlO -W~T~NA OPER~TION ~LONE IN 2001 iCASE E-S STAGE t J PREDICTED t AUGUST L SEP;'fMBER l O::""OSER PROFJLES: .. -r I : - I II F-" !1!'11 ~ -- IS CASE ..... 98. ______ ...., ___ _ I~~~----~_.._._.__ l1 l:f .,._ ____ _ -o•------~ \S !6 u ,LIJ ~ JO w t--a 0£: w fl. 1: w !>-' s ~ tJ,.. 0 1- ::;:) 0 0 iS~------~------~----~------~------~------~----~-------.,------~----~~----~--------15 u Li ~U. 1 I I • ~ L! 'If .A. t -Ill! II Ill I fill -· RIEl ~ 1..[~£4. 3 iHil'll\!iUI -· llfUI , . &11111 IL[V!U. 4 II • -IL£VU'i -·· --~ -~~~~ ~ _'!!-_ll! 15 u w ~10 t-a ac w n. ;c. w )-- 6 ~ u.. e- ::;I 0 0 L£0£ND, C~, a1 ~HHL -!.atiliOIN~ OPiLMTION ~ IN 200i CAGE E-VIGt. NA'I"URPL CONOHtONS At«) L~I!H lEVEl ----PR£.0! C T£0 O.J'ili='L.(')W TEMPERQTI.JR'i: • ----•• INR.~ f£MP£RQ1'U!A£ ~ESt ··~- ----- LO I 0.5 ~ 3 0.0 iS ~ --4 "Y1 r- ~ ill -4 M ~ 'U rn .:u D -{) !i ~ n 0 STAGE II u w ~~o~----------~~----------~-------------._----------~--~------~~----------~ao !-a: OJ:: w a r w i -~-------------+--------------+-------------~------------+---,-----------+------------~~& u. to-a 0 . ) iS Bi u w S'o !>-a r.r w a ffi eo-li t5 ...J u. -,.... 0 :J 0 us as u w SAO RO &-a IX LU Q. .:ir w t-~ e J u.. I- 5 0 ~Ul u ~BO-+--,.,..,.,..-­ t-a: a:: ~ ~ qj,~ CV' t= ' ·-~ "~ _I i . _.., 2 "" . • #-----i 3 ' ... -..-:.."' j i :4 "' ..,..~---.. --- "'-p .. ;til----iS. ~ , ,... .... I' ' ., fJ ~ = to ~6 R ' ....... !o... ' .. ~" ': ~~ -.. ~ \ --- \. \ ~ "-~~ , & 10 U$ . LO =i i - _l L: '-~ ~ .... t--~ \ -- I .. I , 6 Ul Ui .. CORRECTED R, -- ~ t=l:~ ....... --~ --- ~ I\ t\--j. :3 I . -~ • = I iO us ·-"' -···' (CELSHJSJ ~·-····~-- f! ~~ \'. \ j: ~ \•ff ~ I F i - I ·-L -~ I itl !G t 8;1 -I \ , .. --·--Gill'-... -Gt---- Q ""'-~ ~ ,_. 3 2 ..., .. flfJillllllflfi---i---I "' ...,... ""= ..... -.. ~ 11 ' l_ ~ llllll.J.o.oliW:N'f t"""' -! am~ 0 = ) & 10 §5 All:" .. rlf':s:B ~s· Jt.Jur-~~.. • ...-it-.. _ -D ~r· ----------------------------------~----------- KCELSl §_§ ~ z 3 -~ ,, 01 r ! I ·4.,~ !0 IS TEMPERATURE-tCEL5JU5J .0 FT. no -e %. 0 &- I ~ 1--l--4----1--i--+---+--1-+~-+--+~-~-----+--+--+-_1 n am~-~L-l--L-J--~~~~--+-~~---~~-1:: ~-~ 11---ll---"'i"'--·'•" 1-""'··-....W--1---+-.--+-+--+~-r--+---r--t----r-~ ~ m iaooJ---4---~--~~~--~~~~--r--4r-~r-_,~~---,---;··"-~---, 1 I i~ I I ~~ -~--. w p Q ~ .. " ! 1! ~ ---.... -a2lo G---.. , , z ~ ,.,.., z -!! ~ (I) RF i -~ . I ---- ao Hi I~"':.!I"U'11 tCIELSHJSD u 15 15 u ~ 't"' ... r- I' ~ .. , .. ---UJ I ~m 10 I ' ., I-a a uJ .~ ~ !; ~ ~ .J IJ. 1-0 :J 0 0 0 CASE E-VI STAGB Ill THRBE-ST AGE FULL GENERATING INFLOW -~+------~-----124~---------------~ l2 ...,_ ____ _ ...... 0~------.... ----+---------·--+---- !5~--------------~--------------,----==---------~------------~--------------~--------------.- u -----+------------~~--- ~--------------~----------------1~--------------·4-------------~~--------------~----------------1 ---1----------t---·------i----------t------- ~--------+-----------:1----------+--~-----+- 6.1 Ml ., ::ll 9 ~~ 1 l ---...