Loading...
HomeMy WebLinkAboutAPA3504- ...... LOWER SUSITNA RIVER PRELIMINARY CHUM SALMON SPAWNING HABITAT ASSESSMENT Draft Technical Memorandum by Jeff Bigler Kim Levesque 1985 ALASKA DEPARTMENT OF FISH AND GAME Susitna Hydro Aquatic Studies 620 East 10th Avenue Anchorage,Alaska 99501 -rK 14;;15 .58 PtlaB vtD."3 5"DLf LIST OF FIGURES •- TABLE OF CONTENTS ....-.iii LIST OF TABLES .•0.••••••••co ••eo •••••••••••••••••- •..................vii LI 5T 0F PLATES ..•.•..III c ••••III ••••••Cl iii •••••••x INTRODUCTION .• Background .• Objectives •. • • • • • • • • • • • • • • • • • • • • • •eo •••••co •••'••••••••••••••••••1 1 1 Habitat Data •••. Biological Data ....• METHODS •.•••. Habitat Data ••. Temperatures ..................•'. Water Surface Elevations .•...•.• Substrate . Bi 01 og i ca 1 Da ta •••..•.•.•..•• ................... 1 1 4 4 4 4 6 6 - Chum Salmon Spawning Surveys •••.•. Chum Salmon Spawning WUA . Egg Survival and Development •. Outmigration Occurrence •.•...• ..............6 6 12 12 59 59 59 59 -- ~. M M,..... ...... "d- "d- ooo lD lD,..... M M DATA SUMMARy ....• Habitat Data ... Temperature . Upper Trapper Side Channel Lower Trapper Side Channel •••• Upper Sunset Side Channel .• Lower Sunset Side'Channel.. Upper Circular Side Channel ••..•. Lower Circular Side Channel •. Water Surface Elevations •. Trapper Side Channel ••.. Sunset Side Channel .•. Circular Side Channel i 14 14 14 14 14 14 37 37 37 :A:ItLIS Alaska Resources Library &Infomlation ServIces Anchorage,Alaska TABLE OF CONTENTS (Continued) Substrate . Upper Trapper Side Channel Lower Trapper Side Channel Sunset Side Channel ••. Circular Side Channel. ...........................eeO.OIllIll 64 64 64 64 64 B;0109 i ca 1 Data "..V"•••III ••••••CJ ••1\•••"0 e ..Ii>•64 Chum Salmon Spawning Surveys. Mainstem West Bank Side Channel.••••••• Circular Side Channel •• Sunset Side Channel. Trapper Side Channel ..•••••..•••• Chum Salmon Spawni ng WUA ...•••••••• 64 104 104 104 104 120 - Egg Survival and Development.120 Upper Trapper Side Channel ••.•••••.•..••..••••.• Lower Trapper Side Channel .•••.•...•••••.. Sunset Side Channel .....••••••• Circular Side Channel ..•• Birch Camp Mainstem. Outmigration .•••••...•• Trapper Side Channel .. Sunset Side Channel ..e g~~e.D •••• Circular Side Channel .•...•...•...•••.•.•.•.•. CO NCLUSID NS.• •III ••III • • • • •..• • • • •....• • • • • •iii • • • • •III III • • • • •CI •••••CI •,.•III ..CI • RECOMMENDATIONS FOR FUTURE STUDIES ••..••.....•.•.•.•...••••..•.. LITERATURE CITED CI e ..00 •Cl II III CONTRIBUTORS .. ii 120 120 120 123 123 123 123 123 123 125 127 128 129 ..... - LIST OF FIGURES Fi gure 1 Single probe freeze core sampling system used for sampling substrate and eggs ........••.........•..5 2 3 Mean daily temperatures portion of Trapper Side Mean dai ly temperatures portion of Trapper Side intragravel and surface water (°C)recorded at the lower the observed spawning area in Channe'.. intragravel and surface water (OC)recorded at the lower the observed spawning area in Chan ne 1 III .. 21 28 F!'", ,.,... iI, I ,I 4 5 6 7 8 Mean daily intragravel and surface water temperatures (OC)recorded at the upper portion of the observed spawning area in Sunset S;de Channel ":III .. Mean daily intragravel and surface water temperatures (OC)recorded at the lower portion of the observed spawning area in Sunset Side Channel ...•.••~•.....•.•..•..•.•......••• Mean daily intragravel and surface water temperatures (OC)recorded at the upper portion of the observed spawning area in Circular Side Channe'..•••••.••••••.•~.•.•.....•e •••1D Mean daily intragravel and surface water temperatures (OC)recorded at the lower portion of the observed spawning area in Circular Side Channel •••....••••.,~•••••.•.•••.•..•.•• Comparison of mainstem and side channel water surface elevations over time at Trapper Side Channel .. 36 44 51 58 61 9 Comparison of mainstem and side channel water surface elevations over time at Sunset Side Channel.~••••••$.·tt...................................62 10 Comparison of mainstem and side channel water surface elevations over time at Circular Side Channel eo _...........................63 11 Depth integrated substrate composition, percent by weight passing each sieve size for redd number 1 in Upper Trapper Side Channel .66 r iii ARLIS Alaska Resources Library &Infonnation Sen/)ces Anc.hora,ge,Alaska " ' I LIST OF FIGURES (Continued) 12 13 14 15 16 17 18 19 20 21 22 23 24 Depth integrated substrate compos i ti on by wei ght from redd number 1 in Upper Trapper Side Channel."IIl.".CI •••c •••••••••••••••••••• Depth integrated substrate composition, percent by weight passing each sieve size for redd number 2 in Upper Trapper Side Channel •..•...•.• Depth integrated substrate composition by wei ght from redd number 2 in Upper Trapper Side Channe 1 $,.;"III Go Go "III .. Depth integrated substrate composition, percent by weight passing each sieve size for redd number 3 in Upper Trapper Side Channel . Depth integrated substrate composition by wei ght from redd number 3 in Upper Trapper Sjde Channel Ct "0 ~" Depth integrated substrate composition, percent by weight passing each sieve size for redd number 4 in Upper Trapper Side Channel .........• Depth integrated substrate composition by wei ght from redd number 4 in Upper Trapper Side Channel IDIIlIll •••••••••••••••••••••••••••o •• Depth integrated substrate composition, percent by weight passing each sieve size for redd number 2 in Lower Trapper Side Channel .•••.••••• Depth integrated substrate composition by weight from redd number 2 in Lower Trapper Side Channel III .."III III S ..III 0 III III ..-I)III .. Depth integrated substrate composition, percent by weight passing each sieve size for redd number G-6 in Upper Sunset Side Channel ........• Depth integrated substrate composition by weight from redd number G-6 in Upper Sunset Si de Channel ..til •0 0 Cl Cl III ..II "e lEI "lI OIl III ..III II;;iii e Cl 0 III .. Depth integrated substrate composition, percent by weight passing each sieve size for redd number 6A in Upper Sunset Side Channel •.•.•.•.•. Depth integrated substrate composition by weight from redd number 6A in Upper Sunset Side Channel .....o •••••••••••••••"••••••••••••••••••• iv 67 69 70 72 73 75 76 78 79 81 82 84 85 ,~ - - ,.." LIST OF FIGURES (Continued) -, - T I "1"" I ! 'i' I I 25 26 27 28 29 30 31 32 33 34 35 36 37 Depth integrated substrate composition~ percent by weight passing each sieve size for redd number 7 in Upper Sunset Side Channel ••.•.....•• Depth integrated substrate composition by weight from redd number 7 in Upper Sunset Side Channel •.•...•.••..•••••.•....-CI . Depth integrated substrate composition~ percent by weight passing each sieve size for redd number 3A in Lower Sunset Side Channel ••.•••••.. Depth integrated substrate composition by wei ght from redd number 3A in Lower Sunset Si de Channel .. Depth integrated substrate composition~ percent by weight passing each sieve size for redd number 4 in Lower Sunset Side Channel .•.•.••...• Depth integrated substrate composition by weight from redd number 4 in Lower Sunset Side Channel .. Depth integrated substrate composition~ percent by weight passing each sieve size for redd number 1 in Circular Side Channel ..••..•.•.•.•.. Depth integrated substrate composition by weight from redd number 1 in Ci rcular Side Channe 1 .. Depth integrated substrate composition~ percent by weight passing each sieve size for redd number 3 in Circular Side Channel ••..••.•••.•... Depth integrated substrate composition by weight from redd number 3 in Circular Side Channe 1 .. Depth integrated substrate composition~ percent by weight pas5ing each sieve size for redd number 5E in Circular Side Channel •••.•.•••..... Depth integrated substrate composition by wei ght from redd number 5£in Ci rcul ar 5i de Channe 1 '.. Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Mainstem West Bank modeling site •••.•.•...•..•••...•. v 87 88 90 91 93 94 96 97 99 100 102 103 109 LIST OF FIGURES (Continued) 38 39 40 41 42 43 44 Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Circular Side Channel modeling site ...........•.•.•.. Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Sunset Side Channel modeling site ....•.•••.•.•....... Projecti ons of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Trapper Creek Side Channel modeling site •..•.•.•.•.•. Time series plots of spawning chum salmon WUA as a function of di scharge from May 20 to September 30~1984 in Mainstem West Bank Side Chan ne1 rno del i-n9 5 i te.III .....CI ..e ..8 c>'"e "•0 .... .. ......oe ........e eo ...... Time series plots of spawning chum salmon WUA as a function of di scharge from May 20 to September 30~1984 in Circular Side Channel mode 1 i ng 5;te .,tl ill tl eo "0 II fl I>..II '"II ..Cl II!l .. Time series plots of spawning chum salmon WUA as a function of discharge from May 20 to September 30~1984 in Sunset Side Channel mode 1i n9 5 i te.e III .,..15 III Q II III III .. Time series plots of spawning chum salmon WUA as a flJncti on of di scharge from May 20 to September 30~1984 in Trapper Creek Side Channe 1 model i ng site tl .."III ..,;;G Cl "II ."ill ill .. vi 110 111 112 117 118 119 121 ..... - LIST OF TABLES Table 1 A summary of data collected at sites selected for biological and habitat assessment ••.•.••...•••••. 2 Depth suitability criteria for chum salmon 3 spawnlng................7 3 Velocity suitability criteria for chum salmon spawnlng.....7 4 5 Substrate and upwell"i ng combi ned suitabil ity criteria for chum salmon spawning ••.•.••••.•.•.•.•... Lower River IFG modeling sites representing side channels at which chum salmon have been observed to spawn in 1984 ........•.......•........... 6 Substrate size classification system used to evaluate substrate conditions at Lower River 8 9 study sites -e i:'..........10 7 8 9 10 11 Stages of embryonic development for chum salmon identified for use in thi s study. Stages correspond to information reported for sockeye salmon by Velson (1980)..........•........... Datapod temperature recorder data summary: intragravel and surface water temperature (OC) recorded at Upper Trapper Si de Channel,RM 96.0 .. Datapod temperature recorder data summary: intragravel and surface water temperatures (OC)recorded at Lower Trapper Side Channel, RM 92 ..7 ill I>.. Datapod temperature recorder data summary: intragravel and surface water temperatures (OC)recorded at Upper Sunset Side Channel,RM 86 ..9 e ill '"ill Datapod temperature recorder data summary: intragravel .and surface water temperatures (OC)recorded at Upper Sunset Side Channel when the site was frozen,RM 86.9 . 13 15 22 29 35 - 12 Datapod temperature recorder data summary: intragravel and surface water temperatures {OC)recorded at Lower Sunset Side Channel,RM 86 ..9 ' 'CI 41 vii 38 LIST OF TABLES (Continued) 13 14 Datapod temperature recorder data summary: intragravel and surface water temperatures (OC)recorded at Upper Circular Side Channel, RM 75.3 •••.•••10 ••e •III CI •'I)e ••III •ICI •II"e 11&Ii ill Datapod temperature recorder data summary: intragravel and surface water temperatures (OC)recorded at Lower Circular Side Channel, 45 RM 75.3 .•.•.•.•...•••..•.••••••..•II ••••0 •••olII 10 ••Co • • • • •52 15 Comparison of water surface elevations obtained at selected side channels in the lower Susitna River to those obtained from adjoining mainstem locations •.•.••.••••••.•••..••.•.•60 16 17 18 19 Substrate sieve ana lysi s data Trapper Side Channel redd number 1 Substrate sieve analysis data Trapper Side Channel redd number 2 Substrate sieve analysis data Trapper Side Channel redd number 3 Substrate sieve analysis data Trapper Side Channel redd number 4 for Upper (R ...l)4i.I!I •••••lCIlDe •• for Upper (R-2)••••••~.IIl .••. for Upper (R-3)olClo •••• for Upper (R-4 )iii ••• 65 68 71 74 20 21 22 23 24 25 26 27 Substrate sieve analysis data for Lower Trapper Side Channel redd number 2 (R-2)•.••...•.•..• Substrate sieve analysis data for Upper Sunset Side Channel redd number 6 (R-6).•........•.••....••. Substrate sieve analysis data for Upper Sunset Side Channel redd number 6A (R-6A)•••.•.•.•.•.•..••.• Substrate sieve analysis data for Upper Sunset Side Channel redd number 7 (R-7). Substrate sieve analysis data for Lower Sunset Side Channel redd number 3A (R-3A)•••••••..•••...•.•• Substrate sieve analysis data for Lower Sunset Side Channel redd number 4 (R-4)••••••••••••••••••••• Substrate sieve analysis data for Circular Side Channel redd number 1 (R-l)..•.•..•.•.•....••••• Substrate sieve analysis data for Circular Side Channel redd number 3 (R-3).....•..•••••...•••.. viii 77 80 83 86 89 92 95 98 ..." LIST OF TABLES (Continued) 28 29 30 31 32 33 34 Substrate sieve analysis data for Circular Side Channel redd number 5E (R-5E)....•........•.•.•. Projections of gross surface area and WUA of chum salmon spawning habitat at Mainstem West Bank Side Channel .•.•.•...•...•.•5 ••••••••••••••••••• Projections of gross surface area and WUA of chum salmon spawning habitat at Circular Side Channel ..•.•.....•.,.,. Projections of gross surface area and WUA of chum salmon spawni ng habi tat at Sunset Si de Channel.II ill ..0 ..ill ..0 III •••••II c. Projections of gross surface area and WUA of chum salmon spawning habitat at Trapper Creek Side Channel "oIlo •••••••••••••••e ••••• Outmigrant fyke net catch data from Lower Susitna River side channel sites April -May 1985 ill ill ••••••••••••••••• Deve 1opment stage of chum salmon eggs co 1- lected from redds in Lower Susitna River side channel sites,January 1985 .......••...•......•.•.... ix 101 113 114 115 116 124 122 .~, LIST OF PLATES Plate "I"'" I 1 2 3 4 Aerial photograph of Circular Side Channel and Mainstem West Bank side channel with spawning area and sampling sites indicated •.••••..•..•••••.•.. Aerial photograph of Sunset Side Channel with spawning areas and sampling sites indicated .•.•••.••• Aerial photographs of Lower Trapper Side Channel with spawning areas and sampling sites i nd i ca ted ..II •••••••••0 •II III III •••••••••III ••••••••••••••••• Aerial photograph of Upper Trapper Side Channel with spawning areas and sampling sites indicated ...Ill ••••••••••••••••••••••••••••••••••""•••• x 105 106 107 108 -,~ INTRODUCTION Background During the 1984 open water field season,six side channels located in the lower Susitna River between the Kashwitna and Ta"lkeetna rivers were modeled using IFG modeling techniques to evaluate rearing habitat for juvenile salmon.During the course of these investigations,chum salmon were observed spawning,in relatively high numbers,in five of the six side channel modeling sites.Spawning surveys conducted from August 21 to October 17,1984 of the lower Susitna River as part of the Su Hydro Adult Anadromous Study resulted in a conservative estimate of between 2,600 to 3,900 spawning chum salmon in mainstem and side channel habitats in this reach (Thompson et ale 1985).Because spawning observed in the IFG side channels and at other locations was greater than expected it was necessary to conduct a preliminary baseline evaluation of the newly discovered spawning habitats.These preliminary baseline investigations were therefore conducted in conjunction with the lower river rearing habitat investigations at no additional cost to determine whether additional information may be needed to evaluate whether post-project flows may influence the quality and quantity of the habitats.This technical memorandum reports the findings of these habitat evaluations. Objective The objective of this prel"iminary assessment is to evaluate selected baseline habitat conditions and their relationship to mainstem discharge to determing if further studies may be required to assess the impacts of with-project flows in these habitats.To obtain this objective,the following information was collected: Habitat Data 1)Continuous surface and intragravel water temperature was monitored at three side channels throughout the ice-covered season (Trapper,Sunset,and Circular)to evaluate conditions in areas of observed spawning activity; 2)Side channel water surface elevations was monitored throughout the ice-covered season in the vicinity of observed chum salmon activity to determine the relationship of side channel stage to mainstem stage;and, 3)Substrate of viable chum salmon redds was sampled and analyzed to determine utilized substrate composition. Biological Data 4)Surveys were conducted to locate areas of active chum salmon spawning in selected lower river side channel and mainstem habitats; -5)Calibrated IFG-4 hydraulic models developed in support of the lower river rearing habitat investigations were run through the habitat simulation model to project weighted usable area - (WUA)of chum salmon spawning habitat at modeling sites at which chum salmon spawning was documented; 6)Eggs were collected to evaluate the overwintering success of selected redds and embryo survival and development;and 7)The occurrence and timing of juvenile salmon outmigration from areas having active chum salmon spawning was evaluated to determine the presence of successful incubation and rearing. A list of study sites sampled and data collected at each site is pre- sented in Table 1.The six side channels selected for this study were also the subject of the 1984 rearing modelling study.The mainstem site was chosen because it was used by spawning chum salmon and because there is easy access to the site.. Due to time and resource constraints,all sites were not sampled for all data types 1isted above.The three sites where all data types were collected were selected because of the relatively higher numbers of spawning chum salmon observed of the sites. 