Loading...
HomeMy WebLinkAboutAPA3440'\j-- f"i-, li---::,- :t ~b t/) !/) It- M [V) BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION APPLICATION FOR LICENSE FOR MAJOR PROJECT .SUSITNA HYDROELECTRIC PROJECT DRAFT LICENSE APPLICATION VOLUME 16 EXHIBIT F SUPPORTING DESIGN REPORT ARLIS .Alaska Resources LIbrary &InfonnatJon Serv A Icesnchorage,Alaska November 1985 TK (1-(1.-5 J S S F471 l1o.s'1LtD r NOTICE A NOTATIONAL SYSTEM HAS BEEN USED TO DENOTE DIFFERENCES BETWEEN THIS AMENDED LICENSE APPLICATION AND THE LICENSE APPLICATION AS ACCEPTED FOR FILING BY FERC ON JULY 29,1983 This system consists of placing one of the following notations beside each text heading: (0)No change was made in this section,it remains the same as was presented in the July 29,1983 License Application (*)Only minor changes,largely of an editorial nature,have been made (**)Major changes have been made in this section (***)This is an entirely new section which did not appear 1n the July 29,1983 License Application I I l < I I VOLUME COMPARISON \ I - ~ I VOLUME NUMBER COMPARISON LICENSE APPLICATION AMENDMENT VS.JULY 29,1983 LICENSE APPLICATION JULY 29,1983 AMENDMENT APPLICATION VOLUME NO.VOLUME NO.EXHIBIT A B C D E CHAPTER Entire Entire App.Bl App.B2 App.B3 Entire Entire App.Dl 1 2 Tables Figures Figures 3 DESCRIPTION Project Description Project Operation and Resource Utilization MAP Model Documentation Report RED Model Documentation Report RED Model Update Proposed Construction Schedule Project Costs and Financing Fuels Pricing General Description of Locale Water Use and Quality Fish,Wildlife and Botanical Resources (Sect.1 and 2) Fish,Wildlife and Botanical Resources (Sect.3). Fish,Wildlife and Botanical Resources (Sect.4,5,6,&7) 1 2 3 4 4 5 5 5 6 6 7 8 9 10 11 1 2 &2A 2B 2C 1 1 1 5A 5A 5A 5B 5B 6A 6B 6A 6B 6A 6B 4 5 6 7 8 9 10 11 Historic &Archaeological Resources 12 Socioeconomic Impacts 12 Geological and Soil Resources 12 Recreational Resources 13 Aesthetic Resources 13 Land Use 13 Alternative Locations,Designs 14 and Energy Sources Agency Consultation 14 7 7 7 8 8 8 9 lOA lOB F F G Entire Entire Entire Project Design Plates Supporting Design Report Project Limits and Land Ownership Plates 15 16 17 3 4 I ) ) I i I I ) ~ SUMMARY TABLE OF CONTENTS SUSITNA HYDROELECTRIC PROJECT LICENSE APPLICATION SUMMARY TABLE OF CONTENTS EXHIBIT A PROJECT DESCRIPTION Title 1 -PROJECT STRUCTURES -WATANA STAGE .I (**)·..·.... Page No. A-I-2 1.1 -General Arrangement (**)··· · A-I-2 1.2 -Dam Embankment (**)··..·A-I-4 1.3 -Diversion (**)··········· ···A-I-6 1.4 -Emergency Release Facilities (**)·····A-I-9 1.5 -Outlet Facilities (**)·····A-I-IO 1.6 -Spillway (**)·······A-I-13 1.7 -This section deleted ····· · ·A-I-I5 1.8 -Power Intake (**)········ · A-I-I5 1.9 -Power Tunnels and Penstocks (**)A-I-18 1.10 -Powerhouse (**)· · · A-I-I9 loll -Tailrace (**)···· ···A-I-22 1.12 -Main Access Plan (**)· ···· ·· · ·A-I-23 1.13 -Site Facilities (**)•· · · ···..A-I-25 1.14 -Relict Channel (***)· · ··A-I-29 2 -RESERVOIR DATA -WATANA STAGE I (**)·..·...·..A-2-1 3 -TURBINES AND GENERATORS -WATANA STAGE I (**)·....A-3-1 3.1 -Unit Capacity (**). 3.2 -Turbines (***)••• 3.3 -Generators (**) 3.4 -Governor System (0) ·.. .· ... A-3-1 A-3-1 A-3-1 A-3-3 4 -APPURTENANT MECHANICAL AND ELECTRICAL EQUIPMENT - WATANA STAGE I (**)••••••••••••••••. .A-4-1 4.1 -Miscellaneous Mechanical Equipment (**) 4.2 -Accessory Electrical Equipment (**) 4.3 -SF6 Gas-Insulated 345 kV Substation (GIS)(***) A-4-1 A-4-5 A-4-12 5 -TRANSMISSION FACILITIES FOR WATANA STAGE I (0) 5.1 -Transmission Requirements (0) 5.2 -Description of Facilities (0) 5.3 -Construction Staging (0)••• ••·..A-5-1 A-5-1 A-5-1 A-5-11 851014 i SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT A PROJECT DESCRIPTION Title 6 -PROJECT STRUCTURES -DEVIL CANYON STAGE II (**)·.. . Page No. A-6-1 6.1 -General Arrangement (**)·· · · · A-6-1 6.2 -Arch Dam (**)· · · · · · · · · A-6-2 6.3 -Saddle Dam (**)· · · · · A-6-4 6.4 -Diversion (**)··· · · · · · ·· · · ·A-6-6 6.5 Outlet Facilities (**)A-6-8 ~-··6.6 Spillway (**)· · · ··· · ·A-6;...10 6.7 -Emergency Spillway · · · · · ··· ·· · ·· · · · A-6-12 (This section deleted) 6.8 -Power Facili ties (*)··· · · · · · · A-6-12 6.9 -Penstocks (**)··· · ·· · · · · ·· · A-6-13 6.10 -Powerhouse and Related Structures (**)A-6-14 6.11 -Tailrace Tunnel (*)·· · · ·· · · · ·A-6-17 6.12 -Access Plan (**)A-6-17 6.13 -Site Facilities (*)··· · · · A-6-18 7 -DEVIL CANYON RESERVOIR STAGE II (*)·•·••· · • •·A-7-1 8 -TURBINES AND GENERATORS -DEVIL CANYON STAGE II (**) 8.1 -Unit Capacity (**)•• 8.2 -Turbines (**)••••. 8.3 -Generators (0)•••••••• 8.4 -Governor System (0)•••• 9 -APPURTENANT EQUIPMENT -DEVIL CANYON STAGE II (0)••·. A-8-1 A-8-1 A-8-1 A-8-1 A-8-2 A-9-1 9.1 -Miscellaneous Mechanical Equipment (0)•• 9.2 -Accessory Electrical Equipment (0)•••••••• 9.3 -Switchyard Structures and Equipment (0)•• A-9-1 A-9-3 A-9-6 10 -TRANSMISSION LINES -DEVIL CANYON STAGE II (**)••·.A-lO-l 11 -PROJECT STRUCTURES·-WATANA STAGE III (***)·••• •·A-11-1 11.1 -General Arrangement (***).· · · · ·· · A-11-1 11.2 -Dam Embankment (***)... .· · · · ···· · · A-11-3 11.3 -Diversion (***).·.. .· · · · · · ···A-11-5 11.4 -Emergency Release Facilities (***)·A-1l-6 851014 ii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT A PROJECT DESCRIPTION Title Page No. 11.5 -Outlet Facilities (***)·· · · · · · · · · A-1l-6 11.6 -Spillway (***).· · · · A-1l-7 11.7 - Power Intake (***)·· · · ··· · · · · A-1l-8 11.8 -Power Tunnel and Penstocks (***)· · · · A-ll-ll 11.9 - Powerhouse (***)· · · · · ··· · ···A-ll-ll 11.10 -Trailrace (***)· · · · A-l1-13 11.11 Access Plan (***)A-ll-13 ~· · · · •11.12 -Site Facilities (***)· ····A-ll-13 11.13 -Relict Channel (***)· · · · A-1l-13 12 -RESERVOIR DATA -WATANA STAGE III (***)· · · •· · • • A-12-1 13 -TURBINES AND GENERATORS -WATANA STAGE III (***)··A-13-1 13.1 Unit Capacity (***).· · · · ··· · · ··A-13-1 13.2 -Turbines (***)· · · · · A-13-1 13.3 -Generators (***)· · ·· · ·· · ··A-13-1 13.4 -Governor System (***)· ·· · · · · · · A-13-1 14 -APPURTENANT MECHANICAL AND ELECTRICAL EQUIPMENT - WATANA STAGE III (***)••••••••••••••••A-14-1 14.1 -Miscellaneous Mechanical Equipment (***) 14.2 Accessory Electrical Equipment (***)•. 15 -TRANSMISSION FACILITIES -WATANA STAGE III (***)· .. A-14-1 A-14-1 A-15-1 15.1 15.2 Transmission Requirements (***)• Switching and ·Substations (***)••.. A-15-1 A-15-1 16 -LANDS OF THE UNITED STATES 17 -REFERENCES 851014 (**) ........... iii ·. . ....... . · ..... A-16-1 A-17-1 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT B PROJECT OPERATION AND RESOURCE UTILIZATION Title 1 -DAMSITE SELECTION (***)• • •..... . ...... . Page No. B-l-l 1.1 -Previous Studies (***).•••• 1.2 -Plan Formulation and Selection Methodology (***). 1.3 -Damsite Selection (***)••••••••• 1.4 -Formulation of Susitna Basin Development Plans (***). • • • • • • 1.5 -Evaluation of Basin Development Plans (***) B-l-l B-1-4 B-1-5 B-l-12 B-l-17 2 -ALTERNATIVE FACILITY DESIGN,PROCESSES AND OPERATIONS (***)..............• • ...B-2-1 2.1 -Susitna Hydroelectric Development (***) 2.2 -Watana Project Formulation (***)••••• 2.3 -Selection of Watana General Arrangement (***) 2.4 -Devil Canyon Project Formulation (***). 2.5 -Selection of Devil Canyon General Arrangement (***)• • • • • . • • • • • • 2.6 -Selection of Access Road Corridor (***) 2.7 -Selection of Transmission Facilities (***). 2.8 -Selection of Project Operation (***) B-2-1 B-2-1 B-2-22 ·B-2-48 B-2-60 B-2-67 B-2-83 B-2-131 3 -DESCRIPTION OF PROJECT OPERATION (***).· . . .....B-3-1 3.1 -Hydrology (***)••••••••• 3.2 -Reservoir Operation Modeling (***) 3.3 -Operational Flow Regime Selection (***) 4 -POWER AND ENERGY PRODUCTION (***)• • •·........ B-3-1 B-3-6 B-3-20 B-4-1 4.1 -Plant and System Operation Requirements (***) 4.2 -Power and Energy Production (***)••. B-4-l B-4-10 5 -STATEMENT OF POWER NEEDS AND UTILIZATION (***)....B-5-1 5.1 -Introduction (***)•••••••.••.• 5.2 -Description of the Railbelt Electric Systems (***) 5.3 -Forecasting Methodology (***)•• 5.4 -Forecast of Electric Power Demand (***) B-5-1 B-5-1 B-5-17 B-5-47 6 FUTURE SUSITNA BASIN DEVELOPMENT (***)·.....B-6-1 7 -REFERENCES 851014 ......... . . . . . . . . ..... iv B-7-1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT B -APPENDIX B1 MAN-IN-THE-ARCTIC PROGRAM (MAP) TECHNICAL DOCUMENTATION REPORT STAGE MODEL (VERSION A85.1) REGIONALIZATION MODEL (VERSION A84.CD) SCENARIO GENERATOR Title Stage Model Introduction • • • • • • • • • • • • • • • • "Economic Module Description •••• Fiscal Module Description • • • • Demographic Module Description • • • • • • Input Variables ••••••••••• Variable and Parameter Name Conventions Parameter Values,Definitions and Sources Model Validation and Properties • • • Input Data Sources • • • • •••• • • Programs for Model Use • • • • • • Model Adjustments for Simulation • Key to Regressions •••••••••• Input Data Archives ••••. • • • • • • Regionalization Model Page No. 1-1 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1 10-1 11-1 12-1 13-1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Model Description • • • • Flow Diagram".• • • • • • • • • Model Inputs • • • Variable and Parameter Names • Parameter Values • Model Validation • • Programs for Model • Model Listing Model Parameters • • • Exogenous,Policy,and Startup Values 1 5 7 9 13 31 38 39 57 61 Scenario Generator Introduction • • • • • • • • • • • • • • • 1.Organization of the Library Archives 2.Using the Scenario Generator •••••••• 3.Creating,Manipulating,Examining,and Printing Library Files • • • • • 4.Model Output ••••••••••• 1 1 8 14 22 851014 v SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT B -APPENDIX B2 RAILBELT ELECTRICITY DEMAND (RED)MODEL TECHNICAL DOCUMENTATION REPORT (1983 VERSION) 8 -THE PROGRAM-INDUCED CONSERVATION MODULE · · .·· 9 -THE MISCELLANEOUS MODULE •·· 10 -LARGE INDUSTRIAL DEMAND · · .···.. 11 -THE PEAK DEMAND MODULE ··.·· 12 -MODEL VALIDATION ·.··.·· 13 -MISCELLANEOUS TABLES · · .· · 6 -THE BUSINESS CONSUMPTION MODULE 3 -UNCERTAINTY MODULE • 4 -THE HOUSING MODULE Page No. 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 . 11.1 12.1 13.1 · . • • •II· . . .. .1 -INTRODUCTION • 5 -THE RESIDENTIAL CONSUMPTION MODULE • Title 2 -OVERVIEW • • 7 -PRICE ELASTICITY • • • • • • • • 851014 vi SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT B -APPENDIX B3 RAILBELT ELECTRICITY DEMAND (RED)MODEL CHANGES MADE JULY 1983 TO AUGUST 1985 2 -RED MODEL PRICE ADJUSTMENT REVISIONS • 6 -EFFECT OF THE MODEL CHANGES ON THE FORECASTS 3 -RESIDENTIAL CONSUMPTION MODULE 4 -BUSINESS SECTOR Page No. l.1 2.1 3.1 4.1 5.1 6.1. .. . . ••o •••oe ...... . . .... ..1 -INTRODUCTION Title 5 -PEAK DEMAND 851014 vii Title SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT C PROPOSED CONSTRUCTION SCHEDULE Page No. 1 -WATANA STAGE I SCHEDULE (**)• • • • • • • • • • • •e C-l-l 1.1 -Access (*).········ ··C-1-2 1.2 -Site Facilities (**)·· · ···· ··· ··· · C-1-2 1.3 -Diversion (**)·· · · ·· · · ··· · · ·C-1-2 1.4 -Dam Embankment (**)···· · C-1-2 -, 1.5 -Spillway and Intakes (**)· · ··· ··· ·· · ·C-1-3 1.6 -Powerhouse and Other Underground Works (**)···C-1-3 1.7 -Relict Channel (**)· · · ·· · · ···C-1-3 1.8 -Transmission Lines/Switchyards (*)····C-1-3 1.9 -General (**)··· ···· ·· · ·····C-1-3 2 -DEVIL CANYON STAGE II SCHEDULE (**)• ••·•·• • C-2-1 2.1 -Access (**)·· · •·C-2-1 2.2 -Site Facilities (**)·· · C-2-1 2.3 -Diversion (*)··· · · C-2-1 2.4 -Arch Dam (**)· ·· · ····· ·· · ·c-2-1 2.5 -spi llway and Intake (*)····C-2-2 2.6 -Powerhouse and Other Underground Works (0)C-2-2 2.7 -Transmission Lines/Switchyards (*)····C-2-2 2.8 -General (*)··· ····C-2-2 3 -WATANA STAGE III SCHEDULE (***)••• ••·• •··• • C-3-1 3.1 -Access (***)C-3-1 3.2 -Site Facilities (***)····C-3-1 3.3 -Dam Embankment (***)··· · · · · ..C-3-1 3.4 -Spillway and Intakes (***)····C-3-2 3.5 -Powerhouse and Other Underground Works (**)·C-3-2 3.6 -Relict Channel (***)·· ·· · ·· · ·C-3-2 3.7 -Transmission Lines/Switchyards (***)· · ··C-3-2 3.8 -General (***)·· · · ···· · · · · · C-3-2 4 -EXISTING TRANSMISSION SYSTEM (***)• •• •·•··• • C-4-1 851014 viii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT D PROJECT COSTS AND FINANCING Title 1 -ESTIMATES OF COST (**)... . . ......... Page No. D-l-l 1.1 Construction Costs (**)•••.••• 1.2 -Mitigation Costs (**)• •••• 1.3 -Engineering and Administration Costs (*)•••• 1.4 -Operation,Maintenance and Replacement Costs (**) 1.5 -Allowance for Funds Used During Construction (AFDC)(**)••••••••• 1.6 -Escalation (**)•.••••.••••••• 1.7 -Cash Flow and Manpower Loading Requirements (**). 1.8 -Contingency (*)..•...••...•..... 1.9 -Previously Constructed Project Facilities (*) D-l-l D-1-6 D-1-7 D-I-I0 D-l-ll D-l-12 D-l-12 D-l-13 D-l-13 2 -EVALUATION OF ALTERNATIVE EXPANSION PLANS (***)....D-2-1 ... 2.1 -General (***)•••.•••.•• 2.2 -Hydroelectric Alternatives (***) 2.3 -Thermal Alternatives (***)•••.• 2.4 -Natural Gas-Fired Options (***)•.••• 2.5 -Coal-Fired Options (***)•••••••••• 2.6 -The Existing Railbelt Systems (***)..•. 2.7 -Generation Expansion Before 1996 (***) 2.8 -Formulation of Expansion Plans Beginning in 1996 (***).•.•.•••.•.•. 2.9 Selection of Expansion Plans (***) 2.10 -Economic Development (***)•.•• 2.11 -Sensitivity Analysis (***)•••.•••• 2.12 -Conclusions (***)••••.••••• D-2-1 D-2-1 D-2-10 D-2-10 D-2-19 D-2-24 D-2-27 D-2-28 D-2-33 D-2-39 D-2-44 D-2-46 3 -CONSEQUENCES OF LICENSE DENIAL (***) 3.1 -Statement and Evaluation of the Consequences of License Denial 3.2 -Future Use of the Damsites if the License is Denied (***) 4 -FINANCING (***)• • • • • • • • • • • · ...... .. (***). · . . ... .·..... ... D-3-1 D-3-1 D-3-1 D-4-1 4.1 -General Approach and Procedures (***) 4.2 -Financing Plan (***)••••• 4.3 -Annual Costs (***)....•••. D-4-1 D-4-1 D-4-3 851014 l.X SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT D PROJECT COSTS AND FINANCING Title 4.4 -Market Value of Power (***)• 4.5 -Rate Stabilization (***) 4.6 -Sensitivity of Analyses (***) .. . .'. . .. . . .. Page No. D-4-4 D-4-4 D-4-4 5 -REFERENCES (***) 851014 .. ................. x D-5-1 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT D -APPENDIX D1 FUELS PRICING .... ... . . ..... . ... Title 1 -INTRODUCTION (***) 2 -WORLD OIL PRICE (***)..