Loading...
HomeMy WebLinkAboutAPA3423I.. , SUSITNA HYDROELECTRIC PROJECT FEDERAL ENERGY REOULATOAY COMMISSION PROJECT No .7114 INSTREAM FLOW RELATIONSHIPS REPORT SERIES RESPONSE OF CHUM SALMON SPAWNING HABITAT TO DISCHARGE IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA TECHNICAL REPORT No .5 PART B "REPAAED 11'1' FINAL REPORT UNDER C ONTRACT TO OO &IRl;g &=~fID&@©@ SUSITNA JOINT VENTURE JUNE 1 Dee DOCUMENT No.3423 Alaska Power Authority ==~ k •..j " <0 LD r-­ N q­ q­ .. 0 il 0 c 0 LD LD r-­ M M Instream Flow Relationships Report Series RESPONSE OF CHUM SALMON SPAWNING HABITAT TO DISCHARGE IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA Technical Report No.5 Part B ..........-' .....- ,"" ~ # Prepared by E. Woody Tri hey N. Diane Hilliard Trihey &Associates -­, .... -......_._.----- Instream Flow Relationships Report Series . RESPONSE OF CHUM SALMON SPAWNING HABITAT TO DISCHARGE IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA Technical Report No.5 Part B ... Prepared by E. Woody Trihey N. Diane Hilliard TK f4~S­ .s8 A;).3 v\o, 3'f~3 Trihey &Associates NJtJ!ilCA ~T. Of fISK "GAMI . ,.... .~ .," -" #' ",:"h_. ~~-'\.. .. .....~~.. '." Under Contract to Harza-Ebasco Susitna Joint Venture Prepared for Alaska Power Authority Close-out Report June 1986 ARLIS Alaska Resources Library & Infonnation ServIces Anchorage, Alaska --.,,""......~----------_. t •._, , TABLE OF CONTENTS Page TABLE OF CONTENTS •• ................................................... i LIST OF FIGURES ••.•••• ................................................ ii LIST OF TABLES ••••••• ................................................. iv PREFACE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• v I NTRODUCT I ON •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I-I CHUM SALMON BIOLOGY IN THE MIDDLE SUSITNA RIVER ••••• II-I Migration and Spawning Period ••••••••••••••.•••••••••••••• Es ca pement .•.••...••....•..••.•.•.•.•.•...•...•.•.....•... 11-1 11-1 METHODS ••••••• III-l Genera 1.•..••.••.•..•...•.........•...•.•.•.•.•.•...•.••.••. II I-I Direct Input Habitat Model •••••••••••••••••••••••.•••.•••••• Habitat Modeling •..•.•...••.••...•....•.•.....•••••.•.•.•.•. III-2 111-4 Mainstem Margins ••......•.•.•.•.•••.•.•.•.•.•••.... Upland Sloughs and Backwaters ••••••••••••••••••••.• Side Channels •••.•••• 111-5 II 1-6 II 1-7 Side Sloughs •...••...........••.•.•...•.•••. 111-8 Extrapolation to Non-modeled Sites •••••••••••••••••••..•••..•.•.• 111-8 RESUL TS •••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••• IV-l ...................................... Mainstem and Side Channel Margins .•••••.•••.•.• Upland Sloughs ..•...•.•.•••.•...•.......•.•.••. Side Channels •••.• IV-l IV-lO IV-13 Sloughs .•.....•.•....•••••.•.•••••.••.••.•.•......•Side IV-16 APPLICATION •••.••••••••. .............................................. V-I REFERENCES CITED •••••••••••••••• VI-l co LO r-... APPENDIX A N ~ ~ APPENDIX B 0 0 0 APPENDIX C LO LO r-... ('t) ('t) APPENDIX D Point Fi 1es •..•• ....................................... A-I Point Files ...••...,••.•.....•.•••.•.......•..••••.•.•.• B-1 Development and application of "Restricted Passage 'l criteria for side slough and side channel habitats •.........•...••..•....•...• C-l Comparison of WUA and between site-specific forecasts 1984 escapements .•.••••.••.•••••• D-l i ......-_...._-•._---_. '''.,,''''._-,---.........---.~----"--'''--_ ... LIST OF FIGURES Figure Page 1 Breakdown of chum escapement to habitats in the middle Susitna River...................................... 11-5 2 Three step process to extrapolate chum salmon spawning WUA curves from modeled to non-modeled specific areas ..•.•................•..............••...... 111-14 3 WSA and WUA curves for specific area 118.9L •••••••..•••••. IV-3 4 WSA and WUA curves for specific area 119.1L .•••.••.••.•••. IV-4 5 WSA and WUA curves for specific area 125.2R •.•••.••••..•.• IV-5 6 WSA and WUA curves for specific area 134.9R •••.•••.••••.•• IV-6 7 WSA and WUA curves for specific area 138.71L ••.•••.••••••. IV-7 8 WSA and WUA curves for specific area 139.01L •••..•••.•.••• IV-8 9 Composite WSA and WUA curves for the ten specific areas classified as mainstem or side channel margin habitats........................................... IV-9 10 WSA and WUA curves for specific area 135.6R............... IV-II 11 Derivation of generic WSA and WUA curves for upland slough and backwater habitats...................... IV-12 12 Composite WSA and WUA curves for the 13 specific areas classified as upland slough or backwater habitats.................................................. IV-14 13 WSA and WUA curves for specific area 114.1R............... IV-17 14 WSA and WUA curves for specific area 128.8R............... IV-18 15 WSA and WUA curves for specific area 131.3L............... IV-19 16 WSA and WUA curves for specific area 131.7L............... IV-20 17 WSA and WUA curves for specific area 136.3R............... IV-21 18 WSA and WUA curves for specific area 141.4R............... IV-22 19 Derivation of generic WSA and WUA curves for side channel habitats..................................... IV-23 20 . Composite WSA and WUA curves for the 12 specific areas classified as side channel habitat.................. IV-24 ii -----------_.~._, LIST OF FIGURES (Continued) Figure Page 21 WSA and WUA curves for specific area 126.0R............... IV-26 22 WSA and WUA curves for free flowing segment of specific area 126.0R...................................... IV-27 23 WSA and WUA curves for specific area 141.6R............... IV-28 24 Composite of WSA and WUA curves for the 11 specific areas classified as side slough habitats.................................................. IV-29 25 Total WSA and WUA curves for habitats in the middle Susitna River...................................... IV-3D 26 Aggregated WUA for middle Susitna River habitats •.••.•••.. V-2 iii -- LIST OF TABLES -------._-----_... Table Page 1 Estimated escapements of chum salmon into the middle Susitna River relative to total basin escapement, 1981-1985..................................... 11-2 2 Peak index counts for chum salmon in the middle Susitna River by habitat type 1981-1984 11-3 3 Total chum salmon escapement to sloughs upstream of RM 98.6, 1981-1984............................ 11-4 4 Percentage of 1984 chum escapement repre­ sented by model sites..................................... 111-5 5 Tabulation of specific areas by habitat type indicating approximate breaching flow, length of spawning zone, estimated 1984 chum escape­ ments and percent escapement to specific area •••.•....•••• 111-10 6 Hydraulic classification of mainstem and side channel margin specific areas............................. IV-2 7 Subgrouping of side channel sites based on breaching flow and morphologic characteristics............ IV-15 8 Subgrouping of side slough sites.......................... IV-25 iv -----~.'-~"""'-"-----'--............----------------_.­ PREFACE In late 1982, following two years of baseline study, a multi-disciplinary ana lysi s was i niti ated to quanti fy effects of the proposed Susitna Hydro­ electric Project on existing fish habitats and populations and to identify opportuniti es for miti gati ng any adverse effects whi ch mi ght occur through controlled flow or temperature releases. This multi-disciplinary effort is referred to as the Instream Flow Relationships (IFR) studies. The IFR studies focus on quantifying the response of fish habitats in the middle Susitna River to incremental changes in mainstem discharge, temperature and water quality. As part of this multi-disciplinary effort, a technical report series was planned that wou-ld (1) describe the existing fish resources of the Susitna River and identify the seasonal habitat requirements of selected species, and (2) evaluate the effects of alternative project designs and operating scenar­ ios on physical processes which most influence the seasonal availability of fi sh habitat. A summary report, referred to as the Instream Flow Relationships Report (IFRR), would (1) integrate the findings of the technical report series, (2) identify the biologic significance of the physical processes evaluated in the technical report series, and (3) provide quantitative relationships and discussions regarding the influences of incremental changes in streamflow, stream temperature, and water quality on fish habitats in the middle Susitna River on a seasonal basis. The IFRR consists of two volumes. Volume I uses project reports, data and professional judgment to select evaluation species, important life stages, and aquatic habitats most susceptible to project induced changes in streamflow, temperature and sediment transport. The report discusses a variety of fluvial processes and ranks several physical habitat variables with regard to their degree of influence on fish habitat at different times of the year. This ranking considers the biologic requirements of the evaluation species and life stage, as well as the physical characteristics of different habitat types, under both natural and anticipated with-project conditions. A draft of Volume v "-'"~"--~'---'--------'.. I was prepared in March 1985 by Trihey &Associates and Entrix Inc., with the final report published in December 1985. Volume II provides a logical sequel to Volume I by addressing the third objective of the IFR studies which is to provide quantitative relationships on a seasonal basis regarding the influences of incremental changes in stream­ flow, stream temperature, and water quality on fish habitats in the middle Susitna River. The influence of incremental changes in streamflow on the availability and quality of fish habitat is the central theme of the IFRR Volume II analysis. Project-induced changes in stream temperature and water quality will be used to condition or qualify the forecasted responses of fish h~bitat to 'changes in streamflow. Four technical reports are being prepared by Trihey and Associates in support of the IFRR Volume II analysis. The function of each report is depicted in a flow diagram and described below. 1) Quantify Wetted 2) Assess the Representa­3) Determine Site­ Surface Area tiveness of Modeled Specific Hydraulic Response and Non-modeled Sites Conditions 4) Quantify Streamflow-Dependent Habitat Response Functions for Juvenile Chinook and Spawning Chum Salmon 1) RESPONSE OF AQUATIC HABITAT SURFACE AREAS TO MAINSTEM DISCHARGE IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA This report identifies five aquatic habitat types within the middle Susitna River directly influenced by changes in mainstem discharge and presents the necessary photography and surface area measurements to quantify the change in wetted surface area associated with incremental decreases in mainstem discharge between 23,000 and 5,100 cfs. The report also describes the influence of mainstem discharge on habitat transformations and tabulates the wetted surface area responses for 172 specific areas using the ten representative groups presented in the Habitat Characterization Report. Surface area vi ._------,-"_......__..,------, measurements presented in this report provide a basis for extrap­ olating results from intensively studied modeling sites to the remainder of the middle Susitna River. 2) CHARACTERIZATION OF AQUATIC HABITATS IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA This report describes the characterization and classification of 172 specific areas into ten representative Troups that are h*drologi­ cally, hydraulically and morphological y similar. Emp asis is placed on the transformation of specific areas from one habitat type to another in response to incremental decreases in mainstem dis­ charge from 23,000 cfs to 5,100 cfs. Both modeled and non-modeled sites are classified and a structural habitat index is presented for each specific area based upon subjective evaluation of data obtained through field reconnaissance surveys. Representative groups and ,structural habitat indices presented in this report provide a basis for extrapolating habitat response functions developed at modeled sites t60 non-modeled areas within the remainder of the river. 3) HYDRAULIC RELATIONSHIPS AND MODEL CALIBRATION PROCEDURES AT 1984 STUDY SITES IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA This report describes the influence of site-specific hydraulic conditions on the availability of habitat for juvenile chinook and spawning chum salmon. Two aquatic habitat models are applied to quantify site-specific habitat responses to incremental changes in depth and velocity for both steady and spatially varied streamflow conditions. Sununaries of site-specific stage-discharge and flow­ discharge relationships are presented as well as a description of data reduction methods and model cal ibration procedures. Weighted usable area forecasts are provided for juvenile chinook at 8 side channel sites and for spawning chum salmon at 14 side channel and mainstem sites. These habitat response functions provide the basis for the instream flow assessment of the middle Susitna River. 4) RESPONSE OF JUVENILE CHINOOK AND SPAWNING CHUM SALMON HABITAT TO MAINSTEM DISCHARGE IN THE TALKEETNA-TO-DEVIL CANYON SEGMENT OF THE SUSITNA RIVER, ALASKA This report integrates results from the surface area mapping, habitat characterization, and hydraulic modeling reports to provide streamflow dependent habitat response functions for juvenile chinook and spawning chum salmon. Wetted surface area and Weighted Usable Area are the principal determinants of habitat indices provided in Part A of the report for juvenile chinook at each specific area and the ten representative groups identified in the habitat vii . -~-~_.~.. ._,----, characterization report. Part B of this report provides habitat response functions for existing chum salmon spawning sites. The habitat response functions contained in this report will support an incremental assessment of the rearing and spawning potential of the entire middle Susitna River under a wide range of natural and with-project streamflows. viii ".~._'"e...._e_...__...__..".....ee ••e~.__• e •• ,.__. e ._ e _ 1. INTRODUCTION The goal of the Alaska Power Authority in identifying environmentally accept­ able flow regimes for the proposed Susitna Hydroelectric project is to main­ tain existing fish resources and levels of production (Alaska Power Authority 1982). As described in the IFR Volume I, this can, in part, be accomplished by the prudent selection of appropriate operational flow and temperature regimes. However, to do this, it is necessary to forecast the response of fish populations in the middle Susitna River to incremental changes in main­ stem discharge, temperature, and water quality. Forecasting the response of fish populations to altered streamflow conditions can be very complex particularly when anadromous species, like salmon, are involved. Because these fish spend a significant portion of their life cycle outside the project area, increases or decreases in population may be more attributable to factors affecting ocean survival or escapement than to project induced alteration of fluvial processes or environmental conditions within their natal streams. To avoid many of the uncertainties associated with forecasting the response of fish populations to altered streamflow conditions, fish habitat within the affected stream segment may be used as a response variable (Stalnaker and Arnette 1976, Olsen 1979, Trihey 1979). When using fish habitat as the response variable, the direction and magnitude of change in habitat avail­ ability or habitat quality is used to indicate the response of the population. Although the relationship between fish habitat and fish population is not necessarily linear, it has been found by some investigators to be positively correlated (Binns and Eiserman 1979, Wesche 1980, Loar 1985). In the IFR analysis fish habitat is used as an index of population response to project induced changes in streamflow, stream temperature, water quality and fluvial processes of the middle Susitna River. I-I ".. -.~~-----~,,~~ •.~~.-._-?_" .. ...,..-~._"""--_..~-....._~._~~..,,........-..--__. .. .i . ~------_...-...-,~~"..•~._ ....,,.,"<,",•. ,,,~,~,,.~~» "",,__, <,_ Six aquatic habitat types have been identified within the middle Susitna river (ADF&G 1983, Klinger and Trihey 1984). These are: 1) mainstem, 2) side channel, 3) side slough, 4) upland slough, 5) tributary stream, and 6) tribu­ tary mouths. Because of the complex stream channel geometry in the middle Susitna River, the type of aquatic habitat which exists at a particular location, its surface area, and quality respond to changes in streamflow (Klinger and Trihey 1984). Access by fish to habitats located along the flood plain margins is also strongly influenced by the streamflow level of the mainstem Susitna River (Trihey 1982, Estes and Vincent-Lang 1984c, ADF&G Su Hydro 1985a). Of the six aquatic habitat types identified within the middle Susitna River, mainstem, side channel and side slough habitats would be most directly affected by the proposed project (Trihey & Associates and Entrix 1985). Project induced changes to physical habitat conditions at tributary mouths and in upland sloughs would also occur. However, these changes would not be as pronounced as in the other habitat types. Physical habitat con­ ditions in tributary streams to the middle Susitna River would not be affected by project operation. The relative importance of project induced changes in physical habitat con­ ditions in one habitat type versus another is influenced by the degree to which the six habitat types are utilized (or potentially could be) by fish throughout the year. This necessitated the selection of evaluation species and life stages. Evaluation species and life stages for the middle Susitna River analysis were selected by identifying species of the greatest commercial, subsistence, and recreational interest and then determining the life stage(s) most sensitive to anticipated changes in streamflow, temperature or water quality regimes (Trihey & Associates and Entrix 1985). Accordingly, juvenile chinook rearing and overwintering, and chum spawning and incubation were selected as primary evaluation species and life stages for the IFR studies. The principal aquatic habitats of interest are sloughs, side channels and mainstem margins. The analytic approach used for evaluating the affect of project induced changes in streamflow on chinook and chum salmon is based on the premise that 1-2 ...._.._._-------,.._---,-_._-.---,--,._..,-.-._--,-,--_. -_•. ~_.._----, .. -_._-_.._-_._------­ available habitat can be quantified and then standardized to an equivalent amount of optimal habitat known as Weighted Usable Area (WUA). This technique allows for differences in habitat quality by incorporating habitat suitability criteria into the analysis. The analysis is performed using the instream flow incremental methodology (1F1M) as discussed by Bovee (1982). Because stream­ flow directly effects habitat conditions through its influence on depth, velocity and channel structure and indirectly affects water temperature and water quality, it is considered the principal driving variable in the analy­ sis. The response of WUA for juvenile chinook to mainstem discharge is described by Steward et al. (1985). This report presents results of the habitat model ing studies for spawning chum salmon as of February 1986, and discusses the applicability of those results for evaluating the effects of incremental changes in mainstem discharge on chum salmon spawning in the middle Susitna River. 1-3 "-_'_'-'_--"~'_'---~''''''''-_'_'''''-''''''''' '_'"_.,.~ .. ,, ._.n._.