2 -, - ·--]- j J )Dfi :l>AGE-l 8/21/85 MEN/Table 1 j <~.,)1 -} Table 1.A summary of data collected at sites selected for biological and habitat assessment. Egg Intragravel Chum Salmon Chum Salmon Survival and Water Spawning Spawning and Outmigration Surface Surface Site Survey WUA Development Occurrence Temperature Elevations Substrate Island Side Channel X (RM 63.2) Mainstem West Bank X X (RM 74.4) Circular Side Channel X X X X X X X (RM 74.3) Sauna Side Channel X (RM 79.8) Sunset Side Channel X X X X X X Xw(RM 86.9) Birch Creek Camp Mainstem X X (RM 88.6) Trapper Creek Side Channel X X X X X X X (RM 91.6) ',I:I METHODS Habitat Data Temperature Intragravel and surface water temperatures were obtained on a continuous basis from the following three IFG side channel study sites (Table 1): Trapper (RM 92.7),Sunset (RM 86.9),and Circular (RM 75.3).Water temperatures were continuously recorded at each site using Omnidata two channel datapod recorders.The datapod recorders simultaneously recorded both surface and intragravel water temperatures.Field instal- lation and monitoring procedures are outlined in the ADF&G Su Hydro Aquatic Studies (May,1983 -June,1984)Procedures Manual (ADF&G 1983). Withi~Trapper Side Channel,intragravel and surface water temperatures were obtained from both the lower and upper portions of the chum salmon spawning area.Sunset Side Channel also had two continuous temperature stations located in the lower and upper portion of the spawning area. At Circular Side Channel,continuous temperature recording stations were located in both the mid-portion and lower portion of the spawning site. All temperature stations were monitored bi-monthly.From the continuous temperature data bases,daily and monthly minimum,mean and maximum water temperatures were calculated and tabulated.From these data, plots of the mean,daily intragravel and surface water temperatures were developed. Water Surface Elevation Water surface elevations were obtained in Trapper,Sunset,and Circular side channels and in the mainstem Susitna River adjacent to these side channel sites to evaluate the effect mainstem discharge has on ground water flow in the side channels.Pools located in the side channels within the spawning sites were selected for these water surface ele- vations.Water surface elevations obtained in the mainstem Susitna River were made adjacent to the side channel. Water surface elevations were obtained from both the side channel and mainstem sites using the basic survey techniques of differential level- ing.At each site a temporary bench mark (TBM)was established and used to reference the water surface elevations.A separate TBM was estab- lished for each side channel and mainstem site.Resulting water surface elevations are therefore only relative to the respective TBM.Surveys can therefore only be used to compare trends between mainstem and side channel but not elevations.During periods of ice cover,holes were drilled through the ice to obtain these water surface elevations. Water surface elevation data were plotted to compare water surface elevations of the side channels and mainstem sites over time. 4 - - - - - - J1 "0•'0 "() ,f'0 Od~ , " ~. <:I. ] +--20.....ALlJMUIIY_ CAIIII.QN·OIO.,OC ".(,_UtlW1IH(_ .0 .0 ----:0:- 9 " g' ,...~ 0 f)0 oD 0 ?cr' 1 ;"oII\;JO __~ (),. ~:'(1..o "?(J, .·o:··tJ 0' o ",/J.u ~,....00 .; o IJ • } o .. 0,'0 ":. "0, •••0 o ·0 " ) <:;,••o.o ," ,p.,to o ,0 ,p.. 'p.0 (), .,<l a~.'"GP UUl lUi''''.In·o,o. .IU·1,0,. )] "0'~Ll , .DCl4 0....1'.......L ..I.d ..120· C.iIIlt,.",n'"filM .-SlI'".IOIUII 1:"'111\1.1 .,.« .[1.'0.'[0 C~OTN COVU[O NOll O il '.0,• ()•0,0,0 p ·tII <I ~0 o ~....(?"II'O~.,'. o ":".''0'""C"•o.~""0.':..~C>0 ... .c>a .•o,.•.~.~.·0'.•.'.0 NOZZLE ARRAY DETAIL .... " o I). o' ,,,0 •• ~.t f1.' _J .. 011 G (i'·()QD,,(l o 8 -+I ,".--I 'HII PI'( ." II""·I/t I JD a.U,t .....c.,Ic._ o ,-I '0 0 (), 0 0 "() 0 p.0 0 ,. D .f) o .' (> ~ o III 61l11'OI.D I ~ C','- " '-----L-./: ! . c t : D Do. "OUl.l ".At "CI ..II.a.1 () " U1 Figure 1,Single probe freeze core sampling system used for sampling substrate and eggs. II.'I Substrate Substrate samples were obtained at selected redds from each of the three side channel study sites (Trapper,Sunset,and Circular).Substrate samples were obtained using a single freeze core method illustrated in Figure 1 (Wa1khotten 1976).Substrate samples were obtained to depths of 12 to 16 inches.These samples were thawed in the field over a series of 4-inch wide substrate boxes producing depth integrated sub- samples.Analysis of these samples were performed by R &M Consultants for substrate composition.The data are plotted by percent per sieve size and depth of sample.Bar graphs describe substrate composition by weight for six substrate size categories.The substrate classification defined substrate sizes ranging from less than .002 inches to greater than 3 inches in diameter. Biological Data Chum Salmon Spawning Surveys Six side channels and one mainstem location were selected for site- specific surveys of chum salmon spawning activity.These sites included Trapper Side Channel,Sauna Side Channel,Mainstem West Bank Side Channel,Sunset Side Channel,Circular Side Channel,Island Side Channel and the mai nstem adjacent to the ADF&G Bi rch Camp referred to as the Birch Camp Mainstem site. To evaluate the presence of spawning chum salmon,both aerial and foot surveys were conducted.Aerial surveys were made by helicopter to \ identify areas of chum salmon spawning.Foot surveys were conducted to ground-truth the occurrence of spawning.Once i dentifi ed,redds were marked using 6 foot,2x2 wooden stakes to relocate the redds under ice and snow. Chum Salmon Spawning WUA The calibrated IFG-4 hydraulic models developed in support of the lower river juvenile anadromous habitat modelling work during FY 85 (ADF&G, 1984b)were run through the USFWS IFG HABTAT model (Bovee 1982)using the middle river suitability criteria for chum salmon (Tables 2-4) developed by Vincent-Lang et a1.1984.The standard calculation method to predict weighted usable area (WUA)as a function of flow was used. Only modelled side channels at which chum salmon have been observed to spawn were evaluated (Table 5). Cover codes used in running the HABTAT models for juvenile anadromous fish habitat were replaced with joint substrate/upwelling codes to evaluate chum salmon spawning habitat.The first digit of the two digit rep1 acement code represented the substrate cl assifi cation value from Tab 1e 6 and the second di gi t represented the presence or absence of upwelling. Upwelling presence was determined by observations of obvious upwelling locations during the summer of 1984,drilling through ice cover during the winter and aerial surveys of open leads during April 1985.IFG 6 -. - - - - Table 2.Depth suitability criteria for chum salmon spawning. SU I TAB I L1TY DEPTH INDEX 0.0 0.0 0.2 0.0 0.5 0.2 0.8 1.0 .- 8.0 1.0 Table 3.Velocity suitability criteria for chum salmon spawning. "..". .- I"""' i I I -7 II !I JL Table 4.Substrate and upwelling combined suitability criteria for chum salmon spawning. 8 - ~I - -i Table 5.Lower River IFG-4 modeling sites representing side channels at which chum salmon have been observed to spawn in 1984. "'"' .-. ~. I I IFG MODELING SITE Mainstem West Bank Side Channel Circular Side Channel Sunset Side Channel Trapper Creek Side Channel 9 RIVER MILE 74.4 75.3 86.9 91.6 Table 6.Substrate size classification system used to evaluate substrate conditions at Lower River study sites. ~- SUBSTRATE TYPE SYMBOL SIZE CLASS Silt SI Very Fi nes "'""'" Sand SA Fines Small Gravel SG i l -1" Large Gravel LG 1"-3"- Rubble RU 3"-5" Cobble CO 5"-10" Boulder BO Greater than 10"-- - - 10 ..... - - - model cells were assigned a value of 1 where upwelling was observed and a value of 0 where no open leads or upwelling were considered present. Sunset Side Channel and Mainstem West Bank Side Channel had observed upwelling and spawning occurring within the study site.At Trapper Creek Side Channel,extensive upwelling and spawning were observed within the side channel but outside of the modelling site.At Circular Side Channel,a few cells in transect 1 had upwelling present.No spawning was observed within this study site,but below the study site where upwelling was also observed,extensive spawning occurred.When the HABTAT model was run for Trapper Creek Side Channel and Ci rcular Side Channel,the resulting WUA's were zero due to a lack of upwelling. A second run of the HABTAT model was completed after simulated upwelling data was entered in appropriate cells of these models in order to represent the overall side channel with respect to upwelling.This was done since spawning and upwelling were observed in the side channels outside of the modeling sites and it was assumed that the modeling sites are hydraulically representative of the side channels in which they are located. The process for simulating upwelling was as follows.First,the range of depths and velocities present in cells having upwelling in Mainstem West Bank Side Channel and Sunset Side Channel modelling sites were evaluated.A comparison of mainstem discharge versus site flow indi- cated that Trapper Creek Side Channel and Circular Side Channel were more closely related hydraulically to Sunset Side Channel than to Mainstem West Bank Side Channel.Cells in Trapper Creek Side Channel within the velocity range of cells in Sunset Side Channel having upwell- ing were examined.If depth and substrates were within the range of those in Sunset Side Channel upwelling cells,they were assigned an upwelling present code.Mainstem West Bank upwelling cell depth, velocity and substrate ranges were taken into consideration secondarily. Upwelling areas were refined by evaluating areas of upwelling outside the study site and "ex tending ll these down into the site. The same procedure was used to simulate upwelling in Circular Side Channel except that since upwell ing was observed from cross-section poi nts 142-148 of transect 1,thi s wi dth was extended up through the study site in cells that met the previously described criteria. Weighted usable area projections generated from the HABTAT model runs were entered into a Lotus computer program for graphing.The following graphs were completed: 1)Mainstem discharge versus WUA. 2)Mainstem discharge versus WUA and gross surface area. 3)Site flow versus WUA. 4)Site flow versus WUA and gross surface area. In addition,time series plots were developed by interfacing a synthe- sized record of site flows during the 1984 spawning season with the WUA versus site flow function. 11 !Ii,I Egg Survival and Development To evaluate viability of the redds and embryo survival and development, chum salmon embryos were peri odi ca lly excavated by hand,egg pump or freeze core sampl i ng throughout the wi nter.Embryoni c development was determined by identifying the stage of development methods presented in ~ Vining et ale (1985),(Table 7). Outmigration Occurrence To evaluate the presence of successful incubation and rearing,fyke nets were placed in Trapper,Sunset,and Circular side channel study sites downstream of the spawning areas.Nets were installed as soon as ice conditions permitted and remained until breaching conditions made sampling impossible.Nets were monitored daily with species and length recorded. ~, I ..... -12 J J J )-)1 1 ))J 1 ) Table 7.Stages of embryonic development for chum salmon identified for use in this study.Stages correspond to information reported for sockeye salmon by Velsen (1980).Table adapted from Vining et al.1985. Development Period Stage Number Brief Description Characteristics of Stage Start End I-' W ,.~- Cleavage Gastrulation Organogenesis (early) (1 ate) Alevin 2 3 4 5 6 7 8 9 10 11 12 all of cleavage embryo formation blastopore formation blastopore closed caudal bud free initial yolk vascularization eyed anal fin formation dorsal fin formation pelvic bud formation body pigmented alevin fertilized egg terminal caudal bud present 1/2 epiboly blastopore closed caudal bud free from yolk surface initial vascularization eye pigment visible through egg membrane anal fin faintly visible dorsal fin faintly visible pelvic buds faintly visible pigment present on dorsum of head just hatched blastula embryo clearly visible 3/4 epiboly blastopore closed parts of brain visible 2/3 yolk vasculariza- tion 3/4 yolk vasculariza- tion anal fin distinct dorsal fin distinct pelvic buds distinct pigment present on dorsum of head and body yolk sac completely absorbed;ventral suture remaining DATA SUMMARY Habitat Data Intragravel water temperatures obtained at this site were relatively stable and were warmer than surface water.Little variation from the time of installation throughout the period of record was exhibited. Intragravel water temperatures ranged from 3.2°C to 3.9°C for the period of record.Surface water temperatures ranged from 1.4°C to a high of 4.0°C. Lower Trapper Side Channel The temperature station in Lower Trapper Side Channel was placed in a pool approximately 2.5 feet deep and was ice covered throughout the winter months.Intragravel and surface water temperatures were.obtained at this site beginning on November 6,1984 for surface water and Novem- ber 19,1984 for intragravel continuing to April 24,1985.Two gaps in this temperature record occurred from January 22-27 and March 8-April 2 because of severed probes and a malfunctioning temperature recorder. The daily and monthly minimum,mean,and maximum water temperatures developed from these data are presented in Table 9.A plot of the mean daily intragravel and surface water temperatures is presented in Figure 3. Intragravel water temperatures in the lower site were also stable.They were warmer than surface water and exhibited 1 ittle variation.Intra- gravel water temperatures for the period of record ranged from a low of 3.1°C to a high of 4.2°C.Surface water temperatures fluctuated sub- stantially and ranged from O.4°C to 3.7°C. Upper Sunset Side Channel The temperature station in Upper Sunset Side Channel was placed in a shallow pool approximately .3-.5 feet deep and was ice covered through- out the winter.Intragravel and surface water temperatures were record- ed at this site from November 6,1984 to April 3,1985.Gaps in the surface water temperature record occurred from November 27 to January 12 because of a mal functioning data storage module and from March 16 to April 3 due to an ice-severed surface water probe.These temperature data are presented in Tables 10 and 11,with a plot of mean daily intra- gravel surface water temperatures presented in Figure 4. -14- - - -. - - - Table 8.Datapod temperature recorder data summary: intragrave1 and surface water temperatures (C) recorded at Upper Trapper Side Channe1~RM 96.0. ----~----------------------------------------------------------------------- November 1984 Date Min Intragrave1 Mean Max Min Surface Water Mean Max ,...... - '-, 'i I 841105 841106 841107 841108 841109 841110 841111 841112 841113 841114 841115 841116 841117 841118 841119 841120 841121 841122 841123 841124 841125 841126 841127 841128 841129 841130 Monthly Value 3.g- 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.8 3.9 3.8 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.8 3.9 2.7 2.6 2.5 2.5 2.5 2.5 2.3 2.3 2.4 2.4 2.7 2.6 2.5 2.7 2.5 2.6 2.8 2.7 2.9 3.0 2.9 2.5 2.5 2.8 2.8 3.0 2.3 2.9 2.9 2.9 2.8 2.8 2.6 2.7 2.7 2.7 3.0 3.0 2.8 2.9 2.8 3.0 3.4 3.1 3.1 3.2 3.1 3.0 2.9 3.0 3.2 3.2 2.9 3.0 3.2 3.2 3.3 3.1 3.1 3.0 3.0 3.0 3.2 3.2 3.2 3.3 3.3 3.1 3.3 3.5 3.4 3.3 3.3 3.3 3.3 3.2 3.3 3.4 3.4 3.5 -r ! ""'"i -----Data not available. 15 ..... Table 8.(continued)• ..... -----------------------------------------------~--~------------------------- December 1984 ~---------------~------------------------------------------------------------Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ~ ---------------------------------------------------------------------------~ 841201 3.8 3.8 3.8 3.1 3.3 3.4 841202 3.8 3.8 3.8 3.0 3.2 3.4 841203 3.8 3.8 3.8 3.2 3.4 3.5 841204 3.8 3.8 3.8 3.2 3.4 3.5 841205 3.8 3.8 3.8 3.1 3.4 3.5 841206 3.8 3.8 3.8 2.9 3.3 3.4 841207 3.8 3.8 3.8 3.0 3.3 3.4 841208 3.8 3.8 3.8 2.6 3.2 3.4 -~841209 3.7 3.8 3.9 2.5 2.9 3.3 841210 3.7 3.8 3.8 2.4 2.7 3.1 841211 3.7 3.8 3.8 2.5 2.8 3.0 841212 3.7 3.8 3.8 2.3 2.7 3.1 841213 3.7 3.8 3.8 2.4 2.6 2.9 841214 3.7 3.8 3.9 2.4 2.7 2.9 841215 3.7 3.8 3.9 2.5 2.7 3.0 ~ 841216 3.8 3.8 3.8 2.7 2.9 3.2 841217 3.7 3.8 3.8 2.8 3.0 3.3 841218 3.7 3.8 3.8 2.5 3.0 3.2 841219 3.7 3.8 3.8 2.4 3.0 3.3 841220 3.7 3.7 3.8 2.4 2.7 2.9 841221 3.7 3.7 3.8 2.4 2.8 3.1 841222 3.7 3.8 3.8 2.5 2.8 3.1 841223 3.7 3.8 3.8 1.8 2.3 2.8 841224 3.7 3.7 3.8 1.8 2.2 2.5 841225 3.7 3.7 3.8 2.0 2.3 2.6 -841226 3.7 3.8 3.8 1.9 2.4 2.6 841227 3.7 3.7 3.8 1.8 2.0 2.4 841228 3.7 3.7 3.8 1.6 1.9 2.2 ~841229 3.7 3.7 3.7 1.5 2.0 2.4 841230 3.7 3.8 3.8 1.5 2.1 2.7 841231 3.7 3.7 3.8 2.2 2.9 3.1 ..... Monthly Value 3.7 3.8 3.9 1.5 2.8 3.5 ------~----------------------------------~~-~~-~~-------~~------~----------- 16 Table 8.(continued). --------------------'-------------------------------------------------------- January 1985----------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850101 3.7 3.7 3.7 3.0 3.1 3.2.....850102 3.7 3.7 3.7 2.8 3.1 3.2 850103 3.7 3.7 3.8 2.3 2.6 3.1 850104 3.7 3.7 3.8 2.0 2.4 2.7 850105 3.7 3.7 3.8 2.1 2.6 3.0 850106 3.6 3.7 3.7 1.9 2.2 2.6 850107 3.6 3.7 3.8 2.2 2.6 3.0,-850108 3.6 3.7 3.7 2.6 3.0 3.2 850109 3.6 3.7 3.7 2.3 2.9 3.1 850110 3.6 3.7 3.7 2.4 2.8 3.1 850111 3.7 3.7 3.7 2.6 2.9 3.1 850112 3.7 3.7 3.7 2.4 2.9 3.2 850113 3.6 3.7 3.7 2.1 2.4 2.7 850114 3.6 3.7 3.7 2.1 2.6 2.9 850115 3.7 3.7 3.7 2.6 2.8 3.0 850116 3.7 3.7 3.7 2.6 2.9 3.1 850117 3.7 3.7 3.7 2.7 3.0 3.2,-850118 3.6 3.7 3.7 2.7 3.0 3.3 850119 3.6 3.7 3.7 2.5 2.8 3.1 850120 3.6 3.7 3.7 2.5 2.9 3.2 850121 3.6 3.7 3.7 2.4 2.8 3.2 850122 3.6 3.7 3.7 2.5 2.8 3.1 850123 3.6 3.7 3.7 2.7 3.0 3.2 850124 3.6 3.7 3.7 2.7 3.0 3.2 850125 3.6 3.6 3.7 2.5 2.9 3.1 850126 3.6 3.6 3.7 2.7 3.0 3.2 850127 3.6 3.7 3.7 2.7 3.0 3.2 """"850128 3 .6 3.6 3.7 2.9 3.1 3.2 I 850129 3.6 3.6 3.6 2.5 2.9 3.2 !850130 3.6 3.6 3.6 2.5 2.9 3.2 850131 3.6 3.6 3.6 2.5 2.9 3.2 Monthly Value 3.6 3.7 3.8 1.9 2.8 3.3 ---------~------------------------------------------------------------------ 17 ill I o.-,Table (continued). """---------------------------------------------------------------------------- February 1985 --------~--~~--~-------------------------------------------~~---------------"""I Intragravel Surface Water Date -----------------------~-------~--------------Min Mean Max Min Mean Max ----~---------------------------------------------------~-----~-~-----~----- ~~ 850201 3.6 3.6 3.6 2.6 2.9 3.1 850202 3.6 3.6 3.6 2~7 2~9 3.2 850203 3.6 3.6 3.6 2.4 2.7 3.0 850204 3.6 3.6 3.6 2.4 2.7 3.0 850205 3.6 3.6 3.6 2.1 2.7 3.0 ~, 850206 3.5 3.6 3.6 2.0 2.4 2.8 850207 3.6 3.6 3.6 2.0 2.4 2.8 850208 3.6 3.6 3.6 2.2 2.5 2.9 850209 3.6 3.6 3.6 1.9 2.3 2.6 ,.... 