------·- c.u; i o.o 15 ~ -i .,., r §? Hl ~ P1 :-I ~ AJ D -4 h ~ n 0 !5 u w ~lO £<--- ct 0' w Q. :1( w t-b ~ _J LJ t- .::J 0 0 U.G'ENO· CQ;.£• In\! WA9120£ -~~lQNQ ~RQTI~ I,J.I~VJL C:t:INYOI\! ·~ 202'0 IO'~St [ ~~ frt:MPrs:u:m.JR£ 0 c --1 n ,- ~ ~ 1'1 ~ u ll'l ..0 D ~ () ~ri!:-il f••J!i PES~ R·iD I P OUTFLOW TEMPf..RATUPf A"JO iCE y 12~~--------~------l:! 12 ......, ____ _ 0 ...IL.-----~ 15~------------~--------------r-------------~------------~-------------r-------------,- u .,.. ____ _...... _______ ~- -----------~----------------+-----~--~- ·---------~ 6~----------~------------~----------~----------~----------~--------·----r 0 L 2'. 3. 4. Ct~ll. LO 0.0 15 ~ ~ ll r- Q 4. 10 ~ P'1 3: 11 111 ..u TJ ~--! t, ~ PI () 0 u:"n 1 -·--.,;.... __ -~ -· !..[\ttl. 2 fj =::! ·-..... - --- ""' ······-·;..c .. t. -IU~ iS QS ·-------~ ----- u ---- w rrso lO :J ~ ~-jV'j a: .3: l:r v IW ITl a. :n :.!' D w -1 1-c 6 r, )lJ ~ m ..J ll 1-n ::J 0 0 0 !- :X 0 w .r too . 0 I -. ... ' .. -.. .... -......... ""l l ! \. . I .. ! I \. L i l t 1 \ - s TEMPERATURE-£CELSJU51 WA8120E -WRT~NA O~ERATtON UIOEVIL CANVQN IN lLES: ·- - ~-- ..,_ -'1- -+ -- ·---· iO Hi w > ~100 w I 0 ... ~ '"-~ I \ i I I ~ "'F1 I " \ I ; I r= I I I i-- ···-- ·- l . ·--·-l ! . -+--->--· ·-----1------ --t I -~. ---· ----+------. l t --t 5 lEMPERATURE-(CELSlUSJ XLES: :::] 1 = i l ~ --1 ··-·· '-'\ ) i ....___!-. I ~----!- ,_ ... ---I -! I / " I \ I i ' j fi -----~ i ! , - J ! I -~--- I , "!' ' . -~----- -1----, __ +--- ' i ~ ~ -• ! i I I i ! __ _...._ ... ----T ---~-----I --!--------~ ·-; -·----------·-l l l -""'~---"'·~· -------i·. ~--~ -~-----l I I 1 -----~ -----~ 0 i ! i 0 5 TEMPERATURE-(CELSJ~Sl W~8120E -WPTQNO QP£~Qi[QN W/OEVIL CQNVDN I~ 2020 !CASE E-61 w :X: 0 I 0 ----~-· ·~ , I I ! ~ -I I --_./ 1-"'" - --~~ ~ ~ ~ v/ , J .. i'~ - . I tO TEMPERATURE-CCELS1U5l CASEv •• WA8120E -WPTANPi OPER~T[.QN W/OE\IiL CANYON IN 2020 fCASE E-Sl um LE.GENfl, TEMPERATURE PROFlLES: 1991 1981 1981 r:~ : g !I • ~ . -- 1------------ -- . 15 ........ ~--,_ 200~----~----~---------~--~~~-+----~----~---+-----~----4-----~--~----~----+----- z ~ __.. K? w J- I..&J :L -+--t---t----+------+--------1~~ ~ ~~50~----~----~--~·lF-~~---+----~----~---+----~----+---~~---+----~--~--+===~ :sc 0 f.- t- ~ w > ~--~-----+----4--,r-~~--+---~----~----+-----~---4----~----4---~~---+---­ ----~---4----~--~+-~~----~-----+---~~---+----~-----+---~~---+----4------ \ ' ........ ~~oo~----4-----~--~----~~--~---4----~----+---~~---4----~----+---~~---+----~ ! ~---~----~----4---~~--~-------~------~----4-----4-----~--~----~----+----------- ~---~----~----~----4~~ ~---4----~----+-----~----~------~-----+----+-----+--- t--~f---+---+---H!--4---+--+-----4----+---t---------f--------------1----,l 0 6 10 TEMPERATURE-(CELSlUSJ CRSE a flU WRB 120E -WAT~N~ OPERQ'T HJN W/DEV I L ~NVON l N 2020 f C~£ E -6 l ~~ LEGENDo PROFlLES: IS U'l i i I...