____,-... ~~"~..,., ,~'~~_ ..,"..._._ __o-,~._........._ ... •__ --_._-_._---­ II. CHUM SALMON BIOLOGY IN THE MIDDLE SUSITNA RIVER Migration and Spawning Period Chum salmon first appear in the middle Susitna River during late July and early August with the peak of the chum salmon run occurring during the first two weeks of August (Barrett et al. 1984). The dates that chum spawners were first observed in slough habitats have range.d from August 4 to September 11, while the dates of peak counts have ranged from August 18 to September 20 (ADF&G 1981, 1982; Barrett et al. 1984). Based on these observations, the five week period between August 12 and September 15 has been selected as the evaluation period for chum spawning in middle Susitna River habitats (Trihey & Associates and Entrix 1985). Escapement The minimum chum salmon escapements to the Susitna River were 283,700 fish in 1981; 458,200 fish in 1982; and 276,600 fish in 1983 (Barrett et al. 1984). In 1984 the minimum chum estimate was 812,700 fish (Barrett et al. 1985). The middle Susitna River is defined as extending from the three rivers confluence (RM 99) to Devil Canyon (RM 150). Within this river segment, fishwheels have been operated by the Alaska Department of Fish and Game at two locations since 1981: Talkeetna Station (RM 103) and Curry (RM 120). From 1981 through 1984, chum escapements to Talkeetna Station have ranged from 20,800 to 98,200 fi sh, whereas escapements above Curry Station have ranged between 13,100 and 49,300 (Table 1). II-I Table 1. Estimated escapements of chum salmon into the middle Susitna River relative to total basin escapement, 1981-1985. Susitna Talkeetna Curry Percent Basi n River Station Station Escapement to Basin RM 103 RM 120 Middle River 1981 283,700 20,800 13,100 4.6% 1982 458,200 49,100 29,400 6.4% 1983 276,600 50,400 21,100 7.6% 1984 812,700 98,200 49,300 6.1% Source: Barrett et al. 1984, 1985. During the four years that the Talkeetna and Curry fishwheels have operated, a substantial percentage of the Talkeetna escapements consisted of milling fish (Barrett et al. 1985). Therefore, the annual escapements reported for Talkeetna Station over estimate the number of chum salmon which actually spawn upstream of RM 103. In 1984, an estimated 75 percent of the Talkeetna escape­ ment were milling fish that dropped out of the middle Susitna to spawn else­ where in the basin (Barrett et al. 1985). Based on the escapement data sUll111arized in Table 1, annual escapement above Curry Station, has ranged between 4.6 and 7.6 percent of the total annual escapement to the Susitna River. This represents approximately 28,000 fish annually and may be considered general level of chum salmon spawning in the middle Susitna River. Although some chum spawning occurs along mainstem margins and in side chan­ nels, most chum spawning within the middle Susitna River has been observed in slough and tributary habitats. Based on average peak index counts from 1981 through 1984, approximately 60 percent of the chum spawning is thought to occur in slough habitats, and 30 percent in tributary streams (Table 2). II-2 -__..~ ,-~_._--~ .._,,..._.-......,-'~._---..-_.~_._~.-_.".--. ."..' ~-_ .. Table 2. Peak index counts for chum salmon in the middle Susitna River by habitat type 1981-1984. Four-Year Habitat Type 1981 1982 1983 1984 Average Mainstem l 14 550 219 1,266 512 Tributaries 2 241 1,737 1,500 3,814 1,823 Sloughs 3 2,596 2,244 1,467 7,556 3,466 Total 2,851 4,531 3,186 12,636 5,802 Source: ADF&G 1981, 1982; Barrett et al. 1984, 1985 1 Includes main channel and side channel habitats 2 Includes tributary and tributary mouth habitats 3 Includes upland slough and side slough habitats Estimated total escapements of chum salmon to individual sloughs in the middle Susitna River are provided in Table 3. Ten of the thirty sloughs were utilized by spawners during each of the four years observations are reported. Throughout this period, four sloughs (8A, 9, 11, and 21) have consistently accounted for approximately 60 percent or more of the annual slough escapement. Figure 1 diagrams the percent distribution of chum escapements to middle Susitna River habitats based on estimated average annual escapements for 1981 through 1984. II-3 --"---~.. ~.-.---"-...,,._._, .'..~'----~-.~,. "'.-"""-"-~-'--"--_.. _.,-",,_.-.....,......,.....,..,...,....... ''''~".'" .. _'"~_ ...~.-._- Table 3. Total churn salmon escapement to sloughs upstream of RM 98.6, 1981-1984. ADF&G River Mile Four-Year Slough Index 1981 1982 1983 1984 Average 1 99.6 10 a a 46 14 2 100.2 43 a 96 188 82 3B 101.4 a a a 109 27 6A 112.3 19 5 a a 6 8 113.7 695 a a 217 228 Bushrod 117.8 a a a 161 40 8D 121.8 a 53 a 60 28 8e 121. 9 a 108 8 207 81 8B 122.2 a 99 261 860 305 Moose 123.5 222 59 86 284 163AI 124.6 200 a 155 217 143 A 124.7 81 a 4 8 23 8A 125.1 480 1,062 112 2,383 1,009 B 126.3 a 104 14 168 72 9 128.3 368 603 430 304 426 9B 129.2 277 12 a 132 105 10 133.8 a a a 90 23 9A 133.8 140 86 231 528 246 11 135.3 1,119 1,078 674 3,418 1,572 13 135.9 7 a 8 16 8 14 135.9 a a a 4 1 15 137.2 a a 4 67 18 16 137.3 5 a a 20 6 17 138.9 135 23 166 204 132 18 139.1 a a a 42 11 19 139.7 5 a 6 102 28 20 140.0 24 28 103 329 121 21 a 141.1 657 1,737 481 4,245 1,780 22 144.5 a a 105 187 73 21A 145.3 14 a a 38 13 Total 4,501 5,057 2,944 14,634 6,784 b Source: Barrett et ale 1984, 1985 a Includes escapement to both Specific Area 141.4R and Specific Area 141.6R b Four-year average of totals II-4 ~~r_"_"_". 3% of total basin escapement to Middle Susitna River Habitats 10% of middle river escapement to Mainstem Qr Side Channels 55 to 60% of middle river escapement to Sloughs 60% or More to Sloughs 8A, 9, 11 &21 (approximately 1% of the total chum escapement to the Susitna Basin) 30 to 35% of middle river escapement to Tributaries Figure 1. Breakdown of chum escapement to habitats in the middle Susitna River. II-5 ----_.__._..... --_._...._-._..._-_.... ...._..~-._------_ .._. _.----_._------.._---_. ---_ _.__•._,---_._-------­ III. METHODS Genera 1 This assessment of the response of chum salmon spawning habitat to flow is based on field studies conducted by the Alaska Department of Fish and Game, Su Hydro Aquatic Studies Group and Trihey & Associates from 1982 through 1984 (ADF&G 1983a, b, c, 1985, Estes and Vincent-Lang 1984a, b, c, d, Hilliard 1985a, b, Aaserude et ale 1985, Klinger and Trihey 1984, Klinger-Kingsley et ale 1985, Trihey 1982, 1983). Weighted Usable Area (WUA) is used as an index of the availability and quality of fish habitat at different streamflow levels. WUA is defined as the total surface area of a study reach expressed as an equivalent area of optimal physical habitat (Bovee and Milhous 1978). This streamflow dependent habitat index if forecast following guidelines presented by Bovee (1982) and using the PHABSIM computer models described by Milhous et ale (1984). The influence of streamflow variations on spawning habitat is generally evaluated using three microhabitat variables: depth, velocity, and streambed (substrate) composition (Wesche and Rechard 1980, Bovee 1982). However in the middle Susitna river, a fourth variable, upwelli'ng, is also important for successful chum salmon spawning (Estes and Vincent-Lang 1984d). Upwelling is considered the most important microhabitat variable influencing the selection of redd sites by spawning chum and ensuring the overwinter survival of incubating eggs and alevins (Vining et ale 1985, Trihey & Associates and Entrix 1985). Because of the strong preference exhibited by adult spawners for upwelling, and its critical importance to the overwinter survival of redds, binary criterion was used for this microhabitat variable in the modeling process. The binary criterion for upwelling assumes optimal suitability for areas where upwelling is present and non-suitability for areas without upwelling. Habitat II I-I _____.,0__••,'__•'0 ••••',____....._.__~_,_.'____•, ,.n_·,_ , , suitability criteria for the other microhabitat variables (depth, velocity and substrate composition) reflect a discrete continuous relationship between increases in magnitude of the microhabitat variable and its suitability for a particular species/life stage. All habitat suitability criteria used in this assessment were developed from direct field measurements obtained in asso­ ciation with observations of chum spawning in a variety of middle Susitna River habitats duri ng three spawni ng seasons (Estes and Vi ncent-Lang 1984d, Stewa rd 1985). The adverse influence of shallow depths on access by fish to spawning areas within side slough and side channel habitats was also incorporated into the habitat modeling analysis using results from ADF&G passage studies conducted during' 1983 and 1984 (Estes and Vincent-Lang 1984c, ADF&G Su .Hydro 1985). The upstream and downstream boundaries of the slough or side channel segment where spawning occurred were determined through interviews with proJect personnel who conducted the 1984 escapement and stream 1ife surveys. Thi s portion of the slough or side channel was termed the spawning reach and represents the maximum surface area to which site specific modeling results were extrapo­ lated. At those sites where the spawning reach included both backwater influenced and free-flowing habitat conditions, two separate hydraulic analy­ ses were used to support the habitat simulations. In addition to including upwelling and passage in the application of the IFIM, the manner in which individual cell boundaries are defined in the IFG HABTAT model was also modified. This modification was made to better simulate the irregular size and shape of upwelling areas and reproduce observed depths in shallow riffles and shoreline margins. A detailed description of the habitat modeling analysis for chum salmon spawning is provided in the remainder of thi s report. Direct Input Habitat Model The IFG hydraulic and HABTAT models have been extensively used in previous middle Susitna River habitat evaluations (ADF&G Su Hydro 1983a, Estes and Vincent-Lang 1984d, Hilliard et al. 1985a, b). The IFG hydraulic models II 1-2 ----_.,_._._--, .--."-"".-..~----.-"---~.-'-.--'-..•-'.'-".'.•--'''''--....~--- simul ate depths and vel ociti es based on the assumpti on that steady-state, uniform or gradually varied streamflow exists in a rigid channel (Trihey 1979). Although these hydraulic conditions often prevail in side channel and side slough habitats under breached conditions, chum spawning also occurs along mainstem margins, in side sloughs and in backwater influenced areas which are better characterized as possessing non-uniform, spatially or rapidly varied flow conditions. These site specific hydraulic conditions can be more reliably estimated with empirical rather than theoretical hydraulic models (Trihey and Baldrige 1985). In addition, upwelling patterns at spawning sites are irregular in shape, of small size and discontinuous. As a result upwelling patterns are very difficult to incorporate into the HABTAT model without using a large number of transects. For these reasons, the Direct Input 'Habitat (DIHAB) model was developed as an alternative for calculating Weighted Usable Area at chum spawning sites. Both the DIHAB and HABTAT models compute Weighted Usable Area (WUA) using cell-specific, streamflow dependent physical habitat variables and spe­ cies/lifestage specific habitat suitability criteria. The biggest difference between these models is the manner in whi~h individual cells are dimensioned and the strong dependence of the DIHAB model on empirically derived hydraulic input data. Within the HABTAT model the right and left boundaries of individual cells are defined by adjacent verticals. The DIHAB model uses verticals to denote the midpoint of the cell and defines right and left boundaries as extending half the distance between adjacent verticals. In addition, the DIHAB model accepts two reach lengths for each cell. One is used to calculate the surface area of the cell, the other, Weighted Usable Area whenever the upwelling (or other microhabitat variable) does not extend the full length of the cell. These refinements to cell boundaries improve the resolution of WUA forecasts when­ ever small, irregular-shaped upwellings areas are present or shallow stream­ flow in irregular shaped stream channels is encountered. The second principal benefit derived from using the DIHAB model was the direct input of measured depths and velocities. This characteristic of the model was III-3 ------_.-.._._".,.,,_.,.,.',.....'-, ".,---,.__..,.,"",,-,,-,--,,~,. ""-'--~,----~'._-".,----- particularly beneficial when analyzing chum spawning in mainstem margin and backwater areas where stage-discharge relationships at upwelling areas could be used in lieu of hydraulic simulation models (Hilliard et al. 1985a). The top widths and reach lengths of upwelling areas were obtained through direct field observation and measurements during February, March and April 1985. Stage discharge relationships had been developed by ADF&G at numerous middle Susitna River locations in previous studies (ADF&G 1983, Estes and Vincent­ Lang 1984a). Habitat Modeling Since spawning areas in the tributary streams are not directly affected by mainstem flow conditions, this habitat type is not included in the habitat modeling analysis. Chum salmon spawning in tributary mouths principally occurs at five locations: Lane Creek, Fourth of July Creek, Indian River, Jack Long Creek and Portage Creek (Estes and Vincent-Lang 1984). Although escapements to tributary mouth habitats have not been estimated, field obser­ vations indicate they are small. Hence, tributary mouth habitats are not included as a specific component in this habitat modeling analysis. The concern for project effects on chum spawning at tributary mouths is best addressed subjectively as part of the extrapolation analysis. Fifteen chum salmon spawning sites in mainstem, side channel and slough habitats were chosen for detailed study. Collectively, these sites represent the full spectrum of hydraul ic conditions commonly associated with middle Susitna River chum spawning habitats. These are velocity and stage influenced shoreline margins, free-flowing mid-channel portions of side channels and side sloughs, and backwater influenced upland sloughs, side slough and side channel mouths. These 15 model sites also represent nearly 66% of the estimated 1984 chum salmon escapement to the four habitat types which they represent (Table 4) • 111-4 --------------..---~"'.~~~.~,....~-'.~""~,~._,.,..,,~_ .......,---_..... ..._----~ ...'-~~,~ .._..• _".---_.._.."."-..~ ..."...~~,, "~--"---_.~---,----- Table 4. Percentage of 1984 chum escapement represented by model sites. Estimated Estimated Habitat Type Escapement to Model Sites Escapement to Habitat Type Percent Upland Slough Side Sloughs Side Channels 3,418 5,142 3,248 4,863 7,740 5,282 71 67 62 Mainstem Margins 651 867 77 Total 12,459 18,762 66 Adapted from: Barrett et a1. 1985, Hoffman 1985, and personal communi cation with ADF&G stream life survey crews. Because of the diverse nature of hydraulic conditions associated with the various habitat types in the middle Susitna River, a combination of different hydraulic and habitat simulation models were applied in this assessment. The IFG-4 hydraulic simulation models calibrated for both breached and non­ breached conditions, were available for six sites (Estes and Vincent-Lang 1984d). The DIHAB model was applied at nine additional sites where shoreline or backwater influences were the dominant hydraulic consideration (Hilliard et al. 1984). At those locations where the IFG-4 model was applied, the forecast depths and velocities were used in conjunction with the DIHAB model to calcu­ late WUA. Further detail on the hydraulic and habitat modeling is provided below by habitat type. Mainstem Margins The DIHAB model was applied at six specific areas; 118.9L, 119.1L, 125.2R, 134.9R, 138.71L, and 139.01L. Detailed descriptions of these models are provided by Hilliard et ale (l985a, b). Because the chum spawning locations at these specific areas are relatively small and contiguous they were entirely contained within the upstream and downstream transects of the study (model) site. III-5 -_..--~--~,---,-----,-------------,--.---'.._.--,-._.-..,._-".,_.,._,._---._,........_-,..."..-----,.•-.-... _._"....-.".•_.. Careful review of upwelling areas coded at these sites and subsequent inter­ views with ADF&G field personnel and late-winter observations by Trihey & Associates resulted in some minor revisions being made to three models (Hilliard et ale 1985b). The reach lengths for Transect 1, site 119.1L and Transect 3, site 138.71L were increased to better define the upwelling area while the amount of upwelling along the left bank at site 125.2R was reduced. Since all the upwelling at site 134.9R was concentrated along the right bank near the two most upstream transects only those transects were included in the habitat model for site 134.9R in our analysis. Upland Sloughs and Backwaters The DIHAB model was applied at two locations, 135.6R and 120.6R, to represent the response of upland slough and backwater influenced habitats to changes in mainstem discharge. Because these model sites were established following completion of the 1984 field season, they are not described by Hilliard et ale (1985a, b). Thus both models are described in some detail below. The model site for specific area 135.6R (Slough 11), contains 16 cross sections located from the slough mouth upstream approximately 3400 feet. Seven of these cross sections are located in the backwater zone at the down­ stream end of the slough. Transects 3, 5, 7, 9, 11, 13, and 15 coincide with ADF&G passage reaches 1 through 7 respectively. Passage by chum spawners through the first three passage reaches is controlled by mainstem backwaters associated with mainstem discharges of 15400, 18300, and 32000 cfs. Backwater effects do not significantly influence the movement of fish through the remaining passage reaches. At mainstem discharge in excess of 42,000 cfs the upstream berm is overtopped and passage is provided throughout the site. Site 135.6R is not considered representative of the non-modeled upland sloughs. The channel geometry at its mouth is considerably wider than other upland sloughs and its upwelling and substrate composition is markedly better than that which exists at other upland sloughs. Rather than using the DIHAB model for this site in the extrapolation process and over estimate the WUA available at non-modeled sites, a generic model was developed which better represented average spawning habitat conditions for upland sloughs. The III-6 ----------------------,._------_.. _--_._------_. generic model was derived using portions of the models for specific areas 135.6R and 126.0R. Site 126.0R, also known as Slough 8A, has three cross sections located in its mouth area. Backwater effects from the rnainstem caused the water surface elevations to rise permitting habitat areas above Transects 2 and 3 to become available at mainstem discharges of 7400 and 14600 cfs. The top width at the mouth of Slough 8A is more typical of that for the non-modeled upland sloughs as is the substrate composition and upwelling. The surface area and WUA response functions from the backwater zones at specific areas 126.0R and 135.6R were averaged to provide generic WSA and WUA curves for upland slough and backwater influenced habitats. Side Channels Six IFG hydraulic models were developed during 1983 and 1984 to forecast hydraulic conditions in non-backwater influenced portions of specific areas 101.6L, 114.1R, 128.8R, 133.7R, 136.3R, and 141.4R (Estes and Vincent-Lang 1984d, Hilliard et al. 1985a). These models were used to forecast several sets of depth and velocity measurements indexed to predetermined mainstem discharge levels for input to the DIHAB model. Upwelling and substrate data for the model sites was carefully reviewed and coded for use in the DIHAB model. Few modifications were made to these data but because of differences in the manner cell boundaries are defined in the DIHAB and HABTAT models differences occur in their WUA forecasts. Backwater models were developed for the mouths of sites 128.8R, 136.3R and 141.4R which have substantial backwater zones at low mainstem discharges. The influence of this backwater zone on access to upstream spawning areas was also in the habitat model for the specific area. For example chum spawning in specific area 128.8R is restricted at mainstem discharges below 10,900 cfs. For discharges between 10,900 cfs and 19,000 cfs rising water surface ele­ vations in the 630 foot long backwater zone gradually inundate passage reaches providing unrestricted access to distinct spawning habitats located between the passage reaches. When mainstem discharge exceeds 19,000 cfs the specific II I-7 --~--------_.-----------..-_._-~--_ .._.