HomeMy WebLinkAboutAPA3415s rr
Report by
Harza-Ebasco Susitna Joint V~nture
Prepared for
Alaska Power Authority
Final Report
1
.. 1
"'lo
.,.)
3,.1
3co2
E:J
4 .. 1
4$2
e
5" ',
5.,2
&
Go
IONS
2olol Application of the Model
2ol.,2 Conditions Considered
2a3ol Watana ervo:tr
2 .. 3 .. 2 tana Reservoir Mul 1 Intake
Selective Withdrawal
2a3o3 Devil Canyon Reservoir
2~3a4 Devil Canyon Reservoir Multi-Level Intake
Selective Withdrawal
2a3o5 Outlet Works Effect on Watana Release
Temperatures
2o3.6 Effect of Intake Operation on Winter ease
Temperature
2a3.7 The Effectiveness of the Multi-Level Intakes
SUSPENDED SEDIMENT CONCENTRATION
TURBIDITY
DYNAMICS~TEMPERATURE AND ICE
OF SUSPENDED SEDIMENTS
s
MODEL
SEDIMENT SIMULATION:
EXTENDED DYRESM
ll.
ii
4
1
12
19
22
23
30
..,,.
:J.£.
36
LIST OF
L
(i>
2
OF
2 1
Model
Reservoir
2&3o2 Watana Reservoir Multi-Level Intake
Selective Withdrawal
Devil Ca,yon Reservoir
Devil Canyon Reservoir Multi-Level Intake
Seiective Withdrawal
Outlet Works Effect on Watana ease
Temperatures
Effect of Intake Operation on Winter ease
Temperature
The Effectiveness of the Multi-L~vel Intakes
3ol SUSPENDED SEDIMENT CONCENTRATION
3a2 TURBIDITY
4 .. 1
4,.2
1
ICE
SIMULATION:
iii
vi
l
3
3
4
11
15
19
1
23
23
36
1 "
3
]_].
3.,
b,"
5
I ' \S)o
(b "'
15
al 1 s E
s e E-I
1 lan
vlatana (S I ) ' ec
Intake (S I II)~
Intake (S III)~ ect
1
Project
t ana Reservoir ure
Profiles
Predicted Devil Canyon Reservo T
Profiles
Predicted Watana Reservoir Outflow Temperatures (Inflot.Y
Temperature Matching) for Stage II of Two-Stage ec
Predicted Devil Canyon Reservoir Outflow Temperatures (
Temperature Matching) for Stage II of Two-Stage ect
Predicted Watana Reservoir Outflow Temperatures
Water) for Stage II of Three-Stage Project
Predicted Devil Canyon Reservoir Out Temperatures
er) for Stage II of Three-Stage Project
ect
icted Watana Reservoir Outflow Temperatures ( low
Temperature ) for Stage III of Project
Canyon flow Temperatures
) for Stage III of ect
. ~ .
l.l.l
t
1
(b) 0
27(a) ..
(b).,
(b),.
( ont
Outflow
ervoir Outf
) for S
II
s Size Distribut
ana Res
Year, Stage I.~~
ted Watana Reservoir Out
Year, Stage I, Three-Stage Project
)
l
ol
So ids 9
Predicted tana Reservoir Outflow Suspended Sol
Inf Year, Stage II, Three-Stage Projec~
Predicted Devil Canyon Reservoir Outflow
Average !nflow Year, Stage II, Three-Stage Project
Predicted Watana Reservoir Outflow Suspended Sol
Inflow Year, Stage III, Three-Stage Project
Predicted Watana Reservoir Outflow Suspended lids,
Inflow III~ Three-Stage Project (Cont
Predicted Devil Canyon ervoir Outflow Suspended
Average Inflow Year, Stage III, Three-Stage Project
Predicted Devil Canyon Reservoir Outflow Suspended
Average Inflow Year, Stage I~ Three-S ect
Eklutna 1
flow Temperatures
E utna
Out£
libration:
Ice Thicknesses
cknesses (Cont
near
)
ted
t
( )
t le 1. ze
utna s Si
Fall ocities
v
B
c
E
F
J
L
Case E-VI ~
Outf
e E-VI,
flow
Title
ect~ Stege 1~ Inflow Temperature
t s 1
tage ProjectSJ S II,
-..~~~~~·~tage Project~ Stage II, Warmes Pos
Case E-VI, ee-Stage ect 9 S I, Inflow ure
E , Three-Stage Project, S I, Inflow Temperature
Matching and Level -5 Only
e E-VI~ Three-Stage Project, S
Matching
ure
Case E=VI~ Three-Stage Project, Stage II 9 Devil Canyon 9-ft
Drawdown, Inflow Temperature Matching
Case E-VI~ Three-Stage Project, Stage III, Full
Capacity, Inflow Temperature Matching
Modified Case E-VI (Devil Canyon Min~ WoSc @ El9 1446)
Two-Stage Project, Stage II, License Applicat , Inf
Temperature Matching
Modified Case E-VI (Devil Canyon Min$ So @ Elo
Two-Stage Project, Stage II~ License Application, t
Poss le Outflow
, Two-Stage Project, Stage II, License
Possible Outflow
Case E-I, Three-Stage Project, Stage II» Inflow
Matching
Case E-I~ Three-Stage Project, Stage II, Inflow T
ching
icat
vat
ent l t
i
the Susitna
is &n
ent 1
The
s l)
1 t Project
ent 1
e it
concerns form an env
to
e 1.on of
llect data at E utna
~~~=~"ture mode us
ict the temperature
the
l to
Watana Devil Canyon reservoirs<> These ef
fly summari 1n this The reservoir
us 1n this study 1s outlined the test
t of the proposed multi-level intake structures
ect operating policies, hydrologic and meteorological
env flow requirements is illustrated by several case st
eld data collection program has been conducted
separately ( , 1982, 1985a, 1985b, 1985c, 1985d and e) ..
sh
ter
t
ti~
are
l
ent
hydrologic meteorological data have been collect at three
sites; , Watana, Devil Canyon, and Eklutna Lakeo each sit
weather station has been installed and operat since
collected were ocessed, analyzed 9 and finali in
le for the applicationso
reservoir ure simulation model was or
terson (Imberger Patterson~ ),
Har co Susitna Joint Ventureo
th lities to simulate iment concentrations in
1
nt t
ement -v1ere
outf ures ter
l test
the
rese:rvo
to ect
ect scheme
en
lity of
structures was s ed for di
was appl ext
per
t 1n proposed reservoirs to assist in
turbidity., To provide a for test
of the 1, ~s Eklutna Lake data
ial emphasis ~n suspended sediment
May to November l984a
t on
s
1
"1 GENE
USl
an exist
~,vas select
ariti
the
requ1r
lake of s
test
DYRESM el to reservcn
a successfu test of 1
lar characteristicsa near
the 1 because of its c
is also a gl
f
to the proposed reservo1rso Eklutna
also located in South-Central
tionso The Eklutna Lake study is descr
oeiect 1c
1n Sect 5.. "
F'oll the su. . ..:cessful testing of the DYRES~1 model with the utna
as the enhanc DYRESM 1 was applied to det e
:r of the oposed Watana and Devil Canyon reservoirso
ication of the DYRESM Model
1 DYRESM simulations of the reservo1r hydrodynamics~ l stratifica-
outflow temperatures of the Watana and Devil Canyon reservo have
formed for the two-stage project scheme as desc ense
ication (Alaska Power Authority~ 1983) and the recently propos
stage schemea Fifteen years of hydrologic and meteorological data e been
ass led and analyzeda The data collected by R&M (R&M, 1985d and 1 ) at
t Watana and Devil Canyon weather stations since 1980 were also used"
e ta provide the following basic meteorological input for the
l:
1 " Mean air temperature ( oc);
2o Daily and 6-hr wind speed (m/ s);
3 .. Air vapor sure (mb);
4, Prec tat ion (mm);
3
st
1
t
cove~ ( t ) ;
t (KJ
( co, 1 c) was carried out
0~1, outf reservo reservo
r
ement cons e r e u 1 t s ~~e :r e t
study years were selected for s 1 us
se study s were chosen to sent con·-
been exposedo Per the project would
wet hydrologic itions co
conditions t-Jere selected for the simula.tions unct
e C downstream flow requirement ( 12, cfs t
ed 1n the Susitna Hydroelect 1c ect L enz;.e
( Power Authority, 1983) o Cas
selec ive withdrawal capability of the lti-level
structures wa.s demonstrated o These simulated outf ures
l•le:re used to determine the downstream winter ice regimes (
1 1985a)c The Case C downstream flow requirement was later
Case E-v:;: flow requirement.. The Case E-VI flow requirement as
igure 1 re!_")resents a recommended refinement of c~se C as descr
report "Evaluation of Alternative Flow Requirementsn (
l ) The Case E-VI hydrothermal and ice regimes of both reservoirs
analyzed for both two-stage and three-stage project schemes~
ition, the Case E-I alternative downstream flow requirement as
Figure 2 was also investigated o In t~tis report, the cases anal
Case E~VI and Case E-1 downstream flow requirements and 1981-
meteorol 1 conditio....-lls are ~escribed o The e E-VI
Power Authori~yws preferred operating condition w1
instream flow requirementso The
predicted for Stage I, II e
l.S
to
II
coil
the
ed
(year
11
1 0 Case
(
(2)
ect
opera
-VI two-s ec
I ~ J :
:tcy:
( ) Inflow t ure
(b) Warmest possible outf
ow requ
these
( ic
ibit
s II -(Watana and Devil Canyon):
Intake operating policy:
the
e s
t A)
B)
(a) Inflow temperature matching (Exhibit C)
(b) Warmest possible outflow (Exhibit D)
) :
2, Case E-VI with three-stage project:
(1) Stage I (Watana only):
Intake operating policy:
(a) Inflow temperature matching (Exhibit E)
(b) Combination of inflow temperature matching
only (Exhibit F)
(2) Stage II (Watana Devi 1 Canyon):
perating policy:
(a) Inflow temperature mat (Exh it G)
5
ven
(3 II il )
at
) InflO'V'J' t ure )
(4) tage III (Watana Devil ) ( fu
ing ity):
l.Cy:
( ) low temperature matching (Exhibit I)
l e E-VI with two-s project (
) :
(1) Stage II (Watana and Devil )~
Devil Canyon Minimum WeSo at Elw
Intake operating policy:
(a) Inflow temperature matching (Exhibit J)
(b) Warmest possible outflow (Exhibit K)
ili
4o Case E-1 with two-stage project (license applicatLon):
(1) Stage II (Watana and Devil Canyon):
Intake operating policy:
(a) Warmest possible water (Exhibit L)
5<& Case with three-stage project~
(1) s II Devil ) :
operat icy:
(a) t ~~)
l
( ) s I I (tvat Devi 11 ili
capacity)~
Int pol
( ) Inf t ure mat xh )
ect eted Watana reservo
th a total volume
reservo1r would have a volume
540 ft" Note t
Devil 1n terms of volume wou
lrJatana., outlet locat deep in reservo1.r 9
the Devil Canyon reservoir would
t Watana reservoir as
results.,
tra 1n the fol is
In tage project scheme, the Watana rese!'voir (Figure 3)
depth of about 540 feet and a total volume of
1 I..: he first and second stages., The Devil Canyon res
(Figure 4) would be completed in Stage II and the ma:x1mum
the t;;ame as that of Stage II Watana reservoir o However,
vo of ths Devil Canyon reservoir would be about one-quarttr of
corresponding Watana reservoir in Stage II.,
In analyses, a normal allowable drawdown of 50-ft 1n the Devil
ervoir was assumed unless stated otherwise as indicat in the
The inflow temperature matching ope::.·ation shown under
ing policy represents an operation of the intake to release water
project with temperatures similar to that of the natural itions~ In
ionsl) the natural conditions were represented by the inf con-
The warmest pos&ible water operating policy represents a
of releasing t-Jarmest near-surface water in the summer us
near-surface
structure in the
s warmer water nea~ the bottom of
er using lowest level intake portso
7
ure i f
il
th are sho"~:~n
are ed respect case st
1
res s t 1 cas
its
e lts these case studies are summar1 as fol
s of the project operation schemes and project status (st ) '
Ju reservoir op stratifications in the summer of
Overturns would occur 1n spring 1
wou also form in the winter.
6
In summer, a warmer surface mixing layer (epilimnion) would form to
surface heatingo Typical predicted summer temperature profiles
Figure 8. The surface temperature would vary from about 45 to
F (7 to 13 degrees C), and the thickness the epilimnion would vary
60 to 200 feet depending on the weather and project
ions considered@ In the underlying thermocline the water t~mperature
wou be reduced to near 39 degrees F (4 degrees C) at the top of the more
form and colder zone above the reservoir bottom called hypolimnion ..
thickness of the thermocline (also called the metalimnion) vary
60 to 180 feet depending upon the conditions in the res
Temporal secondary thermoclines may also exist from time to t in
metalimnion.. approximately 39 degrees F (4 degrees C) imation would
found below a of about 120 to 350 feeto
near is 1 condition at approximately
1
1
occur twice ear
8
F ees C)
e
it a
cur e-cover me the onset therxrAal stratif
the 11
the onset winter
cons
st:ratif
t
ice-cover
l.TI reservo1r"
me
two to five feet can
e-cover relatively
In
in reservoir
the 1.ce would near
also occur o
degrees F (0
1ncrease a
F (4 degrees C) at a depth of 150 to
e
contact
upon the weather conditions ior to the surface ze-
1 condition of 39 degrees F (4 degrees C) wou
in hypolimnion under normal operat it
the hypolimnion would depend on the depth of the res
proJec .. Under the Stage I of the three-st ect
the reservoir level would be about 200 feet be
I level~ and a winter hypolimnion of only about 130 feet
In the later stage of the project during which the reservoir
winter hypolimnion of up to about 460 feet can be expect
Reservoir ti-Level Intake -Selective thdrawal
multi-level intake structures proposed for the reservoir
project stages provide the project capability to release er
from various levels of the stratified water body reser=
e can operated: ( 1) to s water at t.:::~~'!Tilnor
as
'I;.Yarmes t pos s
1
nat
water;
temperatures as
(3) to discharge
sible; (1) to
ter at
opos ti ures ~
ures can
e respons
te sur.nmer more
ear
natura However~
t) the Watan.a
t e temperatures
1 l.n times when releases are
out inf tures be
( ures the revers stratif
ees F (0 ees C) at contact sur
e-cover to degrees F (4 degrees C) at of
(
discharge temperatures wou
natural river conditions .. As a resu
range from approximately 41 degrees F (5
degrees C) in the summer and approxima~
sl
ect
C) to 37 degrees F (3 degrees C) in the winter
meteorological conditions, and energy demand levelo
2.,3"3 1 Canyon Reservoir
simulation model was applied to predict reservoir
in both Watana and Devil Canyon reservoirs for Stage
project scheme and Stages II and III of the three-s
1
Hence,
ures
warmer
( 5
ure
two-~
ect
The thermal regimes predicted for the Watana reservoir in
are similar to that predicted for the Watana only project condit
In this section)) only the predicted Devil Canyon reservoir ure
are discussed.,
Watana out and the tributary f tream
the t.Jatana are to the Devil Canyon modelo Since Devil
cat
to
ter
reservo
r
'l?Ja.rmer
res lts
er
eY
reservoir are
an earlier
wou
ect $
reservoir, .n
le
e t Devi
early summer
ure
1n Figure 9,
sect total volume
only about one-tenth of
ter of the I Stage
Also, the level outlets (cone va
of about 500 feet below the norm-al
1 reg1me in the Devil Canyon res wou
co er
wou
if
st ti
more sensitive to the operation of the outlet
predicted 1981 September and October profiles
The temperature in the hypolimnion would vary
degrees F (4 to 10 degrees C) l.n summer ..