__ { ! .. -.. ..,. __ -.. - -~ !SO ' \ { w l > 0 ~100 - ! - r --··- l I ----·1-- 0 \J s 0 TEMPE~TURE-CCFlSJUSI CASEs aw WA8i20E -W~T~~Q OPERRTION W/OEVJL CQ~VQN IN 2020 4CRSE E-Sl LECiEt\IJ g CTED U~RV H l t:\PRIL PROFILES: ! - I . ··-· -. . -·- 1 ~ I ! E . ' -------,_..- I \ . I ,.-. II -\ ;" I -\ I \ i 'l: s-o -w r _ _§ . I --·-~· I 0 10 15 TEMPERATURE-(CELSIUSI CRSE11 WA8120E -WRTA~~ DPER~T!ON W/otViL CQNVON IN 2020 fCAS£ E-6l PROFilES: w > 0 ~100 w I 0 !- 0 CASEs LEGEND• ! I , i .£-: :--' ! I ~ -~ r---J lf -!-I / ~ --- ~~--' 'W -- ~ I l I --~-i--!--·--·---~· .. ---·-c---·-- 1 I __ ,_. -·-!----·-+ -+----... -i .. •·· l -; l eo· t:---~. --- I I I j 5 10 iEMPERAlURE-\CELSlUSl WA81ZOE -W~TQN~ QPERAT[ON W/OEVIL CQNVON IN 2020 IC~E -SJ mm - ·- ·---- . ---···~- I ,. .. ··-- -- --"" .. -- IS w ISO 0 ' ' r-· 0 -~ ~ \ i-.-" --------.... : .. -'• . f !- --!---· -~ -----··- ' I i ·---·-f.-· -...... ------- ---'-·---1--- I ! ! -· --r--f---·----- I 5 10 TEMPERATURE (CELSJUSJ OCSIZOE -OEV[L CRNVON OPER~T[ON WIWATA~ IN 2020 IC~[ E-Sl •~ PROFILES: ,. fit lfJz -. --- f..---. .-.~ 1----- iS --~----~---+------- --------t------- ~ ~~~-~---~~~-----~-~---- (.) 1----+---+----+---1---4---t---1------i------~--~-----......__--~·----+-- w I I I 50~----~--~~---*----~----~---+----~----+---'~~---+----~----+---~~--~--~ I !t---+---+---·+-~-----+----<i-----+------+-----+----.,1------~-------------------+--- D---t-----+---+------+---1---------<11-,------··•• • • -+--t·-·+---~ ---I +---· -- fl------+-~---+----4------,t-----+--t---+---t-----+---1-'--------i----- 1-----11---+--4--·___;~---+--+------------t----·1--·---1-----~-~t-----r----+--- j 0~----~----~--~----~----+---~----~----~----~---~----~----._--~~--~--~ 0 5 10 TEMPERf~..,.URE-C CELS 1 US I CASEs Ill!!!! DC81ZOE -OE\I[L CRNVON OPER~'1'£0N W/Wt:iTANA IN 202'0 ICt:tSE E-Sl m&J LEGEI\D 11 PREDICTED TEMPERATURE PROFllES: 1 FE8RU(-1R'V 1981 1 MQRCH 1981 t APRIL 198t I :1!: a ..... ....... 1---+---+--·-t---+--+-----t-------·-+---+---....lj\---~l----f---+----1--- @100~--~----+---~--~----+----F--~----+----+----~---~--~----~--~--~ w ~~----+--+----!-·------f----1----t----+---+---+---+---+-~ 1-----+----+---+--·--+---+--·-+-----+--r-t ·---+----t----t------+---- !-1-·----+·---+----+---+---+-----t---~-~----:--+------+----+--+----6 B a----+---+---t----·-+---i--·---+----->---i ----t---------~ _____ _! ____ -----w ' I ' i I ~~--~F---~----~--·~--~----~--~----~[ ____ ~l----~---4i----~--~j----~--~ -+~--~---~ ~-~~-~------~ -I --~ 1----+---+--·--+----+----r-<--}---------• . t-. -----· -__ · .. ---------.. -lc~At vr t----+----+---+----+-----t-----tl----+---·1-i: --~~-n --------~-- 0~---~----._--~---d·----+---~--~~--~-----~l--~--------------------~ 0 TEMPERATURE-(CELSJUSl CRS£e ~-OC8120E -OEV[L CRNVON OPERAT(ON W/~ATQNA ~~ 2070 !CAS£ E-Sl LEGE~~ PRED I C TEO TEMPERATURE PROf llES: 1 MHY l9el 1 JUNE 1961 1 .JULY 1981 15 ISO ~ uJ 1-w :lC 1 E' 0 ll-r ~~oo 1- I 0 w :t:so IJ ~-~ I -v--r . - ~ ' I -li I I I _,) ' ' I I ~----+----+---~----4-----~~--~-----+----~~------+---~----~-----~-----I I ·---+-I I i f ' I ~---+----+-----t----+·---t----+-........