HomeMy WebLinkAboutAPA3440'\j--
f"i-,
li---::,-
:t
~b
t/)
!/)
It-
M
[V)
BEFORE THE
FEDERAL ENERGY REGULATORY COMMISSION
APPLICATION FOR LICENSE FOR MAJOR PROJECT
.SUSITNA HYDROELECTRIC PROJECT
DRAFT LICENSE APPLICATION
VOLUME 16
EXHIBIT F
SUPPORTING DESIGN REPORT
ARLIS
.Alaska Resources
LIbrary &InfonnatJon Serv
A Icesnchorage,Alaska
November 1985
TK
(1-(1.-5
J S S
F471
l1o.s'1LtD
r
NOTICE
A NOTATIONAL SYSTEM HAS BEEN USED
TO DENOTE DIFFERENCES BETWEEN THIS AMENDED LICENSE APPLICATION
AND
THE LICENSE APPLICATION AS ACCEPTED FOR FILING BY FERC
ON JULY 29,1983
This system consists of placing one of the following notations
beside each text heading:
(0)No change was made in this section,it remains the same as
was presented in the July 29,1983 License Application
(*)Only minor changes,largely of an editorial nature,have been
made
(**)Major changes have been made in this section
(***)This is an entirely new section which did not appear 1n the
July 29,1983 License Application
I
I
l <
I
I
VOLUME COMPARISON
\
I -
~
I
VOLUME NUMBER COMPARISON
LICENSE APPLICATION AMENDMENT VS.JULY 29,1983 LICENSE APPLICATION
JULY 29,1983
AMENDMENT APPLICATION
VOLUME NO.VOLUME NO.EXHIBIT
A
B
C
D
E
CHAPTER
Entire
Entire
App.Bl
App.B2
App.B3
Entire
Entire
App.Dl
1
2
Tables
Figures
Figures
3
DESCRIPTION
Project Description
Project Operation and Resource
Utilization
MAP Model Documentation Report
RED Model Documentation Report
RED Model Update
Proposed Construction
Schedule
Project Costs and Financing
Fuels Pricing
General Description of Locale
Water Use and Quality
Fish,Wildlife and Botanical
Resources (Sect.1 and 2)
Fish,Wildlife and Botanical
Resources (Sect.3).
Fish,Wildlife and Botanical
Resources (Sect.4,5,6,&7)
1
2
3
4
4
5
5
5
6
6
7
8
9
10
11
1
2 &2A
2B
2C
1
1
1
5A
5A
5A
5B
5B
6A
6B
6A
6B
6A
6B
4
5
6
7
8
9
10
11
Historic &Archaeological Resources 12
Socioeconomic Impacts 12
Geological and Soil Resources 12
Recreational Resources 13
Aesthetic Resources 13
Land Use 13
Alternative Locations,Designs 14
and Energy Sources
Agency Consultation 14
7
7
7
8
8
8
9
lOA
lOB
F
F
G
Entire
Entire
Entire
Project Design Plates
Supporting Design Report
Project Limits and Land Ownership
Plates
15
16
17
3
4
I
)
)
I i
I I
)
~
SUMMARY TABLE OF CONTENTS
SUSITNA HYDROELECTRIC PROJECT
LICENSE APPLICATION
SUMMARY TABLE OF CONTENTS
EXHIBIT A
PROJECT DESCRIPTION
Title
1 -PROJECT STRUCTURES -WATANA STAGE .I (**)·..·....
Page No.
A-I-2
1.1 -General Arrangement (**)··· ·
A-I-2
1.2 -Dam Embankment (**)··..·A-I-4
1.3 -Diversion (**)··········· ···A-I-6
1.4 -Emergency Release Facilities (**)·····A-I-9
1.5 -Outlet Facilities (**)·····A-I-IO
1.6 -Spillway (**)·······A-I-13
1.7 -This section deleted ····· ·
·A-I-I5
1.8 -Power Intake (**)········ ·
A-I-I5
1.9 -Power Tunnels and Penstocks (**)A-I-18
1.10 -Powerhouse (**)· · ·
A-I-I9
loll -Tailrace (**)···· ···A-I-22
1.12 -Main Access Plan (**)· ···· ·· ·
·A-I-23
1.13 -Site Facilities (**)•· · · ···..A-I-25
1.14 -Relict Channel (***)· · ··A-I-29
2 -RESERVOIR DATA -WATANA STAGE I (**)·..·...·..A-2-1
3 -TURBINES AND GENERATORS -WATANA STAGE I (**)·....A-3-1
3.1 -Unit Capacity (**).
3.2 -Turbines (***)•••
3.3 -Generators (**)
3.4 -Governor System (0)
·.. .· ...
A-3-1
A-3-1
A-3-1
A-3-3
4 -APPURTENANT MECHANICAL AND ELECTRICAL EQUIPMENT -
WATANA STAGE I (**)••••••••••••••••. .A-4-1
4.1 -Miscellaneous Mechanical Equipment (**)
4.2 -Accessory Electrical Equipment (**)
4.3 -SF6 Gas-Insulated 345 kV Substation (GIS)(***)
A-4-1
A-4-5
A-4-12
5 -TRANSMISSION FACILITIES FOR WATANA STAGE I (0)
5.1 -Transmission Requirements (0)
5.2 -Description of Facilities (0)
5.3 -Construction Staging (0)•••
••·..A-5-1
A-5-1
A-5-1
A-5-11
851014 i
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT A
PROJECT DESCRIPTION
Title
6 -PROJECT STRUCTURES -DEVIL CANYON STAGE II (**)·.. .
Page No.
A-6-1
6.1 -General Arrangement (**)·· · · ·
A-6-1
6.2 -Arch Dam (**)· · · ·
· · · · ·
A-6-2
6.3 -Saddle Dam (**)· · · · ·
A-6-4
6.4 -Diversion (**)··· ·
· · · · ·· · ·
·A-6-6
6.5 Outlet Facilities (**)A-6-8 ~-··6.6 Spillway (**)· · · ··· ·
·A-6;...10
6.7 -Emergency Spillway · ·
· · · ··· ·· ·
·· ·
· ·
A-6-12
(This section deleted)
6.8 -Power Facili ties (*)··· · ·
· · · ·
A-6-12
6.9 -Penstocks (**)··· · ·· · · ·
· ·· ·
A-6-13
6.10 -Powerhouse and Related Structures (**)A-6-14
6.11 -Tailrace Tunnel (*)·· · · ·· · · ·
·A-6-17
6.12 -Access Plan (**)A-6-17
6.13 -Site Facilities (*)··· · · ·
A-6-18
7 -DEVIL CANYON RESERVOIR STAGE II (*)·•·••· ·
• •·A-7-1
8 -TURBINES AND GENERATORS -DEVIL CANYON STAGE II (**)
8.1 -Unit Capacity (**)••
8.2 -Turbines (**)••••.
8.3 -Generators (0)••••••••
8.4 -Governor System (0)••••
9 -APPURTENANT EQUIPMENT -DEVIL CANYON STAGE II (0)••·.
A-8-1
A-8-1
A-8-1
A-8-1
A-8-2
A-9-1
9.1 -Miscellaneous Mechanical Equipment (0)••
9.2 -Accessory Electrical Equipment (0)••••••••
9.3 -Switchyard Structures and Equipment (0)••
A-9-1
A-9-3
A-9-6
10 -TRANSMISSION LINES -DEVIL CANYON STAGE II (**)••·.A-lO-l
11 -PROJECT STRUCTURES·-WATANA STAGE III (***)·••• •·A-11-1
11.1 -General Arrangement (***).· · ·
· ·· ·
A-11-1
11.2 -Dam Embankment (***)... .· · · · ···· · ·
A-11-3
11.3 -Diversion (***).·.. .· · ·
· · · ···A-11-5
11.4 -Emergency Release Facilities (***)·A-1l-6
851014 ii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT A
PROJECT DESCRIPTION
Title Page No.
11.5 -Outlet Facilities (***)·· ·
· · · · · · ·
A-1l-6
11.6 -Spillway (***).· · · ·
A-1l-7
11.7 -
Power Intake (***)·· ·
· ··· · · · ·
A-1l-8
11.8 -Power Tunnel and Penstocks (***)· · · ·
A-ll-ll
11.9 -
Powerhouse (***)· ·
· · · ··· · ···A-ll-ll
11.10 -Trailrace (***)· · · ·
A-l1-13
11.11 Access Plan (***)A-ll-13 ~· ·
· ·
•11.12 -Site Facilities (***)· ····A-ll-13
11.13 -Relict Channel (***)· · · ·
A-1l-13
12 -RESERVOIR DATA -WATANA STAGE III (***)· · ·
•· ·
• •
A-12-1
13 -TURBINES AND GENERATORS -WATANA STAGE III (***)··A-13-1
13.1 Unit Capacity (***).· · · ·
··· · · ··A-13-1
13.2 -Turbines (***)· · · · ·
A-13-1
13.3 -Generators (***)· · ·· ·
·· ·
··A-13-1
13.4 -Governor System (***)· ·· · ·
· · · ·
A-13-1
14 -APPURTENANT MECHANICAL AND ELECTRICAL EQUIPMENT -
WATANA STAGE III (***)••••••••••••••••A-14-1
14.1 -Miscellaneous Mechanical Equipment (***)
14.2 Accessory Electrical Equipment (***)•.
15 -TRANSMISSION FACILITIES -WATANA STAGE III (***)· ..
A-14-1
A-14-1
A-15-1
15.1
15.2
Transmission Requirements (***)•
Switching and ·Substations (***)••..
A-15-1
A-15-1
16 -LANDS OF THE UNITED STATES
17 -REFERENCES
851014
(**)
...........
iii
·. . ....... .
· .....
A-16-1
A-17-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B
PROJECT OPERATION AND RESOURCE UTILIZATION
Title
1 -DAMSITE SELECTION (***)• • •..... . ...... .
Page No.
B-l-l
1.1 -Previous Studies (***).••••
1.2 -Plan Formulation and Selection Methodology (***).
1.3 -Damsite Selection (***)•••••••••
1.4 -Formulation of Susitna Basin Development
Plans (***). • • • • • •
1.5 -Evaluation of Basin Development Plans (***)
B-l-l
B-1-4
B-1-5
B-l-12
B-l-17
2 -ALTERNATIVE FACILITY DESIGN,PROCESSES AND
OPERATIONS (***)..............• •
...B-2-1
2.1 -Susitna Hydroelectric Development (***)
2.2 -Watana Project Formulation (***)•••••
2.3 -Selection of Watana General Arrangement (***)
2.4 -Devil Canyon Project Formulation (***).
2.5 -Selection of Devil Canyon General
Arrangement (***)• • • • • . • • • • • •
2.6 -Selection of Access Road Corridor (***)
2.7 -Selection of Transmission Facilities (***).
2.8 -Selection of Project Operation (***)
B-2-1
B-2-1
B-2-22
·B-2-48
B-2-60
B-2-67
B-2-83
B-2-131
3 -DESCRIPTION OF PROJECT OPERATION (***).· . . .....B-3-1
3.1 -Hydrology (***)•••••••••
3.2 -Reservoir Operation Modeling (***)
3.3 -Operational Flow Regime Selection (***)
4 -POWER AND ENERGY PRODUCTION (***)• • •·........
B-3-1
B-3-6
B-3-20
B-4-1
4.1 -Plant and System Operation Requirements (***)
4.2 -Power and Energy Production (***)••.
B-4-l
B-4-10
5 -STATEMENT OF POWER NEEDS AND UTILIZATION (***)....B-5-1
5.1 -Introduction (***)•••••••.••.•
5.2 -Description of the Railbelt Electric Systems (***)
5.3 -Forecasting Methodology (***)••
5.4 -Forecast of Electric Power Demand (***)
B-5-1
B-5-1
B-5-17
B-5-47
6 FUTURE SUSITNA BASIN DEVELOPMENT (***)·.....B-6-1
7 -REFERENCES
851014
......... . . . . . . . . .....
iv
B-7-1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B -APPENDIX B1
MAN-IN-THE-ARCTIC PROGRAM (MAP)
TECHNICAL DOCUMENTATION REPORT
STAGE MODEL (VERSION A85.1)
REGIONALIZATION MODEL (VERSION A84.CD)
SCENARIO GENERATOR
Title
Stage Model
Introduction • • • • • • • • • • • • • • • •
"Economic Module Description ••••
Fiscal Module Description • • • •
Demographic Module Description • • • • • •
Input Variables •••••••••••
Variable and Parameter Name Conventions
Parameter Values,Definitions and Sources
Model Validation and Properties • • •
Input Data Sources • • • • •••• • •
Programs for Model Use • • • • • •
Model Adjustments for Simulation •
Key to Regressions ••••••••••
Input Data Archives ••••. • • • • • •
Regionalization Model
Page No.
1-1
2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1
10-1
11-1
12-1
13-1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Model Description • • • •
Flow Diagram".• • • • • • • • •
Model Inputs • • •
Variable and Parameter Names •
Parameter Values •
Model Validation • •
Programs for Model •
Model Listing
Model Parameters • • •
Exogenous,Policy,and Startup Values
1
5
7
9
13
31
38
39
57
61
Scenario Generator
Introduction • • • • • • • • • • • • • • •
1.Organization of the Library Archives
2.Using the Scenario Generator ••••••••
3.Creating,Manipulating,Examining,and
Printing Library Files • • • • •
4.Model Output •••••••••••
1
1
8
14
22
851014 v
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B -APPENDIX B2
RAILBELT ELECTRICITY DEMAND (RED)MODEL
TECHNICAL DOCUMENTATION REPORT (1983 VERSION)
8 -THE PROGRAM-INDUCED CONSERVATION MODULE · ·
.··
9 -THE MISCELLANEOUS MODULE •··
10 -LARGE INDUSTRIAL DEMAND · ·
.···..
11 -THE PEAK DEMAND MODULE ··.··
12 -MODEL VALIDATION ·.··.··
13 -MISCELLANEOUS TABLES · ·
.· ·
6 -THE BUSINESS CONSUMPTION MODULE
3 -UNCERTAINTY MODULE •
4 -THE HOUSING MODULE
Page No.
1.1
2.1
3.1
4.1
5.1
6.1
7.1
8.1
9.1
10.1 .
11.1
12.1
13.1
· .
• • •II· . .
.. .1 -INTRODUCTION •
5 -THE RESIDENTIAL CONSUMPTION MODULE •
Title
2 -OVERVIEW • •
7 -PRICE ELASTICITY • • • • • • • •
851014 vi
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B -APPENDIX B3
RAILBELT ELECTRICITY DEMAND (RED)MODEL
CHANGES MADE JULY 1983 TO AUGUST 1985
2 -RED MODEL PRICE ADJUSTMENT REVISIONS •
6 -EFFECT OF THE MODEL CHANGES ON THE FORECASTS
3 -RESIDENTIAL CONSUMPTION MODULE
4 -BUSINESS SECTOR
Page No.
l.1
2.1
3.1
4.1
5.1
6.1. ..
. .
••o •••oe
...... .
. .... ..1 -INTRODUCTION
Title
5 -PEAK DEMAND
851014 vii
Title
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT C
PROPOSED CONSTRUCTION SCHEDULE
Page No.
1 -WATANA STAGE I SCHEDULE (**)• • • • • • • • • • • •e C-l-l
1.1 -Access (*).········ ··C-1-2
1.2 -Site Facilities (**)·· · ···· ··· ··· ·
C-1-2
1.3 -Diversion (**)·· · ·
·· · ·
··· · ·
·C-1-2
1.4 -Dam Embankment (**)···· ·
C-1-2 -,
1.5 -Spillway and Intakes (**)· · ··· ··· ·· ·
·C-1-3
1.6 -Powerhouse and Other Underground Works (**)···C-1-3
1.7 -Relict Channel (**)· ·
· ·· · · ···C-1-3
1.8 -Transmission Lines/Switchyards (*)····C-1-3
1.9 -General (**)··· ···· ·· ·
·····C-1-3
2 -DEVIL CANYON STAGE II SCHEDULE (**)• ••·•·• •
C-2-1
2.1 -Access (**)·· ·
•·C-2-1
2.2 -Site Facilities (**)·· ·
C-2-1
2.3 -Diversion (*)··· · ·
C-2-1
2.4 -Arch Dam (**)· ·· · ····· ·· ·
·c-2-1
2.5 -spi llway and Intake (*)····C-2-2
2.6 -Powerhouse and Other Underground Works (0)C-2-2
2.7 -Transmission Lines/Switchyards (*)····C-2-2
2.8 -General (*)··· ····C-2-2
3 -WATANA STAGE III SCHEDULE (***)••• ••·• •··• •
C-3-1
3.1 -Access (***)C-3-1
3.2 -Site Facilities (***)····C-3-1
3.3 -Dam Embankment (***)··· · ·
· ·
..C-3-1
3.4 -Spillway and Intakes (***)····C-3-2
3.5 -Powerhouse and Other Underground Works (**)·C-3-2
3.6 -Relict Channel (***)·· ·· ·
·· ·
·C-3-2
3.7 -Transmission Lines/Switchyards (***)· · ··C-3-2
3.8 -General (***)·· · ·
···· · · · · ·
C-3-2
4 -EXISTING TRANSMISSION SYSTEM (***)• •• •·•··• •
C-4-1
851014 viii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT D
PROJECT COSTS AND FINANCING
Title
1 -ESTIMATES OF COST (**)... . . .........
Page No.
D-l-l
1.1 Construction Costs (**)•••.•••
1.2 -Mitigation Costs (**)• ••••
1.3 -Engineering and Administration Costs (*)••••
1.4 -Operation,Maintenance and Replacement Costs (**)
1.5 -Allowance for Funds Used During
Construction (AFDC)(**)•••••••••
1.6 -Escalation (**)•.••••.•••••••
1.7 -Cash Flow and Manpower Loading Requirements (**).
1.8 -Contingency (*)..•...••...•.....
1.9 -Previously Constructed Project Facilities (*)
D-l-l
D-1-6
D-1-7
D-I-I0
D-l-ll
D-l-12
D-l-12
D-l-13
D-l-13
2 -EVALUATION OF ALTERNATIVE EXPANSION PLANS (***)....D-2-1
...
2.1 -General (***)•••.•••.••
2.2 -Hydroelectric Alternatives (***)
2.3 -Thermal Alternatives (***)•••.•
2.4 -Natural Gas-Fired Options (***)•.•••
2.5 -Coal-Fired Options (***)••••••••••
2.6 -The Existing Railbelt Systems (***)..•.
2.7 -Generation Expansion Before 1996 (***)
2.8 -Formulation of Expansion Plans Beginning in
1996 (***).•.•.•••.•.•.
2.9 Selection of Expansion Plans (***)
2.10 -Economic Development (***)•.••
2.11 -Sensitivity Analysis (***)•••.••••
2.12 -Conclusions (***)••••.•••••
D-2-1
D-2-1
D-2-10
D-2-10
D-2-19
D-2-24
D-2-27
D-2-28
D-2-33
D-2-39
D-2-44
D-2-46
3 -CONSEQUENCES OF LICENSE DENIAL (***)
3.1 -Statement and Evaluation of the
Consequences of License Denial
3.2 -Future Use of the Damsites if
the License is Denied (***)
4 -FINANCING (***)• • • • • • • • • • •
· ...... ..
(***).
· . . ... .·..... ...
D-3-1
D-3-1
D-3-1
D-4-1
4.1 -General Approach and Procedures (***)
4.2 -Financing Plan (***)•••••
4.3 -Annual Costs (***)....•••.
D-4-1
D-4-1
D-4-3
851014 l.X
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT D
PROJECT COSTS AND FINANCING
Title
4.4 -Market Value of Power (***)•
4.5 -Rate Stabilization (***)
4.6 -Sensitivity of Analyses (***)
.. .
.'.
. ..
. . ..
Page No.