2,3,4 Devil Canyon Reservoir Multi-Level Intake -Selective Withdrawal
s
outf
temperature reg1mes of the Devil Canyon reservo1rs have been
the Stage II condition of the two-stage project and the S
itions of the three-stage project, The two-leve 1
for both the two-stage and three-stage project
in the analyses~ A three-level intake with an addit
between the two levels proposed originally was also invest
However, no obvious advantage was observed in
temperatureQ The relatively large summer releases
1 outlet and the thinner epilimnion the
less effective in terms of selective wi at
11
was
il outf t
1 In f
t
t
t
reservo wou
outlet reservoi so
2 to 3 weeks until
was closer to tom leve ' or until t'i'at
leve 1 ports cou
s of multi-level int releas
"later the Devil Canyon reservoir l.n st e II l.S
st
2
t
Figures 12 and 13() In mid-June 1 Sl
es 't4ere changed from the top-level s to
decreased water level and caused a 7 degrees F
outf
Thus,
temperature while the Watana release t
Devil Canyon releases can be up to 9
C) colder than the Watana releases in June and July for a
to 15 days .. These occurrance 'ti'Ould be significantly
e
ees F ( 5
when the project is fully developed and when the reservoir
e more stable and the operations of the outlet works are less
as in late Stage III condition as shown in Figures 14
release temperatures improves as energy demand incre!ase
eases decreaseG
Effect on Watana
outlet are to release f
1 ements when the requirements
15.,
outlet
to meet
eas
1
wou
control
et
t
res "!?later sur
ile re
normal
res strati cat
re ease temperature wou more ff
tione shown in Figure 16,
near second intake
three-st project
September of 1981" This l.S
e, than in Stage III and,
t
water re
III G)
re t
let
ility of
tempera ures
these stages is warmer than 1n
powerhouse intake to match out
temporary climatic changes cause
temperatures to
rease
t
inflo-v.r
ing periods of outlet works operations~
is high relative to the powerhouse
the multi-level intake may not be able to
between inflow temperature and outlet works release
If
As i ustrated in Figure 16 for the Stage-! condition with Case
var
, the outlet works were not operated in June and July of
low temperature varied from 43 to 54 degrees F (6 to 12
i-level
from 45
intake was operated to provide releases with
to 52 degrees F ( 7 to 11 degrees C) 0 When
temperature decreased 11 degrees F (6 degrees C) in mid-August~ a
ion in eject outflow temperature of 7 degrees F (4 degrees
achieved by operating the lowest intake ports. In August, the outlet
were operated to discharge up to 24,000 cfs while the
t
t
s ing at an average flow of 10,200 cfs. The relatively releases
the outlet works reduced the effectiveness of the multi-level
1 the outflow temperatureso The effectiveness of the Devil
reservoir multi-level intake would be similarly affected by the out
releases (Figure 15)o
9 the mu t 1
As
o release tream
ure
ure variat
e releases" In July t f
t varied to 54 ees F (8 to 12
ure varied simi ily from to
F' ( to The general pat tern of
var s1.m1. ity duplicated 1.n the s
e intake operation"
ton was obtained from the simulations of
the two-stage project<) These simulations were
tream requirement and various meteorological
t includ 1971-1977 conditions and both stages of t'{rJO-S
ect.,
2., @ Effect of Intake Operation on Winter Release Temperature
In most of the cases analyzed in this study, two consecutive winter
t were simulated to determine the ice-cover thickness and format
of the ice-cover .. The ice-cover formation is strongly
the meteorological condition prior to the surface freeze-up.. After the
1 overturn, the reservoir destratifies and becomes isothermal with re
uniform vertical temperature distributiono Mixing and further
1ng ~:rould continue toward winter until the surface of the reservoir freezes"
Freeze-up could occur when the surface water reaches 32 degrees F (0 ees
C) on a cold, calm winter night. Ice would form on the
reservoir due to a unique property of water that its densi
point 1s less than its maximum density which occurs at
at the free
ees F (
C)o Thus, the water colder than 39 degrees F (4 degrees C) st
t res
and
st
1
s
-,VI
9.,
eal
F
sur prevent
conserves res
tr
l.n
reservoir
res
ifi
1 int
out flo\<~
t
II
the freeze-up can
the
to extent~
ures J..ce~cover
of inf ure
ana reservo1r (two-st
ements are tively~
the warmest s le water tream,
water in the e-free per
s
reduced to the free point sooner
of the surface water would be at A
indicates that, 1n is s
s the warmest water downstream the sunmaer i.l
s -1)-
~~
t
e
be induced about two weeks earlier than in case of
the intake by matching the inflow temperatures.,
two weeks sooner, the water body in the reservoir
from additional surface mixing and coolingo The \vater
the ice-cover would therefore preserve more heat for the
winter season and an increase of the out£
about 2 degrees F {1 degree C) would be obtainP-do
temperature of up to
tiveness of the lti-level s
In this section, the effectiveness of the multi-level intake structures
the Watana. Devil Canyon dams on selective thdrawal is ciiscus The
effectiveness of a i-level intake depends ma1n on the st i ity of
stratification in the reservoiro
range the hydrologic meteorological condit cons
summer stratificati in both Watana Devil reservo
ble les 1
tratif s
years
ements (two-stage
r ervo l rE:servo
outf s t vert 1
1\.C
for reservo s
are at t one order
crit al ueso Therefore, the
Devil reservoirs are expect
the vert direction for
outflows are not expected to s
structure the reservoirso Thus~ a one-dimens
iate for analyzing reservoir
also
indicate that the hydrothermal ,..ond
stable under the three-stage project
requirements .. The maximum summer releases would be at t
reser\roirs would be similarly :stratified ..
In Watana Reservoir, the selective withdrawal of reser..·vo1r water
accomplished by directing flow from the reservoir through an appr
into the intake ports.. Water would be withdrawn
:.t
multi-level intake at a pre-determined level., To assess the effect s
the multi-level intake, the stability of the stratification
channel was analyzedo
A reservoir operation study carried out for Case C downstream e-
ments icates that a maximum winter outflow of about 12 :P
for reservoirs 1n th1e months of
e extreme outflow conditions were us to st st ilit
s b
out
not
\>J'OU
1 strati
the outlet
channel in two-st
water umn water at
the channel~ Its ef t
t to minimal since the
not reach the water surface~ for
fore, the flow stratification in the
s
led
ficantlyG However, the resulting outf
the outlet works releases due to its
e release as shown in Figure
ions without outlet works dischargeso
il Canyon outlet works intake, which 1s located below the
the powerhouse intake, is expected to behave similarly to
t
co
~~at ana" However~ some mixing in the approach channel would be expec
outlet lPlorks intake we!."e raised to the elevation of the upper
s as has been suggested!/. Under such conditions, the intake
near
11
s its ability to withdraw warmer surface water exclusively.. However, the
release temperature would still be above those if a lower intake were us
Comments by the National Marine Fishery Service on the Sus
ectric Project License Application (Ala Power
) ~
17
stream
( 1
s
it
releases:ll
C)
natural
not
ou.tflo~.r
ure which
approach
t
ible
F
to
vortit:..es"'
ure
:reduce 1...ce cover
~
ees C) W<Jat o
on
c e o
F
easesll poss le to release w~~er at
) or lesso The reservoir strati
1 stability condit in ~ s"
3 .. 1
outflo"11 temperature and the ity level of the
rel feet tream fisheriesG The ity I eve
lly~fed res or lake appears to mainly on
concentration of the water bodyo Therefore, to
asse sment of the turbidity effects~ the el
to include modeling of the suspended sed concentration s
one of the parameters 1n the simulation of reservoir s " A
the simulation approach 1S given l.n Sect 4o2o s
vers of the DYRE model has been tested with sus
a lee ted at the Eklutna Lake by R&M ( 85a 3 1985b
per from November 1983 to October 1984" rood agreements on outf
s were tained~ After the extended DYRESM model had been ver1 was
ied to predict the suspended sediment concentrations of
res outflows for the three-stage project scheme o
requirements
considered$
and 1970 and 1981-1982 meteorological
Case E-VI f
conditions \i'ere
River sediment inflow data were obtained from USGS records
Susitna River near Cantwell and at Gold Creek stations... The
ticle size distribution of the r1.ver suspended sediments were obta
from samples taken at tht Cantwell station as shown in Figure 20o Based on
the Eklutna Lake tailrace sediment data and simulations of Watana res r~
show that most material between J and 10 microns settles the
reservoir, the suspended sediments 1n the Watana reservoir outf are
expected to be comprised primarily of particles of s~ze less
microns., Larger size ic les would generally settle out rapid to the
bot tom without significantly af feet ing average concentrat levels in
the reservoir outflows~ In the analysis~ sediments of to 10 crons
The incoming suspended sediments of up to 10 crons were
171 19
1. 3-cron each grour
th average representat veloci tl
1 "5 X 1 sec 2,0 X 1 sec were se 1 ec the
1 s respectively.,
settl velocities were estimated on s
utna Lake showed that use of these ve ities result Jl]l]
eement measured datao
total sediment influent to the Watana reservo1r was est
at Gold Creek gaging station and transposed to the Watana reser-
\iO co' 19 The particle size distribution curve
F us to determine the suspended sediment each
oup from the total sediment influent o Fifteen the
total sediment influent was assigned to 0-3
to the 3-10 micron sediments, The 1982 operat
cron
12 1
Case downstream flow requirements were used l.n the analysis$ Simu~
1 tions v1ere for Stage I, Stage II and Stage III project it
In the Stage I analysis, the 1970 and 1981 flow condit were also
tigatedc The 1970' 1981, and 1982 flow conditions represent
influent, high sediment influent, and average sediment fl
years respectively@ The operation of the multi-level intakes were s
to thdraw the near surface water since it allows for withdrawal water
w1 lowest level of suspended sediment concentration and is similar to
Y9 inflow temperature matching" policy selected for temperature simu t ions o
In each case, the corresponding flow and the meteorological conditions were
repeated for several years in the simulation in order for the reservoir to
reach a ovquasi-equilibrium" state with regard to sediment settling and to
study the long term cumulative effect of the suspended sedim~nts
reservoirs., The results indicate that, 1n general, the outf suspended
sediment concentration will reach a minimum level of about 10 to /1
March or il and a maximum level of about 100 to 20D /1 1n July or
Augustg Due to the larger storage capacity and longer residence
res
Ju
\~OU
t
s
II ect out ~li 11 1 than s
e wou a /1
In I ~ the outflO'Y'J sse 1
months ( i 0 "' June October or ) 0
s I t.J'at out s t
fluent are :tn
the tream sus concentrat
more uniform throughout the entire
s I outflow sse would
early and increase a
t 'Wh i 1 e the main-stem sed t inf uent varies
/1 :tn October to il to as much as 200~2200
l
e resu s are summarized in Table lo
iments ich enter the reservoir 1n summer would rema
a re 1ve long period of time
the winter reservoir outf
would continue to
The outf
of
I I
1. la
aver
t
2 to
feet the
maximum concentration of about 1
near constant value of 100 mg/1 at
to /1 i~ July or
end of Oct
outf level would continue to decrease in winter
value of about 10 to 20 mg/1 in Mayo
il Canyon reservo1r would be completed in Stage II and wou
suspended sediment influent from the Watana reservoirc Figures
Tables 2 and 3 show the predicted project outflow SSC from
Watana atJJ.d Devil Canyon reservoirs for Stages II and III
Although addit settlement of these suspended sediment influent
ana reservo1r is expected to take place in the Devil Canyon res
The
min
:rece
to 2
itions"
the reservoir is relatively small or the through-flow is relatively strong
that only a
Devil Canyon.,
1 portion of the Watana outflow SSC expect
In summary~ thes analyses indicate th t the susp
concentration level of the summer release flows from
pre-project ition of about 60 to
21
tc settl
se
ec t 'iiJou
mg/l to
t
In
sti ti
:re
In ter ~ level t'i10U s
/1@ Sus
s I, would sl t
ther ed s III.,
st PN&D ) a ti
turbidity from suspended sed t concentration*
from the sediment data
For concentrations less than
lometric Turbidity Unit) 1.s
values expressed in mg/1., In
at
contract to Har co Susitna Joint Venture per
f) of the Susitna River water near s (
test resu s indicated that the turbidity (NTU) would
l~:!t
outf
suspended sediment concentration (mg ) 0 Bas
e correlation, it 1s estimated the Susitna
idity would vary approximately from 20 to 200 N~U
to 400 NTU in summero
ons,
l.S
column
on
e
s
ect
er to
ure strati£ istr
the ed Watana res
t s
1.on 1 call DYRESM .. lly
Patterson ( 81)
co Susitna Joint Venture to 1 s
operations)) frazzil ice inf
A er lee-cover simulat
son lin for Canadian lakes was so ed DYRESMi
11 summary provides a general description of the
sical processes incorporated and its extension to l
suspended sediments0
4 .. 1 DYNAJ:-1ICS -TEMPERATURE AND ICE
the formulation of the modelling strategy of the model, DYRESI'-1 ts
opers~ Drs., J .. Imberger and J .. Patterson have sought to
principal physical processes responsible for the mixing of t
ot water quality components., This approach is in contrast to other Sl.mu~·
ion models which are largely empirically based o While the
ilosophy employed in DYRESM requires a reasonable understanding of
processes controlling water quality, so that they may be parameteri
lling
cor ...
rectly, this process related approach to modelling has the advantage that
the resulting model may require less calibration and is more
1c le than the empiricclly based methodso A second major consi
in model formulation has been to keep the computational overhead as as
is possible in order to keep the running costs of the simulation
of variables over time periods of up to three years th reason ..