_-+---+-----+---+-----·---,_ , r I t l ! I ~---+----~----~--~----+---~~--~----+----~--------~----~-------r 0 l l : J I i l : I l I I ' l l lO TEMPERATURE CCELSlUSJ OC8120E -OEVtL CANYON OPERRTtON WIWATANR IN 2020 IC~E E-Gl TEHPERATLRE 1981 1981 1981 lLES: _,___ __ ___ L __ _ I 15 !GO 100 ~ :r 0 w :r50 0 . ~ ~ - ~~ Cl ...::-:: ~-"" ~ ' -,, ~-~ --- ! i I l i - I ! ! I I / ! I J I ·---~--r--·· -,....._, r-----·-"----- __ ..___._ I ---t - 5 TEMPERATURE-tCELSJUSI C~E_, i!ftl DC8120E -DEVIL Cr:lNVON OPERATION W/WATQ~ JN 2020 ICAS£ E-S l'illm Pr:<tOFlLES: X: --:r lg 0 c f?l lz ,_., :z ..... , ~ tn r---- ·- --[~i u w :r.50 -~~ --'\~. \ I ,r: :::L~ -· f-· --- ___ ..__ -----·--· I l --f--· i i ! --·--,_ ____ --------- --·-r-- ---- I 0 5 10 TEMPERATURE-(CELSlUSI OCBt20E -DEVIL CANVON OPER~TKON W/WQT~NA IN 2020 !CRSE E-6) TEMPERATURE PROFILES: 1982 1962 1982 l ~~ .. r---l ·- -- ----......__._ f------ ;gu:~N~: - 15 '11 0 ::c f -1 0 --c. ~ \ ... -, -----------1-----------~------ IJz z f ~ m U1 -~ l ~--~~---+----~-----~--~~---4----~-----~--~----~----~----------~-----+-----4 I ~ ~--~---4-----+----~----+---~~---+-----~----~----~-----~----~---~ ~ ~~ ~- ~~00~~~~~~--~-=-+--~~=-+-~~~~--~~--~--~----~--~---+--~ I r---~-----+----~----+-----1-----+----~----+----~~--~------~---+---~,~---+----~ ~--~--~--~----~--+---~---+--~----+---~---+-----~--~-------- ! ~ ~--~-----+----~----~----~--~------~------~----·~----4----~~~----~-----t-----~-----~ ~-~--~--~--~--~-~--~--~-----------~-~-~----- w l: I 50~----~----+-----~--~----~----~----~--~-----4----~----~----~----~--~-----4 1---+--+---+----~-+----+---+----+---l-----~--~------+----l I I t-----1~---+---~--+----1-----+---+-----+-------t --~----+ ---+----~-----f-- 1 ------·- Jt---1----+---+---+---+-----t---+---+----f-·---t-----------+--·-------1------ ~--~~---+----~----~----~---4------+-----~-----~----~---~-----+----~-- TEMPERATURE-(CEL51USJ CRSEv t~ll OCB120E -DEVIL CANYON OPER~TION W/WATQNQ IN 2020 ICASE E-Sl ~~~ SIJiUNta~cr l"ittDU. LEGENDs llES: DE 'II L C~VON RESERVOIR TEMPERATURE PROfiLES 1SO eoo -w rso 0 0 CAS~="• OOit! OCBt LEGENDs I ; I l .J.. ~ ---r--~ --:..% p - ~~~ I~-~ • --· / . ---,_r - J/ ~ I --·· I TEMPERATURE-(CfLSlUSI -DEVIL CRNVON OPERATlON W/W~T~NA 2020 I !LESt - I E-S J 1,.) i ·- ~ ~-~---------------- 15 CON£ vr~vr u ~~o~------------~------------~------------~----------~~------------~---------=-1-a~ t;-a 0£: ll.5J 0.. ~ w ~ IN 2Cm IE-'\1~ D.C. W7:n. W.$. E/. J4.t$£,O -0 / ss I& u ~10 i@ i-a Ct' lLi 0.. %' w I ...., & ; ~ u. ...... ..... ::3 n 0 0 15 Hi u w ~-0 Ui ...... a 1% w Q.. ~ r:-G s f5 J u .. _, t- ;;::) 0 0 0 iS as u ~to ilO e-a ot us a. X w II-& ~ u. ~ n :'.) 