• • ..· . ......·.. Page No. 01-1-1 01-2-1 2.1 -The Sherman H.Clark Associates Forecast (***) 2~2 -The Composite Oil Price Forecast (***) 2.3 -The Wharton Forecast (***) 01-2-1 01-2-2 01-2-5 3 -NATURAL GAS (***)• • • • •.. .........·. . 01-3-1 3.1 -Cook Inlet Gas Prices (***)·.. .·01-3-1 3.2 -Regulatory Constraints on the AvailabiE ty of Natural Gas (***). . . . .·...·.. .·01-3-10 3.3 -Physical Constraints on the Availability of Cook Inlet Natural Gas Supply (**"k)·.·..01-3-12 3.4 -North Slope Natural Gas (***)·.01-3-20 4 -COAL (***).. ...... ........ ....01-4-1 4.1 -Resources and Reserves (***)••• 4.2 -Oemand and Supply (***)•.• 4.3 -Present and Potential Alaska Coal Prices (***) 4.4 -Alaska Coal Prices Summarized (***) 01-4-1 01-4-3 01-4-4 01-4-10 5 -DISTILLATE OIL (***).............. ...01-5-1 5.1 -Availability (***)•••••• 5.2 -Oistillate Price (***) 01-5-1 01-5-1 6 -REFERENCES 851014 . . . ........ . ..... ..... xi 01-6-1 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 1 GENERAL DESCRIPTION OF THE LOCALE Title 1 -GENERAL DESCRIPTION (*)•••e • • • • • • •.. Page No. E-1-1-1 1.1 -General Setting (**) 1.2 -Susitna Basin (*) .. . .. ..E-1-1-1 E-1-1-2 ••••.0.• • •0 • • • • 0 • • • •2 -REFERENCES 3 -GLOSSARY •• 851014 ............ xii ....0..~e E-1-2-1 E-l--3-1 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 2 WATER USE AND QUALITY 2 -BASELINE DESCRIPTION (**)• •... . ·. . Title 1 -INTRODUCTION (**)• • • •... .. ·.• • ·. ·. ·.. ·.. Page No. E-2-1-1 E-2-2-1 2.1 -Susitna River Morphology (**).···.E-2-2-3 2.2 -Susitna River Water Quantity (**)'.E-2-2-12 ~ 2.3 -Susitna River Water Quality (**).E-2-2-19 2.4 -Baseline Ground Water Conditions (**)E-2-2-46 2.5 -Existing Lakes)Reservoirs)and Streams (**)E-2-2-49 2.6 -Existing Instream Flow Uses (0)··· · ·.·. .E-2-2-50 2.7 -Access Plan (**)... . .····E-2-2-63 2.8 -Transmission Corridor (**).·· · ·E-2-2-64 3 -OPERATIONAL FLOW REGIME SELECTION (***)•••·..E-2-3-1 3.1 -Project Reservoir Characteristics (***) 3.2 -Reservoir Operation Modeling (***)•. 3.3 -Development of Alternative Environmental Flow Cases (***)•••.•.••••••. 3.4 -Detailed Discussion of Flow Cases (***). 3.5 -Comparison of Alternative Flow Regimes (***). 3.6 -Other Constraints on Project Operation (***) 3.7 -Power and Energy Production (***)••... E-2-3-1 E-2-3-2 E-2-3-6 E-2-3-17 E-2-3-37 E-2-3-43 E-2-3-53 4 -PROJECT IMPACT ON WATER QUALITY AND QUANTITY (**)·. . E-2-4-1 4.1 -Watana Development (**)••...•..•• 4.2 -Devil Canyon Development (**). . • • 4.3 -Watana Stage III Development (***)•••••• 4.4 -Access Plan (**)••••.• 5 -AGENCY CONCERNS AND RECOMMENDATIONS (**)·.... E-2-4-7 E-2-4-110 E-2-4-160 E-2-4-211 E-2-S-1 6 -MITIGATION,ENHANCEMENT,AND PROTECTIVE MEASURES (**)• 6.1 -Introduction (*)•••••••••.•.•••• 6.2 -Mitigation -Watana Stage I -Construction (**) 6.3 -Mitigation -Watana Stage I -Impoundment (**). E-2-6-1 E-2-6-1 E-2-6-1 E-2-6-5 851014 xiii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 2 WATER USE AND QUALITY Title Page No. 6.4 -Watana Stage I Operation (**)• • . • • 6.5 -Mitigation -Devil Canyon Stage II - Construction (**)• • • • • • • 6.6 -Mitigation -Devil Canyon Stage II - Impoundment (**)••••• • • • 6.7 -Mitigation -Devil Canyon/Watana Operation (**) 6.8 -Mitigation -Watana Stage III - Construction (***)••••••• 6.9 -Mitigation -Watana Stage III - Impoundment/Construction (***)• • . • 6.10 -Mitigation -Stage III Operation (***) 6.11 -Access Road and Transmission Lines (***)r ••• 7 -REFERENCES 8 -GLOSSARY 851014 • • • 0 • • • ••• • • • • • • • • • •0 D .................. .... . xiv E-2-6-7 E-2-6-13 E-2-6-13 E-2-6-13 E-2-6-15 E-2-6-16 E-2-6-16 E-2-6-18 E-2-7-1 E-2-8-1 I f I-- I , I I I SUMMARY TABLE OF CONTENTS (cant'd) EXHIBIT E -CHAPTER 3 FISH,WILDLIFE,AND BOTANICAL RESOURCES Title ;page No. 1 -INTRODUCTION (0)E-3-1-1 1.1 -Baseline Descriptions (0)• 1.2 -Impact Assessments (*) 1.3 -Mitigation Plans (*) 2 -FiSH RESOURCES OF THE SUSITNA RIVER DRAINAGE (**)•.. E-3-1-1 E-3-1-1 E-3-1-3 E-3-2-1 2.1 -Overview of the Resources (**)••••.•••• 2.2 -Species Biology and Habitat Utilization in the Susitna River Drainage (*)• . . 2.3 -Anticipated Impacts To Aquatic Habitat (**)••• 2.4 -Mitigation Issues and Mitigating Measures (**) 2.5 -Aquatic Studies Program (*)• ••••. 2.6 -Monitoring Studies (**)•••••••••• 2.7 -Cost of Mitigation (***)••••••••• 2.S -AgeIlcY'Consultation on_Fisheries Mitigation Measures (**)• • •••• • E-3-2-1 E-3-2-14 E-3-2-104 E-3-2-244 E-3-2-279 E-3-2-280 E-3-2-303 E-3-2-304 3 -BOTANICAL RESOURCES (**)...............E-3-3-1 3.1 -Introduction (*)•••••• 3.2 -Baseline Description (**)• 3.3 -Impacts (**)•••••••••• 3.4 -Mitigation Plan (**)••••••••• 4 -WILDLIFE (**)••••...•••........... E-3-3-1 E-3-3-6 E-3-3-34 E-3-3-63 E-3-4-1 E-3-4-1 E-3-4-3 E-3-4-110 E-3-4-248 E-3-5-1 E-3-5-1 E-3-5-1 E-3-5-2 E-3-5-3 ...... . . ... ... ... 5.1 -Introduction (***) 5.2 -Existing Conditions (***)• 5.3 -Expected Air Pollutant Emissions (***). 5.4 -Predicted Air Quality Impacts (***)•• 4.1 -Introduction (*)•.•• 4.2 -Baseline Description (**) 4.3 -Impacts (*).• 4.4 -Mitigation Plan (**) 5 -AIR QUALITY/METEOROLOGY (***)• L I 851014 xv SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 3 FISH,WILDLIFE,AND BOTANICAL RESOURCES Title 5.5 -Regulatory Agency Consultations (***)• Page No. E-3-5-3 6 -REFERENCE . ..... .......E-3-6-1 7 -GLOSSARY APPENDICES E1.3 E2.3 ......... .............. FISH AND WILDLIFE MITIGATION POLICY ENVIRONMENTAL GUIDELINES MEMORANDUM (THIS APPENDIX HAS BEEN DELETED) E-3-7-1 E3.3 E4.3 E5.3 E6.3 E7.3 E8.3 E9.3 E10.3 E11.3 851014 PLANT SPECIES IDENTIFIED IN SUMMERS OF 1980 AND 1981 IN THE UPPER AND MIDDLE SUSITNA RIVER BASIN,THE DOWNSTREAM FLOODPLAIN,AND THE INTERTIE PRELIMINARY LIST OF PLANT SPECIES IN THE INTERTIE AREA (THIS SECTION HAS BEEN DELETED AND ITS INFORMATION INCORPORATED INTO APPENDIX E3.3.) STATUS,HABITAT USE AND RELATIVE ABUNDANCE OF BIRD SPECIES IN THE MIDDLE SUSITNA BASIN STATUS AND RELATIVE ABUNDANCE OF BIRD SPECIES OBSERVED ON THE LOWER SUSITNA BASIN DURING GROUND SURVEYS CONDUCTED JUNE 10 THE JUNE 20,1982 SCIENTIFIC NAMES OF MAMMAL SPECIES FOUND IN THE PROJECT AREA METHODS USED TO DETERMINE MOOSE BROWSE UTILIZATION AND CARRYING CAPACITY WITHIN THE MIDDLE SUSITNA BASIN EXPLANATION AND JUSTIFICATION OF ARTIFICIAL NEST MITIGATION (THIS SECTION HAS BEEN DELETED) PERSONAL COMMUNICATIONS (THIS SECTION HAS BEEN DELETED) EXISTING AIR QUALITY AND METEOROLOGICAL CONDITIONS xvi SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 4 HISTORIC AND ARCHEOLOGICAL RESOURCES Title Page No. 4.1 -Mitigation Policy and Approach (**)••••• 4.2 -Mitigation Plan (**)••••.•.• 3.1 -Evaluation of Selected Sites Found: Prehistory and History of the Middle Susitna Region (**)• • • . • • • • • • • • • • • 3.2 -Impact on Historic and Archeological Sites (**)• ................... .. • • • • • • • • •e·• • • • • • • • • • • • E-4-2-1 E-4-2-2 E-4-2-10 E-4-2-1 E-4-1-1 E-4-1-4 E-4-1-4 E-4-3-1 E-4-2-12 E-4-2-13 E-4-3-1 E-4-3-4 E-4-4-1 E-4-5-1 E-4-6-1 E-4-7-1 E-4-4-1 E-4-4-2 ... ••••• .. • •• •••• ••• • • ••• • • • • • • • 0 • • .... . .. • • ............... 1.1 -Program Objectives (**) 1.2 -Program Specifics (**) 2.1 -The Study Area (**).J •• 2.2 -Methods -Archeology and History (**) 2.3 -Methods -Geoarcheology (**) 2.4 -Known Archeological and Historic Sites in the Project Area (**)••• 2.5 -Geoarcheology (**)•••••••• 1 -INTRODUCTION AND SUMMARY (**)• 2 -BASELINE DESCRIPTION (**)• 3 -EVALUATION OF AND IMPACT ON HISTORICAL AND ARCHEOLOGICAL SITES (**)••••• 5 -AGENCY CONSULTATION (**) 7 -GLOSSARY 4 -MITIGATION OF IMPACT ON HISTORIC AND ARCHEOLOGICAL SITES(**)••••••• 6 -REFERENCES I I I r I I I I [ I ( [ I 1_' 851014 xvii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 5 SOCIOECONOMIC IMPACTS Title 1 -INTRODUCTION (**)• • • • • ......2 BASELINE DESCRIPTION (**)• . . .. • • .. 00. • • ••• •f)•• Page No. E-5-l-1 E-5-2-1 2.1 -Identification of Socioeconomic Impact Areas (**)• • • . • • • • • • • • • • • •E-5-2-1 2~2 -Description of Employment,Population,Personal Income and Other Trends in the Impact Areas (**)E-5-2-1 3 -EVALUATION OF THE IMPACT OF THE PROJECT (**)•••e .•E-5-3-1 E-5-3-2 E-5-3-49 E-5-3-35 E-5-3-65 E-5-3-39 E-5-3-32 E-5-4-1 E-5-3-59 •••... . . . .......• • ... 3.1 -Impact of In-migration of People on Governmental Fad 1i ties and Services (**)•••••••••• 3.2 -On-site Worker Requirements and Payroll, by Year and Month (**)••••••••••••• 3.3 -Residency and Movement of Project Construction Personnel (**)• • • •• • . • 3.4 -Adequacy of Available Housing in Impac t Area s (***)•••••••• 3.5 -Displacement and Influences on Residences and Businesses (**)•••.••••.••.• 3.6 -Fiscal Impact Analysis:Evaluation of Incremental Local Government Expenditures and Revenues (**)• • • • • • 3.7 -Local and Regional Impacts on Resource User Groups (**)• 4 -MITIGATION (**)• • 4.1 4.2 4.3 4.4 -Introduction (**) -Background and Approach (**) -Attitudes Toward Changes • • • • • • • • (This section deleted) -Mitigation Objectives and Measures (**) E-5-4-1 E-5-4-1 E-5-4-2 E-5-4-2 851014 xviii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 5 SOCIOECONOMIC IMPACTS Title 5 -MITIGATION MEASURES RECOMMENDED BY AGENCIES(**).... Page No. E-5-5-1 5.1 -Alaska Department of Natural Resources (DNR)(**) 5.2 -Alaska Department of Fish and Game (ADF&G)(*) 5.3 -u.s.Fish and Wildlife Service (FWS)(*) 5.4 -Summary of Agencies'Suggestions for Further Studies that Relate to Mitigation (**) E-5-5-l E-5-5-1 E-5-5-2 E-5-5-2 l 6 -REFERENCES 851014 ...................... xix E-6-6-1 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 6 GEOLOGICAL AND SOIL RESOURCES Title 1 -INTRODUCTION (**) Page No. E-6-1-1 2 -BASELINE DESCRIPTION (*)•..•it •e • • •·.·...E-6-2-1 o • • • 2.1 -Regional Geology (*)••••. 2.2 -Quarternary Geology (*) 2~3 -Mineral Resources (0)•••••• 2.4 -Seismic Geology (*)•• 2.5 -Watana Damsite (**)•••••• 2.6 -Devil Canyon Damsite (0) 2.7 -Reservoir Geology (*)••••••••• • 0 • • • · . . . . ·. . E-6-2-1 E-6-2-2 E-6-2-3 E-6-2-4 E-6-2-11 E-6-2-17 E-6-2-23 3.1 -Reservoir-Induced Seismicity (RIS)(*) 3.2 -S~epage (*)•••.••••.•••• 3.3 -Reservoir Slope Failures (**)••• 3.4 -Permafrost Thaw (*)•••••• 3.5 -Seismically-Induced Failure (*) 3.6 -Reservoir Freeboard for Wind Waves (**)••••• 3.7 -Development of Borrow Sites and Quarries (**) 3 -IMPACTS (*)• •••• •••• ••·.·..'.••• ••E-6-3-1 E-6-3-1 E-6-3-4 E-6-3-4 E-6-3-11 E-6-3-11 -E-6-3-11 E-6-3-12 t- 4 -MITIGATION (**)•.....·.....· ....·..E-6-4-1 4.1 -Impacts and Hazards (0)· ··· ··E-6-4-1 4.2 -Reservoir-Induced Seismicity (0)···· · ···E-6-4-1 4.3 -Seepage (**)•·. .· ··· · · E-6-4-2 I I 4.4 -Reservoir Slope Failures (**)··· · ·E-6-4-2 I 4.5 -Permafrost Thaw (**)· ··E-6-4-3 4.6 -Seismically-Induced Failure (*)··· · E-6-4-3- I4.7 -Geologic Hazards (*)·· ··· ····E-6-4-4 4.8 -Borrow and Quarry Sites (*)E-6-4-4 5 -REFERENCES • • • •••·•..• •·• •• • •·•·E-6-5-1 6 -GLOSSARY . .•.••• ••·• •·• •· · ..· · •E-6-6-1 851014 xx SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 7 RECREATIONAL RESOURCES Title I -INTRODUCTION (**)•. ......... Page No. E-7-1-1 1.1 -Purpose (**).•. 1.2 -Relationships to Other Reports (*) 1.3 -Study Approach and Methodology (**)•. 1.4 -Project Description (**)•.••••• 2 -DESCRIPTION OF EXISTING AND FUTURE RECREATION WITHOUT THE SUSITNA PROJECT (**)•••• ·.. ·. . . . ·. . .. E-7-1-1 E-7-1-1 E-7-1-1 E-7-1-3 E-7-2-1 2.1 -Statewide and Regional Setting (**)• 2.2 -Susitna River Basin (**)•••.••....E-7-2-1 E-7-2-8 3 -PROJECT IMPACTS ON EXISTING RECREATION (**)•·....E-7-3-1 3.1 -Direct Impacts of Project Features (**) 3.2 -Project Recreational Demand Assessment (Moved to Appendix E4.7) E-7-3-1 E-7-3-12 4 -FACTORS INFLUENCING THE RECREATION PLAN (**)·. . ..E-7-4-1 E-7-4-1 E-7-4-2 E-7-4-2 E-7-5-1 E-7-4-3 E-7-4-12 E-7-4-13 E-7-5-4 E-7-6-1 E-7-5-1 E-7-5-2 E-7-5-4 .. . .. .......... . . ................ 5.1 -Recreation Plan Management Concept (***) 5.2 -Recreation Plan Guidelines (***).••• 5.3 -Recreational Opportunity Evaluation (Moved to Appendix E3.7.3) 5.4 -The Recreation Plan (**)••• 4.1 -Characteristics of the Project Design and Operation (***)•.••••.•.•••• 4.2 -Characteristics of the Study Area (***)••••• 4.3 -Recreation Use Patterns and Demand (***)•••• 4.4 -Agency,Landowner and Applicant Plans and Policies (***).•.••••••••••• 4.5 -Public Interest (***)•••.•.•••. 4.6 -Mitigation of Recreation Use Impacts (***) 6 -PLAN IMPLEMENTATION (**) 5 -RECREATION PLAN (**) I I I \ I I \--- 851014 xxi SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 7 RECREATIONAL RESOURCES •• Title 6.1 -Phasing (**)••••••••••• 6.2 -Detailed Recreation Design (***) 6.3 -Operation and Maintenance (***) 6.4 -Monitoring (**)•••.••••• 7 -COSTS FOR CONSTRUCTION AND OPERATION OF THE PROPOSED RECREATION FACILITIES (**)•••••••••••• 7.1 -Construction (**)• •••••• 7.2 -Operations and Maintenance (**)•••• 7.3 -Monitoring (***)•••••••••• Page No. E-7-6-1 E-7-6-1 E-7-6-2 E-7-6-3 E-7-7-1 E-7-7-1 E-7-7-1 E-7-7-2 8 -AGENCY COORDINATION (**)...............E-7-8-1 8.1 -Agencies and Persons Consulted (**)• 8.2 -Agency Comments (**). 8.3 -Native Corporation Comments (***) 8.4 -Consultation Meetings (***)• E-7-8-1 E-7-8-1 E-7-8-1 E-7-8-2 9 -REFERENCES . ........ . ..... .......E-7-9-1 10 -GLOSSARY APPENDICES ...............• • ••E-7-10-1 E1.7 E2.7 E3.7 E4.7 E5.7 E6.7 851014 DATA ON REGIONAL RECREATION FACILITIES ATTRACTIVE FEATURES -INVENTORY DATA RECREATION SITE INVENTORY AND OPPORTUNITY EVALUATION PROJECT RECREATIONAL DEMAND ASSESSMENT EXAMPLES OF TYPICAL RECREATION FACILITY DESIGN STANDARDS FOR THE SUSITNA PROJECT PHOTOGRAPHS OF SITES WITHIN THE PROJECT RECREATION STUDY AREA xxii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER B AESTHETIC RESOURCES ·...... .... . ..... . ... ............ 1.1 -Purpose (*)•••• .••• 1.2 -Relationship to Other Analyses (*) 1.3 -Environmental Setting (**) 4 -PROJECT FACILITIES (*) E-B-2-1 E-8-4-1 Page No. E-B-l-l E-8-3-1 E-B-l-1 E-B-l-l E-8-l-1 00. ... e 0 ·.·..·.....• • ·......... .. ••1 -INTRODUCTION (**)• Title 2 -PROCEDURE (*)0 0 • • 3 -STUDY OBJECTIVES (*) 1 I 1 ! 4.1 -Watana Project Area (*)••••. 4.2 -Devil Canyon Project Area (*)...•. 