D-4-4
D-4-4
D-4-4
5 -REFERENCES (***)
851014
.. .................
x
D-5-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT D -APPENDIX D1
FUELS PRICING
.... ... . . ..... . ...
Title
1 -INTRODUCTION (***)
2 -WORLD OIL PRICE (***)..• •
..· . ......·..
Page No.
01-1-1
01-2-1
2.1 -The Sherman H.Clark Associates Forecast (***)
2~2 -The Composite Oil Price Forecast (***)
2.3 -The Wharton Forecast (***)
01-2-1
01-2-2
01-2-5
3 -NATURAL GAS (***)• • • • •.. .........·. .
01-3-1
3.1 -Cook Inlet Gas Prices (***)·.. .·01-3-1
3.2 -Regulatory Constraints on the AvailabiE ty of
Natural Gas (***). . . . .·...·.. .·01-3-10
3.3 -Physical Constraints on the Availability of
Cook Inlet Natural Gas Supply (**"k)·.·..01-3-12
3.4 -North Slope Natural Gas (***)·.01-3-20
4 -COAL (***).. ...... ........ ....01-4-1
4.1 -Resources and Reserves (***)•••
4.2 -Oemand and Supply (***)•.•
4.3 -Present and Potential Alaska Coal Prices (***)
4.4 -Alaska Coal Prices Summarized (***)
01-4-1
01-4-3
01-4-4
01-4-10
5 -DISTILLATE OIL (***).............. ...01-5-1
5.1 -Availability (***)••••••
5.2 -Oistillate Price (***)
01-5-1
01-5-1
6 -REFERENCES
851014
. . . ........ . ..... .....
xi
01-6-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 1
GENERAL DESCRIPTION OF THE LOCALE
Title
1 -GENERAL DESCRIPTION (*)•••e • • • • • • •..
Page No.
E-1-1-1
1.1 -General Setting (**)
1.2 -Susitna Basin (*)
.. . .. ..E-1-1-1
E-1-1-2
••••.0.• • •0 • • • • 0 • • • •2 -REFERENCES
3 -GLOSSARY ••
851014
............
xii
....0..~e
E-1-2-1
E-l--3-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 2
WATER USE AND QUALITY
2 -BASELINE DESCRIPTION (**)• •... .
·. .
Title
1 -INTRODUCTION (**)• • • •... ..
·.• •
·.
·.
·..
·..
Page No.
E-2-1-1
E-2-2-1
2.1 -Susitna River Morphology (**).···.E-2-2-3
2.2 -Susitna River Water Quantity (**)'.E-2-2-12
~
2.3 -Susitna River Water Quality (**).E-2-2-19
2.4 -Baseline Ground Water Conditions (**)E-2-2-46
2.5 -Existing Lakes)Reservoirs)and Streams (**)E-2-2-49
2.6 -Existing Instream Flow Uses (0)··· ·
·.·. .E-2-2-50
2.7 -Access Plan (**)... .
.····E-2-2-63
2.8 -Transmission Corridor (**).·· ·
·E-2-2-64
3 -OPERATIONAL FLOW REGIME SELECTION (***)•••·..E-2-3-1
3.1 -Project Reservoir Characteristics (***)
3.2 -Reservoir Operation Modeling (***)•.
3.3 -Development of Alternative Environmental
Flow Cases (***)•••.•.••••••.
3.4 -Detailed Discussion of Flow Cases (***).
3.5 -Comparison of Alternative Flow Regimes (***).
3.6 -Other Constraints on Project Operation (***)
3.7 -Power and Energy Production (***)••...
E-2-3-1
E-2-3-2
E-2-3-6
E-2-3-17
E-2-3-37
E-2-3-43
E-2-3-53
4 -PROJECT IMPACT ON WATER QUALITY AND QUANTITY (**)·. .
E-2-4-1
4.1 -Watana Development (**)••...•..••
4.2 -Devil Canyon Development (**). . • •
4.3 -Watana Stage III Development (***)••••••
4.4 -Access Plan (**)••••.•
5 -AGENCY CONCERNS AND RECOMMENDATIONS (**)·....
E-2-4-7
E-2-4-110
E-2-4-160
E-2-4-211
E-2-S-1
6 -MITIGATION,ENHANCEMENT,AND PROTECTIVE MEASURES (**)•
6.1 -Introduction (*)•••••••••.•.••••
6.2 -Mitigation -Watana Stage I -Construction (**)
6.3 -Mitigation -Watana Stage I -Impoundment (**).
E-2-6-1
E-2-6-1
E-2-6-1
E-2-6-5
851014 xiii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 2
WATER USE AND QUALITY
Title Page No.
6.4 -Watana Stage I Operation (**)• • . • •
6.5 -Mitigation -Devil Canyon Stage II -
Construction (**)• • • • • • •
6.6 -Mitigation -Devil Canyon Stage II -
Impoundment (**)••••• • • •
6.7 -Mitigation -Devil Canyon/Watana Operation (**)
6.8 -Mitigation -Watana Stage III -
Construction (***)•••••••
6.9 -Mitigation -Watana Stage III -
Impoundment/Construction (***)• • . •
6.10 -Mitigation -Stage III Operation (***)
6.11 -Access Road and Transmission Lines (***)r •••
7 -REFERENCES
8 -GLOSSARY
851014
• • • 0 • • • ••• • • • • • • • • • •0 D
.................. .... .
xiv
E-2-6-7
E-2-6-13
E-2-6-13
E-2-6-13
E-2-6-15
E-2-6-16
E-2-6-16
E-2-6-18
E-2-7-1
E-2-8-1
I
f
I--
I
,
I
I
I
SUMMARY TABLE OF CONTENTS (cant'd)
EXHIBIT E -CHAPTER 3
FISH,WILDLIFE,AND BOTANICAL RESOURCES
Title ;page No.
1 -INTRODUCTION (0)E-3-1-1
1.1 -Baseline Descriptions (0)•
1.2 -Impact Assessments (*)
1.3 -Mitigation Plans (*)
2 -FiSH RESOURCES OF THE SUSITNA RIVER DRAINAGE (**)•..
E-3-1-1
E-3-1-1
E-3-1-3
E-3-2-1
2.1 -Overview of the Resources (**)••••.••••
2.2 -Species Biology and Habitat Utilization
in the Susitna River Drainage (*)• . .
2.3 -Anticipated Impacts To Aquatic Habitat (**)•••
2.4 -Mitigation Issues and Mitigating Measures (**)
2.5 -Aquatic Studies Program (*)• ••••.
2.6 -Monitoring Studies (**)••••••••••
2.7 -Cost of Mitigation (***)•••••••••
2.S -AgeIlcY'Consultation on_Fisheries Mitigation
Measures (**)• • •••• •
E-3-2-1
E-3-2-14
E-3-2-104
E-3-2-244
E-3-2-279
E-3-2-280
E-3-2-303
E-3-2-304
3 -BOTANICAL RESOURCES (**)...............E-3-3-1
3.1 -Introduction (*)••••••
3.2 -Baseline Description (**)•
3.3 -Impacts (**)••••••••••
3.4 -Mitigation Plan (**)•••••••••
4 -WILDLIFE (**)••••...•••...........
E-3-3-1
E-3-3-6
E-3-3-34
E-3-3-63
E-3-4-1
E-3-4-1
E-3-4-3
E-3-4-110
E-3-4-248
E-3-5-1
E-3-5-1
E-3-5-1
E-3-5-2
E-3-5-3
......
. .
...
...
...
5.1 -Introduction (***)
5.2 -Existing Conditions (***)•
5.3 -Expected Air Pollutant Emissions (***).
5.4 -Predicted Air Quality Impacts (***)••
4.1 -Introduction (*)•.••
4.2 -Baseline Description (**)
4.3 -Impacts (*).•
4.4 -Mitigation Plan (**)
5 -AIR QUALITY/METEOROLOGY (***)•
L
I
851014 xv
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 3
FISH,WILDLIFE,AND BOTANICAL RESOURCES
Title
5.5 -Regulatory Agency Consultations (***)•
Page No.
E-3-5-3
6 -REFERENCE . ..... .......E-3-6-1
7 -GLOSSARY
APPENDICES
E1.3
E2.3
......... ..............
FISH AND WILDLIFE MITIGATION POLICY
ENVIRONMENTAL GUIDELINES MEMORANDUM
(THIS APPENDIX HAS BEEN DELETED)
E-3-7-1
E3.3
E4.3
E5.3
E6.3
E7.3
E8.3
E9.3
E10.3
E11.3
851014
PLANT SPECIES IDENTIFIED IN SUMMERS OF 1980 AND 1981
IN THE UPPER AND MIDDLE SUSITNA RIVER BASIN,THE
DOWNSTREAM FLOODPLAIN,AND THE INTERTIE
PRELIMINARY LIST OF PLANT SPECIES IN THE INTERTIE
AREA (THIS SECTION HAS BEEN DELETED AND ITS
INFORMATION INCORPORATED INTO APPENDIX E3.3.)
STATUS,HABITAT USE AND RELATIVE ABUNDANCE OF BIRD
SPECIES IN THE MIDDLE SUSITNA BASIN
STATUS AND RELATIVE ABUNDANCE OF BIRD SPECIES
OBSERVED ON THE LOWER SUSITNA BASIN DURING GROUND
SURVEYS CONDUCTED JUNE 10 THE JUNE 20,1982
SCIENTIFIC NAMES OF MAMMAL SPECIES FOUND IN THE
PROJECT AREA
METHODS USED TO DETERMINE MOOSE BROWSE UTILIZATION
AND CARRYING CAPACITY WITHIN THE MIDDLE SUSITNA BASIN
EXPLANATION AND JUSTIFICATION OF ARTIFICIAL NEST
MITIGATION (THIS SECTION HAS BEEN DELETED)
PERSONAL COMMUNICATIONS (THIS SECTION HAS BEEN
DELETED)
EXISTING AIR QUALITY AND METEOROLOGICAL CONDITIONS
xvi
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 4
HISTORIC AND ARCHEOLOGICAL RESOURCES
Title Page No.
4.1 -Mitigation Policy and Approach (**)•••••
4.2 -Mitigation Plan (**)••••.•.•
3.1 -Evaluation of Selected Sites Found:
Prehistory and History of the Middle
Susitna Region (**)• • • . • • • • • • • • • • •
3.2 -Impact on Historic and Archeological Sites (**)•
................... ..
• • • • • • • • •e·• • • • • • • • • • • •
E-4-2-1
E-4-2-2
E-4-2-10
E-4-2-1
E-4-1-1
E-4-1-4
E-4-1-4
E-4-3-1
E-4-2-12
E-4-2-13
E-4-3-1
E-4-3-4
E-4-4-1
E-4-5-1
E-4-6-1
E-4-7-1
E-4-4-1
E-4-4-2
...
•••••
..
• ••
•••• ••• •
• •••
• • • • • • • 0 • •
....
. ..
• •
...............
1.1 -Program Objectives (**)
1.2 -Program Specifics (**)
2.1 -The Study Area (**).J ••
2.2 -Methods -Archeology and History (**)
2.3 -Methods -Geoarcheology (**)
2.4 -Known Archeological and Historic
Sites in the Project Area (**)•••
2.5 -Geoarcheology (**)••••••••
1 -INTRODUCTION AND SUMMARY (**)•
2 -BASELINE DESCRIPTION (**)•
3 -EVALUATION OF AND IMPACT ON HISTORICAL
AND ARCHEOLOGICAL SITES (**)•••••
5 -AGENCY CONSULTATION (**)
7 -GLOSSARY
4 -MITIGATION OF IMPACT ON HISTORIC AND
ARCHEOLOGICAL SITES(**)•••••••
6 -REFERENCES
I
I
I
r
I
I
I
I
[
I
(
[
I
1_'
851014 xvii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 5
SOCIOECONOMIC IMPACTS
Title
1 -INTRODUCTION (**)• • • • •
......2 BASELINE DESCRIPTION (**)•
. .
..
• •
..
00.
• •
••• •f)••
Page No.
E-5-l-1
E-5-2-1
2.1 -Identification of Socioeconomic
Impact Areas (**)• • • . • • • • • • • • • • • •E-5-2-1
2~2 -Description of Employment,Population,Personal
Income and Other Trends in the Impact Areas (**)E-5-2-1
3 -EVALUATION OF THE IMPACT OF THE PROJECT (**)•••e .•E-5-3-1
E-5-3-2
E-5-3-49
E-5-3-35
E-5-3-65
E-5-3-39
E-5-3-32
E-5-4-1
E-5-3-59
•••...
. . .
.......• •
...
3.1 -Impact of In-migration of People on Governmental
Fad 1i ties and Services (**)••••••••••
3.2 -On-site Worker Requirements and Payroll,
by Year and Month (**)•••••••••••••
3.3 -Residency and Movement of Project Construction
Personnel (**)• • • •• • . •
3.4 -Adequacy of Available Housing in
Impac t Area s (***)••••••••
3.5 -Displacement and Influences on Residences and
Businesses (**)•••.••••.••.•
3.6 -Fiscal Impact Analysis:Evaluation of
Incremental Local Government Expenditures
and Revenues (**)• • • • • •
3.7 -Local and Regional Impacts on
Resource User Groups (**)•
4 -MITIGATION (**)• •
4.1
4.2
4.3
4.4
-Introduction (**)
-Background and Approach (**)
-Attitudes Toward Changes • • • • • • • •
(This section deleted)
-Mitigation Objectives and Measures (**)
E-5-4-1
E-5-4-1
E-5-4-2
E-5-4-2
851014 xviii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 5
SOCIOECONOMIC IMPACTS
Title
5 -MITIGATION MEASURES RECOMMENDED BY AGENCIES(**)....
Page No.
E-5-5-1
5.1 -Alaska Department of Natural Resources (DNR)(**)
5.2 -Alaska Department of Fish and Game (ADF&G)(*)
5.3 -u.s.Fish and Wildlife Service (FWS)(*)
5.4 -Summary of Agencies'Suggestions for Further
Studies that Relate to Mitigation (**)
E-5-5-l
E-5-5-1
E-5-5-2
E-5-5-2
l
6 -REFERENCES
851014
......................
xix
E-6-6-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 6
GEOLOGICAL AND SOIL RESOURCES
Title
1 -INTRODUCTION (**)
Page No.
E-6-1-1
2 -BASELINE DESCRIPTION (*)•..•it •e • • •·.·...E-6-2-1
o • • •
2.1 -Regional Geology (*)••••.
2.2 -Quarternary Geology (*)
2~3 -Mineral Resources (0)••••••
2.4 -Seismic Geology (*)••
2.5 -Watana Damsite (**)••••••
2.6 -Devil Canyon Damsite (0)
2.7 -Reservoir Geology (*)•••••••••
• 0 • • •
· . . . .
·. .
E-6-2-1
E-6-2-2
E-6-2-3
E-6-2-4
E-6-2-11
E-6-2-17
E-6-2-23
3.1 -Reservoir-Induced Seismicity (RIS)(*)
3.2 -S~epage (*)•••.••••.••••
3.3 -Reservoir Slope Failures (**)•••
3.4 -Permafrost Thaw (*)••••••
3.5 -Seismically-Induced Failure (*)
3.6 -Reservoir Freeboard for Wind Waves (**)•••••
3.7 -Development of Borrow Sites and Quarries (**)
3 -IMPACTS (*)• •••• •••• ••·.·..'.••• ••E-6-3-1
E-6-3-1
E-6-3-4
E-6-3-4
E-6-3-11
E-6-3-11
-E-6-3-11
E-6-3-12
t-
4 -MITIGATION (**)•.....·.....· ....·..E-6-4-1
4.1 -Impacts and Hazards (0)· ··· ··E-6-4-1
4.2 -Reservoir-Induced Seismicity (0)···· ·
···E-6-4-1
4.3 -Seepage (**)•·. .· ··· · ·
E-6-4-2 I I
4.4 -Reservoir Slope Failures (**)··· ·
·E-6-4-2 I
4.5 -Permafrost Thaw (**)· ··E-6-4-3
4.6 -Seismically-Induced Failure (*)··· ·
E-6-4-3-
I4.7 -Geologic Hazards (*)·· ··· ····E-6-4-4
4.8 -Borrow and Quarry Sites (*)E-6-4-4
5 -REFERENCES • • • •••·•..• •·• •• • •·•·E-6-5-1
6 -GLOSSARY . .•.••• ••·• •·• •· ·
..· ·
•E-6-6-1
851014 xx
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 7
RECREATIONAL RESOURCES
Title
I -INTRODUCTION (**)•. .........
Page No.
E-7-1-1
1.1 -Purpose (**).•.
1.2 -Relationships to Other Reports (*)
1.3 -Study Approach and Methodology (**)•.
1.4 -Project Description (**)•.•••••
2 -DESCRIPTION OF EXISTING AND FUTURE RECREATION
WITHOUT THE SUSITNA PROJECT (**)••••
·..
·. . . .
·. . ..
E-7-1-1
E-7-1-1
E-7-1-1
E-7-1-3
E-7-2-1
2.1 -Statewide and Regional Setting (**)•
2.2 -Susitna River Basin (**)•••.••....E-7-2-1
E-7-2-8
3 -PROJECT IMPACTS ON EXISTING RECREATION (**)•·....E-7-3-1
3.1 -Direct Impacts of Project Features (**)
3.2 -Project Recreational Demand Assessment
(Moved to Appendix E4.7)
E-7-3-1
E-7-3-12
4 -FACTORS INFLUENCING THE RECREATION PLAN (**)·. . ..E-7-4-1
E-7-4-1
E-7-4-2
E-7-4-2
E-7-5-1
E-7-4-3
E-7-4-12
E-7-4-13
E-7-5-4
E-7-6-1
E-7-5-1
E-7-5-2
E-7-5-4
.. .
.. .......... .
. ................
5.1 -Recreation Plan Management Concept (***)
5.2 -Recreation Plan Guidelines (***).•••
5.3 -Recreational Opportunity Evaluation
(Moved to Appendix E3.7.3)
5.4 -The Recreation Plan (**)•••
4.1 -Characteristics of the Project Design and
Operation (***)•.••••.•.••••
4.2 -Characteristics of the Study Area (***)•••••
4.3 -Recreation Use Patterns and Demand (***)••••
4.4 -Agency,Landowner and Applicant Plans and
Policies (***).•.•••••••••••
4.5 -Public Interest (***)•••.•.•••.
4.6 -Mitigation of Recreation Use Impacts (***)
6 -PLAN IMPLEMENTATION (**)
5 -RECREATION PLAN (**)
I
I
I
\
I
I
\---
851014 xxi
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 7
RECREATIONAL RESOURCES
••
Title
6.1 -Phasing (**)•••••••••••
6.2 -Detailed Recreation Design (***)
6.3 -Operation and Maintenance (***)
6.4 -Monitoring (**)•••.•••••
7 -COSTS FOR CONSTRUCTION AND OPERATION OF THE PROPOSED
RECREATION FACILITIES (**)••••••••••••
7.1 -Construction (**)• ••••••
7.2 -Operations and Maintenance (**)••••
7.3 -Monitoring (***)••••••••••
Page No.
E-7-6-1
E-7-6-1
E-7-6-2
E-7-6-3
E-7-7-1
E-7-7-1
E-7-7-1
E-7-7-2
8 -AGENCY COORDINATION (**)...............E-7-8-1
8.1 -Agencies and Persons Consulted (**)•
8.2 -Agency Comments (**).
8.3 -Native Corporation Comments (***)
8.4 -Consultation Meetings (***)•
E-7-8-1
E-7-8-1
E-7-8-1
E-7-8-2
9 -REFERENCES . ........ . ..... .......E-7-9-1
10 -GLOSSARY
APPENDICES
...............• • ••E-7-10-1
E1.7
E2.7
E3.7
E4.7
E5.7
E6.7
851014
DATA ON REGIONAL RECREATION FACILITIES
ATTRACTIVE FEATURES -INVENTORY DATA
RECREATION SITE INVENTORY AND OPPORTUNITY EVALUATION
PROJECT RECREATIONAL DEMAND ASSESSMENT
EXAMPLES OF TYPICAL RECREATION FACILITY DESIGN
STANDARDS FOR THE SUSITNA PROJECT
PHOTOGRAPHS OF SITES WITHIN THE PROJECT RECREATION
STUDY AREA
xxii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER B
AESTHETIC RESOURCES
·...... .... . .....