850210 3.5 3.6 3.6 1.7 2.1 2.5 850211 3.5 3.6 3.6 1.5 2.0 2.5 850212 3.5 3.6 3.6 1.5 1.9 2.3 -850213 3.5 3.6 3.6 1.6 2.0 2.4 850214 3.5 3.6 3.6 1.6 2.0 2.3 850215 3.5 3.6 3.6 1.7 2.0 2.4 -850216 3.5 3.6 3.6 1.6 1.9 2.3 850217 3.5 3.6 3.6 1.6 1.9 2.3 850218 3.5 3.6 3.6 1.7 1.9 2.3 850219 3.5 3.5 3.6 1.7 2.0 2.4 -~ 850220 3.5 3.5 3.6 1.9 2.1 2.4 850221 3.5 3.5 3.6 1.8 2.1 2.4 850222 3.5 3.5 3.6 1.7 2.0 2.4 850223 3.5 3.5 3.6 1.8 2.0 2.5 850224 3.5 3.5 3.6 2.1 2.3 2.7 850225 3.5 3.5 3.6 2.0 2.4 2.8 850226 3.5 3.5 3.6 1.9 2.4 2.6 850227 3.5 3.5 3.5 1.8 2.5 3.0 850228 3.4 3.5 3.6 1.9 2.5 3.2 Monthly Value·3.4 3.6 3.6 1.5 2.3 3.2 -----------------------~------------~~~-~-------~-~----~---------------~----""" 18 Table 8.(continued)• ---------------------------------------------------------------------------- March 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850301 3.4 3.5 3.5 1.9 2.2 2.5 850302 3.4 3.5 3.5 2.0 2.5 3.2 850303 3.4 3.5 3.5 1.7 2.2 2.9 850304 3.4 3.5 3.5 1.8 2.3 2.8 850305 3.4 3.4 3.5 1.9 2.5 3.0 850306 3.4 3.4 3.5 1.6 2.4 3.0 850307 3.4 3.4 3.5 1.8 2.5 3.3 850308 3.4 3.4 3.5 1.9 2.5 3.0 850309 3.3 3.4 3.4 2.5 2.7 3.3 850310 3.4 3.4 3.4 2.3 2.7 3.1 850311 3.4 3.4 3.4 2.0 2.4 2.8 i"'"850312 3.4 3.4 3.4 2.3 2.7 3.3 850313 3 .3 3 .4 3.4 2.0 2.6 3.5 850314 3 .4 3 .4 3.4 1.9 2.3 3 .4 850315 3.4 3 .4 3.4 1.8 2.3 3.4 850316 3.4 3 .4 3.4 1.9 2.5 3.1 850317 3.4 3 .4 3.4 2.2 2.5 3.0 .-850318 3.3 3 ~4 3.4 1.9 2.6 3.3 850319 3.3 3.4 3.4 2.0 2.6 3.6 850320 3.3 3.4 3.4 2.1 2.7 4.0 850321 3.3 3.4 3.4 2.0 2.6 3.4 ~850322 3.3 3.4 3.4 1.9 2.5 4.0 i I 850323 3.3 3.3 3.4 1.7 2.5 3.9 850324 3.3 3.3 3.4 2.0 2.5 3.3 """'1 850325 3.3 3.3 3.4 1.9 2.6 3.9 850326 3.3 3.3 3.4 1.6 2.4 4.0 850327 3.3 3.3 3.4 1.5 2.4 3.9 ""'"'850328 3.2 3.3 3.4 1.5 2.4 3.9 .I 850329 3.2 3.3 3.4 1.8 2.5 3.8I 850330 3.2 3.3 3 .4 1.6 2.3 3.4 850331 3.2 3.3 3.4 1.7 2.2 3.3 Monthly Value 3.2 3.4 3.5 1.5 2.5 4.0 ---------------------------------------------------------------------------- 19 Table 8.(continued)• April 1985 Date 850401 850402 850403 Monthly Value Min 3.2 3.2 3.2 3.2 Intragravel Mean 3.3 3.3 Max 3.3 3.3 3.3 3.3 Min 1.5 1.4 1.9 1.4 Surface Water Mean 2.0 2.1 Max 2.7 3.2 2.5 3.2 JIJiii"': -----Data not available. 20 J -]]])J ...,....~V.-----'"""---.., ",."....'"• "..,',-",,f'il ..,....","..,f''.-""""''''",•.#'t,"_"",\-,"..!-,•.!'.,\., "".,-'"-'V','",,"-\c'•,_, ""'.I '\,,"_,_,,' UPPER TRAPPER SIDE CHANNEL ___--'<L..;..R;..;.;.M....,....;..9.o..;.l...;;...8)__-- --Ml.N D.ILY INTIIII .....VIL -----MlAN D.ILY IU ..'.CI ••T." 7 I S-0••- L&J , a:: j t-2 <ta: L&J 0.. 2 N L&J a t-'t- o::-1 L&J t-«-2 ~ -J -i ~ SEP OCT NOV DEC JAN FEB MAFr-APR MAY Figure 2.Mean daily intragravel and surface water temperature (oC)recorded at the upper portion of the observed spawning area in Trapper Side Channel. Table 9.Datapod temperature recorder data summary: intragravel and surface water temperatures (C) recorded at Lower Trapper Side Channel,RM 92.7. November 1984 ---------------------------------------------~------------------------------~ Date Min Intragravel Mean Max Min Surface Water Mean Max 841106 3.6 3.7 841107 3.6 3.6 3.7 841108 3.5 3.6 3.7 841109 3.6 3.6 3.7 841110 3.6 3.6 3.7 841111 3.6 3.6 3.7 841112 3.6 3.6 3.7 841113 3.6 3.6 3.7 841114 3.6 3.7 3.7 841115 3.6 3.7 3.7 841116 3.6 3.7 3.7 841117 3.6 3.6 3.7 841118 3.6 3.6 3.7 841119 3.5 3.6 2.1 3.5 3.7 841120 3.5 3.6 3.6 1.6 3.3 3.4 841121 3.5 3.6 3.6 1.4 3.2 3.4 841122 3.5 3.6 3.7 1.4 3.0 3.4 841123 3.5 3.5 3.6 1.3 3.1 3.4 ~ 841124 3.5 3.6 3.6 1.4 3.0 3.4 841125 3.5 3.6 3.6 1.1 3.0 3.4 841126 3.5 3.6 3.6 1.4 3.1 3.4 841127 3.6 3.6 3.6 1.3 3.1 3.4 841128 3.6 3.6 3.6 1.4 2.8 3.4 841129 3.5 3.6 3.6 1.2 2.9 3.4 841130 3.5 3.6 3.6 1.3 2.8 3.4 Monthly Value 3.5 3.7 1.1 3.4 3.7 ~ ---------------------------------------------------------------------------- -----Data not available.- 22 Table 9.(continued). ---------------------------------------------------------------------------- December 1984 ------~--------------------------------------------------------------------- Intragravel Surface Water Date ----------------------------------------------,-Min Mean Max Min Mean Max -----------------------------------------,----------------------------------- 841201 3.6 3.6 3.6 1.3 2.7 3.4 841202 3.6 3.6 3.6 1.2 2.7 3.4 841203 3.6 3.6 3.6 1.4 2.7 3.4 841204 3.6 3.6 3.7 1.3 2.6 3.4 841205 3.6 3.6 3.6 1.1 2.4 304 841206 3.6 3.7 3.7 1.1 2.3 3.4 841207 3.6 3.6 3.7 1.2 2.3 3.4 841208 3.6 3.6 3.7 1.1 2.2 3.4 841209 3.6 3.7 3.7 1.3 2.8 3.5 841210 3.6 3.6 3.7 1.2 2.4 3.5 841211 3.6 3.7 3.7 1.3 2.7 3.5....841212 3.6I 3.7 3.7 1.7 3.2 3.5 i 841213 3.7 3.7 3.7 2.0 3.4 3.6 841214 3.7 3.7 3.8 2.3 3.5 3.6 841215 3.7 3.7 3.8 2.4 3.4 3.6 841216 3.7 3.7 3.8 2.1 3.4 3.5 841217 3.7 3.7 3.8 1.1 2.8 3.6 841218 3.7 3.7 3.8 1.3 2.5 3.5 841219 3.7 3.7 3.8 1..1 2.2 3.4 841220 3.7 3.8 3.8 1.2 2.3 3.5 841221 3.7 3.8 3.8 1.1 2.2 3.5 841222 3.7 3.8 3.8 1.1 2.2 3.5 841223 3.7 3.8 3.9 .9 1.8 3.2 841224 3.8 3.9 3.9 .9 1.8 3.5 841225 3.8 3.8 3.9 .7 1.7 3.4 841226 3.8 3.9 3.9 .7 1.5 3.1 841227 3.8 3.9 3.9 .8 1.5 3.2 841228 3.9 3.9 4.0 .8 1.7 3.3 841229 3.9 3.9 4.0 .8 1.6 3.4 841230 3.8 3.9 3.9 .5 1.3 3.0 841231 3.9 3.9 4.0 .5 1.1 2.3 'i I i Monthly Value 3.6 3.7 4.0 .5 2.4 3.6 ---------------------------------------------------------------------------- 23 9.(continued)• ~Table ~ ---------------------------------------------------------------------------- January 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date --~------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850101 3.9 4.0 4.0 .6 0.0 2.3 850102 4.0 4.0 4.0 .5 1.0 2.2 ~ 850103 3.9 4.0 4.0 .5 1.0 2.3 850104 4.0 4.0 4.0 .5 1.1 2.7 850105 4.0 4.0 4.1 .5 1.0 2.1 850106 4.0 4.0 4.1 .5 1.1 2.5 850107 4.0 4.0 4.1 .6 1.1 2.5 850108 4.0 4.1 4.1 .5 1.1 2.2 850109 4.0 4.1 4.1 .5 1.1 2.7 850110 4.0 4.1 4.1 .6 1.1 2.3 850111 4.0 4.1 4.1 .5 1.1 2.6 850112 4.0 4.1 4.2 .5 1.1 3.3 ~ 850113 4.0 4.1 4.2 .6 1.2 2.7 850114 4.1 4.1 4.1 .5 1.1 2.9 850115 4.1 4.1 4.2 .5 0.0 2.4 ~ 850116 4.1 4.1 4.2 .5 .9 2.0 850117 4.1 4.1 4.2 .4 .8 1.8 850118 4.1 4.1 4.2 .4 .8 2.1 850119 4.1 4.1 4.2 .4 .9 2.2 850120 4.1 4.2 4.2 .5 .9 2.1 850121 4.1 4.2 .5 2.6 850128 3.5 3.6 .9 1.5 ~, 850129 3.5 3.5 3.6 .9 1.2 1.9 850130 3.5 3.5 3.6 .8 1.3 1.9 850131 3.5 3.5 3.6 .7 1.1 1.7 Monthly Value 3.5 4.0 4.2 .4 1.0 3.3 .....---------------------------------------------------------------------------- -----Data not available. ..., 24 - Table 9.(continued). ,.... ---------------------------------------------------------------------------- February 1985 ~.---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850201 3.5 3.5 3.6 .5 1.4 1.9-.,850202 3.5 3.5 3.6 1.0 1.5 2.0 850203 3.5 3.6 3.6 .5 1.4 2.1 850204 3.5 3.5 3.5 .7 1.2 1.8 850205 3.5 3.5 3.6 .8 1.4 1.9 850206 3.5 3.5 3.7 .7 1.9 3.4 850207 3.5 3.5 3.6 1.4 2.0 2.4 850208 3.5 3.5 3.6 .8 2.1 2.5 850209 3.5 3.5 3.6 1.7 2.4 2.6 850210 3.5 3.6 3.6 1.8 2.5 2.8 850211 3.5 3.5 3.6 1.9 2.7 2.9-850212 3.5 3.6 3.7 2.5 2.7 3.0! 850213 3.5 3.6 3.7 2.7 2.9 3.1 850214 3.5 3.6 3.7 2.6 3.0 3.1 f'WIIt:850215 3.6 3.7 3.7 2.5 3.1 3.3 850216 3.6 3.7 3.8 2.7 3.0 3.2 850217 3.6 3.7 3.8 2.8 3.1 3.3-850218 3.7 3.7 3.8 2.8 3.2 3.4 850219 3.7 3.8 3.8 3.1 3.4 3.5 850220 3.7 3.8 3.9 3.1 3.5 3.7 850221 3.7 3.8 3.9 3.1 3.5 3.6-850222 3.7 3.8 3.9 2.4 3.4 3.5 850223 3.8 3.8 3.9 2.7 3.4 3.6 850224 3.7 3.8 3.8 2.8 3.4 3.5 ~850225 3.7 3.8 3.8 3.0 3.3 3.4 850226 3.7 3.8 3.8 2.9 3.2 3.4 850227 3.6 3.7 3.8 2.5 3.0 3.4 850228 3.6 3.7 3.7 2.1 2.9 3.2 Monthly Value 3.5 3.7 3.9 .5 2.7 3.7 .-.---------------------------------------------------------------------------- 25 Table g.•(continued)• ---------------------------------------------------------------------------- March 1985 ------------------------------------------------------------------~--------~~. Date Min Intragravel Mean 1:1ax Min Surface Water Mean Max Aif,'!'5"i&. 850301 3.6 3.7 3.7 2.2 2.7 3.0 850302 3.6 3.6 3.7 1.1 2.2 2.8 850303 3.5 3.6 3.7 1.1 2.0 2.6 850304 3.5 3.6 3.7 1.0 1.9 2.6 850305 3.5 3.5 3.6 .9 1.7 2.5 850306 3.5 3.5 3.5 .6 1.5 2.2 850307 3.5 3.5 3.6 .7 1.4 2.3 -Monthly Value 3.5 3.7 .6 3.0 -----Data not available. 26 ~ Table 9.(continued). ".,.., ---------------------------------------------------------------------------- April 1985 -------------------~-------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max.....---------------------------------------------------------------------------- 850403 3.2 3.3 1.6 2.5 r-850404 3.2 3.2 3.2 1.7 2.3 2.5 850405 3.1 3.2 3.3 1.8 2.4 2.8 850406 3.1 3.2 3.3 1.5 2.4 2.8 850407 3.1 3.2 3.2 2.0 2.4 2.7 850408 3.1 3.2 3.2 1.6 2.3 2.6 850409 3.1 3.2 3.2 1.7 2.3 2.7 850410 3.1 3.2 3.3 1.6 2.4 2.8 850411 3.1 3.2 3.3 1.7 2.5 2.9 850412 3.1 3.2 3.3 1.7 2.5 2.9 850413 3.1 3.2 3.2 1.9 2.5 2.7 850414 3.2 3.2 3.3 2.•0 2.6 2.9 850415 3.2 3.2 3.3 2.3 2.5 2.8 ·850416 3.2 3.2 3.3 2.2 2.5 2.7 850417 3.2 3.2 3.3 2.2 2.5 2.7 850418 3.2 3.2 3.3 2.2 2.5 3.0 850419 3.2 3.2 3.3 1.8 2.5 2.7 850420 3.2 3.2 3.3 1.7 2.5 2.8r-850421 3.2 3.2 3.3 1.7 2.6 3.0 850422 3.2 3.3 3.3 2.3 2.7 3.4 850423 3.2 3.3 3.3 2.2 2.7 3.4 850424 3.2 3.4 1.8 2.7 Monthly Value 3.1 3.2 3.4 1.5 2.5 3.4 r- ---------------------------------------------------------------------------- ----Data not available. 27 LOWER TRAPPER SIDE CHANNEL (RMII.e) 7 • 5-0 .. 0- L&J , a:: :;)2.- c:( a:: UJ Q.. N 2 0coL&J.- a::-1 UJ.-c:(-2 ~ -3 -t -S ---MIAII DAILY .IITIUIRAVIL -----MIA"DAILY IUII'ACI .ATIR --"'-,I',\,,~-'A,,\AI \ \I.'.-,..~, ",,/',,,,..,--, ,-'....d,I ,I,I ,I~, ~t·...,, ,''''"/'.,,",,\ ",'~~,• ,-.,/----'''' SEP OCT NOV DEC JAN FEB -MAR APR MAY Figure 3.Mean daily intragravel and surface water temperatures (oC)recorded at the lower portion of the observed spawning area in TrapperStde Channel. I .~)J I I ~.~I 1 I !J j ~~i .~ Table 10.Datapod temperature recorder data summary: intragravel and surface water temperatures (C) recorded at Upper Sunset Side Channel,RM 86.9. ---------------------------------------------------------------------------- November 1984..----------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- ~841106 3.4 3.5 .1 .3 841107 3.4 3.5 3.5 .1 .2 .2 841108 3.4 3.5 3.5 0.0 .1 .2 841109 3.4 3.5 3.5 0.0 .1 .1 841110 3.4 3.4 3.5 0.0 .1 841111 3.3 3.4 3.5 *************** 841112 3.3 3.4 3.4 *************** 841113 3.3 3.4 3.4 *************** 841114 3.2 3.3 3.4 *************** 841115 3.2 3.2 3.3 *************** 841116 3.1 3.2 3.3 *************** 841117 3.1 3.2 3.2 *************** 841118 3.2 3.2 3.3 *************** 841119 3.2 3.2 3.3 ***************~841120 3.2 3.2 3.3 *************** 841121 3.2 3.3 3.3 0.0 .5 1.1 841122 3.2 3.3 3.4 -0.2 1.0 841123 3.3 3.3 3.4 -0.2 -0.2 -0.1 841124 3.3 3.3 3.4 -0.2 -0.1 -0.1 841125 3.3 3.3 3.4 -0.2 -0.1 -0.1-841126 3.3 3.3 3.4 -0.2 -0.1 841127 3.3 3.3 3.4 841128 3.3 3.3 3.4 841129 3.3 3.3 3.4...., 841130 3.3 3.3 3.4 Monthly Value 3.1 3.3 3.5 -0.2 1.1 ,..." ---------------------------------------------------------------------------- Data not available. *****Site frozen,data available in Table 6. ",.,. 29 Tab1e·JiO.(continued)• December 1984 Date 841201 841202 841203 841204 841205 841206 841207 841208 841209 841210 841211 841212 841213 841214 841215 841216 841217 841218 841219 841220 841221 841222 841223 841224 841225 841226 841227 841228 841229 841230 841231 Monthly Value Min 3.3 3.3 3.3 3.3 3.4 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 Intragravel Mean 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.1 3.2 3.2 3.1 3.1 3.3 Max 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.4 Min Surface Water Mean Max - """ - ----------------~-------------------------~-----------------~--~------------~ -----Data not available.- .1!!"'! 30 Table 10 (continued)• ---------------------------------------------------------------------------- January 1985 ~---------------------------------------------------------------------------- Intragrave1 Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max -------------------------------------------------------------------------~-- 850101 3.1 3.1 3.2,...., 850102 3.1 3.1 3.2 850103 3.1 3.1 3.2 850104 3.1 3.2 3.2 ..-850105 3.1 3.1 3.2 850106 3.1 3.2 3.2 850107 3.1 3.2 3.2 850108 3.1 3.2 3.2 850109 3.1 3.1 3.2 850110 3.1 3.2 3.2 850111 3.1 3.1 3.2 ~850112 3.0 3.1 3.1 1.9 2.3 2.5 850113 3.0 3.0 3.1 2.1 2.4 2.5 850114 3.0 3.0 3.1 2.3 2.5 2.6 850115 3.0 3.0 3.1 2.3 2.5 2.6 850116 3.0 3.0 3.1 1.2 2.4 2.6 850117 3.0 3.0 3.1 2.1 2.3 2.5 850118 3.0 3.0 3.1 2.4 2.5 2.7 850119 3.0 3.0 3.1 2.5 2.6 2.7 850120 3.0 3.0 3.1 2.3 2.7 2.7 850121 3.0 3.0 3.1 2.2 2.7 2.7 850122 3.0 3.0 3.1 2.4 2.6 2.7 850123 3.0 3.0 3.1 2.6 2.6 2.7 850124 3.0 3.0 3.1 2.6 2.6 2.7 850125 3.0 3.0 3.1 2.5 2.6 2.7 850126 3.0 3.0 3.1 1.9 2.6 2.6 850127 3.0 3.0 3.1 1.8 2.5 2.6 850128 3.0 3.0 3.1 2.4 2.5 2.6 850129 3.0 3.0 3.1 2.3 2.4 2.5 850130 3.0 3.0 3.1 2.2 2.4 2.5 850131 2.9 3.0 3.0 1.6 1.9 2.4 Monthly Value 2.9 3.1 3.2 1.2 2.5 2.7 -------------------------------------------------~-------------------------- -----Data not available. 31 -Table IG (continued)• ~ ~----------------------------------------------------------------------~---- February 1985 -------------------------------------------------------------------~--------~ Intragravel Surface Water Date ------------------------------------~--------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850201 2.9 3.0 3.0 1.7 1.7 1.8 850202 2.9 3.0 3.0 1.7 1.8 1.9 850203 3.0 3.0 3.0 1.3 1.6 1.9 850204 2.9 3.0 3.0 1.6 1.9 2.0 850205 2.9 3.0 3.1 2.0 2.0 2.2 850206 2.9 3.0 3.1 1.9 2.2 2.3 850207 2.9 3.0 3.0 2.0 2.2 2.3 850208 2.9 3.0 3.0 2.0 2.1 2.2 850209 3.0 3.0 1.9 2.1 2.2 -2.9 850210 2.9 3.0 3.0 1.8 2.0 2.1 850211 2.8 2.9 3.0 1.7 1.7 1.9 850212 2.8 2.9 2.9 1.6 1.7 1.8 ~ 850213 2.8 2.9 2.9 1.6 1.7 1.9 850214 2.8 2.9 3.0 1.7 i.9 2.0 850215 2.8 2.9 2.9 1.8 1.9 2.0 850216 2.8 2.9 3.0 1.8 1.9 2.0 850217 2.8 2.9 2.9 1.8 1.9 2.0 850218 2.8 2.8 2.9 1.8 1.9 2.0 850219 2.8 2.8 2.9 1.7 1.8 1.9 850220 2.7 2.8 2.8 1.7 1.7 1.7 850221 2.7 2.8 2.8 1.6 1.7 1.7 850222 2.7 2.7 2.8 1.5 1.6 1.7 850223 2.6 2.7 2.7 1.5 1.6 1.7 850224 2.6 2.6 2.7 1.6 1.6 1.8 850225 2.5 2.6 2.7 1.7 1.8 1.9 ~I 850226 2.6 2.6 2.6 1.8 1.9 1.9 850227 2.6 2.6 2.7 1.7 1.7 1.9 850228 2.6 2.6 2.6 1.7 1.7 1.8 - Monthly Value 2.5 2.8 3.1 1.3 1.8 2.3 ---------------------------------------------------------------------------- 32 ~A, Table lQ (continued)• -- ---------------------------------------------------------------------------- March 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850301 2.6 2.7 2.7 1.6 1.7 1.8-850302 2.6 2.7 2.7 1.6 1.7 1.7 850303 2.6 2.7 2.7 1.7 1.7 1.8 850304 2.7 2.7 2.8 1.7 1.8 1.9 ~850305 2.7 2.8 2.8 1.8 1.9 1.9 850306 2.8 2.8 2.8 1.6 1.8 1.9 850307 2.8 2.8 2.8 1.6 1.8 1.9 r-850308 2.8 2.8 2.8 1.5 1.7 2.0 850309 2.8 2.8 2.8 1.7 2.0 2.0 850310 2.8 2.8 2.8 2.0 2.0 2.1 850311 2.8 2.8 2.8 1.9 2.1 2.2 850312 2.8 2.8 2.8 2.0 2.2 2.2 850313 2.8 2.8 2.8 1.8 1.9 2.0 850314 2.7 2.8 2.8 1.7 1.7 1.8 850315 2.7 2.7 2.8 .9 1.3 1.8 850316 2.6 2.6 2.7 850317 2.6 2.6 2.6-850318 2.6 2.7 2.7 850319 2.7 2.7 2.7 850320 2.7 2.7 2.8 ----- 850321 2.7 2.7 2.8 850322 2.7 2.7 2.8 850323 2.7 2.8 2.8 850324 2.7 2.8 2.8-850325 2.8 2.8 2.8 850326 2.8 2.8 2.8 850327 2.8 2.8 2.9 850328 2.8 2.8 2.8 850329 2.8 2.8 2.9 850330 2.8 2.8 2.8 850331 2.8 2.8 2.9 Monthly Value 2.6 2.8 2.9 .9 2.2 ---------------------------------------------------------------------------- -----Data not available. -33 Table IG (continued)• April 1985 - Date 850401 850402 850403 Monthly Value Min 2.8 2.7 2.7 2.7 Intragravel Mean 2018 2.8 Max 2.8 2.8 2.8 2.8 Min Surface Water Mean Max -----Data not available. 34 - - - Table n Datapod temperature recorder data summary: intragravel and surface water temperatures (C) recorded at Upper Sunset Side Channel when the site was frozen,RM 86.9. November 1984 (Site frozen) 841110 +++++ +++++ +++++-0.7 -0.3 0.0 841111 +++++++++++++++-1.7 -1.3 -0.7 841112 ++++++++++ +++++-2.4 -2.0 -1.6 841113 +++++++++++++++-2.9 -2.5 -2.0 841114 +++++ ++++++++++-3.1 -2.5 -1.7 841115 +++++++++++++++-1.8 -1.2 -0.8 841116 +++++ ++++++++++-0.8 -0.5 -0.3 841117 +++++++++++++++-0.8 -0.7 -0.5 841118 +++++++++++++++-0.6 -0.5 -0.4 841119 +++++++++++++++-0.8 -0.7 -0.5 841120 +++++ +++++ +++++-0.6 -0.3 0.0 Monthly Value +++++++++++++++-3.1 0.0 - - Date Min Intragravel Mean Max Min Surface Water Mean Max Data not available. +++++Data available;site not frozen. 35 7 • s -U t 0- LU S 0= =>2...«a: lJJ 1 w 0- m :E l&J 0... a:-t LU I-«-2 ~ -J -t -I UPPER SUNSET SIDE CHANNEL (RM 86.8) ---III[AN DAILY HiITltA.,.AYI" -----liliAN DAILY IU,.'ACI WATIIII J"..,''''.1 ...,,,....- ""-\"".t ,f-"..,,,__,...,,\/~~\/, """",,""...,.....,,",," ~ SEP OCT NOV DEC JAN FEB MAR APR MAY Figure 4,Mean daily intragravel and surface water temperatures (DC)recorded at the upper portion of the observed spawning area in Sunset Side Channel, i t j J ·:1 )J j J ~J J ,t I t , =J - - .- I """ - Intragravel water temperatures at this site had little variation through the period of record with water temperatures ranging from 2.5°C to 3.5°C.The record for surface water temperatures was most continuous from November 21 to March 15.For thi s time peri od,surface water temperatures ranged from O.goC to 2.7°C.From November 10 to November 20 temperatures recorded from the surface water probe ranged from -3.1°C to O.O°C although institial surface water was observed not to be frozen. These low surface water temperatures resulted from the probe becomi ng embedded in the surface ice.Intragravel water temperatures corresponding to this time ranged from 3.1°C to 3.5°C. Lower Sunset Side Channel The temperature station in Lower Sunset Side Channel was placed in a pool approximately 3 feet deep with ice cover.Intragravel and surface water temperatures at this site were obtained from November 6,1984 to April 3,1985.Daily and monthly minimum,mean,and maximum water temperatures developed from the sites are presented in Table 12.A plot of mean,daily intragravel and surface water temperatures is presented in Figure 5. Intragravel water temperatures were found to be similar to those in the upper portion of the side channel and ranged from 2.1°C to 3.3°C for the entire period of record.Intragravel water temperatures were warmer than surface water until mid-March at which time mean daily surface water temperatures slightly exceeded those of intragravel.Surface water temperatures ranged from O.2°C to 3.1°C for the period of record. Upper Circular Side Channel The continuous temperature station in Upper Circular Side Channel was placed in a pool of approximately 1 foot deep with ice cover.Intra- gravel and surface water temperatures at this site were recorded from November 6,1984 to April 3,1985.These data are presented in Table 13 as daily and monthly minimum,mean and maximum water temperatures.Also a plot of the mean,daily intragravel and surface water temperatures was developed and is presented in Figure 6.Intragravel water temperatures were found to be generally warmer than surface water at this site. Intragravel water temperatures ranged from -0.2°C to 4.O°C.Surface water ranged from -O.l°C to 3.8°C. Lower Circular Side Channel The temperature station located in Lower Circular Side Channel was placed in a pool of approximately 3 feet deep with ice cover throughout the winter.Intragravel and surface water temperatures at this site were taken from November 6,1984 to April 24,1985.Gaps in the data occurred in the intragravel water temperature record from November 10 to November 30,due to shearing of the intragravel probe.For both i ntragravel and surface water temperatures,a data gap occurred from February 10 to March 6,due to a malfunctioning temperature recorder. Daily and monthly minimum,mean and maximum water temperatures were developed from these data (Table 14).A plot of the mean,daily intragravel and surface water temperatures is presented in Figure 7 •. -37- Table la Datapod temperature recorder data summary: intragravel and surface water temperatures (C) recorded at Lower Sunset Side Channel,RM 86.9.