4.3 -Watana Stage III Project Area (***) 4.4 -Denali Highway to Watana Dam Access Road (*) 4.5 -Watana Dam to Devil Canyon Dam Access Road (*) 4.6 -Tr&nsmission Lines (*).... 4.7 Intertie .•.......••.•.. (This section deleted) 4.8 -Recreation Facilities and Features (*) E-8-4-1 E-8-4-1 E-8-4-1 E-8-4-1 E-8-4-2 E-8-4-2 E-8-4-2 E-8-4-2 5 -EXISTING LANDSCAPE (**)0 •••••· ....• • • 0 •E-8-5-1 5.1 -Landscape Character Types (*) 5.2 -Notable Natural Features (**)·. ... . E-8-5-1 E-8-5-1 6 -VIEWS (**)0 0 0 0 ••0 •·•. .·•·0 • • 0 0 •0 E-8-6-1 6.1 -Viewers (***)··E-8-6-1 6.2 -Visibility (***)·. .·· · .·E-8-6-1 7 -AESTHETIC EVALUATION RATINGS (**)••0 0 • • 0 • • E-8-7-1 7.1 -Aesthetic Value Rating (*)••••. 7.2 -Absorption Capability (*) 7.3 -Composite Ratings (**)••••· .. .. . E-8-7-1 E-8-7-1 E-8-7-2 ! L I 851014 xxiii SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 8 AESTHETIC RESOURCES Title 8 -AESTHETIC IMPACTS (**)................ Page No. E-8-8-1 8.1 -Mitigation Planning of Incompatible Aesthetic Impacts (Now addressed in Section 9) 8.2 -Watana Stage I (***)••••• 8.3 Devil Canyon Stage II (***)• • • • • • • • • 8.4 Watana Stage III (***)• • • • 8.5 -Access Routes (***)•••••••••• 8.6 -Transmission Facilities (***)••• E-8-8-1 E-8-8-2 E-8-8-3 E-8-8-4 E-8-8-5 E-8-8-6 9 -MITIGATION (**)• • • • • • •·.. ..........E-8-9-1 9.1 -Mitigation Feasibility (**)·· · ·· ·· · · E-8-9-1 9.2 -Mitigation Plan (***)· · .· · · · · ···E-8-9-2 9.3 -Mitigation Costs (**)··.·· · ·· · · ..E-8-9-11 9.4 -Mitigation Monitoring (***)······E-8-9-12 10 -AESTHETIC IMPACT EVALUATION OF THE INTERTIE (This Section Delected) •••••E-8-10-1 11 -AGENCY COORDINATION (**)•·.. ..·...••·..E-8-11-1 11.1 -Agencies and Persons Consulted (**) 11.2 -Agency Comments (**) E-8-11-1 E-8-11-1 .... ...............12 -REFERENCE~• 13 -GLOSSARY • • APPENDICES ..••....••· ..••••••• • E-8-12-1 E-8-13-1 E1.8 E2.8 E3.8 E4.8 851014 EXCEPTIONAL NATURAL FEATURES SITE PHOTOS WITH SIMULATIONS OF PROJECT FACILITIES ' PHOTOS OF PROPOSED PROJECT FACILITIES SITES EXAMPLES OF EXISTING AESTHETIC IMPACTS XX1V SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 8 AESTHETIC RESOURCES Title APPENDICES (cont'd) Page No. , I I I L I E5.8 E6.8 E7.8 E8.8 E9.8 851014 EXAMPLES OF RESERVOIR EDGE CONDITIONS SIMILAR TO THOSE ANTICIPATED AT WATANA AND DEVIL CANYON DAMS PROJECT FEATURES IMPACTS AND CHARTS GENERAL AESTHETIC MITIGATION MEASURES APPLICABLE TO THE PROPOSED PROJECT LANDSCAPE CHARACTER TYPES OF THE PROJECT AREA AESTHETIC VALUE AND ABSORPTION CAPABILITY RATINGS xxv SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 9 LAND USE Title 1 -INTRODUCTION (***).. .. .. .. .... ...... ..•......... Page No. E-9-1-1 2 -HISTORICAL AND PRESENT LAND USE (***)E-9-2-1 • • • • • •e e • • • • •.0. 4 -IMPACTS ON LAND USE WITH AND WITHOUT THE PROJECT (***)0 ...... ~(~)• • • • • • • • • • • • 0 • • 3 -LAND MANAGEMENT PLANNING IN THE PROJECT I ( r I- I E-9-4-1 E-9-3-1 E-9-6-1 E-9-5-1 E-9-2-1 E-9-2-1 .. .. .......... ••••• •• .......... •e _ • ....o ....• • • • .... .. 2.1 -Historical Land Use (***) 2.2 -Present Land Use (***) 5-MITIGATION (***).. 6 -REFERENCES 851014 xxv~ SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 10 ALTERNATIVE LOCATIONS,DESIGNS,AND ENERGY SOURCES Title Page No. 1 -ALTERNATIVE HYDROELECTRIC SITES (*)• • • • • • • • 1.1 -Non-Susitna Hydroelectric Alternatives (*) 1.2 -Assessment of Selected Alternative Hydroelectric Sites (***)••.••. 1.3 -Middle Susitna Basin Hydroelectric Alternatives (0)•••••••• 1.4 -Overall Comparison of Non-Susitna Hydroelectric Alternatives to the Proposed Susitna Project (***) • • E-lO-l-l E-I0-l-l E-I0-1-2 E-I0-1-17 E-1O-1-32 2 -ALTERNATIVE FACILITY DESIGNS (*)...........E-1O-2-1 2.1 -Watana Facility Design Alternatives (*) 2.2 -Devil Canyon Facility Design Alternatives (0) 2.3 -Access Alternatives (0)••• 2.4 -Transmission Alternatives (0) 2.5 -Borrow Site Alternatives (**) E-I0-2-1 E-1O-2-3 E-I0-2-4 E-I0-2-24 E-I0-2-53 3 -OPERATIONAL FLOW REGIME SELECTION (***)•.....E-I0-3-1 3.1 -Project Reservoir Characteristics (***)•. 3.2 -Reservoir Operation Modeling (***) 3.3 -Development of Alternative Environmental Flow Cases (***)•••••••••••••• 3.4 -Detailed Discussion of Flow Cases (***)• • . • • 3.5 -Comparison of Alternative Flow Regimes (***) 3.6 -Other Constraints on Project Operation (***) 3.7 -Power and Energy Production (***)•••••• 4 -ALTERNATIVE ELECTRICAL ENERGY SOURCES (***)• E-I0-3-1 E-I0-3-2 E-1O-3-6 E-I0-3-l7 E-I0-3-38 E-1O-3-43 E-I0-3-53 E-I0-4-1 I L 4.1 4.2 4.3 4.4 4.5 4.6 851014 -Coal-Fired Generation Alternatives (***) -Thermal Alternatives Other Than Coal (***) -Tidal Power Alternatives (***)•••• -Nuclear Steam Electric Generation (***) -Biomass Power Alternatives (***) -Geothermal Power Alternatives (***)•. xxvii E-lO-4-1 E-lO-4-27 E-lO-4-39 E-lO-4-41 E-lO-4-42 E-lO-4-42 SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 10 ALTERNATIVE LOCATIONS,DESIGNS,AND ENERGY SOURCES Title 4.7 -Wind Conversion Alternatives (***)•• 4.8 -Solar Energy Alternatives (***)•••• 4.9 -Conservation Alternatives (***)•. 5 -ENVIRONMENTAL CONSEQUENCES OF LICENSE DENIAL (***) Page No. E-lO-4-43 E-IO-4-44 E-IO-4-44 E-IO-5-1 6 -REFERENCES 7 -GLOSSARY 851014 • • • • • • • • • • • • • • •~G • •• • • • • • • • • • • • • • • • • • • •0 e •G xxviii E-IO-6-1 E-IO-7-1 I I SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT E -CHAPTER 11 AGENCY CONSULTATION Title Page No. 1 -ACTIVITIES PRIOR TO FILING THE INITIAL APPLICATION (1980-February 1983)(***). . ...... . E-11-1-1 2~1 Technical Workshops (***) 2.2 -Ongoing Consultation (***) 2.3 -Further Comments and Consultation (***) • • • ... 2 -ADDITIONAL FORMAL AGENCY AND PUBLIC CONSULTATION (***)• • • • • • • •...... ..E-1l-2-1 E-1l-2-1 E-1l-2-1 E-1l-2-2 --....., I L I 851014 xxix SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT F SUPPORTING DESIGN REPORT (PRELIMINARY) Title 1 -PROJECT DATA (***).........•• • • ••• •·. Page No. F-1-1 2 -PROJECT DESIGN DATA (**)·......... ...F-2-1 5.1 -River Flows (**)· ······ ···.F-5-1 5.2 -Design Flows (**).····F-5-1 5.3 -Reservoir Levels (**)·F-5-1 5.4 -Reservoir Operating Rule (**)·· · ·F-5-2 5.5 -Reservoir Data (**)· · ·· ······F-5-2 5.6 -Wind Effect (**)· ···· ··· ···F-5-3 5.7 -Criteria (***)·······.F-5-3 ·.............. 6 -EQUIPMENT DESIGN CODES AND STANDARDS (**) 6.1 -Design Codes and Standards (*) 6.2 -General Criteria (*)•.•.•. I I- I I 1 ! i I ! I I I F-3-1 F-3-1 F-3-1 F-3-6 F-3-9 F-4-1 F-2-1 F-2-1 F-2-1 F-2-1 F-2-1 F-2-2 F-5-1 F-4-1 F-4-10 F-6-1 F-6-1 F-6-2 • • ·. . · . ·.. · . . · . ·... •• · . · .. ·........ ·. . • 0 • • ·. ... ·. .. xxx ·.. (0) Standards (0) . . . -Topographical Data (0)••••••• -Hydrological Data (**) -Meteorological Data (*)• -Reservoir Data (0)•••••••• -Tailwater Elevations (0) -Design Floods (**)•••••• 3.1 -Governing Codes and 3.2 -Design Loads (**)• 3.3 -Stability (*).•. 3.4 -Material Properties 2.1 2.2 2.3 2.4 2.5 2.6 4.1 -Watana (**)••• 4.2 -Devil Canyon (**) 3 -CIVIL DESIGN DATA (*) 5 -HYDRAULIC DESIGN DATA (**) 851014 4 -GEOTECHNICAL DESIGN DATA (**)• • SUMMARY TABLE OF CONTENTS (cont'd) EXHIBIT F SUPPORTING DESIGN REPORT (PRELIMINARY) Title 6.3 -Diversion Structures and Emergency Release Facilities (*)•••••.••.••• 6.4 -Spillway (**)• • 6.5 -Outlet Facilities (*) 6.6 -Power Intake (*) 6.7 -Powerhouse (**)•••••.••• 6.8 -Tailrace Tunnels (**) Page No. F-6-4 F-6-6 F-6-6 F-6-8 F-6-9 F-6-12 7 -REFERENCES APPENDICES ......................F-7-1 ! I I L ) F1 F2 F3 851014 THIS APPENDIX DELETED WATANA AND DEVIL CANYON EMBANKMENT STABILITY ANALYSES SUMMARY AND PMF AND SPILLWAY DESIGN FLOOD ANALYSES XXX1 ) I- I I I I I ! I I )- TABLE F.2.3.1:TYPICAL NOAA CLIMATE DATA RECORD Meteorological Data For 1976 (Page 1 of 2) station SUMMIT,ALASKA #26414 SUMMIT AIRPORT Standard time used:ALASKAN Latitude:63°20'N Longitude:149°08'W Elevation (ground):2397 feet Year:1976 ..... Temperat ure of Precipitation in inches Relative Wind Q)Number of Days Averageenc: Degree humidi t y pct.::l station Q)en Days ......~ .0 I-<0 I '11 pressure .,-i Q).....Q)Q)f.8~Averages Extremes Base 65°F Water equivalent Snow,Ice pellets Resultant Fastest mile en >Q)Sunrise to Sunset i I-<~~Temperature of mb ~en 0 0 0 ,-i i-<0 0 en :51 E ......E en Cl)Q)Maximum MinimumI-<I-<I-<0..,-i Q)E ,-i ......c:c:::l ::l ::l :J Q)>-I-<~i I-<0.<.<I-<>.,-i Month .,-i ',-i 0 0 0 0 D..~~c:0 0 0 E ::I:::I:::I::.c c:en c:0 en ::l (ljf Q).....0'Q)~~~..........0 0 Q)en -J.Ji.c.o .c.en ~~(b:EJ 0 0 0 E E >......0'0'en (/).,-i Q)•,-i .....c:11l al g ......0 I-<.-;............Elev • ::l ::J ......en .....c:c:Q)en Q)en .....~0'~.....c:.,-i 0'en >.>.c:11l .......0 Q)Q)11l >-E R E .c Q)en •,-i ',-i ...........I-<...........I-<02 08 14 20 0 co u Q).c co .c.I-<I-<......'1:l ,-il·,-i ~',-i '1:l >.co .0 .0 .0 2405 feet......',-i ...........c Q)Q)Q)...........co co .c Q)co co .c 11l Q)I-<Q)Q)u CI)I-<.....co co .....::J 0 ~c:>>.en.....x ,-i c:c:0'.....~.....co 0 .....11l ..........Q).....time)I-<Q).c 11l .c Q).c I-<.....I-<C Q)c:Q)11l I-<0 Q)......00 ::l co .....en o '1:l o '1:l o '1:l '1:l co (lJ ~.~0 .....(lJ 0 (lJ Q)0 0 I-<'"co 0 I-<'"co (local .....f5}~~~~~.....(lJ Q)::J >Q)............co ......f.<.O c:.c Q).....0 OC:N C NC 0 c:m.s.l. Cl E :::E:::I:Cl --l Cl ::I:U I-t!J N Cl I-t!J N Cl Cl Cl Cl 0-en e:t .....u uo-U 0-,•tn .--i I-::I:............0\(lJ t"'I(lJ t"'I co o co, JAN 9.0 -3.8 2.6 34 30 -26 9 1931 o 2.17 1.15 18-19 49.7 21.5 18-19 67 70 73 71 28 23 30 6.0 11 4 16 I 12 7 0 2 0 29 31 20 FEB 4.2 -10.4 -3.1 33 5 -28 11 1975 01.11 0.50 4 19.6 8.7 5-6 65 65 68 31 07 23 3.9 17 4 8 7 6 0 0 0 27 29 24 MAR 18.2 2.2 10.2 30 6 -14 15 1696 o 1.65 0.45 3-4 41.1 8.7 3 75 67 35 07 17 8.0 4 4 23 11 8 0 0 0 31 31 15 APR 36.3 14.3 23.4 51 30 -3 13 1180 o 0.14 0.08 26 5.8 3.1 26 68 20 08 14 6.2 8 8 14 3 2 0 0 0 8 30 2 MAY 43.6 29.4 36.5 54 2 17 7 878 o 2.90 1.90 8 8.7 2.6 8 69 17 24 18 7.5 5 6 20 7 4 0 0 0 0 27 0 JUN 60.6 40.9 30.8 74 27 34 8 420 o 0.51 0.30 30 0.0 0.0 69 18 22 17 6.9 6 8 16 4 0 0 0 3 0 0 0- JUL 62.1 43.6 52.9 76 23 33 6 368 o 1.05 0.33 23 0.0 0.0 81 29 23 27 8.1 3 7 21 14 0 0 1 4 0 0 0 AUG 62.8 41.8 52.3 78 2 31 29 383 o 0.96 0.20 7 0.0 0.0 80 20 26 7 13 0 5 0 1 0 SEP 49.8 31.7 40.8 59 14 16 30 718 o 1.59 0.48 9 0.4 0.3 20 76 25 25 19 7.0 3 9 18 •13 0 0 2 0 0 17 0 OCT 20 08 12 YEAR Table F.2.3.1 (Page 2 of 2) Normals,Means,And Extremes -through 1975# Temperature of Normal Precipitation in inches Relative Wind (/l Mean Number of Days Average Degree humidity pet.oe station..... c Days Q)pressure..........(/l I Averages Extremes Base 65°F Water equi valent pallets $Fastest mile Q)Q)Sunrise to Sunset 12l .....Q)~~Temperatures of mbSnow,Ice ~~(/l Q)~ ..c ~c 0 ~o ..........Q)::J -,-C E QjE (/l (/lQ)Maximum Minimum~~~~(/l >(/l 0 E ....~ ::J ::J ::J ::J (/l 0 .....~a.~~>..... Month $.0 0 0 0 -0 en 0 tJ 0 .....0 Q)0 0 E (/l (/l ::I:::I:::I:::I:Ql C C C a......lO .....en Ql 3:3:3: E E >.~~QJ .....0 0 Ql >......oe tJoe (/l 0",,"(b~0 0 0 Elev......en en E >.E >.E oe E >.E oe a.~..........tl-C ~Ql .....tJ ......tJ ~1"-'~~~ ::J ::J ~-0 (/l -0 .....C C ~::J ~::J ......::J ::J ......::J .....(/l (/l ~~I>'a.c c Q)..c QJ Ql Q) >.E >.E oe ~Q)~(/l ..........lO E oe E oe E """02 08 14 20 en ...............0 ......2405 feetEoeE"""lO lO tJ -0 tJ oe .....~I]·M·M ~.....-0 >.lO ..c ..c ..c...........................0 oe ~0 Ql ~...........E ..........~..........~....N ~.........~....N ~C >Ql QJ QJ ~en c ~lO lO .....tJ 3:C >>.CIl.....X .....C C tJ en lO tJ 3:lO lO 0 ~X C lO C C lO X lO X C lO X lO (loca 1 time)lOoe Ql ~Ql oe ~lO .....C lO C QJ Q)~Q)~00 :::J lO .....(/l o -0 o -0 o -0 -0 m.s.l.lO lO lO .....0 Ql .....Ql Q)0 Ql Q)0 0 lO 0 Q).....0 Q)~c Q)~~QJ ~.~Q)Qla.~.....a.a......Ql tJ ::J Ql ::J ~~lO ~~o c oe Ql·....O o C N C N C 0 CClEClE::a:0::::I:>-0::-J >-::I:U Z ::a:E >-::a:E >-.....>->->-::a:E 0..-0 l.fJ E Cl >-a..en ::a:(/l u u a..iU a..l.fJ ......I-::I:r-t-i 0\lO ......lO ......lO o lO (a)35 35 35 35 35 34 35 5 7 7 6 8 5 7 7 7 7 7 i 7 20 8 8 8 34 34 34 34 2! JAN 7.9 -4.8 1.6 44 1945 -45 1971 1965 0 0.91 3.38 1948 0.09 1945 0.80 1948 64.8 1948 16.3 1973 68;68 69 68 15.1 NE 44 05 1968 5.2 13 5 I 13 9 4 0 *0 30 31 20 921.4I FEB 13.5 -.4 6.6 45 1942 -45 1947 1635 0 1.23 4.31 1951 T 1950 2.79 1951 44.5 1951 28.0 1964 76 75 75 76 11.9 NE 46 07 1974 7.0 6 5 i 17 10 5 0 1 0 26 28 15 918.8 MAR 19.4 3.0 11.2 49 1961 -35 1971 1668 0 1.04 4.53 1946 0.07 1961 1.67 1946 59.1 1946 18.1 1946 76 76 70 73 ILl NE 48 10 1971 6.2 9 6 1 16 10 5 0 1 0 27 31 14 917.2 APR 32.9 14.1 23.5 57 1956 -30 1944 1245 0 0.67 4.45 1966 0.06 1944 0.97 1963 28.7 1970 9.7 1963 80 75 65 75 7.6 NE 33 08 1971 7.2 5 7 18 7 4 0 1 0 13 30 3 922.9 MAY 45.7 29.1 37.4 76 1960 -14 1945 856 0 0.77 2.66 1966 0.04 1949 0.96 1946 17.4 1958 7.5 1946 83 70 58 67 7.7 W 28 07 1969 7.5 3 9 !19 7 2 *1 *1 22 *923.1 JUN 58.0 39.9 49.0 89 1961 25 1947 480 0 2.19 4.45 1949 0.41 1942 2.22 1967 9.4 1974 8.7 1974 84 73 57 65 8.3 SW 29 22 1970 8.2 2 6 I 22 12 1 2 1 3 0 2 o 924.7 JUL 60.2 43.8 52.0 81 1961 32 1970 403 0 3.09 5.56 1959 1.17 1955 1.95 1948 9.7 1970 9.7 1970 89 78 62 72 7.8 SW 30 23 1974 8.2 2 7 22 16 *2 1 5 0 *o 929.1 AUG 56.0 41.1 48.6 81 1968 20 1955 508 0 3.30 6.33 1955 0.70 1941 2.10 1944 9.0 1955 6.0 1955 88 81 62 76 7.4 SW 31 22 1975 8.3 2 6 23 18 0 *1 1 0 2 o 930.3 SEP 47.1 32.6 39.9 75 1957 6 1956 753 0 2.81 6.13 1965 0.29 1969 2.07 1944 21.5 1958 14.0 1955 85 81 59 75 7.5 NE 32 23 1972 7.4 5 5 20 16 2 *1 *1 14 o 926.1 OCT 30.4 17.5 24.0 59 1969 -15 1975 1271 0 1.62 3.79 1952 0.12 1967 1.24 1963 54.8 1970 12.6 1970 83 85 76 81 8.0 NE 35 23 1970 7.6 3 5 21 13 7 0 2 0 18 30 2 916.7 NOV 15.7 3.7 9.7 44 1962 -29 1948 1659 0 1.23 4.85 1952 0.06 1963 1.30 1964 75.1 1967 21.9 1970 79 79 78 79 11.7 NE 39 25 1970 7.1 7 4 19 9 5 0 1 0 27 30 13 921.3 DEC 9.2 -3.6 2.9 42 1969 -43 1961 1925 0 1.20 4.63 1951 0.24 1945 1.09 1967 50.7 1970 27.4 1970 76 78 76 77 11.3 NE 44 11 1970 6.5 9 5 17 11 6 0 1 0 30 31 19 914.7 JUN JAN AUG FEB FEB NOV FEB I MAR YEAR 33.0 18.0 25.5 89 1961 -45 1971 14368 0 20.06 6.74 1944 T 1950 ~.79 1951 75.1 1967 28.0 1964 81 76 67 74 I 9.7 NE 48 10 1971 7.2 68 70 I 227 138 41 5 12 9 173 251 86 922.0 . NOTE:Due to less than full time operation on a variable schedule,manually recorded elements are from broken sequences in incomplete records. Daily temperature extremes and precipitation