0 n&:-vn-D'ta D,C, ,.,,-,, W.f. €/.144-'-.0 55 85 u UJ sm " , !1-a a: u.a 0. ffi e-G b 9 til.. t-0 8 0 g) a ., .i5) --lfJ,l ~:~,2 O.&i 0 o.o iN 2002 IE-Vi-021 D. c /VI/" 1·\.·, S', £1.14-4-b. 0 i5 ~6 u I.A.! Sao m 1-a f.% w Q. ~ w t- & 5 a .J u. 1-0 ::J 0 us as u UB ~10 10 ....... a r::l!: w 0. X w 1-G & d ...J u.. ..... 0 :l 0 . ' c 15ap--------------~------------~~------------~------------~--------------~--------------Pt~ u .---------------+---------------~-------------.. ----------------~------------~---4---------~----~ s~o~------------~------------~~------------+-----------~--------------~------------~'0 c-o: 01::: w ~ w !>- [5 u , ' ~m t #'\ .. I ' ' ~ a a w Q. l: w ~ \1; f§ ...J u. ~ ::::ll 0 0 I....IDJENID I ~ 9 -OC9l 02M -0£\1 I L CANYON OPEr:tAl iON ~r~ &U1.~TION --WQI!'m£&1' WQTER rFU..L ----PR£01 CTW OU"fi='LCN 'f"EMPERQn.AE ·----~ .. 1NFL~ ~Ql&.IR£ ~rEG· 1. 2. i. "· Hi ~ ....a "11 r i? ~0 b 0 0 85 15 u ~ -a "'ll1 r ~10 ~ ao :::> ~ cr a: UJ Q. 2: w ~ r; 5 ~ iJ.. t- ::) 0 0 •• 0 'LA,..,. .......... E~-1 STAGE II TWO-STAGE PRO LICENSE APPLICATION AS iS u &.A.! ~110 ao ._ a a w 0.. l: w II-G. ~ u. t- f5 0 u m L~ z~ -GoO~ -ile I a'4 e! If 0.~ :Jg 0 o.o tS IS u ~ -4 , r· ~to ~ l t tO 1-a: 0': ' uJ . ' I ,,£1 • n X. w ~ ' ' ~ u. t- :J n 0 0 0 u t-------+----~,--+-----~~--------4--------·--+-------11-----+,.AL u l t I I f I i I 1 I l z I Zd~--------~·----~---­~~7~-------------­-o~------- as u -~ ----- w S Ul 1-a tt La A n. 1: w &-G d ..J u. 1J- :l 0 ·---------------- I .I l j ---~ ~ -~--------- INTQ~E PQ~1 L£V£~ 1 ~1 iNT~Ii PQIH L.£vEt, 2 ~11 1 NfCK<E P();;jl lEVEL i A'V [N""AKE ;J:)I:;jil t..EVEL. 411 AT !N~QKE ~~, LEVEL 6 ~~ CC~Ifi. vtl_\11~ :.:. i' liLEVIJ1 10e,. ~t=;_u,.~~>' c~t:;r Qf ~-fv~r --.. -----------------------~-~------------------ ..... 36 "'1""---------lf.--.----- • Z#ll. 1"=-------- Bl~-------------- .,.._., ________ _ u ------·----7--------------~----------------+-------------~---------------~~--------------~ 10~--------------~---------------+----------------P-------------~--------------~--------------~ I ------ \ ~, I I I I u -+-----+----~--*---+------{~ UJ2U ·----PQ[DI :TED OiJ'i'IFLO'loJ TEHPEAQf~ • -.. ----I ~L~.~ n:~j:)£R~"'~E ~'VEGa i. fl'.,f~l(E PC!Ql LE:vE. ... : Q'f £1..£VA'I10~ !42'S f=l B 2. u ... ro~E PC£;J1 L£i.'f~ 2 "1 EL.tvt::n !Of\\ t37& !='1T u .:p C(!'~Jii£. .; ~;_ 'i£ ~-i:.-£"' ::::n Ol\ 990 r: 1 'ao 1 . 1~ "1 4 GPi_lwc~ CR£6i Qf ~-£~~¥~~ 1~04 F~ I4Z7.9~ ~--------~--------+--------~--------+--------~--------~-------~--------+-------~ t· --------~------~~-------;--------·~------·---+--------+-------·--~-=----~ . I G .. c::aHl2u -Q[v IL C~VQN OP£Rf:;liQN IW/WAYQHQ -:"(MP(!aATUAE -E~£L ! ~· E-fVC110h _[v£_ 2 ~~ tL(JQiEO~ ~;~L 01 EL£\itr I~~~ 990 F"' l "Q£Gf :l"' Eir·.f..lfJCJ'J L4. ~,. __________ ----· -· ~ . ~ t± 53 !!' i3 ,4 t'""' ... ..._ • ~ iS ' \ \ . '\ l I . l I 10 Bi i02U- !'-·- . ~ -, -~ . ~ t; - -- [ ' - 0 5 nt» 5 IL - ~ ~ ~ ~ ~---~ 3 -i'\ ...