----------------------------------------------------------------------------- November 1984 ----~----------~~------------------------------~----------------------------~ Intragravel Surface Water Date ----------------------~----------~-----------~ Min Mean Max Min Mean Max ------~-----------------------------------------------------~---------------- 841106 3.2 3.3 1.3 3.0 841107 3.2 3.2 3.3 1.1 1.9 2.7 ..., 841108 3.2 3.3 3.3 .8 1.5 2.9 841109 3.2 3.3 3.3 .8 1.3 2.1 841110 3.1 3.2 3.3 .7 1.2 2.1 841111 3.1 3.1 3.2 .4 .8 1.8 841112 2.7 2.9 3.1 .2 .4 .8 841113 2.5 2.6 2.7 .2 .5 .8 ~841114 2.6 2.7 2.8 .2 .6 1.2 841115 2.7 2.8 3.0 .6 1.1 1.7 841116 2.9 3.1 3.2 1.1 1.7 2.7 841117 3.1 3.2 3.2 1.1 1.5 2.8 ,..., 841118 3.1 3.1 3.2 1.0 2.1 2.8 841119 3.2 3.2 3.3 1.2 2.1 2.8 841120 3.2 3.2 3.3 1.3 2.5 2.8 841121 3.2 3.2 3.2 1.4 2.4 2.8 841122 3.2 3.2 3.3 1.1 1.8 2.9 841123 3.1 3.1 3.2 .9 1.9 2.7 841124 3.1 3.2 3.3 1.0 2.2 2.9 841125 3.2 3.2 3.3 1.2 2.5 2.9 841126 3.2 3.3 3.3 Ll 2.0 2.9 841127 3.2 3.3 3.3 1.2 2.2 2.9 ~ 841128 3.2 3.3 3.3 L5 2.2 2.9 841129 3.2 3.3 3.3 1.1 2.5 2.9 841130 3.2 3.3 3.3 1.2 2.6 2.9 - Monthly Value 2.5 3.1 3.3 .2 1.7 3.0 ---------------------------------~--------------~---~----------------------- -----Data not available. ...." 38 Table U (continued)• ---------------------------------------------------------------------------- December 1984 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- pIfl!a,Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 841201 3.2 3.3 3.3 1.8 2.4 2.9 ~841202 3.2 3.2 3.3 1.4 2.6 2.9 841203 3.2 3.2 3.3 1.7 2.9 2.9 841204 3.2 3.2 3.2 2.4 2.8 2.9 841205 3.2 3.2 3.3 1.5 2.8 2.9 841206 3.2 3.2 3.3 1.8 2.8 2.9 841207 3.2 3.2 3.3 2.1 2.8 2.9 841208 3.2 3.2 3.3 1.7 2.4 2.9 841209 3.2 3.3 3.3 1.4 2.5 2.9 841210 3.2 3.2 3.3 1.4 2.7 2.8 841211 3.2 3.2 3.3 1.9 2.7 2.8 ~841212 3.1 3.2 3.2 1.0 2.5 2.8 841213 3.1 3.2 3.2 1.1 2.0 2.7 841214 3.1 3.2 3.2 1.2 2.4 2.7 841215 3.1 3.1 3.2 1.4 2.5 2.7 841216 3.1 3.1 3.1 1.7 2.5 2.7 841217 3.1 3.1 3.2 1.6 2.5 2.6-841218 3.1 3.1 3.1 1.7 2.5 2.6 841219 3.1 3.1 3.2 2.2 2.6 2.7 841220 3.1 3.2 3.2 2.5 2.6 2.7 841221 3.1 3.1 3.2 .9 2.6 2.7 ;~841222 3.0 3.1 3.1 1.8 2.6 2.6 841223 3.0 3.0 3.1 1.7 2.5 2.6 841224 3.0 3.1 3.1 1.9 2.5 2.6 ~.841225 3.0 3.0 3.1 .6 2.5 2.6 841226 3.0 3.1 3.1 1.8 2.6 2.6 841227 3.0 3.0 3.1 .8 2.5 2.6 841228 2.9 3.0 3.0 .4 2.0 2.5 841229 2.9 2.9 3.0 .7 2.1 2.5 841230 2.9 2.9 3.0 .8 2.3 2.5 841231 2.9 2.9 3.0 1.5 2.4 2.5 Monthly Value 2.9 3.1 3.3 .4 2.5 2.9----------------------------------------------------------------------------- 39 Tab1e12.(continued). ---------------------------------------------------------------------------- January 1985 ---------------------------------------------------------------------------- Intragrave1 Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850101 2.9 2.9 3.0 2.1 2.5 2.5 850102 2.9 3.0 3.0 .8 2.5 2.5 ~ 850103 3.0 3.0 3.0 2.1 2.5 2.6 850104 3.0 3.0 3.0 2.1 2.5 2.6 850105 3.0 3.0 3.0 2.5 2.5 2.6 -850106 3.0 3.0 3.0 2.4 2.5 2.6 850107 2.9 3.0 3.0 2.4 2.5 2.6 850108 2.9 3.0 3.0 2.4 2.5 2.6 ""'"850109 3.0 3.0 3.0 1.8 2.5 2.6 850110 2.9 3.0 3.1 2.4 2.5 2.6 850111 2.9 3.0 3.0 2.4 2.5 2.6 850112 2.9 3.0 3.1 2.4 2.5 2.6 ~ 850113 2.9 3.0 3.0 1.5 2.5 2.6 850114 2.9 2.9 2.9 1.5 2.4 2.5 850115 2.9 2.9 2.9 1.1 2.4 2.5 -850116 2.9 2.9 2.9 1.6 2.4 2.5 850117 2.9 2.9 2.9 2.2 2.5 2.5 850118 2.9 2.9 3.0 2.4 2.5 2.5 850119 2.9 3.0 3.0 1.7 2.5 2.6 850120 2.9 3.0 3.0 1.7 2.5 2.6 850121 2.9 3.0 3.0 2.0 2.5 2.6 850122 2.9 2.9 3.0 2.5 2.5 2.6 850123 2.9 2.9 3.0 2.2 2.5 2.6 850124 2.9 2.9 3.0 2.1 2.5 2.6 850125 2.9 2.9 3.0 2.3 2.5 2.6 ~ 850126 2.9 3.0 3.0 2.5 2.5 2.6 850127 2.9 2.9 3.0 .5 2.5 2.6 850128 2.9 2.9 3.0 1.8 2.4 2.5 850129 2.9 2.9 3.0 1.9 2.3 2.5 850130 2.8 2.9 3.0 1.5 2.2 2.4 850131 2.9 2.9 3.0 2.0 2.2 2.4 - Monthly Value 2.8 3.0 3.1 .5 2.5 2.6 ----------------------------------------------------------------------------~ - 40 Table12.(continued)• ---------------------------------------------------------------------------- February 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max'Min Mean Max ---------------------------------------------------------------------------- 850201 2.9 2.9 3.0 1.8 2.0 2.1 850202 2.9 2.9 3.0 2.0 2.1 2.3 850203 2.8 2.9 3.0 1.9 2.1 2.4 850204 2.9 2.9 3.0 2.0 2.0 2.1 ~850205 2.8 2.9 3.0 1.9 2.0 2.1 850206 2.8 2.9 3.0 1.8 2.0 2.2 850207 2.8 2.8 2.9 1.7 1.9 2.1 ....850208 2.8 2.8 2.9 1.8 2.0 2.3 850209 2.7 2.8 2.8 1.7 1.9 2.1 850210 2.7 2.8 2.8 1.7 1.9 2.0 850211 2~7 2.8 2.8 1.8 2.0 2.1 850212 2.7 2.8 2.8 1.8 1.9 2.0 850213 2.7 2.8 2.9 1.8 2.0 2.1 850214 2.7 2.8 2.9 1.9 2.0 2.2 r-850215 2.7 2.7 2.8 1.8 1.9 2.0 850216 2.6 2.7 2.8 1.8 1.9 1.9 850217 2.6 2.6 2.7 1.7 1.8 1.9-850218 2.5 2.6 2.7 1.5 1.7 1.8 850219 2.4 2.5 2.6 1.3 1.5 1.7 850220 2.3 2.5 2.5 1.1 1.2 1.4 850221 2.3 2.4 2.5 .9 1.1 1.2-850222 2.2 2.4 2.4 .7 .9 1.0 850223 2.2 2.3 2.4 .5 .7 .8 850224 2.1 2.2 2.3 .5 .7 .9 850225 2.1 2.1 2.2 .8 1.2 1.4 850226 2.1 2.2 2.2 1.3 1.5 1.7 850227 2.1 2.2 2.2 1.5 1.6 1.8-850228 2.2 2.2 2.3 1.6 1.8 1.9 Monthly Value 2.1 2.6 3.0 .5 1.7 2.4 ---------------------------------------------------------------------------- - 41 Table U (continued). """ --------------------------~------------------------------------------------- March 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850301 2.2 2.3 2.3 1.8 2.0 2.1 850302 2.2 2.3 2.4 1.8 2.1 2.2 850303 2.3 2.3 2.4 1.9 2.1 2.2 850304 2.3 2.3 2.4 2.0 2.2 2.3 850305 2.3 2.3 2.4 2.1 2.3 2.3 ~ 850306 2.2 2.3 2.4 2.0 2.2 2.4 850307 2.2 2.3 2.4 1.8 2.1 2.3 850308 2.3 2.3 2.4 1.9 2.2 2.4 """"850309 2.3 2.4 2.5 2.1 2.4 2.5 850310 2.4 2.4 2.5 2.3 2.5 2.6 850311 2.4 2.4 2.5 2.2 2.5 2.6 850312 2.4 2.5 2.5 2.3 2.5 2.6 850313 2.4 2.5 2.5 2.3 2.5 2.6 850314 2.4 2.5 2.6 2.3 2.5 2.7 850315 2.4 2.5 2.6 2.2 2.5 2.7 850316 2.5 2.5 2.6 2.4 2.7 2.8 850317 2.5 2.6 2.6 2.4 2.7 2.8 850318 2.5 2.6 2.6 2.4 2.7 2.7 850319 2.5 2.6 2.7 2.3 2.7 2.8 850320 2.6 2.6 2.7 2.5 2.8 2.9 850321 2.6 2.7 2.7 2.4 2.7 2.9 850322 2.6 2.7 2.7 2.4 2.8 3.0 - 850323 2.6 2.7 2.7 2.5 2.8 3.0 850324 2.6 2.7 2.7 2.6 2.9 3.0 850325 2.6 2.7 2.8 2.6 2.9 3 .1 """850326 2.6 2.7 2.7 2.5 2.8 3.0 850327 2.6 2.7 2.7 2.2 2.8 3.0 850328 2.5 2.7 2.7 2.2 2.7 3.0 -850329 2.6 2.7 2.7 2.6 2.9 3.0 850330 2.6 2.7 2.8 2.4 2.9 3.1 850331 2.4 2.6 2.7 2.1 2.6 3.0 -, Monthly Value 2.2 2.5 2.8 1.8 2.5 3.1 ---------~--------------~---~-----~---~~~-~-----~--~------~-----------------~ 42 - - Table 12.(continued)• April 1985 -Date 850401 850402 850403 Monthly Value Min 2.4 2.4 2.4 2.4 Intragrave1 Mean 2.5 2.5 Max 2.6 205 2.4 2.6 Min 2.2 2.2 2.3 2.2 Surface Water Mean 2.7 2.7 Max 2.9 2.7 2.6 2.9 - - - - -----Data not available. 7 • I ,... 0 t •- ~S Q: :::> t-a 4 Q: L&J Q. -l>o ~0 -l>o L&J t- o::-1 W t--24 ~ -I -t -I LOWER SUNSET SIDE CHANNEL ___--:..(R..M__...8.....6.....9._.)_ --MIAIN DAILY INTIA ...AVIL ----.MIAN DAILY IU..'ACI .A'II ,.... •"v'V\.'-'.',~-.-.,-~--." I',I '"'o.r'I I..II "v·~...~I •,.•....-... I '"\0 ,.."j,I ,I,I ,, I I \I,I V, I " recorded at the lower portion SEP Figure 5. OCT NOV DEC JAN FEB Mean daily intragravel and surface water temperatures (oC) of the observed spawning area in Sunset Side Channel. MAR APR MAY J ))J ~l }cS ·c.J .J B J ]J t J c __I ~.1 Table 13 Datapod temperature recorder data summary: intragrave1 and surface water temperatures (C) recorded at Upper Circular Side Channel,M 75.3. November 1984 - - Date 841106 841107 841108 841109 841110 841111 841112 841113 841114 841115 841116 841117 841118 841119 841120 841121 841122 841123 841124 841125 841126 841127 841128 841129 841130 Monthly Value Min 3.9 3.9 3.9 0.0 -0.2 -0.2 .3 1.6 2.5 2.9 3.0 3.1 3.1 3.0 3.0 3.0 2.9 2.8 2.9 3.0 3.0 3.0 3.0 3.0 3.0 -0.2 Intragrave1 Mean 4.0 4.0 3.9 2.6 -0.1 0.0 1.0 2.1 2.7 3.0 3.1 3.2 3.2 3.1 3.1 3.1 3.0 2.9 3.1 3.1 3.1 3.1 3.1 3.1 3.1 2.8 45 Max 4.0 4.0 4.0 4.0 0.0 .3 1.7 2.5 2.9 3.1 3.1 3.2 3.2 3.2 3.1 3.1 3.1 3.0 3.1 3.1 3.2 3.2 3.1 3.1 3.1 4.0 Min 1.6 1.9 1.6 0.0 -0.1 -0.1 .1 1.0 2.0 2.1 2.3 2.2 2.2 2.4 2.7 2.8 2.2 1.9 2.4 2.2 2.3 1.4 2.8 2.8 2.6 -0.1 Surface Water Mean 1.9 2.2 2.0 1.7 0.0 0.0 .7 1.7 2.3 2.5 2.5 2.6 2.6 2.7 2.8 2.9 2.7 2.2 2.9 2.9 2.9 3.0 3.0 3.0 2.9 2.3 Max 2.4 2.4 3.3 3.8 .1 .3 1.4 2.2 2.8 2.9 2.9 2.9 3.0 2.8 2.9 3.0 3.1 2.8 2.9 3.1 3.1 3.2 3.1 3.1 3.1 3.8 Table 13 (continued). ~ ---------------------------------------------------------------------------~ December 1984 ---------------------------------------------------------------------------- Intragrave1 Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 841201 3.0 3.1 3.1 2.3 2.9 3.1 841202 3.0 3.0 3.1 1.6 1.8 2.3 841203 3.0 3.1 3.2 1.3 1.8 2.1 841204 3.1 3.2 3.2 1.1 1.7 2.1 841205 3.1 3.2 3.3 .1 .9 1.8 -841206 3.0 3.1 3.3 0.0 .1 .3 841207 2.9 3.0 3.1 0.0 .2 .3 841208 2.8 2.8 3.0 000 .1 .3 841209 2.7 2.7 2.8 0.0 .1 .3 """'i 841210 2.7 2.7 2.8 0.0 .2 .4 841211 2.7 2.8 2.9 .1 .8 2.3 841212 2.8 2.9 3.0 1.5 2.2 2.9 841213 2.9 3.0 3.0 2.2 2.5 2.8 841214 2.9 3.0 3.1 2.5 2.7 3.0 841215 3.0 3.1 3.1 '2.6 3.0 3.1 ~841216 3.1 3.1 3.2 2.4 2.9 3.1 841217 3.1 3.1 3.2 2.2 2.7 2.9 841218 3.1 3.2 3.2 2.5 2.7 3.0 841219 3.1 3.2 3.2 2.7 3.0 3.1 ~ 841220 3.1 3.1 3.2 2.2 2.7 3.0 841221 3.1 3.2 3.3 2.1 2.5 2.9 841222 3.2 3.3 3.4 2.2 2.5 2.9 841223 3.4 3.5 3.6 2.1 2.3 2.8 841224 3.5 3.6 3.6 2.0 2.2 2.6 841225 3.6 3.6 3.7 2.0 2.2 2.3 841226 3.6 3.6 3.7 2.2 2.6 3.4 841227 3.6 3.6 .3.7 2.5 3.2 3.4 841228 3.6 3.6 3.6 2.4 3.0 3.3 841229 3.5 3.6 3.6 1.8 2.5 3.3 841230 3.4 3.5 3.6 2.0 2.4 3.1 841231 3.4 3.4 3.5 1.9 2.2 2.5 """ Monthly Value 2.7 3.2 3.7 0.0 2.0 3.4 -----------------------------~------------~----------------------~-------~--~ -46 cn.a M tt Table 13 (continued)• ---------------------------------------------------------------------------- January 1985 ---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850101 3.3 3.4 3.5 1.8 2.2 2.9-850102 3.2 3.3 3.3 1.9 2.1 2.7 850103 3.2 3.3 3.3 1.9 2.1 2.7 850104 3.3 3.4 3.5 2.2 2.8 3.1 ~850105 3.4 3.5 3.6 1.9 2.6 3.0 850106 3.5 3.6 3.7 1.8 1.9 2.1 850107 3.6 3.7 3.8 1.8 2.0 2.2 850108 3.7 3.8 3.8 1.8 2.1 2.5.- 850109 3.7 3.8 3.9 1.8 2.2 2.5 850110 3.8 3.8 3.9 2.1 2.5 3.1 850111 3.8 3.9 3.9 2.0 2.2 3.5 r-"850112 3.8 3.8 3.9 1.9 2.9 3.6 850113 3.8 3.8 3.9 1.9 2.5 3.3 850114 3 .8 3.8 3.9 2.1 2.7 3.0 ~850115 3.8 3.8 3.9 1.6 2.6 3.4 850116 3.8 3.8 3.9 2.1 2.5 3.3 850117 3.8 3.9 3.9 2.0 2.2 2.5 850118 3.8 3.9 4.0 2.0 2.2 2.3 850119 3.8 3.9 4.0 1.9 2.1 2.4 850120 3.8 3.9 4.0 1.8 2.0 2.2 850121 3.8 3.9 4.0 1.8 2.1 2.6 !"'"850122 3.8 3.9 3.9 2.0 2.2 2.4 850123 3.8 3.9 4.0 2.0 2.2 2.6 850124 3.9 3.9 3.9 2.0 2.2 2.5 ~850125 3.8 3.9 4.0 1.8 2.2 2.4 850126 3.8 3.9 4.0 2.1 2.2 2.4 850127 3.9 3.9 4.0 2.1 2.2 2.4-850128 3.9 3.9 3.9 2.1 2.3 2.6 850129 3.9 3.9 4.0 2.2 2.3 2.5 850130 3.8 3.9 4.0 2.1 2.4 2.6 850131 3.8 3.9 4.0 2.1 2.2 2.6 Monthly Value 3.2 3.8 4.0 1.6 2.3 3.6 ---------------------------------------------------------------------------- 47 48 - - Table 13 (continued)• ---------------------------------------------------------------------------- March 1985,----------------------------------------------------------------------------- Intragrave1 Surface Water Date ------------------~--------------------------- Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 850301 3.7 3.8 3.9 1.8 2.0 2.2 ~850302 3.8 3.8 3.9 1.9 2.1 2.4 850303 3.7 3.8 3.9 2.0 2.1 2.3 850304 3.7 3.8 3.9 1.9 2.1 2.3 """I 850305 3.7 3.8 3.8 1.9 2.2 2.5 850306 3.7 3.7 3.8 1.8 2.2 2.3 850307 3.7 3.7 3.8 2.0 2.4 2.8 850308 3.7 3.8 3.8 2.0 2.5 2.9 850309 3.7 3.8 3.8 2.1 2.4 2.8 850310 3.7 3.8 3.8 2.0 2.6 2.8 850311 3.7 3.8 3.8 1.8 2.3 2.8 850312 3.7 3.8 3.8 1.9 2.2 2.6 850313 3.7 3.8 3.8 2.3 2.6 2.8 850314 3.7 3.7 3.8 2.2 2.6 3.4-850315 3.7 3.7 3.8 2.6 3.1 3.4 850316 3.7 3.7 3.8 2.8 3.1 3.4 850317 3.7 3.7 3.8 2.4 3.0 3.4 850318 3.7 3.7 3.8 2.5 3.0 3.2 850319 3.7 3.7 3.8 2.4 2.8 3.2 850320 3.7 3.7 3.8 2.3 2.7 3.1 850321 3.7 3.7 3.8 2.4 2.7 3.0 850322 3.7 3.7 3.8 2.4 2.7 3.0 850323 3.6 3.7 3.8 2.3 2.6 2.9 850324 3.6 3.7 3.8 2.3 2.6 3.0 850325 3.6 3.7 3.8 2.4 2.7 3.2 850326 3.6 3.7 3.8 2.4 2.8 3.2 850327 3.6 3.7 3.8 2.4 2.8 3.1 850328 3.6 3.7 3.8 2.4 2.8 3.2 850329 3.6 3.7 3.8 2.7 3.0 3.4 850330 3.6 3.7 3.8 2.6 3.0 3.3 850331 3.6 3.7 3.8 2.6 2.9 3.2 Monthly Value 3.6 3.7 3.9 1.8 2.6 3.4 """---------------------------------------------------------------------------- 49. Table 13 (continued)• April 1985 - Date 850401 850402 850403 Monthly Value Min 3.6 3.6 3.6 3.6 Intragravel Mean 3.6 3.6 Max 3.7 3.7 3.7 3.7 Min 2.4 2.3 2.7 2.3 Surface Water Mean 2.8 2.7 Max 3.2 3.1 3.4 3.4 -----Data not available. 50 ~, - - -]...]""}]J J -))])J .]1 1 7 I 5 -0 t •-swa: ;:)2 t- ~a:1 W Q. (J1 :&0 j--l w t--1 a: Wt--2 c:( ~ -3 -i -5 UPPER CIRCULAR SIDE CHANNEL ____...1.(,:..=..R:::.M_7:..;:5:.,.:.,.:..3,_ --MIAN DAILY INTIAHAYIL --~_.lilIAN DAILY aUI'ACI .ATII " r.._;,_,\.'"a/-.P~I "J,.J"I\A ':"\,_,v,_,rV'. '"\",.",--'\."-'.J''.....I,"'.r I I,, I, I ,\'.' SEP OCT NOV DEC JAN FEB MAR APR MAY Figure 6,Mean daily intragravel and surface water temperatures (oC)recorded at the upper portion . .tif the spawn~ng area in Circular Side Channel, Table 1£\ JL_ Datapod temperature recorder data summary: intragravel and surface water temperatures (C) recorded at Lower Circular Side Channel,RM 75.3. November 1984 Date Min Intragravel Mean Max Min Surface Water Mean Max ..." 841106 3 .1 3.6 4.3 3.2 3.6 3.7 841107 3.3 3.7 3.7 3.1 3.6 3.7 841108 3.6 3.7 3.8 2.9 3.5 3.7 841109 .8 3.4 3.9 .2 3.0 3.7 841110 -0.2 0.0 .5 841111 -0.2 -0.1 0.0 841112 -0.2 0.0 .1 841113 .1 .2 .5 841114 .4 .7 .9 841115 .7 .8 .9 841116 .3 .5 .7 841117 .2 .3 .4 841118 .4 .5 .7 841119 .6 .8 1.1 841120 1.0 1.4 1.7 841121 1.3 1.7 1.8 841122 0.0 .5 1.3 841123 -0.1 0.0 .1 841124 -0.1 0.0 .1 841125 0.0 0.0 .1 841126 0.0 0.0 .2 841127 .1 .2 .5 841128·.2 .4 .6 841129 .2 .4 .5 841130 .3 .4 .5 Monthly Value .8 4.3 -.2 .9 3.7 ---------------------------------------------------------------------------- -----Data not available. .52 - ~) - ..... -- Table 14 (continued). ---------------------------------------------------------------------------- December 1984 ---------------------------------------------------------------------------- Intragravel Surface Water Date -----------------------------------------------Min Mean Max Min Mean Max ---------------------------------------------------------------------------- 841201 -0.1 .2 .5 841202 -0.1 0.0 0.0 841203 -0.2 -0.1 0.0 841204 -0.2 -0.1 0.0-841205 -0.1 0.0 .1 841206 -0.1 0.0 0.0 841207 -0.1 0.0 0.0 841208 -0.1 0.0 0.0 841209 -0.1 0.0 .1 841210 -0.1 0.0 .2 841211 0.0 .1 .3 841212 .1 .3 .6 841213 2.8 3.0 3.1 .4 .7 1.2 841214 3.0 3.2 3.2 .6 .7 1.2 841215 3.1 3.2 3.2 .6 1.3 1.8 841216 3.1 3.2 3.2 1.2 1.4 1.7 841217 3.0 3.1 3.1 .9 1.2 1.4 ,~841218 2.9 3.0 3.1 .8 1.0 1.1 841219 2.9 3.0 3.1 .7 .9 1.3 841220 3.0 3.2 3.2 .8 1.2 1.7 841221 3.1 3.2 3.3 1.1 1.6 2.2--841222 3.1 3.2 3.3 1.0 1.9 2.4 841223 3.0 3.1 3.1 .5 1.5 2.0 841224 3.0 3.2 3.4 .3 1.1 1.6-841225 3.2 3.2 3.4 .9 1.2 1.5 841226 3.1 3.2 3.2 1.2 1.6 1.9 841227 3.1 3.3 3.4 1.6 1.8 2.1 841228 3.2 3.4 3.4 1.6 1.8 1.9 841229 3.3 3.3 3.4 1.7 1.9 2.1 841230 3.0 3.1 3.3 1.8 2.0 2.2 841231 2.7 2.9 3.0 1.7 1.9 2.1-- Monthly Value 2.7 3.4 -0.2..9 2.4 ----------------------------------------------------------------------------- -----Data not available.- 53 Table 14 (continued). ---------------------------------------------------------------------------- January 1985 ---------------------------------------------------------------------------- Intragrave1 Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ~ ---------------------------------------------------------------------------- 850101 2.7 2.7 2.7 1.6 1.7 2.0 850102 2.7 2.7 2.9 1.2 1.4 1.7 850103 2.7 2.9 3.0 1.1 1.2 1.4 850104 2.9 3.0 3.1 1.2 1.6 2.0 850105 2.8 2.9 3.0 1.3 1.6 2.0 ~ 850106 2.8 3.1 3.2 1.0 1.4 1.6 850107 2.9 3.1 3.3 .9 1.2 1.5 850108 2.7 2.8 3.0 1.1 1.3 1.4 850109 2.5 2.8 2.9 1.1 1.3 1.4 850110 2.5 2.9 3.0 1.1 1.3 1.4 850111 2.7 2.9 2.9 1.0 1.2 1.3 850112 2.6 2.7 2.8 .7 .9 1.1 ~ 850113 2.6 2.9 3.2 .5 .7 .9 850114 2.9 3.1 3.2 .4 .7 .8 850115 2.8 2.9 3.0 .4 .5 .7 ~ 850116 2.7 2.9 3.0 .5 .5 .7 850117 2.6 2.7 2.7 .3 .5 .7 850118 2.4 2.7 2.8 0.0 .1 .4 850119 2.4 2.9 3.0 0.0 .1 .5 850120 2.6 2.9 3.0 0.0 .1 .3 850121 2.4 2.8 3.1 0.0 .1 .3 850122 2.7 2.9 3.0 0.0 .1 .3 ~ 850123 2.7 2.8 3.0 0.0 .1 .3 850124 2.6 2.7 2.7 0.0 0.0 .3 850125 2.6 2.6 0.0 .1 850129 .5 .7 .9 850130 3.1 3.2 .7 .8 .9 850131 3.1 3.1 3.2 .5 .7 1.1 Monthly Value 2.4 2.9 3.3 0.0 .8 2.0 ~---------------------------------------------------------------------------- -----Data not available.- 54 Table ll\(continued)• February 1985 Date Min Intragravel Mean Max Min Surface Water Mean Max 850201 3.1 3.2 .6 .8 1.0 850202 3.1 3.1 3.2 .9 1.0 1.2 850203 3.1 3.1 3.1 1.0 1.2 1.7 850204 3.1 3.1 3.2 1.2 1.3 1.6 .....850205 3.1 3.1 3.2 1.3 1.6 1.8 850206 3.0 3.1 3.2 1.4 1.7 2.0 850207 3.0 3.1 3.2 1.7 1.9 2.0 850208 3.0 3.1 3.2 1.6 1.9 2.1 850209 3.0 3.1 1.8 2.0 Monthly Value 3.0 3.2 .6 2.1- -----Data not available. - -- - ..