totals for portions of I the record may be for other than a calendar day.The period of record i for some elements is for other than consecutive years. (a)Length of record,years,through the current year unless otherwise noted,based on January data. (b)70 0 and above at Alaskan stations. *Less than one half. T Trace. NORMALS -Based on record for the 1941-1970 period. DATE OF AN EXTREME -The most recent in cases of multiple occurrence. PREVAILING WIND DIRECTION -Record through 1963. WIND DIRECTION -Numerals indicate tens of degrees clockwise from true north.00 indicates calm. FASTEST MILE WIND -Speed is fastest observed I-minute value when the direction is in tens of degrees $For calendar day prior to 1968. ®For the period 1950-1954 and January 1968 to date when available for full year. For the period 1942-1953 and January 1968 to date when available for full year #Data for this station not available for archiving nor publication of summary effective October 1976. TABLE F.2.3.2:SUMMARY OF CLIMATOLOGICAL DATA STATION ANNUAL Anchorage 0.84 0.56 0.56 0.56 0.59 1.07 2.07 2.32 2.37 1.43 1.02 1.07 Big Delta 0.36 0.27 0.33 0.31 0.94 2.20 2.49 1.92 1.23 0.56 0.41 0.42 11.44 Fairbanks 0.60 0.53 0.48 0.33 0.65 1.42 1.90 2.19 1.08 0.73 0.66 0.65 11.22 Gulkana 0.58 0.47 0.34 0.22 0.63 1.34 1.84 1.58 1.72 0.88 0.75 0.76 11.11 Matanuska Agr.0.79 0.63 0.52 0.62 0.75 1.61 2.40 2.62 2.31 1.39 0.93 0.93 15.49 Exp.Station McKinley Park 0.68 0.61 0.60 0.38 0.82 2.51 3.25 2.48 1.43 0.42 0.90 0.96 15.54 Summit WSO 0.89 1.19 0.86 0.72 0.60 2.18 2.97 3.09 2.56 1.57 1.29 1.11 19.3 Talkeetna 1.63 1.79 1.54 1.12 1.46 2.17 3.48 4.89 4.52 2.54 1.79 1.71 28.64 MEAN MONTHLY TEMPERATURES (OF) Anchorage 11.8 17.8 23.7 35.3 46.2 54.6 47.9 55.9 48.1 34.8 21.1 13.0 Big Delta -4.9 4.3 12.3 29.4 46.3 57.1 59.4 54.8 43.6 25.2 6.9 -4.2 27.5 Fairbanks 11.9 -2.5 9.5 28.9 47.3 59.0 60.7 55.4 44.4 25.2 2.8 -10.4 25.7 Gulkana -7.3 3.9 14.5 30.2 43.8 54.2 56.9 53.2 43.6 26.8 6.1 -5.1 26.8 Matanuska Agr. Exp.Station 9.9 17.8 23.6 36.2 46.8 54.8 57.8 55.3 47.6 33.8 20.3 12.5 34.7 McKinley -2.7 4.8 11.5 26.4 40.8 51.5 54.2 50.2 40.8 23.0 8.9 -0.10 25.8 Summit WSO -0.6 5.5 9.7 23.5 37.5 48.7 52.1 48.7 39.6 23.0 9.8 3.0 25.0 Talkeetna 9.4 15.3 20.0 32.6 44.7 55.0 57.9 54.6 46.1 32.1 17 .5 9.0 32.8 f TABLE F.2.3.3:RECORDED AIR TEMPERATURES AT TALKEETNA AND SUMMIT IN of I TALKEETNA SUMMIT f Daily Daily Monthly Daily Daily Monthly Month Max.Min.Average Max.Min.Average I Jan 19.1 -0.4 9.4 5.7 -6.8 -0.6 Feb 25.8 4.7 15.3 17.5 -1.4 5.5 !Mar 32.8 7.1 20.0 18.0 1.3 9.7 Apr 44.0 21.2 32.6 32.5 14.4 23.5 I May 56.1 33.2 44.7 45.6 29.3 37.5 ) June 65.7 44.3 55.0 52.4 39.8 48.7 Jul 67.5 48.2 57.9 60.2 43.4 52.1 I Aug 64.1 45.0 54.6 56.0 41.2 48.7 Sept 55.6 36.6 46.1 46.9 32.2 39.6 I Oct 40.6 23.6 32.1 29.4 16.5 23.0 I Nov 26.1 8.8 17 .5 15.6 4.0 9.8 Dec 18.0 -0.1 9.0 9.2 -3.3 3.0 Annual Average 32.8 25.0 FIGURES o 10 FIGURE F.2.4.1 ••4 STORAGE CAPACITY (MILLION AC.FT.) AREA AND CAPACITY CURVES WATANA RESERVOIR 2 '--+CAPACITY· ISOO 1400 o 21 00 ......-----+-~:__--+_----__I____:::"""'--__t-----....., 1&00 1+------+------+-----.--.,I--------+-----.lr---1 2000 J-------+-----+_-r~__-___il__----__t-----....., 2200 \ RESERVOIR AREA (1000 ACRES) ~1900-~~ '"-I '" ~1800 i!a: :;:) (I) a: ~1700 'C =- -~ I&.- .WITHOUT RESERVOIR SILTATION I I [ r I ! i I ! I f I I 1 ! I I I o FIGURE F.2.4.2 1000 1200 2 100 34 100400 RESERVOIR AREA (1000 ACRES) 6 STORAGE CAPACITY (1000 AC.FT.) AREA AND CAPACITY CURVES DEVI L CANYON RESERVOIR 200 7 o 900 1-----+-----+-----+----+-----+----..... 8 1600 1400 ~---........--.....;::IIIiIoo",~----+-~~~-+-----+-----t IS 00 1-0------+-----+-----+-----+-----+-----1 I~ 1200 ~---+--+----+-----+-----+------\r__----l 1300 ~----+---""-+-----+----...plr----+-----tZo i= S ..J... -.,:...- ...u i! II: ~.. II:1100... ~ C• .WITHOUT RESERVOIR SILTATION I I I r [ I r r [ f I I I I I r r I I WATANA TAILWATER RATING FIGURE F.2.5.1 o 20 40 10 80 100 120 140 180 DISCHARGE re,s a 101 ) 1410 1475 ,y ~/ ~v 1410 V / ~V I4C5 I 1480 I 7 J 1455 7 .~ ....'Ii .-au -~ III III...- I r I I I ! I f I I I I I I I I I I I o 20 40 10 80 100 120 140 180 110 200 DISCHARGE (CFS I 10·) DEVIL CANYON TAILWATER RATING (TAILRACE TO PORTAGE CREEK) I I I r I I I I I I I I I I I 1 I I I 875 870 ••8-.. III III...-..leO:z: CD iii:z: IaI =CD 888 850 848 ~"""--V ~ //' / , / / I / / I FIGURE F.2.5.2 ~ C\Iu: W 0::::> (!) ~0 Li:.. · /· V .. N- V - ('....- \· •..'\;; g ~- ~...-•/~ ~.-%...A....!c :•~-Ill: u "~.. It:i :-Q ~i'--~ ~~...~t=-:l.. ~-~ ~3!: ~-~ :I == A. ~" c !:!z ~=-~-J :'----..-: I-----•r----r----...-- '"- \-• - .. I- I I I I I I I I I I - o ..o ..0 o 0 §0 0 0 0 8 0 0 0 0 ~0 0 0 0 0 o 0 ~-III ....•......!~%:!••.................. l"IIQJ.W.:I~00011 IIDI .en.. I 11-.1/4 LOCAL EVENTi DAII'INI -0.10 lOll PERCENTILI / V"........... ~ /~II.-I.A.I \ ~.............."""i\. /'/"~\. 0,-0.'1 ///'""iilO.la ~ ~""'~~~ -.............:~ -•- •• •2.. C & III... III U U C... C &.. U III &.• I oo.oa 0.01 0.01 0.1 0.1 0.1 0.1 '1ItIOD CIIC) 2 3 10 MEAN RESPONSE SPECTRA AT THE DEVIL CANYON SITE FOR SAFETY EVALUATION EARTHQUAKE FIGURE F.3.2.1 APPENDIX F 1· [ I I i I ' I I i' l [ I This Appendix deleted. 851011 APPENDIX F1 F1-1 APPENDIX F2 W AT ANA AND DEVIL CANYON EMBANKMENT STABILITY ANALYSES APPENDIX F2 WATANA AND DEVIL CANYON EMBANKMENT STABILITY ANALYSES 1 -PRELIMINARY DESIGN (**) 1.1 -General (**) This appendix presents the proposed embankment slope designs for Watana S-tages I and III and the Devil Canyon Stage II embankments.The method of analysis and the safety factors comply with recommendations of the United States Army Corps of Engineers (COE 1982a,1958).The stability studies have been conducted in sufficient detail to satisfy project feasibility. Watana Dam Stages I and III have been analyzed.The cross section for analysis has been taken where it will be m~ximum height (70o±feet for Stage I,and 885±feet for Stage III).The Devil Canyon Saddle Dam (Stage II)has not been independently evaluated because it has the same cross section and general foundation treatment as Watana. Therefore,because of the lower height of the Devil Canyon Saddle Dam (maximum l5o±feet)its stability will be much less critical than for Watana,and higher stability factors of safety are to be expected. Typical embankment cross sections for the three stages of Susitna development are presented in Figures F2.l,F2.2,and F2.3. 1.2 -Design Shear Strengths (***) Design values are shown in the following tables below and on the individual figures.The tables are a resume of the materials which are of major influence in the stability analysis,together with their shear strengths.The design shear strengths are based primarily on interpretation of similar materials at other projects where extensive laboratory tests have been performed. 1.2.1 -Material Design Parameters (***) (a) Unit Weight Moist, Saturated, Submerged, Impervious (pet) m =126 s =130 sub =67 Core Shear Strength UU:cohesion,c =1,500 psf Friction Angle,0 =0° CU:cohesion,c =300 psf Friction Angle,0 =16.7° CD:cohesion,c =0 psf Friction Angle,0 =26.5° 851011 (b)Rockfill and Filters Unit Weight (pc£)Shear Strength Moist,m =130 UU: Saturated,s =140 CU: Submerged,sub =78 CD:cohesion,C =0 psf Friction Angle,0 =38° F2-l (c)Overburden Foundation Unit Weight (pcf)Shear Strength Moist,m =125 CD:cohesion,C = 0 psf Saturated,s =132 Friction Angle,~=32° Submerged,sub =70 (d)Bedrock Formation Unit Weight (pcf)Shear Strength Moist,m =150 CD:cohesion,C =40,000 Saturated,s =150 psf Submerged,sub =88 Friction Angle,~=38° 1.2.2 -Loading Conditions and Factors of Safety (F.S.)(***) The following table is a summary of results from the static and earthquake (pseudo-static)stability analysis. Minimum Watana -Stage I Watana -Stage III Allowable FS.!/Min.Calculated FS Min.Calculated FS Earth-uls Slope Dis Slope uls Slope Dis Slope Case Static quake (S)(E )!:.I S E S E S E S E End-of-1.3 1.0 1.97 1.30 1.54 1.09 1.52 1.04 1.58 1.13 Construc- tion Partial 1.5 1.0 1.84 1.20 ----1.54 1.05 -- -- Pool (Critical Pool (Critical Pool Varying e1.1710 el.1900 Steady 1.5 1.0 ----1.57 1.12 ----1.58 1.13 State Seepage at Normal Max.Pool Rapid 1.0 --1.78 ------1.26 ------ Drawdown Normal Max Pool to el. 1,800 II FS =Stability factor of safety. 21 Seismic coefficient =0.15. 851011 F2-2 1.3 -Method of Analysis (***) The STABL computer program,which utilizes an adaptation of the Modified Bishop Method,was used to determine the location of critical failure surfaces for all embankment stability.Use of the STABL allowed many trial failure surfaces to be tested for both static and pseudo-static stability.The critical failure plane was found and the safety factory expressed as the ratio of available shear strength to that required for equilibrium.Circular and wedge-shaped trial failure surfaces were examined.Circular surfaces were found to yield the lower factors of safety for the downstream slope,and wedge-shaped surfaces were critical for the upstream slope because of the upstream inclination of the core.Only critical surface results are presented herein.Earthquake analyses considered a pseudo-static seismic coefficient of 0.15 (CaE 1982a).As shown in Figure F2.l4 the Susitna Project is located in Zone 4,which is a high risk area. For each section analyzed,50 randomly generated trial surfaces encompassing the entire range of potential failure surfaces were tested.The results presented in Figures F2.4 through F2.l3 only show the ten most critical surfaces. Dynamic stability was evaluated through a comparison of Watana Dam with similar dams in areas of high seismicity. 1.4 -Design Cases and Assumptions (***) The critical conditions analyzed for failure in shear are listed ~n the following sections. 1.4.1 -End-of-construction Case (***) Since placement moisture contents for the embankment are anticipated to be slightly in excess of optimum moisture,some pore pressure is likely to occur.However,for the rock shell design the inclined core is relatively narrow,thus confining the excess pore pressure to a zone just upstream of the center of the fill.The shear strength contolling the stability of the construction condition is the shear strength of the impervious core. Both the upsteam and downstream slopes have been analyzed for slope stability immediately upon completion of construction,and prior to reservoir filling.Minimum allowable static and earthquake (pseudo-static)factors of safety of 1.3 and 1.0, respectively,have been considered.The steeper,downstream slope indicated the lower safety factor.A total stress analysis was performed.Stage I considered an unconsolidated undrained (UU)shear strength in the impervious core material,and moist unit weights throughout the embankment section.This loading condition conservatively models the embankment just at the end of 851011 F2-3 the construction,when the fill has not yet had sufficient time to strengthen through the consolidation of the fill under its own weight,and the dissipation of excess pore pressures.-Stage III considered consolidated drained (cn)shear strengths in the Stage I fill,and UU shear strength in the core Stage III impervious core fill.Moist unit weights were considered above the assumed elevation 1,900 reservoir level during Stage III construction, and submerged unit weights below. The minimum post construction stability for Watana (Stages I and III)is shown in Section 1.2.2;the locations of critical failure surfaces are shown in Figures F2.4,F2.5,F2.9,and F2.l0. 1.4.2 -Partial Pool Case (***) The upstream slope was analyzed for m~n~mum static and earthquake (pseudo-static)safety factors of 1.5 and 1.0 respectively,at the most critical reservoir pool elevations. The saturation line was assumed horizontal.Submerged weights were used below the saturation level and moist weights were used above the saturation line. Four reservoir increments were studied for both Stage I and Stage III to determine the critical temporary reservoir level. For Stage I the temporary pool levels studied were elevations 1,600, 1,700,1,800,and 1,900.For Stage III they were elevations 1,800,1,900,2,000,and 2,100.A plot of minimum factor of safety vs.pool level reveals the partial pool corresponding to the critical factor of safety. The initial partial pool condition occurs after the end of construction when the fill is partially consolidated,but before complete reservoir filling and the establishment of steady state seepage.Construction case excess pore pressures are assumed to still be present.For Stage I consolidated undrained (CU)shear strength have been used in a total stress analysis,approximating this intermediate condition.However,Stage I fill would have completely consolidated and excess pore pressures dissipated by the time reservoir filling for Stage III begins.Therefore, Stage III analysis has considered consolidated drained (cn)shear strengths for Stage I fill (and Stage III pervious materials), and CU strengths for the Stage III impervious core. The results of the partial pool case are summarized in Section 1.2.2.The critical pool occurs at el.1,725 during Stage I filling,and at el.1,900 in Stage III.The critical failure surfaces and pool determination are shown in Figures F2.6 and F2.11 1.4.3 -Steady State Seepage Case (***) The downstream slope was analyzed for the steady seepage case. The normal maximum operative pool was selected as the most 851011 F2-4 851011 critical pool that will be maintained for a period long enough to develop steady seepage.Pools above this elevation do not remain long enough to saturate the embankment. Steady state seepage is the long-term condition,achieved once a free-water line phreatic surface is established through the core and within the downstream filters and shell.By the time this condition takes place,all consolidation of the fill and dissipation of excess pore pressures will have occurred,and the consolidated drained (CD)strength of the fill material will govern the stability of the embankment. The minimum long-term embankment slope stability is shown in section 1.2~2;the locations of critical failure surfaces are shown in Figures F2.7 and F2.l2.Slopes were designed for a minimum static factor of safety of 1.5,and a minimum earthquake (pseudo-static)factor of safety of 1.0. 