necessitated the restriction of spat variability to only one
sect
) the 1 tal t t
l ter
e cases:;~ time intervals as 1
1 ocesses respons
even three-dimensional t
1. be represented sa tis ily
s
1 st ivides the reservoir or l.n
zontal slabs varyi
1 areas 1.n accordance th the
thicknesses, volumes
escribed reservoir
layers to vary accord to
vert stribution of heat and salt (not
to specified accuracy~ The uppermos layer
~ s surface layer or epilimnion with its e being
t
line and its top at the lake surface~ This layer is
tant as it rece1 ves the direct input of atmospheric fore
SlOn
eros -
to
l.S
us associated with the largest gradients in water quality propert
receives special at tent ion in the model compared to the
layerso Within each layer the variables are considered to be uniformc Heat
vert
form of solar radiation 1s input to each layer accord
ics of absorption of short wave radiation (Beer's Law).,
to the
transfers of heat and salt between the layers are determined by
turbulent fluxe~ as specified by the turbulent eddy diffusivity and
fferences 1n properties between the layers except between
t layer and the layer immediately adjacent to itc The ue of
vertical diffusivity l.S not set empirically but follo'1fJS the energy s
In is way vertical mixing process
the of available for mixing caus by storms ( stirr
so by the ential energy released from infl r1.vers" In
24
nee
cons
l 1
rate on ess o
esses t<ih as the
treat
cons
s 0 e
convect across e
ts :ton
at the layer ..
of three conservation equations
ervation salt turbulent kinetic energy.,
an estimate of the energy
lol!>Ier layers .. A feature of s
1.8 that it accounts for the influence of st mot
on the mixing and deepening of the upper
f a nat of the wind generation of these internal mot
provides an example of how a two and three-dimens 1
e
or
es
in a reservoir is treated within the context of a one-d
lo ~fuen the wind starts to blow along the longitudinal axis
is initially at rest, the shearing motion at the base of
1s considered to grow at a constant rate until either the ceases
or reverses in direction, a period of time equal to one quarter the per
the natural seiche has elapsed, or the earth undergoes a peri
ution on its axiso When any one of these limits is attained the
is set to zero and the build-up of internal motion recommences o s
shear may influence the deepening of the thermocline or the
thickness and may destabilize the stratification., In the latter case
temperature profile would be smoothed to the point where it remains st le
w1 respect to shearing motion of the wind forced seicheo
inflow dynamics are also two-dimensional Gl If the r:tver ~~ater
1 the ·~ ........ o.,..,...,,..,.ot layer of the lake then it forms a new upper
con
ac
:river
d one
fl
t t
is
\-later,
t
sl
volumes of
ily entra t volumes at
't-Jater 1s lut by lake water unti
wallc In some cases, the
to that of the jacent
1n to intrude into the main of the res
r
be ted by viscous-buoyancy forces
e this is determined by
er depending on the discharges
s
an
mixing strength at the level of insertiono
1 thickness of the inflow and therefore
ivided among the existing layers surrounding the
er
flow-
from the reservo1r at a. surface level or up co two e
levels are governed by the same parameter which determines the amounts to
for each of the layers in the vicinity of the outflow points® To
illustrate how this may work in practice it 1s useful to cons two
extreme cases, one where the outflow volume is large relative to
s ilizing effect of the ambient stratification (inertia/bouyancy e)®
In s case the outflow is withdrawn nearly uniformly from all the layerso
In the other case a weak outflow occurs (viscous-bouyancy balance)a In s
case the density gradient severely confines the vertical range of outf
s to those in the immediate vicinity of the offtake®
model has been recently extended to include the influence of 1.ce
snot'iT cover, a suspended ice concentration in inflowing r1vers
as frazil ice .. The conduction of heat and the penetration of so
t acrose a composite of two layers~ one the
't•la t er to the
exces
t ature
e 51 ice 1.s creat
lat e at the e
present"' S the snow or
sufficient heat 1s present to
the freezing pointo
cover,.
occurs
surfac
eva.te sur
tee
An it ical process incorporated in the
tial ice cover either during
1 th ice cover
for or
tial 1ce cover accounts for the wind act l.n thin
l.C that be formed and is based on an assumed
Additionally, the thickness of the snow cover on t of 10 cmo
ice is 1 ted by the supporting bouyancy force associat
c
s and density of iceo Finally, the amount of solar
tted through the snow layer depends on the thicknessj
ure of the snow covero Frazil ice input from the infl
used to cool the upper layers if no ~ce 1s esent or is to
fraction of partial ice cover or to the thickness of the full e
treatment of the ice and snow effects, frazil ice input.~~ ttom
ux~ and suspended sediments are explained further 1n the following
is cuss
up
s
1
1
ts
the
count
t
s
surface
reduced thermal
esses incorporated into
ice ickness of 10 em 1s as
melting of either snow or ice on
melt at the ice water interface are s
ac
t 1
1 of 1ce
oc.
creat
snow
surface as ~rell
lat
exclusion of salt from the 1ce upon freezing is simulat
4e The reduction of snow or 1ce thicknesses by surface evaporat
consideredo
e
to
e
5" The effect of ice or snow on surface vapor pressure 1s
considered ..
6.. The snow albedo 1s allowed to vary as a function of snow
temperature.,
7.. The absorption of short wave radiation in snow and ice 1s
considered"
The ice-water heat flux due to molecu conduction across
e-water interface plus turbulent sens le heat flux t
10.,
1 "'
sur
surface
to snow
outf current
are simulat
ure of the snot-1 or ice
snow thickness 1s 1 t
The frazil 1ce input in the inf :tnc
volume in reservoir ..
e
ice re
ed 1.n total
The ss of frazil ice cont 1.n the inflow is computed to
existing ice thickness in both the cases of full or 1
that input the volume of frazil ice x.s ided as a
1. inflowo In the case of a partial 1ce cover the frazil 1.ce
es percentage of ice cover until full ice cover is
1 ice left over 1n the daily time step 1s then added to the 1.ce
volume of the lakee In the event of frazil ice input to an ice free
1 the frazil ice is assumed to be melted in the daily time step by
with the upper layers o First, the uppermost layer 1.s coo 1 ed if
necessary~ to the freezing pointe Any frazil ice remaining 1s us
the next lower layerc This process 1s continued until all the frazil
for the day is melted" Fr.cudl ice input is likely to be most at
the onset of ice formation in the lake since, after that time, frazil ice 1n
the r1ver upstream of the reservoir will likely contribute to the river ice
cover and not reach the reservoirm
Bottom Heat Flux
not considered to very important 1n deep reservoirs, tom
flux is account for in the model by a s le conduct ion across
con.t
t ure
respect
t
sus
sus
estimat
ter
ture across
ttom sed
amount
,....,,,.,,...~ted
lly the new
ity of water
at
the year"
model
bottom
ts
port
layer
the
heat ux
ure 1s calcu
constant ttom temperature the to const
1n a northern lake are 10"8 degrees F (6 )
version of DYRESM simulation model has so
1 e the modeling of horizontally averaged 1
to As th temperature and total diss~lved sol
iment profile is prescribed initially from field ta
and th~reafter daily inflow values of suspended
0111
1
t
concentration from up to 4 rivers are input .. Suspended sediment profiles
are in the model by three processes, namely by mixing» by convective
overturn and by settlingo The convective adjustment includes the cont
t to water density due to the suspended sedimento Density invers are
and unstable layers are mixeda
A has been incorporated to determine the change in suspended sed
concentration in any layer due to setting .. The vertical distance
ic of sediment sinks at a prescribed setting velocity 1s
ich a
to
minimum layer thickness"' If this distance is greater than the layer
thickness then the subdaily time step 1s divided by a factor of 2
success until the particle no longer sink~ through the layer.. In
refined ly time step the suspended sediment leav the
and removed from the layer" The port ion of this sediment 1.
l
to
i
1
1
next
to
Ekl 19
tes
veri
s
\vat
~1as sel
e
ject site,
to
te
on a
1 Canyon reservo1rsc
ens fiel t
ac
t
e of t
re t
E utna
1
1
ed for hydroelectr oduc ion s
) to that of tana reservoir
limnol 1 a collection
we a station establi at
Consultants, Inc .. was responsible
of the ta" The collection of ta began
unti 1 December 1984 .. The Eklutna Lake data
have been summarized and reported by R&M ( 1!)82,
)e These data include inflow and outflow discharges
s
lr!Tas
·-east
t
ili
utn~t
1
utna
rs)
t
ures,
vert 1 temperature and turbidity profiles, and pertinent meteorol
a such as solar radiation, air temperature, relative humidity,
testir5 of the DYRESM model was performed in two phases, In
ba~ c n-... RESM model for temperature ~nd ice simulation was test In
e II, the suspended sediment opt ion was added to the 1
test of the model was conducted in conjunction with an r
iment sampling and turbidity data collection This
was started in 1984 and continued until 1
17
TESTING OF THE IC
DYRESM model was applied to s te the average ture s tribu-~
l.U Ekl e for the starti June l $
inf outf met ical ta collect
l::Jere us An analysis of the initial results to several
These improvements inc 1 icat
1 ong -\'lave t ion equation inst of Swinbank equat :ton
ition and incorporation of intake des
est outflow temperaturesQ The results the Phase I study jre
descr t entitled "Eklutna Lake erature and Ice S
reservo:tr outflow temperature 1s a
r urej and river ice st 1es
lnc le
I.ng
ter
taken to det
oject effects on the natural thermal regime of the Susitna
fore~ c e agreement between simulated and meast~xed outflow temper
le~ The simulated and observed outflow temperatures E
shown Figures 28 (a) & (b)@ The Jifferences between e pr
served winter outflow temperatures were within one degree
However, short term deviations of up to about + 3.,5 degrees F (2
ures
utna
ict
Celc
eet>
e
ne
:lS
and
)
also occurred, especially during and after high wind periods. The surface
shear effects and the internal wave motions near the take structure
are extremely diffirult to model with a one-dimens 1
three-dimensional moci~ling 1s not considered practical~~ The differences
between observed and simulated results on a wee~ly average 1s are
considered small and the model 1s considered to be satisfac ory for
predicting the effects of ~Jatana and Devil Canyon., The resu s of the
s1mu tion also
thickness and predict
an excellent correspondence between measured 1ce
ice thickness except f0r one observation
There was no ice measurementci near the center of the lake 1.n
The relatively th e measured at Station 13 1n March be cons iderE~d
to
Therefore
servation
1 accu~ulation of rafted ice caused by istent down nds ..
e relatively 1 rge difference (Figure 2 ( )) bet en
t shottln ch is not consi s1 ificant~
a
sus
He as
mg/1
su
on
the
te
usitna
trate the
ectco
ility the
reservo the
SUSPENDED SEDIMENT SIMULATION:
1 has also been tested us
icability to predict
utna
sedimeut concentrat
Susitna oject@ The hydrol ical meteorol
collect pr was continued by R&M th spec1a l.S
sediment s 1ng for the period from May to November 19
sus sediment concentrations ranged 0., 15 to 0
streams!) from 0 G 1 to 200 mg/1 the and from Oo to
the outf Peak values l.fl the inflow occurred te Ju
to
1
on
or
y t ' the lake lfa. dbout September (as a depth concentra-
tion at Station 9)' and 1n the outflow l.n late July to Inl. t ,.
the nter, inflow, lake and outflow suspended sediment concentrat
on the order of 0&1 mg/lo During the summer, the average sus
concentrations were substantially higher than winter values
e
were
1.ncreas further following large rainfall events or periods of significant
acial melt ..
ity values generally followed the trends 1.n the suspended sed
concentration, dropping off in the winter at inflow, lake, and outflow sites
peaking in mid-to-late summer .. Observed values ranged from Oe5 to
1n the inflow streams, from lo8 to 220 NTU in the lake, and from 3o0 to
46 NTU in the outflow~
The total suspended sediment influent to the lake were determined bas on
the total suspendei sediments obtained from Glacier Fork and East
sus s vJere irst oups
sent ng e ffecent particle s1ze ranges .. These part le size
selected ~"'ere 10 crons greater than 1 mic s t
runs :tnd t particles gr ter than 10 crons settle very
to the bot tom of the lake have 1 itt 1 e e f t on the aver age
t str eater 1 cron were
1n the study ..
suspended sediments of particle size
est t weight particle s1ze distributions t
from East Fork and 1er Fork as shown in F
28 !i October 23, 84o The daily particle s1ze distr
erpolated from these three basic distributions" To y
1
of
settl
lj it was necessary to specify an initial vert
sediment, the particle settling velocity,
particles .. The settling velocity
str
a part le
accordance with the Stoke 1 s Law as shown 1n Figure l.,
velocity of 1 .. 53 X Io-6 meter per second was used for the
e
sediments and 4 .. 00 X Io-5 meter per second for the 10 micron
s, A particle density of 2.,60 was used l.D the study ile
density varied from 2"50 to 3oQO., The DYRESM simulations ·were
for micron sediments and 3-10 micron sediments were made separately,
resulting outflow suspended sediments of these two separate analyses
were then combined to indicate the total outflow suspended concentrations as
shown in Figure 32o The predicted outflow suspended sediment concentrations
were in good agreement with data obtained from the powerhouse tailraces In
two occasions, the field data sh0wed temporary increases in
sediment concentrations that were not predicted by the SM The
cause of these temporary deviations was probably due to the occurrences
relatively heavy rains prior to these events., A small stream which flows
into the lake near intake have carried signif
sed ts and caused the suspended sediment concentrat
locally and temporarily near the intake areao
171
amount of
to 1.ncrea.s
f{es r ure ~ e sus sed t s tions have
Watan~)-Devil
tion
reservo us the enhanc
c reservoir s s tions
for evEd uat ion of s ~1a t er
t concentrat
Sus na tream the Sus i tna ect site
Jtent 1 effec s Susitna Hydroelectric ect
ldlife resources,
1 ~ 1.n ition to its capac1 to s e t ure
1ce en ext it ions 1.n a reservo1.r, has
ilities to simulate suspended iment concentrat
1.on of a multi-level intake .. The test
were using the data collected at utna
of properties 1.n common ~1i th the proposed reservo1.rs,.
ments t.'lere tained between the simulated and observed outf ow
general, the differences between the predicted s
outf ow temperatures were within 0.5 degrees Co In surmner~ a di
up to 2,0
per1.
ees C were obtained occasionally during and after
The results also showed an excellent correspondence
measured and predicted 1.ce thicknesses. The predicted outflow
sed concentrations were also in reasonable agreement with data
the Eklutna powerhouse tailraceG The results of these testings
strate the applicability of the DYRESM model to simulate the
behavior of the proposed Susitna reservo1rs~
ee-~
\',d .. nt er
e
tween
l!ined
1
Fifteen years hydrologic and meteorological data collected at the Susitn.a
of the Basin
1 Q
been assembled and processed for the applicat
the or inal two-stage project scheme the current
three-stage project scheme have been stud The simu tions
Case E~VI (the ka Power ity*s preferred condition) and e E-I
tream flow requirements 1 1 19 inf meteorol al
ar cuss s cons
ed l: all the two-s age pr
resu:ts e st th ~Jatana il
servo
icate
stratific t
regardless of
the summer
ect operat
June, Ju
t
Overturns w;ou occur 1.n spr fal
dur
0
temper:atur
t'eservo
st
er., The ~Jatana release t ure s
ter tural river conditions d range
( 33 to 37 degrees F)., In the summer, the Wat
vlOUld 5 to 12 degrees C (41 to
11
il
to
meteorol 1 ltions .. Devi oject
also exhibit e 1 ttern of early summer
:ton fall to winter cool
by a reservoir surface freeze-up.. The
reservoir, especially in the 1 imnion s "t-lOU
e operation of the outlet works than Wat
smaller res volume .. Therefore, the Devil Canyon rele~se
1
t
:rm
warmer
.. 5 to
rel
)
ure
up to 5 degrees C (9 degrees F) colder than Wa,ana re eas
temporarily :tn June and July when the intake port level is chan~ed ..:o
of the reservoiro
summer outlet works operations and the relatively thin epilimnion wou
e the effectiveness of selective withdrawal us1ng the multi-level
s 1n both reservoirs, especially 1n the Devil Canyon res
of release temperatures 1mproves as f;nergy demand increases
ion of outlet works decreaseso
suspended sediment concentration level of the summer pr ect releases
decrease from the pre-project condition of about to
about 50 to 200 In the winter~ the concentration level se
from a range of 1 to /1 to a range of 10 to 100 mg/1 .. It so
est that the correspond Susitna projf!Ct outf wou
ely 20 to 200 NTU (Nephelomet t)
er to 1 to summer a
71
F
F
Har
Authori ,
ica.t
oelectric
eral Energy
Project Noo
es American Inc,
the eral
:ton for
ectric Project
Venture~
License~ Project
Grace 3 Jr o
11 Selective
Investigation,u
Waterways Experiment
i, 1983,
Dra ), pr
awal
Technical
Station:.