. ... ............
1.1 -Purpose (*)•••• .•••
1.2 -Relationship to Other Analyses (*)
1.3 -Environmental Setting (**)
4 -PROJECT FACILITIES (*)
E-B-2-1
E-8-4-1
Page No.
E-B-l-l
E-8-3-1
E-B-l-1
E-B-l-l
E-8-l-1
00.
...
e 0
·.·..·.....• •
·......... ..
••1 -INTRODUCTION (**)•
Title
2 -PROCEDURE (*)0 0 • •
3 -STUDY OBJECTIVES (*)
1
I
1
!
4.1 -Watana Project Area (*)••••.
4.2 -Devil Canyon Project Area (*)...•.
4.3 -Watana Stage III Project Area (***)
4.4 -Denali Highway to Watana Dam Access Road (*)
4.5 -Watana Dam to Devil Canyon Dam Access Road (*)
4.6 -Tr&nsmission Lines (*)....
4.7 Intertie .•.......••.•..
(This section deleted)
4.8 -Recreation Facilities and Features (*)
E-8-4-1
E-8-4-1
E-8-4-1
E-8-4-1
E-8-4-2
E-8-4-2
E-8-4-2
E-8-4-2
5 -EXISTING LANDSCAPE (**)0 •••••· ....• •
• 0 •E-8-5-1
5.1 -Landscape Character Types (*)
5.2 -Notable Natural Features (**)·. ... .
E-8-5-1
E-8-5-1
6 -VIEWS (**)0 0 0 0 ••0 •·•. .·•·0 • •
0 0 •0 E-8-6-1
6.1 -Viewers (***)··E-8-6-1
6.2 -Visibility (***)·. .·· ·
.·E-8-6-1
7 -AESTHETIC EVALUATION RATINGS (**)••0 0 • •
0 • •
E-8-7-1
7.1 -Aesthetic Value Rating (*)••••.
7.2 -Absorption Capability (*)
7.3 -Composite Ratings (**)••••· .. .. .
E-8-7-1
E-8-7-1
E-8-7-2
!
L
I
851014 xxiii
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 8
AESTHETIC RESOURCES
Title
8 -AESTHETIC IMPACTS (**)................
Page No.
E-8-8-1
8.1 -Mitigation Planning of Incompatible
Aesthetic Impacts (Now addressed in Section 9)
8.2 -Watana Stage I (***)•••••
8.3 Devil Canyon Stage II (***)• • • • • • • • •
8.4 Watana Stage III (***)• • • •
8.5 -Access Routes (***)••••••••••
8.6 -Transmission Facilities (***)•••
E-8-8-1
E-8-8-2
E-8-8-3
E-8-8-4
E-8-8-5
E-8-8-6
9 -MITIGATION (**)• • • • • • •·.. ..........E-8-9-1
9.1 -Mitigation Feasibility (**)·· ·
·· ·· · ·
E-8-9-1
9.2 -Mitigation Plan (***)· ·
.· · ·
· · ···E-8-9-2
9.3 -Mitigation Costs (**)··.·· ·
·· · ·
..E-8-9-11
9.4 -Mitigation Monitoring (***)······E-8-9-12
10 -AESTHETIC IMPACT EVALUATION OF THE INTERTIE
(This Section Delected)
•••••E-8-10-1
11 -AGENCY COORDINATION (**)•·.. ..·...••·..E-8-11-1
11.1 -Agencies and Persons Consulted (**)
11.2 -Agency Comments (**)
E-8-11-1
E-8-11-1
.... ...............12 -REFERENCE~•
13 -GLOSSARY • •
APPENDICES
..••....••· ..••••••• •
E-8-12-1
E-8-13-1
E1.8
E2.8
E3.8
E4.8
851014
EXCEPTIONAL NATURAL FEATURES
SITE PHOTOS WITH SIMULATIONS OF PROJECT FACILITIES '
PHOTOS OF PROPOSED PROJECT FACILITIES SITES
EXAMPLES OF EXISTING AESTHETIC IMPACTS
XX1V
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 8
AESTHETIC RESOURCES
Title
APPENDICES (cont'd)
Page No.
,
I
I
I
L
I
E5.8
E6.8
E7.8
E8.8
E9.8
851014
EXAMPLES OF RESERVOIR EDGE CONDITIONS SIMILAR TO THOSE
ANTICIPATED AT WATANA AND DEVIL CANYON DAMS
PROJECT FEATURES IMPACTS AND CHARTS
GENERAL AESTHETIC MITIGATION MEASURES APPLICABLE TO THE
PROPOSED PROJECT
LANDSCAPE CHARACTER TYPES OF THE PROJECT AREA
AESTHETIC VALUE AND ABSORPTION CAPABILITY RATINGS
xxv
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 9
LAND USE
Title
1 -INTRODUCTION (***).. .. .. .. .... ...... ..•.........
Page No.
E-9-1-1
2 -HISTORICAL AND PRESENT LAND USE (***)E-9-2-1
• • • • • •e e • • • • •.0.
4 -IMPACTS ON LAND USE WITH AND WITHOUT THE
PROJECT (***)0 ......
~(~)• • • • • • • • • • • • 0 • •
3 -LAND MANAGEMENT PLANNING IN THE PROJECT
I
(
r
I-
I
E-9-4-1
E-9-3-1
E-9-6-1
E-9-5-1
E-9-2-1
E-9-2-1
.. ..
..........
••••• ••
..........
•e _ •
....o ....• • • •
.... ..
2.1 -Historical Land Use (***)
2.2 -Present Land Use (***)
5-MITIGATION (***)..
6 -REFERENCES
851014 xxv~
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 10
ALTERNATIVE LOCATIONS,DESIGNS,AND ENERGY SOURCES
Title Page No.
1 -ALTERNATIVE HYDROELECTRIC SITES (*)• • • • • • • •
1.1 -Non-Susitna Hydroelectric Alternatives (*)
1.2 -Assessment of Selected Alternative
Hydroelectric Sites (***)••.••.
1.3 -Middle Susitna Basin Hydroelectric
Alternatives (0)••••••••
1.4 -Overall Comparison of Non-Susitna
Hydroelectric Alternatives to the
Proposed Susitna Project (***)
• •
E-lO-l-l
E-I0-l-l
E-I0-1-2
E-I0-1-17
E-1O-1-32
2 -ALTERNATIVE FACILITY DESIGNS (*)...........E-1O-2-1
2.1 -Watana Facility Design Alternatives (*)
2.2 -Devil Canyon Facility Design Alternatives (0)
2.3 -Access Alternatives (0)•••
2.4 -Transmission Alternatives (0)
2.5 -Borrow Site Alternatives (**)
E-I0-2-1
E-1O-2-3
E-I0-2-4
E-I0-2-24
E-I0-2-53
3 -OPERATIONAL FLOW REGIME SELECTION (***)•.....E-I0-3-1
3.1 -Project Reservoir Characteristics (***)•.
3.2 -Reservoir Operation Modeling (***)
3.3 -Development of Alternative Environmental
Flow Cases (***)••••••••••••••
3.4 -Detailed Discussion of Flow Cases (***)• • . • •
3.5 -Comparison of Alternative Flow Regimes (***)
3.6 -Other Constraints on Project Operation (***)
3.7 -Power and Energy Production (***)••••••
4 -ALTERNATIVE ELECTRICAL ENERGY SOURCES (***)•
E-I0-3-1
E-I0-3-2
E-1O-3-6
E-I0-3-l7
E-I0-3-38
E-1O-3-43
E-I0-3-53
E-I0-4-1
I
L
4.1
4.2
4.3
4.4
4.5
4.6
851014
-Coal-Fired Generation Alternatives (***)
-Thermal Alternatives Other Than Coal (***)
-Tidal Power Alternatives (***)••••
-Nuclear Steam Electric Generation (***)
-Biomass Power Alternatives (***)
-Geothermal Power Alternatives (***)•.
xxvii
E-lO-4-1
E-lO-4-27
E-lO-4-39
E-lO-4-41
E-lO-4-42
E-lO-4-42
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 10
ALTERNATIVE LOCATIONS,DESIGNS,AND ENERGY SOURCES
Title
4.7 -Wind Conversion Alternatives (***)••
4.8 -Solar Energy Alternatives (***)••••
4.9 -Conservation Alternatives (***)•.
5 -ENVIRONMENTAL CONSEQUENCES OF LICENSE DENIAL (***)
Page No.
E-lO-4-43
E-IO-4-44
E-IO-4-44
E-IO-5-1
6 -REFERENCES
7 -GLOSSARY
851014
• • • • • • • • • • • • • • •~G • ••
• • • • • • • • • • • • • • • • • • •0 e •G
xxviii
E-IO-6-1
E-IO-7-1
I
I
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT E -CHAPTER 11
AGENCY CONSULTATION
Title Page No.
1 -ACTIVITIES PRIOR TO FILING THE INITIAL
APPLICATION (1980-February 1983)(***). . ...... .
E-11-1-1
2~1 Technical Workshops (***)
2.2 -Ongoing Consultation (***)
2.3 -Further Comments and Consultation (***)
• • •
...
2 -ADDITIONAL FORMAL AGENCY AND PUBLIC
CONSULTATION (***)• • • • • • • •...... ..E-1l-2-1
E-1l-2-1
E-1l-2-1
E-1l-2-2
--.....,
I
L
I 851014 xxix
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT F
SUPPORTING DESIGN REPORT (PRELIMINARY)
Title
1 -PROJECT DATA (***).........•• • • ••• •·.
Page No.
F-1-1
2 -PROJECT DESIGN DATA (**)·......... ...F-2-1
5.1 -River Flows (**)· ······ ···.F-5-1
5.2 -Design Flows (**).····F-5-1
5.3 -Reservoir Levels (**)·F-5-1
5.4 -Reservoir Operating Rule (**)·· ·
·F-5-2
5.5 -Reservoir Data (**)· · ·· ······F-5-2
5.6 -Wind Effect (**)· ···· ··· ···F-5-3
5.7 -Criteria (***)·······.F-5-3
·..............
6 -EQUIPMENT DESIGN CODES AND STANDARDS (**)
6.1 -Design Codes and Standards (*)
6.2 -General Criteria (*)•.•.•.
I
I-
I
I
1
!
i
I
!
I
I
I
F-3-1
F-3-1
F-3-1
F-3-6
F-3-9
F-4-1
F-2-1
F-2-1
F-2-1
F-2-1
F-2-1
F-2-2
F-5-1
F-4-1
F-4-10
F-6-1
F-6-1
F-6-2
• •
·. .
· .
·..
· . .
· .
·...
••
· .
· ..
·........
·. .
• 0 • •
·. ...
·. ..
xxx
·..
(0)
Standards (0)
. . .
-Topographical Data (0)•••••••
-Hydrological Data (**)
-Meteorological Data (*)•
-Reservoir Data (0)••••••••
-Tailwater Elevations (0)
-Design Floods (**)••••••
3.1 -Governing Codes and
3.2 -Design Loads (**)•
3.3 -Stability (*).•.
3.4 -Material Properties
2.1
2.2
2.3
2.4
2.5
2.6
4.1 -Watana (**)•••
4.2 -Devil Canyon (**)
3 -CIVIL DESIGN DATA (*)
5 -HYDRAULIC DESIGN DATA (**)
851014
4 -GEOTECHNICAL DESIGN DATA (**)• •
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT F
SUPPORTING DESIGN REPORT (PRELIMINARY)
Title
6.3 -Diversion Structures and Emergency Release
Facilities (*)•••••.••.•••
6.4 -Spillway (**)• •
6.5 -Outlet Facilities (*)
6.6 -Power Intake (*)
6.7 -Powerhouse (**)•••••.•••
6.8 -Tailrace Tunnels (**)
Page No.
F-6-4
F-6-6
F-6-6
F-6-8
F-6-9
F-6-12
7 -REFERENCES
APPENDICES
......................F-7-1
!
I
I
L
)
F1
F2
F3
851014
THIS APPENDIX DELETED
WATANA AND DEVIL CANYON EMBANKMENT STABILITY ANALYSES
SUMMARY AND PMF AND SPILLWAY DESIGN FLOOD ANALYSES
XXX1
)
I-
I
I
I
I
I
!
I
I
)-
TABLE F.2.3.1:TYPICAL NOAA CLIMATE DATA RECORD
Meteorological Data For 1976
(Page 1 of 2)
station SUMMIT,ALASKA #26414 SUMMIT AIRPORT Standard time used:ALASKAN Latitude:63°20'N Longitude:149°08'W Elevation (ground):2397 feet Year:1976
.....
Temperat ure of Precipitation in inches Relative Wind Q)Number of Days Averageenc:
Degree humidi t y pct.::l station
Q)en
Days ......~
.0 I-<0 I '11 pressure
.,-i Q).....Q)Q)f.8~Averages Extremes Base 65°F Water equivalent Snow,Ice pellets Resultant Fastest mile en >Q)Sunrise to Sunset i I-<~~Temperature of mb
~en 0 0 0
,-i
i-<0 0 en :51 E ......E en Cl)Q)Maximum MinimumI-<I-<I-<0..,-i Q)E ,-i ......c:c:::l ::l ::l :J Q)>-I-<~i I-<0.<.<I-<>.,-i
Month .,-i ',-i 0 0 0 0 D..~~c:0 0 0 E
::I:::I:::I::.c c:en c:0 en ::l (ljf Q).....0'Q)~~~..........0 0 Q)en -J.Ji.c.o .c.en ~~(b:EJ 0 0 0
E E >......0'0'en (/).,-i Q)•,-i .....c:11l al g ......0 I-<.-;............Elev •
::l ::J ......en .....c:c:Q)en Q)en .....~0'~.....c:.,-i 0'en >.>.c:11l .......0 Q)Q)11l
>-E R E .c Q)en •,-i ',-i ...........I-<...........I-<02 08 14 20 0 co u Q).c co .c.I-<I-<......'1:l ,-il·,-i ~',-i '1:l >.co .0 .0 .0 2405 feet......',-i ...........c Q)Q)Q)...........co co .c Q)co co .c 11l Q)I-<Q)Q)u CI)I-<.....co co .....::J 0 ~c:>>.en.....x ,-i c:c:0'.....~.....co 0 .....11l ..........Q).....time)I-<Q).c 11l .c Q).c I-<.....I-<C Q)c:Q)11l I-<0 Q)......00 ::l co .....en o '1:l o '1:l o '1:l '1:l
co (lJ ~.~0 .....(lJ 0 (lJ Q)0 0 I-<'"co 0 I-<'"co (local .....f5}~~~~~.....(lJ Q)::J >Q)............co ......f.<.O c:.c Q).....0 OC:N C NC 0 c:m.s.l.
Cl E :::E:::I:Cl --l Cl ::I:U I-t!J N Cl I-t!J N Cl Cl Cl Cl 0-en e:t .....u uo-U 0-,•tn .--i I-::I:............0\(lJ t"'I(lJ t"'I co o co,
JAN 9.0 -3.8 2.6 34 30 -26 9 1931 o 2.17 1.15 18-19 49.7 21.5 18-19 67 70 73 71 28 23 30 6.0 11 4 16 I 12 7 0 2 0 29 31 20
FEB 4.2 -10.4 -3.1 33 5 -28 11 1975 01.11 0.50 4 19.6 8.7 5-6 65 65 68 31 07 23 3.9 17 4 8 7 6 0 0 0 27 29 24
MAR 18.2 2.2 10.2 30 6 -14 15 1696 o 1.65 0.45 3-4 41.1 8.7 3 75 67 35 07 17 8.0 4 4 23 11 8 0 0 0 31 31 15
APR 36.3 14.3 23.4 51 30 -3 13 1180 o 0.14 0.08 26 5.8 3.1 26 68 20 08 14 6.2 8 8 14 3 2 0 0 0 8 30 2
MAY 43.6 29.4 36.5 54 2 17 7 878 o 2.90 1.90 8 8.7 2.6 8 69 17 24 18 7.5 5 6 20 7 4 0 0 0 0 27 0
JUN 60.6 40.9 30.8 74 27 34 8 420 o 0.51 0.30 30 0.0 0.0 69 18 22 17 6.9 6 8 16 4 0 0 0 3 0 0 0-
JUL 62.1 43.6 52.9 76 23 33 6 368 o 1.05 0.33 23 0.0 0.0 81 29 23 27 8.1 3 7 21 14 0 0 1 4 0 0 0
AUG 62.8 41.8 52.3 78 2 31 29 383 o 0.96 0.20 7 0.0 0.0 80 20 26 7 13 0 5 0 1 0
SEP 49.8 31.7 40.8 59 14 16 30 718 o 1.59 0.48 9 0.4 0.3 20 76 25 25 19 7.0 3 9 18 •13 0 0 2 0 0 17 0
OCT 20 08 12
YEAR
Table F.2.3.1 (Page 2 of 2)
Normals,Means,And Extremes -through 1975#
Temperature of Normal Precipitation in inches Relative Wind (/l Mean Number of Days Average
Degree humidity pet.oe station.....
c
Days Q)pressure..........(/l I
Averages Extremes Base 65°F Water equi valent pallets $Fastest mile Q)Q)Sunrise to Sunset 12l .....Q)~~Temperatures of mbSnow,Ice ~~(/l Q)~
..c ~c 0 ~o ..........Q)::J -,-C E QjE (/l (/lQ)Maximum Minimum~~~~(/l >(/l 0 E ....~
::J ::J ::J ::J (/l 0 .....~a.~~>.....
Month $.0 0 0 0 -0 en 0 tJ 0 .....0 Q)0 0 E
(/l (/l ::I:::I:::I:::I:Ql C C C a......lO .....en Ql 3:3:3:
E E >.~~QJ .....0 0 Ql >......oe tJoe (/l 0",,"(b~0 0 0 Elev......en en E >.E >.E oe E >.E oe a.~..........tl-C ~Ql .....tJ ......tJ ~1"-'~~~
::J ::J ~-0 (/l -0 .....C C
~::J ~::J ......::J ::J ......::J .....(/l (/l ~~I>'a.c c Q)..c QJ Ql Q)
>.E >.E oe ~Q)~(/l ..........lO E oe E oe E """02 08 14 20 en ...............0 ......2405 feetEoeE"""lO lO tJ -0 tJ oe .....~I]·M·M ~.....-0 >.lO ..c ..c ..c...........................0 oe ~0 Ql ~...........E ..........~..........~....N ~.........~....N ~C >Ql QJ QJ ~en c ~lO lO .....tJ 3:C >>.CIl.....X .....C C tJ en lO tJ 3:lO lO
0 ~X C lO C C lO X lO X C lO X lO (loca 1 time)lOoe Ql ~Ql oe ~lO .....C lO C QJ Q)~Q)~00 :::J lO .....(/l o -0 o -0 o -0 -0 m.s.l.lO lO lO .....0 Ql .....Ql Q)0 Ql Q)0 0 lO 0 Q).....0 Q)~c Q)~~QJ ~.~Q)Qla.~.....a.a......Ql tJ ::J Ql ::J ~~lO ~~o c oe Ql·....O o C N C N C
0 CClEClE::a:0::::I:>-0::-J >-::I:U Z ::a:E >-::a:E >-.....>->->-::a:E 0..-0 l.fJ E Cl >-a..en ::a:(/l u u a..iU a..l.fJ ......I-::I:r-t-i 0\lO ......lO ......lO o lO
(a)35 35 35 35 35 34 35 5 7 7 6 8 5 7 7 7 7 7 i 7 20 8 8 8 34 34 34 34 2!