1.4.4 -Rapid Drawdown Case (***) The rapid drawdown analysis considered saturation of the embankment at the normal maximum operating elevation and drawdown to el.1,800.It is assumed that the reservoir is above the normal maximum operating level for such a short time that the impervious embankment will not saturate and,therefore,sudden drawdowns from pools above this elevation are not applicable. The embankment slopes were designed for a minimum static safety factor of 1.0.The simultaneous occurrence of both an earthquake and rapid drawdown is considered highly improbable,and therefore a pseudo-static evaluation of the rapid drawdown case is not considered. The rapid reservoir drawdown analysis applies only to the upstream embankment slope.The results of this analysis are presented in Section 1.2.2.Figures F2.8 and F2.13 show the locations of the critical failure planes. The rapid drawdown condition has been conservatively evaluated by assuming that the reservoir can be lowered instantaneously from the maximum normal operating level to el.1,800,which is the lowest intake level of the powerhouse intake structure.The drawdown analysis considers full consolidation of the fill at the time of drawdown,and an undrained condition in the impervious core immediately following drawdown.Hence,a consolidated undrained shear strength (CU)has been used in the total stress analysis.The weight of the core material above the lowered pool level at el.1,800 increased from its pre-drawdown submerged unit weight,to a saturated unit weight.Hydrostatic uplift pressures along the failure surface through the core are determined from the saturated core outer surface.Because the rockfill would be free-draining,pore pressures would dissipate as the reservoir is drawn down,and an undrained condition would never be achieved. F2-5 Therefore,the drained strength (CD)for the rockfill ~s used in the analyses. 1.4.5 -Earthquake Case (***) The earthquake case was checked by perfoming a pseudo-static analysis on each of the critical static analysis failure planes for the above cases,except sudden drawdown.This seismic analysis involved application of an additional horizontal force, acting in the direction of sliding of the potential failure mass. This force is equal to the total weight of the sliding mass times the seismic coefficient 0.15. 1.5 -Dynamic Stability Evaluation (***) The dynamic stability was evaluated by comparing Watana Dam with similar dams located in areas of high seismicity.Dynamic analyses will be performed during final design.The performance and/or the results of dynamic analysis of the dam are summarized below for comparison with Watana Dam. 1.5.1 -Oroville Dam (***) Oroville Dam (Seed 1979;Banerjee et al.1979;State of california 1979).1975 E~rthquake;magnitude 5.7;epicentral distance 7.5 miles;focal depth 5.0 miles;a at dammaxcrest=0.13 g. (a)Pertinent Data,and Observations at the Time of the Event (***) The dam cross section has a slightly inclined impervious core,and shells of well-graded cobble,gravel and sand fill. Height -750 feet Upstream Slopes -2.2H:IV,2.6H:IV and 2.75 H.IV Downstream Slope =2H:IV performance -No damage Vertical Movement of the Crest =0.03 feet Horizontal Movement of Upstream Slope =0.05 feet Pore pressure increased in the core,and in an area within the upstream transition zone. (b)Dynamic Re-evaluation,1979 (***) Dynamic analyses was performed to re-evaluate the dam ,for a near source maximum earthquake of magnitude 6.5 and a =0.6 g.max 851011 F2-6 851011 The analyses indicates that in spite of areas of high pore pressure in the upstream shell,and the potential horizontal displacement of the dam of about 3 feet,the dam would be amply safe.There would be some likelihood of surface sloughing or insignificant movement along slopes at shallow depths near the crest.The minimum factor of safety with the high pore pressures would be reduced to 1.4 from 3.1 for normal operating conditions. (c)Hypothetical Extreme Earthquake,Magnitude 8.25 (***) This hypothetical study was made for the purpose of developing a better understanding of the performance of high embankment dams located near an epicentral region of great earthquakes.The results of the study indicate: o The relatively high pore pressure zone in the upstream shell spreads over a significantly larger area within the upstream shell when compared with the similar area developed after a magnitude 6.5 earthquake. o The minimum factor of safety with high pore pressure development reduced to 1.12 for the critical circle immediately after an earthquake of magnitude 8.25. The dam is dynamically stable and would not develop any massive slide in the upstream slope.The minimum factor of safety of 1.12 would be of a transient nature.The pore water pressure will dissipate in time and the dam will regain its pre-earthquake strength and stability factor of safety. o The maximum horizontal displacements of the upstream slope after an earthquake of magnitude 8.25 would be in the order of 8 ft.The increase in strength caused by aging would reduce it to half the computed amount. The conclusion was that a high dam,well-designed and built with suitable materials like Oroville Dam,would be able to safely withstand a near,extreme earthquake of 8.25 without significant damage,or danger of reservoir release. 1.5.2 -Miboro Dam (***) Miboro Dam,Japan (Seed et al.,1977) Kita-Muto Earthquake,1961;Magnitude 7; a =0.1 g to 0.25 g at 20 km from epicenter. a =0.6 g at 10 km.max F2-7 851011 Dam Type -Rockfill Height -420 feet Slopes -Upstream 2.5H:IV Effect -No Damage Settlement 1.2 inches Horizontal Displacement 2.0 inches 1.5.3 -Cogoti Dam (***) Cogoti Dam,Chile (Seed et al.1977) Chile Earthquake,1943;Magnitude 8.3; a max =0.25 g to 0.5 g Dam Type -Dumped rockfill with upstream concrete Height -275 feet Effect -Crest settled 15 inches;minor rockslides on the 1.8H:lV;insignificant damage. 1.5.4 -La Honda Dam (***) La Honda Dam,Venezuela (Kleiner et al.1983)Dynamic stability analysis was performed,based on earthquake magnitude 8.25 occurring on Bocono Fault 12.4 miles from the dam site. a =0.50gmax The embankment has an impervious central core of clayey sand,and shells of crushed sandstone. Height -460 feet (140 meters) upstream slopes -3H:lV and 2.5H:lV Downstream slope -2.25H:lV Result of Analysis:The dam will be safe with only insignificant damage.Small zones in the upstream shell indicate strain potential exceeding 5 percent. Vertical settlement of the crest would be on the order of 8.2 feet.Shallow sloughing of the upstream slope would likely occur. 1.5.5 -Watana Dam (***) Watana Dam is quite similar to the dams listed above,especially Oroville Dam.However,the shells of Watana would be constructed of rockfill,while the shells of Orovill were constructed of sand and gravel.The free-draining rockfill shells at Watana will tend to dissipate pore pressure more readily.However, settlements within the rockfill during strong ground motion would tend to be higher than in the sand and gravel of Oroville.These F2-8 factors are somewhat compensating.Permanent deformations at the crest of Watana are anticipated to be of a similar magnitude as the deformations at Oroville Dam.Judging from the performance of Oroville Dam during the 1975 magnitude 5.7 earthquake,and subsequent dynamic stability analyses with magnitude 6.5 and extreme severe earthquake magnitude 8.25,Watana will be safe under strong seismic conditions. 1.6 -Conclusion (**) The analyses indicate stable slopes under all loading conditions for Watana Stage I and Watana Stage III.Because of its lower height and identical cross section and foundation,the Devil Canyon Saddle Dam Stage II intuitively would also be stable under all loading condition. 851011 F2-9 FIGURES 2 'JI WATANA DAM -STAGE I AT MAXIMUM HEIGHT o 100 200 FEET SCALE ~i~~~iiiiiiiiiiiiiiiiil! BEDROCK SURFACE 2 I r::::: NOTES: 1.FOR DETAILED CROSS SECTION SEE PLATE F 7 2.INCLUDES 2'S E'TTLEMENT OVERBUILD ---+-_--FI NE FILTER COARSE FILTER 1-4---DAM AXIS ~d=~__E::.:L::..:..=.;20=-=2~7(NOTE2) ROCKFILL.: TOP OF SOUND NORMAL MAXIMUM OPERATING LEVELyEL.2000) MINIMUM OPERATING LEVEL"') EL.1850-==:gY§§==-...L~ FLOW- ~<t..UPSTREAM COFFERDftM \. I-SEE OVERBURDENIEXCAVATIONDETAIL ~'--~.=H=..=-=-====-r-===::'---.L... I I [ I [ [ r I I [ I [ [ ( I I I I [ FIGURE F2.1 NATURAL GROUND SURFACE *=STABLE ------- *11/ ~._------ TOP ~F SOUND ROCK NOTES: 2.0 :1 1 ROCKFILL----- ------_/ DEVIL CANYON -STAGE n SECTION THROUGH SADDLE DAM AT MAXIMUM HEIGHT 1.FOR DETAILED CROSS SECTION SEe PLATE F 49 .2.-INCLUDES 2'S~TTLEMENT'OVERBUILD. O~~~350iiiiiiiiiiiiiii6~P,FEE T SCALE C I ------- "",-......----...... I 0.1 17.5 rAM AXIS I 35' 2.4 I~ ~---COARSE FILTER NORMAL MAXIMUM OPERATING~ LEVEL EL.l455 Y ------------;\-~__=:z:. .. MINIMUM OPERATING') LEVEL EL.1405 Y FLOW ---------__~TOP OF ROCK--------- .---------\ll r r r I r f I [ [ r i [ r i I r I I I FIGURE F2.2 C UPSTREAM COFFERDAM MINIMUM OPERATING LEVEL EL.2065 TOP OF SOUND ROCK NORMAL MAXIMUM OPERATING LEVEL EL.2185 ~-I--_FINE FILTER COARSE FILTER BEDROCK SlJRFACE .NOTES: 1.FOR DETAILED ~ROSS SECTION seE PLATE F 77 2.INCLUDES 5'SETTLEMENT OVERBUILD i, 3.STAGE m SHOWN WITH BOLD OUTLINE o 100 200 FEET seAL E f!!!!!!!!!!!!!5_iiiiil' WATANA DAM -STAGE m AT MAXIMUM HEIGHT FiGURE F2.3 WATANA-STAGE I SLOPE STABILITY-FACTOR OF SAFETY CALCULATED 2.0 1.3 fEL.2027 ALLOWABLE 1.3 1.0 EL.1925 _FLOW.., CONDITION STATIC EARTHQUAKE (Seismic Coefficient=0.15) I I i r 1 !CRITICAL FAILURE SURFACE ! i I I I f I I I MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE (j)UU:C=1,500 pst,r/J=O° ROCKFILL AND FILTERS ~,<3>,@ CD:C=O pst,r/J=3S o OVERBURDEN FDN.~CD:C=O pst,r/J=32° BEDROCK FDN.<B)CD:C=40,000 pst,rp=3So NOTE MATERIAL DESIGN.PARAMETERS ARE DISCUSSED IN SECTION 1.2 END-OF-CONSTRUCTION CASE (UPSTREAM SLOPE) FIGURE F2.4 MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE <D UU:C=1,500 pst,0=0° ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,0=38° OVERBURDEN FDN.~CD:C=O pst,'/1=32° BEDROCK FDN.@ CD:C=40,000 pst,'/1=38° CALCULATED 1.5 1.1 fEL.2027 CRITICAL FAILURE SURFACE 2 "-:11"-@ .........-...-- NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 ALLOWABLE 1.3 1.0 END-OF-CONSTRUCTION CASE (DOWNSTREAM SLOPE) WATANA-STAGE I SLOPE STABILITY-FACTOR OF SAFETY EL.1925 FLOW.. CONDITION STATIC EARTHQUAKE (Seismic Coefficient=0.15) r r I I r i I r I I i i I I I r I I I FIGURE F2.5 WATANA-STAGE I SLOPE STABILITY-FACTOR OF SAFETY CONDITION ALLOWABLE STATIC 1.5 EARTHQUAKE 1.0 (SeismicCoefficient=0.15) CALCULATED 1.8 1.2 MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE <D CU:C:::I 300 psf,0=16.7 ROCK FILL AND FILTERS ~.(3),@ CD:C=O pst,~=38° OVERBURDEN FDN.~CD:C:::IO psf.rp=32° .BEDROCK FDN.~CD:C=40,000 pst,rp=38° .-tEL.2027 NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 CRITICAL FAILURE SURFACE EL.1925 2.4 1 r::: --- 'i=1900 u. '-' z ~1800 ~1725 w '--+-----4Ld1700 -Io ~1600 FLOW I CRITICAL PARTIAL POOL LEVEL EL.1725 I I I I I [ [ I I I 1.7 1.8 1.9 2.0 CALCULATED F.S. PARTIAL POOL CASE (UPSTREAM SLOPE) FIGURE F2.6 MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE (l)CD:C=Q psf,0=26.5 0 ROCK FILL AND FILTERS ~,(3),@ CD:C=Q pst,0=380 OVERBURDEN FDN.~CD:C~O pst,rp=32° BEDROCK FDN.@ CD:c=40,000 psf,q,=380 WATANA-STAGE I SLOPE STABILITY-FACTOR OF SAFETY NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 CRITICAL FAILURE SURFACE CALCULATED 1.6 1.1 fEL.2027 FLOW• CONDITION ALLOWABLE STATIC 1.5 EARTHQUAKE 1.0 (Seismic Coefficient=0.15) NORMAL MAX.OPERATING LEVEL EL.2000 I [ I I r [ I I I I I I I I STEADY STATE SEEPAGE CASE (DOWNSTREAM SLOPE) FIGURE F2.7 WATANA-STAGE I SLOPE STABILITY-FACTOR OF SAFETY CONDITION STATIC ALLOWABLE 1.0 CALCULATED 1.8 NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 ORIGINAL NORMAL MAX. OPERATING LEVEL EL.2000 EL.1925 MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE CD CU:C=300 pst,0=16.70 ROCK FILL AND F1L TERS ~,~,@ CD:C=O pst,0=380 OVERBURDEN FDN.~CD:C=O pst,~=32° BEDROCK FDN.~CD:C=40,000 pst,~=38° [FLO~ [IRA WDOWN LEVEL _L.1800 -....1..-------..;~~~=---------:ffl I ~RITICAL FAILURE i UR FA CE -......----r--........ 1G I I I I I r I I [ RAPID DRAWDOWN CASE (UPSTREAM SLOPE) FIGURE F2.8 CALCULATED 1.5 1.0 fEL.2210 ALLOWABLE 1.3 1.0 WATANA-STAGEllI SLOPE STABILITY-FACTOR OF SAFETY CONDITION STATIC EARTHQUAKE (Seismic Coefficient=0.15) I [ [ r CRITICAL FAILURE I SURFACE I POOL LEVEL DURING ST AGE III CONSTRUCTION EL.1900 ~ f [ I I I MATERIAL SHEAR STRENGTH USED IN ANALYSIS STAGE I EMBANKMENT IMPERVIOUS CORE CD CD:C=O pst,~=26.5° STAGE][EMBANKMENT UU:C=1,500 pst,0=00 ROCK FILL AND FILTERS ~,~,@ CD:C=O pst,~=38° OVERBURDEN FND.~CD:C=O pst,~=32° BEDROCK FND.~CD:C=40,000 pst,~=3ao NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 END-OF-CONSTRUCTION CASE (UPSTREAM SLOPE) FIGURE F2.9 WATANA-STAGE ]II SLOPE STABILITY-FACTOR OF SAFETY CALCULATED 1.6 1.1 fEL.2210 CRITICAL FAILURE SURFACE 2 "::::l1"@ ...........--....; ALLOWABLE 1.3 1.0 FLOW CONDITION STATIC EARTHQUAKE (Seismic Coetticient=0.15) POOL LEVEL DURING STAGE III CONSTRUCTION EL.1900 r I I ~ r I [ \ ! [ MATERIAL SHEAR STRENGTH USED IN ANALYSIS STAGE I EMBANKMENT IMPERVIOUS CORE (j)CD:C=O psf,~=26.5° STAGE][EMBANKMENT UU::C=-1,500 pst,~=Oo ROCK FILL AND FILTERS (2)@@ CD:C=O pst,~=38° OVERBURDEN FND.@ CD:C=O pst,~=32° BEDROCK FND.@ CD:C=40,000 pst,~=38° NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 END-OF-CONSTRUCTION CASE (UPSTREAM SLOPE) FIGURE F2.10 WAT ANA-ST AGE :IT[ SLOPE STABILITY-FACTOR OF SAFETY 2 :::::l 1 CALCULATED 1.5 1.1 ALLOWABLE 1.5 1.0 CONDITION STATIC EARTHQUAKE (Seismic Coefficient=0.15) FLOW [ I I I ' CRITICAL FAILURE i SURFACE CRITICAL PARTIAL POOL LEVEL EL.1900 [ j ,I r 1 ,-, l- LL. I ...... z 0 l- I « I > W ...J W ...J 0 0a.. 2100 2000 1900 1800 MATERIAL SHEAR STRENGTH USED IN ANALYSIS ST AGE I EMBANKMENT IMPERVIOUS CORE CD CD:C=O pst,~=26.5° ST AGE ::Dr EMBANKMENT CU:C=300 pst,~=16.7° ROCK FILL AND FILTERS <2',(3),@ CD:C=O pst,~=38° OVERBURDEN FND.~CD:C=O pst,~=32° BEDROCK FND.