-.. -r ~»-' <$ ·~ r--___ ~ -........... -~ ·--ib \ : - ~\ 8 6 1--· \-if-- U:JO \f:-- . -- ?_...,... -- --~ I 5 tO 5 ltJ!IT '"-rw"''l ~ IN I - -I td ----_;----S:S u . 12 I I , .. _,.,-3 V' ~ -6 I I~ _.,._ :) :I ,_ - --~---- Ef ,!!- . t &G 5 TEMPE~; CELSJ ! IN 2002 d 1. ... -~ ~ - 2 .3 ~ ' ~ ! .... & -.......... ....... -- 15 Ul Hi H ... B • ~ 8 ~2 - t! r·._~ " 4 i& -...... "" ' .. -- U) ~5 iL m .2 ......... 3 -' 4 -& - I ~0 i N i---· l - i -------12 , .. .. -' I 3l \ a .. "' 4 ... I"' ~ -' . --,. 4/ iS r--..... .. I ."'- -·---·- -~ --·-f.·-- t-·- & 10 15 USI fN U -K. S2 i .\ ~ w :r. ·---r--- .. _ ... _ 100 I l r - -· l ; ...... -_-:::t_ -I ~ -~· ;--~ r---~;... ·;;-!--: ~ ......... ~· --~ ~ - 0 ~- r-·-·-~~~ . • 'l I" 't 1 ·-r--· ---------___ .... _ --· -· ! -··-· - So Ul TEMPERRTURl-£CELSI -WATANA OPERAT[QN IL CANVOI\t IN EEl B 2 :!\ 41 - & ·- ·- --!---• i I ! r l ! ' I t I ' - - \ ... -. ~ -... , I ~ ~ i '· ~~ .. --- ·-I- -· --!-· I : l ~-T - ) 5 TEMPERAYURE-tCELSI CASEe ~• OCB~02U -0£Vl~ CQNYON OPERATION PR=CICTEC TE~PERATURE t 1\JvEM:lfR 198:1 l :tE CE f"iBER :58: 1 ~ :~t-.J....~R 't : SEH XlES . ~ _,.,......,. ~ ,_. .~ -·-~ ---·-i r------1--J! ~ i 2 ·-· ~ fJJ - I . i --~--r------- - -- ·-- --;c~ J ·-r-·-- Ul 5 ' -t • ( ~ m I j Jl~ IZ ~ ~ b--~ ·-r---r-·--· :- -- - ---~ - • 5 90 rns TEMPERATURE-lCELSlUSD tL CANYON - ! "' ---~"' ~ ~--c ---"------1-~ " --""" .. I" P L..-----~ [ f '---~--"' r---~- ~-------- /"""" ~ ·--- ~ - ·. ·-1-------I 0 5 tO Ui L IN -fA--I I D I I ! I/ I Is I /J IJ I ' ) ' < ¥ , I . s I, i , I . : I t ) , ·-' I I I ' ~ ---. . v I I 1 ! r e I I . J I I I . I I I I I , I I ll --. II t I B i I i I I ! I lj CCELSlUS» ' - ~ ~ -~ .;.,.,., .: ... __ -. ' ~ s ' , .. -Q . . b..__ I 'l :-.. ,_ __ iz ~ '-1-· ~ I it I ( I tOO ---~ l ) r ·--· r -· l -·- ~>-·---;m~ - - t 5 Ul 5 ~02U -IL C~NVON OPERRT ! X 0 ~- t· naoo m &- I 0 f-----L·-----. 'i~\ I I ~ ~-----1-· --- I t02U -DEVIL CRNYON . - - ~ 1----I r---- --!-· t -~ 5 ........ I ~ ~\ . -.. ----... -.. ---.. --....... . ~ - I' ~ ~ I '\ * . -~ J \e r- __ ....,..~ 12 d , "" -. -_ .. --~ ~~ - A' ·--- f--I I I r ' I - • r j I I ~~ I 3 II l 6 ~0 i T[Mr't.t<'fi ( j DC8102U -lb. CANYON OPE.RAT lES: ,_\ I ~ i I I . I I I a CASEs i02U - I ~ / I I L. - d -. d , 5 (L CRNVON __ .,. ..--' . , " ; , . I . , il 0 .. . a lfj! p I ) , ~z F / c ~ -----; " ( , f Q J , ; I . L , ') / I -, # D .1' .. I t' ' • ·-I I I I I f-· I - A -~ I I -Q I ~0 as (CELSX u ?.4~--------------~-----­ ·~ +-------- 0~-------- . ----------~ -+---·----------+----·---.. ------- '---~-----------~--_.,. ______ ·~------·----~---·-----·-------. ·-------------···-. -··--··--------------------··--1'-- -=~--~=--~--=-r==~-==-- 0 l9BI --·---···~-.. ~~ -. j . ~-----~---··-------------- ' ·+ 0.0 () u c L.EO£NO • ~ , ~~~ t.AQQ 1 zoo -wATt:•u=~ Of"tQQ'i"! lJ'\1 ...1."0!:: vI L CQNVON l N 2a?O r LAS~ £ -1 1 PR(Ct:TEO QUT~LOY TE~P[RQTUR£ t NfLJw T£i>1P(J1C1~ ! -------1--· ---------------~ !':;, iO ~- 0 l) I -I 11 .. - Q 'i__ ·I ffl -~ u Pl ;u lJ { r jj IT'! n u 0 LW£NO, CCil&£• -a..!AeiZOD -Wc:li~Q OPE~t:!TION W/llli\llL Ci:tNVON lftd 2'0?0 iC~ t II Tfi'M!P[RcaT~ .