~-_. area is breached and fish have unrestricted access to all spawning habitats within this specific area. Further description of the passage analysis is provided in Appendix C. A WSA and WUA curve was derived for each modeled specific area by extrapo­ lating results from model sites in their free flowing and backwater segments to the entire length of the spawning reach on a proportional length basis. Passage criteria was used to incrementally add sub reaches within the backwater influenced zone in response to increasing mainstem discharge. Side Sloughs Hydraulic models for sites 126.0R and 141.6R have been described by Estes and Vincent-Lang 1984d). A DIHAB model was developed for that portion of specific area 141.6R upstream of the ADF&G model site described by Estes and Vincent­ Lang. Data necessary for this model were obtained from channel geometry surveys made in 1982 and 1983 by ADF&G and numerous miscellaneous streamflow measurements obtained from 1982 through 1984. The habitat modeling procedures used to develop WSA and WUA curves for spe­ cific areas classified as side sloughs were similar to those described above for side channels. The principal difference being an increased influence of passage criteria on the shape of the WUA curve for side sloughs which neces­ sitated more tedious and time consuming model calibration efforts. Extrapolation to Non-modeled Sites In the application of the Instream Flow Incremental Methodology (Bovee 1982), extrapolation from modeled to non-modeled areas is typically done by dividing the stream into segments and subsegments that are morphologically and hydrau­ lically similar. The habitat-discharge relationship derived for the model site is extrapolated to the non-modeled portion of the reach in which the study site occurs on a proportional length basis. The proportional length concept is appropriate for extrapolating from model sites to non-modeled stream segments in single thread streams where stream 111-8 "-----_.__._._.._---_.-~--_._--._. ~.~-.--_.-._ .._-_......•__•. _--_. .~.._-~--_._-_. segments containing relatively homogeneous habitat types are readily identifi­ able. In multi-thread systems, such as the Susitna River, the proportional length approach is difficult to apply because the occurrence of similar habitat types within any subsegment varies both longitudinally and laterally over great distances within the river corridor. Similar variability with the distribution of aquatic habitats in other large multi-thread river systems has been reported by other investigators (Mosley 1982, 1983). Because of the marked variability in the distribution of similar habitat types in the middle Susitna River an alternative method of extrapolation was devel­ oped for large multi-thread stream systems which makes extensive use of aerial photography and field reconnaissance surveys (Trihey & Associates and Entrix 1985, Klinger-Kingsley et al. 1985, Aaserude et al. 1985, Steward et al. 1985). The basic unit used in the extrapolation analysis is called a specific area. Specific areas are defined as discrete geographical locations whose physical boundaries enclose relatively homogeneous morphologic sub-areas of the middle Susitna River (Klinger-Kingsley et al. 1985). The size and shape of a specific area's wetted surface is a function of channel geometry and streamflow. Specific areas may be classified into distinct habitat types and representative groups based on morphologic, hydrologic and hydraulic charac­ teristics observed in aerial photographs or during on-site habitat reconnais­ sance surveys (Aaserude et al. 1985). In addition to the 15 model sites, 41 other sites at which chum spawning occurred during 1984 were evaluated through field reconnaissance and spawner escapement surveys. Ten of these 41 specific areas had relatively small escapements when compared with other specific areas in the same habitat type and were thus excluded from the analysis. The excluded sites represent a total of 142 fish as compared with 18,620 fish at the 46 sites which remained in the analysis. A complete listing of the 46 specific areas included in this assessment is provided in Table 5 by h.abitat type. Each of the fifteen model sites is identified by an asterisk (*) and the approximate length of the spawning zone as well as the 1984 estimated escapements are listed for each specific area. These data provide the basis for extrapolating from modeled to non-modeled specific areas by habitat type. 111-9 -----_..__.__ .._-_._..__.._-_.__._----_..._-~._.-.._---.,.---------_. Table 5. Tabulation of specific areas by habitat type indicating approximate breaching flow, length of spawning zone, estimated 1984 chum escapements and percent escapement to specific area. Specific Area (RM) Breaching Flow (cfs) Length of spawnin~ Zone (ft Estimated 1984 Escapement Percent of Group Escapement UPLAND SLOUGHS AND BACKWATERS 102.2L 33,000 650 30 0.6 121.75R 35,000 1,988 60 1.2 121.8R 22,000 680 207 4.3 124.5R 35,000 556 217 4.5 129.4R 35,000 1,021 132 2.7 133.9L 35,000 1,813 90 1.9 135.6R* 42,000 3,380 3,418 70.6 137.5L 22,000 3,262 67 1.4 139.0L 35,000 717 204 4.2 139.1L 35,000 179 42 0.9 139.9R 35,000 762 102 2.1 143.0L 143.4L N/A 23,000 508 600 135 135 2.8 2.8 Subtotal 13 sites 16,116 4,839 26.0 1 SIDE SLOUGHS 100.6R 33,000 1,554 188 2.4 113.7R 24,000 1,416 217 2.8 115.6R 23,000 1,751 174 2.3 117.9L 22,000 1,089 161 2.1 122.5R 20,000 4,862 860 11.2 123.6R 25,500 1,325 284 3.7 126.0R* 33,000 3,800 2,383 30.9 126.3R 27,000 1,499 168 2.2 140.2R 26,500 1,076 329 4.3 141.6R* 23,000 2,110 2,759 35.8 144.4L 21,000 1,569 187 2.4 Subtotal 11 sites 22,042 7,710 41.4 1 I II -10 -----'-"''----''.__'____..__c __~~,_,,,_'-~-'----"--_._-------- Table 5 (Continued). Specific Breaching Length of Estimated Percent of Area Flow spaWninj Zone 1984 Group (RM) (cfs) (ft Escapement Escapement SIDE CHANNELS 101.2R 9,200 445 267 5.1 101.6L 14,000 1,140 109 2.0 114.1R* 5,100 675 138 2.6 115.0R 12,000 2,616 228 4.4 128.5R 10,400 2,209 669 12.8 128.8R* 16,000 5,900 304 5.8 130.2R 13,000 5,195 177 3.4 131.3L* 9,000 1,275 243 4.6 131. 7L * 5,000 2,601 591 11.3 133.7R 11 ,500 3,310 528 10.1 136.3R* 13,000 1,615 486 9.3 141.4R* 11 ,500 2,330 1,48.6 28.4 Subtotal 12 sites 29,311 5,226 28.1 1 MAINSTEM AND SIDE CHANNEL MARGINS 118. 9L * N/A 475 63 7.5 119.1L* N/A 542 45 5.3 124.0L N/A 146 54 6.4 125.2R* N/A 1,475 24 2.8 132.8R N/A 674 84 9.9 134.9R* N/A 716 150 17.8 138.71L* N/A 1,184 108 12.8 139.01L* N/A 750 261 30.9 140.4R N/A 266 18 2.1 145.6R N/A 381 38 4.5 Subtotal 10 sites 6,609 845 4.5 1 Total 46 sites ----18,620 * Denotes modeled site Percent of total escapement to all 46 specific areas (18,620 fish). II 1-11 1 _______.,_,_.-I A composite chum spawning Weighted Usable Area curve was derived for all habitat types by extrapolating from modeled to non-modeled specific areas within each habitat type then aggregating the habitat type curves. The computational procedure used to derive WUA curves for non-modeled specific areas is summarized in the four steps provided below: 1. Group non-modeled specific areas with modeled specific area based on morphologic and hydraulic similarities. 2. Index the controlling mainstem discharge reflected in the WUA curve of the modeled specific area to that for the non-modeled specific area. 3. Use spawning reach length ratio to adjust amplitude of the Weighted Usable Area curve to account for differences in the size of spawning areas at modeled and non-modeled specific areas. 4. Use escapement ratio in lieu of habitat quality index to adjust amplitude of the Weighted Usable Area curve for differences in substrate composition or upwelling. Non-modeled specific areas were first associated with a model site within the same habitat type based upon general morphologic and hydraulic similarities. These similarities were identified during the 1984 Habitat Recon Survey (Aaserude et al. 1985), air photo analysis (Klinger-Kingsley 1985), and field experience gained between 1981 and 1984. The most significant morphologic characteristic used to classify and analyze individual specific areas within the middle Susitna River is the breaching flow. Breaching flow is defined as the mainstem discharge necessary to overtop the upstream end of a side channel or side slough thereby allowing mainstem water to flow through it. The mainstem discharge at which hydraulic conditions within the side channel or side slough directly respond to further increases in mainstem discharge is referred to as the controlling discharge. Based on detailed analysis of numerous sites in the middle Susitna River, the controlling discharge can be III-12 -----_.....•.._---------_..._.._--_...-._._---_-_._.__. ._------'--'-"--"-' .. --_.._.__._-­--_..... estimated as occurring at approximately 1,500 cfs above the site's breaching flow (Estes and Vincent-Lang 1984, Hilliard et al. 1985). Thus when the controlling mainstem discharge for modeled and non-modeled specific areas were unknown, it was estimated by identifying the breaching flow in aerial photography then adding 1,500 cfs. Mainstem discharges in excess of the controlling discharge have a significant beneficial effect on habitat conditions within the slough or side channel which is typically reflected by a sharp rise in WUA values (Estes and Vincent­ Lang 1984d, Trihey & Associates and Entrix 1985). This is attributable to sub-optimal depths for adult salmon existing in the slough or side channel when it is not breached. Once breached by the ma i nstem, depth of flow i n­ creases thereby improving spawning conditions within the slough or side channel. Although upland sloughs and backwater areas are seldom overtopped (because of very high breaching flows) their WUA curves exhibit a pronounced response to dewatering. Thus the mainstem discharge which maintains a surface water connection between the backwater influenced habitat and the Susitna River is as important to upland slough and slough mouth habitats as controlling flow is to side sloughs and side channels. As the second step in deriving a WUA curve for a non-modeled specific area, the abrupt increase in the WUA curve for the modeled site was indexed to the controlling flow or dewatering flow for the non-modeled specific area (Figure 2a). This extrapolation procedure transferred the basic shape of the WUA curve for the modeled site to all specific areas within the same subgroup while allowing for small to moderate differences in breaching flow. This approach is con­ sidered valid because the basic shape of a WUA curve is primarily determined by channel morphology and hydraulic conditions, and the subgrouping of speci­ fic areas was principally based on similarities in channel morphology and hydraulic conditions. 111-13 ·--·__ _ -~ ~·._. ~ .. '" ~ -!:!..... ~ .." ~ -4: .!".. II N\.... ckn"l '01 ...1.......'. z .... c ... /-... II;"1 ~I..... 0; .., .. Jel.J ~~lc i.s ;"JrxeJ i o C .. ,,~r.l\ ""i ;:-1...... .:t .... ~ .......J.I.. J ."de ~ ~--.• ~ .:ll ":l { M4.;"".lc.,-, :D.sch .. ,.se Z b. ViJ.JA .,J non mod.!.J s~~c. is Q.d1",~.d b.....J on rC' ..... h len~tk r ... ~io .. ~ ~ ~ :Ji" I ~ 1 ~--e _ ~ rr-r~I I'll.,,, ,~.."' 1)fHh ..~c Q.f non ~o~..\.cl .J... is a.J 1·.. ·J·..l2". wuA ...•.-,,~ .,e.. ope "'&n t ...{; 0 .._.__._.._.__._. .__ ._ ..__. .. ..•.---._.u . .__..__. ..~----.-- Figure 2. Three step process to extrapol ate chum spawning WUA cu'rves from modeled to non-modeled specific areas. II 1-14 · _...•._---_.---_._----_.._..__...._.~..,.-._~----,~---"'~~-....--'"-",.,,-''''-~-'--------------- The amplitude of the WUA curve for the non-modeled specific area was estimated in two steps. First, the ratio between spawning zone reach lengths was used to account for differences between the size of the spawning areas at modeled and non-modeled specific areas (Figure 2b). Then, a second adjustment was made to the amplitude of the WUA curve at non-modeled specific areas to reflect differences in habitat quality (Figure 2c). The quality of chum spawning areas is known to be influenced by differences in site specific streambed composition and upwelling (Trihey &Associates and Entrix 1985). However, insufficient substrate and upwell ing data exists at most of the non-modeled specific areas to compute reliable habitat quality coefficients for extrapolating WUA from modeled specific areas to non-modeled areas. Thus .escapement ratios were calculated to adjust the amplitude of the WUA curves at non-modeled specific areas in lieu of a habitat quality index based on differences in substrate composition and upwelling. Because of the strong relationship which has been observed in middle Susitna River habitats between the presence of upwelling and chum spawning (Estes and Vincent-Lang 1984, Trihey & Associates and Entrix 1985), the percent distribution of chum spawners among individual specific areas was considered a more reliable indicator of habi tat quality at non-mode led specific areas than the general descriptions of substrate composition and upwelling which could be obtained from the Habitat Recon Survey (Aaserude et al. 1985) or from air photo inter­ pretation (Klinger-Kingsley et ale 1985). Reliable escapement estimates for both modeled and non-modeled specific areas are available for 1984. Escapement data prior to 1984 are adequate to confirm that modeled specific areas are the most consistently and extensively utilized chum spawning sites in the middle Susitna River (refer Table 3), but they lack the necessary detail for calculating escapement ratios at all of the non­ modeled specific areas. Consequently, only the 1984 escapement data were used to calculate ratios for the extrapolation analysis. The escapement ratios calculated for both modeled and non-modeled specific areas are based on total estimated escapements to the four habitat types included in this analysis (Refer Table 5). II I-IS _._--_._-....... ---~---,.~._~. --_. ---~.- IV. RESULTS This section contains the various computer plots which describe the site­ specific response of wetted surface area (WSA) and chum spawning Weighted Usable Area (WUA) to incremental changes in mainstem discharge at the fifteen modeled specific areas. Results are presented by habitat type (mainstem and side channel margins, upland sloughs and backwaters, side channels and side sloughs) with the site-specific WUA curves appearing in the increasing order of their river mile indices. Following each set of site-specific results are the composite WSA and WUA curves for all modeled and non-modeled specific areas within the habitat type. Aerial photographs of the specific areas are provided in Appendix 2 Klinger-Kingsley et ale (1985). Appendix B contains the point files which define the various WSA and WUA curve sets. Mainstem and Side Channel Margins Small to moderate numbers of chum salmon have been observed spawning at several locations along the shoreline margins of the rnainstem and large side channels (Table 5) where upwelling occurs and velocity, depth and substrate conditions are suitable. These spawning locations may be classified as being predominantly velocity, or stage influenced based on the site specific hydraulic conditions which normally exist during the spawning season (Table 6). Velocity influenced sites are generally located along steep stream banks where groundwater emerges and suitable substrates exist. At these sites high shoreline velocities are the primary regulator of habitat availability. Mean column velocities are often between one and two feet per second at these locations. Thereby being very close to exceeding the upper range of acceptable spawning velocities for chum salmon (refer Estes and Vincent-Lang 1984, Steward 1985). Depth of flow (river stage) has a subordinant influence on habitat availability. Only when shallow depths (under 0.8 ft) begin to occur at these sites does further reduction of mainstem discharge become important. IV-l --------.._-_.._.._..""._.._..,_..._-_.~--,----_._-....._.-.~--.---... .. ...-,,--------.-._._._-_. ....-.........,..........--_.~-"._'"'> _."'~-..-~-,.~_ .....".'~.,.~.-."-'-'-"', ...."~_.~.-_._,.,--<-- Table 6. Hydraulic classification of mainstem and side channel margin speci fi c areas. Velocity Influenced Stage Influenced 118.9L* 119.1L* 125.2R* 134.9R* 138.71L* 140.4R 124.0L 125.6R 132.8R 139.01L* * Denotes modeled specific area. Stage i nfl uenced areas typi ca lly occur immedi ate ly downstream of submerged gravel bars or at the downstream end of vegetated islands or large exposed gravel bars. Many other backwater influenced areas also occur in the mouths of relic channels which still adjoin the river. However these sites have been classified as upland slough and backwater habitats and are evaluated as a separate category. At stage i nfl uenced sites, the mai nstem water surface elevation is the dominant factor influencing habitat availability. Velocities generally remain less than 1 fps over a very broad range of mainstem discharge and hence have little influence on the availability or quality of chum spawning habitat until the upstream end of the site is overtopped. Once the site is overtopped, velocity soon becomes the controlling variable and WUA indices decline rapidly. Five sites were modeled to represent the response of velocity influenced mainstem margin habitats: 118.9L, 119.1L, 125.2R, 134.9R and 138.71L. WSA and WUA response curves for these sites follow as Figures 3 through 7. Specific Area 139.01L is the only site modeled to describe stage influenced mainstem margin sites. The WSA and WUA curves for this site is presented as Figure 8. The composite WSA and WUA curves for all ten specific areas in the mainstem margin habitat category are presented as Figure 9. IV-2 _______._ __._ _ HH _,._. ···,. ._ • • ~. ~••••_ ••• ._. •.__--••_.-._.--------­-.• SITE 118.9L -A· -4-J 200-. CT· 180 tn 160 -. 0 1~tn "C c: co 120 I tn .--1fSA/1000 ~ 1000 .c: ~ 80 -4-J· 60 -. ~ 0 0 0 .-4 20 -... ~AINSTEM DISCHARGE (CFS) < 0UJex: < Q ~oo BOoo 12000 16000 20000 24000 28000 32000 36000 <10000 ..; 5.00 B -. 4.50 CT tn 4.00 -. o 3.50 en -g 3.00 co ~ 2.50 0 .c: ~ 2.00 . 1.50..,-. 0 1.00 0 0 .50 .-4-...=5 0.00 3:: 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 3. WSA and WUA curves for specific area 118.9L IV-3 ~.._ __<< <_____"~'_<_""«r~_'__'_ 0 .s= -4J 40 . 30-4J ...... " """:I: 0l.U cr __< SITE 119.1L - -4J ...... CT II] ...... 0 en "Cl C ltJ en ::;, A 100 90 80 70 60 50-1 -­lISA/1OO0 0 0 0 ..... 20 10 """:I: 0 4000 BOOO 12000 16000 20000 2«100 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) -B ..; 5.00 ...... 4.50 CT en 4.00 ...... o 3.50 II] -g 3.00 ltJ ~ 2.50 0 .s= ~ 2.00 • 1.50 -4J ...... 1.00 0 0 0 .50-"=3 0.00 :z: 0 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 4. WSA and WUA curves for specific area 119.1L. IV-4 ----------_...-"--"._.. ~..--..--"....-._".._--"----_._--_._-----_._._.._---, SITE 125.2R -· A ~--400 · 3IiO J ________ WSA/l000 e:r en -320 0 en 280 'C C 2~I'D en ::s 200 0 .c - .4-1 160 .4-1· 120 <:) 80 <:) <:) ~ ........ -< 0UJ a: < 0 -4000 8000 12000 16000 20000 24000 28000 32000 36000 ~OOO MAINSTEM OISCHARGE (CFS) -B .; 2.00-. 1.80 e:r en 1.60-0 1.-40 en -g 1.20 I'D ~ 1.00 0 .c .BO.4-1-. .60 .4-1-.-40 <:) <:) <:) .20 ..-4 ........;5 0.00 x 0 ~OO BOOO 12000 16000 20000 2~00 28000 32000 36000 -40000 MAINSTEM OISCHARGE (CFS) Figure 5. WSA and WUA curves for specific area 125.2R. IV-5 ---"-_....._.__.._,,_._..-._--~. -_._._._-------_. SITE 134.9R -.A ~ 400 ~ . 360 0­ tt) 320 -1 ___ ItSA/I000 ~ tt) :::::J 200 0 .c ~ 160 ~ 120 ~ 80 0 0-0 40 .......... MAINSTEM DISCHARGE (CFS) -B 0 tt) 280 "t:J c: 240ctl <t 0UJ a:: <t 0 04000 BOOO 12000 16000 20000 2..000 28000 32000 36000 010000 ~ ".00 ~ 3.60 0­ tt) 3.20 ~ o 2.80 tt) ~ 2.40 ctl ~ 2.00 0 .r::. ~ 1.60 1.20 ~ ~ .80 0 0 0 .40-..........:5 0.00 x 0 .cooo 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 6. WSA and WUA curves for specific area 134.9R. IV-6 SITE 138.71L -· A ~-100 · C" 90 Ul -80 0 Ul 70 1 "C c: n:J 60 Ul :::J 0 50 .c: .u ~ · .u-30 <::) 20 <::) <::) ~ 10 -< 0 ~oo 8000 12000 16000 20000 2«100 28000 32000 36000 ~oo MAINSTEM DISCHARGE (CFS) ___ .SA/1000 ........ -< 0UJ c: -B ~ 5.00-• ".50 C" Ul ".00-o 3.50 Ul -g 3.00 n:J ~ 2.50 0 .c: ~ 2.00 . 1.50 ~-1.00 <::) <::) .50<::) ~ ........::5 0.00 x 0 ~oo 8000 12000 16000 20000 24000 28000 32000 36000 ~OOO MAINSTEM DISCHARGE (CFSl Figure 7. WSA and WUA curves for specific area 138.71L. IV-7 --.........--_.-'".. _.~~._-.-.. . ""_~-.~'~ SITE 139.01L -. A .... 200..... 180c­ U1 160..... 0 U1 1«1 'C c NSA!1000120 JltJ U1 :J 1000 .c.... 80 .... 60 ..... «I0 0 0 20 '-.. ­ < 0 4000 8000 12000 16000 20000 2«100 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) < 0Luc: -B ..; 2.50 ..... • 2.250 c­ U1 2.00 ..... 01.750 U1 'C 1.50c ltJ ~ 1.2500 .c ~ 1.00 . .750., ..... .50 0 0 0 .250-'-..::3 0.00 x 0 «100 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 8. WSA and WUA curves for specific area 139.01L. IV-8 en "C 1000c: "'en 800:::::J e or: 600 ~ 400 <C UJ 200a: <C 0 ----..,......,..~.~."., ..~,-~ ".~ ,~,_ .~ """,~~·,,·<~,,···'H""" ·._,~r~",·,.,"_._._, n ""' __ __.,~_~._.._ .•,_."""_•.........-~, __ _~.,'" -----,--..-.-'-'--,-------_. MAINSTEM MARGINS A -2000 +oJ . 1800 ..... 1600 C" en 1400 ..... e 1200 -l -.SA I I I I J I I I I I I 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) B 2.50 ~2.250 +oJ ..... 2.00 g 1.750 ..... e 1.50 ~1.250 c: "'en 1.00 :::::J e or: .750 ~ .50 <C ::::::l .250 x 0.00 I 0 ~.:::::::...........:::::....~<:::::::::::o::::::::::----::"--...__..: TOTAL IftJA 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 9. Composite WSA and WUA curves for the ten specific areas classified as mainstem or side channel margin habitats. IV-9 ''''''-~'~'''''''-~'''''''~-~--.~-''~-''-~~-''''''-~. -~---,.