EoJe List~ R,C.,Y., Koh, Jo Imberger, N,Ho
stal Waters., Academic Presso
tory
The
co
o, 1981., Trans ls for inland and coastal waterso Proco of
<> on Predictive Abilityo Academic Presso
co Susitna Joint Venture., 1984a., F.~lutna Temperature
vli six months simulation for Watana Reservoir" itna
oe ectric Project., Prepared for Alaska Power Authority, il@
co Susitna Joint Venture ..
Susitna Hydroelectric project.,
October ..
1984b.. Instream Ice S
Prepared for Alaska
Harza co Susitna Joint Venture., 1984c .. Evaluation of Alternative F
ements .. Final Report., Prepared for Alaska Power Authority ..
Harza-Ebasco Susitna Joint Venture.. 1985as Instream Ice Simulat
ernentary Studies for Middle Susitna River .. Susitna Hydroelectric
Prepared for Alaska Power Authority .. July ..
za-Ebasco Susitna
Rf~gime.. Susitna
A.uthorityG
Joint Venture o 1985b ..
Hydroelectric Project~
Case E-VI
Prepared
Alternative
for Alaska
F
Harza-Ebasco Susitna Joint Venture.. 1985c., Weekly Strt~am F1_ows F
Duration Curves at Watana, Devil Canyon, Gold cr(~ek, Sunshine
Susitna Station, ThreE·.-Stage Project, Volumes 1 and 2, pr for
Alaska Power Authority, December ..
za-Ebasco Susitna Joint Venture., 1985d, Effects of The Propos ect
on Suspended Sedimr~nt Con':!entrat ion.. Prepared for Alaska Power
Authority, December.,
Per a
Press.,
t
111
els
linl) J.,
Vertical nensi
' 29(4),
Study<)
Novembero
ervo:ur
Coas
lOU
H L
a Susitna Reserve
for Acres
s
Inc l.l:;
Consultants, Inc o 19 o Glacial Lake Studies, Inter Susitna
lecL:ric ect., Prepared for Acres 1can~
ity .. December.
Inc., 19 a., 1 Lake ical
ka .. V::.l•ll,Je 1 -Report., Susitna
Prepared unJ~r Jntract to Harza-Ebasco Susitna ure
Power X..tthor t t June ..
Consultants, Jnco 1J~S~ tiacial Lake Phys s:
utna , Alasl<a.. Volume 2 Appendices., Sus i tna r1.c
ectu Prepared under contract to Harza-Ebasco itna Joint Venture
Alaska Auttoritya Juneo
s, Inc.. 1985c.. Processed Climatic Data, Oct
1984, Eklutna Lake Station (No., 0686,.5), Volume 7e Susitna
~u~~~=lectric Projectv Prepared under contract to Har sco Susitna
Venture for Alaska Power Authority. Junee
Consultants, Inco 1985d0 Processed Climatic Data, October
December 1984, Watana Station (Noa 0650)o Volume 4o Susi
oelectric Project~ Prepared under contract to Harza-Ebasco Susitna
Venture for Alaska Power AuthorityG Junee
Consultants, !nco 1985e. Pr0cessed Climatic Data, October 1
December 1984, Devil Canyon Stat ion (No o 0660)" Volume 5" Sus itna
Hydroelectric Projecto Prepared under contract to Harza-Ebasco Sus
Joint Venture for Alaska Power Authority" June.
Consultants, Inc.. 1985fo Suspended Sediment and
Column Study .. Prepared for Rarza-Ebasco Susitna
Alaska Power Authorityo
Turbidity Settling
Joint Venture
Jan
l11!ar
Ju.n
Jul
s
Oct
Nov
Dec
1/
3/
le
Concent:rat
in Reservoir Releas
of Observed Range of Estimated 1970 1
Concentrationl/ Concentration2/
1-8 2-55 "' 65 65 85
2-93 40 55 65
1-6 2-23 30 40 45
N/A 2-183 25 50
65-1,110 5-1,480 20 45
151-1,860 620-1,705 75 90
100-2,790 506-2,062 105 130 110
158-1,040 198-2,150 105 110 165
23-812 5-1,511 95 90 130
7-140 2-144 85 100 125
N/A 2-71 90 95 115
N/A 3--47 80 85 95
Based on data from the Susitna River near Cantwell (period 1962-72~ 1980-82)
1 74-82) Q
Estimated from daily sediment transport in tons per day and corresponding mean
3t Watana, 1970~ 81 and 82 flow conditionso
Based on simulation results~
4 N/A = not available~
22 171/TBL
701
40-90 L~5-85
70
10-50 20-60
10-40
5-50
35-90
85-115
11.5 1
8 05 1
80-1 I
75-100
at Gold C ek ( riod 19
i ly dis cfs
Hon.th
Feb
Mar
Jun
Jul
Sep
Oct
Nov
Dec
1
Table 2
SUSPENDED SEDIMENT CONCENTRATIONS ( )
WATANA -DEVIL CANYON OPERATION~ STAGE II
Average
R~nge of erved Range of
trationl/ Concentration.~./
1-8 1-20 60
N/A!±/ 1-30 45
l-6 1-20 40
N/A 30-170 30
65-1~110 130-1,270 30
15 1,860 930-1,470 55
100-'l,790 600-1,600 110
1 1,040 200-1,070 110
23-182 2 00-1 '530 90
7-140 1-30 80
~/A 1-30 80
N/A 1-30 75
Based on data for the Susitna River near Cantwell (period 1962-72~ 1
Creek (period 1974-82)~
of
50-75
30-60
10-35
20-100
70-
80-130
70-130
) and at Gol
Estimated from daily sediment transport in tons per day and corresponding mean da ly
scharge in cfs at Watana, 1982 flow conditions (average year)o
Based on DYRESM simulation for 1982, releases from Devil Canyon Reservoir,
N/A = not availableo
228171/TBL
1
Honth
.Jan
Jun
Jul
Sep
t
Nov
Dec
Tab e 3
SUSPENDED SEDIMENT CONCENTRATIONS ( )
WATANA
Range of Observed
Concentrationl/
1-8
N!A!±I
1-6
N/A
1,110
151-1,860
100-2,790
158-1,040
23-182
7-140
N/A
N/A
DEVIL CANYON OPERATION, LATE STAGE III
Range of
Concentrationl:./
1-20
1-30
1-20
30-170
130-1,270
930-1~470
600-1:;600
200-1~070
200-1,530
1-30
1-30
1-30
55
50
25
25
20
35
75
75
55
50
70
65
f
55-70
1 Based on data for the Susitna River near Cantwell (period 1962-72, 1980-82) and at Go
Creek {period 1974-82).
Estimated from daily sediment transpcrt in tons per day and corresponding mean daily
charge in cfs at Watana, 1982 flo~ conditions (average year).
Based on DYRESM simulation for 1982, releases from Devil Canyon Reservoiro
4/ N/A = not availablec
228171/TBL
701
!.3;)'1'£•
S fM~ l M!lfcliM:'S 18 !i>IAOC"'
~t'lll!!.
10<1:)1! '»\tCl.!.\Yili'G l.ill
y,_~_ll!i')=
<1:£~
GU.IOE
Ul11131.,JlCK
!HP!t~Ll
wg~~!il~·'h
ll S(CTIOW$1
C'OIUSUill!: nqutr
100\.tsiOI<iAO-~
ITTPI
11\R.~ME~!l
CiAft
SHUUUI-
/"' ouruv-'
faCtLITI($
I~TAK!£
ISH ""litE Fill
. I
PLAN AT EL. 2040
IT r-f I' J.
II ! '' I& tt
II
II
II
PlAN AT EL. 2116
S£CTIOH !:H!!
,,
!l
-· il'IA'fHifi!G 11::( 6S<Jii:l
{\. !111:)
T~-~·
H>:ATEO IC£ 000"'
$ '. 0 OIIUWLIE IVY PI · --
MINIIIUM IW£1lAfiNG
1t1 l £L 1!1~0
~--~-----~
El179'!1
•. -·----~llYI!I -----~ ._._ r----
~.o--
-----!I'IITtllt[ 4!AT[
rz:owr.24'-0"
f'05T • T[~ION£0
AOC;;QA. TYP iA!lO\o'EI --
mYA;<£ GAr£ ---
ACCESS $MAVT TO
EL.I!IOIHn;>J ---
lllTA!t£ GAY£
ACC£1111 1:1040-
llfT~ftll
----------..,
I
t----
J<UT£0 IC£ !!ODU-~
i
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
'Ill
riMSIIlUlCKHTP) \~·
i '·
I
I
I
~LOr~ H lf')P
PLAM AT EL. 1812
OU'fl.IH VACII.ITIIl$
\
\ ~t_fit"f~')n;!!IA§
11?.:U"t0-liii li'll!lD
l
~::~::';',i -
..... n~ •" ,.,, r
l r-·---~~~~====:::::::::t=======±::==i=::::::l==::::l--
! Oll l~'OJ.Ill ~ z Oll )JO~ltsl i
~~~AGAH \
TRASHf.lACK 1.
GUIOlOS SECTI0!\1 A-A
w > ~~00
0
0
_.........
_,r-~
!( ,
I
I 1
l , p J
.. w_/ I--"
~ '"
-·~ ~
~ ~
v_.,.. ,.
I "' I I". • •
-
I I I
I
! I I
l
5 10
TEMPERATURE-CCELSlUSi
CASE• •• WA81ZOE -W~TANA OPERATtON W/OEVIL CANVCN IN 2020 fCRSE E-Sl
LEOENOe TEMPERATURE PROFlLES:
1981
1981
1981
= !
2 !
I (
I 2 ~ -~ .z
I
-' .il ~
·S
Ul
--
, __
I
15
I R c;
.
1 "',.-... j i f i' t
* I -:r -r ~ ~ -
~ ' ;I I
....
l I -.
"' , I
' ' _,)
I ' l ' I & ·-I if I I . ·-·
I I
!
' .
I I .
I l
I
I ' I ' -----'-·-I f
I I
1 ·--I---·-,...--·-
I I
' I
l I j I
' j L • -' 1 .
I I BLUNt.
I
I
I I ! I
0
'' l 'I
0 s 10 15
TEMPERATURE-(CELS!USJ
OC8120E-DEVIL CANYON OPER~T[CN WIWAT~NA IN 2020 ICASE E-Gl s~
lLES~
15
u
!..&J ~'10
~ a. a:
LJ
0.. l: w
b-G a
.....1 u.
1'1-
:J
0
0
L
2.
21.
4.
G.
li.
I
... , '
!5
U)
~
-I ,
r
~
-l
M
3:
l)
M
J]
:D
-!
~
15
u
I I
I . '~ LlJ I ~lO
..... a a: w
Ci.
T-
l&J ,_
s
2i
...J u.
1-
:J
0
0
' ,,
.3~ Ml
lO Ml
~----
15
10
s
Q c
-f
T1
r
Q
l:
-~
(Tl
3:
rii ...u
D
-1 c ~
n
n.~
fi
0~~
_no
-
15 u;
~ -;
"VI r
I u
I ~ I wiD ~
""' a
~ w
Q r w
I-6
~ u.
n ~
::J
0
IS
u
w rr 110
:J
~-a a: w
Q. :;:: w :-
&
~
.J u. ....
:>
0
0
CaNYOhi IN
PROJEtr
·~
'ltl
r,
0 c
"""i
"'" r
§?
-i
171
:J: ;:g
Xl
'"D
-1 c
A) rn
n
15
u
w ~ lD
'l--a
0:: w u
7 w
1-6 ! ~ I
_j
l!.
~ • a
0
(')
i.O f1"i
0.0
15
9 ._ .....
'T1 r·
~
10
-~
fl"l
-~ u m .u
1.J
c.
~ ;o
(TI
n
rs
u
!.!J sm
i-
0:: cr w a :i: w
~
fi
J u..
J-
'::3
0
L
~tJ.
4.
~. e.
'·
!0
s
I& BS
0
u c
-f .,
r
~
10 Hl -;
f'1
3:
"'0
SB
D
-1
s ,. i
-r? s
f1
fl1
...J u.
1-I
:J 0
0 ,,
0
15 H~
u ~
~ ,
r
Ui ~
S'o 10
.... a or
&AJ
Q.
:E w
i-' G a ..J u. ..... n :;::,
0
0
.. ~·
..._, , •. , _.'....;I::.::L....;.. __ _
.~!:·~---i~·-·--------------------T-----
, l..t:.;.~'.;.· ..;.=----~------
!:t~~: . L
,_
J ,
I;
.1.'.
.•
t .. .J.....
~-""-'"i,.'t": l t;.'f
•"'I q t~ n..-i: U.'f
:! tt>,. ~~ \_~·r
.J ~ ,...~.,~t., 1-l' ... ,.
' , ... ~ .. n· >!t "r
l •t:
l ';/
L 1f
-....
' I
.. .. .....} ... .,.-.
liS • ., --• .._ r
a .. mvc_~-: llP!~P lrl J 1 '.'H' .: . e.I.I'J'H.:
n1:=-r ~h r:
I. l,....;~ k·. i'm ~· ~~ f.' .. "'l .
I. -~-. &·m :''1 :1 ~ --4 ·"· I ... .r: ~-. i 'j'-1 ~·· l ~.-t : ~-
lb''l';'.. ~ .: <iL. -. r : c~ .. 2 1-4',
~~ 5:JVc:)-!ClN 2~M: ~1' rt.;,;.l "I 11,
...
L
-... -1>lf"' pr-
..... b
s.-..... '"-""' ....
. ·-----'J··:~~ •.r. r.~l.".:,.