@ CD:C=40,OOO pst,r/J=38 0 NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 1.5 1.55 1.6 1.65 1.7 CALCULATED F.S. PARTIAL POOL CASE (UPSTREAM SLOPE)FIGURE F2.11 WATANA-STAGEm SLOPE ST ABILITY-FACTOR OF SAFETY ALLOWABLECONDITION STATIC EARTHQUAKE (Seismic Coefficient=0.15) NORMAL MAX.OPERATING LEVEL EL.2185 FLOW 1.5 1.0 CALCULATED 1.6 1.1 \ I r- MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE 1)CD:C=O pst,0=26.5~ ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,~=38~ OVERBURDEN FDN.~CD:C~O pst,~=32° BEDROCK FDN.(Q)CD:C=40,000 pst,0=38~ NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 STEADY STATE SEEPAGE CASE (DOWNSTREAM SLOPE) WATANA-STAGE m SLOPE STABILITY-FACTOR OF SAFETY 2 ::::l 1 CALCULATED 1.3' fEL.2210 ALLOWABLE 1.0 ORIGINAL NORMAL MAX. OPERATING LEVEL EL.2185\'. CONDITION STATIC FLOW r I ! r j 1 ORA WOOWN LEVEL EL.1800 l RITICAL FAILURE vURFACE--- [ r- I I I MATERIAL SHEAR STRENGTH USED IN ANALYSIS IMPERVIOUS CORE <D CU:C=300 ps.f,0=16.7 0 ROCK FILL AND FILTERS ~,(3),@ CD:C=O pst,0=38°i, OVERBURDEN FDN.(Q)CD:C=O pst,~=32° BEDROCK FDN.(g)CD:C=40,000 pst,0=38° NOTE MATERIAL DESIGN PARAMETERS ARE DISCUSSED IN SECTION 1.2 RAPID DRAWDOWN CASE (UPSTREAM SLOPE) FIGURE F2.13 PAC I F I C 0 C E A.N O::/...< "J/. •'ClI);/0, I I BERING STRAIT I SOURCE:COE 1882 T- ARCTIC OCEAN 'nv\v~--.Io!<:~__~~~........- ;'0v:V \ \ 0-4 so 0 so 100 I so 200 150 STATUE HILES SEISMIC PROBABILITY ZONE DAMAGE COEFF. 0 NONE 0 1 MINOR 0.025 2 MODERATE 0.05 3 MAJOR 0.10 4 GREAT 0.15 •DAWSON SEISMIC ZONE MAP Alaska FIGURE F2.14 (. APPENDIX F3 SUMMARY AND PMF AND SPILLWAY DESIGN FLOOD ANALYSES APPENDIX F3 SUMMARY OF PMF AND SPILLWAY DESIGN FLOOD ANALYSES 1 -INTRODUCTION (**) The natural PMF peaks at the Watana and Devil Canyon damsites are esti- mated to be 326,000 cubic feet per second (cfs)and 362,000 cfs, respectively.The routed peak inflows to Devil Canyon are estimated to be 358,000 cfs and 339,000 cfs in Stages II and III.The natural 10,000 year flood peaks are estimated to be 174,000 cfs and 184,000 cfs at Watana and Devil Canyon.Using the 95 percent one-sided upper confidence limits,the 10,000-year floods are estimated to be 240,000 cfs and 262,000 cfs.The 10,000-year events were not routed through the reservoirs because the total capacities of the spillways at the 50 year flood surcharge pool in combination with the outlet works are greater than the 95 percent one sided upper confidence limit estimates, and so the floods could be passed without additional surcharging. 2 -PROBABLE MAXIMUM FLOOD (PMF) 2.1 -Calibration of SSARR Model (0) In the derivation of PMF,the rainfall-runoff relationships,snowmelt criteria and routing of runoff excess through watershed and channel system,were defined by Streamflow Synthesis and Reservoir Regulations (SSARR)watershed model (COE 1972). The model was calibrated by U.S.Army Corps of Engineers (COE 1975, 1979)for the Susitna River basin above Gold Creek,a stream gaging station located about 12 miles downstream from the Devil Canyon damsite (Figure F3.1). The model determines runoff excess from average basin precipitation, snowmelt,evapotranspiration,deep percolation and soil moisture replenishment,and uses flow separation techniques to temporarily store this excess as surface storage,sub-surface storage and groundwater storage to provide time delay effect.The basic routing scheme is provided in the User's Manual for the Model (COE 1972).Figure F3.2 provides a schematic representation of the basic elements of the SSARR model. The drainage area of the basin above Susitna River at Gold Creek is about 6,160 square miles (mi 2 ).The basin was divided in 13 relatively homogeneous sub-basins.Flows from these sub-basins were combined and routed downstream to derive the flows at specified locations including those where observed flood hydrographs were available.Figure F3.3 shows a schematic layout of the sub-basins. The figure also shows the drainage area of each sub-basin. 851011 F3-1 The COE selected the spring floods of 1964 and 1972 and the summer floods of 1967 and 1971 for the model calibration.The calibration was performed by comparing daily observed and simulated flood hydrographs at four stream gaging stations -Susitna River at Gold Creek,near Cantwell and near Denali,and Maclaren River near Paxson (see Figure F3.3).Daily precipitation or snow water equivalent data observed at Summit,Trims Camp,Paxson,Gulkana or Gracious House (see Figure F3.l for locations)were used.The relationships between parameters in the model and initial values of the parameters were estimated initially based on hydrologic characteristics of each sub-basin.The estimated relationships and initial values were then progressively changed until the simulated flows were within acceptable limits of observed flows. Table F3.1 shows the comparsion of observed and simulated flood peaks. The simulated and observed hydrographs are shown on Figure F3.4 through F3.10.The derived relationships between the model parameters are shown on Figures F3.1l through F3.17. The input data and calibration procedures used by the COE were reviewed and a few discrepancies in data input were identified.The model calibration was checked by removing these discrepancies.As a result, relationships between the parameters were revised in two cases (see Figures F3.ll and F3.14)using the floods of August 1967 and June 1972 and corresponding daily rainfall data.It was realized that the initial values of the model parameters were not very sensitive except for a few days at the beginning of simulation period.The calibrated relationships between the parameters were tested for their validity by using the 1971 flood.Figures F3.l8 through F3.26 show the simulated and observed hydrographs.Table F3.2 lists the curve numbers of the parametric relationships and other pertinent data used for each sub-basin.Elevation-area relationships for the sub-basins are given in Table F3.3. 2.2 -Probable Maximum Precipitation (PMP)(**) The PMP's for the basins above Watana and Devil Canyon were estimated from the analysis of the following six historic storms by storm maximization: August 22-28,1955 July 28 -August 3,1958 August 19-25,1959 August 9-17,1967 August 4-10,1971 July 25-31,1980 (a)Storm Isohyetal Pattern (**) Precipitation pattern in the Susitna basin is greatly af- fected by orography.Therefore,it was necessary to 851011 F3-2 851011 (b) develop isohyetal patterns for each storm to define variation in precipitation over the basin.This was done by isopercental technique discussed below. The isopercental technique requires a base isohyetal pat- tern,usually mean annual or mean seasonal precipitation pattern.For the purpose of these analyses,the isohyetal pattern of July 1980 storm was used as a base map.The July 1980 storm pattern was well-defined because the storm was recorded at a number of gages within and in the vicinity of the basin. The ratios of the total storm precipitation of a given storm to the July 1980 storm were derived and plotted at each station where data were available for both storms.Isoper- cental lines were drawn based on these ratios.The ratios on these lines were then multiplied by the July 1980 pattern to yield values to draw isohyetal map for the given storm. The resulting isohyetal patterns are shown on Figures F3.27 through F3.32. Storm Maximization (**) The maximization factor for each storm was determined as the ratio between the maximum precipitable water and the precipitable water available during the storm.The maximum precipitable water was computed using 50-year return period maximum l2-hour persisting dewpoint temperatures.These temperatures were derived from dewpoint temperatures recorded at Anchorage for the months of May through September.The actual storm dewpoint temperatures were derived by examining the temperatures prior to the storm occurrence.The maximization factors are listed in the following table. MAXIMIZATION FACTORS Storm Dewpoint Max.Dewpoint at 1,000 mb at 1,000 mb Precipe Precipe Max. Storm Temp.Water Temp.Water Factor August 1955 47 18.3 59.5 34.1 1.86 July-August 1958 50 21.0 60.0 35.2 1.66 August 1959 48 18.9 59.5 34.1 1.80 August 1967 46 17.6 60.0 35.2 2.00 August 1971 49 19.9 60.0 35.2 1.77 PMP.Average precipitation over the basin above Watana was computed using the isohyetal pattern developed for six F3-3 storms (Figure F3.27 through F3.32).These precipitation amounts were multiplied by the maximization factors resulting in maximized total precipitation given in the following table. MAXIMIZED PRECIPITATION Maximized Total Storm Precipitation August 1955 July-August 1958 August 1959 August 1967 August 1971 7.03 4.96 6.82 12.54 9.04 The August 1967 storm resulted in the largest maximized precipitation amount if it were to occur also in August. However,snowmelts in August would be negligible compared to those in late spring and early summer.Therefore,the storm was assumed to occur in June with a lower maximization factor,estimated to be 1.4.This provided an average basin PMP of 8.7 inches above Watana site.The PMP for the basin above Devil Canyon was computed by adding the sub-basin between the two sites to 8.8 inches. (c)Temporal Precipitation Pattern (**) The August 1967 storm has a duration of 10 days.Daily distribution of basin average precipitation was computed using daily storm precipitation observed at stations within and surrounding the basin.This distribution was used for PMP. The daily prec1p1tation amounts were arranged sequentially so that critical flood conditions are produced at the dam sites.This was done by assuming that the largest 24-hour precipitation occurs on the eighth day of the PMP storm. The second largest occurs on the seventh an third largest on the ninth day.The entire pattern is shown in the following table: TEMPORAL PATTERN OF PMP Daily Precipitation Rankin gl1 Storm Duration 10 9 8 7 6 4 2 1 3 5 851011 II "1"is largest and "10"is smallest. F3-4 Daily precipitation was further distributed into 50 percent, 20 percent,15 percent and 15 percent values for each respective 6-hour period.The 6-hour precipitation was distributed in ascending order for each day up to the ninth day,while the ninth and tenth day's 6-hourly precipitation was distributed in descending order.The following table gives the 6-hourly distribution pattern for the PMP over the drainage basin above Watana. 2.3 -Snowmelt Criteria (0) An analysis of major historical floods indicated that snowmelt contributes a major part of the floods.Therefore,to insure adequate snowmelt contribution to the PMF,it was assumed that the snowpack is unlimited for glacial sub-basins (10 and 210).The snowpack for other sub-basins was estimated to be large enough to ensure a substantial residual snowpack during the storm period.The estimates were based on maximum recorded data at stations in and around the Susitna basin.The following table gives the estimated initial snowpack for each sub-basin. 6-HOURLY DISTRIBUTION PATTERN Day Hour PMP Day Hour PMP Day Hour PMP-- I 6 .00 5 6 .12 9 6 .59 12 .00 12 .12 12 .24 18 .01 18 .16 18 .17 24 .01 24 .40 24 .17 2 6 .04 6 6 .16 10 6 .40 12 .04 12 .16 12 .17 18 .04 18 .21 18 .12 24 .05 24 .54 24 .12 ~3 6 .13 7 6 .19 12 .13 12 .19 18 .13 18 .26 24 .13 24 .65 4 6 .10 8 6 .32 12 .32 12 .32 18 .15 18 .43 24 .35 24 1.08 851011 F3-5 INITIAL SNOWPACK FOR PMF Sub-basin Snowpack Sub-basin Snowpack 10 99 330 33 20 81 340 27 80 35 380 59 180 32 480 57 210 99 580 48 220 62 680 48 280 30 The temperature sequences prior to,during,and after PMP are shown on Figure F3.33.Temperatures through May are assumed at 32°F to ensure the snowpack is ripening,but yielding little or no snowmelt runoff; following that,a sudden increase in temperature is assumed.This temperature gradient is based on maximum one to seven day temperature rises observed for the period of records at Anchorage and Talkeetna. During the PMP storm,the temperatures are lowered.After the most significant precipitation has fallen,temperatures are increased again. 2.4 -Occurrence of Snowmelt and PMP Storm (0) The snowmelt starts on June 3 based on the adapted temperature sequences (Figure F3.33).The PMP storm is assumed to occur between June 8 and 17.This provides a 5-day period between start of PMP and start of snowmelt.This time interval was considered adequate for combination of floods resulting from PMP and snowmelt. 2.5 -Antecedent Conditions (**) The amount of soil moisture present at the on-set of PMP and snowmelt significantly controlled the amount of water available for runoff including its distribution as surface,subsurface,and and baseflow components.Relatively moist soil conditions were assumed for each sub-basin.The following table gives the initial values used for the model parameters. 2.6 -PMF (***) The calibrated relationships of the model parameters shown in Figures F3.11 through F3.17,and the initial values of parameters shown in the following table,were used to derive the PMF hydrographs at the dam sites.The resulting inflow peaks are 326,000 cfs for Watana site and 362,000 cfs for Devil Canyon site (without Watana).Figures F3.34 and F3.35 show the inflow hydrographs at the two sites. 851011 F3-6 INITIAL VALUES OF SSARR MODEL PARAMETERS Baseflow Runoff Sub-Soil Infiltration Sub-Base- Basin Moisture Index Surface Surface Flow 10 8 .03 10 30 60 20 4 .03 10 50 60 80 4 .03 5 10 70 180 4 .03 7 10 108 210 8 .03 10 10 10 220 4 .03 10 10 60 280 4 .03 4 10 70 330 4 .03 18 0 0 340 4 .03 18 20 120 380 4 .03 8 20 130 480 4 .03 16 30 420 580 4 .03 5 10 260 680 4 .03 4 10 140 The U.S.Army Corps of Engineers (COE 1965a)indicates that the standard project flood (SPF)serves the following primary purposes: "Represents a 'standard'against which the degree of protection finally selected for a project may be judged and compared with protection provided at similar projects in other localities.The SPF estimate must reflect a generalized analysis of flood potentialities in a region,as contrasted to an analysis of flood records at the specific locality that may be misleading because of the inadequacies of records or abnormal sequences of hydrologic events during the period of stream flow observation. Represent the flood discharge that should be selected as the design flood for the project,or approached as nearly as practicable in consideration of economic or other governing limitations,where some small degree of risk can be accepted but an unusually high degree of protection is justified by hazards to life and high property values within the area to be protected. Estimates completed to date indicate that SPF flood discharges flood discharges are generally equal to 40 to 60 percent of 'maximum probable'floods for the same basins. The Maximum Probable (or Maximum possible)Flood estimates are applicable to projects where consideration is to be given to virtually complete security against potential floods. Applications of such estimates are usually confined to the determination of spillway requirements for high dams,but in unusual cases may constitute the design flood for local protection works where an exceptionally high degree of protection is advisable and economically obtainable." 