•~.,~~,~..............~;.~~~ ... ~--,-".•. _._, ...-_~ .~_,,,,.~ 31$ "._ ..,-~__~,_ ,",.._~........._ .....",_.......-......,,.,..._...-..-~ .....__..._.~"",,,,.~,....~~_~......,_,....,., _ Non-modeled specific areas 124.0L, 125.6R and 132.8R were grouped with specific area 139.01L and non-modeled site 140.4R was grouped with 118.9L. The total estimated chum escapement to mainstem margin sites in 1984 was 867 fish (Table 4). Of which, 77 percent (or 651 fish) are represented by the modeled specific areas. Point files used to plot Figures 3 through 9 are contained in Appendix B. Upland Sloughs Moderate numbers of chum salmon have been observed spawning in upland sloughs and backwater influenced areas such as at the mouths of relic channels (Table 5). A large number of chum spawners have consistently been observed at specific area 135.6R (135.3 in Table 3), commonly referred to as Slough II. Because of its exceptionally high breaching flow (42,000 cfs), specific area 135.6R has been classified as an upland slough. However, its morphologic and hydrologic characteristics would not preclude its classification as a side slough. Upland sloughs are connected to the Susitna River at their downstream end (mouth) except during extreme floods or ice jam events. They typically possess large, low-velocity pools interconnected by short shallow riffles whi ch at times can impede the upstream movement of adul t spawners (ADF&G 1984e). Substrates are usually homogeneous over 1arge areas; grad; ng from deep silt/sand deposits overlying large gravel and cobble materials near the slough mouth to rubble-cobble material in the upstream reaches of the site. Velocities in upland slough and backwater habitats are typically within the zero to 1.3 fps range preferred by chum spawners (Estes and Vi ncent-Lang 1984d, Steward 1985). Thus the response of chum spawning WUA to incremental change in mainstem discharge at these sites is primarily a function of depth. Thirteen specific areas are included in this assessment of upland sloughs and backwater areas (Table 5). The WUA responses for these sites were derived from that for specific area 135.6R (Figure 10) and a generic curve (Figure 11) representing the average WUA response from the mouths of sites 126.0R and 135.6R (refer to methods section for explanation). IV-lO -·_------~--------_... _._-,.....-~-"."...-.-~.-.....,_._.--"-_.~-~~._-_ ... -­ -.., ..... e:r Ul 0 - Ul ::J 0 .c:.., ..,- 0 0 0 ~ .......... <t UJ a: <t _ 10.00 .., ..... 9.00 g 8.00 ..... 0 7.00 Ul 6.00 ::J 0 .c: 5.00 ~ 4.00..., ..... 3.00 0 0 2.00 0-~ LOO :E 0.00 0 4000 8000 f J I l j I I I I I SITE 135.6R A iOO 90 80 70 60 I 1ISA/1000 50 --­ 40 - 30 20 WUA/1000iOh o I 0 4000 BOOO B 12000 16000 20000 24000 MAINSTEM DISCHARGE 12000 16000 20000 24C00 MAINSTEM DISCHARGE 2BOOO 32000 36000 40000 (CFS) 28000 32000 36000 40000 (CFS) Figure 10. WSA and WUA curves for specific area 135.6R. IV-ll '_·~d_·."_~'~"""""""~~''~~_~_'"~~".""'--."............_''''''''_~_~..-~_, ___ - -~,...,--./,.....,..., __ """""'·'·_"" __ __'_"'"____ _ ____ .....,__ __ _ UPLAND SLOUGH COMPOSITE A -150 ...· "4-135· 0" 120 ....-- - -135.liR-M0 -en 105 ,..., · /"en :::] 90 /"0 ---CaMP IISA.HOOD.r:;...75 /- 60 --------126.DR-M+ol "4-45 ,...,<::) <::) ,./ <::)30 ,-- - - - •135.liR-M .......... -<15 .J:..:::::-CaMP NUAA1000UJa: 0.< I 0 -4000 SOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) / - - - - -135.liR-M / ./ ( -r CaMP NUAJ1000 12S.0R-M I / ( I -4000 8000 12000 16000 20000 2-4000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 11. Derivation of generic WSA and WUA curves for upland slough and backwater habitats. IV-12 ~-' '"_""'..~._, ~ C'.,_."~., _ _'''''-'''_ _ '''''''''''--..,~'..,.''',."_,..,..,.''", ~~,,~__.. .~"~" ___ • UPLAND SLOUGHS A -----', ,.--...._'-,••__,.-......" 2000 - ~ 1800 "­ 1600 C" Ul 1400 "­c 1200 Ul "C 1000c: rc Ul 800:J C .c 600 ~ 400 « UJ 200cr « a I I J J a 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) B 30.00 --: 27.00 ~ TOTAL IIUA"-24.00 g 21.00 "­c 18.00 ~ 15.00 c: rc Ul 12.00 :J C .c 9.00 ~ 6.00 « :::> 3.00 % 0.00 I a 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE [CFS) Figure 12. Composite WSA and WUA curves for the 13 specific areas classified as upland slough or backwater habitats. IV-13 """"'''''__ _-------------~. __ _ ..V--..-. . .. ...-..-",...'...,............r-_''''__ The shape of the WUA curves in Fi gures 10 and 11 refl ects the i nfl uence of mainstem water surface elevation on depth of flow over upwelling areas within these sites. As mainstem discharge increases so does its water surface elevation. This causes a backwater effect to extend further into the upland slough. Depths of 0.8 ft or greater have been identified as providing optimum spawni ng condi tions for chum salmon (Estes and Vi ncent-Lang 1984, Steward 1985). Thus, once the depth of flow at upwelling areas within this backwater zone has reached 0.8 feet any further increases in depth have no effect on the calculated WUA indices and the habitat response curve conforms to the flat characteristic shape observed in Figure 11. The difference in magnitude of the WUA curves for specific areas 135.6R and 126.0R which were averaged to obtain the generic curve (Figure 11) is attributable to the larger top width, higher quality substrate and greater amount of upwelling at 135.6R. In lieu of any better data, the generic curve was used to represent an average WUA response for all non-modeled specific areas in this habitat type. The composite WSA and WUA curve representing all 13 specific areas in the upland slough category is provided as Figure 12. Since escapement ratios were used in the extrapolation process (refer Methods Section), the composite curve is dominated by the WUA response for site 135.6R which represents approximately 71 percent of the total estimated 1984 escapement to the 13 specific areas in this group (Table 4). Side Channels Twelve specific areas, six of which were modeled are included in this group. Chum escapements to these sites typically ranged between 100 and 600 fish during 1984 except for specific area 141.4R which contained approximately 1,500 spawners (Table 5). IV-14 -___•.,.--,... ~ ... _~,.~.~.,"-"-~~ ...,..-~--~-....,.",..'_._ ..~----~--,.----~.-,..."..~"~_._----. _._...._._-~"--,...,.,....-......_.-._...•-.~--~._., ....._"'._'...".,~,-,. ......._""'...-.,----_._---...... ...~_. 1_ 1-Side channel spawning is distinguished from mainstem or side channel margin spawning in that side channel spawning areas are typically located in the central portion of channel. Thus both depth and velocity have a significant,­ influence on the ability of chum salmon to utilize upwelling areas in this habitat type. High velocities may limit or prohibit spawning at moderate to high discharge levels whereas shallow depths have a similar influence at low streamflow levels. '­ The mainstem discharge at which the upstream end of the side channel breaches has a significant influence on hydraulic and habitat conditions within the side channel. Breaching flows for the twelve specific areas evaluated in this analysis range from 5,000 to 16,000 cfs (Table 5). Channel morphology (slope, alignment, width-depth ratio) also has an important influence on instream hydraulic conditions. Because of their broad range of breaching flows and variability of morphologic features, the twelve specific areas in this habitat type were divided into seven subgroups. Four of which contain only one model site (Table 7). -As with Upland Sloughs, a generic WUA response curve was also derived for side channel habitats. This curve, developed from models of specific areas 131.3L and 131.7L was used to forecast WUA at three sites: US.OR, 128.SR and 130.2R. Table 7. Subgrouping of side channel sites based on breaching flow and morphologic characteristics. Modeled Sites Non-modeled Sites U4.1R 128.8R 101. 6L, 133. 7R 131.3L 102.2R 131. 7L 136.3R 141.4R 131. 3L + 131. 7L 11S.0R, 128.SR, 130.2R IV-IS -'_.~.~.'-----~"-'_.--"'" ,",-.-,,~,,--,--,-,-,---__~,_~_ '__·'"·"_~_~""""'__'''''''''''''''·'''__~'ri''. '''''_''_~~'''-''''=-'-''. The generic wetted surface area (WSA) and Weighted Usable Area (WUA) curves as well as WSA and WUA curves for each of six site specific models are presented in Figures 13 through 19. The composite WSA and WUA curves for all twelve specific areas in this group are provided in Figure 20. The estimated chum escapement to side channel habitats during 1984 totaled nearly 5,300 fish. Escapements to the six modeled sites was approximately 3,250 fish or 62% of the total estimated escapement to this habitat type (Table 4). Side Sloughs Side slough habitats are considered the most important chum spawning areas in the middle Susitna River potentially affected by the proposed project (ADF&G 1982, Trihey & Associates and Entrix 1985). As indicated by Table 4 approximately 7,700 chum salmon spawned in side slough habitats during 1984. This represents 41 percent of the total estimated escapement (18,762) to mainstem discharge influenced habitats during 1984. Had Slough 11 been classified as a side slough rather than an Upland Slough in this analysis, 1984 escapements to side slough habitat would exceed 11,000 fish or approximately 59 percent of the total estimated escapement to the affected habitats. Side sloughs are characterized by persistent, shallow water discharge when not breached by the mainstem. This discharge results primarily from the interception of upwelling groundwater or shallow subsurface flow. When overtopped (breached) by mainstem discharge, side slough discharge increases markedly. Often increasing from less than 10 cfs to well in excess of 100 cfs (ADF&G 1983). As a result spawning habitats are typically limited by shallow depths whenever side sloughs are not breached (Trihey & Associates and Entrix 1985). Shallow depths not only reduce the qual ity of spawning areas located within side sloughs but also impede or prohibit the upstream migration of adult spawners (Estes and Vi ncent-Lang 1984). Thus the characteri sti c shape of WUA curves for side slough habitats reflect an abrupt increase in WUA immediately following breaching. This is attributable to the sudden increase in slough IV-16 ...~. ¥lI6 _ _~ .,_ ........,"'..,.,.,••"..~__• .,_,__•__~_,. , -_~_-_._-,,_~..-~._.~ .•.",." ...--_.. ,_.._....---_...,.,­ SITE 114.1R -.A 200 ~ 0.&-1BO I _____ IISA/1000C'" U'l 160 0.&­ 0 140 . U'l 120::::l 0 .c 100 ~ BO ~ 0.&-60 0 0 0 40 ..... ........ 20<3: UJa: 0<3: I , , , 0 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 ""1"-" MAINSTEM DISCHARGE (CFS) _ 4.00 . ~ 3.60 . g 3.20 0.&­o 2.BO B U'l ::::l 0 .c ~ 2.40 2.00 1.60 ~ 0.&­1.20 0 0 0 ..... ........ <3: =::l 3: .80 .40 0.00 0 4000 BOOO 12000 16000 20000 24000 2BOOO 32000 36000 40000 MAINSTEM DISCHARGE (CFS) j Figure 13. WSA and WUA curves for specific area 114.1R. IV-l7 1._ ~!/2! ~_ ......-. •.-_._._. .. SITE 128.8R _---------------­ I _ -A 200 ~I .. 'I-180 C'" tr.l 160 I 'I-./ )lSA/1000 I-e 1.40 . tr.l 120::::J e .r:. 100 == . 80 ~ 'I-60 0 0 .400 .....-4 ........... 20<LU c:: 0<, I , 0 4000 8000 12000 16000 20000 2.4000 28000 32000 36000 .40000 MAINSTEM DISCHARGE (CFS) B _ 10.00 ~ 'I-9.00 g 8.00 'I­e 7.00 tr.l 6.00 ::::J e .r:. 5.001-,.--"'" ~ .4.00. ~ 'I-3.00 0 0 2.00 0 .....-4 ........... 1.00 <::::J X 0.00 I I j I I I I I I J 0 4000 8000 12000 16000 20000 2.4000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 14. WSA and WUA curves for specific area 128.8R. IV-I8 -.~_._~._-~----.__.. ,~. '.-~.' ..'-.'-".-"'~_ •.~----"'''''''''-----''''''''''-'''--'''-'<''-'~~''''--","''''''------------_.-----_._~..,,-_._•._'--""~. __.----_._....._.--_.,~ .._--."--~"'~"'._-".- SITE 131.3L A -· 200 IISA/1ODO-' ~ 180 I-· er U) 160 0 -UO U)· 120 ~ 0 .r:::. 100 ~ -· 80 ~ 60 0 0 0 40 ........ -20-< w 0 -4000 8000 12000 16000 20000 24000 28000 32000 36000 4OQOQ MAINSTEM DISCHARGE (CFS) B a::: 0-< I I I I _ -4.00 . ~ 3.&0. g 3.20 .. o 2.80 en 2.40 ~ ~ 2.00 ~ 1.&0 ~.. 1.20 0 0 .80 ........ -0 .40 -<::::::J ~ 0.00 -" o -4000 8000 12000 16000 20000 24000 28000 32000 3&000 -40000 MAINSTEM DISCHARGE (CFS! Figure 15. WSA and WUA curves for specific area 131.3L. IV-19 -------'-~ N__&_a~'...·.,~-.-, ......~,~---,--.-.... ~' ___ ._-----"----­ SITE 131 .7L - +.J ~ C" U1 A 400 360 320 l ~ WSA/1000 'I­ 0 280 U1 240 ~ 0 .c 200 ~ 160 +.J 'I­120 0 0 800 .~ ....... 40< UJ 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE [CFS) B _ 2.00 · ~ 1.80 · g 1.60 I -WUA/1000~ ~ o 1.40 U1 1.20 ~ ~ 1.00 +.J-.80 · +.J ~ .60 0 0 .40 0 ~ ....... .20 < 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) CI: 0< I I I I :::J 31: 0.00 I I I I I I I I Figure 16. WSA and WUA curves for specific area 131.7L. IV-20 .--~-~_._._--_. ._----------_..__ .....~--~.---_ . SITE 136.3R A -· 200 +J-180 0-./ IISA/1000en160 I 0 -140 · en 120::J 0 ..r::::. +J 100 · 80 +J-60 0 0 0 40 ..-1 .......... 20-< LlJ a::: 0-< , j I I• 0 4000 BOOO 12000 16000 20000 2.000 28000 32000 36000 ~ooo MAINSTEM DISCHARGE (CFS) B _ 10.00 · ~ 9.00 -· g 8.00 0 7.00 en 6.00 ::J ~ 5.00 ~ · •.00 +J -3.00 0 0 2.00 0 ..-1 :¢: 1.00 =:l X 0.00 I J J j I 0 4000 BOOO 12000 16000 20000 2.000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 17. WSA and WUA curves for specific area 136.3R. IV-21 ------... ... 51!' .....~...__'.~. ,__ SITE 141.4R A ~oo - ~ "­360 I /IISA/I000t:T U1 320 "­ 0 2BO U1 240 ~ 0 ..c: 200 ~ . 160 ~ "­120 0 0 0 BO ~ .......... 40« UJ I I I I I I .I I I I I a 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) B MAINSTEM DISCHARGE (CFS) ex: a< _ 6.00 . ~ 5•.40 g 4.BO "­o 4.20 U1 3.60 ~ .,g 3.00 ~ 2.40 ~ "­LBO 0 0 1.20 0 ..... .......... .60 « :::J 31: 0.00 a 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 .40000 Figure 18. WSA and WUA curves for specific area 141.4R. IV-22 ,•.& ---~---~ -----.~------, COMPOSITE CURVE: SITES 131.3L AND 131.7L A -400 +-I.... 360 C" u:I 320 ______ -13J.7L .... c 2BO . en 240 /-----COif! IfSA!1000 :::J C .c:: 200 / +-I /' /' ,..---­/' /" --­. 160 r:: /'/' -131.3­ +-I.... 120 0 0 ! iii ,,/BO0..... "-40<LU CI: ~ I iii i I BBIi' IIUA/1000 I J I J J I I I j000::1; 0 0 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) B _ 4.00 ;:: 3.60 g 3.20 ':; 2.BO-l /\ u:I 2.40 :::J / \ ~ 2.00 +-I ~~ - 0 4000 BOOO 12000 16000 20000 24000 2BOOO 32000 36000 40000 MAINSTEM DISCHARGE (CFS) 1.60 -+-I .J,/" .... 1.20 p- o , colflU lIUA0 .BO \ 0..... "­.40 < ~ <j 13~.31.~ 0.00 -I I I I I I I l I I Figure 19. Derivation of generic WSA and WUA curves for side channel habitats. IV-23 """""-"------­ I --~,--~--_..~~._, ..~---------------.._ ..~~."""""_._~_."_., SIDE CHANNELS A 7500 -. 6750 ~ ~ 6000 c­oo 5250 ...... e 4500 00 "C 3150r:= n:J 00 3000 e ~ ..t:=. 2250 ~ 1500 oct UJ 750 oct 0 a:: I I I 0 .wOO 8000 12000 16000 20000 2.4000 28000 32000 36000 .40000 MAINSTEM DISCHARGE rCFS) B 15.00 --: 13.50 ~ ~ 12.00. g 10.50 ...... e 9.00 00 "C 7.50 TOTAl. lIUAr:= n:J 00 6.00 e ~ ..t:=. .4.50 ~ 3.00 oct ::::l 1.50 x 0.00 J 0 4000 BOOO 12000 16000 20000 2.4000 28000 32000 36000 .40000 MAINSTEM DISCHARGE (CFS) Figure 20. Composite WSA and WUA curves for the 12 specific areas classified as side channel habitat. IV-24 discharge which improves passage conditions for adult fish within the slough and increases the depth of flow which is generally limiting habitat quality of upwelling areas within the side slough. Breaching flows for the eleven specific areas included in this analysis as side slough habitats range from 21,000 to 33,000 cfs. Two specific areas within this group were modeled and used to represent the remain'ing nine non-modeled sites (Table 8), Specific area 140.2R does not possess the large backwater zone typically associated with the mouths of other side sloughs. Hence this site was represented by the "free flowing ll portion of the model for specific area 126.0R. Table 8. Subgrouping of side slough sites. Modeled Sites Non-modeled Sites 126.0R 100.6R, 123.6R 126.0R (free flowing) 140.2R 141.6R 113.7R, 115.6R, 117.9L 122.5R, 126.3R, 144.4L Wetted surface area and Weighted Usable Area curves for the modeled sites appear as Figures 21 through 23. The composite curves for the eleven specific areas in this habitat type are presented in Figure 24. The total estimated chum escapement to side slough habitats in 1984 was 7,740 fish. Of these 5,142 fish were estimated at specific areas 126,0 and 141.6R (Table 4). Thus 67 percent of the total chum escapement to side slough habitats during 1984 is represented by the WUA forecasts from modeled side sloughs. Figure 25 which depicts the combined response of the four composite curves is discussed in the following section. IV-25 -- ~"'-'~"'--_.-__•• ~... ,...,.c-..._...",_~~'"'_._"""~.~''"'~ "','_ ".~...,~•.•., • SITE 126.0R <u.J ex: 0<c I ~ I I I -A iOO ... ~ e:r · 90 Ul sol /1ISA/1OOO ~ c 70 · Ul 60=:J C ..c SO ~ · 40....... 30 0 0 200 ..-4 --10 -I .r-IIUA!lOOO 0 -4000 BOOO 12000 16000 20000 2-4000 28000 32000 36000 -40000 MAINSTEM DISCHARGE (CFS) B _ i2.00 ~ 10.80 · ~'..q ~'-D .11 8 ....0 Ul· 7.20 ::::J C ..c 6.00...-4.80 ...· ~ 3.60 0 0 2.-40 0 ..-4 1.20< ~ 3: 0.00 I 0 -4000 BOOO 12000 1&000 20000 2-4000 28000 321100 36000 40000 MAINSTEM DISCHARGE [CFS) Figure 21. WSA and WUA curves for specific area 126.0R. IV-26 '"_~. ."•.•..•_~, •• <"·~__·" __~~_.·_~_M~·~~' _ __ b ~......_~ ••"""".__ SITE 126.0R -FREE FLOWING PORTION ONLY -A · 100 ~ \4­r·SAI· CT .... en :~\4­ 0 70 · en 60 ~ 0 .r:: 50 ~ 4j· 010 \4-30 0 0 0 20-...... 10-< UJ a: 0-< I • I I 0 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE rCFS) B _ 12.00 4j ~ 10.80 l li.".IooO ­ ~ do 8.<40l en 7.20 ­ ~ 0 .r:: 6.00 ­ ~ .,80 ­, +oJ \4-3.60 ­ 0 0 2.40 ­ 0 ......-1.20 ­<C ~ :K 0.00 I I I I l I I I I I 0 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE {CFS) Figure 22. WSA and WUA curves for free flowing segment of specific area 126.0R. IV-27 !4fk £ .. ""* 0 ,_. ...._~,~.._.....--,.. ..___,~"--"-,,,,~._. SITE 141 .6R A -100 ~-· 90· C'" en 80 1 c -70 · en 60::J C .J:: 50 ~ · 40 ~-30 0 0 0 20 ..... ........... WA/lGal 10 ...J MAINSTEM DISCHARGE (CFS) B 0 4000 8000 12000 1&000 20000 24000 28000 32000 36000 .40000 MAINSTEM DISCHARGE (CFSl /" IISA/I000 -<LU cc a-< I I J I J I J I I a 4000 BOOO 12000 16000 20000 24000 28000 32000 36000 40000 _ 12.00 ~ 10.80 g, l:!.'"o '3. 6.~ en 7.20 ::J c &.00.J:: ~ 4.80 ~ \6­3.60 0 0 2.40 0 ..-4 ........... 1.20-< :=I 31: 0.00 I Figure 23. WSA and WUA curves for specific area 141.6R. IV-28 -_,,_., '......., '~-,-~''''-_.'" •. -......,.,...,. -.'--, '--'--,-, SIDE SLOUGHS ----_ A 2000 - ~ 1800 1 ./ liSA \6­ . 1600 c::T tn 1400-0 1200 tn "0 1000c: ca tn BOO ~ 0 .c 600 ~ 400 ex: l.U 200a:ex: 0 I I I I 0 ~OOO 8000 12000 16000 20000 24000 28000 32000 36000 .40000 MAINSTEM DISCHARGE lCFS) B .40.00 ~ 36.00 ,j,J ~ 32.00. g 28.00 ~ o 24.00 ~ 20.00 c: lD tn 16.00 ~ 0 .c 12.00 ~-B.OO ex: ::;:) 4.00 ~ 0.00 J 0 -4000 BOOO 12000 16000 20000 2.4000 28000 32000 36000 .40000 MAINSTEM DISCHARGE (CFSI Figure 24. Composite WSA and WUA curves for the 11 specific areas classified as side slough habitats. IV-29 -~--"----,~,~,-...-_...,--_._-.----_..,,,........_--­ TOTAL SPAWNING WSA AND WUA IN MIDDLE SUSITNA RIVER A 15000 -. 13500 +oJ ...... 12000. C" en 10500 TOTAl. IfSA "'­e 9000 en 'C 7500 c: l'tJ en 6000 ::l e .r::;4500.:::. 3000 « en 1500x 0 I 0 4000 BODO 12000 16000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE (CFS) B 75 • -. S7 +oJ I r TOTAl NUA"'­SO. 0­en 52 "'­e 45 en 'C 37 c: l'tJ en 30 ::l e .r::; 22 +oJ-15 « :::J 7 x 0 I I I t I I 0 -4000 8000 12000 IS000 20000 24000 28000 32000 36000 40000 MAINSTEM DISCHARGE [CFS) Figure 25. Total WSA and WUA curves for habitats in the middle Susitna River. IV-3D __'~ __"'~'"__""_~_' '_~_'_""""'_~._"'.~V'_"'_O'~"' ,.'~_. ..•~~ '._ .._~.,.q.~."'"."'.".~•.~'" ........._..,....'_,•.~.~.""'...,.-........ ~, .._ .... '_~_,___ 2E _~~~~'.~'_•..,.....'<".. _. -. __,~_............