E •• :I
~~--~----.---~--~~~--~--~~--~--~~--~,---~~~r-~1r 2~~----~----~-----+-----+----~----~-----t~---,r-----
.... .
"<!w
I I
I
I
r-4 li'1
I !
PREDiCTED OUTFLOW SUSP. SED. CONCENTRATION I
DNFLOW SUSP. CONCENTRATION
PREDICTED OUTFLOW SUSP. SED. CONCENTRATION STAGE I
INFLOW SUSP. SED. CONCENTRATION
c-~@0 z
1&8
!
Q E"'o
fM.,J
U2l ..... (!)
0'2
W"""' usc c z zo
W""' .t~..Ca w<
::l!O::
Wit-z
~ w 100 oo
w z ..,0
00 0::
L
~
~
!1:
!PREDICTED OUTflOW SUSP. SED. """'"'""'Iii.~
iNFLOW CONCENTRATION
SED. CONCENTRATION
CONCENTRATION
$USP. SEC. 1\#VR...,!Jii.f"'l
"""'.-m_...,_ SUSP. SED. CONCENTRATION
I-
~ w ~
! >
Q""" W...ll
0
0~ 0
(!) z
O:JE 0
W<:ld rn
Oz 1333 ~
zo 21)
LIB..., }l>
Lt-<>il
0<(
:;)Q!! 0
00~ z
11-z g~
UJO
"'llZ oo
~;:tO m ~ &;:
:t ""11
II-
i
PREDICTED OUTflOW SUSP. SED. CONCENTRAT~ON
8NFL.OW SUSP. SED. CO~CENTRAltON
~ z w
! 1~~H
Q w,.,.,.. 0::!
od
w:l c-aoo-'i3~3
zz wo a.-
({iii"" ::;<
00:: G-·1 ll-Z ow
u,.oO
"'::lZ
00
41:0
~
l: 100
!:
~
6.
PREDICTED OUTFLOW SED. CONCENTRA Tl0t4
iNFlOW SU$P. S£0. CONC!NTRil'fiON
--···--···-------·---
PftEDtCTEO OUTFLOW SUSP. SED. OO~tCEI~TR
INFLOW SUSP. SED. CONCENTRATION AT WATANA
STAGE m:
l
JULY
-
.. "'"
,!' • • .,--·, .......
"".. , ....
l -
\
II
21 31
E
.. -~$0~ ..
I
.......... ~
.. _ • .P"'IL ... ~-~· .. -
ll
30 9
FEBR
...
.,s_., __ '"""* ,.m_""'"'"""'""'
AIC!I&"-GDIIIIII --
II
l
+
.. .. .. .. -.. ... .. ...... ....
-~c::.~
Ca.!<o("So c,4"'~
'I Git•a., I ~
-
%
gem•"•-
~
II II
21 31 10 10 20
ll MAY
1983
L
PART Sl
0
0
m
~~-------+----~~------------+-----~------------~r-----~----------~
"'" ..... z
m
m ::u
""""' 0
0
f5*1!li~ § e G • g c 6 0
a D
BO IOC ··
·~ F LL \ '•.1 f 1
t
c
D
E
F*
I
J*
K*
L*
M
N
SIMULATED RESERVOIR TEMPERATURE PROFILE
OUTFLOW TEMPERATURES
Tit
Case E=VI~ Two-Stage Project~ Stage 1~ Inf
Match
u.re
Case E-VI~ Two-Stage Project, Stage I~ Warmest Poss le
Outflow
Case E-VI~ Two-Stage Project, Stage II, Inflow T=~·~=~
Matching
u.re
Case E-VI, Two-Stage Project, Stage II~ Warmest Possible
Outflow
Case E-VI, Three-Stage Project, Stage I~ Inflow
Matching
Case E-VI, Three-Stage Project, Stage I, Inflow T~-v~=~
Matching and Level -5 Only
Case E-VI, Three-Stage Project, Stage II~ Inflow TQ=r,gr
Matching
Case E-VI, Three-Stage Project, ~tage II, Devil Canyon
Drawdown, Inflow Temperature Matching
Case E-VI, Three-Stage Project, Stage III, Full Generat
Capacity 3 Inflow Temperature Matching
Modified Case E-VI, Two-Stage Project, Stage II, License
Application, Inflow Temperature Matching
Modified Case E-VI, Two-Stage Project, Stage II, License
Application, Warmest Possible Outflow
Case E-I, Two-Stage Project, Stage II~ License Application
Warmest Possible Outflow
Case E-I, Three-Stage Project, Stage II, Inflow Temperature
Matching
Case E-I, Three-Stage Project, Stage II, Inflow Temperature
Matching
* Reservoir temperature profiles not included
228171
t5 IS
u
w s•o HO
c-a a:
1d
Q.
X: w
&-; s
2}
..J
Y..
~
;::) n
0
0
us liS
u
UJ ~110 Ul!
~
([ a w
0.. ::It:
Ld a-G ' i3
..J u. ...... 0 :::;)
0
0
£CEL5lUSD
I ...
TEMPERATURE-(CEL51U61
IN 20CU
tCELSHJSB
2001
CCELSX
tN
tCELSlUS!
(CEL51USD
IN 20CU
~ i UlO .....,.. _ ___,1---......... -........Jj!-
USJ
IN 2001
1
15 Ui
u
w ~liD
1/1--a
~ w a.
2: w
&-6 &
~
...J u.. ~
:::J
0
0
15 BS
u
~10 RO
1-a a: w
Q. ::r w e-& s
~ u. ;-n ::)
0
0
w > ~-00~----~---+----+----+----+----+----+---~----~--~~--~----~--~----+---~
TEMPERATURE-CCELS!US»
ECELSHJSI
0""""'--
TEMPERATURE-£CELS1USl
CJ:SE!!
s
TEHPERATURE-lCELSJ
CE-tJI)
)
lS
15 fiS
u
UJ ~ao
1-a a::
YJ
0.. :r.: w
~
IS s.
~ _J
u..
ll-0 :J
0
0 0
~5~------------~--------------~------------~------------~--------------~------------~as ------+---------+---·------+-------_) --------·+--------·-
u g
-~ ,
r
Q w ~ ~~0~------------~------------~------------~----------~~------------~----------~~eo
s-a
0!
l.IJ u. :c w ---+------------~ &-r--------------~--------------~--------------4-------------~---------------+--------------~~ e5
.....1
I.!.
~
:::J
0
0
~~--~~----~----~------~--~F-~~.-----~----~----~~---.----~~~~F
249~----~F-----+------+------+-----~----~------4-=----+------+-----~----~------~
-as~------~----~------P-----~----~------~----~~-----
1 24~--------~~----~------~~------~------~--------~------~----~ ~ 12'
0
15
u
~----
t I
Uj I ~ ....
I ~10 I\ .,
J-a. a:: w
Q
T-w
t-s
~
.J u.
~
:l
0
0
U•f 2002
r~JI•H'-' ln·~r "~J,., ;
§5
\\0
~
n
(~
u
ts-r------~----~------,-----~------~------r------r------T-----~------~----~-------~15
~~~~~~rr4-=-----t--=----+-------~------~------+-----~-------+--·----~IO -f
M
:1!:
~
.l)
-4
~~----~-----+----~----~----~~~--~~-*~---4----~~ ~
0
0 0
l E-I!E l
w > ~BOO
0
0
', ... ,.. ,,
6
t
)•
-.. ........ _ ... .
. I
I
'-D
5
TEHPERAlURE-€CELSlU5l
C~Eo ~-WRBi02J-WAT~NR OPERATION W/OEVIL C~NVON IN 2002 •~ «E-VIl
LEGENOB
PROF'lLES:
F
I
.
-
-
:-B -
'2
4
\=f=
\
I \
l t=1
. -------c
•
--f=
r ---
I
' 10 Ui
TEMPERATURE-«CElSlU5)
TEMPERATURE-tCEL51USJ
~ I
I
8
:~· I
~-~
:
=E 5 10 %5
WA&i02.J -
PRtF'JlESs
~
t-
~
i
:1!:
0 ._
1-
~-00
w ;
.. -.. I l __ .. -
~
i
.. .. ..
\
1",
.. 11
'J:>-
'
~
~
~
s 10
TEMPEF~TURE-(CElSlUSl
CASEs ~-OCSUJ2.J ... DEVIL CRNYON OPERRTtON W/Wf=rf~ ~N 2002 ~l:Fil UE-VJ B
LEOENJe
I
IB c
;z
--~
15
I
I
im !
! fi \ ~; r-
"""
lz
1'\
~ =
!00 I
·-
I
I
0 s tO s
TEMPERATURE-«CELSIUSJ
DCBD02J -DEVIl CANYON OPERRTIG~ WIWRl~ KN 2002
~ I
J
,-=f_:--~ ~--~ ---!-" ---------... co II : c ~ I"" ~
~ I ------~"' ~--H-I I
I Ul;
~ t
= t=
'
'
.
'
I -~
I c I I
0 ' lO 5
-OEYKL CANYON OPERATION WIWATANR UN
lEOENJs
r
I
~ I
I =t~ ?4= R -
J : '!j
' I •
I ~
:,
•,
•
i
~ I,
,s
/ l
I I
J I . I
I .
I p
I t .. I ' I
il I J --I I I .
I I o~ I
~·-
I I
r-a I
I I I
0
TEMPERATURE-CCELSlUSP
OCSi02J -OEVtL CRNYON OPERRliON WIWRTANR DN
t= I
I•
F i .... -,:. ~--':.~l. rr ..
i ~ ... . 1 I ........ ~ ..
'"· z ....... ,_ .. _,
• I
I I
:/
r
:-
-
-~
0
I t= I ! I
DO as
DCS!OZJ -DEVIL CANYON OPERAitON
-~ ~~ = ;
< : lz 2
~ u
.
I
-~
0
10 s
TEHPERAlURE-lCELSlUS~
OCBi02J -OE~KL CRNVON OPERATKON IN 2002
= --R ~
~
\ .. ------.--1£11 .... -""" ---~ ... . -_....!! i --~-1-o-
u w \ I L--· ---~ __,. i---I
\ ,,.. lz ~ " I ~ I
I
I
·"'"'~ R I
T
I
6
~ ,_
.,
II ,, ,,
50 * II
..
2
J -~
I
I;
go 15
TEMPERATURE-(CELSJUS~
OCB102.J -OEViL CRNVON OPERATION IN E-Vll
PROFILES:
-1
~
~
t-fiJtoo
w
i
~ I
I
i
=
=
i
OC9! Oz..J -OEV I L CAt~ VON OPERRT
J t
I
I
J
. I
J s
I
J
(
I .
I
I
' I
I
I
I
I
I
I •
§ !l
~
.,(
l f, f
/:
I 9
j : ..
r •
r ' . ,
I
t
I .
I
I
I
I .
I ,
a
I ! -D I I
~ .
•
10 w's
KS u;
u
LiiJ
(J!iO 10
:J
1-cr
Cl:
L4J
0.
r5
~ '5
2i
..J
LL s-
::J n c
~1r--~~r-----~--~-;ae--~~--~~~--~ra~~~~~~~~~~~~~------~~~~i.6
i~1F----·-r-----t-----+----~----~----~~--~~~~~~--+-----~~~-~--~--J
Q")
z48
-iS
I 24
t1l2
0
·---t------·--.....-i-------11---·-----
u
0
~! ~t 1'1&<1 OC9i02&'\ -DEVIL CANYON 0~110~ L4.1WA1QNQ fN 2002
~i~ biMUl.s=!TlON ---WQmE.GT we:rTER IF'ULL Y£AA I
----~(CfE'O OUT~LC'Jd Tl£HPERJO!~
• ... -----tt'odFLOW ~RQT!JR£
NIYfltS• 1. IN'f~ri POR"i L£\IEL 1 Rl faEVQTlON i42$ t:T t . 34
2. l Nf~ POQ'f 1.. £\f£1. 2 AT El...tVC:n UJN t 27£ t::l I l 0
3. COf£ V~\f£ ~T El.EVQ'TION 990 1=1' l#Ot. '75 t-n
4. SPII.J...I.4~V CR£ST AT £1...£\IIQT!ON 1404 FT U27.94 i¥lJ
i .o
0.6 i
O.IJ
u
·-+--------
33 ±=t .. ..... ll :
I cl--'Z
-~...,
3 ...... .. .
I I
t
•
l t=1 ........
' .. t
~
I
= i
s 10 Ui
TEMPERATURE-tCEL5lU51
0 10
TEMPERATURE-lCfLSliUSi
CRSE~t
est I
~ .......__
..... " ~~
I '
=
.
--
,;-.....
~""
!
~
TEMPERRTURE-CCELSJUSJ
f=l
~~~
-
10
•
Ui
2
3
I I
s . J
Q . h
2
31 -~-
# -... -... =r -
-
-
I
0 Hl
TEMPERATURE-CCELSlUSJ
PROFlLESx
. -~--:.: r---
.
~~
I
::::c
---.... --.. ---Fl '
-~
!
5 TEMPERAlURE-(CELSlUSJ
PRCFlLES!
t=
t=
uo 1
2
3
w > ~too
)
CRSEu tl3f3
LEGEND a
...................
f
I
--
6 !0 Ui
TEHPERATl.JRE-l CELS l US I
TEMPERATURE-tCELSlUSi
LE.Sg
TEMPERRTURE-KCELSlUSJ
= R •
I
i
-.. --' --llilllll:
""""
I I il .. ~I .
"" 2
'\
•,
"'-t
~ ..
=
... -
-
-
:
5 !
TEHPERATURE-(CELS1U5~
N
PROFlLES:
,..
0
..
' ~ ...
-
•
1\
.
.._
. .
=
I I
5 TEMPERATURE-(CELSJUSJ
-OEV[L C~NVON OPERAT
MUL~TIQN ---WARMEST
PRE.OlCTEO
l FEBRURRV
i MRRCH
~ APRiL
PRCFlLE5:
c
I
! ~ ~
z z
«J)
I
·-
:
~
~
15
fE-Vll
I
' -----f:"-... -.... ~-. -----------~--
i .,. ----!
I r t ~ ---·
~------... --------z -~ ,.
''\
-~·
\ ..... \
--\.~j
I
0
s lO
TEMPERATURE-tCELSJUSJ
~
~-w
~
I
:i'1:
0
Go-
t-
~;oo
0
I
I
I
,_
-'"
i i
J F=+ .1:--t£-·
: I
, I I
' 1 I . I
I I i l
' I
I f
I I
J I
' } .
I l
I I
I
I ll
1 ; . il r
I I
' r I
I
t I
!
I J !
I I
• I
s 10
TEMPERATURE-tCELSJU51
PROFILES:
W/~AT~f~ iN 2002
!FULL YEAR~
B l ! =tl ~ m
l -z
-4
~ m
--
~~
I
i
I
iS
---1'.>-f.;"',:""! _ ... _,
Qi::
0
0
LEGEJ\DM
I
~
"!.~
-~
~-
~
I
I
I
f
I
5
TEMPERATURE-CCELSJUS)
tl C~NVON OPERRTION W/WAT~NR N
tON ---WRRMEST W~TER tFULL
PROFILES:
B
--
H~ -z -s
--~
Ul
·-
I
--
-
ll.UNt.