JAN 7.9 -4.8 1.6 44 1945 -45 1971 1965 0 0.91 3.38 1948 0.09 1945 0.80 1948 64.8 1948 16.3 1973 68;68 69 68 15.1 NE 44 05 1968 5.2 13 5 I 13 9 4 0 *0 30 31 20 921.4I
FEB 13.5 -.4 6.6 45 1942 -45 1947 1635 0 1.23 4.31 1951 T 1950 2.79 1951 44.5 1951 28.0 1964 76 75 75 76 11.9 NE 46 07 1974 7.0 6 5
i 17 10 5 0 1 0 26 28 15 918.8
MAR 19.4 3.0 11.2 49 1961 -35 1971 1668 0 1.04 4.53 1946 0.07 1961 1.67 1946 59.1 1946 18.1 1946 76 76 70 73 ILl NE 48 10 1971 6.2 9 6
1
16 10 5 0 1 0 27 31 14 917.2
APR 32.9 14.1 23.5 57 1956 -30 1944 1245 0 0.67 4.45 1966 0.06 1944 0.97 1963 28.7 1970 9.7 1963 80 75 65 75 7.6 NE 33 08 1971 7.2 5 7 18 7 4 0 1 0 13 30 3 922.9
MAY 45.7 29.1 37.4 76 1960 -14 1945 856 0 0.77 2.66 1966 0.04 1949 0.96 1946 17.4 1958 7.5 1946 83 70 58 67 7.7 W 28 07 1969 7.5 3 9 !19 7 2 *1 *1 22 *923.1
JUN 58.0 39.9 49.0 89 1961 25 1947 480 0 2.19 4.45 1949 0.41 1942 2.22 1967 9.4 1974 8.7 1974 84 73 57 65 8.3 SW 29 22 1970 8.2 2 6
I 22 12 1 2 1 3 0 2
o 924.7
JUL 60.2 43.8 52.0 81 1961 32 1970 403 0 3.09 5.56 1959 1.17 1955 1.95 1948 9.7 1970 9.7 1970 89 78 62 72 7.8 SW 30 23 1974 8.2 2 7 22 16 *2 1 5 0 *o 929.1
AUG 56.0 41.1 48.6 81 1968 20 1955 508 0 3.30 6.33 1955 0.70 1941 2.10 1944 9.0 1955 6.0 1955 88 81 62 76 7.4 SW 31 22 1975 8.3 2 6 23 18 0 *1 1 0 2 o 930.3
SEP 47.1 32.6 39.9 75 1957 6 1956 753 0 2.81 6.13 1965 0.29 1969 2.07 1944 21.5 1958 14.0 1955 85 81 59 75 7.5 NE 32 23 1972 7.4 5 5 20 16 2 *1 *1 14 o 926.1
OCT 30.4 17.5 24.0 59 1969 -15 1975 1271 0 1.62 3.79 1952 0.12 1967 1.24 1963 54.8 1970 12.6 1970 83 85 76 81 8.0 NE 35 23 1970 7.6 3 5 21 13 7 0 2 0 18 30 2 916.7
NOV 15.7 3.7 9.7 44 1962 -29 1948 1659 0 1.23 4.85 1952 0.06 1963 1.30 1964 75.1 1967 21.9 1970 79 79 78 79 11.7 NE 39 25 1970 7.1 7 4 19 9 5 0 1 0 27 30 13 921.3
DEC 9.2 -3.6 2.9 42 1969 -43 1961 1925 0 1.20 4.63 1951 0.24 1945 1.09 1967 50.7 1970 27.4 1970 76 78 76 77 11.3 NE 44 11 1970 6.5 9 5 17 11 6 0 1 0 30 31 19 914.7
JUN JAN AUG FEB FEB NOV FEB I MAR
YEAR 33.0 18.0 25.5 89 1961 -45 1971 14368 0 20.06 6.74 1944 T 1950 ~.79 1951 75.1 1967 28.0 1964 81 76 67 74 I 9.7 NE 48 10 1971 7.2 68 70 I 227 138 41 5 12 9 173 251 86 922.0
.
NOTE:Due to less than full time operation on a variable schedule,manually
recorded elements are from broken sequences in incomplete records.
Daily temperature extremes and precipitation totals for portions of I
the record may be for other than a calendar day.The period of record i
for some elements is for other than consecutive years.
(a)Length of record,years,through
the current year unless otherwise
noted,based on January data.
(b)70 0 and above at Alaskan stations.
*Less than one half.
T Trace.
NORMALS -Based on record for the 1941-1970 period.
DATE OF AN EXTREME -The most recent in cases of
multiple occurrence.
PREVAILING WIND DIRECTION -Record through 1963.
WIND DIRECTION -Numerals indicate tens of degrees
clockwise from true north.00
indicates calm.
FASTEST MILE WIND -Speed is fastest observed
I-minute value when the direction
is in tens of degrees
$For calendar day prior to 1968.
®For the period 1950-1954 and January 1968 to date when available
for full year.
For the period 1942-1953 and January 1968 to date when available
for full year
#Data for this station not available for archiving nor publication of
summary effective October 1976.
TABLE F.2.3.2:SUMMARY OF CLIMATOLOGICAL DATA
STATION ANNUAL
Anchorage 0.84 0.56 0.56 0.56 0.59 1.07 2.07 2.32 2.37 1.43 1.02 1.07
Big Delta 0.36 0.27 0.33 0.31 0.94 2.20 2.49 1.92 1.23 0.56 0.41 0.42 11.44
Fairbanks 0.60 0.53 0.48 0.33 0.65 1.42 1.90 2.19 1.08 0.73 0.66 0.65 11.22
Gulkana 0.58 0.47 0.34 0.22 0.63 1.34 1.84 1.58 1.72 0.88 0.75 0.76 11.11
Matanuska Agr.0.79 0.63 0.52 0.62 0.75 1.61 2.40 2.62 2.31 1.39 0.93 0.93 15.49
Exp.Station
McKinley Park 0.68 0.61 0.60 0.38 0.82 2.51 3.25 2.48 1.43 0.42 0.90 0.96 15.54
Summit WSO 0.89 1.19 0.86 0.72 0.60 2.18 2.97 3.09 2.56 1.57 1.29 1.11 19.3
Talkeetna 1.63 1.79 1.54 1.12 1.46 2.17 3.48 4.89 4.52 2.54 1.79 1.71 28.64
MEAN MONTHLY TEMPERATURES (OF)
Anchorage 11.8 17.8 23.7 35.3 46.2 54.6 47.9 55.9 48.1 34.8 21.1 13.0
Big Delta -4.9 4.3 12.3 29.4 46.3 57.1 59.4 54.8 43.6 25.2 6.9 -4.2 27.5
Fairbanks 11.9 -2.5 9.5 28.9 47.3 59.0 60.7 55.4 44.4 25.2 2.8 -10.4 25.7
Gulkana -7.3 3.9 14.5 30.2 43.8 54.2 56.9 53.2 43.6 26.8 6.1 -5.1 26.8
Matanuska Agr.
Exp.Station 9.9 17.8 23.6 36.2 46.8 54.8 57.8 55.3 47.6 33.8 20.3 12.5 34.7
McKinley -2.7 4.8 11.5 26.4 40.8 51.5 54.2 50.2 40.8 23.0 8.9 -0.10 25.8
Summit WSO -0.6 5.5 9.7 23.5 37.5 48.7 52.1 48.7 39.6 23.0 9.8 3.0 25.0
Talkeetna 9.4 15.3 20.0 32.6 44.7 55.0 57.9 54.6 46.1 32.1 17 .5 9.0 32.8
f TABLE F.2.3.3:RECORDED AIR TEMPERATURES AT TALKEETNA AND SUMMIT IN of
I TALKEETNA SUMMIT
f
Daily Daily Monthly Daily Daily Monthly
Month Max.Min.Average Max.Min.Average
I Jan 19.1 -0.4 9.4 5.7 -6.8 -0.6
Feb 25.8 4.7 15.3 17.5 -1.4 5.5
!Mar 32.8 7.1 20.0 18.0 1.3 9.7
Apr 44.0 21.2 32.6 32.5 14.4 23.5
I May 56.1 33.2 44.7 45.6 29.3 37.5
)
June 65.7 44.3 55.0 52.4 39.8 48.7
Jul 67.5 48.2 57.9 60.2 43.4 52.1
I Aug 64.1 45.0 54.6 56.0 41.2 48.7
Sept 55.6 36.6 46.1 46.9 32.2 39.6
I Oct 40.6 23.6 32.1 29.4 16.5 23.0
I
Nov 26.1 8.8 17 .5 15.6 4.0 9.8
Dec 18.0 -0.1 9.0 9.2 -3.3 3.0
Annual Average 32.8 25.0
FIGURES
o
10
FIGURE F.2.4.1
••4
STORAGE CAPACITY (MILLION AC.FT.)
AREA AND CAPACITY CURVES
WATANA RESERVOIR
2
'--+CAPACITY·
ISOO
1400
o
21 00 ......-----+-~:__--+_----__I____:::"""'--__t-----.....,
1&00 1+------+------+-----.--.,I--------+-----.lr---1
2000 J-------+-----+_-r~__-___il__----__t-----.....,
2200
\
RESERVOIR AREA (1000 ACRES)
~1900-~~
'"-I
'"
~1800
i!a:
:;:)
(I)
a:
~1700
'C
=-
-~
I&.-
.WITHOUT RESERVOIR SILTATION
I
I
[
r
I
!
i
I
!
I
f
I
I
1
!
I
I
I
o
FIGURE F.2.4.2
1000 1200
2
100
34
100400
RESERVOIR AREA (1000 ACRES)
6
STORAGE CAPACITY (1000 AC.FT.)
AREA AND CAPACITY CURVES
DEVI L CANYON RESERVOIR
200
7
o
900 1-----+-----+-----+----+-----+----.....
8
1600
1400 ~---........--.....;::IIIiIoo",~----+-~~~-+-----+-----t
IS 00 1-0------+-----+-----+-----+-----+-----1
I~
1200 ~---+--+----+-----+-----+------\r__----l
1300 ~----+---""-+-----+----...plr----+-----tZo
i=
S
..J...
-.,:...-
...u
i!
II:
~..
II:1100...
~
C•
.WITHOUT RESERVOIR SILTATION
I
I
I
r
[
I
r
r
[
f
I
I
I
I
I
r
r
I
I
WATANA TAILWATER RATING
FIGURE F.2.5.1
o 20 40 10 80 100 120 140 180
DISCHARGE re,s a 101 )
1410
1475
,y
~/
~v
1410 V
/
~V
I4C5 I
1480 I
7
J
1455 7
.~
....'Ii
.-au
-~
III
III...-
I
r
I
I
I
!
I
f
I
I
I
I
I
I
I
I
I
I
I
o 20 40 10 80 100 120 140 180 110 200
DISCHARGE (CFS I 10·)
DEVIL CANYON
TAILWATER RATING
(TAILRACE TO PORTAGE CREEK)
I
I
I
r
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
875
870
••8-..
III
III...-..leO:z:
CD
iii:z:
IaI
=CD 888
850
848
~"""--V ~
//'
/
,
/
/
I
/
/
I
FIGURE F.2.5.2
~
C\Iu:
W
0::::>
(!)
~0 Li:..
·
/·
V ..
N-
V -
('....-
\·
•..'\;;
g
~-
~...-•/~
~.-%...A....!c
:•~-Ill:
u "~..
It:i
:-Q
~i'--~
~~...~t=-:l..
~-~
~3!:
~-~
:I
==
A.
~"
c
!:!z
~=-~-J
:'----..-:
I-----•r----r----...--
'"-
\-•
-
..
I-
I I I I I I I I I I -
o ..o ..0 o 0 §0 0
0 0 8 0 0 0 0 ~0 0 0 0 0
o 0 ~-III ....•......!~%:!••..................
l"IIQJ.W.:I~00011 IIDI .en..
I
11-.1/4 LOCAL EVENTi
DAII'INI -0.10
lOll PERCENTILI
/
V"...........
~
/~II.-I.A.I \
~.............."""i\.
/'/"~\.
0,-0.'1 ///'""iilO.la
~
~""'~~~
-.............:~
-•-
••
•2..
C
&
III...
III
U
U
C...
C
&..
U
III
&.•
I
oo.oa 0.01 0.01 0.1 0.1 0.1 0.1
'1ItIOD CIIC)
2 3 10
MEAN RESPONSE SPECTRA AT THE DEVIL CANYON SITE FOR
SAFETY EVALUATION EARTHQUAKE
FIGURE F.3.2.1
APPENDIX F 1·
[
I
I
i
I '
I
I
i'
l
[
I
This Appendix deleted.
851011
APPENDIX F1
F1-1
APPENDIX F2
W AT ANA AND DEVIL CANYON
EMBANKMENT STABILITY ANALYSES
APPENDIX F2
WATANA AND DEVIL CANYON EMBANKMENT STABILITY ANALYSES
1 -PRELIMINARY DESIGN (**)
1.1 -General (**)
This appendix presents the proposed embankment slope designs for Watana
S-tages I and III and the Devil Canyon Stage II embankments.The method
of analysis and the safety factors comply with recommendations of the
United States Army Corps of Engineers (COE 1982a,1958).The stability
studies have been conducted in sufficient detail to satisfy project
feasibility.
Watana Dam Stages I and III have been analyzed.The cross section for
analysis has been taken where it will be m~ximum height (70o±feet
for Stage I,and 885±feet for Stage III).The Devil Canyon Saddle
Dam (Stage II)has not been independently evaluated because it has the
same cross section and general foundation treatment as Watana.
Therefore,because of the lower height of the Devil Canyon Saddle Dam
(maximum l5o±feet)its stability will be much less critical than for
Watana,and higher stability factors of safety are to be expected.
Typical embankment cross sections for the three stages of Susitna
development are presented in Figures F2.l,F2.2,and F2.3.
1.2 -Design Shear Strengths (***)
Design values are shown in the following tables below and on the
individual figures.The tables are a resume of the materials which are
of major influence in the stability analysis,together with their shear
strengths.The design shear strengths are based primarily on
interpretation of similar materials at other projects where extensive
laboratory tests have been performed.
1.2.1 -Material Design Parameters (***)
(a)
Unit Weight
Moist,
Saturated,
Submerged,
Impervious
(pet)
m =126
s =130
sub =67
Core
Shear Strength
UU:cohesion,c =1,500 psf
Friction Angle,0 =0°
CU:cohesion,c =300 psf
Friction Angle,0 =16.7°
CD:cohesion,c =0 psf
Friction Angle,0 =26.5°
851011
(b)Rockfill and Filters
Unit Weight (pc£)Shear Strength
Moist,m =130 UU:
Saturated,s =140 CU:
Submerged,sub =78 CD:cohesion,C =0 psf
Friction Angle,0 =38°
F2-l
(c)Overburden Foundation
Unit Weight (pcf)Shear Strength
Moist,m =125 CD:cohesion,C = 0 psf
Saturated,s =132 Friction Angle,~=32°
Submerged,sub =70
(d)Bedrock Formation
Unit Weight (pcf)Shear Strength
Moist,m =150 CD:cohesion,C =40,000
Saturated,s =150 psf
Submerged,sub =88 Friction Angle,~=38°
1.2.2 -Loading Conditions and Factors of Safety (F.S.)(***)
The following table is a summary of results from the static and
earthquake (pseudo-static)stability analysis.
Minimum Watana -Stage I Watana -Stage III
Allowable FS.!/Min.Calculated FS Min.Calculated FS
Earth-uls Slope Dis Slope uls Slope Dis Slope
Case Static quake
(S)(E )!:.I S E S E S E S E
End-of-1.3 1.0 1.97 1.30 1.54 1.09 1.52 1.04 1.58 1.13
Construc-
tion
Partial 1.5 1.0 1.84 1.20 ----1.54 1.05 -- --
Pool (Critical Pool (Critical Pool
Varying e1.1710 el.1900
Steady 1.5 1.0 ----1.57 1.12 ----1.58 1.13
State
Seepage
at Normal
Max.Pool
Rapid 1.0 --1.78 ------1.26 ------
Drawdown
Normal
Max Pool
to el.
1,800
II FS =Stability factor of safety.
21 Seismic coefficient =0.15.
851011 F2-2
1.3 -Method of Analysis (***)
The STABL computer program,which utilizes an adaptation of the
Modified Bishop Method,was used to determine the location of critical
failure surfaces for all embankment stability.Use of the STABL
allowed many trial failure surfaces to be tested for both static and
pseudo-static stability.The critical failure plane was found and the
safety factory expressed as the ratio of available shear strength to
that required for equilibrium.Circular and wedge-shaped trial
failure surfaces were examined.Circular surfaces were found to yield
the lower factors of safety for the downstream slope,and wedge-shaped
surfaces were critical for the upstream slope because of the upstream
inclination of the core.Only critical surface results are presented
herein.Earthquake analyses considered a pseudo-static seismic
coefficient of 0.15 (CaE 1982a).As shown in Figure F2.l4 the Susitna
Project is located in Zone 4,which is a high risk area.
For each section analyzed,50 randomly generated trial surfaces
encompassing the entire range of potential failure surfaces were
tested.The results presented in Figures F2.4 through F2.l3 only show
the ten most critical surfaces.
Dynamic stability was evaluated through a comparison of Watana Dam with
similar dams in areas of high seismicity.
1.4 -Design Cases and Assumptions (***)
The critical conditions analyzed for failure in shear are listed ~n the
following sections.
1.4.1 -End-of-construction Case (***)
Since placement moisture contents for the embankment are
anticipated to be slightly in excess of optimum moisture,some
pore pressure is likely to occur.However,for the rock shell
design the inclined core is relatively narrow,thus confining
the excess pore pressure to a zone just upstream of the center of
the fill.The shear strength contolling the stability of the
construction condition is the shear strength of the impervious
core.
Both the upsteam and downstream slopes have been analyzed for
slope stability immediately upon completion of construction,and
prior to reservoir filling.Minimum allowable static and
earthquake (pseudo-static)factors of safety of 1.3 and 1.0,
respectively,have been considered.The steeper,downstream
slope indicated the lower safety factor.A total stress analysis
was performed.Stage I considered an unconsolidated undrained
(UU)shear strength in the impervious core material,and moist
unit weights throughout the embankment section.This loading
condition conservatively models the embankment just at the end of
851011 F2-3
the construction,when the fill has not yet had sufficient time
to strengthen through the consolidation of the fill under its own
weight,and the dissipation of excess pore pressures.-Stage III
considered consolidated drained (cn)shear strengths in the Stage
I fill,and UU shear strength in the core Stage III impervious
core fill.Moist unit weights were considered above the assumed
elevation 1,900 reservoir level during Stage III construction,
and submerged unit weights below.
The minimum post construction stability for Watana (Stages I and
III)is shown in Section 1.2.2;the locations of critical failure
surfaces are shown in Figures F2.4,F2.5,F2.9,and F2.l0.
1.4.2 -Partial Pool Case (***)
The upstream slope was analyzed for m~n~mum static and
earthquake (pseudo-static)safety factors of 1.5 and 1.0
respectively,at the most critical reservoir pool elevations.
The saturation line was assumed horizontal.Submerged weights
were used below the saturation level and moist weights were
used above the saturation line.
Four reservoir increments were studied for both Stage I and
Stage III to determine the critical temporary reservoir level.
For Stage I the temporary pool levels studied were elevations
1,600, 1,700,1,800,and 1,900.For Stage III they were
elevations 1,800,1,900,2,000,and 2,100.A plot of minimum
factor of safety vs.pool level reveals the partial pool
corresponding to the critical factor of safety.