- I 55 JL._ """ Table 1£1 (continued). ~ ------------------------------------------------------------------~--------- March 1985 -------------~---------------------------~---------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max ~---------------------------------------------------------------------------- 850307 2.7 2.8 1.8 1.9 850308 2.6 2.7 2.8 1.6 1.7 1.8 850309 2.6 2.7 2.7 1.7 1.7 1.8 850310 2.6 2.7 2.7 1.7 1.7 1.8 850311 2.6 2.7 2.7 1.7 1.7 1.8 850312 2.6 2.6 2.7 1.6 1.7 1.8 850313 2.6 2.6 2.7 1.7 1.7 1.9 850314 2.6 2.7 2.7 1.7 1.7 1.9 STh 850315 2.6 2.7 2.7 1.7 1.7 1.9 850316 2.6 2.7 2.7 1.7 1.8 1.9 850317 2.6 2.7 2.7 1.7 1.8 1.9 850318 2.6 2.6 2.7 1.7 1.8 2.0 -850319 2.6 2.7 2.7 1.7 1.8 2.0 850320 2.6 2.7 2.7 1.7 1.9 2.1 850321 2.6 2.7 2.8 1.7 1.9 2.1 850322 2.6 2.7 2.8 1.7 1.9 2.3 850323 2.6 2.7 2.8 1.7 1.9 2.2 850324 2.6 2.7 2.8 1.8 2.0 2.2 ""'1 850325 2.6 2.7 2.8 1.8 2.0 2.4 850326 2.6 2.7 2.8 1.7 2.0 2.4 850327 2.7 2.7 2.8 1.8 2.0 2.3 850328 2.7 2.7 2.8 1.7 2.0 2.3 ~I 850329 2.7 2.7 2.8 1.8 2.0 2.3 850330 2.7 2.7 2.8 1.8 2.0 2.4 850331 2.7 2.7 2.8 1.8 2.0 2.3 Monthly Value 2.6 2.7 2.8 1.6 1.9 2.4 ----------------------------------------------------------------------------- -----Data not available. 56 - Table 14 (continued). ---------------------------------------------------------------------------- April 1985 ~---------------------------------------------------------------------------- Intragravel Surface Water Date ---------------------------------------------- Min Mean Max Min Mean Max F~---------------------------------------------------------------------------- 850401 2.7 2.7 2.8 1.8 2.0 2.1 850402 2.7 2.7 2.8 1.8 2.0 2.1 850403 2.7 2.8 2.8 1.9 2.0 2.2 850404 2.7 2.7 2.8 1.9 2.1 2.3 850405 2.7 2.7 2.8 1.9 2.1 2.4 850406 2.7 2.7 2.8 1.9 2.2 2.4 850407 2.7 2.7 2.8 2.0 2.2 2.3 850408 2.7 2.7 2.8 1.9 2.2 2.3 850409 2.7 2.7 2.8 1.9 2.1 2.4 850410 2.7 2.7 2.8 1.8 2.1 2.4 850411 2.7 2.7 2.8 1.9 2.2 2.3 ,,"JiPIt.850412 2.7 2.7 2.8 1.9 2.1 2.3 850413 2.7 2.7 2.8 1.9 2.2 2.3 850414 2.7 2.7 2.8 1.9 2 .1 2.3 850415 2.7 2.7 2.8 1.9 2.2 2.6 850416 2.7 2.7 2.8 2.0 2.3 2.6 850417 2.7 2.8 2.8 2.0 2.4 2.8 850418 2.7 2.8 2.9 2.0 2.5 3.1 850419 2.7 2.8 2.9 2.1 2.5 2.8 850420 2.7 2.8 2.9 2.0 2.5 2.9 850421 2.7 2.8 2.9 2.1 2.6 3.4 850422 2.8 2.9 2.9 2.1 2.8 3.6 850423 2.8 2.9 2.9 2.2 2.9 3.8 850424 2.8 3.0 2.2 3.5 Monthly Value 2.7 2.8 3.0 1.8 2.3 3.8 ---------------------------------------------------------------------------- ----Data not available. - 57 7 I I -0 t 0- UJ s a: :::>2t- eta:1UJa. <.11 :f ex>UJ • t- a::-1 W t-et -I ~ -s ... ... LOWER CIRCULAR SIDE CHANNEL (RM 7~.3) ---MlAN DAILY UnRAeRAVIL -----MIAN DAILY IURPACI WATIR "'~ ,4 A ,-'''\"..'",-"1,/"l!\ I',I ,\,.1!'\r.."~"~'',v....;\".,....\.,_"'\.........'\-..• """'- ,, ,I,,v ~-,-"---,...,.,---""..~,..' SEP OCT NOV DEC JAN FEB MAR APR MAY Figure 7.Mean daily intragravel and surface water temperatures (oC)recorded at the lower portion ..of the obser~ed spawning area in Circular Side Channel. ]I ,)))J ))J ))]J I )J ~J F""'.• """ Intragravel water temperatures at this site ranged from a low of 0.8°C to 4.3 c C.Surface water temperatures ranged from -0.2°C to 3.8°C. Water Surface Elevation Trapper Side Channel Water surface elevations were obtained at Trapper Side Channel and in the adjacent mainstem Susitna River on six occasions.Both the side channel and mainstem water surface elevations are relative to separate temporary bench marks;each of which have assigned elevations of 100.00 feet.These water surface elevations are presented in Table 15.A plot of side channel versus mainstem water surface elevations are presented in Figure 8. Water surface elevations were found to be very stable varying only 0.04 feet from February 20-May 1.Mainstem water surface elevations fluctu- ated 1.08 feet for the same period.Corresponding mainstem discharges were 3,600-5,000 cfs.The final water surface elevation measurement occurred on May 8 and corresponded to a mainstem discharge of 7,000 cfs. This discharge resulted in an increase of 0.1 feet for the side channel water surface elevation and a mainstem water surface elevation decrease of 0.86 feet.This decrease in mainstem water surface elevation has been specul ated to result from an expansion of the wetted area of the mainstem adjacent to this side channel due to ice melt. Sunset Side Channel Water surface elevations were also taken in Sunset Side Channel and the mainstem river adjacent to the side channel.These water surface elevations are presented in Table 15.A plot of side channel versus mainstem water surface elevations are presented in Figure 9. Water surface elevations were stable in this side channel.A maximum variation of 0.15 ft occurred over a mainstem discharge of 3,500-7,000 cfs.A variation of 0.61 ft occurred in the mainstem over the same range of mainstem discharge. Circular Side Channel Water surface el evations obtained in Ci rcul ar Si de Channel exhi bited slightly more variation (0.55 ft)than Trapper and Sunset Side Channels over a lesser range of mainstem discharges (3,600-4,800 cfs).Mainstem water surface elevations exhibited less variation (0.14 ft)than those obtained from the mainstem sites adjacent to Trapper and Sunset Side Channels.These water surface elevations are presented in Table 15.A plot of side channel versus mainstem water surface elevations are presented in Figure 10. -59- Table 15.Comparison of water surface elevations obtained at selected side channels in the lower Susitna River to those obtained from adjoining mainstem locations. Mainstem ."., WSEL (ft)Discharge Location Date SIC MS at Sunshine ~~ Trapper Creek Side Channel 850220 96.39 89.13 3,600 850321 96.42 89.18 4,100 850411 96.42 88.54 3,600 850424 96.41 88.26 4,000 850501 96.43 88.10 5,000 850508 96.53 87.24 7,000 Sunset Side Channel 850221 94.02 91.66 3,500 850321 93.90 92.16 4,100 .1Ili@:' 850410 93.90 91.70 3,600 850423 93.87 91.55 3,900 850430 93.90 91.61 4,800 ~ 850508 93.96 92.06 7,000 Circular Side Channel 1J 850220 82.81 ~~::12/3,600 850321 82.77 4,100 ~ 850410 82.39 88.31 3,600 850424 82.26 88.20 4,000 850430 82.35 88.34 4,800 ~j ,~ Jj Side channel and mainstem water surface elevations are not "tied"to same T6M. ~/Data not available. 60 ..... asp P 7 Figure 8.Comparison of mainstem and side channel ,water surface elevations over time at Trapper Side Channel. SUNSET SIDE CHANNEL L ~ 850508850430850423850410 94.2 94 93.8 93.6 93.4 93.2 ....-..93t '-" -J ·92.8w (f)92.6 O'l 3; N 92.4 92.2 92 91.8 91.6 - 91.4 -. . 850221 850321 o SIDE CHANNEL WSEL DATE +MAINSTEM.WSEL.'...,.., Figure 9.Comparison of mainstem and side channel water surface elevation over time at Sunset Side Channel. !t , ---~j J 1 J J ..)I ~!...~J ~~ l'J -))1 }1 ]J 1 1 850430 CIRCULAR SIDE CHANNEL 89 I , + 88 - 87 - ,...... t 86 - ........ _I ld O"l Ul w ;:85 - '84 - 83 -[]B -a-= 82 I I I I . I I 850210 850220 850321850410 850424 tJ SIDE 'CHANNEL WSEL DATE +MAINSTEM WSEL Figure 10.Comparison of mainstem and side channel water surface elevations over time at Circular Side Channel. Substrate During January,substrate samples were obtained from Trapper,Sunset, and Circular Side Channels.The results of the analyses of these samples are presented in Tables 16 through 28 and Figure 11 through 36 and are discussed below by site. Upper Trapper Side Channel Four substrate samples were collected from the upper portion of the chum salmon spawning area observed in this side channel.Aggregate substrate composition was primarily large gravel (1-3 inch diameter)from the surface to a 4 inch depth.Substrate size from 5 to 16 inch depths were primarily small gravel (.8~1 inch diameter)although large gravel,sand, and silt were present to varying degrees. Lower Trapper Side Channel Only one substrate sample was obtained from this site due to ice con- ditions and water depth.Substrate size from the surface to 4 inches deep was primarily large (76%)and small (23.9%)gravel.Substrate from 5 to 20 inches deep was primarily small gravel although large gravel, sand,and silt were present to varying degrees. Sunset Side Channel Five samples were collected from this side channel;three from the upper portion and two from the lower portion.All five samples were relative- ly similar in substrate size.Large gravel was predominant from the surface to 4 inches deep wi th small gravel bei ng the predomi nant sub- strate size from depths of 5-16 inches.Large gravel,sand,and silt were also present in relatively small quantities from 5 to 16 inches deep. Circular Side Channel Three substrate samples were collected at this site.These substrate samples were found to vary from the samples collected at either Trapper or Sunset Side Channels relative to substrate size at various depths. The aggregate size in Circular Side Channel was relatively larger than Trapper and Sunset Side Channels. Large gravel was predominant from the surface to a 13 inch depth.Redd #R5E contained 69%rubble (3-5 inches in diameter)from a depth of 5-8 inches.Substrate size from a depth of 12-16 inches was primarily small gravel.Some large gravel,sand,and silt was also present. Biological Data Chum Salmon Spawning Surveys The locations of observed chum salmon spawning activity noted during the spawning surveys in Circular,Sunset and Lower and Upper Trapper Creek -64- - ~I ~, ..", 'lIIml, /~; Table 16.Substrate sieve analysis data for Upper Trapper Side Channel redd number 1 (R-1). ..------------_._--------------------~----~--~..~~-~..~"_..------~-------_......~----..----~~---~~"":...-..- SIEVE SIEVE am I t PER HU~BER SIZE (IN)MEI6HT (G~S:PASSING CLASS SAI\PLE NUKBER SIDE CHANNEL ----------------------------------------------------------------------------------- ----------------------------------------------------------------------------------- - UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPfER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER R-IA R-tA R-IA R-IA R-IA R-IA R-IA R-IA R-IA IHA R-IB R-IB R-1S R-IB a-IB R-IB R-IB R-IB R-IB R-IB R-le a-Ie R-Ie JHI: R-lC R-Ie R-IC R-IC R-1C R-l1: R-10 R-ID R-I0 R-I0 R-I0 R-ID R-1D R-ID R-1D R-lD 5 3 I 4 10 35 SO tOO 230 TOTAL 5 3 1 4 10 35 50 100 230 TOTAL 5 3 I 4 10 35 50 100 230 TOTAL 5 3 1 4 10 35 SO 100 230 TOTAL 3 I 0.187 0.0787 0.0197 0.0116 0.0059 0.0025 5 3 1 0.187 0.0787 0.0197 0.0116 0.0059 0.0025 5 3 1 0.187 0.0787 0.0197 0.0116 0.0059 0.0025 5 3 1 0.187 0.0787 0.0197 0.0116 0.005~ 0.0025 o 776 1140 1155 USB 1159 1160 1161 1161 o 576 1284J 1371 1406 1412 1415 1419 1420 o 940 1624 1184 1900 1930 1946 1952 1965 o 443 781 827 814 ee1:2 899 901 913 100 33 LB 0.5 0.3 0.2 0.1 o 100 59 9.2 3.5 J 0.6 0.4 0.1 100 52 17 9.2 3.3 1.8 1 0.7 100 51 14 9,4 4.3 2.3 1.5 1.3 67 31.2 1..3 0.2 0.1 0.1 0.1 o 100 41 49.S 5.7 2.5 0.4 0.2 0.3 0.1 100 48 35 7.B 5.9 1.5 0.8 0.3 0.7 100 49 37 4.6 5.1 2 0.6 0.2 1.3 100 ----------------------------------------------------------------------------------- HI-A:Substrate sa=ple ottaio!d frol chul r!dd labeled Rl at a depth of 0-4 inches. RI-8:5-8 inches RI-C:9-12 inches RI-D:13-16 inches 65 I II ~l IIu.s.Inch••I U.S.SI.y.511••I WyllT"O_Ur" I 0 0 ~on 0 0 ... 'l"'"-.....,on -N 0.·lw~I I I ..1 'I r 1090I, \ SO 20l~ 70 \30 1\\I "•..., J::n•..\40 ::l~60 ~<P:s 1\ n,.,0aI-.., ~50 50 '.'~I •c ,...,.1L oe·.. 60~i ~O I~\I •..-c.a•:rlL.<P 30 70 20 1\SO \"'""'1"'-~9010............r---~......-=~...'-1000 100 to t .1 .02 .Ot .OOS .002 .00t ~.ln Size In Mlll1~\ II&RAva.~SAIIJ I SILT DR CUY Co.,..e I F1ntI MHl~I Flne SI~le I~lflC8tlon Claalf1C11tlan Deta unUled FllI-.rIcaS,.Hale s..~th Clli CZ LL PI Sll"g Cl ••• ....-u.....ACE 0 Rt-e ~"I 0 At-C ,- 0+>...W 12" I !. DWI(:=:~~Fa. ~~AlASKA t:E?T OF FISH &GAME GIIiO.:ICD A..\\'\R&M CONSUL.TANTS,INC.-SUSI'l'NA Ei\BlTAT SUBSTRATEOAT..,..-_/85 ---........--..........-...-~~ PItO.lNO 551053UPPERTRAPPER.1 DATAPOD SITE SCALE DWliNO Figure 11.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 1 in Upper Trapper Side Channel. 66 .-m,- - - }]} -'-l ! I J '49 1--, 48 .1 10.6 ) TRAPPER SUBSTRATE COMPOSITION R-1B R-1C R-1D SAMP~UMBERvzzaN.,,~.......IX:!)..Mi_.(0001 ...-ntATlIIZI OATIOOflY On),. ], UPPER --I ts:SI."'1 -~ ~). )() 100 ~'') SO .........70 .,871-. J: (!,., w 60~ >-CD 50'-' I- Z 40w m U -.....J u::: L.L.. Ll....30 20 10 o~a R-1A Figure 12.Depth integrated substrate composition by weight from redd number 1 in Upper Trapper Side Channel. -...--._.<\.,....,_.....'._..__....._-...A '.' """ Tabl e 17.Substrate sieve analysis data for Upper Trapper Side Channel redd number,2 (R-2). """" ----------------------------------------------------------------------------------- -----SiD:-----------SA~PLEl---~;~VE------s;;~;---------cu;--------;-----~;-~;;----t I ......",.....d J.Joi ,_" CHANNEL IiUl'IBER NU!!SER 5rzE WI}IIEIEHT lSl'lS)PASSIN6 CLASS - ----------------------------------------------------------------------------------- UPPER TRAPPER-R-2A 5 5 UPPER TRAPPER R-2A 3 3 0 100 9:.3 UPPER TRAPPER R-2A 1 1 906 6e 7 :.7 UPPER TRmER R-2A 4 C.157 992 0 UPPER TRAPPER R-2A 10 V.01S7 m 0 0 UPPER TRAPPER R-2A 35 0.0197 992 0 0 UPPER TRAPPER R-2A SO 0.0116 992 0 a UPPER TRAPPER R-2A 100 a.OO59 992 0 0 UPPER TRAPPER R-2A 230 0.0025 992 (}a UPPER TRAPPER R-2A TOTAL 992 100 UPPER TRAPPER R-2B 5 5 UPPER TRAPPER R-2B 3 3 a 100 11 UPPER TRAPPER R-2B 1 1 94 89 71 UPPER TRAPPER R-2B 4 0.181 n7 IS 5 UPPER TRAPPER R-2B 10 0.0787 774 ,-5.8.~ UPPER TRAPPER R-2B 35 0.0197 824 i.2 3.9 UPPER TRAPPER R-2B 50 a.Olill m 3.3 I.e UPPER TRAPPER R-2B 100 0.0059 875 1.5 1.2 UPPER TRAPPER R-25 230 0.0025 8es 0.3 0.3 UPPER TRAPPER R-2B TCTAL 8SB 100 UPPER TRAPPER R-2C 5 5 LIPPER TRAPPER R-2C 3 3 0 100 15 UPPER TRAPPER R-2C 1 1 200 85 50 ~ UPPER TRAPPER R-2C 4 C.1S7 B~2 35 10 UPPER TRAPPE~R-2C 10 0.0787 m 25 13 UPPER TRAPPER R-2C 35 0.0197 1135 f?8.4.. UPPER TRAPPER R-2C 50 0.0116 1246 3.6 2.4 UPPER TRAPPER R-2C 100 0.0059 1277 1.2 O.il UPPER TRAPPER R-2C 230 0.0025 12B5 0.6 0.6 UPPER TRAPPER R-2C TOTAL 1293 100 ~~ UPPER TRAPPER R-2D 5 5 UPPER TRAPPER R-2D 3 3 UPPER TRAPPER R-20 1 1 a 100 31 UPPER TRAPPER R-2D 4 0.187 44 09 8 UPPER TRAPPER R-2D 10 a.om C:~61 28.... UPPER TRAPPER R-2D 35 0.0197 95 ~T 26J~ UPPER TRAPPER R-2D 50 0.0116 iT?7 7.... UPPER TRAPPER R-2D 100 O.ot5~142 0 a UPPER TRAPPER R-2D 230 0.0025 142 C 0 UPPER TRAPPER R-2D TOil'll 142 lOO ----------------------------------------------------------------------------------- 1 R2-A:Substrate sa~ple obtained free thuc reed labeled R2 at a de;:h of 0-4 inches. R2-B:5-8 inches R2-C:9-12 inches R2-D:13-16 i nche:- 68 i"u.s.Inch..U.S:51 ....51z..Hydl"o_tel" a 0 2 on a a .... .opl"l .......on ...N 100 0 ~t'-.'\I .1 t\~1\,1090\"(\,\ 80 \\20 70 \.30.~.....i',~ ~.. 1"- ,.r::.n.... :60 40 ~ :s \1\f'P :0-\n ".a • k50 , 50 •,•c:;\,..........a' ~ .., ~40 60 :II: CI .. '"-a..~::r ~L ... 30 "70 '\\~20 !l,.~80 i',\r---......10 ......90....,~t1 .....~~/--0 100 100 10 1 .1 .02 .01 .OOS .002 .001 \,~.1n 51ze 1n Nl11l••t.ra &RAVEl.~SAP«) SILT DR CUY CO.,.••Ftn....du-Fine ~ I s..ple Identification Cl...lflcstlon oata &-.1tl... ClUB AtI_ks SY·Hale SUp Depth QI I:Z LL PI S org A fR-otA &R='ACE c iR-28 4· 0 A-2C ,- +R-2D 12· DWI( DATE.7 1/85 SCAl.E ~FlI. R&M CONSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME:GIlID. SOSITNA HABITAT SUBSTRATE.--.._-..................................,..-. PRO.l.HO 551053TRAPPERREDOCORE112 OWG HO Figure 13.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 2 in Upper Trapper Side Channel. 69 LJPPER TRAPPER SUBSTRATE COMPOSITION t o 39 o 0.6 60' o.3oo 100 90 80 ,...........70l- I '-'w 60;;: >-(Q 50........, ~w 40ua:: -...I W a 0-30 - 20 10 0 10 R-2A [ZZ]>3 (SSJ 3-' R-28 R-2C R-2D SAMPLE NUMBER~'-,8 ~,8-,02 .~.02-,002 £88B1 ,(,002 SUBSTRATE SIZE CATEGORY On) Figure 14.Depth integrated substrate composition by weight from redd,·number.2 in Upper Trapper Side Channel,' J l-I 1 ~J ',1 D ],,l J J 1 ~) .- Tabl e 18.Substrate sieve analysis data for Upper Trapper Side Channel redd number 3 (R~3). f#AI ------------------------------------------------------------------------.---------- -----srD£-----------SA~PLEr----SiEYE------srEvE---------cur--------i------i-p£R---- CHAKIIEL NUl'lSER NU!!BER SIZE mil WEI5HT (5"5)PASSIN::LAS5 ----------------------------------------------------------------------------------- UPPER TRAPPER HA 5 .... UPPER TRAPPER F;-3A 3 3 a 100 96.9 UPPER TRAPPER F,-3A 1 1 1378 3.1 3.1 UPPER TRAPPER 1i-3A 4 0.167 1422 0 0 UPPER TRAPPER 1i-3A 10 C.OiS]1422 0 0 UPPER TRAPPER HA 35 a.om 1422 a 0 LIPPER TRAPPER P,-JA 50 a.om 1422 0 0 UPPER TRAPPER R-3A 100 O.O~5q 1422 0 a UPPER TRAPPER R-JA 230 0.0025 1422 0 0 UPPER TRAPPER R-3A TOTAL 1422 0 100 UPPER TRAPPER 1i-3B 5 5 UPPER TRAPPER R-39 3 3 0 100 6B ~UPPER TRAPPER R-3B 1 1 475 32 30 UPPER TRAPPER R-3B 4 0.187 -1)O 2 0.60_. UPPER TRAPPER HB 10 0.0767 m 1.4 0.4 ,.-.UPPER TRAPPER R-3!35 0.0197 696 I 0.1 UPPER TRAPPER R-3B 50 C.0116 697 C.9 0.3 UPPER TRAPPER R-3B 100 0.0059 699 0.6 0.5 UPPER TRAPPER R-3B 230 0.0025 702 0.1 0.1 UPPER TRAPPER R-3B TOTAL 703 100 UPPER TRAPPER P'-3C 5 5 UPPER TRAPPER R-3C 3 3 C 100 15 UPPER TRAPPER Ht 1 1 121 85 57 UPPER TRAPPER P,-3C ~0.187 587 28 10 UPPER TRAPPER R-3C 10 0.0767 IIb3 18 7 UPPER TRAPPER R-3C 3S 0.0197 720 11 1.11 UPPER TRAPPER R-3C SO o.om m u 4.7 UPPER TRAPPER R-3C 100 0.0059 777 4.4 3.8 UPPER TRAPPER R-3t 230 0.0025 80B O.b 0.6 UPPER TRAPPER R-3!:TCTAl 813 100 UPPER TRAPPER ii-3D 5 5 UPPER TRAPPER R-3D 3 3 UPPER TRAPPER It-3D 1 1 0 100 42-UPPER TRAPPER R-3D 4 0.H!7 44 :8 28 UPPER TRAPPER ND 10 0.0767 13 30 19 UPPER TRAP.PER R-J1J 35 0.0197 93 11 4.3 UPPER TRAflPER R-3D 50 0.0116 97 6.7 5.7 UPPER TRAPPER R-3D 100 0.0059 103 1 I UPPER TRAPPER ii-3D 230 0.0025 104 0 a UPPER TRAPPER R-3D TOTAL 104 100 ------------------------------------------------------------.---------------------- 1 R3-A:Substrate sa~ple cztained froe chul redc la_eled R3 at i depth of Q-4 incoes. R3-B:5-8 inches-R3-C:9-12 incnes R3-D:13-16 inches ~(\l 71 IIu.s.Inc"'.I U.S.Sieve Slzee r Hyara..te,. 0 0 0 II')0 0 Of) <r'"......II)a ..C\I 0-.tOO-\I -.1 t\1\SID ,10\\80 ,"20\ ~3070 \"0•41 ,.c nIII•:60 '"'~ \..z n"'"1\a.a 1\;..'~50 50 :r:\1\~.. a'lL.....41 60 x~.040 1\•u -'-~a•~lL... 7030 'i\1\1\i'\..8020\"- 9010'L t-.,~~"- 1000 .1 .02 .01 .005 .002 .001100101 ,\sr.ln Size In Ml111 ..t.,.. I &RAYa.~SAIIJ I IIISILTDR-CUV Cl:iraa FlM Iledllm F'lM s..pl.Idantlflc.tlan_Cl...1flaUan o.a Un1fll1d Aaurb Sr-1tD1.sup.DlI$Itb eu CZ u.PI S llrll Cl... A IfHA UFACE C ~38 .- 0 R-l!IC .- +1A-3D 12- DWN.--~FIl :O:D.R\'\\R&M CCNSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME GRID DATE.~l/85 ----.........