!0 15
fE-VI l
w
i
0
CReEr
LEGENOs
~ i
I
L .. "'! ~ .,
-
~·
I
z 2
~ ~ u
I -~
-
5 10 IS
TEMPERAiURE-CCELSJUSJ
PRCFl
o-r
0
w
::::t50
0
0
CHSEe aw DC8t02K -DEVIL
W~T~~ SJHULATION ---
LEOENOl
I
--.. -,.---.-. -... _, ------~
I ~-.. -,.. --1---
'I _ .. ~----
.v -T
I
!
I
i
I
I
;
~
' I -r
I .
I'
I
I ....
I
I
I
I
I
I
6 10
TEMPERATURE-tCELSIUSJ
PROFILES=
W/WATRNA N
lFULL
i --~
~·~ ---
2 e-e z --il
~
Ul
--
-------
-~~,
iS
1 l
I =F
~ ±
/ I
l ..
f
I ~
,1 ..
'I
I
l ,' f
K
I , .
' j
I t
I I
' I -w :rso
" . I : l
l~-' I ' I
I
I I I
:' I I
•
I
I l
t I
0 I
0
TEMPERATURE-CCELS1USJ
CASEs •• OC8i02K -OEVtl C~NYON OPERAT
WATANR SlMULRTtON ---W~EST
I 1
I
.......-l '"' .. ~-i --..
, z
f
t~Jw.;
10
CASE E-VI
I
fliiO L& -2'4 --!a ioO
8 24
i
0.15 -
U' ~
0 0.0
~:-,..
15 ns
u ~
-i ,
r
w i?
~to \lG
t-cr
C'C
U1
0..
'J,C w .....
5 &
~ u.
$-n ::J
0
0
w > ~100
0
i e----
'
I
t
I
I
• .. <II -... .....
I
I
I
l
!'
·-
\ ----1-· . .
\ .
\
I
f
' i
I
if I
s ao
TEMPERATURE-iCELSlUS)
CRSEc WAStOtO -~TAN~ OPERAT[QN AlONE iN 2001 «CRSE E-S STAG£ i l ~w
lEOft\Do InfttJtvinJ Temp. Nafch;1,d
PROF1LE5:
c.v
=
=t • IS
w :r
0
0
CRSEa
LEGEI\D a
' ~.
~:' .. ~ ---~~l'i.
If
\
l
\
\
\
\
I
TEMPERATURE-CCELSJUSI
WQ810l0-WRTANA OPERRTtON ALONE [N 2001 lCRSE E-S STAGE il
Inflt:Jw k*"?· fch,
TEMPERATURE llES'
1981
1961
198!
l a
c v
3
--
eli
I C.
i
t __ _.
lS
-'·
w :r
so
\
'-
I
, .. =-~ '\
\
\
\
\
fi
-~ ---
I -----~ --;:.;...:: ---~:::..
I.,./
.'I .,
t
I
.
~ 5 TEMPERATURE-CCELSJUSJ
C~£o •• WAB\010 -WAT~N~ OPERRilON ALONE IN 200~ fCRSE
flow TewJp, f""ie:t fcJ'~;rl q
lLES~ . '
8~ --c '1/'
f 3
-
_,
4
~0 !5
Sl~CE J i:HI
L=
.
.... .... I ~
I , i
-~---· l ----
I ~
. -. 3 ,A, • ,, -r--· ~ -.Iii
~-~-'&
f/
"-·· ·~ ·~~·-"·-= ± ~
~.
0 !
10 Ui
TEMPERATURf-(CfLSJUSJ
2001 ! -S STACE I ••
PROF]
w >
~100
0
....... ,
0
LEL1ENJ i
\
I .
\..
... ~ .
~ """" ... ' --...
"" .. ,
" r
\.
\
' ' \
-
5 10
TEMPERATUR£-(CELS!USJ
WA910!0-W~T~NA OPERQT[QN ~lONE IN 2001 fCASE E-S ST~GE II
PREDICTED TEMPERRTURE PROFlLES:
l NOVEMBER 1981
1 DECEMBER 198l
l .JQN.J~RY 1962
I =
iS
w > ~too
e-x
0
w
I
0
0
2 c
"-;--._ 3 ,,_ ~
~--~
\
~
l
\
...
--1--·
I
5 lO
TEMPERRTURE-(CELSJU51
WABt010 -WQTQNA OPERQT[ON ALONE lN 2001 fCQSE E-6 STAGE i I ~~
ILES:
ill
f--
w r
-;-lSIJ
z:
0
t-
~
w r.
100
!----
0
CASE~
LEOENOs
f= R
I
I r ....
-
Q
t--~ : 2'
t-* ----3 .. /
r 'I
I
\ ./ .'---1---~
'5 ..
\ -""-' l
\ I
r----
I
5
TEMPfRATURE-CCELS1U51
W~B1010 -W~TANA OPERQT[ON PLONE IN 200J ICQSE £-S STACE ! l
PROFILES:
w
> ~100
I-
I
(.)
w
I
a
0
CASE•
LEGE!\Ot
-
!
I •
I ~r .....-
~ , .. -.., ~
/ u..~f -·· -
.,-""'" ~ -:-:-.. -
-r----
I
-
10
TEMPERATURE-(C[L5lU5J
W~SlOlO -W~T~NA OPER~TION ~LONE IN 2001 iCASE E-S STAGE t J
PREDICTED
t AUGUST L SEP;'fMBER
l O::""OSER
PROFJLES:
.. -r I : -
I
II
F-"
!1!'11
~
--
IS
CASE
..... 98. ______ ...., ___ _
I~~~----~_.._._.__ l1 l:f .,._ ____ _
-o•------~
\S !6
u
,LIJ
~ JO w
t--a
0£: w
fl.
1: w
!>-' s
~
tJ,..
0 1-
::;:)
0
0
iS~------~------~----~------~------~------~----~-------.,------~----~~----~--------15
u
Li ~U. 1 I I • ~ L! 'If .A. t -Ill! II Ill I fill -· RIEl ~ 1..[~£4. 3 iHil'll\!iUI -· llfUI , . &11111 IL[V!U. 4 II
•
-IL£VU'i -·· --~ -~~~~ ~ _'!!-_ll!
15
u
w ~10
t-a ac w n. ;c. w
)--
6
~ u.. e-
::;I
0
0
L£0£ND, C~, a1 ~HHL -!.atiliOIN~ OPiLMTION ~ IN 200i
CAGE E-VIGt. NA'I"URPL CONOHtONS At«) L~I!H lEVEl
----PR£.0! C T£0 O.J'ili='L.(')W TEMPERQTI.JR'i:
• ----•• INR.~ f£MP£RQ1'U!A£
~ESt
··~-
-----
LO
I
0.5 ~
3
0.0
iS
~
--4
"Y1 r-
~
ill
-4
M
~
'U rn .:u
D
-{)
!i ~
n
0
STAGE II
u
w ~~o~----------~~----------~-------------._----------~--~------~~----------~ao
!-a:
OJ:: w a r w i -~-------------+--------------+-------------~------------+---,-----------+------------~~&
u.
to-a
0
. )
iS Bi
u
w S'o
!>-a r.r w a
ffi eo-li
t5
...J u. -,....
0 :J
0
us as
u
w SAO RO
&-a
IX
LU
Q.
.:ir w
t-~ e
J u..
I-
5
0
~Ul
u
~BO-+--,.,..,.,..-
t-a: a::
~
~
qj,~
CV'
t=
' ·-~
"~
_I
i
. _..,
2
"" .
• #-----i 3
' ... -..-:.."' j i :4
"' ..,..~---.. ---
"'-p .. ;til----iS. ~ , ,...
.... I'
' .,
fJ
~ =
to ~6
R
'
....... !o...
' .. ~" ': ~~ -.. ~
\ ---
\.
\
~
"-~~
, & 10 U$ .
LO
=i
i
-
_l
L:
'-~ ~ .... t--~
\
--
I
..
I , 6 Ul Ui
.. CORRECTED
R, --
~ t=l:~ ....... --~ ---
~
I\
t\--j.
:3
I
.
-~
•
= I
iO us
·-"' -···' (CELSHJSJ
~·-····~--
f! ~~ \'. \
j: ~ \•ff ~
I
F
i
-
I
·-L -~
I
itl !G
t
8;1 -I \ , .. --·--Gill'-... -Gt----
Q ""'-~ ~ ,_.
3 2 ..., .. flfJillllllflfi---i---I "' ...,... ""= ..... -..
~ 11 '
l_
~
llllll.J.o.oliW:N'f
t"""'
-!
am~
0 = ) & 10 §5
All:" .. rlf':s:B ~s· Jt.Jur-~~.. • ...-it-.. _ -D
~r· ----------------------------------~-----------
KCELSl
§_§ ~
z
3
-~ ,,
01
r
!
I
·4.,~
!0 IS
TEMPERATURE-tCEL5JU5J
.0 FT.
no
-e
%.
0
&-
I ~ 1--l--4----1--i--+---+--1-+~-+--+~-~-----+--+--+-_1 n
am~-~L-l--L-J--~~~~--+-~~---~~-1::
~-~
11---ll---"'i"'--·'•" 1-""'··-....W--1---+-.--+-+--+~-r--+---r--t----r-~
~
m
iaooJ---4---~--~~~--~~~~--r--4r-~r-_,~~---,---;··"-~---, 1
I
i~ I I
~~ -~--. w p Q ~ .. " ! 1! ~ ---.... -a2lo G---.. , , z
~ ,.,..,
z
-!!
~
(I)
RF
i
-~
.
I
----
ao Hi
I~"':.!I"U'11 tCIELSHJSD
u
15 15
u ~
't"' ... r-
I' ~ .. , .. ---UJ I
~m 10
I '
.,
I-a a
uJ
.~
~
!; ~
~
.J
IJ.
1-0 :J
0
0 0
CASE E-VI
STAGB Ill
THRBE-ST AGE
FULL GENERATING
INFLOW
-~+------~-----124~---------------~ l2 ...,_ ____ _
......
0~------....
----+---------·--+----
!5~--------------~--------------,----==---------~------------~--------------~--------------.-
u
-----+------------~~---
~--------------~----------------1~--------------·4-------------~~--------------~----------------1
---1----------t---·------i----------t-------
~--------+-----------:1----------+--~-----+-
6.1 Ml
., ::ll
9 ~~
1 l
---...------·-
c.u; i
o.o
15
~
-i .,.,
r
§?
Hl
~
P1
:-I
~
AJ
D
-4
h ~
n
0
!5
u
w
~lO
£<---
ct
0' w
Q.
:1(
w
t-b
~
_J
LJ
t-
.::J
0
0
U.G'ENO· CQ;.£• In\! WA9120£ -~~lQNQ ~RQTI~ I,J.I~VJL C:t:INYOI\! ·~ 202'0 IO'~St [ ~~
frt:MPrs:u:m.JR£
0 c
--1 n ,-
~
~
1'1
~ u
ll'l
..0
D
~
()
~ri!:-il f••J!i PES~ R·iD I P
OUTFLOW TEMPf..RATUPf
A"JO iCE
y
12~~--------~------l:! 12 ......, ____ _
0 ...IL.-----~
15~------------~--------------r-------------~------------~-------------r-------------,-
u
.,.. ____ _...... _______ ~-
-----------~----------------+-----~--~-
·---------~
6~----------~------------~----------~----------~----------~--------·----r
0
L
2'.
3.
4.
Ct~ll.
LO
0.0
15
~
~
ll r-
Q
4.
10
~
P'1
3:
11
111 ..u
TJ
~--!
t, ~
PI
()
0
u:"n 1 -·--.,;.... __ -~ -· !..[\ttl. 2 fj =::! ·-..... -
---
""'
······-·;..c .. t. -IU~
iS QS
·-------~ -----
u
----
w rrso lO
:J ~
~-jV'j
a: .3:
l:r v
IW ITl
a. :n
:.!' D
w -1
1-c
6 r, )lJ
~ m
..J
ll
1-n ::J
0
0 0
!-
:X
0
w .r
too
.
0
I
-.
...
' .. -.. .... -.........
""l
l
! \. . I .. ! I \.
L
i
l
t
1
\ -
s
TEMPERATURE-£CELSJU51
WA8120E -WRT~NA O~ERATtON UIOEVIL CANVQN IN
lLES:
·-
-
~--
..,_ -'1-
-+
--
·---·
iO Hi
w > ~100
w
I
0
...
~
'"-~
I \
i
I
I
~
"'F1
I
" \
I
;
I
r= I
I
I
i--
···--
·-
l . ·--·-l
!
. -+--->--· ·-----1------
--t I
-~. ---· ----+------. l
t --t
5
lEMPERATURE-(CELSlUSJ
XLES:
:::]
1 = i
l
~ --1 ··-·· '-'\ )
i ....___!-. I ~----!-
,_
... ---I -! I /
" I
\ I i
' j
fi -----~ i ! , -
J !
I -~---
I ,
"!'
'
.
-~-----
-1----, __
+---
' i ~ ~ -• ! i
I I
i ! __ _...._ ... ----T ---~-----I
--!--------~ ·-; -·----------·-l l
l -""'~---"'·~· -------i·. ~--~ -~-----l I I 1 -----~ -----~
0 i ! i
0 5
TEMPERATURE-(CELSJ~Sl
W~8120E -WPTQNO QP£~Qi[QN W/OEVIL CQNVDN I~ 2020 !CASE E-61
w
:X:
0
I
0
----~-·
·~ ,
I
I
! ~ -I I
--_./ 1-"'" -
--~~ ~
~ ~
v/ ,
J ..
i'~ -
.
I
tO
TEMPERATURE-CCELS1U5l
CASEv •• WA8120E -WPTANPi OPER~T[.QN W/OE\IiL CANYON IN 2020 fCASE E-Sl um
LE.GENfl,
TEMPERATURE PROFlLES:
1991
1981
1981
r:~ :
g
!I •
~
.
--
1------------
--
.
15
........ ~--,_
200~----~----~---------~--~~~-+----~----~---+-----~----4-----~--~----~----+-----
z
~ __.. K? w
J-
I..&J
:L
-+--t---t----+------+--------1~~ ~
~~50~----~----~--~·lF-~~---+----~----~---+----~----+---~~---+----~--~--+===~ :sc
0
f.-
t-
~
w >
~--~-----+----4--,r-~~--+---~----~----+-----~---4----~----4---~~---+---
----~---4----~--~+-~~----~-----+---~~---+----~-----+---~~---+----4------
\
' ........
~~oo~----4-----~--~----~~--~---4----~----+---~~---4----~----+---~~---+----~
!