The initial partial pool condition occurs after the end of
construction when the fill is partially consolidated,but before
complete reservoir filling and the establishment of steady state
seepage.Construction case excess pore pressures are assumed to
still be present.For Stage I consolidated undrained (CU)shear
strength have been used in a total stress analysis,approximating
this intermediate condition.However,Stage I fill would have
completely consolidated and excess pore pressures dissipated by
the time reservoir filling for Stage III begins.Therefore,
Stage III analysis has considered consolidated drained (cn)shear
strengths for Stage I fill (and Stage III pervious materials),
and CU strengths for the Stage III impervious core.
The results of the partial pool case are summarized in Section
1.2.2.The critical pool occurs at el.1,725 during Stage I
filling,and at el.1,900 in Stage III.The critical failure
surfaces and pool determination are shown in Figures F2.6 and
F2.11
1.4.3 -Steady State Seepage Case (***)
The downstream slope was analyzed for the steady seepage case.
The normal maximum operative pool was selected as the most
851011 F2-4
851011
critical pool that will be maintained for a period long enough
to develop steady seepage.Pools above this elevation do not
remain long enough to saturate the embankment.
Steady state seepage is the long-term condition,achieved once a
free-water line phreatic surface is established through the core
and within the downstream filters and shell.By the time this
condition takes place,all consolidation of the fill and
dissipation of excess pore pressures will have occurred,and the
consolidated drained (CD)strength of the fill material will
govern the stability of the embankment.
The minimum long-term embankment slope stability is shown in
section 1.2~2;the locations of critical failure surfaces are
shown in Figures F2.7 and F2.l2.Slopes were designed for a
minimum static factor of safety of 1.5,and a minimum earthquake
(pseudo-static)factor of safety of 1.0.
1.4.4 -Rapid Drawdown Case (***)
The rapid drawdown analysis considered saturation of the
embankment at the normal maximum operating elevation and drawdown
to el.1,800.It is assumed that the reservoir is above the
normal maximum operating level for such a short time that the
impervious embankment will not saturate and,therefore,sudden
drawdowns from pools above this elevation are not applicable.
The embankment slopes were designed for a minimum static safety
factor of 1.0.The simultaneous occurrence of both an earthquake
and rapid drawdown is considered highly improbable,and therefore
a pseudo-static evaluation of the rapid drawdown case is not
considered.
The rapid reservoir drawdown analysis applies only to the
upstream embankment slope.The results of this analysis are
presented in Section 1.2.2.Figures F2.8 and F2.13 show the
locations of the critical failure planes.
The rapid drawdown condition has been conservatively evaluated by
assuming that the reservoir can be lowered instantaneously from
the maximum normal operating level to el.1,800,which is the
lowest intake level of the powerhouse intake structure.The
drawdown analysis considers full consolidation of the fill at the
time of drawdown,and an undrained condition in the impervious
core immediately following drawdown.Hence,a consolidated
undrained shear strength (CU)has been used in the total stress
analysis.The weight of the core material above the lowered pool
level at el.1,800 increased from its pre-drawdown submerged unit
weight,to a saturated unit weight.Hydrostatic uplift pressures
along the failure surface through the core are determined from
the saturated core outer surface.Because the rockfill would be
free-draining,pore pressures would dissipate as the reservoir is
drawn down,and an undrained condition would never be achieved.
F2-5
Therefore,the drained strength (CD)for the rockfill ~s used in
the analyses.
1.4.5 -Earthquake Case (***)
The earthquake case was checked by perfoming a pseudo-static
analysis on each of the critical static analysis failure planes
for the above cases,except sudden drawdown.This seismic
analysis involved application of an additional horizontal force,
acting in the direction of sliding of the potential failure mass.
This force is equal to the total weight of the sliding mass times
the seismic coefficient 0.15.
1.5 -Dynamic Stability Evaluation (***)
The dynamic stability was evaluated by comparing Watana Dam with
similar dams located in areas of high seismicity.Dynamic analyses
will be performed during final design.The performance and/or the
results of dynamic analysis of the dam are summarized below for
comparison with Watana Dam.
1.5.1 -Oroville Dam (***)
Oroville Dam (Seed 1979;Banerjee et al.1979;State of
california 1979).1975 E~rthquake;magnitude 5.7;epicentral
distance 7.5 miles;focal depth 5.0 miles;a at dammaxcrest=0.13 g.
(a)Pertinent Data,and Observations at the Time of
the Event (***)
The dam cross section has a slightly inclined impervious
core,and shells of well-graded cobble,gravel and sand
fill.
Height -750 feet
Upstream Slopes -2.2H:IV,2.6H:IV and 2.75 H.IV
Downstream Slope =2H:IV
performance -No damage
Vertical Movement of the Crest =0.03 feet
Horizontal Movement of Upstream Slope =0.05 feet
Pore pressure increased in the core,and in an area within
the upstream transition zone.
(b)Dynamic Re-evaluation,1979 (***)
Dynamic analyses was performed to re-evaluate the dam ,for a
near source maximum earthquake of magnitude 6.5 and
a =0.6 g.max
851011 F2-6
851011
The analyses indicates that in spite of areas of high pore
pressure in the upstream shell,and the potential horizontal
displacement of the dam of about 3 feet,the dam would be
amply safe.There would be some likelihood of surface
sloughing or insignificant movement along slopes at shallow
depths near the crest.The minimum factor of safety with
the high pore pressures would be reduced to 1.4 from 3.1 for
normal operating conditions.
(c)Hypothetical Extreme Earthquake,Magnitude 8.25 (***)
This hypothetical study was made for the purpose of
developing a better understanding of the performance of
high embankment dams located near an epicentral region of
great earthquakes.The results of the study indicate:
o The relatively high pore pressure zone in the upstream
shell spreads over a significantly larger area within
the upstream shell when compared with the similar area
developed after a magnitude 6.5 earthquake.
o The minimum factor of safety with high pore pressure
development reduced to 1.12 for the critical circle
immediately after an earthquake of magnitude 8.25.
The dam is dynamically stable and would not develop
any massive slide in the upstream slope.The minimum
factor of safety of 1.12 would be of a transient
nature.The pore water pressure will dissipate in
time and the dam will regain its pre-earthquake
strength and stability factor of safety.
o The maximum horizontal displacements of the upstream
slope after an earthquake of magnitude 8.25 would be
in the order of 8 ft.The increase in strength caused
by aging would reduce it to half the computed amount.
The conclusion was that a high dam,well-designed and built with
suitable materials like Oroville Dam,would be able to safely
withstand a near,extreme earthquake of 8.25 without significant
damage,or danger of reservoir release.
1.5.2 -Miboro Dam (***)
Miboro Dam,Japan (Seed et al.,1977)
Kita-Muto Earthquake,1961;Magnitude 7;
a =0.1 g to 0.25 g at 20 km from epicenter.
a =0.6 g at 10 km.max
F2-7
851011
Dam Type -Rockfill
Height -420 feet
Slopes -Upstream 2.5H:IV
Effect -No Damage
Settlement 1.2 inches
Horizontal Displacement 2.0 inches
1.5.3 -Cogoti Dam (***)
Cogoti Dam,Chile (Seed et al.1977)
Chile Earthquake,1943;Magnitude 8.3;
a max =0.25 g to 0.5 g
Dam Type -Dumped rockfill with upstream concrete
Height -275 feet
Effect -Crest settled 15 inches;minor rockslides on the
1.8H:lV;insignificant damage.
1.5.4 -La Honda Dam (***)
La Honda Dam,Venezuela (Kleiner et al.1983)Dynamic stability
analysis was performed,based on earthquake magnitude 8.25
occurring on Bocono Fault 12.4 miles from the dam site.
a =0.50gmax
The embankment has an impervious central core of clayey sand,and
shells of crushed sandstone.
Height -460 feet (140 meters)
upstream slopes -3H:lV and 2.5H:lV
Downstream slope -2.25H:lV
Result of Analysis:The dam will be safe with only
insignificant damage.Small zones in
the upstream shell indicate strain
potential exceeding 5 percent.
Vertical settlement of the crest would
be on the order of 8.2 feet.Shallow
sloughing of the upstream slope would
likely occur.
1.5.5 -Watana Dam (***)
Watana Dam is quite similar to the dams listed above,especially
Oroville Dam.However,the shells of Watana would be constructed
of rockfill,while the shells of Orovill were constructed of
sand and gravel.The free-draining rockfill shells at Watana
will tend to dissipate pore pressure more readily.However,
settlements within the rockfill during strong ground motion would
tend to be higher than in the sand and gravel of Oroville.These
F2-8
factors are somewhat compensating.Permanent deformations at the
crest of Watana are anticipated to be of a similar magnitude as
the deformations at Oroville Dam.Judging from the performance
of Oroville Dam during the 1975 magnitude 5.7 earthquake,and
subsequent dynamic stability analyses with magnitude 6.5 and
extreme severe earthquake magnitude 8.25,Watana will be safe
under strong seismic conditions.
1.6 -Conclusion (**)
The analyses indicate stable slopes under all loading conditions for
Watana Stage I and Watana Stage III.Because of its lower height and
identical cross section and foundation,the Devil Canyon Saddle Dam
Stage II intuitively would also be stable under all loading condition.
851011 F2-9
FIGURES
2
'JI
WATANA DAM -STAGE I
AT MAXIMUM HEIGHT
o 100 200 FEET
SCALE ~i~~~iiiiiiiiiiiiiiiiil!
BEDROCK SURFACE
2
I r:::::
NOTES:
1.FOR DETAILED CROSS SECTION SEE PLATE F 7
2.INCLUDES 2'S E'TTLEMENT OVERBUILD
---+-_--FI NE FILTER
COARSE FILTER
1-4---DAM AXIS
~d=~__E::.:L::..:..=.;20=-=2~7(NOTE2)
ROCKFILL.:
TOP OF SOUND
NORMAL MAXIMUM
OPERATING LEVELyEL.2000)
MINIMUM OPERATING LEVEL"')
EL.1850-==:gY§§==-...L~
FLOW-
~<t..UPSTREAM COFFERDftM
\.
I-SEE OVERBURDENIEXCAVATIONDETAIL
~'--~.=H=..=-=-====-r-===::'---.L...
I
I
[
I
[
[
r
I
I
[
I
[
[
(
I
I
I
I
[
FIGURE F2.1
NATURAL GROUND
SURFACE
*=STABLE
-------
*11/
~._------
TOP ~F SOUND ROCK
NOTES:
2.0
:1 1
ROCKFILL-----
------_/
DEVIL CANYON -STAGE n
SECTION THROUGH SADDLE DAM
AT MAXIMUM HEIGHT
1.FOR DETAILED CROSS SECTION SEe PLATE F 49
.2.-INCLUDES 2'S~TTLEMENT'OVERBUILD.
O~~~350iiiiiiiiiiiiiii6~P,FEE T
SCALE C I
-------
"",-......----......
I
0.1
17.5
rAM AXIS
I
35'
2.4
I~
~---COARSE FILTER
NORMAL MAXIMUM OPERATING~
LEVEL EL.l455 Y
------------;\-~__=:z:.
..
MINIMUM OPERATING')
LEVEL EL.1405 Y
FLOW
---------__~TOP OF ROCK---------
.---------\ll
r
r
r
I
r
f
I
[
[
r
i
[
r
i
I
r
I
I
I
FIGURE F2.2
C UPSTREAM COFFERDAM
MINIMUM OPERATING
LEVEL EL.2065
TOP OF SOUND ROCK
NORMAL MAXIMUM
OPERATING LEVEL
EL.2185
~-I--_FINE FILTER
COARSE FILTER
BEDROCK SlJRFACE
.NOTES:
1.FOR DETAILED ~ROSS SECTION seE PLATE F 77
2.INCLUDES 5'SETTLEMENT OVERBUILD
i,
3.STAGE m SHOWN WITH BOLD OUTLINE
o 100 200 FEET
seAL E f!!!!!!!!!!!!!5_iiiiil'
WATANA DAM -STAGE m
AT MAXIMUM HEIGHT
FiGURE F2.3
WATANA-STAGE I
SLOPE STABILITY-FACTOR OF SAFETY
CALCULATED
2.0
1.3
fEL.2027
ALLOWABLE
1.3
1.0
EL.1925
_FLOW..,
CONDITION
STATIC
EARTHQUAKE
(Seismic Coefficient=0.15)
I
I
i
r
1
!CRITICAL FAILURE
SURFACE
!
i
I
I
I
f
I
I
I
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE (j)UU:C=1,500 pst,r/J=O°
ROCKFILL AND FILTERS ~,<3>,@ CD:C=O pst,r/J=3S o
OVERBURDEN FDN.~CD:C=O pst,r/J=32°
BEDROCK FDN.<B)CD:C=40,000 pst,rp=3So
NOTE
MATERIAL DESIGN.PARAMETERS
ARE DISCUSSED IN SECTION 1.2
END-OF-CONSTRUCTION CASE
(UPSTREAM SLOPE)
FIGURE F2.4
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE <D UU:C=1,500 pst,0=0°
ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,0=38°
OVERBURDEN FDN.~CD:C=O pst,'/1=32°
BEDROCK FDN.@ CD:C=40,000 pst,'/1=38°
CALCULATED
1.5
1.1
fEL.2027
CRITICAL FAILURE
SURFACE
2
"-:11"-@ .........-...--
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
ALLOWABLE
1.3
1.0
END-OF-CONSTRUCTION CASE
(DOWNSTREAM SLOPE)
WATANA-STAGE I
SLOPE STABILITY-FACTOR OF SAFETY
EL.1925
FLOW..
CONDITION
STATIC
EARTHQUAKE
(Seismic Coefficient=0.15)
r
r
I
I
r
i
I
r
I
I
i
i
I
I
I
r
I
I
I
FIGURE F2.5
WATANA-STAGE I
SLOPE STABILITY-FACTOR OF SAFETY
CONDITION ALLOWABLE
STATIC 1.5
EARTHQUAKE 1.0
(SeismicCoefficient=0.15)
CALCULATED
1.8
1.2
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE <D CU:C:::I 300 psf,0=16.7
ROCK FILL AND FILTERS ~.(3),@ CD:C=O pst,~=38°
OVERBURDEN FDN.~CD:C:::IO psf.rp=32°
.BEDROCK FDN.~CD:C=40,000 pst,rp=38°
.-tEL.2027
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
CRITICAL FAILURE
SURFACE
EL.1925
2.4
1 r:::
---
'i=1900
u.
'-'
z
~1800
~1725
w '--+-----4Ld1700
-Io
~1600
FLOW
I CRITICAL PARTIAL
POOL LEVEL EL.1725
I
I
I
I
I
[
[
I
I
I
1.7 1.8 1.9 2.0
CALCULATED F.S.
PARTIAL POOL CASE
(UPSTREAM SLOPE)
FIGURE F2.6
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE (l)CD:C=Q psf,0=26.5 0
ROCK FILL AND FILTERS ~,(3),@ CD:C=Q pst,0=380
OVERBURDEN FDN.~CD:C~O pst,rp=32°
BEDROCK FDN.@ CD:c=40,000 psf,q,=380
WATANA-STAGE I
SLOPE STABILITY-FACTOR OF SAFETY
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
CRITICAL FAILURE
SURFACE
CALCULATED
1.6
1.1
fEL.2027
FLOW•
CONDITION ALLOWABLE
STATIC 1.5
EARTHQUAKE 1.0
(Seismic Coefficient=0.15)
NORMAL MAX.OPERATING LEVEL
EL.2000
I
[
I
I
r
[
I
I
I
I
I
I
I
I
STEADY STATE SEEPAGE CASE
(DOWNSTREAM SLOPE)
FIGURE F2.7
WATANA-STAGE I
SLOPE STABILITY-FACTOR OF SAFETY
CONDITION
STATIC
ALLOWABLE
1.0
CALCULATED
1.8
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
ORIGINAL NORMAL MAX.
OPERATING LEVEL
EL.2000
EL.1925
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE CD CU:C=300 pst,0=16.70
ROCK FILL AND F1L TERS ~,~,@ CD:C=O pst,0=380
OVERBURDEN FDN.~CD:C=O pst,~=32°
BEDROCK FDN.~CD:C=40,000 pst,~=38°
[FLO~
[IRA WDOWN LEVEL
_L.1800
-....1..-------..;~~~=---------:ffl
I ~RITICAL FAILURE
i UR FA CE -......----r--........
1G
I
I
I
I
I
r
I
I
[
RAPID DRAWDOWN CASE
(UPSTREAM SLOPE)
FIGURE F2.8
CALCULATED
1.5
1.0
fEL.2210
ALLOWABLE
1.3
1.0
WATANA-STAGEllI
SLOPE STABILITY-FACTOR OF SAFETY
CONDITION
STATIC
EARTHQUAKE
(Seismic Coefficient=0.15)
I
[
[
r
CRITICAL FAILURE
I SURFACE
I POOL LEVEL DURING
ST AGE III CONSTRUCTION
EL.1900
~
f
[
I
I
I
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
STAGE I EMBANKMENT
IMPERVIOUS CORE CD CD:C=O pst,~=26.5°
STAGE][EMBANKMENT
UU:C=1,500 pst,0=00
ROCK FILL AND FILTERS ~,~,@ CD:C=O pst,~=38°
OVERBURDEN FND.~CD:C=O pst,~=32°
BEDROCK FND.~CD:C=40,000 pst,~=3ao
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
END-OF-CONSTRUCTION CASE
(UPSTREAM SLOPE)
FIGURE F2.9
WATANA-STAGE ]II
SLOPE STABILITY-FACTOR OF SAFETY
CALCULATED
1.6
1.1
fEL.2210
CRITICAL FAILURE
SURFACE
2
"::::l1"@ ...........--....;
ALLOWABLE
1.3
1.0
FLOW
CONDITION
STATIC
EARTHQUAKE
(Seismic Coetticient=0.15)
POOL LEVEL DURING
STAGE III CONSTRUCTION
EL.1900
r
I
I
~
r
I
[
\
!
[
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
STAGE I EMBANKMENT
IMPERVIOUS CORE (j)CD:C=O psf,~=26.5°
STAGE][EMBANKMENT
UU::C=-1,500 pst,~=Oo
ROCK FILL AND FILTERS (2)@@ CD:C=O pst,~=38°
OVERBURDEN FND.@ CD:C=O pst,~=32°
BEDROCK FND.@ CD:C=40,000 pst,~=38°
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
END-OF-CONSTRUCTION CASE
(UPSTREAM SLOPE)
FIGURE F2.10
WAT ANA-ST AGE :IT[
SLOPE STABILITY-FACTOR OF SAFETY
2
:::::l 1
CALCULATED
1.5
1.1
ALLOWABLE
1.5
1.0
CONDITION
STATIC
EARTHQUAKE
(Seismic Coefficient=0.15)
FLOW
[
I
I
I '
CRITICAL FAILURE
i SURFACE
CRITICAL PARTIAL POOL
LEVEL EL.1900
[
j
,I
r
1 ,-,
l-
LL.
I
......
z
0
l-
I «
I >
W
...J
W
...J
0
0a..
2100
2000
1900
1800
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
ST AGE I EMBANKMENT
IMPERVIOUS CORE CD CD:C=O pst,~=26.5°
ST AGE ::Dr EMBANKMENT
CU:C=300 pst,~=16.7°
ROCK FILL AND FILTERS <2',(3),@ CD:C=O pst,~=38°
OVERBURDEN FND.~CD:C=O pst,~=32°
BEDROCK FND.@ CD:C=40,OOO pst,r/J=38 0
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
1.5 1.55 1.6 1.65 1.7
CALCULATED F.S.
PARTIAL POOL CASE
(UPSTREAM SLOPE)FIGURE F2.11
WATANA-STAGEm
SLOPE ST ABILITY-FACTOR OF SAFETY
ALLOWABLECONDITION
STATIC
EARTHQUAKE
(Seismic Coefficient=0.15)
NORMAL MAX.OPERATING
LEVEL EL.2185
FLOW
1.5
1.0
CALCULATED
1.6
1.1
\
I
r-
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE 1)CD:C=O pst,0=26.5~
ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,~=38~
OVERBURDEN FDN.~CD:C~O pst,~=32°
BEDROCK FDN.(Q)CD:C=40,000 pst,0=38~
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
STEADY STATE SEEPAGE CASE
(DOWNSTREAM SLOPE)
WATANA-STAGE m
SLOPE STABILITY-FACTOR OF SAFETY
2
::::l 1
CALCULATED
1.3'
fEL.2210
ALLOWABLE
1.0
ORIGINAL NORMAL MAX.