--.............-.............SUSITNA HABITAT SUBSTRATE PIIO.l.NQ TRAPPER REDDCORE #3SCALE DWGNO Figure 15.Depth integrated substrated composition,percent by weight passing each sieve size for redd number 3 in Upper Trapper Side Channel. 72 -miA:'lid.r Si - - ...., Table 19.Substrate sieve analysis data for Upper Trapper Side Channel redd number 4 (R-4). -----siD~----------SA~PLEl----5iEVE------siE;~---------Cu;,--------i-----·z-~~~---- CHANNEL NUMEER MUMEER SIZE (!~:.EIGHT (5~:;PASS INS CLASS - - - UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UrPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPFER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER "- UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UFf'ER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER .UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER UPPER TRAPPER RH R4-A R4-A R4-A RH R4-A R4-A R4-A RH RH RA-!! R4-!! R4-B R4-B R4-B RH R4-B R4-B R4-B R4-B RH: R4-C R4-C R4-C R4-C R4-C R4-C R4-r; R4-C R4-C R4-n R4-D R4-D R4-D R4-D RH R4-D R4-D RH R4-D 5 3 1 4 10 35 50 100 230 TOTAL 3 1 4 10 35 50 100 230 TCTAL S 3 I 4 10 35 50 100 230 TOiAL S 3 1 4 10 3S 50 100 230 TOTAL 3 0.lE7 0.07e7 0.0197 o.cHc a.om a.om 0.137 o.om 0.0197 0.0116 0.0059 0.0025 S '3 0.187 o.om 0.0197 a.om 0.0059 0.0025 3 1 O.lE7 0.0787 0.0197 0.OU6 O.0059 O.OC2~ c 1m 1m 128: 1284 1254 1m 1254 1284 o 147 m m 481 483 423 454 484 2H 606 m 739 781 795 m 602 o 43 79 111 120 !21 121 100 l'.. o 1 0.1 o o o o 100 70 3.5 ~.4 O.b 0.2 0.2 a 100 69 24 17 7.9 2.6 U 0.4 100 64 sa 35 5.3 0.8 o tr,<:.\t .. r,'i f,I... o c a 100 30 6U O.S 0.4 a 0.2 o 100 31 45 7 9.1 5.3 L7 0.5 0.4 100 36 Q 23 26.7 7.S o ~ o "'"" - - 1R4 -A:Substrate sa~?le obtained from ch~1 re:d labelej R4 2:a de~th of 0-4 :n:nes. R4-B:5-8 i ncnes R4-C:9-12 inc~es R4-D:l3-16 incnes 74 .- - - I u.s.Inch..!U.S.Sleve Slze.r Hyar-oHte,.I 0 0 0 II')0 0 r<J ~............,on ..(\j 100 0 \I If J III I I I1\1\I I 90 I 10 r\\ eo \I 20 70 ~"30 \\"1:1.....,• .c , ...n 1\•;&0 40 ::J S '\\""... \..,n ~.a ,co-. fisa :' c \'\ 50·:..~ IL I:l'..... ;-60 E co \ J • L -•~a L ~... 30 \ 70 20 \" '-. 1\ SO ~A...10 '" 90 ~-r'-.r-.,'"-I-.~~ 0 100 100 10 1 .1 .02 .01 •DOS .002 .001 ~.ln 51z.1n M1111 ..t.r. I •~I IliAAva.SAND I ,SILT OR a..AY Cuar••Fin....dlUil Fin• 5aaDI.Id.ntlf1c.t1an CI...1f1c.t1an Dat.lkllU.d CI ...Anrks ~HoI.Sup DaDth eu CZ u.PI I org ..,......,.ILI'F.u:e: 0 ~-B ",- 01 IM-C 8- +A4-O 12- 1 I I I ~;>...~c,; ~a :"0 t~"R&M CONSUI-TANTS,INC.ALASKA DEPT OF FISH &GAME GRIQ - Q£TE :l"P1./85 ...._.....0 ..._.........._............--.SUSITNA HABITAT SUBSTRATE f "1tC.l.NO c;c;,n <;~ TRAPPER REDDCORE #4 SC<lLE OWIONO Figure 17.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 4 in Upper Trapper Side Channel. 75 -.- LJPPER.TRAPPER SUBSTRATE COMPOSITION o 42 o 0.4 62' o.8 .6 0 68.6 R4-B R4-C R4-D SAMF.'LE NUM8ER , ~1·,8 ~,8-,02 IZ:ZI .o2!",002 tl888a (,002 SUBSTRATE SIZE CATEGORV (In) 100 90 80 'P 70 I e." W 603: >-([)50'-' I- ZLIJ 40 U 0:::: "-J LLJ O"l 0..30 20 10 o lJ?E"n n 0 R4-A. IZZl >3 lSSI 3-1 Figure 18.Depth integrated substrate composition by weight from redd number 4 in Upper Trapper Side Channel ,"~" I I ),t J ~))J ~J i •J ))~, Table 20.Substrate sieve analysis data for Lower Trapper Side Channel redd number 2 (R-2). -_......_--...----_....._------------------------------------_.-_._---------------------- ..···s iff"····SA;P ~Et--·-SiE ~E·"'·~··sIEY£-~-~.··~ur._-:------i'"'PER---- CHAkkEL H~~EER M::~SEii SIE mJ kElm (6~S)FAS:IM:C~AS5 ------------...------------------------_....---------------------------------------- - -~ - LOiiER TRAPPER LOilER TRAPPER LOliERTRAPFER LOilER TRAPPER LOIER TRAmp. LeliER TRAPPER mER TRAPPER LO~ER TRAPPER LOIiER TRAPPER LOWER TRAPPER lOilER TRAPPER LOllEfi TRA?PER LOIiER TRAPPER LOIiER TRAPPER LOIlER TRAPPER LOWER TRAPPER LO.:R TRAPPER LOl/ER TRAPPER LOIiER TRAPPER LOIIER TRAPPER LOIiER TRAPPER LOIj£R TRAPPER LOIiER TRAPPER LOIIER TP,I\PPER LOIIER TRAPPER LOIlER TRA?PER LOiiER TRA PPER LOIlER TRAPPER LOllER TRAPPER LollER TRAPPER LOIiER TRAPPER lOIiER TRAPPER LOllER TRAPPER LOllER TRAPPER LOIiER TRAPPER LIliiER TRAPPER LOIiER TRAPPER LollER TRAPPER LOliER TRAPPER lCIiER TRAPPER LOWER TRAPPER LOIlER TRAP PER LOllER TRAPPER LOliER TRAPPER LOiiER TRAP PER LOlER TRAPPER LOkER TRAPPER LO~ER TRAPPER LQkER TRAP PER LO~ER TRAP PER RH R2-A RH RH R2-A R2-A RH R2-A RH RH RH RH RH RH RN! RN RH RH RH RH RH RH RH RH RH RN RH RH RH R2-C R2-D RH R2-D RH R2-D R2-D RH RH R2-D R2-D RH R?-; R2-E R~-£ 5 10 35 50 JO~ 230 TOTAL 5 3 ( 10 35 50 100 230 TOTAL S 3 1 4 10 35 SO 100 230 TOTAL 5 3 1 4 10 35 SO 100 230 TOTAL 5 3 1 4 10 35 50 100 230 TOTAL 3 US1 0.0787 0.0197 M1l6 O.OC59 0.0025 5 3 1 0.IS7 0.0151 0.0197 UI16 0.0059 0.0025 3 I 0.187 0.0787 0.0197 0.0116 0.0059 0.0025 5 3 0.187 0.0787 0.0197 0.0116 0.0059 o.om 5 3 1 0.187 0.0727 C.Q19i O.Cl16 0.0059 O.OC'25 o 106£ 140'1 141C 1410 1411 1411 1411 1411 o m 1037 1120 IlC~ 1178 lI96 1198 1203 (I 363 1239 1414 150B 1541 1579 15B8 1m o me 2023 21Bl 2344 2409 24Bl 2506 252~ o B8 406 471 605 736 BOb BH 821 100 24 0.1 0.1 0.1 o o o 100 65 14 6.9 3.2 2.1 0.6 0.4 100 77 22 11 5.3 3.2 O.B 0.3 100 49 20 14 1.1 4.6 l.7 0.7 100 89 •51 43 10 L8 0.6 76 23.9 o o 0.1 o a o 100 35 51 1.1 3.7 1.1 1.5 0.2 0.4 100 23 55 11 5.7 2.1 2.4 0.5 0.3 100 51 29 . 6 6.9 2.5 2.9 I 0.1 100 11 38 8 11 16 8.2 1.2 0.6 100 -----------------------~_.._--------------------------------------------------- 1 R2-A:Substrate suple :btalnej from cnul recc labelec R2 at a depth of 0-4 !ncMes. R2-E:5-8 i n:nes R2-C:9-12 inches R2-D:13-16 incnes 77 __11 IIU.S.Inch••I U.S.51 •••SlZ ••[Ityllf'"a..ter 0 0 0 ~0 0 If) ~.......-"1 n -Naoo 0IIIr --,I ----r-t'-- "go 10 \1\\I\\ SO I 20 !\I\1\\ \ \ 70 I 30 \~f I I ~ 1\1\•...,.r;n..•';;60 40 :I \\1 ~:II: ".;nc.a •\., ~50 50 •i\\~\~•~., II."-G'oc.., ;40 60 a::\,'"•u -L-a•:rL... 3Q 70 ~"1\8020'\~~1\~r-....~9010~~l\Ir-...t'\. a 100 100 10 1 .1 .02 .01 .005 .002 .001 sr.1n S1ze in Mi111..tara I 61'1AVEl.~SUIJ I IIIs:z.T DR CLAY !:Ger••Fine M8di..Fine sa.ale Identification Cl...lflcatlan D8t.laI1f~Anarka S.,.Hal.Snf,i _til eu CZ LL PI S Or,a.- .J,....-....ACE IJ fa-e 4"1 I 0 jQIH:••I..~12" x ~e 1«S·I I I ~@ 11awlt~FlI. :1(0_{tl)---'---'--'ALASKA DEPT OF .!'-S:&Q.MER&M CONSUL.TANTS.INC.CiIttl1 DATE 7rll/85 --------...••~.___ae ___....-..:I SUSITNA RABIn,:s:ssTRATE PIlO.l.NO 551053 LOWER TRA?~SCALE a.GNO Figure 19.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 2 in Lower Trapper 5i de Channel. 78 "'""', - ...." - - J .l 1:.J ]J ))f j 1 ) LOWER TRAPPER SUBSTRATE COMPOSITION 66 68.1 F~2-B o' R2-C R2-D 46 r~2~E SAMPLE NUMBER ~1-.8 ~.8-.02 IZ:zI .02-.002'~<.002 SUBSTRATE SIZE CATEGORY (In) Figure 20.Depth integrated substrate composition by weight from redd number 2 in Lower Trapper Side Channel. I "__II Table 21.Substrate sieve analysis data for Upper Sunset Side Channel redd number 6 (R-6). -----sIDE-----------SA~LET---_SiEVE------SIEy£---------c~;,--------i------i-PER---- CH~MNEL KU~ER NU~EER SIZE (INI ~Ersr.T tS~Sl PA55!XS CLASS - -, 1 ,RS-e-A:5ubstrat~siEcle attained froE "h~redd ]abele:R:-6 at a de~th of 0-4 inches. RE-:-E:5-8 inches R~-~-r.9-12 in"hes RS-b-D:13-16 inChes UPPER SUNm UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET lIPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SIJtjSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER WHSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUNSET UPPER SUN.SET UPPER SUNSET UPPER SUNSET UPPER SUN5£T UPPER SUNSET UPPER SUNSET UPPER SUNSET U?PER SUNSET Rh-A R:-~-A RS-b-A RS-H R:-H RS-b-A R5+A R:-i:-A RS-c-A RH-A RS-H R5-i:-B R5+B RS-e-B RS-H RS-e-B fiS-e-B RH-B Re-I:-B RE-6-B RH-C R5-6-C Rt-H RHI-C RH:-C RH-C R5-i:-C RH-C RE+C R6+D RS-c-D fiE-c-D RS-b-D Re-:-n RH-D RH-D RH-D R::-i.-O RH-!! 5.00 3.00 1.00 ~.oo 10.00 3S,00 SO.OO 100,00 230.00 TOTAL 5.00 3,00 1.00 4.00 10.00 3S,00 50.00 100.00 230.00 TOTAL 5.00 3.00 1.00 4.00 10.00 35.00 50.00 100.00 230.00 TOTAL 5.00 3.00 1.00 4.00 10,00 35.00 5C.00 100.00 230.00 TOiAl 5 3 1 0.187 0.0787 0.0197 C.Ollb o.em o.ons 5 3 1 0.lB7 0.0787 0.IH97 0.0116 0.0059 0.0025 5 3 1 0.le7 0.0787 0.0197 0.0116 0.0059 0.0025 5 3 1 0.187 0.0787 0.0197 0.0116 C~0059 o 378 m m 420 m m 420 420 () 269 alB 667 682 b87 1:95 704 70B o ~21 636 693 7ll 740 764 m o ~i1 312 366 39S 405 4!6 4''' 4?::: 100 10 C.2 0.2 o o o o 100 62 11 S.B 3,7 3 1.8 o.c 100 32 17 10 7.7 3,9 0.8 100 es 27 14 7.1 4.7 2.1 A <: ""'a ... 90 9.B o 0.2 o o o o 100 38 51 5.2 2.1 0.7 1.2 1.2 0.6 100 68 15 7 2.3 3.8 3.1 0.8 100 12 61 13 6.9 2.~ 2.6 1.6 (1,5 100 - - - - 80 """" jr-.I u.s.Inch••I U.S.'Sl.ve Slz ••I HyGl"'o_te,. 0 0 0 ot')0 ~.... ~...;:-...-"" ....,111 '"._..--.__.C100\I I I 1 90 ,10 ~"'\I• 80 20 -\\\ 70 ".30 \\~.....\\."1 ~n ao III .. -=60 040 :3 Z \\ r0- n»0 .a •\\ ., ~50 50 • \•c:.,.. IL.a- M ... ~.cO &0 ~ \.. a -l.co..~ CL.\~... 7030,\ ,\f\80,...,20 l~~10 q 90 "-"-',,;........t::....""-.-...... 0 100 100 10 1 .1 ,02 .01 .005 .002 .001 .,&rain 51%8 in Millint.... GRAVEL SAND SILT OR CUY Coar ••Fin.COli"••M.diUli Fine - 511l1C1l.IdanUUation Cl ...iflcatiDn Data unUied AIIark. SY·Hel•se.Depth eu CZ LL PI S QrD Cl... A •.,.....,..ACE 0 SS 11&-&-1 ~.I I 0 as li&-&-c '."+!IS ~i2" I I I I -. 0....~, CUE 7~1l/85 SCAL.E '-='1r~rrN,-_eo;~"\I R&M CONSULTANTS.INC.____.. ....._.....-....__.""'''''.''0_.ALASKA DEPT OF FISH &GAME SL'SITNA HABITAT SUBSTRATE SS RG-6 P"O~..o <:c;,n <:., cWGHO Figure 21.Depth integrated substrate composition,percent by weight passing each sieve size for redd number G-6 in Upper Sunset Side Channel. 81 UPPER SlJf'JSET SUBSTRATE COMPOSITIOI~ .! .5 RG-6-D o,8 RG-6-C o 0./I~_.·_~,e' 56,2 RG-6-B 83 o 100 - 90 80 ...........70l- I <..' W 605: >-m 50'-" l-Z LL.1 40un:: LLJ 30000...N 20 10 0 10 RG-6-A tz:zl >3 cs::sJ 3-1 SAMPLE NUMBER f2LZ),.,8 ~.8-,02 IZ:ZJ .02-,002 SUBSTRATE SIZE CATEGORY (In) E8883 (.002 Figure 22,Depth integrated substrate composition by weight from redd number G-6 in Upper Sunset Side Channel,. -~J ,I ]I t J )j J J ~~)I.)-.~ Tabl e 22.Substrate sieve analysis data for Upper Sunset Side Channel redd number 6A (R-6A). ----------------------------------------------------------------------------------- ------------------------~--------------------------------SIDE SMPLE SIEVE SIEVE CUll 1.HER CHAH~EL ItUIIBER ItUIIBER SIZE (lit)WElSHT (SIIS]PASSIHS CLASS -------------------------------------------- UPPER SUNSET R6A-A 5.00 :5 UPPER SUNSET R6A-A 3.00 3 0 100 63 UPPER SUNSET R6A-A 1.00 1 609 37 29.5 UPPER SUNSET RcA-A 4.00 0.187 894 7.5 1.9 UPPER SUNSET R6A-A 10.00 0.0787 913 5.6 1.9 UPPER SUNSET RcA-A 35.00 0.0197 931 3.7 1 UPPER SUNSET R6A-A 50.00 0.0116 941 2.7 0.8 UPPER SUNSET RbA-A 100.00 0.0059 949 1.9 1.4 UPPER SUNSET R6A-A 230.00 0.0025 962 0.5 0.5 UPPER SUNSET RcA-A TOTAL 967 100 UPPER SUNSET R6A-B 5.00 5 UPPER SUNSET R6A-B 3.00 3 0 100 20 UPPER SUNSET R6A-B 1.00 1 176 80 45 UPPER SUNS£T R6A-B 4.00 0.187 583 35 10 UPPER SUNSET R6A-B 10.00 0.0787 675 25 12 UPPER SUNSET R6A-B 35.00 0.0197 781 13 4.6..., UPPER SUNSET R6A-B 50.00 0.0116 823 8.4 3.4 UPPER SUNSET RbA-B 100.00 0.0059 853 5 3.7 UPPER sum R6A-B 230.00 0.0025 886 1.3 1.3 UPPER SUNSET R6A-B TOTAL 898 100 UPPER SUNS£T R6A-C 5.00 :5 UPPER SUNSET RbA-C 3.00 3 0 100 23 UPPER SUNSET R6A-1:1.00 1 104 71 43 ~UPPER SUNSET H6A-C 4.00 0.187 301 34 10 UPPER SUNS£T R6A-!:10.00 0.0787 341 24 16.3 UPPER SUNSET R6A-1:35.00 0.0197 419 7.7 3.5-UPPER SUNSET RilA-C 50.00 0.0116 435 4.2 2.2 UPPER SUNSET R6A-1:100.00 0.0059 445 2 1.6 UPPER SUNSET R6A-1:230.00 0.0025 452 0.4 0.4 UPPER SUNSET R~I:TOTAL 454 100 RcA-A:Substrate saaple abtained frol cnul redd labeled RcA at a de~th of 0-4 inches. H6A-B:5-S inches RbA-C:9-12 inches R6A-D:13-16 inches - 83 ,U.s.Inch..j U.S.~1.ye 51z••!Hyllra..t.,.I It'I 0 0a0a.., ~....-~.....,on .-(\I----100 -aIIIII1\ 90 ., 10 ~\,80 ~l\I 20 70 .\30!\'1J...•.r::.., n'"•;60 ~~ :s ~... ""n .Q ,0.. ~50 ., 50 ••~.,.. II.1:1'...\""i ~o 60 :II: u ,• L.-~~0•:zlL... 30 f\70 \\- ~20 "\ 80 I 10 i'90 , "r-........-r---'!"-~..... 0 100 100 10 1 .1 .02 .01 .005 .002 .001 "sr.1n S1z.1n Ml11~ I BRAVEL ~SAND I IIISILT~CLAY Co.r••F1n.Media n_ SI~l.Id.ntification Cl ...lflcation e.ta ""tn.1f Cl_Reurtc. SY·Hal.SlIII:I o.pth QI CZ U.PI s Or; 4 •......."ACE c 55 ~A-B ~-. 0 IS tSA-C 8- I I . ~OW'",.;cs F!l ellD a')R &M CONSULTANTS,INC.AI.A.Sn DEPT OF FISH &GAME Gil It).I D.l.TE·7iU/85 .....-...........-"......--.....-._.SUS:n;:A HABITAT SUBSTRATE PROJ.HO 551053 SCALE 5S R6A OWG NO Figure 23.Depth integrated substrate composition,percent by weight passing sieve size for redd number 6A in Upper Sunset Side Channel. 84 - -- ))1 l ]1 1 }1 J 1 })1 J UPPER SUNSET SUBSTRATE COMPOSITION 55' o o 53 .4 R6A-B R6A-C SAMPLE NUMBER ~1-.8 ~.8-.02 ~.02-.002 £8883 <.002 SUBSTRATE SIZE CATEGORY (In) -Figure 24.Depth integrated substrate composition by weight from redd number 6A in Upper Sunset Side Channel.. Tabl e 23.Substrate sieve analysis data for Upper -Sunset Side Channel redd number 7 (R-7). ------------------------------------------------~----------------------------------"""-----siD~----------SA;PlEl---_siEvE------S!£VE---------CUM--------X------i-PER---- CHANNEL NU~8ER NU!!BER S!E Wi)IEr5HT [6~SJ PASSIHS CLASS -------------------------------------.--.------------------------------------.----- UPPER SUNSET RH 5.00 ~ UPPER SUNSET R7-A 3.00 J 0 100 91.9 UPPER SUNSET R7-A 1.00 1 849 S.l 7.3 UPPER SUNSET R7-A 4.00 0.167 917 0.8 0.4 UPPER SUNSET R7-A 10.00 c.om 920 0.4 0.1 UPPER SUNSET R7-A 35.00 0.0197 921 0.3 0 UPPER SUNSET R7-A 50.00 0.0116 921 0.3 0.1 ~ UPPER SUNSET R7-A 10C.00 O.Oos;922 0.2 0 UPPER SUNSET R7-A 230.00 0.0025 922 0.2 0.2 UPPER SUNSET RH TCTAL 924 100 ~ UPPER SUNSET R7-S ~.oo '"01 UPPER SUNSET R7-B 3.00 3 0 100 45 UPPER SUNSET R7':S 1.00 1 B6S 55 4Q UPPER SUNSET R7-B 4.00 c.m 1628 15 5 ~. UPPER SUNSET R7"'B 10.00 C.07B1 112S 10 3.5 UPPER SUNSET R7-B 35.00 0.0191 1792 6.S 3.4 UPPER SUNSET R7-fl 50.00 0.0116 1856 3.1 2.1 UPPER SUN:SET R7-B·100.00 0.0059 1996 1 0.7 UPPER SUNSET R7-B 230.00 0.0025 1911 0.3 0.3 UPPER SUNSET R7-B TOTAL 1916 100 UPPER SUNSET R7-C 5,00 j 0 100 47 ~ UPPER SUNSET R7-C 3.00 3 !US 53 14 UPPER SUNSET R7-C 1.00 1473 39 20 UPPER SUNSET R7-C 4000 0.181 mo 19 5 ~ UPPER SUNSET R7-C 10.00 0.0757 2062 14 4.7 UPPER SUNSET R7-C 35.00 0.0!97 2171 9.3 5.,6 UPPER SUNSET R7-C 50.00 0.0116 2312 3.1 2.8 UPPER SUNSET R7-C 100.00 0.0059 2380 0.9 0.5 UPPER SU~SET R7-C 230.00 u.0025 2m 0.4 0.4 UPPER SUNSET R7-C TOTAL 2401 100 UPPER SUNSET R7-D 5.00 5 UPPER SUNSET R7-D 3.00 3 UPPER SUNSET R7-D 1.00 1 0 100 21 UPPER SUNSET R7-0 4.00 C.157 106 79 7 UPPER SUNSET R7-0 H).OO C.0187 139 72 14 """UPPER SUNSET 1l7-D 35.00 c,em 210 58 43 UPPER SUNSET R1-D SMO C.Clle 428 ~5 13.2 UPPER SUNSET Rl-D 10~.OO U.O~5"494 1.8 0.8 ~ UPPER SUNSET R7-0 230.00 0.0025 498 I 1 UPPER SUNSET RH TOTA~503 100 -----------------------------------------=----------------------------------------- 1 ~ R7-A:Substrate sample ctt.ined fro ••hul r!::labeled R7 at a depth of 0-4 inches. R7-!::5-8 inches R7-C:9-12 inches 1l7-D:13-16 inches .... -86 - - ~, U.s.Inch•• 1~.,.... .. J\I 90 1\ 80 1\ 70 1\.. .r::.. ;60:s I,>- .D ;50:1\1\.....l\~40u 1--."\ L•0. 30 20 10 ""-........... 0 100 10 j(')0 2 0 0 ~t<l n - I .1 ,j I'-.f',.. ""'"I'" I iI \ i'.Ili-i'-~r\--f.t'\ ~""'-\ 1 .1 o.... N H'yoro_~.r ! 0 I 10 I 20 30 "lI..., n•040 ;;,... na•'., 50 :., cr... 60S:•-co ~,.. 70 80 90 ~.1n S1z.1n M1111..tera,I SAAva.~SAND I IIMild1U.,1 SILT III a.AY Cas,...Ftn.F1M sa~l.Ident1f1c.tlon I Cl..a1f1catlon Dat.lJnifled I AaMr-ka Sp Hale SUD Depth ClI CZ LL PI S Or"g Cl... ~ A •R7-A SWACE I 0 SS R7-e 4-I 0 as R7-C 8-, -+as R7-o 12-I i I i I DATE 7/11/85 501.' "(5)~~ R &M CCNSUL.TANTS.INC. ....-....0&0Il0.__.........._.._......._.._. AKASKA DEPT OF FISH &GAME SU5ITNA HABITAT SUBSTRATE 55 R7 Fl!. GIlIO. PRO.LNOSSIOS 3 O_G NO Figure 25.Depth integrated substrate composition~percent by weight passing each sieve size for redd number 7 in Upper Sunset Side Channel. 87 57 ( R7-D o 0.4 R7-C 47 >3' R7-B u P PER SU I'~S ET SUBSTRATE COMPOSITION r .~; 100 I 1~9 90 80 'P 70 I <:> w 603: >-m 50-..- I- Zw 40 (.) a::::wcoQ..3000 20 r,,'10 0 IO·~.1.1 12 R7-A l22J >3 ESSI 3-1 SAMPLE NUMBER ~1-,8 ~.8·.02 r;g:gJ .02-.002 ~(.002 SUBSTRATE SIZE CATEGORY On) Figure 26.Depth integrated substrate composition by weight from redd nu~per 7 in Upper Sunset Side Channel.. I ,J )~.~,I ,J I J ))1 ,.J I ~ Tabl e 24.Substrate si eve analysis data for Lower Sunset Side Channel redd number 3A (R-3A). ----------------------------------------------------------------------------------- -----------------------;7:r------:-~---------~:---------~~;--------;------;--~-----SInE SAri.I.:'Sl::lI..sm:.......•..P~R CHANNEL NUP!BER NW!lBER Sm:!IN I WElSHT IB"51 PAS5INS CLASS ----------------------------------------------------------------------------------- LOWER SUNSET R3A-A ~.oo 5 LOWER SUNSET R3A-A 3.00 3 a 100 78-LOWER SUNSET R3A-A 1.00 1 862 22 21.7 LOWER SUNSET R31l-A 4.00 0.lE7 1103 0.3 0.1 LOWER SUNSET R3A-A 10.00 0.0787 1104 0.2 0 LOItER SUNSET R3A-A 35.00 0.0197 1104 0.1 0.1 LOWER SUNSET R31l-A 50.00 O.Ol1li n05 0.1 0 LOWER SUNSET R3A-A 100.00 0.0059 1105 0.1 0.1 LOWER SUNSET R3A-A 230.00 0.0025 1106 0 a LOWER SUNSET RJA-A TOTAL H06 100 lOWER SUNSET R3A-B 5.00 5 lOWER SUNSET R3A-B 3.00 3 t'lI:~LOWER SUNSET RJA-B 1.00 1 0 100 72 LDWER SUNSET R3A-B .4.00 0.1e7 770 28 9 LOWER SUNSET R3A-B 10.00 0.0787 861 19 8 LOWER SUNSET ~R3A-B 35.00 .0.0197 944 11 4.6 LOWER SUNSET R3A-B 50.00 0.0116 996 6.4 2.9 LOWER SliNSET R3A-B 100.00 0.0059 1027 3.5 2.6 LONER SUNSET R3A-B 230.00 0.0025 1054 0.9 0.9 lOWER SUNSET R3A-B TOTAL 10B4 100 LOWER SUNSET R3A-C 5.00 5 LOWER SUNSET RJA-C 3.00 3 a 100 28 LOWER SUNSET R3A-C 1.00 1 183 72 41 •LOWER SUNSET R3A-C 4.00 0.187 450 31 9 LOWER SUNSET R3A-C 10.00 0.0787 517 22 10 LOWER SUNSET RJA-C 35.00 0.0197 584 12 0.3 I"""LONER SUNSET R3A-C 50.00 0.0116 627 5.7 2.8 I LOWER SUNSET R3A-C 100.00 0.0059 b46 2.9 2.1 LOIlER SUNSET RJA-C 230.00 0.0025 660 0.8 0.8 LONER SUNSET R3A-C TOTAL 665 100 LOIlER SUNSET R3A-D 5.00 5 LONER SUNSET R3A-D 3.00 3 LOWER SUNSET R3A-O 1.00 I 0 100 60-LOitER SUNSET R3A-D 4.00 0.187 106 40 14 LOWER SUNSET R3A-D 10.00 0.0787 m 26 13 LOWER SUNSET R3A-D 35.00 0.0197 154 13 6.3 LOt/ER SUNSET R3A-D 50.00 0.0116 166 6.7 2.8 LOWER SUNSET R3A-D 100.00 0.0059 171 3.9 2.2 LOWER SUNSET R3A-D 230.00 0.0025 175 1.7 1.7 LOWER SUNSET R3i1-D TOTAL 178 100------------------------------------------------------------------------------------ 1R3A-A:Substrate saeple cbtaine~froe chuc redd li"eled R3A it a oe.th of 0-4 inches. R3A-B:5-8 inches R3A-C:9-12 inches P'3H:13-16 inches 89 -II _ I U.S.Incn..I U.S.Sl.v.511 ••I Hyllro_t.,., C'l 0 0 2 0 2 "'l~...