~---~----~----4---~~--~-------~------~----4-----4-----~--~----~----+-----------
~---~----~----~----4~~ ~---4----~----+-----~----~------~-----+----+-----+---
t--~f---+---+---H!--4---+--+-----4----+---t---------f--------------1----,l
0 6 10
TEMPERATURE-(CELSlUSJ
CRSE a flU WRB 120E -WAT~N~ OPERQ'T HJN W/DEV I L ~NVON l N 2020 f C~£ E -6 l ~~
LEGENDo PROFlLES:
IS
U'l
i
i
I...__ { !
.. -.. ..,. __ -.. -
-~ !SO ' \
{
w l > 0 ~100
-
! -
r --··-
l I
----·1--
0
\J s 0
TEMPE~TURE-CCFlSJUSI
CASEs aw WA8i20E -W~T~~Q OPERRTION W/OEVJL CQ~VQN IN 2020 4CRSE E-Sl
LECiEt\IJ g
CTED
U~RV
H
l t:\PRIL
PROFILES:
!
-
I
.
··-· -.
. -·-
1 ~
I ! E .
'
-------,_..-
I
\ . I ,.-. II
-\ ;" I -\ I
\
i 'l:
s-o -w r _ _§ . I --·-~·
I
0 10 15
TEMPERATURE-(CELSIUSI
CRSE11 WA8120E -WRTA~~ DPER~T!ON W/otViL CQNVON IN 2020 fCAS£ E-6l
PROFilES:
w >
0 ~100
w
I
0
!-
0
CASEs
LEGEND•
!
I ,
i .£-: :--' !
I ~
-~
r---J lf
-!-I / ~ ---
~~--' 'W --
~ I
l
I
--~-i--!--·--·---~·
.. ---·-c---·--
1
I __ ,_. -·-!----·-+ -+----...
-i .. •·· l -; l
eo· t:---~. ---
I I
I
j
5 10
iEMPERAlURE-\CELSlUSl
WA81ZOE -W~TQN~ QPERAT[ON W/OEVIL CQNVON IN 2020 IC~E -SJ mm
-
·-
·----
. ---···~-
I
,. ..
··--
--
--"" .. --
IS
w
ISO
0
' '
r-·
0
-~ ~ \ i-.-" --------....
: .. -'• .
f
!-
--!---·
-~ -----··-
'
I i ·---·-f.-· -...... -------
---'-·---1---
I !
! -· --r--f---·-----
I
5 10
TEMPERATURE (CELSJUSJ
OCSIZOE -OEV[L CRNVON OPER~T[ON WIWATA~ IN 2020 IC~[ E-Sl •~
PROFILES:
,.
fit
lfJz
-. ---
f..---.
.-.~
1-----
iS
--~----~---+-------
--------t-------
~ ~~~-~---~~~-----~-~----
(.) 1----+---+----+---1---4---t---1------i------~--~-----......__--~·----+--
w I I
I 50~----~--~~---*----~----~---+----~----+---'~~---+----~----+---~~--~--~ I !t---+---+---·+-~-----+----<i-----+------+-----+----.,1------~-------------------+---
D---t-----+---+------+---1---------<11-,------··•• • • -+--t·-·+---~ ---I +---· --
fl------+-~---+----4------,t-----+--t---+---t-----+---1-'--------i-----
1-----11---+--4--·___;~---+--+------------t----·1--·---1-----~-~t-----r----+---
j 0~----~----~--~----~----+---~----~----~----~---~----~----._--~~--~--~
0 5 10
TEMPERf~..,.URE-C CELS 1 US I
CASEs Ill!!!! DC81ZOE -OE\I[L CRNVON OPER~'1'£0N W/Wt:iTANA IN 202'0 ICt:tSE E-Sl m&J
LEGEI\D 11 PREDICTED TEMPERATURE PROFllES:
1 FE8RU(-1R'V 1981
1 MQRCH 1981
t APRIL 198t
I
:1!: a .....
.......
1---+---+--·-t---+--+-----t-------·-+---+---....lj\---~l----f---+----1---
@100~--~----+---~--~----+----F--~----+----+----~---~--~----~--~--~
w ~~----+--+----!-·------f----1----t----+---+---+---+---+-~ 1-----+----+---+--·--+---+--·-+-----+--r-t ·---+----t----t------+----
!-1-·----+·---+----+---+---+-----t---~-~----:--+------+----+--+----6
B a----+---+---t----·-+---i--·---+----->---i ----t---------~ _____ _! ____ -----w ' I ' i
I ~~--~F---~----~--·~--~----~--~----~[ ____ ~l----~---4i----~--~j----~--~ -+~--~---~ ~-~~-~------~ -I --~
1----+---+--·--+----+----r-<--}---------• . t-. -----· -__ · .. ---------.. -lc~At vr
t----+----+---+----+-----t-----tl----+---·1-i: --~~-n --------~--
0~---~----._--~---d·----+---~--~~--~-----~l--~--------------------~
0
TEMPERATURE-(CELSJUSl
CRS£e ~-OC8120E -OEV[L CRNVON OPERAT(ON W/~ATQNA ~~ 2070 !CAS£ E-Sl
LEGE~~
PRED I C TEO TEMPERATURE PROf llES:
1 MHY l9el
1 JUNE 1961
1 .JULY 1981
15
ISO
~
uJ
1-w
:lC
1
E'
0
ll-r ~~oo
1-
I
0
w :t:so
IJ
~-~ I -v--r . -
~ ' I -li
I I
I
_,) ' ' I
I
~----+----+---~----4-----~~--~-----+----~~------+---~----~-----~-----I
I
·---+-I I
i
f
'
I
~---+----+-----t----+·---t----+-........_-+---+-----+---+-----·---,_ , r
I t
l
! I
~---+----~----~--~----+---~~--~----+----~--------~----~-------r
0
l
l : J
I i l : I
l
I I
' l l
lO
TEMPERATURE CCELSlUSJ
OC8120E -OEVtL CANYON OPERRTtON WIWATANR IN 2020 IC~E E-Gl
TEHPERATLRE
1981
1981
1981
lLES:
_,___ __
___ L __ _
I
15
!GO
100
~ :r
0
w
:r50
0
.
~ ~ -
~~
Cl
...::-:: ~-""
~ ' -,,
~-~
---
!
i
I l
i -
I
!
!
I I
/ ! I
J
I ·---~--r--··
-,....._, r-----·-"-----
__ ..___._
I ---t -
5
TEMPERATURE-tCELSJUSI
C~E_, i!ftl DC8120E -DEVIL Cr:lNVON OPERATION W/WATQ~ JN 2020 ICAS£ E-S l'illm
Pr:<tOFlLES:
X:
--:r lg 0 c
f?l
lz ,_.,
:z ..... , ~
tn
r----
·-
--[~i
u
w :r.50
-~~ --'\~.
\ I
,r: :::L~
-· f-· ---
___ ..__
-----·--· I
l --f--·
i
i ! --·--,_ ____
---------
--·-r--
----
I
0 5 10
TEMPERATURE-(CELSlUSI
OCBt20E -DEVIL CANVON OPER~TKON W/WQT~NA IN 2020 !CRSE E-6)
TEMPERATURE PROFILES:
1982
1962
1982
l ~~ ..
r---l
·-
--
----......__._ f------
;gu:~N~:
-
15
'11
0 ::c
f -1 0 --c.
~
\ ... -, -----------1-----------~------
IJz z
f
~ m
U1
-~ l ~--~~---+----~-----~--~~---4----~-----~--~----~----~----------~-----+-----4
I ~ ~--~---4-----+----~----+---~~---+-----~----~----~-----~----~---~
~ ~~ ~-
~~00~~~~~~--~-=-+--~~=-+-~~~~--~~--~--~----~--~---+--~ I r---~-----+----~----+-----1-----+----~----+----~~--~------~---+---~,~---+----~
~--~--~--~----~--+---~---+--~----+---~---+-----~--~--------
! ~ ~--~-----+----~----~----~--~------~------~----·~----4----~~~----~-----t-----~-----~ ~-~--~--~--~--~-~--~--~-----------~-~-~-----
w l: I 50~----~----+-----~--~----~----~----~--~-----4----~----~----~----~--~-----4 1---+--+---+----~-+----+---+----+---l-----~--~------+----l I I t-----1~---+---~--+----1-----+---+-----+-------t --~----+ ---+----~-----f--
1
------·-
Jt---1----+---+---+---+-----t---+---+----f-·---t-----------+--·-------1------
~--~~---+----~----~----~---4------+-----~-----~----~---~-----+----~--
TEMPERATURE-(CEL51USJ
CRSEv t~ll OCB120E -DEVIL CANYON OPER~TION W/WATQNQ IN 2020 ICASE E-Sl ~~~ SIJiUNta~cr l"ittDU.
LEGENDs
llES:
DE 'II L C~VON RESERVOIR
TEMPERATURE PROfiLES
1SO
eoo
-w rso
0
0
CAS~="• OOit! OCBt
LEGENDs
I ; I l
.J.. ~ ---r--~ --:..%
p -
~~~ I~-~ • --· / . ---,_r -
J/ ~
I
--··
I
TEMPERATURE-(CfLSlUSI
-DEVIL CRNVON OPERATlON W/W~T~NA 2020 I
!LESt
-
I
E-S J
1,.)
i
·-
~ ~-~----------------
15
CON£
vr~vr
u
~~o~------------~------------~------------~----------~~------------~---------=-1-a~
t;-a
0£:
ll.5J
0.. ~ w
~
IN 2Cm IE-'\1~
D.C. W7:n. W.$. E/. J4.t$£,O
-0
/
ss I&
u
~10 i@
i-a
Ct'
lLi
0..
%' w
I ....,
& ;
~ u. ...... .....
::3 n
0
0
15 Hi
u
w ~-0 Ui
...... a
1% w
Q..
~ r:-G s
f5
J u .. _,
t-
;;::) 0
0
0
iS as
u
~to ilO
e-a ot us a.
X w
II-&
~ u.
~ n :'.)
0
n&:-vn-D'ta
D,C, ,.,,-,, W.f. €/.144-'-.0
55 85
u
UJ sm " ,
!1-a a: u.a
0.
ffi e-G b
9
til.. t-0 8
0
g) a ., .i5)
--lfJ,l
~:~,2 O.&i
0 o.o
iN 2002 IE-Vi-021
D. c /VI/" 1·\.·, S', £1.14-4-b. 0
i5 ~6
u
I.A.! Sao m
1-a
f.% w
Q.
~ w
t-
& 5 a
.J u.
1-0 ::J
0
us as
u
UB ~10 10
....... a
r::l!: w
0.
X w
1-G &
d
...J u.. ..... 0 :l
0 . '
c
15ap--------------~------------~~------------~------------~--------------~--------------Pt~
u
.---------------+---------------~-------------.. ----------------~------------~---4---------~----~ s~o~------------~------------~~------------+-----------~--------------~------------~'0
c-o:
01::: w ~ w
!>-
[5
u
, '
~m t #'\ ..
I
' ' ~ a a w
Q.
l: w
~ \1;
f§
...J u.
~
::::ll
0
0
I....IDJENID I ~ 9 -OC9l 02M -0£\1 I L CANYON OPEr:tAl iON
~r~ &U1.~TION --WQI!'m£&1' WQTER rFU..L
----PR£01 CTW OU"fi='LCN 'f"EMPERQn.AE
·----~ .. 1NFL~ ~Ql&.IR£
~rEG· 1. 2.
i. "·
Hi
~ ....a
"11 r
i?
~0
b
0
0
85 15
u ~ -a
"'ll1 r
~10 ~ ao
:::>
~ cr a:
UJ
Q.
2: w
~ r; 5
~
iJ.. t-
::) 0
0 ••
0
'LA,..,. .......... E~-1
STAGE II
TWO-STAGE PRO
LICENSE APPLICATION
AS iS
u
&.A.! ~110 ao
._
a a w
0..
l: w
II-G.
~ u.
t-
f5
0
u
m L~
z~ -GoO~ -ile
I a'4
e! If
0.~ :Jg
0 o.o
tS IS
u ~
-4 ,
r·
~to ~
l t tO
1-a:
0': ' uJ . ' I ,,£1 •
n
X. w
~ ' ' ~ u. t-
:J n
0
0 0
u t-------+----~,--+-----~~--------4--------·--+-------11-----+,.AL
u
l
t
I
I
f
I
i
I
1
I
l
z
I Zd~--------~·----~---~~7~--------------o~-------
as
u -~
-----
w S Ul
1-a
tt
La A n.
1: w
&-G
d
..J u.
1J-
:l
0
·----------------
I .I
l j
---~ ~ -~---------
INTQ~E PQ~1 L£V£~ 1 ~1
iNT~Ii PQIH L.£vEt, 2 ~11
1 NfCK<E P();;jl lEVEL i A'V
[N""AKE ;J:)I:;jil t..EVEL. 411 AT
!N~QKE ~~, LEVEL 6 ~~
CC~Ifi. vtl_\11~ :.:. i' liLEVIJ1 10e,.
~t=;_u,.~~>' c~t:;r Qf ~-fv~r
--.. -----------------------~-~------------------
..... 36 "'1""---------lf.--.-----
• Z#ll. 1"=--------
Bl~--------------
.,.._., ________ _
u
------·----7--------------~----------------+-------------~---------------~~--------------~
10~--------------~---------------+----------------P-------------~--------------~--------------~
I ------
\
~,
I
I
I
I
u -+-----+----~--*---+------{~
UJ2U
·----PQ[DI :TED OiJ'i'IFLO'loJ TEHPEAQf~
• -.. ----I ~L~.~ n:~j:)£R~"'~E
~'VEGa i. fl'.,f~l(E PC!Ql LE:vE. ... : Q'f £1..£VA'I10~ !42'S f=l B
2. u ... ro~E PC£;J1 L£i.'f~ 2 "1 EL.tvt::n !Of\\ t37& !='1T u
.:p C(!'~Jii£. .; ~;_ 'i£ ~-i:.-£"' ::::n Ol\ 990 r: 1 'ao 1 . 1~ "1 4 GPi_lwc~ CR£6i Qf ~-£~~¥~~ 1~04 F~ I4Z7.9~
~--------~--------+--------~--------+--------~--------~-------~--------+-------~
t· --------~------~~-------;--------·~------·---+--------+-------·--~-=----~
.
I
G .. c::aHl2u -Q[v IL C~VQN OP£Rf:;liQN IW/WAYQHQ
-:"(MP(!aATUAE
-E~£L ! ~· E-fVC110h
_[v£_ 2 ~~ tL(JQiEO~
~;~L 01 EL£\itr I~~~ 990 F"' l
"Q£Gf :l"' Eir·.f..lfJCJ'J L4.
~,. __________ ----· -·
~ . ~ t± 53 !!'
i3
,4
t'""' ... ..._
• ~ iS ' \
\ .
'\
l
I
.
l
I 10 Bi
i02U-
!'-·-
.
~ -, -~ . ~
t;
-
--
[ ' -
0 5 nt» 5
IL
-
~
~ ~
~
~---~ 3 -i'\ ...-.. -r ~»-'
<$
·~ r--___ ~ -........... -~ ·--ib
\ : -
~\ 8
6
1--· \-if--
U:JO
\f:--
.