OPERATING LEVEL
EL.2185\'.
CONDITION
STATIC
FLOW
r
I
!
r
j
1 ORA WOOWN LEVEL
EL.1800
l RITICAL FAILURE
vURFACE---
[
r-
I
I
I
MATERIAL SHEAR STRENGTH USED
IN ANALYSIS
IMPERVIOUS CORE <D CU:C=300 ps.f,0=16.7 0
ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,0=38°i,
OVERBURDEN FDN.(Q)CD:C=O pst,~=32°
BEDROCK FDN.(g)CD:C=40,000 pst,0=38°
NOTE
MATERIAL DESIGN PARAMETERS
ARE DISCUSSED IN SECTION 1.2
RAPID DRAWDOWN CASE
(UPSTREAM SLOPE)
FIGURE F2.13
PAC I F I C 0 C E A.N
O::/...<
"J/.
•'ClI);/0,
I
I
BERING
STRAIT
I
SOURCE:COE 1882
T-
ARCTIC OCEAN
'nv\v~--.Io!<:~__~~~........-
;'0v:V
\
\
0-4
so 0 so 100 I so 200 150
STATUE HILES
SEISMIC PROBABILITY
ZONE DAMAGE COEFF.
0 NONE 0
1 MINOR 0.025
2 MODERATE 0.05
3 MAJOR 0.10
4 GREAT 0.15
•DAWSON
SEISMIC ZONE MAP
Alaska
FIGURE F2.14 (.
APPENDIX F3
SUMMARY AND PMF AND SPILLWAY
DESIGN FLOOD ANALYSES
APPENDIX F3
SUMMARY OF PMF AND SPILLWAY DESIGN FLOOD ANALYSES
1 -INTRODUCTION (**)
The natural PMF peaks at the Watana and Devil Canyon damsites are esti-
mated to be 326,000 cubic feet per second (cfs)and 362,000 cfs,
respectively.The routed peak inflows to Devil Canyon are estimated to
be 358,000 cfs and 339,000 cfs in Stages II and III.The natural
10,000 year flood peaks are estimated to be 174,000 cfs and 184,000 cfs
at Watana and Devil Canyon.Using the 95 percent one-sided upper
confidence limits,the 10,000-year floods are estimated to be 240,000
cfs and 262,000 cfs.The 10,000-year events were not routed through
the reservoirs because the total capacities of the spillways at the 50
year flood surcharge pool in combination with the outlet works are
greater than the 95 percent one sided upper confidence limit estimates,
and so the floods could be passed without additional surcharging.
2 -PROBABLE MAXIMUM FLOOD (PMF)
2.1 -Calibration of SSARR Model (0)
In the derivation of PMF,the rainfall-runoff relationships,snowmelt
criteria and routing of runoff excess through watershed and channel
system,were defined by Streamflow Synthesis and Reservoir Regulations
(SSARR)watershed model (COE 1972).
The model was calibrated by U.S.Army Corps of Engineers (COE 1975,
1979)for the Susitna River basin above Gold Creek,a stream gaging
station located about 12 miles downstream from the Devil Canyon damsite
(Figure F3.1).
The model determines runoff excess from average basin precipitation,
snowmelt,evapotranspiration,deep percolation and soil moisture
replenishment,and uses flow separation techniques to temporarily store
this excess as surface storage,sub-surface storage and groundwater
storage to provide time delay effect.The basic routing scheme is
provided in the User's Manual for the Model (COE 1972).Figure F3.2
provides a schematic representation of the basic elements of the SSARR
model.
The drainage area of the basin above Susitna River at Gold Creek is
about 6,160 square miles (mi 2 ).The basin was divided in 13
relatively homogeneous sub-basins.Flows from these sub-basins were
combined and routed downstream to derive the flows at specified
locations including those where observed flood hydrographs were
available.Figure F3.3 shows a schematic layout of the sub-basins.
The figure also shows the drainage area of each sub-basin.
851011 F3-1
The COE selected the spring floods of 1964 and 1972 and the summer
floods of 1967 and 1971 for the model calibration.The calibration was
performed by comparing daily observed and simulated flood hydrographs
at four stream gaging stations -Susitna River at Gold Creek,near
Cantwell and near Denali,and Maclaren River near Paxson (see Figure
F3.3).Daily precipitation or snow water equivalent data observed at
Summit,Trims Camp,Paxson,Gulkana or Gracious House (see Figure F3.l
for locations)were used.The relationships between parameters in the
model and initial values of the parameters were estimated initially
based on hydrologic characteristics of each sub-basin.The estimated
relationships and initial values were then progressively changed until
the simulated flows were within acceptable limits of observed flows.
Table F3.1 shows the comparsion of observed and simulated flood peaks.
The simulated and observed hydrographs are shown on Figure F3.4 through
F3.10.The derived relationships between the model parameters are
shown on Figures F3.1l through F3.17.
The input data and calibration procedures used by the COE were reviewed
and a few discrepancies in data input were identified.The model
calibration was checked by removing these discrepancies.As a result,
relationships between the parameters were revised in two cases (see
Figures F3.ll and F3.14)using the floods of August 1967 and June 1972
and corresponding daily rainfall data.It was realized that the
initial values of the model parameters were not very sensitive except
for a few days at the beginning of simulation period.The calibrated
relationships between the parameters were tested for their validity by
using the 1971 flood.Figures F3.l8 through F3.26 show the simulated
and observed hydrographs.Table F3.2 lists the curve numbers of the
parametric relationships and other pertinent data used for each
sub-basin.Elevation-area relationships for the sub-basins are given
in Table F3.3.
2.2 -Probable Maximum Precipitation (PMP)(**)
The PMP's for the basins above Watana and Devil Canyon were estimated
from the analysis of the following six historic storms by storm
maximization:
August 22-28,1955
July 28 -August 3,1958
August 19-25,1959
August 9-17,1967
August 4-10,1971
July 25-31,1980
(a)Storm Isohyetal Pattern (**)
Precipitation pattern in the Susitna basin is greatly af-
fected by orography.Therefore,it was necessary to
851011 F3-2
851011
(b)
develop isohyetal patterns for each storm to define
variation in precipitation over the basin.This was done by
isopercental technique discussed below.
The isopercental technique requires a base isohyetal pat-
tern,usually mean annual or mean seasonal precipitation
pattern.For the purpose of these analyses,the isohyetal
pattern of July 1980 storm was used as a base map.The July
1980 storm pattern was well-defined because the storm was
recorded at a number of gages within and in the vicinity of
the basin.
The ratios of the total storm precipitation of a given storm
to the July 1980 storm were derived and plotted at each
station where data were available for both storms.Isoper-
cental lines were drawn based on these ratios.The ratios
on these lines were then multiplied by the July 1980 pattern
to yield values to draw isohyetal map for the given storm.
The resulting isohyetal patterns are shown on Figures F3.27
through F3.32.
Storm Maximization (**)
The maximization factor for each storm was determined as the
ratio between the maximum precipitable water and the
precipitable water available during the storm.The maximum
precipitable water was computed using 50-year return period
maximum l2-hour persisting dewpoint temperatures.These
temperatures were derived from dewpoint temperatures
recorded at Anchorage for the months of May through
September.The actual storm dewpoint temperatures were
derived by examining the temperatures prior to the storm
occurrence.The maximization factors are listed in the
following table.
MAXIMIZATION FACTORS
Storm Dewpoint Max.Dewpoint
at 1,000 mb at 1,000 mb
Precipe Precipe Max.
Storm Temp.Water Temp.Water Factor
August 1955 47 18.3 59.5 34.1 1.86
July-August 1958 50 21.0 60.0 35.2 1.66
August 1959 48 18.9 59.5 34.1 1.80
August 1967 46 17.6 60.0 35.2 2.00
August 1971 49 19.9 60.0 35.2 1.77
PMP.Average precipitation over the basin above Watana was
computed using the isohyetal pattern developed for six
F3-3
storms (Figure F3.27 through F3.32).These precipitation
amounts were multiplied by the maximization factors
resulting in maximized total precipitation given in the
following table.
MAXIMIZED PRECIPITATION
Maximized Total
Storm Precipitation
August 1955
July-August 1958
August 1959
August 1967
August 1971
7.03
4.96
6.82
12.54
9.04
The August 1967 storm resulted in the largest maximized
precipitation amount if it were to occur also in August.
However,snowmelts in August would be negligible compared to
those in late spring and early summer.Therefore,the storm
was assumed to occur in June with a lower maximization
factor,estimated to be 1.4.This provided an average basin
PMP of 8.7 inches above Watana site.The PMP for the basin
above Devil Canyon was computed by adding the sub-basin
between the two sites to 8.8 inches.
(c)Temporal Precipitation Pattern (**)
The August 1967 storm has a duration of 10 days.Daily
distribution of basin average precipitation was computed
using daily storm precipitation observed at stations within
and surrounding the basin.This distribution was used for
PMP.
The daily prec1p1tation amounts were arranged sequentially
so that critical flood conditions are produced at the dam
sites.This was done by assuming that the largest 24-hour
precipitation occurs on the eighth day of the PMP storm.
The second largest occurs on the seventh an third largest on
the ninth day.The entire pattern is shown in the following
table:
TEMPORAL PATTERN OF PMP
Daily Precipitation Rankin gl1 Storm Duration
10 9 8 7 6 4 2 1 3 5
851011
II "1"is largest and "10"is smallest.
F3-4
Daily precipitation was further distributed into 50 percent,
20 percent,15 percent and 15 percent values for each
respective 6-hour period.The 6-hour precipitation was
distributed in ascending order for each day up to the ninth
day,while the ninth and tenth day's 6-hourly precipitation
was distributed in descending order.The following table
gives the 6-hourly distribution pattern for the PMP over the
drainage basin above Watana.
2.3 -Snowmelt Criteria (0)
An analysis of major historical floods indicated that snowmelt
contributes a major part of the floods.Therefore,to insure
adequate snowmelt contribution to the PMF,it was assumed that the
snowpack is unlimited for glacial sub-basins (10 and 210).The
snowpack for other sub-basins was estimated to be large enough to
ensure a substantial residual snowpack during the storm period.The
estimates were based on maximum recorded data at stations in and
around the Susitna basin.The following table gives the estimated
initial snowpack for each sub-basin.
6-HOURLY DISTRIBUTION PATTERN
Day Hour PMP Day Hour PMP Day Hour PMP--
I 6 .00 5 6 .12 9 6 .59
12 .00 12 .12 12 .24
18 .01 18 .16 18 .17
24 .01 24 .40 24 .17
2 6 .04 6 6 .16 10 6 .40
12 .04 12 .16 12 .17
18 .04 18 .21 18 .12
24 .05 24 .54 24 .12
~3 6 .13 7 6 .19
12 .13 12 .19
18 .13 18 .26
24 .13 24 .65
4 6 .10 8 6 .32
12 .32 12 .32
18 .15 18 .43
24 .35 24 1.08
851011 F3-5
INITIAL SNOWPACK FOR PMF
Sub-basin Snowpack Sub-basin Snowpack
10 99 330 33
20 81 340 27
80 35 380 59
180 32 480 57
210 99 580 48
220 62 680 48
280 30
The temperature sequences prior to,during,and after PMP are shown on
Figure F3.33.Temperatures through May are assumed at 32°F to ensure
the snowpack is ripening,but yielding little or no snowmelt runoff;
following that,a sudden increase in temperature is assumed.This
temperature gradient is based on maximum one to seven day temperature
rises observed for the period of records at Anchorage and Talkeetna.
During the PMP storm,the temperatures are lowered.After the most
significant precipitation has fallen,temperatures are increased
again.
2.4 -Occurrence of Snowmelt and PMP Storm (0)
The snowmelt starts on June 3 based on the adapted temperature
sequences (Figure F3.33).The PMP storm is assumed to occur between
June 8 and 17.This provides a 5-day period between start of PMP and
start of snowmelt.This time interval was considered adequate for
combination of floods resulting from PMP and snowmelt.
2.5 -Antecedent Conditions (**)
The amount of soil moisture present at the on-set of PMP and snowmelt
significantly controlled the amount of water available for runoff
including its distribution as surface,subsurface,and and baseflow
components.Relatively moist soil conditions were assumed for each
sub-basin.The following table gives the initial values used for the
model parameters.
2.6 -PMF (***)
The calibrated relationships of the model parameters shown in Figures
F3.11 through F3.17,and the initial values of parameters shown in
the following table,were used to derive the PMF hydrographs at the dam
sites.The resulting inflow peaks are 326,000 cfs for Watana site and
362,000 cfs for Devil Canyon site (without Watana).Figures F3.34 and
F3.35 show the inflow hydrographs at the two sites.
851011 F3-6
INITIAL VALUES OF SSARR MODEL PARAMETERS
Baseflow Runoff
Sub-Soil Infiltration Sub-Base-
Basin Moisture Index Surface Surface Flow
10 8 .03 10 30 60
20 4 .03 10 50 60
80 4 .03 5 10 70
180 4 .03 7 10 108
210 8 .03 10 10 10
220 4 .03 10 10 60
280 4 .03 4 10 70
330 4 .03 18 0 0
340 4 .03 18 20 120
380 4 .03 8 20 130
480 4 .03 16 30 420
580 4 .03 5 10 260
680 4 .03 4 10 140
The U.S.Army Corps of Engineers (COE 1965a)indicates that the
standard project flood (SPF)serves the following primary purposes:
"Represents a 'standard'against which the degree of protection
finally selected for a project may be judged and compared with
protection provided at similar projects in other localities.The
SPF estimate must reflect a generalized analysis of flood
potentialities in a region,as contrasted to an analysis of flood
records at the specific locality that may be misleading because of
the inadequacies of records or abnormal sequences of hydrologic
events during the period of stream flow observation.
Represent the flood discharge that should be selected as the
design flood for the project,or approached as nearly as
practicable in consideration of economic or other governing
limitations,where some small degree of risk can be accepted but
an unusually high degree of protection is justified by hazards to
life and high property values within the area to be protected.
Estimates completed to date indicate that SPF flood discharges
flood discharges are generally equal to 40 to 60 percent of
'maximum probable'floods for the same basins.
The Maximum Probable (or Maximum possible)Flood estimates are
applicable to projects where consideration is to be given to
virtually complete security against potential floods.
Applications of such estimates are usually confined to the
determination of spillway requirements for high dams,but in
unusual cases may constitute the design flood for local protection
works where an exceptionally high degree of protection is
advisable and economically obtainable."
851011 F3-7
Additionally,the same publication goes on to state that:
"Estimates comp1e'ted to date indicate that SPF discharges based on
detailed studies usually equal 50 to 60 percent of the maximum
probable (or 'maximum possible')flood for the same basin;a ratio
of 50 percent is considered representative of average conditions.
Inasmuch as computation of maximum probable flood estimates are
normally required as the basis of design of spillways for high
dams,it is convenient to estimate the SPF for reservoir projects
as equal to 50 percent of the maximum probable flood hydrograph to
avoid the preparation of a separate SPF estimate (see paragraph
1-05 and 3-02 d regarding SPF series).Accordingly,this
convention is acceptable for reservoir projects in general.The
rule may also be applied in estimating SPF hydrographs for basins
outside of the region and range of areas covered by generalized
charts present herein where maximum probable flood estimates based
on detailed hydrometeor logical investigations have been
completed.Where snow melt or extreme ranges in topography are
major factors to be taken into consideration,it is appropriate to
estimate the maximum probable flood hydrograph for the basin by
considering optimum combinations of critical flood-producing
factors and assuming the SPF hydrographs is equal to 50 percent of
the maximum probable discharges.This approximation is based on
the conclusion that critical conditions can be determined from
analyses of meteorological and topographic influences,whereas a
substantial period of hydro-meteorological records are required to
determine appropriate combinations of flood producing factors
meeting SPF specifications."
In accordance with these criteria and criteria presented by the U.S.
Committee on Large Dams (USCOLD 1970)the Watana and Devil Canyon
spillways have been designed to pass the PMF in combination with the
outlet works without overtopping the dams.
Additionally,the 10,000-year flood and the 95 percent one-sided upper
confidence level .have been computed and the capacity of the spillways
and outlet works have been found capable of passing these discharges
without surcharging the reservoir above the 50-year flood pool level.
The 10,000 year flood peak on the Susitna River at Gold Creek and its
95 percent one-sided upper confidence level were estimated to be
190,000 cfs and 270,000 cfs,respectively.The estimates at Watana
damsite are 174,000 cfs and 248,000 and at Devil Canyon damsite are
184,000 cfs and 262,000 cfs.The peak flows at Gold Creek were
estimated from the station record of 34 years.The peaks at the
damsites were estimated by multiplying the Gold Creek values by the
square root of the drainage area ratios.The mean estimates of the
10,000 year flood are greater than 50 percent of the PMF peaks.The 95
percent one-sided upper confidence level values are greater than 70
percent of the PMF peaks.
851011 F3-8
The combined spillway and outlet facility capa~ities at Watana at the
the 50-year flood surcharge pool level during Stages I,II and III are
290,000 cfs,280,000 cfs and 250,000 cfs,respectively.The corre-
sponding capacity at Devil Canyon during Stages II and III is 282,000
cfs.These capacities are far in excess of the mean estimates of the
10,000-year flood,exceed the 95 percent one-sided upper-confidence-
level values and exceed the guidelines of the U.S.Army Corps of Engi-
neers for standard project floods (COE 1965a).Since the spillways
also have the capacity to pass the PMF without overtopping the dam,the
spillway and outlet facilities are considered to have a sufficient
capacity to ensure the safety of the project.