$ "l 7 ~~ 9 Ml t t-tl ---__ _J_---rr--- --____ ! --------·---- --·---·---- t .. ··-·--... -----. I 0 (I'"] -~ D :rl A.l lJ ~ tjl u 12+------- o~------~ ----------------~------------------4r---------~----~~----------------~--·-------------·---r·----------------, -------~--------- -+------------------4r--------~-- ------~-j_ ---~--·-·------+-------- 0 0.0 n 15 u w C(lO :J ~ a 0: Ul ~ L w 1-5 2i __J LL I- ::l 0 0 -~------+---~ --------+----ll ----------------+-- ~------- ----~--------+-------~--------~--I u c . { n r- CJ ., -t--------~------~h-~~.-~~~~~dr~~~~---------~--------4-------~~-------+--------~------~--=-----+-to ! . ~ •' -+-----+------fT1 ---~~~-~-~~---~---~---~------~_-_-_ •.. ,. ~ ',, c -t------~~~~~~~--------+---------~·~~~-+--------~----~----~--------~--------~------·-+------~---+--------4-~ ~ Pl .-....... -----+----------- -'· i ' .. r2' . I ""' ~ ~ I 4 '-..... I ~ ' " "'ll ...... -- tOO ---w ·--·--···-"-· ·----~ I -...---r---· ----- l I I : .... -·- -~·--· -- ' . -· l ! --· 0 5 HJ ~~ -lCELS1USB iON IN ~--~----~·----~~~--~--~~--~----+---~-----+----~----~--------~--~~--·~ ~160~----.---~~---t:L~~F-+---~-----F----+---~----~----~----~---+----~----~---1 ~ ' »- fti !00~----+---~-----+-----+---~----~----+-----4----~----4-----~---+----+-----~--~ -----·-____ ....,...._--+--4--------· -----· 0 5 tO iS TE~P£RRTURE-£CELSlUSJ W/OEVJL iN ~ ~ I __ 12' ·-J-- .l ~-~-- I ---~----~ , ,- J- .>l) I.;- '-:----__ \ -~ 1': "" . ' ' .,..,J J I 100 ·- ' I I l L----·- i _J i l ------1 j _i - 0 0 iS TEMPERATURE-CCELSlUS~ ION iL CRNVON lN 20ZO lCASE E-ll~~ -; i$10 z: 0 &--- 1- @ !00 ....... l5 w J: 50 I -I .r: r-----~---4-----+----~--~4-----+---~~---+----~-----~----4-----4----~----4-------/.' ~--~~---+-----+~---b~~--~----r---~-----+-----+----~-----~----+-----~--~--~ ~---~~---4-----+----~----~---~---4~---+-----+----~----~----+----------+----~ ~---~--~----4----+----+---~' _ __j_ __ -4----4----+----~--~----~--~--~ i ~~------il--------4----i----...f---+----1-----4-------+----i----1---+---~---i------------ i---------+------1---~·---- l ! ---1--1----+----~ TEMPERATURf.-(CflSIUSI WAB1200-WATANA OPE~QTtON W/OEVIL CANYON IN 2020 tC~E E-il m~ PROFILES: 12 IE ' I f --~-!> II 2 -+ !I 3} !l • i4 9 I . \ \ ' \ \ \ I 100 '----~ -'----~--~ --I --- l --~---- I l i -I l 0 s IS TEMPERRTURE-(CfLSl CetSEe -WRTANR OPERATION lL 2020 ( 1LES: w .r ... U'JO ' ~ l I .. ~ \ \ ~ s ~ I I ~ __ ,_. ! l -·--·-- I I ·- i 10 Hi -lCELSl iL IN ' ~ !2 . /----. i---.