_._~ ___.. ,_ V. APPLICATION The WUA curves presented in this report were developed to support the negoti­ ated allocation of streamflow between hydropower generation and the mainte­ nance of natural reproduction from chum spawning habitats in the middle .Susitna River. The conceptual approach and methods used to derive these Weighted Usable Area curves are logical and well documented (Bovee 1982, Estes and Vincent-Lang 1984, Hilliard et ale 1985, Trihey & Associates and Entrix 1985). However, throughout the course of the analysis various assumptions were made on the basis of professional judgement and experience to bridge data gaps. These assumptions and decisions are considered valid, but are not supported by specific data bases or analysis. Perhaps the two most significant questions which might arise pertain to the manner in which passage criteria was incor­ .porated into the analysis and the use of escapement ratios in the extrapo­ lation process. Additional field studies and analysis to define the influence of local flow on passage and to develop site specific spawning habitat quality indices based on upwelling and substrate composition would, therefore, be beneficial. Nonetheless the composite WUA curves presented in Figure 25, and again in Figure 26 on an expanded scale, are considered adequate to evaluate the effects of alternative with-project flow regimes on chum spawning habitats and to select that flow regime which is most compatible with maintaining natural reproduction. This opinion is based on the discussion provided in Appendix D and comparisons between the shapes of the composite WUA curves and numerous aerial photographs of the respective habitats. The location of principal inflection points as well as the general trends depicted by the WUA curves in Figures 25 and 26 are more significant than the absolute magnitude of the WUA indices when evaluating alternative streamflow regimes. It should also be recognized that once species suitability criteria are established, stream channel morphology and hydraulic conditions have the V-1 -- L 75 ---. 67 +J I r TOTAL WUA ~ 60 . 0' en 52 '+­a .45 en '0 37 c co en 30 ::J a .c 22 +J '--'" 15 <: <t: N I ::J 7 --i ~~ ;-SC ~ 0 I I I I I I I I I I 0 4000 BOOO 12000 16000 20000 24000 2BOOO 32000 36000 40000 MAINSTEM DISCHARGE (CFS) Figure 26. Aggregated WUA for middle Susitna River habitats. -_.."•.>"_._--~-,.----"_ ..•-~ ..~---_._--,-.., •.,-~,.....--.".,,"'~'-._"""----"-'-'-'''''''''''''''''''.'~''.~~--~~'''~~-~-'''''"'-''''''' --,,.,.,,-.~----~.__•----------_......... greatest i nfl uence on the shape of WUA curves. And, channel morphology and hydraulic conditions were used as the primary criteria for classifying and describing the specific area which are included in this analysis. Therefore, undertaking additional field work and analysis to improve our understanding of passage requirements or to develop more quantitative descriptions of habitat quality indices would have a more significant effect on modifying the magni­ tude of the WUA indices than altering the basic shapes of the composite curves. Therefore it appears justified to draw the following conclusions from the WUA curves presented in Figure 26. For streamflows in excess of 24,000 cfs chum spawning habitat exists primarily in side slough and upland slough habitats. Between 16,000 .and 24,000 cfs side channel habitats replace side slough habitats in the amount of spawning in providing potential spawning habitat. The greatest uniformity in the distribution of spawning habitat among the four habitat types evaluated exists at approximately 14,000 cfs. Below 12,000 cfs available habitat is concentrated in upland sloughs and slough mouths. When applying these WUA curves to estimate the response oT chum spawning habitat to with-project scenarios, it will be important to consider the effects of an altered sediment transport regime. Construction of a large impoundment upstream of Devil Canyon would substantially reduce the amount of sand being transported through many middle Susitna River spawning areas. Because of this substrate composition in many areas would improve, thereby improving habitat conditions for chum spawners (Trihey &Associates and Entrix 1985) • This improvement in habitat conditions is not incorporated into the composite WUA curves presented in this report. With-project WUA curves could be derived for each habitat type by estimating the relative degree of improvement antic­ ipated in substrate composition and adjusting the magnitude of the composite WUA curves accordingly. Analysis of with-project streamflows should also recognize that alteration of channel geometry such as would be involved in slough modification will violate the assumption of state channel geometry used in the hydraulic modeling. The V-3 "'" '''''-~-''-'~''.~''''''''''_.''-'''''''-'''''''~'''''''!''.''~."", "",'.,..,-',..... ~"~.. _.~~--...........-"--.~._,~.," --~."-,..,~ ..-,._"_.._,~~" ..",~----_.~_._----"--~------~ ....---_..----~.--,~-,~~--~.~ . proposed with-project slough geometry and discharge would need to be modeled and WUA curves derived for modified sloughs. Future use of these composite curves should also employ time series analysis of WUA response to alternative streamflow patterns during the August 12 to September 15 period. Both average weekly and average daily streamflows would be applicable. Time series analysis should also consider the effect of peak daily flows on .... passage conditions and streambed scour for both natural and with-project scenarios. V-4 ---_.--....._--_._._--_. -----_....-._....---_._._---~._-."-~ .. ~*~ •..,..--<.,....... ,­~ --_......~'"~._~,-,~ .._", ... -. VI REFERENCES CITED Aaserude, R.G., J. Thiele, and D.E. Trudgen. 1985. Characterization of aquatic habitats in the Talkeetna-to-Devil Canyon segment of the Susitna River, Alaska. Final report. E. Woody Trihey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. Document No. 2919. 1 Vol. 1985. Annual management report, 1983. Upper Cook Inlet Regi on I I. Commercial Fisheries Div., Soldotna, AK. Alaska Dept. of Fish and Game, Susitna Hydro Aquatic Studies. 1981. Phase I final draft report. Adult anadromous fisheries project. Report for Acres American, Inc. Alaska Power Authority. Susitna Hydroelectric Project. 1 vol. 1982. Phase II final data report: Vol. 2. Adult anadromous fish studies. Report for Acres American, Inc. Alaska Power Authority. Susitna Hydroelectric Project. 239 pp. 1983. Phase II basic data report. Vol. 4: Aquatic habitat and instream flow studies, 1982. Parts I and II. 367 pp. Alaska Dept. of Fish and Game, Susitna Hydro Aquatic Studies. 1983. Phase II basic data report. Vol. 4: Aquatic habitat and instream flow studies, 1982. Parts I and II. 367 pp. VI-1 '~_~A_'_'~_,,~_<,.____ __-._,.,--..,..".,'~~~___. ..._., .,..._>,..-.; ...~< _ ---------""""---<-------<'""­ Alaska Dept. of Fish and Game, Susitna Hydro Aquatic Studies. 1983. Phase II basic data report. Vol. 4: Aquatic habitat and instream flow studies, 1982, appendices A-C. 1 vol. Alaska Dept. of Fish and Game, Susitna Hydro Aquatic Studies. 1983. Phase II basic data report. Vol. 4: Aquatic habitat and instream flow studies, 1982, appendices D-J. 1 vol. Alaska Dept. of Fish and Game, Susitna Hydro Aquatic Studies. 1985. Addendum to Report No.3, Ch. 6. Salmon passage validation studies (August -October 1984). Report for Alaska Power Authority, Anchorage, AK. Document 2854. 1 vol. Alaska Power Authority. 1982. Susitna hydroelectric project: Fish and wildlife mitigation policy. Anchorage, AK. Barrett, B.M., F.M. Thompson, and S.N. Wick. 1984. Report No. l. Adult anadromous fish investigations, May -October 1983. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1450. 1 vol. 1985. Report No.6. Adult salmon investigations May ­ October 1984. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 2748. 1 vol. VI-2 Binns, N.A., and F.M. Eiserman. 1979. Quantification of fluvial trout habitat in Wyoming. Trans. Am. Fish Soc. 108:215-228. Bovee, K.D. 1978. Probabi1ity-of-use criteria for the family sa1monidae. Cooperative Instream Flow Service Group, U.S. Fish and Wildlife Service, Fort. Collins, CO. Instream Flow Information Paper No.4. Bovee, K.D., and R. Mi1hous. 1978. Hydraulic simulation in instream flow studies theory and techniques. Cooperative Instream Flow Service Group, U.S. Fish and Wildlife Service, Fort Collins, CO. Instream Flow Information Paper No.5. Estes, C.C. and D.S. Vincent-lang, eds. 1984a. Report No.3. Aquatic habitat and instream flow investigations (May-October 1983). Chapter 1: Stage and discharge investigations. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1930. 1 vol. 1984b. Report No.3. Aquatic habitat and instream flow investigations (May -October 1983). Chapter 3: Continuous water temperature investigations. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1932. 1 vol. 1984c. Report No.3. Aquatic habitat and instream flow investigations (May -October 1983). Chapter 6: An evaluation VI-3 "'-"'--~-'~--"""~~""~-' --~._----------- of passage conditions for adult salmon in sloughs and side channels of the middle Susitna River. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1935. 1 vol. 1984d. Report No.3. Aquatic habitat and instream flow investigations (May -October 1983). Chapter 7: An evaluation of chum and sockeye salmon spawning habitat in sloughs and side channels of the middle Susitna River. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1936. 1 vol. '1984e. Report No.3. Aquatic habitat and instreaul flow investigations (May -October 1983). Chapter 8: Evaluations of chum salmon spawning habitat in selected tributary mouth habitats of the middle Susitna River. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1937. 70 pp. Hale, S.S. 1981. Freshwater habitat relationships. Chum salmon (Oncorhynchus ketal. Resources Assessment Branch, Habitat Div., Alaska Dept. of Fish and Game. Anchorage, AK. 1 vol. Hilliard, N.D., S. Williams, E.W. Trihey, R.C. Wilkinson, and C.R. Steward. 1985. Hydraulic relationships and model calibration procedures at 1984 study sites in the Talkeetna-to-Devil Canyon VI-4 _..,._ ..... ".-..,'._......~,,-~~.~.~,----------,---.. _-'.~ ...~,~--_. ---_. segment of the Susitna River, AK. Vol. I. Main Text. Final Report. E. Woody Trihey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. Document 2898. 1 vol. Hilliard, N.D., et al. 1985b. Hydraulic relationships and model calibration procedures at 1984 study sites in the Talkeetna-to­ Devil Canyon segment of the Susitna River, Alaska. Vol. 2. Appendices. Trihey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. Document 2899. 1 vol. Klinger, S., and E.W. Trihey. 1984. Response of aquatic habitat surface areas to mainstem discharge in the Tal keetna-to-Devi 1 Canyon reach of the Susitna River, Alaska. E. Woody Trihey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. Document No. 1693. 1 vol. Klinger-Kingsley, S., L. Reynolds and E.W. Trihey. 1985. Response of aquatic habitat surface areas to mainstem discharge in the Tal keetna-to-Devil Canyon reach of the Susitna River, Alaska. Final report. E. Woody Trlhey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. Document No. 2945. 1 vol. . - Loar, J.M., ed. 1985. Application of habitat evaluation models in Southern Appalachian trout streams. Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN. Publication 2383. 310 pp. VI-5 ,,--,-~-_.~._---------------_. Milhous, R.T., D.L. Weyner, and T. Waddle. 1984. Users guide to the physical habitat simulation system. U.S. Fish and Wildlife Service. Instream Flow Information Paper 11. FWS/OBS -81/43 Revised. 475 pp. Mosley, M.P. 1982. Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River New Zealand. Wter Resources Research 18(4):800-812. 1983. Response of braided rivers to changing discharge. Journa 1. Olsen, R.W. 1979. Methodologies for use in project-related studies. Pages 157-169 in: Proceedings from Hydropower: A National Energy Resource. March 11-16, 1979, Engineering Foundation Conference. In cooperation with U.S. Army Corps of Engineers. Easton, MD. Stalnaker, C.B., and J.L. Arnette, eds. 1976. Methodologies for the determination of stream resource flow requirements: an assess­ ment. Utah State University, Logan, UTe Report for U.S. Fish and Wildlife Service. 199 pp. Steward, C.R. 1985. Suitability criteria recommended for use in IFR habitat modeling studies of the middle Susitna River. Technical Memorandum. E. Woody Trihey and Associates, Anchorage, AK. 11 pp. VI-6 ._.~~_.."....'....._-~,_"._'.._----->_.~.,~_.~·~,~_'...· .~_........•...~,c·....~_,_,_.....~_"""'-""_i_~~''--•~_~'~'____ __ _ ____·'_1 _-__ ,..__......_.·e'· __ "'_ __.-_ ......,.,.,,_ '_'_'____ ___, R.C. Wilkinson, and A. Milner. 1985. Response of juvenile chinook habitat to mainstem discharge in the Talkeetna-to-Devil Canyon segment of the Susitna River, Alaska. Final report. E. Woody Trihey &Associates, Anchorage, Alaska. Document No. 2909. Trihey, E.W. 1979. The IFG incremental methodology. Pages 24-44 in: G.l. Smith, ed. Workshop in Instream Flow Habitat Criteria and Modeling. Colorado Water Resources Research Institute, Colorado State University, Fort Collins, co. Information Series No. 40. Trihey, E.W. 1982. Preliminary assessment of access by spawning salmon to side slough habitat above Talkeetna. Report for Acres American Inc., Buffalo, N.Y. 26 pp. Trihey, E.W., and J.E. Baldrige. 1985. An Empirical Approach for Evaluating Microhabitat Response to Streamflow in Steep-Gradient, large Bed-Element Streams. In Proceedings of the AFS Symposium on Small Hydropower and Fisheries, May 1-3, 1985, Denver, Colorado. American Fisheries Society, Bethesda, MD. Trihey & Associates and Entrix. 1985. Instream Flow Relationships Report. Volume 1. Final Report. Alaska Power Authority. Susitna Hydroelectric Project. Document No. 3060. Vining, l.J., J.S. Blakely, and G.M. Freeman. 1985. Report No.5. Winter aquatic investigations (September 1983 -May 1984). VI-7 '--'J:\!!&Ie Volume 1: An evaluation of the incubation life-phase of chum salmon in the middle Susitna River, Alaska. Appendices A through E. Susitna Hydro Aquatic Studies, Alaska Dept. of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 2658. 1 vol. Wesche, T.A. 1980. The WRRI trout cover rating method. Development and application. Water Resources Research Institute, Water Resources Series No. 78, University of Wyoming, Laramie, WY. Wesche, LA., and P.A. Rechard. 1980. A summary of instream flow metho.ds for fisheries and related research needs. Water Resources Research Institute, University of Wyoming, Laramie, WY. Eisenhower Consortium Bulletin 9. VI-8 - -._--_.~~.-._----~~-._----._-----------_.._-_. APPENDIX A Point Files Point files for site specific WSA and WUA curves at modeled specific areas includes "re stricted passage" criteria however WUA is not adjusted by escape­ ment ratios. Point files appear in the same sequence as site-specific WSA and WUA curves are presented in Section IV. A-I ""~ ------------------- -~----~ = '''''~~'''~''-''''-' SITE 118.~_ (>>is O!JOOJ lISA/I em --_....._.... ... .._"<_._-_....__.~ ..---...._'".......,~~ ..._.,..-,........."_.,.....~.',,,.,'_.-. ,._._..-.-.,_.. scm 1l~ 53074 55(X1 HoI 56217 600J 1214 59360 6SOO 1267 62503 700J 13.."0 65646 7500 1373 637'?? 00ll 1420 71~33 3SOO 147'1 75077 9(lOO 1532 7B221 9500 ls...qs 81365 100ll 1038 345m 10500 1784 36~149 ll00J 2069 00333 11500 2354 :~717 12rol 2tJ'-' n1D2 12500 2']24 92436 13000 3200 933?O 11'iOO 3493 %254 1400J 3773 96iJ9 14500 4063 ';l:1J23 15001 4348 ':19407 15500 4313 1CKXJ22 1600:1 4199 100446 16500 4Q8.1 100369 17em 3%9 10129"2 1750J 3.'355 101715 lro:xJ 3740 102300 13500 3625 103534 1900J 3511 104763 1Q5O) 3396 106003 200ll 32a2 107237 20500 3167 10:3471 21000 3052 109706 l:·t-' 21500 2'?3e 110'.140 ';~}'.' .. 220lI •...2823 112174 22500 27m 112421 2300J 2593 112·i2l 23S00 247'i 112421 2400:1 2364 112421 "....24500 2249 112421 2SOOO 2134 112421 25500 2020 112421 26001 1~'05 112421 2651JJ 17'1) 112421 27000 167~ 11242! 1r· I 27500 :,0, 112421 2ro1J 1446 l!2421 2SSOO 1331 112421 2':J()OO 121t. 112421 29500 11()2 112421 3lIDJ 'l'il7 112421 J0500 :372 112421 31000 757 112421 31500 643 112421 320ll 5"'"'LO 112421 32500 41: 112421 33GOO m 112421 33500 1B4 112421 3400J 69 112421 34500 ( 112421 3500J 0 112421 _31£,__, ---------------------- ----"."--~-. _~""'_~"""'~~"''''-__'''K''''''~_.''''·b,_--,..••",........,....._",_,W'''''~~''''''''''_ _ "-_."..,.""._-."--,.~~- SITE 119.1l Qt1S WlIA/JOOJ 1&11(0) ; j ': ,[ 500J 0 23300 55(~) 0 23920 bOO] (l 244&0 6500 S4 25045 HXXKl 2659 2"0655 700) 168 256JI 7500 253 26216 lID) 611 26734 3500 1123 27214 9(Jl}1 Ib3S 27695 %00 2W 28li5 10500 31r'S 29173 11(0) 3182 29747 11500 33J7 30322 12000 3492 3((.,'( 12500 3646 31471 13m! 3001 32046 moo 3']55 32620 14000 4110 33195 14500 4265 33770 1500) 4419 34344 4~"'l1S500 ~/L 34~4 16000 4275 3S4J7 16500 4173 35981 17(0) 400J 36524 17500 3934 37063 100)0 3337 3'7t>1! 13500 3790 38154 l?OOJ 3693 33693 19500 35% 39241 2CXXKl 34Q9 39735 20500 3402 40328 21(0) 330S 40072 21500 3200 41415 2200J 311l 41959 22500 3014 42502 23lXKl 2917 43046 23500 2320 43~ 24000 2723 44132 24.500 2626 4%7h 2500) 2529 45219 2S500 2432 45763 26000 233S 46306 26500 2238 46850 2700D 2140 4T01.,J ,J 27500 2043 4i?37 2'COOJ 1946 48400 28500 1:340 49024 7'OOJ 1752 49567 29500 1655 50110 300Xl 1553 ' 506S4 3050D 1457 50930 31(0) 1351 5(J';lOO 31500 1245 50900 32(0) 1138 5(P(() 32500 1032 50%'0 mxJ 1?26 ~ 33500 8l'i 5Oro'O 3400J 713 S0900 345(X) b06 5(00) l.<,fIYI SOO 50'100 ----------------- ",""-",~"""";""",-~-""",,,,,-~.~.'--.-.-,..,. SITE 125.2R bffi illA{lllll WSA{I em 5(0) ssoo t,('(1l1 b5Ol: 7(0) 7SOCI fml 8S(ln 900J 9500 10000 10500 IHXXl 115O(l 1200J I250C I3I)JI 13500 141nl 1450fl 1500) 15S00 16000 16500 17001 17500 lroxJ 18500 IQ(OJ 19500 2OCOO 2(51)') 21(00 21500 22000 22500 2300) 23S00 24000 24500 2500) 25500 26000 265ft(! 27lX~1 2750(1 2roXl 23500 ~:l(ffl 29500 3OCOO 3OSOO 3J(XXJ 31SOO 32lXXJ 32500 3300J rJ500 3400J 0 4 Q 13 18 22 12b" m ~4b IiOo 76f:. n6 1006 1246 J405 1565 1725 1~ 1834 1730 1627 1523 1419 1315 1212 1100 1004 900 79i 696 sqj 497 398 29'J 199 99 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I] 0 0 0 0 0 0 0 216524 22348q 23~~4 237m 244334 . 251349 255540 258lil 2tJJS01 20.3432 206063 2686'~4 2711"5 27J:lse 27iJ.fJ6 2n2P 2fIl848 2'"<14479 200116 292004 rt5i.f!2 '8j7'~ 3OW-9 30755 7 311445 315333 319221 3231(( 326997 J2"0621 3296'16 330764 331831 33lJ?,j 333?65 ,mm 336100 337471 3:-t'-342 340213 341583 34??54 344325 J4XJ( 347067 343438 34~ 35117i 352550 35J'l21 355'>Q?L •• ~ 358033 35~04 3tlJ775 362146 363SJ7 364::G3 366258 34500 o }/J7629 3500) Q 369COO ----------------- SITE 134.9R (,ffi IIUA/l00J lISA/l00J 5(00 S5(rJ call 65(A} 7000 750iJ :{If)) 8500 9I:((J 9500 10000 10500 llOOO 11500 12('00 1251)J lJOOJ 1M 14003 1451.10 lSOOJ 15500 ltroJ 16500 17[00 17500 leW) 18500 I:mJ 19500 2OO)J 20500 21 coo 21SOO 22fXlJ 22500 2300) 23500 24003 24500 25WJ 25..W: 2t.OClJ 2651J.' 2:000 2750J 2800) 2:3.)1)) 2900J 29500 3(ID) 30SiJi 31000 31500 32000 32500 33(((1 3l'iOO 340ll 34500 35lXXJ 003 1011 1138 1266 1394 1515 1610 1705 1f((J 1895 1990 21)'..5 2100 2275 2370 ·2465 2510 2554 2599 2644 266·? 2733 'lJ78 2813 2357 'Jm 2936­ 2925 2913 m2 2891 roJ 286S 2357 2S46 2834 28230 27SJ :D'44 2704 2664 2624 2585 2545 250: 2400 2452 2425 W7 2369 2342 2314 2236 2259 2231 2203 2176 2148 2120 2093 2065 231433 23457'6 237603 240759 24334 Q 246664 24S331 25OO'l3 251315 253531 25524B 256%5 259682 26OJ-"'? 262115 263::G2 264792 265751 266711 267671 2(.?,(Jl 26?5QQ 270550 271300 272211 273041 273871 27507'? 276c.~ 277m 273701 27'nO'? 281117 ?J2324 2"03532 234739 285947 2'J60Ct3 287670 2roS3' ". W392 2902S~ mll5 ?lll~7t· ('[f!:"!"; 1 <,4450':: 296023 297557 29':-I\Jl:~ 30061 c .. "¥' 3)2144 303673 305201 306TJO 3OO2S'I :m~ 311317 312346 314374 .315903 317432 - -.._._~-~- - -'~"'~----'-_.'.--~ SITE 138.71L QI1S llIl\/lroJ WSA/11XXl -------_..-------­ 'ill) 100 iIDJ 5500 no 102:32 tffiI 319 117l>5 i)..'f(J 429 13247 7000 539 14729 7500 64S 16212 ro:KJ 758 17694 3500 867 19l76 900l 977 2D659 9500 HlP 22141 IlXXl1 119t. 23623 11l5ir1 1355 25116 I1lXXl 1712 21:0653 11500 2(J6:~ 2'31'·'0 12(0) 2424 29 72b 12500 2?al 3126J 13lXXl 3m 3m! moo 3493 34337 14lXXl 3850 JSS73 14500 420£ J7410 15[00 3857 ;)0047 15500 3509 4D2'a4 1WlJ 3160 41721 16500 2311 43158 17000 2463 44595 17500 2114 46032 lOOl1 1700 4~7 18500 1504 48470 19lUl 122'; 49543 19500 1189 50334 200XJ 1149 51124 21).";)) 1109 5i 915 21lXXl 1069 52706 21500 1m S349l:> 2.:."000 9S9 54237 22500 949 55077 23ero 909 55&'.8 2J500 368 56659 24000 8213 57449 24500 7'.ll 58240 25000 748 5S1J31 255lJJ 700 5Q321 26000 W3 60612 ~650:1 62'2, 61402 2:(OJ 533 021"3 27500 54:3 02'.:'JA 23000 500 6J7W 2'3500 468 1.;4602 2900J 427 ~>4!5 7l50fl ;)j7 f:JJ22'9 30000 347 6704~ 30500 306 P:.i56 31000 266 68670 31500 226 69434 32000 185 7rrt;l7 32500 145 71111 3300) lOS 71 925 33SOO 64 72732 34001 24 73S52 34500 0 7404Q 3500J 0 74040 6obol l ~PD)~'> O)1?S"t1 60C7>/"Z oOO~9 61~,vOl T C,;VIS:C;; 9t-<;ZT f,O':n G :::::1vf: 00'::,-17;: ~:: !.. CJ;:~ ::: ~:.I~, l'C! 11 SV'i£S 'n'~:;G1 (-{J')1 ~:: ~~: r:: tl ~~ Of)Ot-r ;::-:L~02:C: 6r~,vOT T St")~f;; -;ivS'::T f~,O'~T;~ ~e17£ OO~£:£: ,'~,(n:'~:: .. " L,t 1[ 1 (:~ O'IS~':~ ~;, tJ ') 1 ~-: ""-'17',::, 1100:::;:' .:,0, (k~:-: (,,' 1/ \ , r [ I·:l tl'··J s.' ~~J' ~J tl ,~.; ;:.: 1 60':/ T;:: no£;::~: ",,' VU l [ '.}tl~;:: l' (,O')T~ 000;::£ ,,' vOl T I;; t? "-:J ~~'~; '~v<:;~~T 6091;:: ou<;;n:: t.,' t'O [ r ~:J t/"-/£S' ')17S;;:1 6091;:: (JOOH~ t,,~, llU I [ .~j t/':,'I:~~C; 91?~;(~T 6Uo:JTc3 OUS;O::: tn~VUlr ·}t"(:-;;?1 (,,{J') T;:; CIUOI.l::: (,(.170 T 1 ~; ti'~jr~~ '/ 17 ~'; ;;: 1 6(YiT;:: UiIC;f,;:: (-c' t,/U [ [ ',t:, VI.I [ [ (:; I/'>'~~~;' (~t.,,)£~; ';i VI;;:~ T ,:,v';.;::·r (:,09T0 (:.', Cl ~J l ~:~ DUOr'.,;:: Ch)(~::C:;:~ " 1/1.1 [ [ (~~ t' ')~: <; I (I'';;::: T t,~.09 '{ ;~~ r:::~:vS"~ 1)00::,:: (,(,1/(::1 [ ~; ·17 !