2.7 -Design Floods
(This section deleted)
851011 F3-9
TABLES
TABLE F3.1:COE CALIBRATION RESULTS COMPARISON OF SIMULATED
AND OBSERVED MAXIMUM DAILY DISCHARGE
Observed Simulated Percent
Discharge Date Discharge Date Difference
A Susitna River at Gold Creek
May 19 to June 25,1964 85,900 Jun.7 80,500 Jun.5 -6.3
July 1 to August 31,1967 76,000 Aug.15 78,800 Aug.16 +3.7
May 6 to September 30,1971 66,300 Jun.12 53,000 Jun.11 -20.1
77,700 Aug.10 74,100 Aug.12 -4.6
May 2 to September 30,1972 70,700 Jun.17 60,800 Jun.17 -14.0
26,400 Sep.14 32,300 Sep.15 +22.4
B Susitna River nr.Cantwell
May 19 to June 25,1964 49,100 Jun.7 51,100 Jun.4 -4.1
July 1 to August 31,1967 36,400 Aug.15 36,600 Aug.16 +0.1
May 6 to September 30,1971 24,000 Jun.23 32,600 Jun.23 -35.8
36,000 Aug.9 44,000 Aug.11 +22.2
May 2 to September 30,1972 37,600 Jun.17 37,800 Jun.17 +0.5
21,000 Sep.14 22,800 Sep.15 +8.6
C Susitna River nr.Denali
May 19 to June 25,1964 16,000 Jun.7 17,200 Jun.4 -7.5
July 1 to August 31,1967 No record 16,000 Aug.16
May 6 to September 30,1971 17,600 Jun 27 17,300 Jun.24 -1.7
33,400 Aug.10 31,500 Aug.11 -5.7
May 2 to September 30,1972 14,700 Jun.16 20,300 Jun.17 +38.1
5,690 Sep.13 15,300 Sep.13 +16.9
D Maclaren River nr.Paxson
May 19 to June 25,1964 6,400 Jun.7 6,230 Jun.4 -2.7
July 1 to August 31,1967 7,280 Aug.14 7,290 Aug.15 0
~May 6 to September 30,1971 5,520 Jun.25 5,430 Jun.25 -1.6
8,100 Aug.11 7,980 Aug.12 -1.5
May 2 to September 30,1972 6,680 Jun.16 7,780 Jun.16 -16.5
I
3,980 Sep.13 2,950 Sep.12 -25.9
TABLE F3.2:SUB-BASIN WATERSHED CHARACTERISTICS INPUT FOR SSARR MODEL
Sub-basin Identification
Number 10 20 80 180 210 220 280 330 340 380 480 580 680--------------------------
Drainage area,mi 2 221 694 312 477 44 232 307 48 1047 735 1045 628·345
Number of Surface
Routing Phases 4 4 4 4 3 4 4 3 8 3 4 4 4
Surface Storage Time (hr)6 8 3 3 6 5 3 15 10 3 8 8 8
Number of Sub-Surface
Routing Phases 4 4 4 4 3 4 4 1 8 4 4 4 4
.Sub-Surface Storage Time
(hr)12 20 8 .8 12 20 8 0 48 8 15 15 15
Number of Baseflow Routing
Phases 4 5 5 5 3 5 5 1 8 4 5 5 5
Baseflow Storage Time,24 156 156 156 24 156 156 0 200 96 156 156 156
(hr)
Basef10w Infiltration
Index Time (hr)100 100 100 100 100 75 100 100 100 100 100 100 100
Table No.for PPT vs.KE
(F igure F3 .15)5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001
Table No.QGEN vs.SCA
(Figure F3.16)6004 6006 6006 6006 6004 6006 6006 6006 6006 6006 6006 6006 6006
Table No.for Month vs ETI
(Figure F3.14)4009 4008 4008 4008 4009 4008 4008 4008 4008 4008 4008 4008 4008
Table No.for SMI vs ROP
(Figure F3.H)1015 1018 1018 1018 1015 1018 1018 1022 1021 1018 1020 1020 1020
Table No.for BII vs Efp
(Figure F3.12)2017 2011 2009 2009 2017 2012 2009 2009 2009 2009 2009 2009 2009
Maximum Percent of Runoff
to Baseflow 10 10 9 9 10 10 10 9 9 10 9 9 9
Table No.for RGS vs.RS
(F igure F3 .13)3009 3008 3008 3008 3009 3003 3008 3008 3008 3008 3008 3008 3008
Table No.for QGEN vs
MELTR (Figure F3.17)7011 7005 7010 7010 7009 7005 7010 7010 7010 7010 7005 7005 7005
Rain Freez.Temp.(oF)35 35 35 35 35 35 35 35 35 35 35 35 35
Base Temp.for Degree -
Day (oF)32 32 32 32 32 32 32 32 32 32 32 32 32
Lapse Rate (OF /1000 ft)3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
TABLE F3.3:SUB-BASIN ELEVATION-AREA RELATIONSHIP
Sub-basin 10
Elevation,ft 2800 3000 4000 5000 6000 7000 8000 9000 13,820
!
Percent area below 0 4.5 17.7 35.9 61.1 84.8 96.1 99.8 99.9
Sub-basin 20
Elevation,ft 2440 3000 4000 5000 6000 7000 8000 9000 10,000 13,820
r
Percent area below 0 27.7 53.2 81.3 92.8 97.1 98.4 98.9 99.8 99.9
Sub Basin 80
I Elevation,ft 2370 3000 4000 5000 6000 6100
0 35.9 74.4 97.1 99.7 99.9
I
Sub-basin 180
Elevation,ft 2350 3000 4000 5000 6000 6100
Percent area below 0 35.0 82.0 96.4 96.5 99.9
r
Sub-basin 210
Elevation,ft 3150 4000 5000 6000 7000 8000 8850
Percent area below 0 10.9 24.1 67.2 96.0 99.8 99.9
l Sub-basin 220
Elevation,ft 2860 3000 4000 5000 6000 7000 8000 8850
:I
Percent area below 0 8.2 50.5 80.1 94.9 98.6 99.8 99.9
Sub-basin 280
I
Elevation,ft 2350 3000 4000 5000 5275
Percent area below 0 49.8 96.7 96.8 99.9
Sub-basin 330
I Elevation,ft 2361 2363
I Percent area below 0 99.9
~Sub-basin 340
Elevation,ft 2100 3000 4000 5000 5275
Percent area below 0 68.7 95.2 99.8 99.9
I Sub-basin 380
Elevation,ft 1910 2000 3000 4000 5000 6000 7000 7770
Percent area below 0 2.0 15.6 49.1 78.4 96.0 99.8 99.9
[Sub-basin 480
Elevation,ft 1450 2000 3000 4000 5000 6000 7000 7200
I
Percent area below 0 3.0 27.7 68.3 91.1 98.9 99.8 99.9
Sub-basin 580
I
Elevation,ft 910 1000 2000 3000 4000 5000 6000 6910
Percent area below 0 2.0 8.4 44.1 79.5 96.2 99.8 99.9
Sub-basin 680
I Elevation,ft 677 1000 2000 3000 4000 5000 6000 6018
Percent area below 0 3.2 26.1 51.0 80.9 97.1 99.8 99.9
I
FIGURES
1
!
j
!
I
I
II
~
i
I
MCKINLEY
C PARK
CSUMMIT
TALKEETNA
C
LEGEND
•STREAM GAGING STATION
C PERCIPITATION STATtON
•DAM SITE
_••-RIVER
---WATERSHED DIVIDE
SUSITNA RIVER BASIN
ABOVE GOLD CREEK
.-...,..
Flgur"e F3.1
C
CLEAR WATER
TRIMS CAMP
C
PAXSON
C
GUlKANA
C
•••
TEMPERATURE
EVAPOTRANSPIRATION
oz
§
o
GI:
STREAMFLOW
SSARR WATERSHED MODEL
I
'I
i
r-
I
\
!
'J~
\y-....
I '
I 2920 }'....._/
SUSITNA RIVEA AT GOLD CREEK
.OBSEAVED
6160 SO.M"
POATAGE AND GOLD CAEEIl
LOCAL
345 SO.MI •.
SUSITNA A.AT GOLD CREEK
CALCULATED
TSUSENA AND DEVIL CREEK
LOCAL
521 SQ.MI.
SUSITNA A.HR.DENALI
GLACIAL
221 SO MI.
WATANA AND DEADMAN CAEEK
LOCAL
1045 SQ.FT.
,,_,."...,....0 0
I 2915 '....-
\ I,_.....
SUSITNA A.NR.CANTWELL
OBSERVED
4140 SQ.MI.
OSHElNA
LOCAL
735 SO.MI.
MACLAAEN A.NA.PAXSON
NON -GLACIAL
232 SQ.MI .
...-....",I 2912 \MACLAAEN A.NA.PAXSON..l IOBSEAVED'_...'
LEGENDo 8ASIN OA SU8 BASIN
o COLLECTION "OINT
6.IlESUVOIR
c::::J ROUTING REACH
LAKE LOUISE AND SUSITNA LAKE
48S0.MI.
IlEFERENCE'
u.s.ARMV CORPS Of ENGINEUS INTEIlIM FEASIBILITY
REPOIiT •••711 APPENDIX I "ART I
SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL
-"
Figure F3.3 m
-T~
a
•
-•....
.•j.
.,:
,
......
crt
10 '00.000
'0 10.000
...
·10
,, I!t I'I I I ...
..;"I.'I I:I I I (I I I I .iI.•I •..•.'..,"..0..'I I'!I 0 •I , :i 0. I 0 . .p....II"t "03".'.".J .l:.I .'. • ."'IOOI'Ar.
.':.;..., !.....,,:,....iii .i 0 II :a I:i 11"'I~·I.····"··.~~_....~..:.I.'III~'
. I l'....1 ..1.1........j 0 •I,"1 ;''.s .'I····I.I.p.........."..',.......1 ·1·t·/.•.J..'~'I ..r!}t....,....·!'AI .......';}I.i.;.·~'1~~::~':"•.,!:I::I:·..'..··,''':'fi'··i·,..·;..··..·
.•..•...i.iI '''::;'''''.'~'i':':··,~:~.::.:..i ..:.'~4.I.p••'f0iC..:'\JM"~'J."V'',...........-'.\;,~:...~-~1.\::......
I.I '...r.,i······::.. ; ,.."""i't'j'··f·.,•__..:,........\.\': ' ,:'":li"lt=;:):::...f,:'\.;:;::;.';:'...:',:;;.;::\.!
=.',','"d""l \...•,~",.r-....',,,,V""
I._'....'.'I i:1:.':"",~,1..;;..:,..,.=II l .:~.·~··:·:·I',...!....·:·..I'.:.;.i.i ,.~;~'"jc0 ,...:·'\i'..:....·..,·~.;.I·A!'\'
II fj'~...II'I'.'I :......\..,~"'O'A \ .
p ••,'"·1·•.••,..,.1'.o'.,:I'.,:,I •• .I ......:'I,,'"·..·..1..· .. .. .I :j;,-V"';...:I ;.j.,j.J :.. (I'i ' .i .I.,ill'.I .:.
• I j ;0:"! ;i i :.;.!··j ,..·..l·!·:·:.:.;.:.:..0 :I .,.I !'1."]",,,;,,,1......,....I.I I'I :'i I .~I I I!1 .•1...'.1.:.'......,.....1..·:·1·I :~V:j:i'i.i,:iJ '.iii:Iii (,:'U;:!:.!i·t:,i;:t:!"i;i !i:);.11'i U:;::::
.•,..,:.,".-1';1:1 i ,~,1 .\-1 •1..:··j:r·..J
•,.)••,,'.
...,'.:.·:,~:t ~.;..'1 ;.:!'..~1:.;.;:~;(!.L:/~·;fH;~;~~!;r~~nt;;itHi~J~~~;E~~J;~mtj
I
-..I .."'1'''.
I ~. I I
:..j:;t'::i:';::,:;;;::;\l
,0
I..1 •••.
I'
•;f:;''j,:-:~:''.
1lO.000 ••••";•..
: I
I I
PLOWII;.'I:'::.I I.','.'.. •I":~CII=:SO"c":I'• I I I I I'.".'• I
I.100.'"L lOlS""'~';":'..·;·1 ..···R8 'i III I 0 •·1 •r.•I .I I I I I .I I I 0 ~,~·.l:0 •i 1
.I!I '..;I .•I ;''\11',.r •••.•001.,J.':J"·'·1 ·~..;......II':0 i I!i ":!I 0 :.I :'I ":,
• I I ;.,.I I -"lCI,..,..TIOt-..i
10 1QPOO'···i,,·J·:··:·~··:·.:·~··I···....1-.."I'"",4,,;,"••~..I·.i ..I I I!:'::.
i:'!I"~'~~P·T ..:·:···..,..··::+,..·....:{'I
i1•.000:........... ..,.I I
i -------I \.
\
,\\
;\\...J.
·1.
-I.
..
i 4.
I'!JO
Mi 10
II
.!.!i I.
~
~~.
=
R~fER~NCE:
U S ARMY CORPS Of ENGINEERS INTERIM fEASIBILITY
REPORT.197~APPENOIX I PART I
HYDROGRAPH :SUSITNA RIVER AT GOLD CREEK,1967,1972 Figure F3.4·\l~~[~
/1
2"'.~'1 U'SIIU••1 l""S"t~.2 .llli I a I ~I..'I
•
"'ttl..,.,...
••IIICMI:&
•"I
~::~~.~:.~:~
~fii.;l"i:lI ...,..,.
";::.
;~.~
;.,.
.....
'1'···1·····
, I l'i
.~'..,.·:·..·1
197'
·:.l.,),'I'::!fl!i.:td
.....:.....~......I .I .r....·
;[,••,;:::,;Ii r:d;.,I:~;;E:.·;":'
•"IOn.~.•
..I •
I •
I'
&v(lIt.aCl'I"
..~1'-"lflAn;['."
..~..."/\.1\')1\
\
..V \
.'...",..,....i\
..........I i\."'''',.::,I....i........,.~
0\.0....e'"
10 10._
70 ,<.000
10 ...GOO
10 ...-
~!40 ",GOO
I:>0 IO,GOO
Mw
W
;10 24.000
I
!'0 .I.DOG
=r •'",GOOI
~.1.""".
·1.•
SUSITNA RIVER NEAR CANTWELL 11964.1971 r~~u;re ~?~liliill
f'III(C ..,a.TlOH
1111 1H(It[l
E;}'iJ
I• I
II I·..· '••..III 0
"';;O"l"~~
~...!•..
P\Wtii;;~·..~
M....
".-:l 10
Q
I
~10 .-..
~•I-I=
-10 ""'"
-10
JLo-_
UI
I.-..,......:·u
70 -.......~.......
10 -,.4ZllllO
I:
~40 ",.,..
!10 """"'
HYOROGRAPH
IlUERENCE,
U S.ARIlIY CORPS OF ENGINEERS INTERIY FEASIBILITY
REPORT.197~APPENDIX 1 PARI'I
~T
•
_OR'''"__s
•..:.IT
··:....·....···i ..:·!·~I·,i
I:. :,I I.:':'•.;'io"f.e
l
..
' •"''''''''j'I ."0 '.
:!I ll."IL :......:~i;~i1~ml!!l:!:~,u~i
i I.:;I ;j I:. .
!•I I .,III''
·•.•1·•";tfl -• I ...'.·I:....~.·,.·..~·••r'l ••".I~.I.._,r I ( I I:I I ••
.I'.•I ••i,:I :I :!!.:I 0 '.'•••••••I ..
.~.~.I.!.L ...'!".,.,....•.t .'........•.•....·:..·jl··'i'!j II I 1-"'''''-'"...C'";.V[o''l[.•,'0 0'I':.'-.:.....:.....1.
JIWl_.al:,M '..l.I ;.to..,I II I '.t1-./"'....•......"'1'".'•
.JIJI,:'""'J'0 t···.f'fu~.A/\1~-:rA"
•\;'·"~··lV.·.........~..··{,......':-:-':"';. ·..··1 'J'\.....,
.'....·f .
\~.................,i
.II".........................·i..· .
,'\"j.n ..,.....~j ,..
"....
"•4,000~10..
I
Ii''0 •1.000
=§0 11.000
=,'0 0.000
·10 0
......
C'S
10 IO,GOO S _......
ro Sot.ODO .......
10 •'.000
10 41.000 ..
~
~40z
l;!z:10
.0 ".oo&.....
10 '••000 ;..:
I i
"-"".cn
10 10.000 .,.'fa .'f i'1 ":~li~t:·~..·..•..•·
K r\I'I'-.~~':,.i·...;.;....
MI~'A'IQII'1 I
I41(C..'.I_
.",Hls
o
HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL.1967.1972
·10
REFERENCE:
U ~ARIoIY CORPS 0'ENGI"'EERS INTERI ..FEASIBILITY
REPORT.197~APPENDIX I PART I
10 .1.0')0 ....-..
~!.o 1&.000
f
:so JO.ooo ....
"r .'FUt.Ano~10 14.000 '.....
110 ".000 I"..i...\~.~o
5 ~\V
r •a ,I .
-10 1.000.·····.~.:.......'."
I
I
o !.';;;::;.',":'~...
L;":::~;/
i······
,....,',.;',I I
.,...,....j..;'·i ~....'>
,goIi·.~!~b~,:;,:~:·:i;l
Figure F3.6 •
T-
REfERENCE.
U.S ARMY CORPS Of ENGINEERS INTERIM fEASIBILITY
REPORT,li7S APPENDIX I PART I Figure F3.7 Il~~[~1
IIIICIIIT.,.-_.
oI.II
' II.
.;!
.:I
...."".....
•..tNOCS'
000·
'00
.00
\00
400
.00
100
'00
100
100
0000.'.;=••i
;,r:r
~j ;.:::;
s:-;:...:
•
11000
. :.;.I!!.'''''''''1:I I '.'.CPs •i!.;....:.,....'J .
-~I''J'I'··..··'1'·..'1·.1 '1 ••~T&,~I
• 1 '.,.\.I It;..·.;.•.I ....'I'~.i.':
\•·t·••••.•:•10.I
-.!j ··I,!)'....:l.,.
'IOCO i·~·i·.··..·~·:·..I\}V\Ij\!
I,. I I'......,.•.~.-~:::::·:j:.T.:.i:.i:
14000 ;I : •I .!.0 i I I.. I ..1 .....o.~..:!.I
IQDCD •••,i":"-.-~.I ALGA A"0:•I I I
I[
...'T'~'\'I
I ~I';..',o'f """'..••,,.-:"·:·(:i·.:.f~.:...:.;:<
,........I,I I , , ,
lorD IJ..II:"'!I '..'1'''1.
4000 ··im.i:II .
,..:';"':.:.':'~l;\1';il,
':::(:i'>·i:.::;.I:U.:-'....,....
I'
,.
10
10
J 4'
~z 10:..w
"I."w..
I
~10
:;
0:
I I
=...
·11
HYDROGRAPH SUSITNA RIVER NEAR DENALI,1964,1971
''j"I .
..1 :.•'j'.'.
I I ;
o .,
I'
............1 1 ••1,000
,'-
11.000
10 11.000
•10 ..000
1011._
·10 0 ~AM;=?':~~
n~1!!!1W;f~:
'LOW_ers
I.4Q.OOO
'0 ".000
i 40
-
!SO 000.w
5.0
l!l
.!.
~10
:;
i 0
"~
-r
i':
]:':::'."::;
:.:
...~.:..
..;.....
':...~..
.0.. .
• t ~...'.
~~i.;:)/;;::;:..;.r:n:::"::.:•
.....
11..000
'_.000 '0'
'LDlI'''!...Cl'ilu.....era .._-
10 .0,000 •-."•••••I •.\....·"1 q....il~"U'I •••.~,ltif i~I".I
'0 )&,000 ..~!...............,........1 ....,I .........,.l !.
ao »1.000 ",o'I·••,'J"",/..........!....~./;'i ..,.......~................~.....I..
10 1',000 .-I I .."1'"V'v-J.\/.,..,.........00-""I ,.lJ··...\:I..I ..,o •••-.\..f "....~;.......I
·10 .J:too ....~...
~y .
~
~.
~JO 10.000
"ww"..~
I
!"~
i ·=
REFERENCE.
US ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY
REPORT,1975 APPENDIX I PART I HYDROGRAPH SUSITNA RIVER NEAR DENALI,1972
Figure F3.8:Wi]
I'
~
.1.
:.."
.o:!
,
,.......~....
, •",'.'"~• . L ~~:•I
. .,':,,i"
;..••••1
~"
.1 .
g:~..,,1 ...:.~~g
~..;~;E~~~~:.:...~...
rll!
,
: I
'"..,..
•
'.000
IPOO
1.000
...ClPtr.a....
I •t I • I •..'IN IIItNlI
I;~ii'I I.'\....•cl"~•'.•:'I'"a 1'1 .I·I'l~~~'lli"i1m··j'im II .'I'''c Ii .lI~lll I II\~I ~
I •I ..,)\1\'I.:.~I I"1
•I.:;.,I U·b .'•I :.'I .~
"Ijjlli'I •I •1 ~(~-:"""'."..:_:I~~'''''~~~'.:".''.,.I
f\J /',1 \.,j\'.~:..' .v '"i l \".•
',000 ,rJV.\.(.'J'.~..~t1~..,.,.~rv-...VW,.:
&,000 fi \A..,N U'f\A I \.if ~.IJ~V r\.~..1\1\I \••'.000 t I ",I
•.000
1,000
1.000
'lOW ..
.':Joo
'0
o
to
10
••
10
10
10
10
....
...
ItMCI"''''ICIN.•ft "OCt
Ie . C ,".'a....r~I.I,,,,tOlt--l
I ;,
REFERENCE:~i~~~~,~~RPSA3;[~~'~N'E~~~ER""FEASIBILITY HYDROGRAPH:MACLAREN RIVER NEAR PAXSON,1964,1971 ;'.Figure F3.9
i
!