- ' , ... I 3l v I - /' .. l I ~ I - \ I , -\ I ! \ I I I l I I \I I 1100 \t I I ,L I I I . -! .! -· ----f-- I I l ; l I T I -~ l' ·->-----! --- II ' I l: l I I I ------ il 5 tCELSJUSt tON LES: . ~ -,~ I /;-~ --~ ~ 2 J ,-~--1-/ l:il ~'---.. "'~ -I 100 -- = -I _,. ! - -------- I 0 0 TEMPERATURE-(CEL51U5l iN fCQSE IE-il 1 ' ... \ . _ .. _l . .... --.... ~ ~ .... UiO '----~. ' ... '\ -til ,, 100 l l I I I i --· ------,__ __ l I ---... -l ---- J l 0 l s 10 15 TEMPERATURE-£CELS1U5l -OEV£L CANYON OPE~~T 2020 CCASE iLES: 0 5 10 iS TEftPERATURE-(CELSlUSJ w :r50 0 ' -~ -~ '--*1" - 1---~ - ~ \ ---"" --'\ -.~ /"' \ ---I .,..,.---~---.,- ,. I / ; , I I , I ~ ! I 1----· l l I 0 5 TEMPERATURE-CCELSl OC91200 -DEVIL C~NVON OPERATION WIWAT~NQ lN 2020 lCASE l ! - II ! -------I - I (Oilt. !;11{1_ \ll I --- # ~ . * -! ... . v , / -, I :..--- I ,~ ~·. j(" : ;; - ! .~I 1 I 'V I f 1 -I .)l f I I ! J v. , / I l >-----~-I . ' ---. -·-/ 1 I ~ I I l J l j I -,> J I -----~ ---·· ·--I ·------ I I I l IJ I I 7 --··----- I ~· I 0 !( ' tl ' 0 5 TEMPE~TURE-(CELSlUSI !200-DEVIl CRNVON OPERRTION W/W~TRNQ IN 2020 lC~E E~li iLES: f I -- I ---,_. ___ .,. ---.. _ -~ '-, i ....... ---' -_ ........ ,t~_ ; li --1---··---·------ i I '\... __ ljz - r ) 7 -- I I I rJ l --- --.... ·-· -·-1 ·-···- w I so I I I j ! I i l !-"--t -I ----~ '-·--·-f-· f ·- i i ----____ _.... .. -~u~ I I ·---~~ ---+-------I I I !--·· ; ! --. -- i l I I i 0 5 10 lEMPf Rf.'fT l.F(£-t CELS JUS I CASE! OCB!ZOO-OEV[L CP.NVON OPERq~:o~ WIWATANA IN 2020 rCASE ~ll PROFILES! &? w .,_ w X: l J: 0 1- w > ~ e-r (_') w I tSO 100 50 '\'l"'''tll. -----~ ~~----~~----+--.$~":'...~!-""'i'----t---+---t---·----------+----+---- 1 ! ----· ~--- 1 ~--~~---+----~--~-----+-----~-----~~-----+-----·~----~-----------+----~----~---- 11----'------1--.....-+---+---+---+---~ --·--·f.--·-----~--~----+---+---~---ll ; --1---·- ~~---------~~--+----·----· --~---+----+--l-~1~--------i-----~-----il----+ 1 ! ... -. _ _.._ ---·----~ ··--·-··-. ------+----+---i------. . -mu:~~.~ B-----~--4---+-+-·--f------·-1-i: --·-+-·----·--,___ -----+-->-----VR:li!E ---- t--.....1-------+,----+----.... -l . . ... ---~--+--+------i-- 0~----~----~----~--~~--~----_.----~----~----~----+---~~--~----_.----~--~ 0 s IS TEMPERR~L~E-lCELSlUSI CASEs •~ OC81200-OEV[L CPNYON OPERQTION W!W~Y""nt-~ TN 2020 (C~E E-ll !iH~ PROF1LES: 100 c- I 0 w ISO 0 I I 0 I l ! --l \ ---~ ~ . -------""' ---.., -... -- -· 1 \ I ' & I .. \ I __.j--i- I --i-----1 -#- I ~ ~ - ' I~ I A I 1 i i - I I I t 1 I l I I I I -- j_ --- ! s TEMPERATURE--C CELS l US l 1200-DEVIL CRNVON OPERATION W/~~T~NR IN 2020 ICASE E-ll P~OFILES: !Ji -II \ l ---· -.-- : l -~ ------ 15 I iOO f ! I ·-I i 'J ·-·-; --- I I I i i { -t --Y/11 /"-+-------+------+----4--t-..........jll ' I I 1 / J li-::r I I 0 - w I :rso l I I . 1 i i I i --- I i--- i .1 l I l ' I 0 5 TEMPERRH..RE-C CELS J .J~j J -OE:VXL OPE:R~TXON JN 2020 ICf:lS£ LESz u tz-r----------,---- 0~----~~--------~ 0.0 --------+--------.-·---~ .... as-P--------------~--------------~----------------~-------------r--------------~---------------,-a~ TV r·- 0 ;i_ HI --t • v l .l:: u I -··--·-------+ fl; .u n c [:, ::0 rn n 0