~~I £: S (', V ,;;:: T t::.09T0 ~~C:t'~ UU<;:;i;:: " 1.'1' 1 r c; I,' '.1 '. ~; ,,1)';'1,'; U[IlJ/:~7, :. ',.' / "~l l ": '/ I,J';~:~ I ,~,O',) TG t.1(:·I~:'I");:-~ 'c't,'UII:::: I;,:;::C r '}t'S;:~ r 60') [(~ UULi";:: \/"/ TO:::: /<:;.6':)U1 1~)t;'SG T 6091;:; IJ(}(~;~;G !I/,~~;U [ ':.:It·7~GT 60':;' TG ~:U17~ onos~:: TUC:::':i ~,!~, t' t'O 1 ')~'SGT 609Tt:: ~:::::17~ (lOS'17(~ U;:: '[ U/". 1,::-I//! £v;:~E:DT Vt.l",T CIT Ijt·S;:;l ~.:s=:£:(~ T ,::,o'::n;:: S091Z iSO£ l!IJUI/,:,: ()(Y~;f? ~t'.:::.UOT 1/~LGS (.0':)10 LSD£: UUO£:~~ .~;:: I;'<;" L (':::t'GS USOvl1 vv:::::61 .::::SO£ DOSGG ')(.I,t1/.. [:I":,OG<,",' U')SOT 6ilJ::n "':::SO£ 000,:;;:: 19L1S t/li6 ;::is:9T .(..£0£ UOSOIG '~'l<V TS' O')~~r:, I"-:'O')T t..SOL IlOOIG [IS(,Ur.· r I:::U(, ::.::::,'1 T (, 90(l{. '::,j '.-:; / ~;; T LS'O£ UU,:;U;;-; Lt~ i.6 ') /.'f:~~~::::9 ,'~:/..c:c: 1SLUS STt/OS; f:6()6 :..:t/t-·£'1 C/t7TS'1 iSOr iSD£: OUCH);;: OOS:6T S;::T9') t.. t: ~;; t~ .~.. :,::lOOS 0vl(,v ;;0 \71~. tl t"Vt~I::; O(.!t: t;GSvT t7:3~6 LSD£: LSO£ {~:;OS: 000(.[ DOS:;:: 1 000;::[ ,'~ [U::") Ui:t: T') ''';Ut'(:.tl SOv6 1/ SU~'(,/j <;17:::<; :3U9',;' Td.S 016::: .::::~-::v::c: ~='jf::./ (.l.·.L(.~ 61..1.;:; 1'::ILL~:~ OO<;LT 000/1 DDS'91 t':} ': __ " ~.:,~::::~~; (;(H/t:, v C;f:T~; D(.t'L 1'~·.!~l,G OU091 ,._...~:'.' (Il~ S· £9L99 TTT6v U(, Tv ')i9S (01iG OI.1';SI 1/ (J (~~'1. ~.; '.'tlOi,-:; ~:: tr T '~.I') /.. ',. :.::. ';1/ :::<':U!,~ /~£·~/2 vTrc:.s: 1 ')t::, 1 ODU<:;1 OUS!;'T L:::S':"JS ~',vI~,179 TiSG lJ1I;:;£ TO(,T 000v1 C: ~.:: T ~} Si TG£t;~~' vOS;:: (9T~= Tv::-:l OU~;£1 t,':)')~;~:; Tv':i/V L!~I?;:; £:t:.m-:: TC:lT ClOD;:: 1 TT;;~~:;<;:; ,~t,l~~':::: tl T ~~~G 0;:::0£ T;::11 CHY;;::T ,7, il ,< 'I t: liT;:: /Ol2. ':OJ/'-il OOO;;~T I.;} ~:',~ r: ~~:'. <;:: ! [9T9 /','O<:;t/ ~:::k,1 /H:!':;[ 1 o::~ 1/ I":; (.. t:.~';~~<~; ,J.:::-::::O':~ t1(:,UU9 fT(,~~ll '::''~~ t, (,tl (:':~;L r 9T91 E:O;': OT:::1 i(,1·' [ Uell] TI (1lJ':;U T r~:::'O(~ £VUi:,t;' r;:~9 TV <;0!1 :::1;<::1 OUOOT ':;66Ls 'll'ii'O't' L£171 00'71 vl;::T no e;(, ::i r ::\: I S,:~J,~ Lt'~1 c;(. \7 T (,r, Tl CHXl~:, i I d), ti' I': ,',I.: l, e;;:~ 1 ::::911 O .. ,~'T ~~;;: 1 T USOI CHlc,-::: DOOG I':: : t/ I.: ::t:i'J 1 O::::Tl 'il6 OOSI. 1 ';;:: 'C' I,J O~'T 1 i£:v 1)00': ,(;,~11; ~:'6UT lS:t; UOS9 " ,'lUI/ :,:\-'11': I,' :;/ ::r::., /t';, '~I':;CJ 1 " t: U(Il!':,' ':' [ '/',) (I t/(:';:U:,~ 1:, r D I ./,L't/ UU':;~; 1/ t."l I:; l; .~~~'I/VIL ..-._._--_... -....._-~. __ .-.. _.., ..._.,.~--_ .. _. __ .. _._----"'_.'..­.. _---_._.__ ..... __.. DUOS L j DUO T ! v~;r1 l.J UDor !WIM . __..._~-_._ ......--_.-,._-_..._--_.,._.~' -= ...._--'~._~ ....~..............-........-_._-_._~~"~--_ ... _-,~-_ .... SIll:: 12,5 _6R WUA/1000 WSA/1000 5UOO ~:;5url I,UC'(l (,~»(JU 7UUU ?,~;nU ::':::000 ::::,~-,OCI 900(1 (} ~:,(llJ 1UOOO 1U~)OO 11000 11500 1;:"l)()U J ~:l~;CH) 1;(11'10 13500 14000 J4S0U 1~,000 J b!:,UO 16000 l{,~iOO 17UO:J 11'~:;UO 1:~:OOO l:=:~)U() J. ';'OOU 1 '}500 20000 ;2 0 !"',OO 21000 ?lSOO :;~::'OOCI 22~)00 23000 2::,500 ;-~4()OO ;:)4~,OO ::~!"')OOCi 25.500 260UO :?i,~'OO :.:'700(; ~:..' ;:;U('I' ;:' :::: (H:Ji-' ~~~C:5(ln ;,~')OOU :::'9':,00 300011 :)o~)oo 31UU!.' :::;15UCI ::;2000 32~)OO 33UOO :;:S."iUO ::;40UU 34!,,",(J(J 3!:",OOI.I 1 ,) 1 'I .1. 9:~~:::': I'),;" I '.' ,~) 1 J.I)C,~"? 197~ 2010 2043 2075 2108 2140 217/3 2::~::,(, 23~53 :244'1 :?~:).'~(, :~~~)(,,) 2~592 ;:~614 2r=.37 2(,(,0 :':)~2 :S:~; 3;~~(, 3402 354G )(.94 ~sr:::.:)') 'l6:JI) 4'::;Olc, 5J1~4 5371 ,:,,59:::: C' ,-,.-) 1:..":,_'0::'.-:.. _.. J ',O~,:::~ (~12(~D ~,4(,7 6t:,74 (:,C::31 70:=::3 7~}':~"~! ?:::>02 7709 7'::'1.16 :~::: I;:.'::? "-1 ~-~ ,'-, ,-, 1..-' (~•• f.-' (_' Ci~?C::~:: :'.~: :~j c: C: ..··"-)1··'.'··, '';''''...-':'':~' c: ~~~ c::'~ : :32:3C: ,'., ,-) ,-'" ''':':'&':'''':'.''.:' ~, :::~:?r:c; ,--",)",,,-', (':I~ 0:':.,,:, c:~~.' :.~: C: :::::~C::3 :'-3?71~' ::.::c: ~) ..:;. :3')111 C:96/! 'XI:~'(, 91j:'::':' 33322; ::;::;777 34 :;/1 I( :;4 ':) 1 (l :.:i !:)it·/ /.. ~.j .~.:-) 9 9 t.> ~:s f':t ~~):~ u :::)(,644 3f~.')f:',:=: ~':;7292 ::;7(.1 ~" 37';-'':~O 3::::1C:5 ::;:::::4HJ 3:=i(':.:~(1 "):3:>:(, J. 3'i()/IO -51)~;! 1 ':.J ::'~1}3')7 39576 3")755 39 Q 34 40113 40754 41395 42036 42676 43412 ..t~ /~. :?'.} ,:s 4.5175 4/=,056 4 t:.':!3C: 4781~ 4870J 49JU 7 49901 50496 50:::::=:;~ 51269 !:)1655 5:2041 ,5;:~427 5::~::H4 .s3~~OO .r~)3.S~?3 ~;3!/'1 .s:Sf;.(.(l ~:"i 3' ~7:? ,.-,. 53797 5:):3(.(. :_):::;934 :~A003 5-107::' 541'+(1 5420') 54~~20 S·i;:':::a 5/1;,'4 J .:; 4 :.~.~ 5 ~:! .~)4~?(,~:) .':A274 • ,••~~_._--_..... ._~~.•,.~_..~~._---~._"._~~......"... till.....--~"~,. ..., e ----_._-,-----------­ q ~,oou ~,;,~')IJU 6UUU 6~:iOCl 7000 75CJO :~:(JOO G500 9UUO '::J~)OO l.OOUU J0500 JI000 11500 12CiOO 12500 13000 13500 14UOO J4500 15000 1.'';'!:·OU 16000 16500 17000 17500 1::::000 1::::500 19000 19500 :-~OOOO ;:!050n :21000 ;'21. 5UO 22000 22.'='00 23000 23500 ;:.'/~CJOO 24 ,"",UI] 2~,OOU :25500 ;:~c.UOO 26EdJCl ;?/UOU 2750U ;2:=:000 ;?C:500 29000 2("~;UO 300lX) ;0500 31000 31500 32000 3::!50n 3300U :;;::")E,(J(J ::i4CJOO 34·500 ::;~)OO(J SIrE 114.lR WUA/I000 WSA/I000 ,;U6 ::;0(· ,~-)(){ " O;U(. ·)UI~. 30":, 1;,1') 11.0/ 15·il~. 20:>l #")r.:'-:J~ L.. ...)/ ~ :'>061 ).",,:.u 3L~21 ""~) 2 ')~~~ ..,LiA 303~) 2 1:-:;06 ~~7·7? 26·1',1 2520 22t::~I) ~!n55 1:~:1.1 15(,{. 13~~::! 1108 101U 9J3 816 719 ."#-J'")t:'t:M ,_ 5:?5 ,\,')"'; '"'t:':M ,/ :::;::m f""\-:a"'-:" .L... 'M) ._) 1:"..,6 ~,)(:;I o u o o u n I ~ (J n u I") CJ I) (I o u u CJ I) o o u (I J.')(I(.O ~~ ~:)3C:U :;1/'1.6 ::>t:U:lll 4,n7;:~ s%n ~).5C:04 (,0;;';::1) (:,41..".'.\(::­ 6 ':AJ 5;:> 7:)4(.:~: 7/:3:':::4 ::;::2':;00 :3s:/n:; :.:')J 1U I)~;,~ .5 1. ,C R ;") ')5920 IjI)~..) ::~ {::. 1U2731 106136 lU9~41 111524 113151 1J4778 116404 118031 119757 1218 7 4 1. 239 1;'2 12,'::.110 1 ~~:322:=: 130346 132464 134~8L 1. ~5 (.f~. I,) 1:-:1 1:5::::::::17 141)()35 14305:::; 14 /l74" I /l6164 14:7E,79 14U')·.~·/1 1~)0409 1.51 :;:;:'/1 1. ~~l ~::)~? :~; ') 1,54~.34 156069 1.S748~ 1 ~:; C: c:I,)'.:.1 16031~ 161.729 103J44 164559 16597~ J. 6 7~)C-:') 1~88CJ4 1702l~ 17163~ 172200 172200 172200 m::,::,;::';; I no TIY; I Cil.~:i. f,i [ Ul/ I/t/ 17! DT9Tvf r :::i.. ::,:;~r r;:: [(','~T [(:,,:;0<':': T T,:Jt// ;:~ T (':~ t? / ~'~:.~ 1 Ll ,_,r .:~ ;':: 1 :~: :o.:.:'i tc, T1 ',J:::CI/ T1 1?~:~~ t' [ I (~::: ..,f I:[ iY'V"U r ~l:,.:',·.'IJ [ t' To.:'17U 1 ~:;s;!.. TU T )6166 :3;:0"\76 r', TSi T (, O"ir;,:::::::: 111 -':;O:)f: (·Xlt·-::: r ;::c, r I:: S;£:::1/. TG:'::v') ~~LJ,~,lt7':-:) 17ef't'" t<::~:' 1/':;' 17:::5::1;';­ t':::r 1/') 17 c: f: V'} (,f/r:t!':i 1 .': [I;.-/ //,Ot-9 n/.. L(~,~~' i:HJ/'; T':.:; s~ C)~; [ :l~~:; 9~; "r (:; ~.-; ':...'~;I' "I ~ -j S ':~.J ~~ 1 ~:; S' '~i ~~; T 1..J'~::I:·,1~~ r ;(;'"'/\::" '~ [tot, :~:n~::(, UCk':!" .. ; ,':'Il, Jr-, ~.: '"II : c,::: T c' : :<:'iJ::: '_'':'-:.',IL {.:r.:i ,:;.::T .( :'T6') [IIL':I Clf:, T/'~I .Cj''/C19 LGL~ ::f:CJ(.; :,u/t: :I!..i"·~' r~,::O"\7 r.:;::OT r;:OT _rUT --'TU I 1: rOT TTOT ::::UOT I~ • "V(. T,c-,:::: i','r_i_/ ,:::17 Ti:t· ':;'T"\7 CIT 1,7 ',' T 1;­ .'1 t' :'Tt' ·1 I ~, :j [t· 1ft>' 'T t/ '.' 1 1/ '}[V 9T17 OOOSi~: ury;; tic OUOf7r: UCJ~J~,~f: lJOOf:£ (ICJS2£ OUCk:~ OO~:; TL fJOOI co UL\';U~: oor)o~. (I (J ~;. '~::I ;:~ 00,1.:..;:; DUO::;:~ (HJ':.; I. ;:'. (illll,: ,:" I.I! )';':.'.< UOO'I;:7, (J r, ~~.J.~;;;:: DUOS;~ I./(Y:;t'G OUIlf,:-;": UOS~G nom:.:: OO<:";;:;G (IOClG;''. url~; T;:'. U001;;: OO';;U,:' 00000 OOS(,T OUC.r.0. T nCJs;::n oOlE: 1 (HIS,:: [ OOO/T CJ CJ ,::; ';J T OU091 CiCll:;S T 000(;1 UUS171 OOtJl, T nO(;£T OOO£T [lU':;71 UOO?T OtJSl T OUU1l urY~UT C/UUOT 0(1';;6 (HHJ6 (Iiln:::: UU~;/ OODL UIISj';) 0"1(1':' UIJ~:;<;:; (ll Il,)' , OUOT/V:?M OOOl/Vllf'l () (H:: •f:G T 311 ::; -..,------,~------- SIrE 131_3l n WUA/I000 WSA/I000 5000 5~:,on (.UOU ( ..";,00 700n ?~lOO ::::000 :;::50n 9000 9501) 10000 10500 1 J. 000 11500 1 ;~;ooo 1;;>~:;UO 139°0 J.3500 14000 1450P 1'.(101) 1 !),':jl!l) 1'.000 1650U J.7000 J'75UO J nnoo IG500 1'1000 J. '::'1500 20000 20~500 ;;> 1(JOO ? 1 ~:)C)fJ ;,~;"ooo 22500 ;:'3000 23500 ;?4(01) 2·1500 :25000 ~?':).sno 2(c.000 ~)(,.50(l ;~','OCICi ;~/!:iUO :2::::000 ::~:=:500 ?9ClOO 2'}~:-,OO ,:;C)I)UO ::;0500 :;J.OOO :31~:jOO 320CJCJ 3;:'500 ::-;::;000 33'5UO :;4000 ::;4~:'Jon ::;snno 3 ;) <•.1 ~ ") _..1 ~: :; I:~) ,~:) 135 :21 (. :~~'~j7 ~-"'I-'".1 / I':) 4~~'I:::: 5:;':;' (.;?fl ;;U1 "7,"-, ,-).' +..:, t;~•• :=:(.2 943 1024 1105 1185 12~A 1347 1520 1730 193~ :~~ .1. ~-)U ;::::;/1,1 254~~ 2749 2:36 1 ;' :?t::,.~)5 ;:!iI4 J. ~?22'/ 2013 1800 1586 1250 f:;:.)3 41 7 CJ i,l I" n 1..1 CI r) lJ U [1 o I! r; o U rJ U Ii o U (I I_,O(.I,;~ (.()(.i..1 ::~ (.l·l(_,(.:'~~ (,j"l(:tC,:? (,U(,jl~? 6U(,6;:,' 62,(.74 (~I c: :":.) :,.::n / :-~t~.I:~::(1 77?'):? ::{241):;~ :3 /' ~~ n,'.'; ·:"JJ.9cn 9(,~:,l,'_-j 101 ::;;;'] 1 I.lo::on;,',' 11U/3:-> 115t~:39 120145 124:::::51 3.~~·9~}!S7 1 :;/.:j;:~6.,; 1 :~ :3":?J f.:1 I:;' 1434.59 147895 152331 15b767 161202 16~)63G: 17007~ 174035 176096 1701~~ J.80217 lC:227/"" 1:=14337 1::::r::,3'~:=: ,I ,-.-,•.,,.,., I::I/I::_L":' t-I-,r~..-,."")1 (:t/ .r::"LL 1:37:'~!22 ,-,-,,-),,-,,,-,1 '=1.-' c:"Lc:. .1:3 7 ~::~,~:? 1 C: :/:~,~ :,:~ ~~ 1. n7~~:~:? 1 ;::::"; ~~.~ :,-~ :-:,) 1. ;"~: ./~?::~ :~~ lC:7;?;?;? 1 :~:?~::~~~2 1:J722~~ 3. :3"7 ::~~?;~ 1 :::7:-~::~? 1 c:?:?~?~~~ .1 :~:7L~~;!~? 1:372:?2 1:=;7~l~~~~ 1 '-I-',r)"".I-,t::. / c:'.,,~ l_", 1::::7'2::);::1 1.::::7222 1 C:7:?2::~ 1 ~~3~'/222 18"/"~~22 -- --"'-.~.----.-,----,...-,,~--~---~,--.-------~--._-_¥---~-, .--..----.-,."-''"'~"".-,...-,~...,,,.-,,----.. ",.... ,··""...........f __ • _0' t .~ ..._.~_'•.-.-._.-,,_,__,_. SITC 131.7L Q WUA/I000 WSA/l00n 5000 333 1025U] sr~,[YJ 369 lCJ')(J::~l , r::.OUU( {.SOD 700n 7~)OO :',:uno ::::::-'011 ';'UUI,l '<;11(1 1 f)(lI)CJ 1.0~;OU 110UU ] l'~,()/I J. ;21,1111 1:?rc,nu 1:snuCl 1:3.500 14000 ....:....:-.' 1 !+~;Cin 1 ~·Uuu J ::,::.CJU 1,~,OOO 11':,500 17000 17500 lUOOO 1.:'::SOO 19000 19500 2CJOOO ::~O~jOO 21CJOU ~:~ 1 ~:)I.:U ~'::::~CJOO 2:<!SUU ::.'»000 ;~3500 ;:'400U :::450u 25000 ~:~ ~)ElClf) :::(·OU(I ~.;~ (~. ~~~ nn ::"'UUII :.:!:'~;,oo 2:=:000 ;~~:=:5C)O ;,~':;'OOI:J 2'.:.rE,(JC·' 3CJOOO ::;OS(iI) 31000 ::; 1500 :3::~OO(l 3;?50n :3300[1 3::;5DO 34000 34500 ::;.5000 ·l1J5 441 47/ .[:.1. () ~iC:/~ ~:I/I c: 713 /7/ :::<l:;> 907 ')71 10:;(, .llUU 116:. 1211 1 ~~:~~c: 1:;04 l:S.~;O 1. .j·)f·, 1411:; 1/1 C:') 1~) 1:2 I e j "':;(. .l5,':~)'} .1. ~;c:~.~ 1. E:,l:~:~: 1.602 161:,' 1i,22 16.;:~; U'/j.:':; lr~~~~~ 1663 1673 1683 1682 J.6:3~:! 1681 1681 1(,80 1680 1(.7f~) 1. .c, -;::: I"T5 1. (.(:.:3 1 ('1(':'-\ 1.(.~>0 1(,54 1649 1644 1630 1634 1 {~,::.~9 1 (I::.~/+ 1620 1.615 1610 1605 16UO 11 ~):jil ! ] ;:~:;~ni,::' J. :'::' :~::~) C: ~'.~ I ::,:;UO', 1 /l-lU~):.:: 1/~/n/;:, 1.':1::U05 1~;,913'~ 16.517;" 171~20f..:' 1 ?7~~:':;'~1 1 r:: ~o:):~ ? ~.:: 1. 8'::'.. ';U,. 1')5::;41.1 ;:~ () 2)~? ::~: (. 21 1~~~32 2.1 '::;1 J )'C: 2~~7.l ::~~) ~~35(J~19 243(),1.5 25096] 2 ~S ~:~ ./ :'S I) 254516 256294 25807] 2:)r::~~~51 25::::431 2S0f:',lCJ 2 ~):~~:7'~-J{J 2,:i::::';;l7U ~~~:)I::J J. :;(,) 2 ~:~) ") ~3 ,~) 0 ~~ 5 I~: ,[~j () 9 25':;'6:=:') 2 ~:j '~/:::: f.=. 9 2 t:1 ;;.~ (, :~) ~) 2(:. 5,,·~· n~~ 2t.;:,316C: :?7CJ93,,-:), 273?UU ~~7(,/.p 1 :?7 '~J :?:,) :.~ ::~ L:] '.,J 1 :.:l :?C:"~~2~)9 :?C:(,.(.(j? 2 :'~: c: ":,:/ /1 r~1 :?'i 1 ::,>':iO 2';36,:.;/+ ~1'::j:)9?n ~~ '):.:::::;:::~:? ::;nn(.{,~, 3[J:3CJO';' 30E.;3E)~j 3076":'/ ilUC141 :',~~ .1 ~2 ~~) C: .15 31472::: :Sl?Ll7:':~ ::> 1 '141 f.:. •..--------~-~-...--""'"'>~,....,'-_._~._~.-,~ .•'-'"~ ...-,,------~,------<~-,_."---_.- ~:iI IT::. 1,; 1.';[ AND LiJ. /L Q 131.3L 131.7L l"JUA! J nnn J :':,1. 3L 13J .71. ~·r:;A!lnuo ~:i(ll)f I .,' o (,/ )1..",;' 4'/41]"J ~),r.)nr I n t··, 1\, .i':~l ~i~:"Jt~I:?:') (,001) fJ (.f!t... r .~ ..I (:.1 ii •.,)') 6::)~_Jl'1 .,' :.:~u t-.• ' I(:,:d.• >~ 6,·<~.~ ·'1: ':; 70CIO .,' 7::-:: (.( 1(••-.~~! 7 U':(,] 7500 .') 1. ....,(. (,01::,(,;> 77·17', E:OOO ~):) ...).). ) 1'14 (.• Jr.-.> /~ I. (J;.1 C ;/'l :':::';0:.:::/ CS(H I 13.". "'":' ,''--r_.'/:' . ~.:~!::,: " (:.C::.3:;3U 1,.-y,'I):,'L ::::::--;}on 'XH1U ';I~:'(lU 10000 21(, 2'-)7 :,,7:=, 40':' 441 4 " I I ~11 :)(/-J /! 2~7 / ,I I: :" >' ?'7':";:~ C:;.24 1:;.rn 11:::'~)41 ]. ~?::~'.Jf:'.>,~ 1 ;:!U,t~)C::~ "I;], "-~I'J ".;,:> '~" In~";:1!' 105UU 45C: 519 4:::';1 n"7:~~03 J ::;:':,()()S 111.1.,',,'1 110CJO ~-,:~::('.' 5:::4 5(,2 ':~ 1'J[/') 141(1.':;::: 1164/") 11 ~::iOLI 6:,'0 ,,-..:~.C: (:.. ;l} ')(~,(.1 :J 147D7;:~ 1 ;:'1 :::"1 /1 1.20(11) ')UJ ? 1:; /1 )'.7; JI:;J .:;;::'J 1. ~,.l:·;.i.OI:'; 12 ":,:1,~ 12~iOU 7:'::;:: 7?? /' It,' 1 Ck,U27 J:',':; 1. .-;' .. J .~.) :.~~ ~~,; :-: 1.3000 ."":,. "1 I_"_'I.~. :~:42 ,-,C' .-, "''''_'1.,',. J 107T; 1( ..~~j .J. 7·:~ 1~571:.)~)~) 13S0U 1400U '?J L'+ 3 1n;,~4 ':'107 ':;'7J cjr)c: ..:..~) '=-JI:.~' 7 11::'14'-./­ 120145 1/'.1 ;:~C){, 1. ?7;:':2,'~ l. 4::):\~.;~:·,:) 1 4 n(.,:~., ~·:.I 145\10 1.10.5 1036 107CJ J ;;'4::::,51 lC:3273 1540(,;:0 l~)OOO 1 If:':, ] J no 11 45 .l~)I)~j57 1 :::'~130(, J.59 ....' ";1 J5500 1;;;!(.6 11.6:', 1 ;:~ .1 I. J. -~~ /l ~~.' I' -:", ~) 1 Qr'J4U 1 (,<)ClO 1 J (,(lOO 1347 1211 12::") 13Ca:)(.,) ;::032:~:6 17JJ:?7 16.",OU J. "',',')4'_1-:, 1;:!.[_)::-::: l3':~:~~ 1,~34~=)q :~ 112 :",:.;:? 1773<),'· L7iJO(l 1 7 30 130/~ I. ~, I. -; 147::::"1':, 21.'~JJ.?:: 1:=:~15:56 17,son lq~~ IT:-,I) .1. (,·1:? 15~:.'3:) 1 :?;.:~71~~:S 1:: ': ,;, 7 ;~:' l::':UOU 2138 1 ::;01(­I. /(,/ 1. ~) (~. ~.. (,i ;~3~;(~)6'::; 1 ')~')':;'1 :.: 1::::50U 2341 144:2; .1::::'."7:12 1612U2 ~~,~:3(~IJ.~) 2U;:~10') 1',:::1000 2545 14:=:'::1 2017 165638 25096J 20::::300 1 '}~:,Ul) 2749 1.512 2130 170074 ~~!~)::~73'.~J 211/HJ7 ;::~OOOO 2:::::69 l~):':>(, 2203 174035 254~516 21427(, 21);:iOO 26.5~:~, 15~/) 21.07 176096 ~~56~!9/~ 21619,'::, 21000 2,~·41 1. :::.::::;:~ 2012 17U156 ;:~5C:07 j :?lU114 :? 1 ~'i01) .),.-, .....;. ":",,,:,,,',.," 1;:,':;'; , 1910 1:30217 :? ~S:_)~~ ,':::, .1. 2.1.~~~!.1,~ 22000 2013 J (,U2 1808 1~::2277 ?c;,:::::4:S1 22()354 22500 1800 1(,1 ;:~ 1706 H,:43':,;' 2.'5C:61 (.1 2214/4 230Cl(J 1586 16~:~::~ 1604 It:{-..39:~:: ;:'5::{/')1] :::~~~2594 23.',,00 1250 1633 1442 1 :::: 7 :~~ ;.:.~ :;~ 2.':~:=:97n 223rl'~J(. 24UOU C:3:.) IG4~ l230 .1 ::::7::-.~2~:~ 25"" 1.'50 ~22:"') 1 0,-':· 24S0lJ 41/ J.~,5~ 1035 lC:?222 ~~ ~; ',-; :3 ~.~ CJ 22~~):~~?6 25000 (I 1663 :=:3:-~ IB7:-~2~:~ 2~)'~'509 2233G(.~ 2550U U 1.673 :337 1:~:7~;~~~~! 25 '.7i-6:'::'.:J 223~~S6 ::'(,000 :,'(,;:,on o Ii 1683 1682 04;:~ 841 1. C:7~:!~:?::" 1 U72;~~::~ ~~ 5 9 :~~: I' ~I .) ~.: .<, ~~.: t::, :-:-:; :-) 223546 ;:.~? .:~. ':~! ~~ :-,r :<"IIOU (I 1 i,. I e::..:.) :::;·11 lC:72~):'.'.' 2(,;\/+1~'1~~: :~:Y,.'J:' :;'/')1)1 1 o 1.,:,:31 ::341 lC:7~:~22 ~;!f:'IU 1 u(:: , :r' ) -~ ", ,., ". ~:"'_.' ''':' :.' " 2:=:000 n 1 (~,f:n ::::4.1 1:::72:'~:'-~ 270';)34 L~2907r; ~~.~ :.-:: ~_::; t") 1.-) 1'1 11,::::1'1 ::::·10 .1 :::: ? :~~ :'2 :'~: ;~7:)7f)U 2::,U,~~ c.l 2900(1 o 11:,:::0 :::40 1C:72~~2 2~?(·_.4(.'? ::'~31::::4,5 ~~·~J.~·,i.)t_:l o 16 7 '::­8,10 If:::?22:? ~~7':;'2:':):.) ;-:1~3~?:):"~ '~I.ll.HjU I'J 1 :,' /f: ::"::::;9 .1. :.:;~.... :~ >~ :.:' ;,'::.: 1')] ~,', :.~! :5 /~ ~:-j (:. ': ~, ,;1) ',Ill] (I 11.,7:; I' .-. I.:),' / 1 :;: 1 ;:';~ ;:' ::.' ::::: I~. ~:.~ ~'l'--/ ',) 'j ::;1000 o 16(·C: :::::;~i 1:37222 ~?c:(,(.n~;.l ~.\ :~) f::, ') 1 ~~." 31,500 3;WLlU o o 16i~~~3 1 (,~1'J G~)2 :::::::;0 1:3722:;.~ 1 :::::7~~2::.~ ::)::.:: :~.: ')l~ f ..• ::~I) 1 ~:.~·)n 22)::::(1::-::.. ~~~5'::J2,:ll', :-.>;?500 (I 16.')/1 C)'-l-'.... ,,:.. .l r::72:?~? ~?CJ:-)/.):·.:;,:l :;:' /1 CJ /j ;~':: :;>:5000 ~:.):·)5(11 ! (I U .1.. (:.,/~ ') leAl; ::::::!5 ,-" \.", '.:) L_":'. 1 U7;;~;~:::' 1 C:}2::~::: :' ,~ • J ,.;':' ; ;;:""" :.~::3 2 ~~ ;?·111..·(II', :..:.~ ,~~. ~_:~ ~H/ ~:. >_.~ ; ,~OI!U [) 1(.::',9 C:;:' 0 .1. :::: ;:~.~~:-~ ;:.~ "lOO(,/,;-, ~':~ 4 ~~>/ ,'j ,-j :5,~··c,(Jl~J I) j ::,::;.~ U17 1f::/;:2;,: '-;O;UO') :? t~ ~.-,.1 1 I." :Y;('UU II 1(,;~'1 :3.1. ~~J .l:::::/'22~~ ::~ 0 ~~l :::~~):3 ~4t,~~~:·::·.: 11,;~/1 I:: J ::' ::;,-1;:",:,':1; ~?4? 4(1(1 .16~~U :=110 ,;lUU41 24Ut',~~)~~ J (,15 UO? 31~23Gti 24'):3U4 J (,10 E:ns :';1.-172::: 25097(. ------'"-----._---_._-.__ __ ..._.....__.. ,-"-,-,,,,,~--,,,,,,,,,,,,-,,,,,,,--,-----,,_. -,.. ::;ITE:: 1:;(;.. ::;I( o ~Joon !:l511U (,CHIl) (,SIll) -;"OUO 75UO ::::UUU :~:.'.';OO 90UII .) ':.(11 1 11)0UO lU5UU 11000 l1S0n 12(IOU 1 ;;~~')OU 1.:;UUO 12,500 14000 14.500 150UU 1Y:;OU 160UO 1!::'.~:-)OO 17001.) 1 ?()(.J!:J 1 :~':ono 1:=:5UO 19000 1 ').500 20000 ~~u'son ::.~10UO ~?15/10 ;:!2UOO 2251)CJ ;~::'lOOO 23500 ;24000 ;::4500 2~)()00 2550(,,1 :?r::,OOU ;:!(,5ClO ",.~/UOU ~~7 ~:;nrJ ;:!C::oOO ~?f::!:){Jn 2 Ci UUO :~I~J~~)lln ::>0000 .:,U5ur.l 5100U ::>.1.500 3~~OOU 3;~500 :-;:XJ CJ (J 3:S5uU 34CJOU ::;4 !:i(Hj :'l!:jI)OI: Wl~/1000 :?~,;')~ '~';"'r­L .. ~,_·,_·) ~;.~:·~·)t. ::~,~)7 :?:~)C ;0' 41. ~~~ 4t.: ~~~ ~i (. 2(~.il· 2/1 27';J !:)5::.~ ::::24 104 0 1082 111~ 1246 13?:;:: 1500 1.641 1772 190~ ;~Cl:.) ~~j 4;:'1).::: 47;:::: ~S:?O':'~ :)6;:~:') ~j '.? !~:. ~:.~ 6215 (A77 ';,7,,+0 }OU3 7:;~66 ~/ .r::)~~~ Ij TFJJ. C~054 f::.:;lj,' :~:()~:J::~: 7?9':~ ?~)3') 72C:Cl 7CJ~~ 1 ...":,•.. '-jc·:, I.. '~ .. (:.5r:·I~:; r:, ~~: ---'" ~ ;::) 1. (. ~» (.nc,:.~ :.-,',.1/1 ,-~ ':;:.:,: "~;:). 5?:;~'''i 5614 ,~) 51,) .'_~~ ~):..")':·:I.r;, ~S2::~:!':l S17~j 5C}j-~.,r;"1 L~ l)~)(:, 4::~:,'·1·(, 47:~:(, 4«-;''';' 4~)1/ WSA/I000 4677;-~ .-'i?12::_~ "I"4 7;~ !.J. 7 t~: ;.~):) 4C:J 7~' 4:36::;1 41.~~j;~(, 50/l~?;~ 512;17 ~~-):? ~.~ J. :.:'; 53 Hl::;: 5 ~5r~:5 7 ~.4605 .r:)~:;4;)(1 .[~:; (.~~-) n:..~ ,~"7 ,':):~~:, 6291.) t:.C::?4-0 73!::~t.~~: 7:1C:'~/(, U4:~~?4 :J ':~/5 ~:~ J. '}4C:71~1 ,)61,1-5 97413 9 :::::6 :~: ~.) 09950 102451 104')52 107454 109955 112450 11~QS 117450 119960 122461 124962 126120 127278 12f:4:')f-=, 1:?1~/:)93 130751 1:;.l.'}Oq 1:S:3D67 1 :;/I'-l()::; 1';.. ,.'1·';< 1 ::;:3~iCl3 1 /'0553 J.4;':~61-l:) 14,'+6~):'; 1 /1",702 1. .q. :'=: ? .':-) 2 150:=:02 1!j~~:~:52 1~)/~9n2 1. 5 6 I;' ~;"~ ::! 1 ~:,")UO:) .l61C.L ';' 163102 16S1!::;2 167~.202 ,M"'____•.._~.'_'..•._.•••_•.•_•.~.__••_b • ~_.~_._.,_~~_ ••__._••__ SITE 141.4R o 5000 ~:;::iUO (.1]11(1 (,5UO 70UO 7500 ::::000 C:!;l(l(J 'XJOU '1.'::lUU lUOOD JO~;UII t 1Don 11~':;OO l~;:OOO 12.<)0[1 1::l00n 15~iUO 14000 14500 l~~)UUO 15500 l,jJOO 1(,:,OU 170ClO 17500 1:3000 1:~:5UO 19000 1';.:')00 :.~fJUOO ~:~05UD ;:~lCJOO ;:'1.5UO ;:~;:)OUO :::~~~500 :2::moo 23500 :::~4000 ;:~450U 250UO ;~:~i5UO ;'(,uou ;:',:,1';00 '(ff)r l :.;.~ / l~~UI) ;,':=:000 ;::'::".UO ;:~')UOO ~~I.':J5r!o :;(10ClO 51:)~:)UO :;1 oon :.51500 ::;::-oou :-::;:).r.:)nn :;",000 ,>::';.~; 00 3400(1 ::;I'j :~)oo ;~)OUU WUA/IOOO 3~j'~J 3t\/~ ~ .... ~-) ..J':,b 3/~,7 ,107 I~ CJ (:J 412 414 ,'ti7 r.M -;P ..... ....) ..j ~,) :)·7;.··~ 611 (,!":i() b:3(:~ :):)6t~ 354G 37~5:::! 3917 4JOl 4~·;~:::.:i 4470 4654 4781 4908 5035 [:", 1. ()~:~ 49')(. 4:~::;~~9 466~:~ 4496 43~!'7J 41/:,;:::, 2:;';")6 :"):~:21::J ]1::,(::.3 3,196 32';'t5 ::)(J'.~15 2:3 1?4 2/~,'~J4 24t?~S :.~ ~.~ '7" ::.) :-:!rt l ~~'; 19U5 17 7 5 1~~5 1515 .1 ~~C:Ej 1255 11;-'4 101(, I~J(J:::: ::::00 {~,9~? .':JC:4 4/c 3f::.C: 2(.0 .....lL·.1 """. 4'4 WSA/I000 (~,123~:i /',1 :::'-J/t (.~::~? 1. I.~~' (;.:'..:;!::)/J ,'1 643(.::: l'; !5 :..~) ::) (l 1:':16:::;: /l-:..:~ 6C:::~!.~1,q f~I'~ [:(.(. 7 1,l/ / 72 c::::: (. ?4~~)9':) 7~)911 ?~7{l?4 lr~:'::;':~)f:, 9;~0')O ')6925 101?:;)') 1 U6~/:J4 11 ].4~2·:;' 11t'<2{,3 l:~lIY;'::: 12:)'?~.:,)~5 12:::4i.:C,7 L)lOO:~ 13:35:56 136070 1::'>'1561 1430!52 146543 150033 153::i:?,t 15701~, 16U5U:; 1 (,:)'J t?J (, 167487 170978 177370 183761 190153 196545 2029J(; :':'~ n'.):s 2 :~~: :-~ J. ~::, 7 ::?t.'J ~? ~:.~~? =~.) c: ~.,:~ ~?3C) I .,>~ 237:::00 24~:)h::~·.·j 2 ~l ~') ~.~ 7 f: 2t.112·7 2f~.r:f:76 276~~,:·~!4 2C:4~~)73 2 ';'~~ .1 ~;I ~~~ 2 t~/I~-J ::::: I' Cl 30761 "J 3J~)3()8 32;j·'.lf; 33C)8~,5 ~~";3tJ~~t 14 :~;4 (,::-;(,~'~ · '~""-"".'-------_..~,,-----_._-.--_. -_._-_ _--,-------­ 12G.0~ o WU~/1000 WS~/JOOO --::: ::: .--.--::: ::~ :: =.: ::" ::: =.-:-.: :::: -: :-..: ~-.-:::: ..---.-.. ,~)uuu ':;,''",OCI ,'.Ut,l) 1::.5UU /000 7500 :::;:UOU CSCJD ')OU(I ''-I~:)UU 10(lOO 10500 11UOO 1150U 12DOU 1;~~iUU 13UOO 1350U 14000 14500 15000 .l5~'JOU 16000 16500 17000 17S0U ]::::I)UC .l C: 'JOCl l'~JUUO 19~;(:lO 20000 20,500 21000 :~] ~:-,ljl! 22000 22500 23000 :,'3S0CJ ::;'4000 :-~450n 25CJOO 25~)OO 260()(J ;?1:,~'iOn ;,'7UiJ(l :~750U 2:=:000 ;:~:::5UCI ;:!')/JOCJ :~')~:;ou ,:;0000 ::,05UU 310CJO 3J.",UU 3~'OOlJ 3::?50Cl :5~)OOCJ ::l3~:;O() 34000 34.r..OU :,5UOU 6::::1 (~c: .1 c.UJ (,:,:] 1,::1 9~:,U I)::.:::::'.: 1025 1002 10°9 1137 117~ 121J 12~C 12f.-:c. 1 :5~~~:.~ 1353 1303 1413 1443 1 703 .l.f-:~?:,·S 1 f:~i~) 1 :=:~i~~) 1. C:.~1:5 ID5~~ 19V1 19°] 1 Q 91 1991 1991 1 0 91 19°1 1901 190 J 1991 1991 1991 2204 22()4 2204 2204 2204 2204 2204 I).U(J.·:; 52~~:~:: ~).Sl-~I~.:S E)C;I)C: f~,:? :~) ~3 (,~:i(.t: t~,C:39 7111 7382 7653 79?!; :~: J. '.