851011 F3-7 Additionally,the same publication goes on to state that: "Estimates comp1e'ted to date indicate that SPF discharges based on detailed studies usually equal 50 to 60 percent of the maximum probable (or 'maximum possible')flood for the same basin;a ratio of 50 percent is considered representative of average conditions. Inasmuch as computation of maximum probable flood estimates are normally required as the basis of design of spillways for high dams,it is convenient to estimate the SPF for reservoir projects as equal to 50 percent of the maximum probable flood hydrograph to avoid the preparation of a separate SPF estimate (see paragraph 1-05 and 3-02 d regarding SPF series).Accordingly,this convention is acceptable for reservoir projects in general.The rule may also be applied in estimating SPF hydrographs for basins outside of the region and range of areas covered by generalized charts present herein where maximum probable flood estimates based on detailed hydrometeor logical investigations have been completed.Where snow melt or extreme ranges in topography are major factors to be taken into consideration,it is appropriate to estimate the maximum probable flood hydrograph for the basin by considering optimum combinations of critical flood-producing factors and assuming the SPF hydrographs is equal to 50 percent of the maximum probable discharges.This approximation is based on the conclusion that critical conditions can be determined from analyses of meteorological and topographic influences,whereas a substantial period of hydro-meteorological records are required to determine appropriate combinations of flood producing factors meeting SPF specifications." In accordance with these criteria and criteria presented by the U.S. Committee on Large Dams (USCOLD 1970)the Watana and Devil Canyon spillways have been designed to pass the PMF in combination with the outlet works without overtopping the dams. Additionally,the 10,000-year flood and the 95 percent one-sided upper confidence level .have been computed and the capacity of the spillways and outlet works have been found capable of passing these discharges without surcharging the reservoir above the 50-year flood pool level. The 10,000 year flood peak on the Susitna River at Gold Creek and its 95 percent one-sided upper confidence level were estimated to be 190,000 cfs and 270,000 cfs,respectively.The estimates at Watana damsite are 174,000 cfs and 248,000 and at Devil Canyon damsite are 184,000 cfs and 262,000 cfs.The peak flows at Gold Creek were estimated from the station record of 34 years.The peaks at the damsites were estimated by multiplying the Gold Creek values by the square root of the drainage area ratios.The mean estimates of the 10,000 year flood are greater than 50 percent of the PMF peaks.The 95 percent one-sided upper confidence level values are greater than 70 percent of the PMF peaks. 851011 F3-8 The combined spillway and outlet facility capa~ities at Watana at the the 50-year flood surcharge pool level during Stages I,II and III are 290,000 cfs,280,000 cfs and 250,000 cfs,respectively.The corre- sponding capacity at Devil Canyon during Stages II and III is 282,000 cfs.These capacities are far in excess of the mean estimates of the 10,000-year flood,exceed the 95 percent one-sided upper-confidence- level values and exceed the guidelines of the U.S.Army Corps of Engi- neers for standard project floods (COE 1965a).Since the spillways also have the capacity to pass the PMF without overtopping the dam,the spillway and outlet facilities are considered to have a sufficient capacity to ensure the safety of the project. 2.7 -Design Floods (This section deleted) 851011 F3-9 TABLES TABLE F3.1:COE CALIBRATION RESULTS COMPARISON OF SIMULATED AND OBSERVED MAXIMUM DAILY DISCHARGE Observed Simulated Percent Discharge Date Discharge Date Difference A Susitna River at Gold Creek May 19 to June 25,1964 85,900 Jun.7 80,500 Jun.5 -6.3 July 1 to August 31,1967 76,000 Aug.15 78,800 Aug.16 +3.7 May 6 to September 30,1971 66,300 Jun.12 53,000 Jun.11 -20.1 77,700 Aug.10 74,100 Aug.12 -4.6 May 2 to September 30,1972 70,700 Jun.17 60,800 Jun.17 -14.0 26,400 Sep.14 32,300 Sep.15 +22.4 B Susitna River nr.Cantwell May 19 to June 25,1964 49,100 Jun.7 51,100 Jun.4 -4.1 July 1 to August 31,1967 36,400 Aug.15 36,600 Aug.16 +0.1 May 6 to September 30,1971 24,000 Jun.23 32,600 Jun.23 -35.8 36,000 Aug.9 44,000 Aug.11 +22.2 May 2 to September 30,1972 37,600 Jun.17 37,800 Jun.17 +0.5 21,000 Sep.14 22,800 Sep.15 +8.6 C Susitna River nr.Denali May 19 to June 25,1964 16,000 Jun.7 17,200 Jun.4 -7.5 July 1 to August 31,1967 No record 16,000 Aug.16 May 6 to September 30,1971 17,600 Jun 27 17,300 Jun.24 -1.7 33,400 Aug.10 31,500 Aug.11 -5.7 May 2 to September 30,1972 14,700 Jun.16 20,300 Jun.17 +38.1 5,690 Sep.13 15,300 Sep.13 +16.9 D Maclaren River nr.Paxson May 19 to June 25,1964 6,400 Jun.7 6,230 Jun.4 -2.7 July 1 to August 31,1967 7,280 Aug.14 7,290 Aug.15 0 ~May 6 to September 30,1971 5,520 Jun.25 5,430 Jun.25 -1.6 8,100 Aug.11 7,980 Aug.12 -1.5 May 2 to September 30,1972 6,680 Jun.16 7,780 Jun.16 -16.5 I 3,980 Sep.13 2,950 Sep.12 -25.9 TABLE F3.2:SUB-BASIN WATERSHED CHARACTERISTICS INPUT FOR SSARR MODEL Sub-basin Identification Number 10 20 80 180 210 220 280 330 340 380 480 580 680-------------------------- Drainage area,mi 2 221 694 312 477 44 232 307 48 1047 735 1045 628·345 Number of Surface Routing Phases 4 4 4 4 3 4 4 3 8 3 4 4 4 Surface Storage Time (hr)6 8 3 3 6 5 3 15 10 3 8 8 8 Number of Sub-Surface Routing Phases 4 4 4 4 3 4 4 1 8 4 4 4 4 .Sub-Surface Storage Time (hr)12 20 8 .8 12 20 8 0 48 8 15 15 15 Number of Baseflow Routing Phases 4 5 5 5 3 5 5 1 8 4 5 5 5 Baseflow Storage Time,24 156 156 156 24 156 156 0 200 96 156 156 156 (hr) Basef10w Infiltration Index Time (hr)100 100 100 100 100 75 100 100 100 100 100 100 100 Table No.for PPT vs.KE (F igure F3 .15)5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 5001 Table No.QGEN vs.SCA (Figure F3.16)6004 6006 6006 6006 6004 6006 6006 6006 6006 6006 6006 6006 6006 Table No.for Month vs ETI (Figure F3.14)4009 4008 4008 4008 4009 4008 4008 4008 4008 4008 4008 4008 4008 Table No.for SMI vs ROP (Figure F3.H)1015 1018 1018 1018 1015 1018 1018 1022 1021 1018 1020 1020 1020 Table No.for BII vs Efp (Figure F3.12)2017 2011 2009 2009 2017 2012 2009 2009 2009 2009 2009 2009 2009 Maximum Percent of Runoff to Baseflow 10 10 9 9 10 10 10 9 9 10 9 9 9 Table No.for RGS vs.RS (F igure F3 .13)3009 3008 3008 3008 3009 3003 3008 3008 3008 3008 3008 3008 3008 Table No.for QGEN vs MELTR (Figure F3.17)7011 7005 7010 7010 7009 7005 7010 7010 7010 7010 7005 7005 7005 Rain Freez.Temp.(oF)35 35 35 35 35 35 35 35 35 35 35 35 35 Base Temp.for Degree - Day (oF)32 32 32 32 32 32 32 32 32 32 32 32 32 Lapse Rate (OF /1000 ft)3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 TABLE F3.3:SUB-BASIN ELEVATION-AREA RELATIONSHIP Sub-basin 10 Elevation,ft 2800 3000 4000 5000 6000 7000 8000 9000 13,820 ! Percent area below 0 4.5 17.7 35.9 61.1 84.8 96.1 99.8 99.9 Sub-basin 20 Elevation,ft 2440 3000 4000 5000 6000 7000 8000 9000 10,000 13,820 r Percent area below 0 27.7 53.2 81.3 92.8 97.1 98.4 98.9 99.8 99.9 Sub Basin 80 I Elevation,ft 2370 3000 4000 5000 6000 6100 0 35.9 74.4 97.1 99.7 99.9 I Sub-basin 180 Elevation,ft 2350 3000 4000 5000 6000 6100 Percent area below 0 35.0 82.0 96.4 96.5 99.9 r Sub-basin 210 Elevation,ft 3150 4000 5000 6000 7000 8000 8850 Percent area below 0 10.9 24.1 67.2 96.0 99.8 99.9 l Sub-basin 220 Elevation,ft 2860 3000 4000 5000 6000 7000 8000 8850 :I Percent area below 0 8.2 50.5 80.1 94.9 98.6 99.8 99.9 Sub-basin 280 I Elevation,ft 2350 3000 4000 5000 5275 Percent area below 0 49.8 96.7 96.8 99.9 Sub-basin 330 I Elevation,ft 2361 2363 I Percent area below 0 99.9 ~Sub-basin 340 Elevation,ft 2100 3000 4000 5000 5275 Percent area below 0 68.7 95.2 99.8 99.9 I Sub-basin 380 Elevation,ft 1910 2000 3000 4000 5000 6000 7000 7770 Percent area below 0 2.0 15.6 49.1 78.4 96.0 99.8 99.9 [Sub-basin 480 Elevation,ft 1450 2000 3000 4000 5000 6000 7000 7200 I Percent area below 0 3.0 27.7 68.3 91.1 98.9 99.8 99.9 Sub-basin 580 I Elevation,ft 910 1000 2000 3000 4000 5000 6000 6910 Percent area below 0 2.0 8.4 44.1 79.5 96.2 99.8 99.9 Sub-basin 680 I Elevation,ft 677 1000 2000 3000 4000 5000 6000 6018 Percent area below 0 3.2 26.1 51.0 80.9 97.1 99.8 99.9 I FIGURES 1 ! j ! I I II ~ i I MCKINLEY C PARK CSUMMIT TALKEETNA C LEGEND •STREAM GAGING STATION C PERCIPITATION STATtON •DAM SITE _••-RIVER ---WATERSHED DIVIDE SUSITNA RIVER BASIN ABOVE GOLD CREEK .-...,.. Flgur"e F3.1 C CLEAR WATER TRIMS CAMP C PAXSON C GUlKANA C ••• TEMPERATURE EVAPOTRANSPIRATION oz § o GI: STREAMFLOW SSARR WATERSHED MODEL I 'I i r- I \ ! 'J~ \y-.... I ' I 2920 }'....._/ SUSITNA RIVEA AT GOLD CREEK .OBSEAVED 6160 SO.M" POATAGE AND GOLD CAEEIl LOCAL 345 SO.MI •. SUSITNA A.AT GOLD CREEK CALCULATED TSUSENA AND DEVIL CREEK LOCAL 521 SQ.MI. SUSITNA A.HR.DENALI GLACIAL 221 SO MI. WATANA AND DEADMAN CAEEK LOCAL 1045 SQ.FT. ,,_,."...,....0 0 I 2915 '....- \ I,_..... SUSITNA A.NR.CANTWELL OBSERVED 4140 SQ.MI. OSHElNA LOCAL 735 SO.MI. MACLAAEN A.NA.PAXSON NON -GLACIAL 232 SQ.MI . ...-....",I 2912 \MACLAAEN A.NA.PAXSON..l IOBSEAVED'_...' LEGENDo 8ASIN OA SU8 BASIN o COLLECTION "OINT 6.IlESUVOIR c::::J ROUTING REACH LAKE LOUISE AND SUSITNA LAKE 48S0.MI. IlEFERENCE' u.s.ARMV CORPS Of ENGINEUS INTEIlIM FEASIBILITY REPOIiT •••711 APPENDIX I "ART I SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL -" Figure F3.3 m -T~ a • -•.... .•j. .,: , ...... crt 10 '00.000 '0 10.000 ... ·10 ,, I!t I'I I I ... ..;"I.'I I:I I I (I I I I .iI.•I •..•.'..,"..0..'I I'!I 0 •I , :i 0. I 0 . .p....II"t "03".'.".J .l:.I .'. • ."'IOOI'Ar. .':.;..., !.....,,:,....iii .i 0 II :a I:i 11"'I~·I.····"··.~~_....~..:.I.'III~' . I l'....1 ..1.1........j 0 •I,"1 ;''.s .'I····I.I.p.........."..',.......1 ·1·t·/.•.J..'~'I ..r!}t....,....·!'AI .......';}I.i.;.·~'1~~::~':"•.,!:I::I:·..'..··,''':'fi'··i·,..·;..··..· .•..•...i.iI '''::;'''''.'~'i':':··,~:~.::.:..i ..:.'~4.I.p••'f0iC..:'\JM"~'J."V'',...........-'.\;,~:...~-~1.\::...... I.I '...r.,i······::.. ; ,.."""i't'j'··f·.,•__..:,........\.\': ' ,:'":li"lt=;:):::...f,:'\.;:;::;.';:'...:',:;;.;::\.! =.',','"d""l \...•,~",.r-....',,,,V"" I._'....'.'I i:1:.':"",~,1..;;..:,..,.=II l .:~.·~··:·:·I',...!....·:·..I'.:.;.i.i ,.~;~'"jc0 ,...:·'\i'..:....·..,·~.;.I·A!'\' II fj'~...II'I'.'I :......\..,~"'O'A \ . p ••,'"·1·•.••,..,.1'.o'.,:I'.,:,I •• .I ......:'I,,'"·..·..1..· .. .. .I :j;,-V"';...:I ;.j.,j.J :.. (I'i ' .i .I.,ill'.I .:. • I j ;0:"! ;i i :.;.!··j ,..·..l·!·:·:.:.;.:.:..0 :I .,.I !'1."]",,,;,,,1......,....I.I I'I :'i I .~I I I!1 .•1...'.1.:.'......,.....1..·:·1·I :~V:j:i'i.i,:iJ '.iii:Iii (,:'U;:!:.!i·t:,i;:t:!"i;i !i:);.11'i U:;:::: .•,..,:.,".-1';1:1 i ,~,1 .\-1 •1..:··j:r·..J •,.)••,,'. ...,'.:.·:,~:t ~.;..'1 ;.:!'..~1:.;.;:~;(!.L:/~·;fH;~;~~!;r~~nt;;itHi~J~~~;E~~J;~mtj I -..I .."'1'''. I ~. I I :..j:;t'::i:';::,:;;;::;\l ,0 I..1 •••. I' •;f:;''j,:-:~:''. 1lO.000 ••••";•.. : I I I PLOWII;.'I:'::.I I.','.'.. •I":~CII=:SO"c":I'• I I I I I'.".'• I I.100.'"L lOlS""'~';":'..·;·1 ..···R8 'i III I 0 •·1 •r.•I .I I I I I .I I I 0 ~,~·.l:0 •i 1 .I!I '..;I .•I ;''\11',.r •••.•001.,J.':J"·'·1 ·~..;......II':0 i I!i ":!I 0 :.I :'I ":, • I I ;.,.I I -"lCI,..,..TIOt-..i 10 1QPOO'···i,,·J·:··:·~··:·.:·~··I···....1-.."I'"",4,,;,"••~..I·.i ..I I I!:'::. i:'!I"~'~~P·T ..:·:···..,..··::+,..·....:{'I i1•.000:........... ..,.I I i -------I \. \ ,\\ ;\\...J. ·1. -I. .. i 4. I'!JO Mi 10 II .!.!i I. ~ ~~. = R~fER~NCE: U S ARMY CORPS Of ENGINEERS INTERIM fEASIBILITY REPORT.197~APPENOIX I PART I HYDROGRAPH :SUSITNA RIVER AT GOLD CREEK,1967,1972 Figure F3.4·\l~~[~ /1 2"'.~'1 U'SIIU••1 l""S"t~.2 .llli I a I ~I..'I • "'ttl..,.,... ••IIICMI:& •"I ~::~~.~:.~:~ ~fii.;l"i:lI ...,..,. ";::. ;~.~ ;.,. ..... '1'···1····· , I l'i .~'..,.·:·..·1 197' ·:.l.,),'I'::!fl!i.:td .....:.....~......I .I .r....· ;[,••,;:::,;Ii r:d;.,I:~;;E:.·;":' •"IOn.~.• ..I • I • I' &v(lIt.aCl'I" ..~1'-"lflAn;['." ..~..."/\.1\')1\ \ ..V \ .'...",..,....i\ ..........I i\."'''',.::,I....i........,.~ 0\.0....e'" 10 10._ 70 ,<.000 10 ...GOO 10 ...- ~!40 ",GOO I:>0 IO,GOO Mw W ;10 24.000 I !'0 .I.DOG =r •'",GOOI ~.1.""". ·1.• SUSITNA RIVER NEAR CANTWELL 11964.1971 r~~u;re ~?~liliill f'III(C ..,a.TlOH 1111 1H(It[l E;}'iJ I• I II I·..· '••..III 0 "';;O"l"~~ ~...!•.. P\Wtii;;~·..~ M.... ".-:l 10 Q I ~10 .-.. ~•I-I= -10 ""'" -10 JLo-_ UI I.-..,......:·u 70 -.......~....... 10 -,.4ZllllO I: ~40 ",.,.. !10 """"' HYOROGRAPH IlUERENCE, U S.ARIlIY CORPS OF ENGINEERS INTERIY FEASIBILITY REPORT.197~APPENDIX 1 PARI'I ~T • _OR'''"__s •..:.IT ··:....·....···i ..:·!·~I·,i I:. :,I I.:':'•.;'io"f.e l .. ' •"''''''''j'I ."0 '. :!I ll."IL :......:~i;~i1~ml!!l:!:~,u~i i I.:;I ;j I:. . !•I I .,III'' ·•.•1·•";tfl -• I ...'.·I:....~.·,.·..~·••r'l ••".I~.I.._,r I ( I I:I I •• .I'.•I ••i,:I :I :!!.:I 0 '.'•••••••I .. .~.~.I.!.L ...'!".,.,....•.t .'........•.•....·:..·jl··'i'!j II I 1-"'''''-'"...C'";.V[o''l[.•,'0 0'I':.'-.:.....:.....1. JIWl_.al:,M '..l.I ;.to..,I II I '.t1-./"'....•......"'1'".'• .JIJI,:'""'J'0 t···.f'fu~.A/\1~-:rA" •\;'·"~··lV.·.........~..··{,......':-:-':"';. ·..··1 'J'\....., .'....·f . \~.................,i .II".........................·i..· . ,'\"j.n ..,.....~j ,.. ".... "•4,000~10.. I Ii''0 •1.000 =§0 11.000 =,'0 0.000 ·10 0 ...... C'S 10 IO,GOO S _...... ro Sot.ODO ....... 