-..."l n N100 \I .1 ---0 110 10 \,. 80 1\~ \\ 20 \\' 70 30 1\ ~...\\• &. ., co n :60 •.40 ;;, z \.. \"... .D a,•;50 \., 50 •c •...., IL.r:T...oc ;.40 60 :u -L.\a•~lL... 30 !t :\70[~s,'-\ t"--~~20 80 ~~t'> l\-ID "90 .~~ 0 100 100 10 t .1 .02 .01 .005 .002 .001 srain Size in M1111..t.r.,, I GRAVEL.~SAHD I I,I SILT DR a..AY Ca_e Fin-...d1U11 nne S~l.ldentif1catlan Cl...lf1cat1an Oata !kIlf1" CI...Aenrk. Sywi Hale SMIP ~tI'i QI CZ LL PI S org ...•......,....ACE D SS R3A-t .c" 0 IS IUA-C I" +IS RSA-(12"I I I I "-:=-"s::::;;OWN.~-<Ie;;.FB. :KO ,{~\.\ ,..~ R &M CONSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME GRID DATE_7f.,J.l/85 .-_-e ......-...............--.-....__SOSITNA HABITAT SUBSTRATE PIlO,J.NO ""In''~ SCALE 55 R3.A OWG.NO Figure 27.Depth integrated substrate composition.percent by weight passing each sieve size for redd number 3A in Lower Sunset Side Channel. 90 - -,. - (ZZ)>3 ISSJ 3-1 SAMPLE NUMBER ~h8 ~.8-.02 ~.02-....Q02' SUBSTRATE size CATEGORY (In) ti888I (.09 2 Figure 28.Depth integrated substrate composition by weight from redd number 3A in lower Sunset Side Channel. Table 25.Substrate sieve analysis data for lower Sunset Side Channel redd number 4 (R-4). 92 ----------------------:D~r-------~:-------~r-;-----------;------------------------SIDE SA,,,..l:.SIEh S••'h.CU..1 1 PER CHANNEL HU~:ER NU~EER SIZE (IN)k:ISHT (5~S)PAS5IN6 CLASS (./rq/,,- -100 32 68 47 21 7 14 6.'1 7.1 2,q 4.2 2.3 U 1.2 0.7 0,7 100 100 25 75 b4 11 .4.3 0.7 3.0 3.1 1 2.1 o.a 1.3 0.6 0.7 0.7 100. 100 68 32 31.8 0.2 0.1 0.1 0.1 (I (I ~(I o 0 o 0 100 100 77 23 10 13 a 5 2,3 2~7 L,B 0.9 0.9 o 0 100 o m 191 209 214 218 220 220 (I bOC m 878 879 m 879 e79 m o m m a <;~--e8a B97 904 910 m o 357 SB5 963 1043 1076 1102 1115 1123 5 3 1 0,187 0,0787 o,wn C.OI16 Q.OOS'1 0,0025 S 3 1 0.167 0.07B7 o.(W17 0.0116 0.0059 0,0025 5 3 I O.lB7 0.0787 0.0197 0.0116 0.0059 0.0025 S 3 1 0.187 0.0797 0.0197 0.0116 0,0059 0,0025 5.00 J.OO 1.00 4.Q0 10.00 35.00 50.00 100.00 230.00 TOTAL 5.00 3.00 1.00 4.<10 10.00 35.00 50.00 100.00 230.00 TOTAL 5.00 3.00 1.00 4.00 10.00 .35.00 50.00 100.00 230.00 TCTAL 5.00 3.00 1.00 4.00 10.00 35.00 50.00 100.00 230.00 TOTAL RH R~-A RH !H-A R~-A RH Ro\-A R4-A R4-A RH R4-B RH R.i-:: RH R4-5 RH RH R4-B RH R4-B RH RH RH RH RH RH RH R4-C R4-C RH RH R4-D R4-D R4-0 R4-D RH RH RH Rl-l) RH LUKER SUllSET LOWER SUNSET LOWER SUNSET LOWER SUNSET LOWER SUNSET LOWER SUNSET LOWER SUNSET LOWER SIJHSET LOWER SUNSET LOWER SUNSET LOm SUNSET LOIIER SUNSET LOIfER SUNSeT LOWER SUNSET LOWER SUNSET LONER SUNSET LOWER SUNSET LOWER SUNSET LOWER SUNSET LOilER SUNSET LOilER SUllSET LOIiER SUNSET LOIiER SUNSET LOWER SUNSET LOWER SUNSET LONER SUNSET LONER SUNSET LOWER SUIISET LOWER SUNSET LOWER SUNSET LOWER SUNSET LONER SUNSET LOWER SUNSET LOIiER SUNSET LOliER SUNSET LOWER SUNSET LOitER SUNSET LOWER SUNSET LOWER SUNSET LOIlER SUNSET 'R4-A:Substrate siEple ::tained fre;cnul redd labeled R4 at i depth of 0-4 inches. R4-e:5-8 inches R4-C:9-12 in~hes R4-D:13-16 inches """ .- ".... _. ,I u.s.Inch••I U.S:Shy.SU••I ""","oeu.'" on 0 0 0 a 0 ,., ~..........I"l on ..N '100 .-,,-0 __ ~\I I I II rl\ ~\ 90 10 l \ J ~. \, \,20BO\~\II I\3070\~, II I 'V\.....~\.., ~\n..• :50 I 40 ::I x II rP \n >-0 ..a •.., ~50 .,50 • \\•~.., lL.:a::r ""... ~40 f\ 50 ~ u \-'"..e :ra..rP 30 .70- 20 1\~I aD '\""~ Ii ~9010r--....~...", 0 100 100 10 \1 .1 .02 .01 .005 .002 .001 ,.,sr.in S1z.in Ml11~ I GRAVEl.~....:'1 [IISILTDRCLAY COllI'S.Fine n ... S.-ol.Identification Cl...ific.tlDft e.te !.nifilld An:eI"tca SYII HoI.SUD DIIpth eu CZ u.PI I s erg CI... .,.•........ItWACE I c SS fW-B .."I I 0 8S M-C s"I I +SS Ro4-iJ 12'I I I I I I I I I I I ~~OWN F'B,c:.; :0:0-i\\)R&M CONSUL.TANTS.INC.AS:u.sKA DEPT OF FISH &GAME IORIO. oATQ)ri/85 ..............QiI"CI__".--.____.............sosr~HABITAT SUBSTRA-:E PlIOJ.HQ 55105355R4 SCAL.[OWClNO Figure 29.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 4 in Lower Sunset Side Channel. 93 --------~-------~--,---------.....--------_..-------------- LOW ER.SU r'~'s ET SUBSTRATE COMPOSITION oo0.7 64 o' 87 R4-B R4-C R4-D SAMPLE NUMBER ~h8 ~,8-,02 l&:8J ..02-,00:11 r8883 (,002 SUBSTRATE SIZE CATEGORY (In) 100 90 80 ~70 -l 68 C) W 60 3 >-en 50........,., I- Z LLJ 40 0 0:: LLJ \0 0-30~ 20 10 0~.1 0 0 0 R4-A l2:ZJ >:1 LSSI 3-1 Figure 30.Depth integrated substrate composition by weight from redd number 4 in Lower Sunset Side Channel. ~.~....J ,J !J ,,J J J m )1 J J I Table 26.Substrate sieve analysis data for Circular Side Channel redd number 1 (R-l). ----------------------------_.----------------------------------------------------- -----SiDE-----------SA~LE1----5!EVE------SIEVE---------CU~--------i------l-PEF.---- CHAkNEL NU~5ER KUKEER SIZE (IN)NEI6HT IB~S)PASSINE CLASS ----------------------------------------------------------------------------------- CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR .CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCl!i.AR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR AI-A AI-A RH RI-A Rl-A RI-A RI-A RH RH Rl-A RH RI-B RI-B RH RI-B P.I-B RI-B R!-B RI-B RHI R1-C RI-C Rl-C RI-C RH RH RH R1-C RI-C RH· RH RH Rl-D Rl-D RH Rl-~ RHI RH RI-D R!-D 3 1 4 10 35 50 100 230 TDTAL 5 3 1 4 10 35 50 100 230 TOTAL :5 3 1 4 10 35 50 100 230 TOTAL 5 3 1 4 10 35 50 100 230 TOTAL 5 3 1 c.m o.om 0.0197 0.0116 0.0059 0.0025 5 3 I 0.187 0.0757 0.0197 0.0116 a.om 0.0025 5 ;) 1 0.187 0.0137 0.0197 0.0116 0.0059 0.0025 5 3 1 0.167 0.0787 0.0197 0.0116 O.Ot:? 0.0025 (; 412 m m 742 74b 177 794 804 o 143~ 2169 2225 2264 2301 2462 2522 2550 o 1933 25182m 2772 2949 3050 3108 3131 o 337 404 494 m 590 609 C18 100 48 9.7 7.7 7.2 3.4 1.2 100 44 15 13 11 9.8 3.5 1.1 100 3B 20 16 11 9 2.6 0.7 100 4S 3S 20,.. •J ,"..~ 38.3 1.5 0.5 tU 3.8 1.2: 100 ,,'.0 29 2 2 1.2 U 2.4 1.1 100 18 4 5 2 0.4 1.9 0.7 100 SS 10 15 7 E.5 l.5 100 1 RI-A:Suostrate sas.le obtained from :hu~redd labeled Rl at a depth of 0-4 ir.:nes. RI-B:5-8 in:hes RI-C:9-12 in:nes RI-D:13-16 in:r.es 95 U.S.Inch•• --o.. U.S.'Sl.v.S1z •• oo-o If') N 90 80 70 us:.. ~60:s... 4 foso .5 II. 30 20 1C1 o tOO \I .1 , ~\ \ , \ ~ \ ~f\ ""- I ....~~~ "- \ ..............\ Sor-r-..1\N i\. ""'-~~ 10 1 .1 .02 ~01 .005 .002 sraln Slz.1n Ml111..t.~. GRAVEL ~SAND SILT OR CUY co-.Fine M41dl~Flne 0 ~ SO '20 ~\I 3D ~...., n.. 40 ;,~1.. n CI•.., 50 •.. "':I ~1 IT "" 60 :c..... a:::r t'F ~~ 70 BO ~, 90 ~ 100 ,DOt sa.pl.Identificatlon Clas.iflCatlon Data ltllUad Att..~ka $}'II Hal.s.o DelIth QI ex LL PI S Drg CIa. £em:Ai...,...ACE I c CIRe R1-iS 4 G CI CIAC M-c .- +CIAC R1~12- I I SeAl,.[ ALASKA DEPT OF FISH &G.a.ME SUSITNA HABITAT SUBSTRATE eIRe Rl FIl GIIIO. "ROJ.NO <;<;1 n <;1 owe;NO Figure 31.Depth integrated substrate composition.percent by weight passing each sieve size for redd number 1 in Circular Side Channel. 96 )1 1 )]»j ...])1 J j 1 ···1 .._.) CIRClJLAI~ SUBSTRATE COMPOSITION 100 I I 90 80 65 56 o 0 0.7 0 0 40 10 62 60 52 70 20 50 .30 - I- Z LLJ (.) n:::l.w (L r-eo '--" 'P:c C-' LLJ ~ lJ)...... R1-A R1-B R1-C R1-D IZZl >3 (s:sJ 3-1 SAMPLE NUMBER ~1-.8 ~.8-.02 I:&::ZI .o2~.002 SUBSTRATE SIZE CATEGORY (In) t:888a (.002 Figure 32.Depth integrated substrate composition by weight from redd number 1 in Circular Side Channel. Table 27.Substrate sieve analysis data for Circular Side Channel redd number 3 (R-3). -----siDE-----------SA~?LE1----si~VE------sr~v~--------:~~-------i------i-~ER---- CHANNEL HU"eER kU~£EF.SIZE (!Hi ~~I6H;[6"5;PASSING CLASS !flI!!9-' CIRCllLAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIR~ULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CrR~ULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR m:ULAR CIRCULAR CIRCULA.~ CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR R3-A R3-A R3-A R3-A R3-A R3-A RH R3-A RH li3-A R3-B R3-B R3-B R3-B RN R3-B R3-B R3-B R3-B R3-B R3-C R3-C R3-!: R3-C R3-C R3-C RH R3-C 1t3-1: R3-1: R3-D R3-D RH R3-D R3-D R3-D R3-D R3-D R3-D R3-D 3' •1~ ~=... 100 230 TOTAL 5 3 4 10 35 50 100 m TOTAL 5 4 Ie 35 50 Ice m TOTKL 5 3 ! 4 10 35 50 100 230 TOTAL 3 o.om 0.01,7 O.ell6 0.0059 0.0025 5 3 1 0.187 o.om o.om 0.0116 0.0059 0.0025 5 3 1 0.187 C.0787 0.0197 a.CHb O.0059 0.0025 3 C.167 0.0757 0.0197 0.0116 O.OC59 o.ens o 1423 1661 lobb 1667 1668 1668 1668 16b8 o 893 1985 2110 2204 2268 2335 2377 2396 o 1478 1899 1979 2072 2145 2190 2213 2219 o 32 128 146 1::7 180 184 186 187 loa 85 15 14.6 0.4 0.3 0.1 0 0.1 0.1 o 0 o 0 o 0 100 lCO 37 63 46 17 5 12 4 8 2.7 5.3 2.8 2.5 1.7 0.8 0.8 100 100 67 33·19 14 :5 11 4.4 6.b 3.3 3.3 2 1.:5 1 0.3 0.3 100 100 17 83 51 32 10 22 11 11 7.3 3.7 2.1 1.6 1.: 0.5 0.5 100 - ,~ 1 R3-A:S~ostrate sa,~le obtain!:fret ,num re::la:eled R3 at a eepth of 0-4 inches. R3-S:5-8 inches R3-~:H2 incnes R3-D:13-16 inches 98 I~ - - ..... .e:::i 1:..-_U_.S_"_I"_C_ne_s u._s_._·s_u_"'_e_S_1_Ze_e H'f_l1r_O-_te_r -' o 0oII(')0 0 I"Q ~f"'I ...1"').,-N __-100.!'T."'_'"T"""""U---'-j_""'!~-.-'-ir-l"".-..-.-.---,r-----r"TlT"l''TT~r-"l"1jr.."""'TT"lTTn_r_r_r__,r-_,.TTTTT....__r_r_--,0';::I,.\Iji II . gO I-H-i-H++--i--*~,....;...++--+HH_t++_t__+--tt++_Jn_H____!r__+ttt+++_t-+_---t 10::\I\~!I/!lll 80 ~f-\tl+-r...:,r+--~~~+-_+_--++iH+++_+__+--tttHn_H__jr__+ttttT+_j-_t__;20 \\.1/111170H-I.,H-\fH-\~_f_-++:_~~+--+---H-iH+H_+_-+-_tttH+H_;---_+tttrr+_j-+__;30~60 1+l+HH-+\~.J,+-\~III..-...o..+-III +-+---+1++++-+-+-+--+H-H-++-+--t---ttt+H-1 t-t--+----i 40 I ;\\\\J,'If II '~ ~50 14+1+l-..t--lr+-+-~--~-+-_+_--++:f+++-+_+_+--+t+HH_+_t---r__t+++-+++_+-+_---t50:~\Illi 1 ;i ~o l+h1+l~+-+_~m.;.;_H_4-_+_--++if+++-+_+_+--+++HH_+_t__ir__t++++++_+-+_---t 60 ~~~i ,-i 30 H+H-1~..4._-_+;.;++_?+__+__+--++-Ho+-H_+__+--H++_H_+_I-I___1+H++_+_+-_+_--I 70 I""hi'"20 H+1+l-+-+-+--~"O_+';....;...-+-_P_-+l-H_+-H_+__+--+l+HH_H-I__t+H+++_+-_+_--I80",I t~~t--~ 10 tttmTrT""'tttrrr-rT.,..~::ti:Et:t::\t_r"'""t-"i1trH_H-r4ttittrrr---t90"~l I ri~~::--. o ill111U-L_.1JI[lrn......~..L.L-.JllLW~:::i5!=:U:ijuLl--l-lllWJ..JU-J 100 100 10 1 .1 .02 .01 .005 .002 .001 Gr.1n 51z.1n M1111-.tar. --CD-.-r.-~--va.-r--F-1M--~_:,I nne SILT DR a..lY ..... Sa80le Ident1f1c.~1~Cl...1f1cation Da~~1f1.d $aID I Cl...RnarQ5,.Hale Dntft Co!CZ LL PI S Orl A CIRC ...,awAlZ c eIRe ~-al .4" 0 eIRe ~I ,- +eIRe fl3-Q1 12"I I I II OWN DATE 1/85 -SCALE r=-'s:::;:;"~\'Fe.,...-"~"'--' R&M CONSULTANTS,INC.AIASKA DEPT OF FISH &GAME GRID.*--.-_.............------SUSITNA HABITAT SUBSTRATE PItOJ.NQ I:;1:;,/11:;')eIRe R3 Qw;NO Figure 33.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 3 in Circular Side Channel. 99 CIRClJLAR SUBSTRATE COMPOSITIOI,1 61 ____0o.8 61 Q ...•1 0o 10 100 90 I 85 l' 80 t='70 I C) w 60 3 >-m 50'-' f- Zw 40<..> (t:w (L 30 - 20 ...... oo R,3--A IZ:Zl >3 c:s::::Sl 3·t f~3-B R3-C R3-D SAMPLE NUMBER~1-.8 ~.8·.02 IZ:.Zl .02·.002 r88'8:t (.002 SUBSTRATE SIZE CATEGORY On) Figure 34.Depth integrated substrate composition by weight from redd number 3 in Circular Side Channel. !].J !I i l S ,},J t ••,! -Table 28.Substrate sieve analysis data for Circular Side Channel redd number 5E (R-5E). ------------------------------------------------------------------------------------. SIDE CHAkNEL SAInE HUI1BER SIEvE SIEVE CUI'!I 1 PER ~U~3ER SIZE (IN)_EIGHT (G~S)PASSING CLASS - CIRCUlAil CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CfRCULAR CIRC:.!LA.'l CIRCULAR CIRCULAR CIRCULAR CIRCUlAR CIRCULAR CIRCUlAR CIRCULAR CIRCULAR CIRCUlAR CIRCII.AR R5E-A RSE-A R5E-A R5E-A RSE-A R5E-A RSE-A RSE-A RSE-A R5E-A RSE-B R5£-8 RSE-S RSE-B RSE-B R5E-B R5E-B RSE-B RSE-8 R5E-B S 3 1 4 10 35 50 100 230 TOTAL 5 3 1 4 10 35 50 100 230 TOTAL 5 3 1 O.lB7 0.:)787 0.0197 O.OW, 0.0059 o.eezs 5 3 1 0.187 0.01B7 0.0197 0.0116 0.0059 0.0025 o 520 73a 743 74B 752 757 758 758 o 2693 3236 3719 3836 3875 3900 3914 3921 3928 IQO 31 2.6 Z 1.3 o.a 0.1 o 100 31 18 3.B 2.3 1.3 0.7 0.4 0.2 69 21l.4 0.6 0.7 0.5 0.7 0.1 o 100 &9 13 14.2 1.5 1 0.6 0.3 0.2 0.2 100 - 1\R5E-A~Substrlte suple obtilined frOI C/lUI nde hbehd RSE It •depth of 0-4 incbes. R5E-B:5-8 indies R5E-C:9-12 ian R5E-D:13-16 inches 101 I rIu.s.Ineft..I U.S."Sl.ve S1z ••Ifydro_ur- 0 0 2 ""0 2 '"....'"n C\l 0 <l'P1 ...--11 I I I II 1090 : , 20 ; 801 I I 3070 ~\•~n ... •.c.. .olO ~-;60 ,.. n :K a,.. 1\•....,. 50 ••;50 1 ...oS erIL.I oc!... 60 :I:i ~o •-U DL.\=r•,.~ 7030 f\!\f\.8020~\ "'-9010 fl.!:.. 1000 1 .1 .02 .Dl .005 .002 .00110010 srain Slu in M1Ui_tara ~I II &RAVEL,SAND SILT OR a.AY tCaar••I Fine Mtldl_Fine 5nPla IdenUf ieaticn Cl...ificatlon Date tkI1f1"AlI_rita C%u.,PI S Dr,CI_Sy•Hal.s..o Depth CU A CAe ....."All! C C1RC ~-e ~. I , I I II ~F!.0 ....._~c,; ALASKA DEPT OF FISH &GAME GRtn:1(0 )\-..\'\R&M CONSULTANTS,INC.SOSITNA HABITAT SUBSTRATE PJIIQ.L N0551C5 :;7All/85 ._........_0-.._.11'..........--.•__...... CIRC R5E OATE O_G NOSCALE Figure 35.Depth integrated substrate composition,percent by weight passing each sieve size for redd number 5E in Circular Side Channel. 102 kiiilil!\i iiiil.iiiiI - - )~.....J I -1 J ~-1 }]).)-))1 ..~}-.) CIRCULAR SUBSTRATE COMPOSITION 100 90 80 r--.70 I 69 l- I l? W 60 3: >-ro 50 -'--" I- Z 40W 0a::w 30 -to-'(L 0w 20 10 o J 0 ~.7 1,l-t.O ~:~~1'1.1 .2 R5E-A R5E-B SAMPLE NUMBER lZZJ >3 (SSJ 3-1 ~h8 ~.8-.02 .IZ:.8J .02-.002 E8S.83 (.002 SUBSTRATE SIZE CATEGORY On) Figure 36.Depth integrated substrate composition by weight from redd number 5E in Circular Side Channel. Side Channels are depicted in Plates 1 through 4.These plates show the relative locations of the observed spawning activities to other monitoring activities in each of the study sites.Spawning was also - observed in the mainstem adjacent to the Birch Creek ADF&G camp,Island and Mainstem West Bank side channels. Chum Salmon Spawning WUA Figures 37 through 40 present projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the IFG-4 modeling sites at which chum salmon were observed to spawn in 1984.Data used to develop these plots are presented in Tables 29 through 32.These results are discussed below by study site. Mainstem West Bank Side Channel The Mainstem West Bank Side Channel hydraulic model was run through the HABTAT model us i n9 observed upwe 11 i ng codes.The proj ected WUA I S peaked just after the site flow (13 cfs)was controlled by mainstem discharge (19,600 cfs)and declined rapidly as discharge increased (Figure 37). The time series plot in Figure 41 indicates that WUAs in this site were relatively low throughout most of the open water season.When site flows dropped during September,WUAs were highest. Circular Side Channel The first run of the Circular Side Channel hydraulic model through the HABTAT model included cells coded for a small amount of observed upwell- ing.The only upwelling observed was in 3 cells in transect 1.Suit- ability criteria gives a value of °for cells without upwelling and the proportion of upwelling cells was so small that the resulting WUAs were all zero.When a second run was completed using simulated upwelling, the results followed similar trends to those in Mainstem West Bank and Sunset Side Channel.Projections of WUA of chum salmon spawning habitat peaked just after the site flow (27 cfs)was controlled by mainstem dis- charge (36,000 cfs)and decreased gradually as discharge increased (Figure 38).Simulated WUA projections·in Circular Side Channel remained more constant over time than in the other three study sites evaluated (Figure 42). Sunset Side Channel Using observed upwelling codes,the Sunset Side Channel hydraulic model was run through the HABTAT model.The resulting WUAs peaked soon after the site flow (43 cfs)was controlled by mainstem discharge (32,000 cfs) and decreased with increased discharge (Figure 39).WUA projections in Sunset Side Channel varied considerably over time (Figure 43). -104- - "'" - ]J 1 <]1 -)-1 1 }1 j.,'"', ~,-. ""-.•• ~,.... ,'"....~~ "'t,,!;;,','; l ..i''" "1 I'.../,1 I".)., ,j ED River Mile o 1250 I I FEET (ApproxImate 8cale) -I;•"rAl''"c'x H~'" c,"',•'t\,:,/1""'I" RMnE» "It·~.. I 1m Temperature Site o Fyke Net Site o waEl Ue..urement alte ~waEl M...ur.ment" Temperatur.Site VlJJJ Chum Salmon 8pawnlng Area ~'!.,,~ ......o (J1 Pl ate 1.Aerial photograph of Circular Side Channel and Hainstem West Bank Side Channel with spawning areas and sampling sites indicated. t' 0' ~~ '! ), t-FEET-'~OO (Approltlma,.Beale) $\)5\1""tI",~tI....4~---- $RM87 .', r ~:\~~:.:tj~~,,~(.t~·f/I.f J'J'...,,'•>',~~~+}'.~y~:;;~\~l/~~;1 Xi:i~;'.,~-J.\.\,~,I ,.-:r~K.~.~,f;;,~!1A({;;i~,fi,:!;:}.1'.If;r.)~,rl,~.,~e-lf~f1~l:.'1.t'i 1';;;1":'"•i'~~;"'Il;i,l,;,';\'k!:'\-,~.\;,{,~~.,yJ'f .1.JI....~.1 f'"',if ;"z!mJi;!(";~F;':1A;1'/;?r!'!il .('1'<\:t t'':f'~~t:.' "~'">'i \"I"'\'"i/"::'i L'"r··tt'R~'I '• ,""";.{~jl '-~.M.~,*.~j!r.'!,k1J'i~}~'\':;}:ri;;~~~~·~1.~"'',:~~'~:/;i'~I,"~~I'~'tJ :~,!':,'.~!t\i ~l"'""<".,,rj~8,';./,1/",'.'f-'loJ "~,.t""~¢'1 ~r1',t,;,.,jj$j;l',','l~I'\'?'::f"')J.}·'""' ......om Plate 2.Aerial photograph of Sunset Side Channel with spawning areas and sampling sites indicated. ~I })_.J 1 1 1 J J ).~J I'~.t 1 "."):"'f"';":T.)"!-n,-·,.,.:,,t.tt;,'t,<l".--;··-.~."'!+t'-"·~,.'I .~._-_.__.._--_ - .- - Plate 3.Aerial photograph of Lower Trapper Side Channel with spawning areas and sampling sites indicated. 107 I--'o 00 Plate 4. ~~':~~'" o W8EL "o..uromOn'8lto ~~WSEL M...ur.m.nt I ; Temperatur.Sit.~,rum Chum Salmon Spawning • Ar .. EB River Mil. o 1000,, FEET (Approxlmat.Bcal.) Aerial photograph of Upper Trapper Creek with spawning areas and sampling sites indicated. J ).J ]].~})j 1 1 1 I )J l l ~ ~'t f 1 }~,!-)I J 1 1 "J } 170 170 11;0 ------~I ~(>......-..150 -,:I"~.............. 1.\0 ~~i "1)".~130 1.30 E 120 E '20 I'~0 '11.1 /0 110.-VI~100 ,,-"'~~"'1/~.,l{tO0U~~90 ~c ~~O11:..~~...~60 80W.c;70 w"~t,'iE 70 "-t~n I.:tin 1ll:ll::J 50 :J ~J("~VI In 40 40 ~ JO ~JO ~20 ---CONUOLLINI 1I.'NITlII~---t'l:r'.~tUM:TIIIOIlUI,21)!!!DlICHAReIIf)~I() 0 0 I)O~4 0.6 1.2 1.6 2 2.4-10 JO·50 70~ThOU.Ond.~(Thouoondo) SI E FLOW .(0 S)MAINSTEM DISCHARCE (CFS) 6 II I 0I-'I 0 '-Cl ~1\I 5 f 4- 0 EVl-~U1 00~~111'-, ~.,.)0 ~ac ..~c«~Il:i:1>Jf::«i!':(--~£"-ll:2 a:J "-In ll: !~ I ~~of \.a 'j Iii ,--.CONUOLLU••IUI.ITI"u,---1IT1 'LQW AT ::!no...CQNTIIQI.I.INI DIiCMAllU OIiCHAIIU (>D I)0 ....0.8 1.2 1.6 2 2.4-10 3D ~O 70(Thou.gnd.~(Thousand_!SITE now (C S)MAlNSTEM DI$CHAR E (el'S;) +GROSS SURFACE AREA o WUA Fi gure 37.Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Mainstem West Bank modeling site. ..", ...-....--:;::;='---1 i I I I I I .._-CONTJlOLLJ...'1AJIlIIT... OIiCHARtI 40 60 (Thou.undo) MAINSTEM DISCHARGE (CFS) . .u § g .