-'1/._, l1U:,;:' 110E:G l101~:i 10941 ~:;r}C~~'~j 51 ~-', II.! r~)~~ J. u./ ~j::! :.:.: I:.·'. ; ~):)~):.)9 541')6 ,t~4?6C: 5S5/11 ~~, !~-) <:J J. ..·.S ..:)..t:.:14;:~:(1 570SC: ~;7631 5[:203 S877(.~. ~)934:,·1 59921 (.C)(:!";--} (~,(]:~~2~~! 60372 60523 (.(166(· 1o.,O:::f):.: 60950 6n'-:-I~=;n (.09.'50 60')5U 60')50 6111:3 (,12t~? 1::.1455 f~,1623 6179? (,1';160 (.:·21 :2C: (,221~J6 624(::,~5 ......) .. ...:.~ t.)LCt ..),_) t:; ::!6 :=~I?) (,~? /~' 4 .~~ r:1~'~c:n 1 62:::57 62913 62969 (~3(J2~~ 63070 f:~, ~5 (:1 C: t·) 6430:.1 t,.'J ');:~ :,' i.:.,S~-)4() (:11::'.1 ':.1 ~.;;. 61'S?7~) c,b')?J (,71C'f, 6'7:3(:,,~·) b7558 6775­ b7 0 40 70405 72::~l6~1 753::~b 77?::::t:o (.1(~,')::J:::: 17<,,':;n OOO(;·~:' (;(JI-,Jf:C: r ~-:GTT oCJ':;t;r {J~::~~C:D :,: '):::::Cl T (HJOv£ "USOT ~·IUI::;::~~:r.~ ·"·"Clt,· I)CJ(J£:,~ ~.; (:., "t;l ~.~'~ t.:~ '''.~)U tJ UOS(;L (:~' (::.1/ ~::. / "'1017 000;::::2 c; l~·. t'~:.: / ")'~lLJtl lilY:; T 5;~ '.1';'01;:' UUUT~ ""01; OO(;U(: ':I I'" I.,' ;~; "~~ ,c"9CJt, UOCH1C '.":"[) V un~;-6;:~ DOD,,;';: '·-·/()C,t;· '.1' iUt, UOOf:;:: ':.":)() ~. I.-H.I~::" / ~7: IHlii/.. :/ ~~; (. t/(:~.:: J~:J' 6 t ~::'l IJU09,O; 1.1 Cl':; S; ;:: OO[)S~:: IJO(;;~';::: <;' ,~, 1; ,'~;: 1)0017;:: S (",Ij ;:~I UOSs=;:: ~~' f:. tl ~::: l cloor:;:: ~~; l:::' ofi' ;~~: L '.:J(:t.. DOS;::;::: (~;61/~:::i UOOG;';: , }r:': (. I.'U':; T ;:~ 'J t.::1 1/ ~:;.: ,/:. I)OUI ;:: '.:.; (:. -tt 2: i~ ')~~6 IJUSC);:: ':;6h::l 92:6 0000;::: ~. f. t/ ;~: l.~ 9;~~ t;., III IS;/:,:, T ~~;6 t/GL~ ')2:6 ( l(JO,:::,T 'j::,:t. 1)(Y;:.:n uurX:T ~::i ~~, t/ ~:: t.. lId<::; /. r (~; 6 tJ ;:: l_ OUIVI ',~' t., t, ;:;L IjrY:;':::,T ':;617(;L 00091 <:,' (.17 ~~L (lDS'S'T ;;!,t'~:;;: LICHY~T ~;(ltlGt.~ l)Cj',;'vT (:; f~.17 ~:: l (lCIUt'-T \~; (.t';:::/ ":';:::6 UUS~: T I,'~,I ~:-:f~, U(jD~: I "1,'··,'1/,.::/. i-Ifl(:;;:~ I ':·;r .. 11/;·:~/ nUl);': r ':~;6tl;::/ DUSTT L,~·(,tJG! (I(JUTT C;('~0L ':.;,(.:(, {llY:;OI (:i6't1~~L .);::(, ,JUnDT C;(.t/;:~l 'j;:;!, Cl[lU(. UUS'C: [JULJ:::: 1.1'''';/ ~::; I~:I t;;::/_ r IOU.: (:;(.t,-~·-:l." no c,') uuu'} UU<::;S U(J1)'; --' -, -.---.­.-_. _.. _. _._..-.... _.. _.... ,-.... -.... _.' ----.. ---..---.-­ UOO T /V~:;"'l UCID f /VIIM U 1\10'1:1 "Fl'J:J .-/':IL)· c:O;,-:T ...... __._--~._ ..,._~---;-_ .........._.......,"""'-........ _~----~. ;::;1/1;'IL t'Jl;' [t'l/ rd.::::S <Ji/t/')C; {I ::::: r ~''': <;; 2.: t"J l.J ~:~ '~~_1 / T:~:OS; t<:.:96Ii H ;:; CJ ',:; .~ T~:170tl G£:£C:~ ~':::: r.:£ :~:~ r~ ~.;,: ~~ r~ C: ~.~ .(1 T/~.' CJ T';; '}S~ ;c; ( l (, '::i ~::: ?!J(I~;r~ ~:~O()~;~~ Z:: (J 6 (~J~ :~ ::'; CJ ,:, c; ~-, ~:.: 0 (~. ~; ~~: :! ·I,·:·,~;";f· ~:_ ..;U':J t.; ~~' ;;,~ Cl,~.:, ~~; r~ ~:::U(I ~;~r' ;:'O{,~;£ ;.;.: 06 ~;. [, ;';U(,':,~:: ;··"":l.-J(:l~~;~· I:lt:',~~;£ <~I_'):,:, t~' i: ~·'~::jCI~~:;£ ':i h,I~:·;~~. tlrJ~;' T'I 1)-'::::T1 r :;~ ,::1; ,:,,:'i 1 r :":;,.I) I 1/1::0T ';":.'J(1 T ,~) ."'~~ ~~; (J r l/ (,;:~(iT ::'::;,:;CJ i ,;,1 'I'iT .'-..: .. '_.' 1()I,,:·: ; "=,[1:: ': , '. " ...'~ __.L :::.:("J/,G ~:t·<:) ::'1;<:) :,::1;"i s:~' ,) :: t;o ") S" 1;1':J ::,'1;9 ~:.: V" •... '1.:') '.' t?', t;,t_~J'~;' T'::S; I':~; T ~:~' l~;' lS:S Tr:'; iTS; l \:' ~~; i :','C.­ i. ~~ ..'(:1 TLc; TLS~' T ~~S r r"l~j T~"":~; [ c·c· " ,:1 I ::::.'; I. ~"~; [ lc ~:, r ~:.~ ~.~. DUOSi: (ll.-.I':;t?'~' (H)OV':: Cl[lU;:,~ (JI~)(:~TL iJUClI'c: , j()C;US·. UUCIV: (tUSr'"I;:': UUUf,;:' (l~: I () :.-~: ~:'~ l',l('~-;'LG rltJl'i,~? ;.::()(~")(.~ IJUD'.';:: UU<;;Si;:-' UOD~;;:: OCJ':;I7;:: ODU v;·~ OUSL;:' OiJO£(; OOS;::2: UOU;:';:: l)(l~:; T;:; OCl\:) r;:; i.lI/ c;iJ2: ClOUU(: OIY;'6T OCJ(lf_l T 1)(1'·,::: T ,)1:(1:: 1 IXI(i/ T CHY;'~) 1 DOC!'} T I tif,'.;T 0[10':; T UO';,t/l OOOI7T 'I'"' ,~; s:: 1 U0{1,'1 nUCj;::r CtU(I;··-: T ,:)(1<:; T1 UUUTT UelSIlT OUUui I)U",,> tHX/!,. 1-,C.I(:;f:: (11111;-: ,·I(IC;,-. ()()CJ:: 1)(1(1' ! Ulf;~, III 10'; LIDO T /V::;f" (HIU T /VnM I) tJ '~) - r 17 T I lAO :10 ......'_.~, •"'-'-M~","~~_,~ _ APPENDIX B Point Files Point files for composite WUA curves at mainstem margins, upland slough, side channel and side slough habitat types. Includes "res tricted passage" criteria and adjustment for 1984 escapements. Point files are presented for all specific areas within each habitat type. / B-1 '''"______.__. ______....__·." ...,_--....~ _____~'~'~'"~'_'''''''''_''~'' __ '''~''H_''''~ __ __•._~ ..........__........ __ . __"_~a_.~__~~._____''''''''""'"'''''''''''''''''''''~'~'''_'..... ........, ......._...--..._._;.....,_.~_ __.. ~o .. M • .:.......+c ...... M .. ~~; ... S.:+es WEIGHTED USABLE AREA WITH WEIGHTING FACTORS I of fish at site I I of fish in group 0.075 0.053 0.028 0.128 0.021 0.064 0.0?9 0.309 0.045 0.178 118.9L 119.1L 125.2R 138. 7lL 140.4R 124.0H 132.8R 139.01L 145.6R 134.9R TOTAL 1 1 1 1 1 1 1 1 1 1 WUA 0.48 0.41 0.56 0.57 0.43 0.51 0.57 0.37 0.62 (NH/H) --------------------------_.. ----------------------------------------------------------------------­ 5000 39 0 0 15 6 17 120 417 31 113 758 5500 41 0 0 32 6 17 120 417 31 129 794 6000 43 0 0 48 7 17 120 417 31 145 829 6500 45 2 1 65 7 17 120 417 31 161 866 7000 47 5 1 82 7 17 120 4li 31 178 904 n7500 49 7 1 98 17 120 417 31 193 9410 8000 51 13 5 115 3 17 120 417 31 205 986 8500 53 32 12 131 B 17 120 417 31 217 1039 9000 55 47 18 148 9 17 120 417 31 229 1091 9500 56 62 25 165 ~1 17 120 417 31 242 1143 10000 58 76 32 181 9 17 120 417 31 254 1195 10500 64 87 38 205 10 17 120 417 31 266 1255 11000 74 91 45 259 12 17 120 417 31 278 1344 11500 84 96 313 13 17 120 417 31 290 1433..J." 12000 94 100 53 367 15 17 122 424 31 302 1531 12500 104 105 65 421 16 18 127 442 33 314 1645 13000 114 109 71 475 18 19 r" 460 34 320 1753j~ 13500 124 114 78 529 20 19 137 477 35 326 1860 14000 135 118 76 583 21 20 143 495 37 331 1953 14500 145 123 71 637 23 21 148 513 38 337 2055 15000 155 127 67 535 24 21 148 515 33 343 2022 15500 154 126 63 532 24 21 149 517 38 348 1971 16000 150 123 59 479 23 21 149 SIS 33 354 t~14 16500 145 120 54 426 23 21 150 520 33 359 1357 17000 141 117 50 373 22 21 150 522 39 364 1800 17500 137 114 46 320 22 21 151 524 39 369 1743 18000 133 112 41 270 21 21 151 525 39 374 1683 13500 129 109 37 228 20 21 151 525 39 373 1633 19000 125 106 33 186 20 21 151 525 39 371 1S73 19500 121 103 29 IBO 19 20 146 507 37 370 1533 20000 117 101 25 Ii4 13 20 141 488 36 368 1483 20500 113 98 21 168 13 19 135 470 35 367 1443 21000 109 95 16 162 17 18 130 451 33 366 1393 ~" j~21500 105 92 12 156 16 17 1'i~.. " 433 364 1353 22000 101 89 8 150 16 17 119 414 31 363 1307 22500 96 87 4 144 15 16 114 396 29 361 1262 23000 92 84 0 138 14 15 109 377 28 360 1217 23500 88 31 0 132 14 14 103 359 27 355 1173 24000 84 78 0 126 13 14 4,01-' 340 25 350 1128 24500 80 75 0 119 13 13 93 322 2~ :i45 1083 10,25000 76 73 0 113 .~ 12 37 303 22 340 103Q 25500 72 70 0 107 11 11 82 235 21 334 :~94 ~f\() j~,26000 68 67 0 101 11 11 7i 266 20 950 26500 64 64 0 95 10 10 71 248 13 324 905 n~27000 60 61 0 o. 9 9 66 229 17 320 661 ~q27500 56 0 83 9 9 61 211 16 316 918 28000 52 56 0 77 3 8 55 192 14 313 775 ., "'7'\I ,,~28500 47 53 0 .71 7 I 50 174 13 309 -_.. -_ .. _.. _-------­ 29000 43 50 0 65 7 6 45 155 11 305 638 29500 39 48 0 59 6 6 39 137 10 302 645 30000 35 45 0 53 6 5 34 llS 9 29B 602 30500 31 42 0 46 5 4 29 100 7 ?QC;.. " 55? 31000 27 3° 0 40 4 3 23 81 6 291 516 31500 ?~..J 36 0 34 4 3 18 63 5 288 472 '-6_ 32000 19 33 0 23 3 2 13 44 3 284 429 32500 15 30 0 22 "c:. 1 7 26 2 281 386 33000 11 27 0 16 2 0 2 7 1 "7­(. I 342 33500 7 24 0 10 1 0 0 0 0 274 315 34000 2 20 0 4 0 O' 0 0 0 270 297 34500 0 17 0 0 0 0 0 0 0 267 284 35000 0 14 0 0 0 0 0 0 0 263 278 .,.., ......._ ",,,.,--,,,~,,-...,---..--,,,,-.-,..-.-_...-_.. _.~ ....__..--,-_._'_..,,_...-.__.-,~-~-----' ....._,.,..., ..---'---------_. LJpl~ ....d 510000/1)., S':+CSWUA ADJUSTED BY WEIGHTING FACTORS ~". 4 of fish at site / t of fish in group 0.006 0.012 0.043 0.045 0.027 0.019 0.014 0.042 o. OO~) 0.021 0.028 0.023 0.706 102.2L 121.75R 121.8R 124.5R 12?4R m.?l m.SL m.Ol 13UL 13'UR 14J.Ol W.R 135.6R TOTAL 1 1 I 1 1 1 1 1 WUA 0.S1 0.00 0.27 0.00 8.44 0.67 0.61 0.45 0.00 0.74 0.31 0.55 :J.54 dil1/~ ) ._-------------------------------------_.. _-------------------------------------------------------------------------------------­ ~.5000 3. 17 21 18 11 14 ,),) 21 o 11 10 o tsn ,7')"''t.1.. 1 ":P'"5500 :; 17 '21 13 I) 15 N 22 o 12 ~o o 1601 ~?52 6000 .. ,) 13 22 19 o 16 34 22 o 12 11 o 4623 47:j4 b500 3 13 22 19 o 17 :;5 .:,) ,-I) .'".: 11 fI ~655 4315 'J'"?,I I:; , I I) 4:A/7GOO } 11 ...: .v o 13 30 24 11 U 4682 :500 -"~: o 1: .j 26 .J&:, ?"'25 4'.1 32 I) " i5 o ~71 ? 4,?,j& ~3000 5 2B .34 ,; o 27 55 35 o 1'~ 17 o 4~% S0132f .....'3500 .5 30 37 jl :) .:. 57 38 a 20 13 o .1874 l!-to c -'I I) ,"?. ·1'~5291)00 32 oJ, 34 o 31 62 il 19 o ~2J6.J ?­':;00 ~. 34 42 36 o 34 :~6 4J o .,) 20 o 5021 533: 10000 I) 36 45 38 I) 36 70 46 o 24 22 o 5107 542'~ lO500 ti 39 47 40 I) )8 74 49 o 26 23 2 5184 5528 11000 7 43 52 45 I) 42 32 54 o 29 25 4 5334 5767 11500 3 47 58 50 o 47 91 00 {} 32 28 7 5615 bOH 12000 3 52 64 54 o 52 99 •66 o 35 31 11 5345 6316 12500 9 57 69 59 o 56 108 71 4 33 34 14 t>075 6596 13000 10 58 71 61 o 59 III .,) 4 39 35 13 6130 66637­ moo 10 60 73 63 o 01 114 75 4 40 36 21 0134 b7·H 7­ ~714000 10 61 75 64 o 63 117 ;/ 4 41 ,), 25 62)3 6314 14500 10 63 77 66 o 66 120 79 4. 42 38 29 62?3 saG? 15000 12 72 03 .0 o .0 133 '!l7'7'S 48 43 36 6347 7033 15500 .b,' 100 123 105 o 107 In 126 7 ')7 60 36 7716 8674 ,-,r~,-,pI"? i,..~ t,) ~~Ol~ 1'I)16000 20 ,~ 150 1 142 132 234 155 .J :4 no"" ~ ,,16500 21 123 157 134 148 141 245 162 ''I 86 ;0 '10 ma m& ; 17000 22 134 164 140 155 151 256 16''1 9 '10 80 94 :::466 91?21~ 17500 .?.. ,) 139 171 146 161 161 267 176 ') '~4 83 '~8 :3314 10343 13000 24 143 132 156 171 175 284 1:37 10 100 a:3 105 'fl62 10n3 ;:J.5[10 "54 210 257 220 242 253 401 265 14 141 125 m 11190 moo I'iQOO 35 213 2&2 224 2H 263 408 ·vq 14 143 .' 150 117321 "~140:38 1'1500 :;5 217 200 223 251 274 416 274 15 146 129 153 12274 14677 20000 36 221 271 231 255 2:34 423 27Q 15 143 132 155 12:316 15205 20500 37 224 275 235 259 295 430 283 15 151 134 158 13353 15353 ~o· .,.., ?-~21000 ...If 223 280 .,). 264 305 437 283 15 153 136 161 ]3900 16442 '10" 1~r,21SiJO )8 232 234 2-13 263 j16 444 ~, j i6 155 ,)1) 163 !4~·12 17031 220D!) H 252 j09 264 291 :;51 j33 j13 17 161~ 150 178 P'138 17761 I iJ­i iJ')134q,~22500 45 273 335 236 3b 387 523 345 13 J. I~',) 1tIS .... t. 15432 ." 1~c230[10 ~oJ 2'J4 361 301 340 425 563 m 20 l'J7 I~ 207 15926 In37 23500 43 294 361 309 340 42'1 563 371 20 ., 207 10420 19734l 'P n ~­2028')24000 49 299 367 m 346 440 5 I,) 378 20 201 178 211 16914 -"n 24500 4~ 299 367 .}l4 :;40 4014 573 J! I) 20 201 178 211 17407 20787 -~Il ...., T ?1",C 250')0 4'~ 299 367 314 346 448 573 ,)' ..., 20 201 17:3 211 1:'101 '-.11-1.1'; "11 ~t.J') 1.. ... .' :~li.25500 49 29~) 367 314 ';46 m 573 378 20 201 178 211 18395 26000 4Q 2~)9 367 314 346 455 573 373 <:0 201 173 211 18:3301 222:30 .,~ -~n26500 4Q 299 ,)0: :;14 459 573 .)/1) 20 201 178 211 rq 382 n777w' ~ I'27000 r? 299 3b7 314 :;4b 463 573 37 8 20 201 17:3 L".t. m77 23176 -,,-, 1')77727500 ..i.'"! 2~9 367 :;14 ;·tt. 4t.7 57: ..;.' 1) ~o 201 178 nl 2;180 -".1 ),'17')2:3000 ..."' 299 :;t.; 314 ~':t, 471 57J ,,\ .. (. .'1 201 ,'J .~ 11 19777 231:34 --:'-128500 4? 21t~ 367 ;14 346 475 57} .,):0 20 201 173 Zll 19777 231:38 t,tJ~G %t.t~ 6S QJZ DtSJZ T' ­I( "1"": 1 ",:. 8Ll BLl JOZ JOl 02 OZ f..:.~ .), ( t.l(. _ ~LS (';, ~~~ ~lS F~", 9rf qr~ 1'1£ tJ~ /.9: IQtL·_ t,t,Z 6(Z tot 61' OOOS:- OOS-t:. £t8\-Z. Ttn.~ m BiT TOZ OZ ::~~. ~ £, ~ S iTS 9t~ tJ~ ~?~ 66Z 61' OOO~~ Ot.9tZ !£5tZ tertz SJ~£Z m~z LOl£Z £Ol£l 66HZ 9(.l£Z 261£2 1ml l60lZ ~H.QZ W6T LiL61 aar :.U61 LWJ LLL6] UL6J IlZ m m m m m m ltZ m m BLJ SLi GL7 Sil 8Ll oj ,: T l!_1 8LJ aLl BLl aLI JOG JOl TOZ tOl TOl JOz TOZ rOl rOl lOZ 02 OZ OZ oz OZ OZ Ol 02 02 Ol BL~ 01(' I.:L~ Olf l.JL ... :::ir 8L£ r. ',...OL.:.. f· . r l".1 .. _ 8L~ 8/r'-.. 8Lr US US £LS U~ US US US £LS US £is £]5 60S SOS lOS Bl,t t6t 061' 98t let SLtr 9t~ 9t~ 0"'('.: If_ 9t£ 'lt~ 91'£ 9H 91'£ 'It£ 9t£ trj~ 1'1£ H£ m t Tr 1­ tr T!.­ t'J~ m tt~ tJ£ m L9~ L9~ L9~ L9~ i.9~ L'i: LQ' Lorh L9i t,~Z 66l 66(, 66Z 6t.l t,t,;:; t'D~ 6"I)" {,t;,Z 66l 61' 61' (,I' 61' 6V t,r ." 1_'" 6f 61' 61' 005£~ OOO~f 005~£ oOOZ~ OOSE 000] ~ oosn~ 0000£ 005t,Z ooo,:Z _"..._-.-.~.+,"·..•__"'·"'_,·~_·_'~'i·;..-..'~._··_'"'''__p_·~'''''''.-,·.•--••.._.""'~"'~.'_••_;..,-..~_".,-,-'_· WEIGHTED USABLE AREA WITH FISH FACTORS ~O~ Sid c:. Chari" ~I S.: tcs , of fish at site / t of fish in group 5000 5500 6000 6500 7000 7500 ~::OOO :3500 9000 '~500 10000 10500 11000 L_ WOO 12000 12500 13000 1:;500 14000 14500 15000 15500 16000 16500 17000 17500 13000 i3500 l'lOOO 101500 20000 20500 21000 21500 22000 22500 23000 2:;500 24000 24500 25000 25500 26000 26500 27000 27500 2:]000 2t:500 0.021 0.058 0.101 0.093 0.284 0.026 0.051 0.044 0.128 0.034 0.046 0.113 101.6L 123.3R 133.7R 136.3R 141.4R llUR 101.2R 115.0R 123.5R 130.2R 131. 3L 131.7L TOTAL 1 1 1 2 J 4 577 .5 6 WUA 0.56 0.46 0.44 0.54 0.56 O. Jl 0.56 0.55 0.01 0.:1 0.47 \NH/H) to :32 144 :;5 237 5 o o o (1 a )8 ~, Ii 10 82 163 35 241 5 o o I) !J tJ 108 644 LO :32 181 35 241 5 o o o o (i 11'"1 ;)75 10 32 200 36 242 5 o I) o ,) o 130 705 to 82 21 'f 31) 243 5 o o o f) a 140 :36 10 :":fl r)~ 2:;9 .}f) 20 Q 5 o '1 I) o 153 79 4 12 n')o)~ 25 1 ) .j 271 11 ~ 6 I) 172 :j53 LJ 82 278 J;.J 272 19 o riO) ,~ ::.. I] 8 ! "0 927 14 82 2'J8 40 274 2i3 o -:-,1 -JI) o 1.; 210 1001 16 0'1..'~ ::17 4! 276 37 ? o 55 4 u ?'l0 I. i. ') 1079 17 82 ~37 ~2 353 45 oJ 71 14 "'l/.1. 247 12::9 19 82 3:;8 ~l3 379 54 10 o 88 2·, 'l'/./ 267 1369 20 35 339 124 404 62 12 o 104 J4 32 285 1502 21 16 340 158 430 60 14 o 121 45 36 304 1625 23 107 341 162 456 53 16 2 138 55 41 323 1722 24 Jll:! J4l 167 2226 56 18 '] 159 65 '16 342 3571 24 129 :;42 187 2348 53 20 16 l?? 75 51 356 3780 24 141 1234 207 2470 51 21 ....., ::.'" 200 86 .55 370 4882 24 1·52 1343 227 25:j 2 49 23 29 220 'jQ 60 ~1'"9JOJ 5206 24 164 1461 246 2714 46 2.5 '/JO 241 I ,'l ! .. ,"rjJ 3Q7 5531 24 175 1574 266 2:336 44 ?~ ~I 42 262 125 :1) 410 5356 2~ 137 1688 286 2958 40 zq 4'~ ?O? ~v~ 138 74 424 6179 83 1 '~'".0 1801 306 3030 30 31 56 303 151 ""9 4:)3 6566 96 1'f'~ I'm 633 3164 ::?J. 35 65 ~'1'" Jt.. ..' 163 qa .144 7163 105 199 2028 7LO 3243 27 39 F• J :;44 176 101 451 7502 113 200 20~'9 :82 3332 ?~ ~J 44 81 362 1:39 1l:J 458 7796 I ?'d 200 2170 35<1 3416 1~ 49 '10 3'~4 202 125 465 d05 129 201 2240 ~394 3306 18 53 Q8 429 215 137 Wl 81S7 f"\: 201 2JlI ")13 3195 16 53 106 ~64 226 14'1 171 :326 Q 145 726 ') '7r1l'\ ~JO':' ')73 :JOS5 14 ,,2 115 500 246 161 ~ ··1 1 rl{) "9 1~'OI)J 150 m 2453 1012 n75 13 65 I ?'~j 535 263 168 477 '~1):)2 155 i35 Q 2524 1052 2865 II 60 132 .570 290 156 430 'mJ 160 926 2537 1091 2754 9 55 140 602 312 143 48:) 9264 166 'N} 2&20 1131 2M4 "7 51 147 62") 334 131 486 q332 171 176 105Q 1126 2654 itl87 1170 1210 2534 2m I> 46 41 160 175 : .. j~ 51/1 35~ ) ;t, 118 106 4:]" 4'~2 'l35'l 9384 131 1l?3 2m 1249 2313 2 36 l:~l~ 540 58:4 93 495 'HOI 135 1234 2754 1210 2121 1 'l'"1.0 U~ 511 372 ! ~j 4'~4 '424B 188 1276 2138 Wi 2043 o 1'~ 1::' ~82 ~55 4'.~ 1'~~ .'033 1'~O 1:;13 2823 1m l'~15 i) .. :)2 ,IS3 337 24 4'~4 892'.~ 192 135'? 2359 10'.)3 1782 o o 2~5 ~0:3 ) l'~ o 4'~'i 8753 m 1401 23~~5 1054 h5G o !J ~5~ 350 301 I) J:~4 85'~1 197 1443 2"3l 1016 1517 o o 2~3 n3 283 I) 4'14 8416 200 1484 2~j67 977 1384 o o 2")2 235 255 o J93 :3227 202 1521 3003 'l~ ? ~~ 1261 o i! 220 r~-jl 21° I) 4')3 3093 205 1541 "irHO ')26 1175 n '-I 208 238 183 l~ jl')? .~ GCflt; 207 1561 30 71) 'H]9 103'1 o (1 ~ ~~& ')-,-' _ J'! 14: I] ~'jO 7'113 210 1531 JJl2 ;/~; 1002 o r, I,·; r L ').1 2J~; 143 'J W) 7i::,sb "____---~.".~.-'~=... "~,._~__"c."~.• ,._ I) 0 166 238 14? 0 4BB 779329000 212 1600 :3148 376 916 0 0 143 238 149 0 436 77242'~500 215 1620 3134 360 330 30000 213 1640 3220 343 744 fJ 0 II ~1 238 149 I) 435 7654 II"" ') ~ % 238 148 0 4:33 7601:;0500 220 !660 j256 .).:.: 673 ~~-',:tOl)O 223 W:I 32n 810 601 (I J % "Jl 148 a -132 7572 ~~?t) ')7 ~37 148 j!30 7543,I31500 225 1703 ,),)..u ?'?~ 530 a G 0 ,'\ .. ., 7512moo 228 1724 3364 777 45B I) I} 1"J7 ,J: H8 0 4n 32500 231 l745 3~Ol 761 '3:37 0 a -,7 2J6 148 0 47 7 7482 ., ... .,. I] -~7 47b 7452:;:;000 ,JJ 1766 3U7 744 315 0 235 148 0 rIC. G7 235 148 0 m 7421moo 236 m3 347J .:.0 244 0 G '1 !] P .:.J"t 147 0 473 7:;'i!34000 233 ISO'} 350'? 711 1?2 " ~~. o~~ :] '17 ,,)J 477 736034500 24l 1830 3545 695 101 0 ~47 0 >. o~~ !"':1;j51 3581 1,78 29 I) J ,J.:. 147 \70 733035000 244 1­ ,­ ------------------------------------------------------------------------------------------------------------ ---'-"-"'~" •. _-.,-.-"",,,,,,,-,»,-.-.~ ,.._ ...__.__.~--"~-,-~.,."..-_ ....".~ ......_-_.._".~---_.--,-~ •....,.,.",-,~ .........~-,~ .•.,........ ~..".~-,,.,.,_ ••,,,.•,,.,...,,·~·"o"...,·····_·_· __ · ~ ......,.,.....'""""_""....,...,....,.,.,,.,..,~. __~ __'~_,,~.~~.,._ .._"_'•. ..__._ to..-S.:Je. S/()..4J1 h sAc: sI of fish at site I I of fish in group 0.024 0.037 0.309 0.043 0.028 0.023 0.021 0.112 0.022 0.358 0.024 100.6R 123.6R 126.0R 140.2R 113.7R 115.6R 117.9L 122.5R 126.3R 141.6R 144.4l TOTAL 1 1 1 1 1 1 1 1 1 1 1 WUA 0.60 0.43 0.51 0.50 0.51 0.54 0.62 0.51 0.59 0.56 0.60 (Hit/it) 25 33 800 17 21 27 5 239 18 406 20 1660 25 39 BOO 22 21 42 5 299 18 406 20 1687 25 46 800 27 21 57 5 299 19 406 20 1714 25 53 800 32 21 58 5 2B9 18 406 20 1727 25 60 BOO 37 21 72 5 289 18 406 20 1754 25 68 1116 42 21 73 5 289 18 406 20 2084 25 69 1160 42 21 75 5 289 18 406 20 2130 25 71 1204 42 21 75 5 289 18 406 20 2176 35 88 1247 42 21 75 5 289 18 406 20 2247 \-37 89 1291 42 21 75 5 289 18 406 20 2293 38 91 1335 42 21 80 12 289 18 406 20 2352 40 91 1378 42 21 80 12 289 19 406 20 2397 '-41 91 1422 42 21 80 12 289 18 406 20 2442 42 91 1466 42 21 80 12 289 18 406 20 24B8 44 98 1510 42 21 BO 12 289 18 406 20 2540 45 98 1553 42 21 80 12 289 1a 406 20 2535 47 93 1589 42 21 80 12 289 18 406 20 2621 48 98 1624 42 21 80 12 289 18 406 20 2658 49 98 1659 42 21 80 12 304 18 406 20 2710 50 98 1694 42 21 80 12 320 18 406 20 2761 52 98 2105 42 21 80 12 335 18 406 20 3139 53 98 2141 42 21 80 12 350 18 406 21 3241 54 98 2176 42 21 89 13 350 18 406 22 3238 67 99 2176 42 21 89 13 350 18 427 23 3324 68 98 2176 42 21 99 14 350 18 449 24 3343 69 98 2176 42 21 89 15 350 18 470 24 3371 69 103 2333 42 22 89 15 350 18 491 24 3566 1­ ?769 103 2338 42 .. J 89 15 350 18 491 24 3568 69 108 2338 42 24 89 15 350 18 491 24 3569 74 108 2338 42 25 197 15 350 19 491 24 3683 74 103 2338 42 25 211 15 350 18 491 24 3697 74 108 2338 42 25 224 15 350 18 491 24 3710 74 lOB 2338 42 25 238 15 350 18 491 24 3725 74 240 2338 42 25 251 15 350 19 491 24 3871 74 256 2338 42 25 265 15 1475 20 491 24 5026 74 273 2338 187 25 275 15 1514 21 491 24 5238 74 289 2338 187 25 286 15 3974 21 491 24 7725 74 306 2338 187 25 297 15 4109 21 491 102 7965 74 322 2538 137 25 308 62 4243 21 491 lOS 8427 74 335 2583 187 25 319 64 438a 21 2070 275 10346 74 349 2588 187 25 330 167 4575 21 2126 234 10726 82 362 2593 187 25 450 173 4762 21 5573 293 14521 82 375 2583 137 107 447 173 4949 21 5767 303 15004 82 389 2533 137 110 444 184 5136 21 5955 316 15412 82 402 2538 187 289 441 192 5323 21 6159 329 16013 82 547 5746 187 29'~ 438 200 5510 21 6421 342 1979} 82 544 6139 187 309 435 208 5586 21 6634 355 20549 82 540 6532 482 319 432 216 5662 21 6946 368 21601 132 536 6926 499 333 429 224 5737 89 7209 381 22545 _ __ ............, •••_.__•.,••. __.......< • • ........... .__, .•. .__.".______...."'"......._."__..,,,....,_ .. ... ~ ·_n'r~_'_~ ~ ~,.,,_ ._~.~ ~ -.~_, ~.-.~.,.=_-_._,_~_~._-~-_.~,~~"., ~_._. __ . ~._ 195 533 7319 515 347 426 231 5313 92 7472 336 23328 207 529 7712 532 360 423 235 5399 241 7734 392 24254 220 525 3031 549 374 420 239 5964 249 7840 397 24307 232 522 8349 565 389 417 241 6040 25 7 7947 402 25360 245 518 866S 532 401 414 244 6116 266 8053 407 25914 255 515 B937 599 407 411 247 6191 277 315? 412 26460 265 511 9305 615 412 40S 250 6267 238 8265 418 27006 l_ 275 507 9624 632 418 405 254 6343 300 8372 423 27552 285 504 13106 649 423 402 257 6419 311 8478 428 31261 296 500 13020 665 429 399 260 6494 322 8534 433 31402 306 496 12933 632 434 396 263 6570 334 8690 439 31543 I.-416 493 12847 698 440 393 266 6646 338 8797 444 31778 ~- '­ __ _ ~'-~,._~.-....-,,~~''''_.,--~,-_._,~---, "._.._."