10 •'.000 10 41.000 .. ~ ~40z l;!z:10 .0 ".oo&..... 10 '••000 ;..: I i "-"".cn 10 10.000 .,.'fa .'f i'1 ":~li~t:·~..·..•..•· K r\I'I'-.~~':,.i·...;.;.... MI~'A'IQII'1 I I41(C..'.I_ .",Hls o HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL.1967.1972 ·10 REFERENCE: U ~ARIoIY CORPS 0'ENGI"'EERS INTERI ..FEASIBILITY REPORT.197~APPENDIX I PART I 10 .1.0')0 ....-.. ~!.o 1&.000 f :so JO.ooo .... "r .'FUt.Ano~10 14.000 '..... 110 ".000 I"..i...\~.~o 5 ~\V r •a ,I . -10 1.000.·····.~.:.......'." I I o !.';;;::;.',":'~... L;":::~;/ i······ ,....,',.;',I I .,...,....j..;'·i ~....'> ,goIi·.~!~b~,:;,:~:·:i;l Figure F3.6 • T- REfERENCE. U.S ARMY CORPS Of ENGINEERS INTERIM fEASIBILITY REPORT,li7S APPENDIX I PART I Figure F3.7 Il~~[~1 IIIICIIIT.,.-_. oI.II ' II. .;! .:I ....""..... •..tNOCS' 000· '00 .00 \00 400 .00 100 '00 100 100 0000.'.;=••i ;,r:r ~j ;.:::; s:-;:...: • 11000 . :.;.I!!.'''''''''1:I I '.'.CPs •i!.;....:.,....'J . -~I''J'I'··..··'1'·..'1·.1 '1 ••~T&,~I • 1 '.,.\.I It;..·.;.•.I ....'I'~.i.': \•·t·••••.•:•10.I -.!j ··I,!)'....:l.,. 'IOCO i·~·i·.··..·~·:·..I\}V\Ij\! I,. I I'......,.•.~.-~:::::·:j:.T.:.i:.i: 14000 ;I : •I .!.0 i I I.. I ..1 .....o.~..:!.I IQDCD •••,i":"-.-~.I ALGA A"0:•I I I I[ ...'T'~'\'I I ~I';..',o'f """'..••,,.-:"·:·(:i·.:.f~.:...:.;:< ,........I,I I , , , lorD IJ..II:"'!I '..'1'''1. 4000 ··im.i:II . ,..:';"':.:.':'~l;\1';il, ':::(:i'>·i:.::;.I:U.:-'....,.... I' ,. 10 10 J 4' ~z 10:..w "I."w.. I ~10 :; 0: I I =... ·11 HYDROGRAPH SUSITNA RIVER NEAR DENALI,1964,1971 ''j"I . ..1 :.•'j'.'. I I ; o ., I' ............1 1 ••1,000 ,'- 11.000 10 11.000 •10 ..000 1011._ ·10 0 ~AM;=?':~~ n~1!!!1W;f~: 'LOW_ers I.4Q.OOO '0 ".000 i 40 - !SO 000.w 5.0 l!l .!. ~10 :; i 0 "~ -r i': ]:':::'."::; :.: ...~.:.. ..;..... ':...~.. .0.. . • t ~...'. ~~i.;:)/;;::;:..;.r:n:::"::.:• ..... 11..000 '_.000 '0' 'LDlI'''!...Cl'ilu.....era .._- 10 .0,000 •-."•••••I •.\....·"1 q....il~"U'I •••.~,ltif i~I".I '0 )&,000 ..~!...............,........1 ....,I .........,.l !. ao »1.000 ",o'I·••,'J"",/..........!....~./;'i ..,.......~................~.....I.. 10 1',000 .-I I .."1'"V'v-J.\/.,..,.........00-""I ,.lJ··...\:I..I ..,o •••-.\..f "....~;.......I ·10 .J:too ....~... ~y . ~ ~. ~JO 10.000 "ww"..~ I !"~ i ·= REFERENCE. US ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENDIX I PART I HYDROGRAPH SUSITNA RIVER NEAR DENALI,1972 Figure F3.8:Wi] I' ~ .1. :.." .o:! , ,.......~.... , •",'.'"~• . L ~~:•I . .,':,,i" ;..••••1 ~" .1 . g:~..,,1 ...:.~~g ~..;~;E~~~~:.:...~... rll! , : I '"..,.. • '.000 IPOO 1.000 ...ClPtr.a.... I •t I • I •..'IN IIItNlI I;~ii'I I.'\....•cl"~•'.•:'I'"a 1'1 .I·I'l~~~'lli"i1m··j'im II .'I'''c Ii .lI~lll I II\~I ~ I •I ..,)\1\'I.:.~I I"1 •I.:;.,I U·b .'•I :.'I .~ "Ijjlli'I •I •1 ~(~-:"""'."..:_:I~~'''''~~~'.:".''.,.I f\J /',1 \.,j\'.~:..' .v '"i l \".• ',000 ,rJV.\.(.'J'.~..~t1~..,.,.~rv-...VW,.: &,000 fi \A..,N U'f\A I \.if ~.IJ~V r\.~..1\1\I \••'.000 t I ",I •.000 1,000 1.000 'lOW .. .':Joo '0 o to 10 •• 10 10 10 10 .... ... ItMCI"''''ICIN.•ft "OCt Ie . C ,".'a....r~I.I,,,,tOlt--l I ;, REFERENCE:~i~~~~,~~RPSA3;[~~'~N'E~~~ER""FEASIBILITY HYDROGRAPH:MACLAREN RIVER NEAR PAXSON,1964,1971 ;'.Figure F3.9 i ! I ';·1 " '" :J.!:I m:! .':j • I,J I."j'"1..,I J It ""rv ..J v II •.J ~'" /'",-- .···r 'Z0'V I \t."'"c"n:o..,. :'11 :: ......".J II',.,..·....1.!'..,......., 10 1000 .0 '000 ~ i ~40 1000 z: f O '000 X 10 ."""I I~SOOO =0 1000 ·10 1000 ·10 • ----r I I ;.-I r i:..... ..c-.'.'",........ 2~~r .'~,-0II.~+...\. ':::j:.. .J. ..!.,. ..I !..~..-...:''i'~••. ."... ,"'..I -I I.-•ar,-,'"'I I I I "'!ll ..;:~~oi.:.:.:.:.:."":.. .....Iii pp"'.~r I ~li"-- .........l '• ...••~......,.~,'......,... , ...J,J\•••....j..r..Ii .•.•.•. !i I'i .",./,,\..'I:' ..i ..'"...II:,(',.\'.....~...r V \.r't'.\:.:;).J'v ~'.(~\.r'\.";~••~ / "'-.J.V:......-'V···-v:~'......,.\/\....;....N.j·'i ....I V 'oA..1\..........;(7 ~.,ro .... ....."V ;-:,. ......................~.:.:.:::F~:..\.:fA~\....•....•.::.•I-.~./....L...P0\·h··!......•........\0/.~ ~.·~·A ..·..·......·..·....· .\.-....1 X).. o ~~..::.;::::::::::::::::::::.:::::::~.• ·10 'Let-_en 10 10.000- '0 IPOO 10 IPOO 10 '.000 40 1.000 10 t.ODO 10 •.000 '0 J.Ooo 0 1.0 "0 '.000 REFEAENCf:HYD 06 APusAAIoIYWAPSOFENGINEERSINTEIlIIoIFEASIBILITYR R H MACLAREN RIVER NEAR PAXSON,1967.1972 REPOAT •197$APPENDIX I PART 1 ......... CIS 10 10",,00 ••I"·"f '0 IPOD " 10 1.000 .., 10.. ireD: ~IO w.. ~10 I ~10 ~ !ir 0 =-'0 _.000 -to 0 .. Ii ii~:s~.-I ,.~~,"..r;· ~..r:(...u~ .!llL !..... MIOl"lATIQIt...",,"u •0 Figure F3.10 ~...,lUi -----r 15147 8 9 10 II 12 13 SOIL MOISTURE INDEX SMI (INS) 65432 I I -------111022 .l-. [\1015 ~1~20./ V I,./'1018 , ~/" ~~ -~ ~-~---- ~~/ I ~l6I~V ~1021 I-~-~-~-----,----I----,.~I-- - -I---I----L t- I _ 10 20 30 00 100 90 0. ~70 80 t- ~60 ~ W 0.50 Ito ~40 0: SSARR MODEL SMI VS Rap Figure F3.11 [Ai] ~ 109834567 BII-BASEFLOW INFILTRATION INDEX (INS/DAY) 2 _.-- ""'-""l -------------------~---z----- )2017 ~ \ X 2OO9 ~"1'0 ..... \011 ~, '"'""','.....,---....~2012 ;2009--....~.._--------2011,__---.._----~-----=-=.-::..=-...-------------- 00 100 10 90 fr:80ID•~ 9 70 11.. Wen ~60 ~ It 50 oz ~40 11..o ~lOw U IX: ~20 SSARR MODEL Sll.VS SF?Figure F3.12 ,;~ --r- .8 .5 1.2 1.1 1.0 .9 0.0 15 2D INPUT RATE -RGS (I NS/HR)I. ./V /l""" ..;' ~3003 /V ,~ I............1\ ~1---30r- 03 o .01 .02 .03 .04 .05 .06·.07 .08 .09 .10 INPUT RATE -RGS (INS/HR)I. II~~I I I I I I I I I I I 1 I -I I - l-I I I - I I I I 1 I I t l.-I 1 1 j I I I - l..- I - I I I--I I I I -,II I I I I I I I l--~ T I 1 --I L I 17~, ~ I --l- I I I".,..II"j--~~1 V ,/\..I /","tOos I----j!--),.- I I·I~v·"--1 _,....I -L..""It-- I l..o'L.-o"-f__+_~'009 Ji-il ,-:J .10 .0 .02 .12 .11 (/) 0:.08 w ~ 0:5 .CH n. ~ I-D6zwz ~.00 ~ou ~.04 t!. 0= ~D3 --0= :I: "'-(/)D9~- SSARR MODEL RGS VS RS Figure F3.13 ~ 987 MONTH 6 .1 .~ .';"----- r---~--1---, I 4010 (CDE)I .4 I I I I I I ~4008 (CDE) 3 .-- --.I-- - -----'~;;S~~-4 ,.---,.~----...-. I ~)lD U ~RES) I I I T I I I 11:-REVISED 4008 (ACRE ~) --~_-l -----------1-'_- -----:------r---~::L--- 4 5 ~ IIJ• )( IIJo ~ z Q tia:a::en Z ~ ~.2o Q. ~ IIJ I r I r ! [ I I I I ) 1 r I Figure F3.14 SSARR MODEL MONTH VS ETI Figure F3.IS .6 .8 1.0 1.2 1.4 1.6 .1.8 2.0 PRECIPITATION RATE·PPT lINS/HR) SSARR MODF.L PPT VS KE .4.2 \ \ \ 1\ ~~~~5001 20 o 80 40 60 100 I ~0 . I lI.l ~ I en I lI.l 3~ z2 I I- U~ 0lI.la: lI.l I tia: z 0 ) fia: Ci:enz cfa:r b 0. ~ lI.l I I I t I I 100 Q;:'"-..,...--~-...,..----,.--~--.,---~-....,....--.".,,...---~~~OO~ 90 \.....- \" ~, " 80 t-~,*--+-..3.;;:"'ll:!---1---+--+---+--~--+----1 1\"~70 t---+--T--t---t----::~--+_-_+_-__1--_l_-_+-__...~\-)~, (I)60 I"THEORETICAL SNOWit---_+_--J;!'\..--..;.I--+I-~':-~+-I-,?~~~~'~~O~g~~~y I fi:l 50 t---+--~-~r------+---+-~-+----1---+----;'-----I~40 •h;I '\.I i "'l I '\'!"~~,i3Ot---+---t---+----T--~+---+--........:!l~--+----+-----I'"","\ 20 t---t---t---t---+--+------::!l&:.------1I---.....---+---l~i'--....I""10 t----+---t---+----+--+---+-------:----~--4,...------I6006.....~I' I ~ SSAR R MODEL QGEN vs seA I I r r I I [ I I I I I ~ I 1 I I I I 10 20 30 40 50 60 70 ACCUMULATED GENERATED RUNOFF - %OF SEASONAL TOTAL -QGEN 80 90 100 Figure F3.16 ~ o /<:: // 7 lOO~ >-------------~-I---....-.... / V ~V 7009\------./701l~----- , \ I [ I 1 I [ [ [ I l , I ~ I .4 a:.3~w 2, ~a: ..J ..J ~.2 ~zen .1 10 20 30 40 50 ~,60 70 80 90 TOTAL SEASONAL ACCUMULATED RUNOFF·QGEN (%) 100 Figure F3.17 SSARR MODEl QGEN VS MELTR ~ I --~T\-\-\---1 I I \ I '\ I I 'I \I \ \ I I \.\,\ " I ' ,I \ I \ ,:-_..;..-.;,-~-~._~---~--I-" "I \,I \ ,,',\I I \,,,,1 "I I '""\\,,\\,",""i \,,'I/""'....".................J '......,""......J "i ~I I :I I I I,.'t ...------- 10 75 10 .5 10 ~ 50 4ll 8g.4().. ~ ~35...... 10 ~ '\I'.I I i I ~"]I:••:~.~-~ i I Iii 15 10 I .1 5 SSARR MODEL CALIBRATION SUSITNA RIVER AT GOLD CREEK 1967 FLOOD ~~~[~:Figure 3.18 o ~!~I !-'..~.~.~.!_'._'__'_1_2__~'1 !!l .~.~.~.~.!_~_1_.!. DllAWH BY Q4(0(EOav DESIGNED BY ~T~ ;~I I'I I '------[-1 -~3TI[9_'----'-----J .._,---I ! i I 9 I -------•!,...,, I I',I I , I :, I , I , I 'I \I ,,, ,"/,,,",,.........,".......----~---._--~._-.._.~_._.-......;,~ DATE 272~23211917 ,,__.../CALCULATED FLOW ,... ,..,-----...,'",,-".....~,I"'.....,........,'",," I)15 ~ULY ,,",,', II975 I I ~-_.- I I ,-'---".--- -~o 4~ 40 ~ ~30. ~l' ~ ~ 3... I~ I() ~ 0 I ) I:I.SlGNEOB1 DRAWN 111 CHfO<EDII1 SSARR MODEL CALIBRATION SUSITNA RIVER NEAR CANTWELL 1967 FLOOD Figure F3.19 .~l~~(~.! 2 "------,' 24~ .-.··-1 I· i I zo 'LOW II ,._--.'_.' 12 14 II Al.GUST 10••42 I I!",..._../CALCULAltD flOW ,......................or.:--'-..,---- 27 2t 51 TIME IDAYI DATE 211u21IIIII17 ~ULY 15 ".----~~....... III71I 10 B ~.•..... !:!•4 0 It 2 0 I 5 DESIGNED BY DRAWN BY CHECIlED 1'1' SSARR MODEL CALIBRATION MACLAREN RIVER NEAR PAXSON 1961 FLOOD Figure F3.20 » --:::='-~--- Figure F3.24 .rl~~[~ I i. I"!\'I II'I'I I'I III1 SSARR MODEL VERIFICATION SUSITNA RIVER AT GOLD CREEK 1911 I I',,,"I , I,,,,,, I,,,, I I,, I _."i ~I I ,) I -- I ' =-----r---,------"""""--1 i ji--..-~~ f .Il-_----:--_L ~__ IS 10 7:1 10 6:1 &0 :1:1 :lO ~4:1-II>... ~40 ~... !:I !O 2:1 20 1:1 10 :I 0 DSN ~ CHK ,.~ I~' L c:..:::»._. .---' 2 o... ..... ..... ..... .. .. .... 5 ....-z~.. ,, I \''''\ \ \ \ \ \ ~........ ~ ll!•o ----_._---+----- f---~.----~---------.+_- ,-...-----------F--~ l i .. I I .. I =I -~ I ~ \ i) -";;;, -~I ..._---- _.J.' ]- /~ \, ,2 o ......... (Nil dl~311d (000 •s..I~I MO,j "-l I "I"T I"""~I'I'~I I 'IL••=-------~-=~----__h_J :~: : -r------',...----------... ...J~~(~~ SOl Figure F3.26 2$I~20 AUGUST 10 O.ITE SSARR MODEL VERIFICATION MACLAREN RIVER NEAR PAXSON 1971 FLOOD o k,...,-":::;:=-('I I I I I I I I l I I I I I I I I I I I I I I ..10 I~20 2~~I ~.-.•------ MAY 2 s 7 • ~~I 1.*1\J-!...l..u oo • ~ •g 4... DRAWN BY OCSO<ED IIV C>«I([I)IIY "ib• \)- I I I I ) I ~ r, CHULITNA -~ -RIVER ,/ LODGE ,J t _TALKEETNA 2.:11 ~. -PRECIPITATION LOCATION AND oUIOUNT (lit) 1 :II -)_ISOtrt£l ISOHYETAL MAP STORM OF JULY 28 -AUGUST 3,1958 •MIlSOIW •GULIlANA Qt:l Figure F3.28 m \, @ r, CHULITN..~ -RIVER ,,/ LOOGE1~ GOLD CREEK \~..... /' ~ -PRECIPIT..TION l.OCATION ANa AMOUNT 11M)UO _s-.ISOIfYET _SUMMIT l47 (~ -r ..... ( -~...,_/J ~I v "\,-.."JV' ,.----1 ISOHYETAL MAP STORM OF AUGUST 19-25,1959 •PAXSON •GIlL...,... 076 Figure F3.29.Il~~(~ @ r, C....LITN..,../ RIVER.,,/ LOOGf ,J t -5 ~: •PIlECIPfTATlOIt LOCATION ANO AlIOuNT liN I 2.41 -J-ISOHVU 5 ~/I ISOHYETAL MAP STORM OF AUGUST 9-17.1967 •GULIlANA .54 Figure F3.3D r-------, ~~~(t c !~...~ QJI~=t ......: o... ) ! I )- ! ) I ) ) I ISOHYETAL MAP STORM OF JULY 25-31,1980 u.<1t!!2 •PRECIPITATION LOCATION AND AMOUNT 1IN.1Z.41 .....-3-ISOHYET .!sUMMIT --~I- \ \\../-...,,..../ )' r-/--- f __-,vI Figure F3.32 [i~~(~.' .,, "Ir-INFLOW l', \""'-OUTFLOW J \.~ ~........... /\ ·••·•• 1'-=~OUTLET WORKS BEGIN OPERATING POWERHOUSE OPERATING I 5 10 15 20 25 30 35 TIME (DAYS) PROBABLE MAXIMUM FLOOD INJLOW- "'"'t ~\ ttl \\'-OUTFLOW,\)1\ ............INFLOW ~ =OUTFLOW • \ 1\ •'"•••• /~I ...SPILLWAY BEGINS OPERATING POWERHOUSE SHUTDOWN,...~I I I ~-~POWERH9USE AND I--"~.OUTLET WORKS OPERATING x CI.l u.200~ w ~160 c:( :I: U~120c <5g 240 o o 40 80 280 360 320 35510 15 20 25 30 TIME (DAYS) .50 YEAR F·LOOD (JULY-SEPT.) o o 90 80 70 <5 0 600... x CI.l 50u. ~ w C) a:40 c:( :I: U CI.l 30c 20 10 G 5 10 15 20 .25 30 35 TIME (DAYS) PROBABLE MAXIMUM FLOOD -SPILLWAY BEGINS OPERATIN rMAX.W.S EI.2017.1 ,~, ~J \NORMAL MAX. W.S.EI.2000 -, \~/,il /,2002 2016 2018 ~2014 ::2: t 2012 zo ~2010 >w Ld 2008 a: o ~2006 w CI.lw a:2004 2000 5 10 15 20 25 30 35 0 TIME (DAYS) 50 YEAR FLOOD (JULY-SEPT.) ,...OUTLETWOR~S BEGIN OPERATING I,M ~x.W.~;EI.21 11.0 r-\lL I ~ \ \r NORMAL MAX. .W.S.EJ.2000, Ii \.J2000o 2018 1 2016 :J ·2014 1 CI.l ::2: ..,; u.2012 ~z 0 i=2010c:( >W ...J 2008w a: 0>2006a:w CI.lwa:2004 2002 WATANA STAGE I FLOOD DISCHARGES AND RESERVOIR SURFACE ELEVATIONS ~IGURE F3.3. 35510 15 20 25 30 TIME (DAYS) PROBABLE MAXIMUM FLOOD I ~,,-O~TFLOlINFLOW-""""J I ~, ~•\~,\ ~, :....-~-INFLOW =OUTFLOW I I I /SPILLWAY BEGINS OPERATING 1;1 - ,-I_OUTLET WORKS OPERATING.-/r- POWERHOUSE NOT OPERATING I !J [MAX W.S.EI.1465.6 ~-l- ~SPiLLWAYBEGINS OPERATING , \/-NORMAL MAX. W.S EI.1455.0 J • 1452 1466 320 80 1468 40 280 _240 8o ';;200 enu. ~ w 160 Cla:: <{ ::I:120~ c 360 :J 1464 en ~ t 1462 z ~1460 <{ >~1458w a:: ~1456 a::wen ~1454 o 35 0510 15 20 25 30 TIME (DAYS) 50 YEAR FLOOD (JULY-SEPT.) -- r INFLOW i kl,J0UTFLOW / \ '\\\ ~OUTLET WORKS OPERATING POWERHOUSE NOT OPERATING I I I I -MAX.W.S.EI.1455.6 l-I ~NORMAL MAX. W.S.EI.1455.0 L-.r-. o o 90 80 70 0'60 00.... )(50enu. ~ w 40Cla:: <{ ::I: c..J 30en C 20 10 1468 1466 ...J 1464en ~ ~u.1462 z 0 i=1460<{ >W ...J 1458w a:: 0>1456a::wenwa::1454 1452 I I ! ) i r l 1 i ~ I 1450 o 5 10 15 20 25 30 TIME (DAYS) 50YEAR FLOOD (JULY-SEPT.) 1450 35 0 5 10 15 20 25 30 35 . TIME (DAYS) PROBABLE MAXIMUM FLOOD DEVIL CANYON STAGE II FLOOD DISCHARGES AND RESERVOIR SURFACE ELEVATIONS FIGURE F3.3S 353010152025 TIME (DAYS) PROBABLE MAXIMUM FLOOD 5 80 J..----I--1J-i----4-----+-----l-----+-----+---I i J:I SPILLWAY BEGINS OPERATING1/;1 POWERHOUSE SHUTDOWN 40,.l::!-'>--PO~ERHOUSE AND ~OUTLET WORKS OPERATINGOL--..l--J.....---------.....o 320 J----+--+--N---+--+--+---I INFLOW-N \. 280 J---+--+---1--Iotr--+----l--~---I~•l···~/;--OUTFLOW..\.•••0"240 J----+_-¥••=---+-+-~.~-+--+_-_I~'vF\\ (I)200 J---+--f+----t---=--+---+--*---+---I~""hINFLOW \~ w =OUTFLOW ~160 J----+--I-+---t---+---\-\-t--+---I :::t:\~120 J----+_T-+_--+---+---+~\-+_-_I 360 ,....-_-_-..,..--.,..--.,..---,.---. 3551015202530 TIME (DAYS) 50 YEAR FLOOD (JULY·SEPT.) n ~~INFLOW \-OUTFLOW J......,~.~.......• /\••••;,.l ••:•••!• ~f-OU~LET WORKS BEGIN ~PER1TING POWERHOUSE OPERATING o 0 90 80 70 0"600 0... )( (I)50 LL. ~ W ~40 0:<:::t: ~30 c 20 10 2202 2200 :::i 2198(I) I i :::! ~ LL.2196z t 0 i=2194<{ >W -l ) w 21920: 6>21900: II w (I) W 0:2188 2186 WATANA STAGE III 'DISCHARGES AND RESERVOIR SURFACE ELEVATIONS 35 fMAX W.S.EI.2199,3 "I - I f I 7 \ "v \NORMAL MAX W.S.EI.2185 I ~SPIL.:LWA'/I~/BEGiNS OPERATING \if J / I , -' 2184 o -5 10 15 20 25 30 TIME (DAYS) PROBABLE MAXIMUM FLOOD 2186 2200 2202 a2198 :::! ~ !:!:.2196 zo ~2194 >w -l w2192 0: o ~2190 w (I)w 0:2188 5 10 15 20 25 30 35 TIME (DAYS) 50 YEAR FLOOD (JULY-SEPT.) .--OUTLET WORKS BEGIN OPERAJING I _I I r-"'MAX.W.S.EI.2191.5 I ~, /1\\'NORMAL MAX. W.S.EI.2185 I \\J I "'--, 2184 o (f II FIGURE F3.36