I
';·1
"
'"
:J.!:I
m:!
.':j
• I,J I."j'"1..,I J It
""rv ..J v II •.J ~'"
/'",--
.···r 'Z0'V I \t."'"c"n:o..,.
:'11
::
......".J II',.,..·....1.!'..,.......,
10 1000
.0 '000
~
i
~40 1000
z:
f O '000
X 10 ."""I
I~SOOO
=0 1000
·10 1000
·10 •
----r
I
I
;.-I
r i:.....
..c-.'.'",........
2~~r .'~,-0II.~+...\.
':::j:..
.J.
..!.,.
..I
!..~..-...:''i'~••.
."...
,"'..I -I I.-•ar,-,'"'I I I I "'!ll ..;:~~oi.:.:.:.:.:."":.. .....Iii pp"'.~r I ~li"--
.........l '• ...••~......,.~,'......,...
,
...J,J\•••....j..r..Ii .•.•.•.
!i I'i .",./,,\..'I:'
..i ..'"...II:,(',.\'.....~...r
V
\.r't'.\:.:;).J'v ~'.(~\.r'\.";~••~
/
"'-.J.V:......-'V···-v:~'......,.\/\....;....N.j·'i ....I V 'oA..1\..........;(7 ~.,ro .... ....."V ;-:,.
......................~.:.:.:::F~:..\.:fA~\....•....•.::.•I-.~./....L...P0\·h··!......•........\0/.~
~.·~·A ..·..·......·..·....·
.\.-....1 X)..
o ~~..::.;::::::::::::::::::::.:::::::~.•
·10
'Let-_en
10 10.000-
'0 IPOO
10 IPOO
10 '.000
40 1.000
10 t.ODO
10 •.000
'0 J.Ooo
0 1.0
"0 '.000
REFEAENCf:HYD 06 APusAAIoIYWAPSOFENGINEERSINTEIlIIoIFEASIBILITYR R H MACLAREN RIVER NEAR PAXSON,1967.1972
REPOAT •197$APPENDIX I PART 1
.........
CIS
10 10",,00 ••I"·"f
'0 IPOD "
10 1.000 ..,
10..
ireD:
~IO
w..
~10
I
~10
~
!ir 0
=-'0 _.000
-to 0
..
Ii ii~:s~.-I ,.~~,"..r;·
~..r:(...u~
.!llL
!.....
MIOl"lATIQIt...",,"u
•0
Figure F3.10
~...,lUi
-----r
15147 8 9 10 II 12 13
SOIL MOISTURE INDEX SMI (INS)
65432
I
I -------111022
.l-.
[\1015
~1~20./
V I,./'1018
,
~/"
~~
-~
~-~----
~~/
I ~l6I~V
~1021
I-~-~-~-----,----I----,.~I-- - -I---I----L t-
I _
10
20
30
00
100
90
0.
~70
80
t-
~60
~
W
0.50
Ito
~40
0:
SSARR MODEL SMI VS Rap Figure F3.11 [Ai]
~
109834567
BII-BASEFLOW INFILTRATION INDEX (INS/DAY)
2
_.--
""'-""l -------------------~---z-----
)2017
~
\
X 2OO9
~"1'0 .....
\011 ~,
'"'""','.....,---....~2012 ;2009--....~.._--------2011,__---.._----~-----=-=.-::..=-...--------------
00
100
10
90
fr:80ID•~
9 70
11..
Wen
~60
~
It 50
oz
~40
11..o
~lOw
U
IX:
~20
SSARR MODEL Sll.VS SF?Figure F3.12 ,;~
--r-
.8
.5
1.2
1.1
1.0
.9
0.0
15 2D
INPUT RATE -RGS (I NS/HR)I.
./V
/l"""
..;'
~3003
/V
,~
I............1\
~1---30r-
03
o .01 .02 .03 .04 .05 .06·.07 .08 .09 .10
INPUT RATE -RGS (INS/HR)I.
II~~I I I I
I
I I
I
I I I 1
I -I
I -
l-I I
I
-
I
I I
I 1
I I t
l.-I
1 1
j I
I I -
l..-
I
-
I I
I--I
I I I -,II I
I I I
I
I I
l--~
T I 1 --I L I 17~,
~
I
--l-
I I I".,..II"j--~~1 V ,/\..I /","tOos
I----j!--),.-
I I·I~v·"--1 _,....I -L..""It--
I l..o'L.-o"-f__+_~'009 Ji-il ,-:J
.10
.0
.02
.12
.11
(/)
0:.08
w
~
0:5 .CH
n.
~
I-D6zwz
~.00
~ou
~.04
t!.
0=
~D3
--0=
:I:
"'-(/)D9~-
SSARR MODEL RGS VS RS
Figure F3.13 ~
987
MONTH
6
.1
.~
.';"-----
r---~--1---,
I 4010 (CDE)I
.4
I I
I I
I I
~4008 (CDE)
3
.-- --.I-- - -----'~;;S~~-4
,.---,.~----...-.
I
~)lD U ~RES)
I
I
I
T
I
I
I
11:-REVISED 4008 (ACRE ~)
--~_-l -----------1-'_-
-----:------r---~::L---
4 5
~
IIJ•
)(
IIJo
~
z
Q
tia:a::en
Z
~
~.2o
Q.
~
IIJ
I
r
I
r
!
[
I
I
I
I
)
1
r
I
Figure F3.14
SSARR MODEL MONTH VS ETI
Figure F3.IS
.6 .8 1.0 1.2 1.4 1.6 .1.8 2.0
PRECIPITATION RATE·PPT lINS/HR)
SSARR MODF.L PPT VS KE
.4.2
\
\
\
1\
~~~~5001
20
o
80
40
60
100
I
~0
. I
lI.l
~
I
en
I
lI.l
3~
z2
I
I-
U~
0lI.la:
lI.l
I
tia:
z
0
)
fia:
Ci:enz
cfa:r b
0.
~
lI.l
I
I
I
t
I
I
100 Q;:'"-..,...--~-...,..----,.--~--.,---~-....,....--.".,,...---~~~OO~
90 \.....-
\"
~,
"
80 t-~,*--+-..3.;;:"'ll:!---1---+--+---+--~--+----1
1\"~70 t---+--T--t---t----::~--+_-_+_-__1--_l_-_+-__...~\-)~,
(I)60 I"THEORETICAL SNOWit---_+_--J;!'\..--..;.I--+I-~':-~+-I-,?~~~~'~~O~g~~~y I
fi:l 50 t---+--~-~r------+---+-~-+----1---+----;'-----I~40 •h;I '\.I
i "'l I '\'!"~~,i3Ot---+---t---+----T--~+---+--........:!l~--+----+-----I'"","\
20 t---t---t---t---+--+------::!l&:.------1I---.....---+---l~i'--....I""10 t----+---t---+----+--+---+-------:----~--4,...------I6006.....~I'
I ~
SSAR R MODEL QGEN vs seA
I
I
r
r
I
I
[
I
I
I
I
I
~
I
1
I
I
I
I
10 20 30 40 50 60 70
ACCUMULATED GENERATED RUNOFF -
%OF SEASONAL TOTAL -QGEN
80 90 100
Figure F3.16 ~
o
/<::
//
7
lOO~
>-------------~-I---....-....
/
V
~V
7009\------./701l~-----
,
\
I
[
I
1
I
[
[
[
I
l
,
I
~
I
.4
a:.3~w
2,
~a:
..J
..J
~.2
~zen
.1
10 20 30 40 50 ~,60 70 80 90
TOTAL SEASONAL ACCUMULATED RUNOFF·QGEN (%)
100
Figure F3.17
SSARR MODEl QGEN VS MELTR
~
I --~T\-\-\---1
I I \
I '\
I I 'I \I \
\
I I \.\,\
" I '
,I \
I \
,:-_..;..-.;,-~-~._~---~--I-"
"I \,I \
,,',\I I \,,,,1 "I I '""\\,,\\,",""i \,,'I/""'....".................J '......,""......J "i
~I
I :I
I I I,.'t ...-------
10
75
10
.5
10
~
50
4ll
8g.4()..
~
~35......
10
~
'\I'.I I i I ~"]I:••:~.~-~
i I Iii
15
10
I
.1
5 SSARR MODEL CALIBRATION
SUSITNA RIVER AT GOLD CREEK 1967 FLOOD
~~~[~:Figure 3.18
o ~!~I !-'..~.~.~.!_'._'__'_1_2__~'1 !!l .~.~.~.~.!_~_1_.!.
DllAWH BY
Q4(0(EOav
DESIGNED BY
~T~
;~I I'I I '------[-1 -~3TI[9_'----'-----J
.._,---I
!
i
I
9 I
-------•!,...,,
I I',I I ,
I :,
I ,
I ,
I 'I \I ,,,
,"/,,,",,.........,".......----~---._--~._-.._.~_._.-......;,~
DATE
272~23211917
,,__.../CALCULATED FLOW
,...
,..,-----...,'",,-".....~,I"'.....,........,'",,"
I)15
~ULY
,,",,',
II975
I I ~-_.-
I I ,-'---".--- -~o
4~
40
~
~30.
~l'
~
~
3...
I~
I()
~
0
I )
I:I.SlGNEOB1
DRAWN 111
CHfO<EDII1
SSARR MODEL CALIBRATION
SUSITNA RIVER NEAR CANTWELL 1967 FLOOD
Figure F3.19 .~l~~(~.!
2
"------,'
24~
.-.··-1
I·
i
I
zo
'LOW
II
,._--.'_.'
12 14 II
Al.GUST
10••42
I
I!",..._../CALCULAltD flOW
,......................or.:--'-..,----
27 2t 51
TIME IDAYI
DATE
211u21IIIII17
~ULY
15
".----~~.......
III71I
10
B
~.•.....
!:!•4
0
It
2
0
I 5
DESIGNED BY
DRAWN BY
CHECIlED 1'1'
SSARR MODEL CALIBRATION
MACLAREN RIVER NEAR PAXSON 1961 FLOOD
Figure F3.20 »
--:::='-~---
Figure F3.24
.rl~~[~
I
i.
I"!\'I II'I'I I'I III1
SSARR MODEL VERIFICATION
SUSITNA RIVER AT GOLD CREEK 1911
I I',,,"I ,
I,,,,,,
I,,,,
I
I,,
I
_."i ~I
I
,)
I --
I '
=-----r---,------"""""--1 i ji--..-~~
f .Il-_----:--_L ~__
IS
10
7:1
10
6:1
&0
:1:1
:lO
~4:1-II>...
~40
~...
!:I
!O
2:1
20
1:1
10
:I
0
DSN
~
CHK
,.~
I~'
L c:..:::»._.
.---'
2
o...
.....
.....
.....
..
..
....
5
....-z~..
,,
I
\''''\
\
\
\
\
\
~........
~
ll!•o
----_._---+-----
f---~.----~---------.+_-
,-...-----------F--~
l i ..
I
I ..
I =I -~
I ~
\
i)
-";;;,
-~I ..._----
_.J.'
]-
/~
\,
,2
o .........
(Nil dl~311d (000 •s..I~I MO,j
"-l I "I"T I"""~I'I'~I I 'IL••=-------~-=~----__h_J
:~: : -r------',...----------...
...J~~(~~
SOl
Figure F3.26
2$I~20
AUGUST
10
O.ITE
SSARR MODEL VERIFICATION
MACLAREN RIVER NEAR PAXSON 1971 FLOOD
o k,...,-":::;:=-('I I I I I I I I l I I I I I I I I I I I I I I
..10 I~20 2~~I ~.-.•------
MAY
2
s
7
•
~~I 1.*1\J-!...l..u
oo •
~
•g 4...
DRAWN BY
OCSO<ED IIV
C>«I([I)IIY
"ib•
\)-
I
I
I
I
)
I
~
r,
CHULITNA -~
-RIVER ,/
LODGE ,J
t
_TALKEETNA
2.:11
~.
-PRECIPITATION LOCATION AND oUIOUNT (lit)
1 :II
-)_ISOtrt£l ISOHYETAL MAP STORM OF JULY 28 -AUGUST 3,1958
•MIlSOIW
•GULIlANA
Qt:l
Figure F3.28 m
\,
@
r,
CHULITN..~
-RIVER ,,/
LOOGE1~
GOLD
CREEK \~.....
/'
~
-PRECIPIT..TION l.OCATION ANa AMOUNT 11M)UO
_s-.ISOIfYET
_SUMMIT
l47
(~
-r .....
(
-~...,_/J
~I
v "\,-.."JV'
,.----1
ISOHYETAL MAP STORM OF AUGUST 19-25,1959
•PAXSON
•GIlL...,...
076
Figure F3.29.Il~~(~
@
r,
C....LITN..,../
RIVER.,,/
LOOGf ,J
t
-5
~:
•PIlECIPfTATlOIt LOCATION ANO AlIOuNT liN I
2.41
-J-ISOHVU
5
~/I
ISOHYETAL MAP STORM OF AUGUST 9-17.1967
•GULIlANA
.54
Figure F3.3D r-------,
~~~(t
c
!~...~
QJI~=t ......:
o...
)
!
I
)-
!
)
I
)
)
I
ISOHYETAL MAP STORM OF JULY 25-31,1980
u.<1t!!2
•PRECIPITATION LOCATION AND AMOUNT 1IN.1Z.41
.....-3-ISOHYET
.!sUMMIT
--~I-
\
\\../-...,,..../
)'
r-/---
f
__-,vI
Figure F3.32 [i~~(~.'
.,,
"Ir-INFLOW
l',
\""'-OUTFLOW
J \.~
~...........
/\
·••·••
1'-=~OUTLET WORKS BEGIN OPERATING
POWERHOUSE OPERATING I
5 10 15 20 25 30 35
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
INJLOW-
"'"'t ~\
ttl \\'-OUTFLOW,\)1\
............INFLOW ~
=OUTFLOW •
\
1\
•'"••••
/~I ...SPILLWAY BEGINS OPERATING
POWERHOUSE SHUTDOWN,...~I I I
~-~POWERH9USE AND
I--"~.OUTLET WORKS OPERATING
x
CI.l
u.200~
w
~160
c:(
:I:
U~120c
<5g 240
o o
40
80
280
360
320
35510 15 20 25 30
TIME (DAYS)
.50 YEAR F·LOOD (JULY-SEPT.)
o o
90
80
70
<5
0 600...
x
CI.l 50u.
~
w
C)
a:40
c:(
:I:
U
CI.l 30c
20
10
G
5 10 15 20 .25 30 35
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
-SPILLWAY BEGINS OPERATIN
rMAX.W.S EI.2017.1
,~,
~J
\NORMAL MAX.
W.S.EI.2000 -,
\~/,il
/,2002
2016
2018
~2014
::2:
t 2012
zo
~2010
>w
Ld 2008
a:
o
~2006
w
CI.lw
a:2004
2000
5 10 15 20 25 30 35 0
TIME (DAYS)
50 YEAR FLOOD (JULY-SEPT.)
,...OUTLETWOR~S BEGIN OPERATING
I,M ~x.W.~;EI.21 11.0
r-\lL
I ~
\
\r NORMAL MAX.
.W.S.EJ.2000,
Ii \.J2000o
2018
1
2016
:J ·2014
1
CI.l
::2:
..,;
u.2012
~z
0
i=2010c:(
>W
...J 2008w
a:
0>2006a:w
CI.lwa:2004
2002
WATANA STAGE I
FLOOD DISCHARGES AND RESERVOIR SURFACE ELEVATIONS
~IGURE F3.3.
35510 15 20 25 30
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
I ~,,-O~TFLOlINFLOW-""""J
I ~,
~•\~,\
~,
:....-~-INFLOW =OUTFLOW
I I I
/SPILLWAY BEGINS
OPERATING
1;1 -
,-I_OUTLET WORKS OPERATING.-/r-
POWERHOUSE NOT OPERATING
I !J
[MAX W.S.EI.1465.6
~-l-
~SPiLLWAYBEGINS
OPERATING
,
\/-NORMAL MAX.
W.S EI.1455.0
J •
1452
1466
320
80
1468
40
280
_240
8o
';;200
enu.
~
w 160
Cla::
<{
::I:120~
c
360
:J 1464
en
~
t 1462
z
~1460
<{
>~1458w
a::
~1456
a::wen
~1454
o
35 0510 15 20 25 30
TIME (DAYS)
50 YEAR FLOOD (JULY-SEPT.)
--
r INFLOW
i
kl,J0UTFLOW
/ \
'\\\
~OUTLET WORKS OPERATING
POWERHOUSE NOT OPERATING
I I I I
-MAX.W.S.EI.1455.6
l-I
~NORMAL MAX.
W.S.EI.1455.0
L-.r-.
o o
90
80
70
0'60
00....
)(50enu.
~
w 40Cla::
<{
::I:
c..J 30en
C
20
10
1468
1466
...J 1464en
~
~u.1462
z
0
i=1460<{
>W
...J 1458w
a::
0>1456a::wenwa::1454
1452
I
I
!
)
i
r
l
1
i
~
I
1450
o 5 10 15 20 25 30
TIME (DAYS)
50YEAR FLOOD (JULY-SEPT.)
1450
35 0 5 10 15 20 25 30 35 .
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
DEVIL CANYON STAGE II
FLOOD DISCHARGES AND RESERVOIR SURFACE ELEVATIONS
FIGURE F3.3S
353010152025
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
5
80 J..----I--1J-i----4-----+-----l-----+-----+---I
i J:I SPILLWAY BEGINS OPERATING1/;1 POWERHOUSE SHUTDOWN
40,.l::!-'>--PO~ERHOUSE AND
~OUTLET WORKS OPERATINGOL--..l--J.....---------.....o
320 J----+--+--N---+--+--+---I
INFLOW-N \.
280 J---+--+---1--Iotr--+----l--~---I~•l···~/;--OUTFLOW..\.•••0"240 J----+_-¥••=---+-+-~.~-+--+_-_I~'vF\\
(I)200 J---+--f+----t---=--+---+--*---+---I~""hINFLOW \~
w =OUTFLOW
~160 J----+--I-+---t---+---\-\-t--+---I
:::t:\~120 J----+_T-+_--+---+---+~\-+_-_I
360 ,....-_-_-..,..--.,..--.,..---,.---.
3551015202530
TIME (DAYS)
50 YEAR FLOOD (JULY·SEPT.)
n
~~INFLOW
\-OUTFLOW
J......,~.~.......•
/\••••;,.l ••:•••!•
~f-OU~LET WORKS BEGIN ~PER1TING
POWERHOUSE OPERATING
o 0
90
80
70
0"600
0...
)(
(I)50
LL.
~
W
~40
0:<:::t:
~30
c
20
10
2202
2200
:::i 2198(I)
I i
:::!
~
LL.2196z
t
0
i=2194<{
>W
-l
)
w 21920:
6>21900:
II
w
(I)
W
0:2188
2186
WATANA STAGE III
'DISCHARGES AND RESERVOIR SURFACE ELEVATIONS
35
fMAX W.S.EI.2199,3
"I -
I
f
I
7 \
"v \NORMAL MAX
W.S.EI.2185 I
~SPIL.:LWA'/I~/BEGiNS
OPERATING
\if
J /
I ,
-'
2184
o -5 10 15 20 25 30
TIME (DAYS)
PROBABLE MAXIMUM FLOOD
2186
2200
2202
a2198
:::!
~
!:!:.2196
zo
~2194
>w
-l
w2192
0:
o
~2190
w
(I)w
0:2188
5 10 15 20 25 30 35
TIME (DAYS)
50 YEAR FLOOD (JULY-SEPT.)
.--OUTLET WORKS BEGIN OPERAJING
I _I I
r-"'MAX.W.S.EI.2191.5
I ~,
/1\\'NORMAL MAX.
W.S.EI.2185
I \\J
I "'--,
2184
o
(f
II
FIGURE F3.36