--
?_...,... --
--~
I
5 tO 5
ltJ!IT '"-rw"''l ~
IN
I -
-I td ----_;----S:S u . 12
I I , .. _,.,-3
V' ~
-6
I
I~
_.,._
:) :I
,_
-
--~----
Ef ,!!-
.
t &G 5
TEMPE~; CELSJ !
IN 2002 d 1.
... -~ ~ -
2
.3
~
' ~
! ....
& -..........
.......
--
15 Ul Hi
H ... B •
~ 8
~2 -
t!
r·._~ " 4
i& -......
"" ' ..
--
U) ~5
iL
m
.2
......... 3 -' 4
-&
-
I ~0 i
N
i---·
l
-
i
-------12 , .. .. -' I 3l
\ a .. "'
4 ... I"' ~ -' . --,.
4/ iS r--..... ..
I ."'-
-·---·-
-~ --·-f.·--
t-·-
& 10 15
USI
fN U -K. S2 i
.\
~
w :r.
·---r---
.. _ ... _
100
I
l r -
-·
l
;
...... -_-:::t_ -I
~ -~·
;--~ r---~;...
·;;-!--:
~ ......... ~· --~ ~ -
0 ~-
r-·-·-~~~ .
• 'l
I" 't
1 ·-r--·
---------___ .... _
--·
-·
! -··-·
-
So Ul
TEMPERRTURl-£CELSI
-WATANA OPERAT[QN IL CANVOI\t IN
EEl B
2
:!\
41 -
&
·-
·-
--!---•
i
I ! r
l
!
' I
t I
' -
-
\ ... -. ~ -... , I
~
~
i '· ~~
.. ---
·-I-
-·
--!-·
I
: l
~-T -
) 5
TEMPERAYURE-tCELSI
CASEe ~• OCB~02U -0£Vl~ CQNYON OPERATION
PR=CICTEC TE~PERATURE
t 1\JvEM:lfR 198:1
l :tE CE f"iBER :58:
1 ~ :~t-.J....~R 't : SEH
XlES
. ~ _,.,......,. ~ ,_.
.~
-·-~ ---·-i
r------1--J! ~
i 2
·-· ~
fJJ
-
I .
i
--~--r-------
-
--
·--
--;c~
J ·-r-·--
Ul 5
' -t •
( ~ m I j
Jl~ IZ ~ ~
b--~
·-r---r-·--· :-
--
-
---~
-
• 5 90 rns
TEMPERATURE-lCELSlUSD
tL CANYON
-
! "' ---~"'
~ ~--c ---"------1-~ " --""" ..
I" P
L..-----~ [ f
'---~--"' r---~-
~--------
/""""
~
·---
~ -
·.
·-1-------I
0 5 tO Ui
L IN
-fA--I
I D
I
I
! I/ I Is
I /J IJ
I
' ) '
<
¥ ,
I .
s
I, i , I . :
I t
) , ·-' I I I ' ~ ---. . v I I
1 !
r e
I I . J
I I I . I
I I I I ,
I I
ll --. II t
I
B
i I
i
I I
! I lj
CCELSlUS»
' -
~ ~ -~ .;.,.,., .: ... __ -. ' ~ s
'
, ..
-Q . .
b..__ I
'l :-.. ,_ __ iz ~
'-1-· ~ I it
I
(
I tOO
---~ l
) r
·--·
r -·
l -·-
~>-·---;m~ -
-
t
5 Ul 5
~02U -IL C~NVON OPERRT
!
X
0
~-
t· naoo m
&-
I
0
f-----L·-----.
'i~\ I I
~
~-----1-·
---
I
t02U -DEVIL CRNYON
. -
-
~
1----I r----
--!-·
t
-~
5
........
I ~
~\ . -.. ----... -.. ---.. --....... . ~ -
I' ~ ~
I
'\ * . -~ J
\e r-
__ ....,..~
12 d , "" -. -_ .. --~ ~~ -
A'
·---
f--I
I
I r
' I -
• r
j
I
I ~~
I
3
II
l 6 ~0 i
T[Mr't.t<'fi ( j
DC8102U -lb. CANYON OPE.RAT
lES:
,_\ I
~ i
I
I . I
I
I
a
CASEs i02U -
I
~
/
I
I
L.
-
d -.
d ,
5
(L CRNVON
__ .,. ..--'
.
,
"
; ,
.
I . ,
il
0 ..
. a lfj! p
I
)
, ~z F
/ c ~ -----;
" ( ,
f
Q
J
,
;
I .
L , ')
/ I -,
# D
.1'
.. I
t' ' • ·-I
I
I I
I f-· I -
A -~ I
I -Q
I
~0 as
(CELSX
u
?.4~--------------~-----
·~ +--------
0~--------
. ----------~ -+---·----------+----·---.. -------
'---~-----------~--_.,. ______ ·~------·----~---·-----·-------. ·-------------···-.
-··--··--------------------··--1'--
-=~--~=--~--=-r==~-==--
0
l9BI
--·---···~-.. ~~ -.
j . ~-----~---··--------------
' ·+
0.0
()
u
c
L.EO£NO • ~ , ~~~ t.AQQ 1 zoo -wATt:•u=~ Of"tQQ'i"! lJ'\1 ...1."0!:: vI L CQNVON l N 2a?O r LAS~ £ -1 1
PR(Ct:TEO QUT~LOY TE~P[RQTUR£
t NfLJw T£i>1P(J1C1~
!
-------1--· ---------------~
!':;,
iO
~-
0
l)
I
-I
11 .. -
Q
'i__
·I
ffl
-~ u Pl ;u
lJ
{
r
jj
IT'!
n
u
0
LW£NO, CCil&£• -a..!AeiZOD -Wc:li~Q OPE~t:!TION W/llli\llL Ci:tNVON lftd 2'0?0 iC~ t II
Tfi'M!P[RcaT~
.$ "l 7 ~~
9 Ml
t t-tl
---__ _J_---rr---
--____ ! --------·----
--·---·----
t .. ··-·--... -----.
I 0
(I'"]
-~
D :rl
A.l
lJ
~
tjl
u
12+-------
o~------~
----------------~------------------4r---------~----~~----------------~--·-------------·---r·----------------,
-------~---------
-+------------------4r--------~--
------~-j_
---~--·-·------+--------
0
0.0
n
15
u
w
C(lO
:J
~ a
0:
Ul
~
L w
1-5
2i
__J
LL
I-
::l
0
0
-~------+---~ --------+----ll
----------------+--
~-------
----~--------+-------~--------~--I
u c
. {
n r-
CJ .,
-t--------~------~h-~~.-~~~~~dr~~~~---------~--------4-------~~-------+--------~------~--=-----+-to ! . ~
•'
-+-----+------fT1 ---~~~-~-~~---~---~---~------~_-_-_ •.. ,. ~
',, c -t------~~~~~~~--------+---------~·~~~-+--------~----~----~--------~--------~------·-+------~---+--------4-~ ~ Pl
.-....... -----+-----------
-'· i
' .. r2' .
I ""' ~ ~
I 4
'-..... I
~
'
"
"'ll
......
--
tOO
---w ·--·--···-"-· ·----~
I -...---r---· -----
l I
I : .... -·-
-~·--· --
'
. -·
l ! --·
0
5 HJ ~~
-lCELS1USB
iON IN
~--~----~·----~~~--~--~~--~----+---~-----+----~----~--------~--~~--·~ ~160~----.---~~---t:L~~F-+---~-----F----+---~----~----~----~---+----~----~---1
~ ' »-
fti
!00~----+---~-----+-----+---~----~----+-----4----~----4-----~---+----+-----~--~
-----·-____ ....,...._--+--4--------· -----·
0 5 tO iS
TE~P£RRTURE-£CELSlUSJ
W/OEVJL iN
~
~ I __
12' ·-J--
.l ~-~--
I ---~----~ , ,-
J-
.>l) I.;-
'-:----__
\
-~ 1': "" . ' ' .,..,J
J I
100 ·-
' I
I l L----·-
i _J
i l ------1
j _i -
0
0 iS
TEMPERATURE-CCELSlUS~
ION iL CRNVON lN 20ZO lCASE E-ll~~
-; i$10
z:
0
&---
1-
@
!00
.......
l5
w
J:
50
I
-I
.r: r-----~---4-----+----~--~4-----+---~~---+----~-----~----4-----4----~----4-------/.' ~--~~---+-----+~---b~~--~----r---~-----+-----+----~-----~----+-----~--~--~ ~---~~---4-----+----~----~---~---4~---+-----+----~----~----+----------+----~ ~---~--~----4----+----+---~' _ __j_ __ -4----4----+----~--~----~--~--~ i
~~------il--------4----i----...f---+----1-----4-------+----i----1---+---~---i------------
i---------+------1---~·----
l
!
---1--1----+----~
TEMPERATURf.-(CflSIUSI
WAB1200-WATANA OPE~QTtON W/OEVIL CANYON IN 2020 tC~E E-il m~
PROFILES:
12
IE ' I
f
--~-!>
II
2
-+ !I 3}
!l • i4 9
I .
\
\
'
\
\
\ I
100
'----~ -'----~--~
--I ---
l --~----
I l
i -I
l
0 s IS
TEMPERRTURE-(CfLSl
CetSEe -WRTANR OPERATION lL 2020 (
1LES:
w .r
...
U'JO
' ~
l
I
..
~
\
\
~
s
~ I
I
~
__ ,_.
!
l -·--·--
I I ·-
i
10 Hi
-lCELSl
iL IN
'
~
!2 . /----. i---.-
' , ... I 3l v I -
/'
.. l I ~
I -
\ I , -\ I !
\ I
I I
l I
I
\I I
1100 \t
I
I
,L
I I
I . -!
.! -· ----f--
I I l ; l
I T
I -~
l' ·->-----! ---
II '
I l: l I I
I
------
il
5
tCELSJUSt
tON
LES:
. ~
-,~
I
/;-~ --~ ~ 2
J ,-~--1-/ l:il
~'---.. "'~
-I
100
--
= -I _,.
!
-
--------
I
0
0
TEMPERATURE-(CEL51U5l
iN fCQSE IE-il
1
' ... \ . _ .. _l . .... --....
~
~ ....
UiO '----~.
'
...
'\ -til ,,
100
l
l I I
I
i --· ------,__ __
l I
---... -l ----
J l
0 l
s 10 15
TEMPERATURE-£CELS1U5l
-OEV£L CANYON OPE~~T 2020 CCASE
iLES:
0 5 10 iS
TEftPERATURE-(CELSlUSJ
w
:r50
0
' -~ -~
'--*1" -
1---~ -
~
\ ---"" --'\ -.~ /"'
\ ---I .,..,.---~---.,-
,. I
/
;
,
I
I ,
I
~ !
I
1----·
l
l
I
0 5
TEMPERATURE-CCELSl
OC91200 -DEVIL C~NVON OPERATION WIWAT~NQ lN 2020 lCASE
l
!
-
II
! -------I
-
I (Oilt.
!;11{1_ \ll
I
---
#
~ .
* -! ...
. v ,
/ -,
I :..---
I ,~
~·. j("
: ;;
-
! .~I 1 I
'V I
f 1 -I .)l f I I
! J v. ,
/ I l >-----~-I . ' ---. -·-/ 1 I ~
I I l J l
j
I -,> J I
-----~ ---·· ·--I ·------
I
I I l
IJ I I
7 --··-----
I ~· I
0 !( ' tl '
0 5
TEMPE~TURE-(CELSlUSI
!200-DEVIl CRNVON OPERRTION W/W~TRNQ IN 2020 lC~E E~li
iLES:
f
I --
I ---,_. ___ .,.
---.. _ -~ '-, i
....... ---' -_ ........ ,t~_ ; li --1---··---·------
i
I '\... __ ljz -
r
)
7 --
I I I
rJ l
---
--.... ·-·
-·-1 ·-···-
w
I so I I I j !
I i
l !-"--t -I ----~ '-·--·-f-· f ·-
i i ----____ _.... .. -~u~ I I ·---~~ ---+-------I
I I
!--·· ; ! --. --
i l
I I i
0 5 10
lEMPf Rf.'fT l.F(£-t CELS JUS I
CASE! OCB!ZOO-OEV[L CP.NVON OPERq~:o~ WIWATANA IN 2020 rCASE ~ll
PROFILES!
&? w .,_
w
X:
l
J:
0
1-
w > ~
e-r
(_')
w
I
tSO
100
50
'\'l"'''tll. -----~ ~~----~~----+--.$~":'...~!-""'i'----t---+---t---·----------+----+----
1 ! ----· ~---
1
~--~~---+----~--~-----+-----~-----~~-----+-----·~----~-----------+----~----~----
11----'------1--.....-+---+---+---+---~ --·--·f.--·-----~--~----+---+---~---ll
;
--1---·-
~~---------~~--+----·----· --~---+----+--l-~1~--------i-----~-----il----+ 1 !
... -. _ _.._ ---·----~ ··--·-··-. ------+----+---i------. . -mu:~~.~ B-----~--4---+-+-·--f------·-1-i: --·-+-·----·--,___ -----+-->-----VR:li!E
----
t--.....1-------+,----+----.... -l . . ... ---~--+--+------i--
0~----~----~----~--~~--~----_.----~----~----~----+---~~--~----_.----~--~
0 s IS
TEMPERR~L~E-lCELSlUSI
CASEs •~ OC81200-OEV[L CPNYON OPERQTION W!W~Y""nt-~ TN 2020 (C~E E-ll !iH~
PROF1LES:
100
c-
I
0
w
ISO
0
I
I
0
I
l
!
--l \ ---~ ~ . -------""' ---.., -... --
-·
1 \ I ' & I ..
\ I __.j--i-
I --i-----1 -#-
I ~ ~ -
' I~
I
A
I
1
i
i -
I
I
I
t
1
I
l
I
I
I
I --
j_ ---
!
s
TEMPERATURE--C CELS l US l
1200-DEVIL CRNVON OPERATION W/~~T~NR IN 2020 ICASE E-ll
P~OFILES:
!Ji -II
\
l
---·
-.--
: l
-~
------
15
I
iOO f
! I
·-I
i
'J
·-·-; ---
I I
I
i
i
{
-t --Y/11 /"-+-------+------+----4--t-..........jll
' I
I
1 /
J
li-::r
I
I
0 -
w I
:rso
l
I I .
1
i i
I
i
---
I i---
i .1
l I l
' I
0 5
TEMPERRH..RE-C CELS J .J~j J
-OE:VXL OPE:R~TXON JN 2020 ICf:lS£
LESz
u
tz-r----------,----
0~----~~--------~ 0.0
--------+--------.-·---~ ....
as-P--------------~--------------~----------------~-------------r--------------~---------------,-a~
TV r·-
0
;i_
HI
--t
• v l
.l:: u
I
-··--·-------+
fl;
.u n
c
[:, ::0 rn
n
0