~-,. ._----_._ _-_._ _--.. APPENDIX C Development and application of "Restricted Passage" criteria for side slough and side channel habitats Under natural flow conditions, the access to much of the spawning habitat in side sloughs and some side channels is limited during the spawning season. The ability of salmon to enter slough and side channel habitats and access upstream spawning areas within these habitats is primarily a function of water depth and reach length (ADF&G 1983: Appendix B, Trihey 1982). These shallow reaches are referred to as IIpassage reaches ll • When shallow depths exist at a passage reach, access by salmon to spawning habitat above the impasse becomes restricted. The Salmon Passage Validation Studies (SPVS) undertaken by ADF&G (1985) identified and defined three degrees of difficulty encountered by chum salmon attempting to gain access to spawning areas upstream of passage reaches: (l) successful passage, (2) successful passage wi th diffi cul ty and exposure, and (3) unsuccessful passage. Passage conditions were evaluated at 13 slough and side channel sites, six of which were modeled spawning areas. Three different hydraulic conditions previously identified as affecting passage conditions at each passage reach: (I) mainstem backwater, (2) breach­ ing of the channel headberm and (3) local flow were evaluated. The proposed Susitna Hydroelectric Project would alter the natural flow regime of the middle Susitna thereby affecting the timing and frequency of breaching and backwater influences. Insignificant information is available to quantify an affect on the local flow conditions attributable to changes in upwelling or shallow subsurface flow into side sloughs or side channels. Therefore, local flow effects on passage conditions were not evaluated as part of the Salmon Passage Validation Studies. However, the mainstem discharge required for successful and unsuccessful passage of chum salmon considering backwater and/or breaching effects was determined for all passage reaches C-1 - -·--__._.. __ __ ____-,-"-"~,.,,~,-~",,,,,,"-,_ ,.,~>~, _-~~~..,~-.,.,..,-~-,.,.,"' ••__.. .. _,. , ~., ,.~.'_ "·".r··~ ,· ~~-~ ~~.r"~~,.. "'.+, .•• ,,_'.~'-"'--'._' within each of the 13 slough and side channels studied. These results are summarized in the SPVS Report (ADF&G 1985). The WUA curves developed for each side slough and side channel model site initially assumed approximately 5 cfs local flow was present during the unbreached condition. When extrapolating results form the model site to the remainder of the slough subsegments were not excluded because shallow depths in passage reaches excluded or restricted access to them. Basically, it was assumed suboptimal habitat existed throughout the slough due to shallow depths when it was non-breached. Once breached, depths increased and habitat quality (WUA indices) and access conditions improved accordingly. However it was requested that an incremental evaluation of passage be included in the spawn­ ing analysis. IN doing so, all the spawning area located above a passage reach of which unsuccessful passage conditions occurred was assumed to be II res tricted ll And therefore, only 20 percent of the total WUA for that• subsegment was included in calculating the total WUA for the site. Once depths increased sufficiently so a passage reach could be successfully nav­ igated, the WUA in the subsegrnent immediately increased from 20 to 100 percent. This is described further in the attached memo. C-2 -"- '_."'.. --~"---~~--__~.-........'''~,,-,..,...~_,.,_.,,~ __ ,~ .... ....,...,~ .. ,_.~...,---__..__.............__ ~•. .~"~.~,_~._ .._'_'_." •.--__'·,·_."', ..,."'".,,..~,,·,,_·, .. ~,."~'._r~'·_·~·_·_·._ ~-....,...~._~. __.., ..,,_...~__ .~. P.O. BOX 111774B. WOODY TRIHBY .. ASSOCIATES ANCHORAGE. ALASKA 99511 INSTREAM PLOW AND RIVERINE HABITAT ASSESSMENTS (907) 562·7707 CONFIDENTIAL: PRIVILEGED WORK·MEMORANDUM PRODUCT PREPARED IN ANTICleAIloM OF LITIGATION; RESTRICTED .-' DISTRIBUTION TO La-crv l1ov;/C1"I!'I DATE :::D~Gemj,er 13., 1985 J FROM bloody &,. ke '/ T ~ SUBJECT T;~$ler of clUlwt wl.1J4 CIA·tJ~:S k 4/~. J, $"~$ / A fl-ached ~ f b~ee. 4e 1:5 of Wl./f/ ~'-VC$ to:c c. bu"" sa.ImQn $42, Q .(1'nit1 1 At -Sevc:n tn,·dd Ie: c..i ve ~ $/&9,6$ .Q:C WJJ!9 c",r-V<:$ &::. .ri.x thGSC: .s".lt: is !J.ll:..C..e. -nCQVided~ 7 . IiDF£6 h~dro Ln. /9t!! 4 ( Esk:s ~ ""ncenl· L.,...,). -Ii :.-.w us curve. ~ < /iKI;:j h iL has ,fiot :Pf"CViQ>A-JS 1 b eea a.vaA..461t: . The WLIA cur-yeS ~ oS /4-<2!sh.$ '1 (WId 811­ differ bC)='W7 t::h.e. AD FEf G cue ve$ I;' -fj,a/ t h c. c u eye < a C< Ozn o!?..-.. v "r2~ th" $ vn c:. m 0 ,'n leT rf:J Ie ~/ ...±1e baJ<wa:t..-tc'Lur-acc: a.f +b e s/<WSb.. (bey J±~ Q.'Od fh e 'hydr=a-c<4c c/t,'ii(>?2.$ w,'+h ,'V'\CO=z1 -±..b e oS I t)-C.J~h +0 prou ..d e.. 0.. LtJ J.J ,g C n:: '"eI # ClJCUC $?ro.-x= ±he. eni...;.... eo SI'Kolbh-Th e. ttDFJG u;C-ore. aa ~ '¥;; lee ble 10 t), e be d~}7 -12 ori:ttrJ ¥ fA C' $ / o-<.J<""~ h u I '2:?SbrCkn1 ~1 -fb e ,&ck1.(Ja lee ZCz-r1 c::. • T;' c: ?(.1 1.18 C(J C lie s ~ s/LJ.-Uj L.z/ ral~",,-,o=--_ eli /{;.y-• LtJe uS ed c ra S S -s ,"ct·<'hr1 Q,aa d .shrCLt«1 Vow de /.4. Co lie c I~ cI t, y ,£D /:-" <5 LQ. /982. ~ the kc. t'ku"YJoy p¢r7...OZ'Z ct '-r' { -1/ ". '7"-F (If//('/ .-··~---lZdS.~~ "--.JY ~e4: ::Z~~;;1,.---:r:tlITfl7"rT'('?~---------._---- - ··-·-;;,~~~--·----··-o---~J~-----or--c!Vt07r.l::JI'10~~;""O'----------·-- .... --'---;-~"""'¥;;J. . ---;O~r-~C)~r-;;.-~C7 :-~ ---~':"'n.P tr;'r7ft~7~ .._ ­5''' ~~--------_.. -0 -"-jo -a::> 5'n .._. 7J--'~F" • 7'""' b~'--~--f"'-'--' '. .. ,.._­ ~'--'-~('i?'C/7 rr%f"P'Up-'~~~9 ~~~ JP ..-..----.---.... -...-"., !j/7('1"7~~ ~7f~' "--6f cFf-~-·~""":;1""$~,>;;}""""~..Jr;::;df-'--------­ -:;''0(/ ;)="b ~ . ·7~(ir0V--""7}f ';)f~:>7pO!---·--u_. ~g6F-17:--j7'.r~~·:x:r-·-----~~rrC1PTT ~.. ",~.J -..-----­ ...-¥.~~~r----(VKf1~-~s;>'11_---~~!S-~·--rd-d-ns-----------­ ->~"'";~~:;--~-:::.-.~;;_.- ~ ·CUJ":>9' ~~>ek .,tl{t d:t :'9'C> °f----­----f"";l"F~f\p$\XI. 'i" .' ~'1:5!:)P <;LC?f'1A>;';' ;J "'t+ -~i' ->fTT>nr---s~';) ~~.I~ Of-~.,~.,....,3~'1.-..1.-·----------: --'·7~=!·;4uJ~~. (""YH1/~ copt? -::>soy ....."'t:>..----------­ !ox>7-~~-=E[t s ::>~nts_~ f:JS' ;t;<:P7:; $"!y2 ._-------------------,._---_._-----------_.--_. ----'-..,.-"'P.~I "..I;) ;>-I;;7P;#--ry!,P0Ul "If .'r>? rt')t:1!.:f I D~o7 • --..---, ..------.--r:I~1_,.r:r--~~i?sHd..---'f.f7"". cYl·w-rf57---:;;e:---------­ . -'O~;, ;I~s:sa:l r no 'ff."~ '+''''1:( ,·.,°7 · ...-_.-.---.--.-.---.;'Y:Jl;rs-"Kls -:;,.....,'f"'7"f-r·--J..,~b---nl'1 .....,....t:l.-';)or----=,O/,'T7"M­ ··-r;;".r r~ -:tPI:T--~~J;"'" bI/7("YJ ~ ..5~. __::S_:S_J_t(._'.L~_ ..__ . ·_----_.,-_._--~--.'-_._-".._-_.--------_..__._------'.."'-'.-" 1.. 11l~)4." --?~ 3 ,-~h~ =-/"'" tal;"'_"'-±1, <:..-_ +0 k-l a..-w. <>v,.,-t ,-et wu 8 ___~.vfh H'J., __:t.JlC=_.. _~~c.. __.sJ<J"Y~/, ~ .5ilc: ~P~_Ci.~c.._ .va./VC.:5 ---.. --t~,~;f;.) 4Le:r,c----~f~e.2-__io--I.h.e: en-te.r:-t:., Ie.."Jfh ---"6. _._tiJ c:. _.. ~4.<J~-.6-. ',-.in-~~._. ._Lie Ic! -__-eJ;,..J..E:ruE.-t:t'71,$., ~.~_ -"~." ~ ,;,!:,--"'''~ "''C C :-(~",..-••• kseoe \,'). _'..'" ',.. .-----, .s.c-b-__..5e-!..Wl~b.. __ ._--il~ Jfl~U"~ .-~g..ct....__,..J<V~_ .--.7' --­ '.. __._.nol, . ex&dea'.._ .. . :t--.J,c:.. e..x ~o/a-t:-.CJ'7'L.---'P-rccl:-S5 .._ _.~_. __·_~._.beceJ..lJs_e:...-,. __ ..J,~_,_. -J¥i:-~-.$-.--al _.-:p.QS-$IJ~~__ ~d~e..5_ _ ,,~~j.e.d-.-----_~-Cs.s~~,t~d--,--u-'P!I k~ ---__.~...--. _ -Ih.e...-._w.JJ.A. .:..c.V1'~ d@..,.,~ ~r--' Io(~j o~ +hi~ ., ._---'~.~-G:"'-'("e\ \ ~d..s ±h l:-.ad 'V ~s t: .. :~_~~ c f .__ -,=-_-~_---ShcdLeM2 d11'1:-b .$ ~ . .5p~_112!'1 ~.~,'" U:-,----1~L--- -'----..• __..-J:Lt.5_~_7J':1.<:.$ ~_=_ ~.-~--,.J,~..LM---j~_'-7J~~L'7--__-_' __-. dAu,;l Ql:JJ:.. r),CPV1...h-~t:..--· rhc-_-,.-sLQ:-Y!!5_lL-_~.4-_.--.-- _~r~~..t.l.lt tU.J.JA m~_--..J,e Sl?JJJ-7.---~~3:.s~-._. __ ..';"_____ d(Jr:I.~<s---fJ-c:rC:_~~-4'JJt.AJ..,_sL~~~_ .,-o-'I.cl . _'-'!~.~.s.~.JeeI ._ ______~h.fh!J_--~ s~S h is nai .h~cJed .._ _D.~t .sJ~gh..1/~ _ _ __... --l~_. 6f~b (d."e io ':r~~... _y_..,,~•. _--.Sc.~~----.- __"__ l.u-'=-_~c..-__~ f}.'O-o-t....hc.J .... ±Ju::. ~o.~-±.,~, ..:...__ ,.;£..k~_----4>< dWr=Qi; 00Y1 ~._.__V,~Q7i.~~__-J.n sh.vJLt7~ -----~dU:cl!,,@S r>4-r1-b e<:t2c-~, ~cL:t:~~_.-----LJ.-.s_e;:: r: .. ~_u _____,. .a.v~~~----kJ~' ,'~~ .Aa.s _---5~~ h1er£ I. .. , ___. _h_. ( ... . '-a!:...r:J~--~~~71J~7C &Ien:g.: _=_T-h,/~~u.-,~-c~~~e._=_~I-~ _____ L<.,.J4$ dr='ue.Iof>ccI-/n r~J~DX1_.h=._ --I~ ---7"-~J--e _ . __..., . ~_.--t:d C)~,i>e.r-----L7_-_t..<-Ih.ich _ ._~~t:Jj~r:I_ _,__ _:'.-._ . HJ.e.._.. ,-:,p..L--'!II_._..c~J.lCS -desJ:. f":' bt: d . _.0 b t:M.J e.... be. ._ _ _..._ .__ ..._.. .modLHt:L_-:la .m_c.~d~___ Pd.$Sd ~ c:=.. ... .cft·_/~·_o-_.__ -. --.-. -- -.-.. .--df:A..JdofCd----_Ay-· __EAT KJ.X. .. __ . ...._. _,___ , __ ._ ...._ ___u_. __ ., , . __.... . _..J:b~ __'?t:LsS.J1-7-e..-c..ri:~!t:r<·_ ..s. _Q.. t!t.s.5~,.,.,_e .-:____ _ .. _ .f),Q t.. ,.1/~_;L ......de-'J.th.5_. a.l: c"--t:.uL _-pa.s.sa \.<:. _-reoc.~e s -----------. ..~,.,.c:...---"n.'7 ,_I4-Ltv~-c~c1 7 ba.c.k~ ---.--..--,_~__) /~r'C4l:j,,;,~ • V44:£C;~.:5---Ln.,-._..sL~P-L~ _ .---.----.-. att;I'C.t:J~ I-n b &!-.__...f~ __Jocc.l.....//o-AA-I .._.a..::e. .-/).01--,.-... __ .----.--c.6:fI2.SLcie.-:r:.d. Ilu:=.----C.£.,' !~"'f.' e.-.._ a.lso _. --_a.s.s..~J!l'1~.$.. __ -_Jl1..J w...f.l..J'7 . /. ¥~l6l~~)-' __ drxc. n uJ exi..~_:t._,__. .._ __ _ ,........ '..L (J J ----------------------- ---'-/z Cf'i~----~____4~~~d .'·'>'rJ'tn-~----·t;rrrt1---- ?~~;>~v..~ ---"'O'1PJ:--~O_-_. ~!r~e::t--h~.;-~;;l'1T':J~~-------OYJ" r -----~Or (diOI ~ IO"~ ~"I.'::JA7""\,r ) C;S~"""""'''1''''!P OUC"S.t'\h~DW --,-~ ~'~fJ~:---~f.,~F$! . ~ 9~~3. ~ -:;..~ J:C:t l,,~sfl ""9" ~OcAA ~::>o:cucJ;ft, C;!"{~ -··-·-'~d~-f'o -o;"! ~~~1S""-_·---;l'"t=t'-~o :~. ~~.-_ ..--,l.lE=1q"')-----.-.. ... fSf'F"~---·-'S~e7lot,.,-· -F~(Y'~-r---s-~ "f\'~=.1 ~s-3'"f!S= --_._~.:r-. -_·-~'tt_~':I---·-r~.,~J9 ~",p·t"P S :;)~:npU! QlH -·----·-~·rr(l1· Cf ~~~T ==:>~-"";)S V:~.Jo--C'S(, ot------­ ._-.­--··I7e7r/\~ s"P--~-~:~pr-;) ";)s~·t-··_~ t;q)ro.-et5!'JJ<Jf-:J:t"~----­ - - _..-..-.--.--.--...--_..- -...., 'I;) (:i" ···C1 rr-rd-;,:so at' """'("pOLo., F'PO 0 ••••_ •• ·!>l~ v~rCfrr-···;k--/., ~..o:4.':( - .--~~--~~..-"""'O~~ ...----=­ . --~-'1-F .. S"p.,;a~~.-~·-7~-·····--9~ .--:>~-~~-d-.._' - ­ ... ?~ -+ --'1~~~ t-~~.. -'t' '\1~p--··--~·"ft----~~r ~---.-=- --------_._--­ .._-----­ --.-_._-----._-----------_.. -----_._.­ . --_ ..­ - ­ .. ­ . __.-. ----_. .. ----•._...._...._-------------­ -----------_.__...---' _._--------------------------­ ~._-_._-----_._-------------------- --------_._----------------­ -_.. _-.._-_..._-._-----------------­ .._._----------------------------­ .-­x .S ~ 2 , \rp:..,) c\ ('-l \ .J,1 ) ..• _t:;r9 -_t:; ? -fI alB(] Sale!OOSS\f ~ M~!J! I.pOOM "3 1VNI:I ~. .' '"\\.:'0 u I­ ~ I 0 0 0 In.., fo­ ~ a: u -0 0 In-.., w (.!) ~ U) U) _ 0 00 gJ ~ 0... I-­ ::::::J CJ ::r: I-­ ~ 3= 0 0 _In.... N 0 -~ -In ..... ~ 3= CJ --l l...L.. --l ~ c....J CJ --l ::r: I-­ I-l 3= N UJ to cr 0 <[ 0 I -~ u-tn I-l CJ :E: 0 UJ0 f­_0....-tn :z: I-l <[ ::E: <i. CD 0 -~-::r: (.!) ::::::J CJ --l U) 0 -g..... ex: CJ l...L.. <: ::::::J 3= 0 ~/i';.... T I I I r r I I I 0 0 III N ..... ...... ... In III.... 0... PI ~ ...-ID 0 o:u ° bs :/-0 spuesnOln vnM ---~_ ..._.__....._­ _t:;8 -'2 2 -II 9Jea \ sate!:>ossy f Aa4lJl ,(pOOM "3 ,/1 . 1YN1:IrF ~; ~ -i \'v -'­ .:,-, -,,. ~ / ...... I(. '","--' I­ ..J I--l a:: u\1 UJ U) « en en « CL :I: I- I--l ~ ?i a .-J l.J.. .-J « u a .-J <i. CD :I: U) :::J a .-J en a: a l.J.. « :::J ~ I I I I I I I I I III C> III2 ~~ lR .. .. ~~ !2 ":U "bs 40 spuesnOln I VnM 0 0 0In.... 0 <:> I-~ .... 0 0 I-g N 0 0I-In ~ <:> 1-20 N 0 C> ~~ 0 0 f-~- C> '-In0 C>- C> f-g... C> '-~ 0 C> --In t.J LU t.!J c::: -<:r: u en ...... CJ ::::E LU t­en:z: ...... -< x _C,8 -'Z 1-'2 I 9~ea sa~e!Oossv II Aal4!Jl APOOM °3 1VNI:I C> 0 C> Ll1.., C>C> ~ .., 0 C>LU ilt!) N« en en « C>0­~ .... o N LU I­ U 1--1 0 -til 0 .....a: 9 N £I­en LU W t.!:la: a: C> <[::r: ::J::I­-~ t.Jen1--1 ....... 3: 0 « ::E:C>CD 0 U.J ....I­::r: -0 en t!) :z: ....... ::::l <[o ::E:--I C>en :i'l 0a: -o l.1.. « g ::::l ~3: C> iij I-.....,---r-"""T""-"T"""-r---.---,--""T""-"'T"""-r-C> CD CD C>- • r'~J "bs JO spuesno~~ vnM l-"""T'"--r---,--..,.....---r-,-----,--r-r-r° •0 ( ·i~·bs ~o spuesno~i I ~nM ."c,& -':'Z-ll a~ea sa~el:)()SSV i Mtj!J! !.pOOM "3 1YNI:J '-­ 0("-j 0 \ ~ 0 ~ ... II> 0 CO M CO ~ U'J ...... 8 Sco... N LU CDex: co <x u~ en H c :::E co LUco 0 t­ ~-:zen H <::E co Iii: co- co co co.... iii co °l~ °bs ~o spuesnO~l vnM _~8-'2.1-"!1 a~eo saleloosS\' i halUll hpOOM '3 'lYNl:l Ll.J e.!) < en en < c... Cl Ll.J I­ U I--l 0: l-en Ll.J 0: .:c I- I--l X 0") :r: e.!) ::::> 0 -J en 0: 0 l.L < ::::> ox r-----------------T"""! -~ ~ - § rn -S .... N UJ c.o c: <~ :I: u en - Cl - ::::E t.u l-en:z < -:=L I---r--r-.....,.-"""T""-r--.......,..-~___r-~-+-O .r':u 'bs to spuesnO\n) vnM 0L II ~,J I~/\,·i. : 1\:, II -I n -(~ ",-­I ' . , ,),.) .--P /0A.'L­ WUA FOR SLOUGH 11, WITH LOCAL FLOW, WITHOUT PASSAGE CRITERIA 80 72 . 64-4J "­. 5& CT en .e , "­0! enI «I"01 c: RJ en :3 32 --------~-- 0 .r::; 1\ 2A.&J 1 « 18 :::;:)II x • 0 I ~ (;i '(3 o ~ \Jl ... alS ~ ce >. I zcuo­i:i:=­'=1.­ ~- 8 cu ==.0~ w 0 3!iOO 7000 10500 1<4000 175110 21000 280 28000 31500 35000 MAINSTEM DISCHARGE (efs) (JL II ·vW, l)A'f , --J..('-_ f..... \ .•I -':"J () --~. If" \/~\.. L­ WUA FOR SLOUGH ii, ~OCAL FLOW, WITH PASSAGE CRITERIA 110 n ~ &4 .... r:r 5& en .... 48 c en 40"C c:: 10 en 32:::::l C .r: ~ 24 - c( 1& :::::::l ::£ 8 0 , en ~ .~ ~ ~ '.Il-Iel'J~ C >­I ~ .! '''' 1I:-c:1\I 1-, ~:= o ~~ uJe 0 3500 7000 10500 14000 moo 21000 24500 28000 31500 35000 MAINSTEM DISCHARGE refs) .-58 -z(-zT &fi;Q BaJelOOSSV i "a~!Jl "poOM ·3m,;j C>~--':""-------;---I~ ~... ­ LU (!) < en en < 0­ o LU l­ U ........ g -tna: 2 E­l­N en LU ll.J t.!:la: a: <:r: :::I:l­........ ~ ......~ CI :::::£ ll.J I­....en -g :z: ...... < ::F -~ C> • (. H . bs lO spueSn04i) 'tOM 80 \ ':' I ) u ... ~.' ), v:-<:1\ .. WUA FOR UPPER SIDE CH. 11. W/LOCAL FLOW, WID PASSAGE CRIT. 72 ­ -Ii4 ­ +.J 0.0­ 56 ­ C'" U) 0.0-.48 ­ 0 U) -c .40 ­ c:: l'lJ U) ­32::l 0 .c:: +.J 2.4 - «2: =:J 18 ­x 8 ­- 0 I -1I I J I I I I T• 3500 7000 10500 1.ol000 17500 21000 2.4500 28000 31500 35000 MAINSTEM DISCHARGE lefs) o rJ·u ~\n oa ~ >.'~ CD 0-. -"r;: LL.·C '" ..... ' >.= "C o 3~ • £:) w I r') 1 ,.'\ .' _I r ;' ., ~ I V' . \ \\)\.,' , ',)r:-",1,X ~ r . I}''/' 'J'-' "...... l,,-./' WUA FOR UPPER SIDE CH. ii, LOCAL FLOW, W! PASSAGE CRIT. 80 72 - ~ S4-. 56 l:T en --48 0 en 't:I -40 c: to en 32::::J 0 .c ~ 2-4 < => 16 x: 8 0 I fI) ~ '0 ~ ~'" clolS~ z ii)' ~ -.s:::u.. ._ N t-'= ~ >.­ "0 o o CU 3: CU we 0 3500 7000 10500 1-4000 17500 21000 2-4500 28000 31500 35000 ~AINSTEM DISCHARGE (efs) P~)GI' . r)p..r 'l·li-nS WUA FOR SIDE CHANNEL 11 UPPER WITH RESTRICTED PASSAGE C/) ~ .~ (.) ~ .:2'.n ~~~ z ~N ~s:=-... ~ ~l ~- o ~~ uJ° 0 3500 7000 10500 14000 17500 21000 24500 28000· . 31500 35000 MAINSTEM OISCHARGE (cfsl 80 72 . -. S4 ~ ..... 56 0­ lI) ..... 48 0 lI) 40 "C C ltJ lI) 32 :J 0 .s::: 24 ~ -< 16 ~ X 8 0 • ~ \ c; ~ -'2 I _ II Blea L 1 ­salel:l OSSV i MqlJl /.pooM ·3 ~ '-'. lVNI:I r'~' , :J ~ ,J<1 0 0 0 \ij 0 0 In. .... -f­ ~ a: u 0 I 0 LU t!) < U1 U1 <r 0 Il;0 ~ f­ ::> 0 .T -Ul f-00 ~ 0 .:!­ N~ -UJ toe.zJ c: <C3: :r: 0 u --I -~ en ......l.l... CJ --I :::E< 1.UgU I­ 0 .... en --I -0 :z: ...... <CI ::IE:f­ 0~ 3: ~ ..-4 ('\J u U1 a: 0 1.1. < :::l 3: ~ o ('it 'bs to spuesno~i} vnM _SB - Z I -/I 8~ea S81'e!:lossy i ~ijfJl ~OOM ·3\. JYN~ J I- I-l CI: U ll.J « ~ (f) (f) « 0.. :r: I- I-l 3: t.Zl 3: Cl ---.J l.l.. ---.J « u Cl ---.J ........ C'\J U (f) CI: Cl l.l.. « :=l 3: 0 0 0 ll'I tTl 0 0 ~ tTl 0 0 0 N "" 0 0 ll'I ..... C\I 0 0 S N 0 0 In ~ 0 0 0 ~ 0 0 In S 0 0 0.... 0 0 Ln.., -U'l "­ ~ UJ LO a: « ::t: U en ~ Cl :::E: UJ ~ en :z I-l « ':F PSC2-f, oA ( 1'2 -12 -BS WUA FOR SIDE CHANNEL 21 WITH RESTRICTED PASSAGE 80 72 • --. 64 +.I ~ ......'+­.~56 (.) cr o lI) en ! en48...... 1_< \n0 ';.I~.PJ lI) 40 "C ~ >. I C u::~NltJ lI) 32 .= -;-. :::J 0 .r::. .g ~l24 ~ ~~ (U~ 16 ~ e 31/: LLi 8 0 I 0 3500 7000 10500 14000 17500 21000 24500 28000 31500 35000 ~AINSTEM DISCHARGE lefs) I , J I ,/ j , \'J 1\'Y __ ' I : • \ .' •..Jr."\ .", ."I , I . ~• • I ------­-~--~---------~ so 72 -- ~ 6.4 - ~ C'" 56 - U1 ~ .48 - CJ U1 "C .40 -c: l1J U1 32:::::J - 0 .c .j.J U -- <3: 16 - :=l X 8 - 0 I I I I I I I I I I WUA FOR SL21 (IFG &DIHAB) WI LOCAL FLOW &WID PASSAGE CRIT. fI) ~ .~ u o en <en :i Cll!J l"" z >-Cbl_CUI u.. .~ f)·1 t-~, >, .:I"0 -,o , ~~ eu LLiq 0 3500 7000 10500 14000 17500 21000 2.4500 28000 31500 35000 MAINSTEM DISCHARGE (e fs) 1,/ ! ',' i I •. \ I. r: ..., ,; .... "" WUA FOR SL21 (IFG &DIHAB) LOCAL FLOW &WI PASSAGE CAIT. V'J Cl) 1;3 "u o (I) (I) c( In od \lJ ~>.ZC1>u::: ~~ N "=1 ?;'= o o Q)3= (tj WO 0 3500 7000 10500 14000 17500 21000 24500 28000 31500 35000 MAINSTEM OISCHARGE refs) 80 72 ~ +-' 6.t- I:T 56 II) -.tBc II) "C .to c It! II) :::l 32 c .c +-' -Z4 <C 16 ~ 3= 8 0 I I 3& -1/-7/ area I-~ , "1 sa\'e!OOSSV i l\al.{!J!l\pooM '3 <: " ~ rntNl:l N .J ~ ,j () ~ l.LJ t.!:l <r Cf) Cf) <r D­ 0 l.LJ I­ U I---i a: I- Cf) W a: I I- I---i 3:-C"I.J I t.!:l :::> C) --J Cf) a: C) l..L <r :::> 3: 0 ." ." g::\ 0 _ :il.., - 0 0 -~ N o 0f-....... N 0 In 0 -...­f-O u N - I.J.J LO a: 0 <C0 ::I:f-!:: (J en-0 ~ 0 0 I.J.Jf-0 l­:::!; en z: 1-4 <C ~ 0 0f-.... 2 0 -g.... 0 f-jii \-"-"TI---r-I--'I--~,-j..----rl--.,..-l-Ir----rl---+-0 N o CD o.... .... ~ • (" H •bs l 0 spueSnD~l) \lnM ___. ._..l,._ _.. . __..~ _._ _ _..•..._. _~ _"_. , APPENDIX 0 Comparison between site-specific forecasts of WUA and 1984 escapements The acceptabi 1 i ty of the chum spawni ng wei ghted usable area forecasts were evaluated by comparing average 1984 WUA indices at 15 modeled sites with their corresponding escapements for 1984 (Figure 0-1). the 50 percent exceedance values for WUA were used in the comparison. These were calculated from average daily WUA indices corresponding to the August 12 through September 15, 1984 streamflow record at Gold Creek. Site-specific 1984 escapement estimates were obtained from Barrett et ale (1985). Site specific WUA curves were not adjusted for escapement pri or to maki ng thi s compari son. Escapement rati os were only used to modify WUA curves during the extrapolation process. o 3 oslough 21 o M­ '0 2-)(- ~ Z UJ % o UJ Q. ~ UJ o o o o 0 e WUA (xl03 tt2) 2 4 6 8 Fi gure 0-1. Scatter plot exceedance WUA of 1984 .chum escapements values calculated for modeled versus sites in 50-percent the middle Susitna River. 0-1 -_.--+-.,. -,--_.__". ._ ,.~ __.~ ..._. ~_., .._., "--_0 _~"' _ Theoretically, the relationship between WUA and utilization should be positive if WUA is a reliable indicator of habitat quality and a sufficient number of fish are available to occupy most of the available habitat. Figure 0-1 demonstrates that this is generally true at the fifteen sites which were modeled in 1984. The amount of scatter in the data points, however, reflects the imperfections of the habitat modeling and escapement estimates as well as the complexity of characterizing chum spawning behavior using only a small number of phys i ca 1 hab i tat va ri ab 1es. Because of the myri ad of phys i ca 1 and biologic factors affecting the distribution of churn spawners in the middle Susitna River, calculated WUA indices cannot incorporate quantitative inte­ gration of all influential parameters. Nor do they represent the actual surface area of the available habitat in the river. WUA serves only as an indicator of habitat availability under a given set of streamflow and physical habitat conditions. It is not surprising, then, that some rather wide deviations from a perfect correlation exist in Figure 0-1. The relatively low coefficient of determina­ tion (R2=0.49), however, is largely caused by one outlier, Slough 21. At this site, escapement numbers were much higher than predicted by the amount of WUA present. It was determined from field observations that the site probably supported large numbers of fish because of strong upwell ing. Upwell ing is included in the analysis of WUA as a binary criterion. Slough 21 is excep­ tional because its upwelling flow rate appears much greater and more persis­ tent than at other sites. But since only a binary criterion was used to define the presence or absence of upwelling in the habitat modeling analysis, the true influence of upwelling on habitat quality is not represented. Consequently, WUA is undoubtedly underestimated at Slough 21, and may be at the other model sites with large escapements. Nevertheless, the usefulness of the comparison is evidenced by the general increases in escapement numbers as WUA increases. If we accept the relation­ ship between escapement and WUA at Slough 21 as an anomaly and exclude that point from the correlation analysis, the coefficient of determination between WUA and escapement for the remaining 14 model sites is significantly increased to 0.86, a relatively good correlation considering the complexity of environ­ 0-2 _ _ ._-------~>.>-_._._._ .. >­ mental factors involved at each site. As stated earlier, only the presence or absence of upwelling, not its quality, was modeled. Were it assumed that the quality and persistence of upwelling in slough habitats was better than it is in side channels and mainstem margin habitats, a similar comparison between side channel and mainstem escapements and WUA forecasts would result in an R2 of 0.93. Thus, we conclude that the WUA indices derived form our model study are an appropriate indicator of chum spawning habitat. 0-3