--......----- "-1(1 '\0 711 .;n 50 40 30 20 10 ~aa ..-a-'D-&-a-lH>e ..~e ..aaao a "I eBBS D~~ioGAiii 20 lIt) 1/.\0 120 - 160 I~(l l~n ..,](\f ~ ~;Q:....., co~g ~.3:JE, @ r Ii!.., ;t 800600400 SITE F\.OW (eFS) 200 ---IITI:PLOW AT CONTROLLIN.IlIRlIQU ., 151\- '60 I I I ~n -1 I ",n I ,...-.------~_tl--~::tl===~-·-'~."l'I //-I:;\~·I ","/./ '.Hl I'....- 1'-\1\/ ;:.:J1 ....~v r ~~l'l~~'\.~.. It. 'i _._~~esa B B Bi 1I EI 'f B a I,8 8 P (B i g f O' VI~ ~"'o ~ijac., ~, "w~<if.;...ac J." (J 8 r'iii I iii f 80 ~,~ ---CONT"OLLIMO ..AINITIl .. DISCHl""l fO GO (Thou.and,,) I.lAlNSTEI.4 DISCHARGE (CFS) :!.. !., 0.8 -l-U I I I I I I ~ 2U u I I \ • 3.9 - 3.6 3.' 3.2 3 ~.@ -' VI ~:1' Z.Z Z 1.8 1.8... ..Z E o"'~ Hb't~t" II J '" BOO600400 SITE FLOW.(CFS) 200 ---I'tll PLOW AT CONTItOl.LINI OI'CHAltOI' ~ "l; <) .. ;8 ~ I 2 ,j,b ~>::: 2.2 1.0 16 14 2.6 2.4 3,£. 28 _.~--,..~Ir,s ~, ""'~--------.f oV).- .~.. <'i5~ Q:"~~ Wi 'J!--to.,...,... ~ '" ............o +GROSS SURFACE AREA o WUA Figure 38.Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Circular Side Channel modeling site. cl j>J J J J ~,t ,•}j l !,~~~~ ....-..--+-----...--..-t .,.-A/ // ,/ ---~'J:TII~'t~~II:TtIlICH~ll" 0.6 0.8 1 (Thou.ond.) SITE F'LOW (as) 1}.'~l r-.....-v-.. /~.v"/ // ---COlClI\Ol.I.IW'WAlII,nM tIl'CHARU -))] <)+_.u.-n...qn.rl""'Q ,'"!H!&¥e=lMHHtttUenSf\ftljln.fb-fl_~~_ 1(,30 So 70 (Tho....and.) MAINSTEM DISCHARGE (CfS) :!20 - 200, I AI)- '6')-f I·W~-;;~o 120L5ijn:..0'(,5 11)1) W,C ~i·~... Sr.1 /' lJ. !l:. \>0.1 • :::> ~,li '" --" § 411 -{,.,- ~201 1.6 ] 1.4 1 1.2 ll} 0.4 ) 40 ..,•• '0 20 'w: o -, IJ , 0.2 1 )) 220 200 - IRll E'169 - a 140 1Il~ ~.. 0~~n:~<;I 1001>1"uf: <~ LL 80n: :::> III 70 'an ---CONTI\OUIIIO MAINnlM OIiCHAI\U 30 :IXTho....and. MNNSTEU DISCHAR E (CFS) (}--fl-B III 3.31'------r----=A:"----------~3.2 •-I 3.1 :l 2.0 2.8 2.1 • ,Ul 2.~ 2 .• ~.J 2.2 - 2.!- 2 .. 1.9 1.8 1.1 i,R I.:) U I ,,'I ii'I ~I t ~~~ il ~t LL<r. ~ 1.61,41.20.6 0.8 1 (Thousand.) SITE fLOW (CF'S) 0.4 ___Iltf 'LO..,At COlCTIIOLLlII&OlloH-.UI 0.2 --r ,1 , I 1 I !I-+I I I 3.03 ';.2 3.1 :; 2.<) E 2.8 ~.7 CI ,2 h11"-'_'IIIJ :"'a;.'-'.,'- liln ,'..\ II'V10 ".:1 ]J "Jc 2.2'JI-~'-2.1... Q :'~,n 1 g 13 I ,f'~I t'... i .r....... I ~ i) I--'..... I--' +GROSS SURFACE AREA D WUA Figure 39.Projections of gross surface area and ~!UA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Sunset Side Channel modeling site. ~.5 n~,0 ,n -&.-I n. RO ..u g.... I I ..;~~. m 40 ~ (Thou.and.) MNNSTEM DISCKoiIRCe:(CI"S) ~ ~: ~/ ---COl/UOlllNt IIAIIIITIII DlICH~NU ~. J'/,".I //' ." ",' ---~."~'-' .......--.-....--~_.-.--'".,,~- ---CO'UNOLLlllt 11411111111 DIICH",,,t£ o o I I , '1\.~o ~(l£HHJ ~a G ,G ~D"OBD~£I£J~~aGa~:fih~flo ()2(\40 flO 'v, (Thou.onds I MAINSTEM DISCHARGE (CfS) o,~ 180 117/:- 11..,• 1',1' 1 ....:1 l.!oOt12') (I 110V'~-~1(1)~g ""On ,-rr f. .r .~au1>Jf:. 70':/...- 6t)J.,4'... Cl:::> SO'II 40 .;<'1 ~O 4.~ ~ ·1 I ~f :1.5 -I! E' 0v,~...... 11i~2.~. ~~wg ~- ':i,~... II:1.:'1;) Vl -to---'~ ...,,-....6-.--~._..-;".v·· _...-~ -~.....--..... \ \, \ \ , 'l., 'n. '.'1 ---••rr flO"AT CO~lROLUII'DlICHAftt. .J'J ......J.- ;:; ..u ;:; ..u .'Ii" ') ---lIT l flOW AT tOllTNOllll/1 OllCH4ftU aa-e-e-a--~B O:r -Vi ID i at I D-r----..-O- i j I r 1 7.t 4I).:?I),"or..O.H t .. ."(Thuu.ol'd.) SITE fLOW (Cf:S) 2 - \, \ \ \ b... "-",- "'-'- 0-.......-n_. o -\-.!.....r--'--~""---r fir I I •r --;'-OY---,B ~ 0.4 0.6 0,8 1 1.2 1.4(Thou~ond.) SITE n.OW (CfS) I 5 - ~- O,~I 25 .i ~. 1130 '7(,• .1 Gt) '«'1\ I<lu F 130 1~() (J 11OUI~ ~... 0 IDe~g £1:., QI)·v.o:~80 -w(:: ':1.---70... Il:60.J Vl 50· 40 30 ~o II)~.,. o. o ~~';;u ~~ (ten ..-~ 1.It f~G... ~on E I-' I-' N +GROSS SURFACE AREA o WUA Figure 40,Projections of gross surface area and WUA of chum salmon spawning habitat as a function of site flow and mainstem discharge for the Trapper Creek Side Channel modeling site. J •J :.•t J J ~J J I ,,I ,~) 113 Table 30.Projections of gross surface area and. WUA of chum salmon spawning habi tat at Circular Side Channel.------------------------------------------------------------------------- --------------------------------------------------.---------------------SITE FLC~~AINSTEK DISCHARGE NUA GROSS PERCENT lCFSl ICFSl .... ------------------------------------------------------------------------6 25500 863.36 59464 1.45 9 28500 1386.12 62443 2.22 15 31500 2258.26 66672 3.39 18 33000 2604.95 68172 3.82 22 ;>4500 2932.24 69401 4,23 27 36000 3230.96 .71590 4.51 ~, 32 37500 3469.87 7~95a 4.63 38 39000 3720.11 76534 4.86 46 40500 3862.24 78289 4.93 ""'"54 42000 3909.12 80557 4.93 63 43500 4045.98 82962 4.88 73 45000 4072.96 85140 4.78 --85 46500 4054.99 89630 4.52 98 48000 39B8~53 92944 4.29 113 49500 3905.66 96923 4.03 129 51000 3827.92 102530 3.73 147 52500 3737.77 109035 3.43 161 54000 3M8.32 113323 3.22 189 55500 ~50.19 122067 2.91 ""'"213 57000 3477.77 125753 2.17 239 58500 3409.49 128955 2.64 2b8 60000 329&.24 134218 2,46 -, 300 61500 3145,33 IJ916b 2.26 334 63000 3015,39 143575 2.10 371 b4500 2891.60 147440 1.90 ~, 412 66000 2755.44 150869 L83 456 67500 2627.87 153146 1.72 503 69000 2506.91 154657 1.62 610 72000 2295.74 157074 1.4b -733 75000 2119.94 159211 1.33 -------------.---------------------------------------------------------- ~ 114 - Table 31.Projections of gross surface area and WUA of chum salmon spawning habitat at Sunset Side Channel. -------------------------------------------------------------------.---- ------------------------------------------------------------_.__._-SITE FL~W KAINSTEK DISCKAR6E IiUA GROSS PERCENT ..-ICFS)ICFS) ------------------------------------------------------------------------ 1 13477 1620.67 41329 3.92 3 17400 1622.58 4b180 3.51 5 19594 1635.93 49562 3.30 7 21000 1646.52 52120 3.16 12 24000 1677 .50 59834 2.80 20 27000 1742.95 66575 2.62 31 30000 1939.56 72136 2.69-38 31500 2070.24 76222 2.72 47 33000 2292.32 78488 2.92 57 34500 2591.74 8161S 3.18 6B 36000 2906.95 89472 3.25 ~81 37500 3219.76 93660 3.44 96 39000 3260.92 97943 3.33 113 40500 3231.93 101876 3.17 ~132 42000 3144.49 106320 2.96 154 43500 3036.19 117194 2.59 178 45000 2932.83 122338 2.40 I'""'205 46500 2B31.39 129392 2.19 235 48000 2736.98 1354711 2.02 26B 49500 2649.22 142276 1.86 305 51000 2584.08 149248 1.73 346 51500 2533.30 155825 1.63 390 54000 .2495.48 165990 1.50 439 55500 2444.49 169787 1.44-492 57000 2371.20 173483 1.37 551 58500 2297.22 185336 1.24 614 60000 2212.36 188419 1.17 .~683 61500 2121.44 m398 1.11 757 63000 2033.02 194419 1.05 925 66000 1834.12 20:>000 0.90 1119 69000 1625.87 206972 0.79 ~1345 72000 1488.11 210728 0.71 1603 75000 1402.62 2158bl 0.65 ------------------------------------------------------------------------r-, 115 Table 32.Projections of gross surface area and WUA of chum salmon spawning habitat at Trapper Creek Side Channel. ~ --------~----------------------------------------._-Q_------------------ -------.---------.----------------------------------.--------------------SITE FLOW KAIHSTEK DISCHARGE WUA GROSS PERCENT (CFSJ .(CFSJ ~ ------------------------------------------------------------------------ 1 108~:mS.26 60705 5.7~ 2 2292 3801.18 64646 5.8B 4 4823 4080.73 71757 5.09 b HS3 4245.94 73681 5.7b ~.12000 4364.55 7Sn7 5.75 12 15000 4421.75 77703 5.69 14 ISOOO 4440.10 80925 5.49 16 21000.4449.11 B1605 5.45 18 24000 4449.11 82503 5.39 ~) 20 27000 4449.11 83191 5.35 22 30000 4449.11 84833 5.24 24 33000 4449,11 85598 5,20 25 34500 4449.11 85917 5.18 26 36000 4449.11 86228 5.16 27 37500 4449.11 86472 5.15 .""'" 28 39000 4449.11 86895 5.12 29 40500 44411.11 87222 5.10 30 42000 4Wl.11 87541 5.08 ~31 43500 4449.11 87853 5.06 39 45000 4449.11 97612 4.56 53 46600 4449,11 105163 4.23 72 48000 4429.08 109537 4.04 ~ 97 49500 4294.86 114306 3.76 129 51000 4150.76 119963 3.46 169 52500 3996.94 125967 3.17 -221 54000 3821.62 129078 2,l?6 287 55500 3481.33 135178 2.58 370 57000 2918.17 140223 2,08 ~ 564 60000 1467.05 149941 0.98 819 661)00 528.39 lOOB07 0.33 975 09000 256.17 167356 0.15 1151 72000 83.30 173256 0.05 1351 75000 1).00 178354 OvOO ------------------------------------------------------------------------ ~ ~I J 1 1 ))-J 1 J }-1 -l,'J (5 -".-------- !,,-r-- ,-, 4- ;:"3 - .2 / t;:------"~---'~/IoMAYI~N i"r ,.jUL;;:;~".,f'"·l'A'Lin '-0"1'",oK SEP , .5 ~ LL-J~­'--'.,.., ~-=_c::: tL bl_.>~ @r~~ ~.--. ~t MONTH ~...--..__._------_._-_..._------~---------.._-----_._--_-...-..._.._--~_._-.--------____'-_..._..-•......_-_.---. .:3.15 ....... \ \~~JJ\f\·!\ '\..........-"-oJ /......_.,--1/\/., -...\..----~,. Q ...... ~ 1 ~~ 2 ..~l _•••., ("..').~ ~~f 2 t~ S~'.-J_'__ ............ -..l MAY o -l I i I . ; "'.I ~l \.~JUN 'JUl AUG SEP MONTH Figure 41.Time series plots of spawning chum salmon WUA as a function of discharge from May 20 to September 30,1984 in Mainstem West Bank Side Channel modeling site. \.1-\__/.. SEP \ AU /v-·..v/"'" ~ JUL I ---.-_------------.-.--.-_.,.---_.--.-.~~.l::!:> 4- .::5.~ ~..:3 ~i-v>"~.~2..~ ~~:2"-E r ~"I.es -~ 1 lO.ts 0 MAY I JUN MONTH -"-T .......- I-' I-'co ~~:~r G~~ ~~ ".~ ::z..1=.e::t 1.Q 1.8 1."7 '1 .6 1 ~0 ,.4 I1.~- 1 •.2 1 •1 1.0 =.Q ~VAI:~L )~'I ,~~\1-'SEP=.2 _..----J.I JUl O.1 -r.-'·.11 IN0.0 UAV MONTH Figure 42.Time series plots of spawning chum salmon WUA as a function of discharge from May 20 to September 30,1984 in Circular Side Channel modeling site. ~j ,J ,1 }t ,I ..~)J t J J •)I )J }]j )1 1 -1 1 1 l 1 l \, 1\ J~2.4- 2.3 2."2. 2.1 :2 1.19 1.0 "1.7 1.6 ~:~::t MAY I 'JUN~L :'-f'1 OJ jUL "rl.L"AUO"I J I SEP I I 2 ..~,- 2 ..€'5 ~.::!> .:582 ~.1 - .:3 - :2..9 - :2.B e 2..'"7 -~ ~-v;- ~l~~, ~ ;..;MONTH "7 - ~ ~ 1.0 e C; ~~4- ~~ ~S.E-.:3 :z 1 0 MAY v'~-\. ~ AUG SEP MONTH Figure 43.Time series plots of spawning chum salmon WUA as a function of discharge from May 20 to September 30,1984 in Sunset Side Channel modeling site. Trapper Creek Side Channel The Trapper Creek Side Channel hydraulic model was first run through the HABTAT model using observed upwelling codes.There was no upwelling observed in this study site and the suitability curves assign a value of zero to cells without upwelling so WUA projections for this run resulted in zero.When simulated upwelling was used in the model,the resulting projected WUAs peaked well before the site flow (31 cfs)was controlled by mainstem discharge (44,000 cfs),remained relatively constant until after the controll ing mainstem discharge was reached,then dropped as discharge increased (Figure 40).According to the time series plots in figure 44,WUA projections in Trapper Creek Side Channel are highly variable over time. Embryo Survival and Development Chum salmon embryos were sampled for survival and development from Trapper Side Channel,Sunset Side Channel,Circular Side Channel and Birch Camp Mainstem to determine relative overwintering success and survival.The development and survival of embryos were determined and are presented in Table 34. Upper Trapper Side Channel Embryos were collected in the upper portion of the chum salmon spawning area in Trapper Side Channel from four redds on January 24 and 30. Embryos were obtained by freeze core sampling and egg pump.A total of 56 embryos were collected,five of which were mortalities.Development of the embryos ranged from the caudal bud free stage to pigmentation on the head.Embryos collected by the freeze core method were at depths ranging from 1 to 12 inches.The depths of eggs collected with an egg pump cannot be accurately ascertained. Lower Trapper Side Channel Chum salmon embryos collected from the lower portion of the spawning area in Trapper Side Channel were obtained from one redd by hand exca- vation on January 24.A total of 31 embryos were collected,four of whi ch were mortal i ti es.The dead embryos were observed as empty she 11 s. Development of the live embryos ranged from the caudal bud free stage to pigmentation on the head. Sunset Side Channel Chum salmon embryos were collected from five redds at Sunset Side Channel on January 29 and January 30 using both freeze core methods and egg pumping.A total of 56 embryos were collected,36 of which were mortalities.All live embryos were developed to the eyed stage. Embryos sampl ed by freeze core method were found at depths of 1 to 4 inches. -120- - ""'" - - - - 1 1 ),])1 1 .:5 - -, o ,MAY I .'UN ~(~j I 'JUL'i I I C.i 'AUG'I"J I SEP ,I' 4-- :.?:--• --I A~' 2.~..... ~.o ,.,1-••~,···-In_~III'mIIJ:,a---====----- e:~•t:>-- ~ ~:I·:tf :;Cg:j~~~:;::> to:}':-":!......c::=~'=J ttl:tt= MONTH 4-.!:',-r~-·-·---·--·----_. ..;&._R I-' N I-'.:5 •.!:!a -- ;::5 - ~-"ij­ [~~ l;::!~D':!e :':l...~ 2· ·I.~- 1 c..J ..!5 _.. o MAY SEP MONTH Figure 44.Time series plots of spawning chum salmon WUA as a function of discharge from May 20 to September 30,1984 in Trapper Creek Side Channel modeling site. Table 34,Development stage of chum salmon eggs collected from redds in Lower Susitna River side channel sites,January 1985, --------_..~----------._---_..----.._---~---------------------------.._--_-..---------------..--------_--_-..-------------__---------------_--------------__._----------------_--..----------- __________________~.~__....___....•'n-..__ 5llE I DATE STPP ORGANOGENESIS E6GS DEPTH IN CAUDAL BUD fREE YOLK VASCUL.EYED ANAL fIN DORSAL FIN PELVIC BUDS PlSnENTATlON LIVE DEAD SUBSTRATE IIN.I connENTS ...--------_---..-------__------_----_.._-----------_--------------------_..----------------_.._------_----_-..--_._._----____---_..---_..---------------------------_------------------_..--------- UPPER TRAPPER R-I B50130 EDO fun,0 3 EnPIY SHELLS UPPER TRAPPER R-t B50130 EGG punp I I I I 31 0 UPfER TRAPPER R-I B5DUO EGO punp I I 1 0 POSSIBLY DEFORNEO UPPER TRAPPER R-I B50130 ESG punp I I I I I I 0 UPPER TRAPPER R-t B50130 EGG PUIIP I 2 0 UPPER TRAPPER R-21CI B50121 FREElE CORE I I I 0 9-12 UPPER TR~PPER R-21CI B50121 fREEZE CORE 0 2 9-12 EnPn SHELLS.."UPPER TRAPPER R-31BI B50121 FREEZE CORE I I I I 0 5-B UPPER TRAPPER R-~lAI B50121 FREEZE CORE I I I I I 0 5-B UPPER IR~PPER HlBI B50121 fREEIE CORE I I I 6 0 5-8 UPPER TRAPPER R-llBI B50121 FREm CORE I I 2 0 H LOWER TR~PPER R-2 850124 HANO PlCm I 5 0 LOWER TRAPPER R-2 B50121 HAN~PICKED I I I 2 0 LOWER TRAPPER R-2 850121 HAND PICKE~I I I I 20 0 mnm FAINT ON HEAOS Lom TRAPPER R-2 850121 HAN~PlCm 0 I Enm SHELLS SUNSET R-I B50130 EG6 punp I I 2 0 I-'SUNSET R-I 850130 EGG punp I I 1 0 N SUNSET HAlAI B50130 FREEZE CORE 0 I H EnPn SHELL N SUNSET HC B5012B EGG punp 0 18 UNFERTlLIZEO OR DIED EARLY SUNSET R-lIAI 850128 FREEZE CORE 0 11 H UNFERTILIZED OR DIED EARLY SUNSET R-IO B50130 ED6 punp I I 10 0 SUNSET R-IO 8S013O E6G PUIIP I I I 0 CIRCULAR R-ll81 B50129 fREEZE CORE I 0 I 5-8 CIRCULAR R-lIB)B50129 fREEZE CORE 0 12 5-B RUPTURED E6GS/SHELLS UNIDENIlFlED CIRCULAR R-IIBI B50119 fREEZE CDRE I I I 3 0 5-B LOOSE ENDRYDS CIRCULAR R-3IBI B50m fREEZE CORE I 0 2 9-12 CIRCULAR R-3IB)8S0128 FREEZE CORE I I I 1 . 0 9-12 CIRCULAR R-3IBI B5012B fREEZE CORE I I 3 0 9-12 CIRCULAR R-3181 6S012B FRmE CORE 0 2 9-12 CIRCULAR R-3IC)8S012B FREEZE CORE 0 I 9-12 EnPIY SHELL CIRCULAR H 8S0128 HAND PlmD I I I I 5 a CIRCULAR R-SEl~1 850m fREEZE CORE I I I 3 0 CIRCULAR R-JElAI BSOl28 fREEZE CORE I 0 I CIRCULAR R-5EIAI BSOl29 FREEZE CORE 0 2 UNfERTlLllED OR DIED EARLY CIRCULAR R"~EIAI B50128 FREEZE CORE I I I I 2 0 CIRCULAR R"SEIAI B50128 fREElE CORE I I I I B 0 CIRCULAR R"JE 1~1 BS0128 FREEZE CORE 0 3 EnpIY SHELLS CIRCULAR R-5EIBI 850129 fREEZE CORE I I I 15 0 5"8 CIRCULAR R-SEIBI B50129 FREEZE CORE 0 I 5-B UNfERTILIZED OR DIED EARLY CIRCULAR R-SElBI B5012B fREEZE CORE I I a 5-B CIRCULAR R-JElBI 9S0128 fREEZE CORE I I a 5-8 CIRCULAR R-5E IB)B5012B fREEZE CORE 0 3 5-8 EnPIl SHELLS CIRCULAR R-SEIBI B5012B fREEZE CORE I I I I 13 0 5-B BIRCH CREEK ns B50130 HAND PICKED I I I I I 26 4 -----.-_..----~--_..-.----------------------------...-....----------------_..---..----------_..------_..--..---------------------_.......-.....-----------------_.....-----------------_....------------.----------_.....----------------_.-~...-...----..--_..---- I L.It,r5 in II d,n,h '91 d.pth .5 10110••:A'O-~'l B'S-B'!C'9-12', J )I ),B J J J J )J ..5 J ))_J -, - ...... Circular Side Channel Chum salmon embryos were collected on January 28 and 29 by the freeze core method and by hand excavation.A total of 89 embryos were col- lected~28 of which were mortalities.Development for the embryos ranged from eye development to pigmentation on the head.Embryos collected by the freeze core method were found at depths ranging from 5 to 12 inches. Birch Camp Mainstem Chum salmon embryos collected from this site were obtained from two redds by hand excavation on January 30.A total of 30 embryos were collected.All embryos sampled were fully developed and very close to IIhatching".Depths of embryos sampled were found to be from 1-4 inches. Outmigration Occurrence Fyke nets were placed in Trapper~Sunset~and Circular side channels during the spring to monitor outmigrant juvenile salmon activities. Each net was placed below areas where significant numbers of chum redds were known to exist.Nets were monitored once or twice daily depending on the numbers of fi sh bei ng caught.The resul ts of the outmi grant captures are presented in Table 33. Trapper Side Channel In Trapper Side Channel,a net was placed 1/2 to 3/4 miles above the mouth of the side channel.Approximately 15 percent of the chum salmon spawning activity during 1984 occurred below the net.The entire length of the side channel could not be sampled due to channel geometry.The net did,however,sample 80-90 percent of the width of the side channel. The Trapper net was installed April 14 and monitored through May 28. Total catches are as follows:King salmon,372;sockeye,671;coho, 436;pink,45;chum~32. Sunset Side Channel The Sunset net was placed below the downstream most chum salmon redd whi ch was approximately 1/4 mil e upstream from the mouth of the side channel.The entire width of the side channel was sampled. The Sunset net was i nsta 11 ed on Apr;1 16 and moni tored through May 26. Total catches are as follows:King salmon,2;sockeye~0;coho,4; pink~2;chum~165. Circular Side Channel The Circular net was placed below the lowest chum salmon redd which was 150 to 200 yards upstream from the mouth of the side channel.Approxi- mately 60 percent of the width of the channel was sampled. -123- Table 33.Outmigrant fyke net catch data from Lower Susitna River sites,April - May,1985. -------------------------------------------------------------------------..------..--~-----..------..-------...--~~DATE DATE mE TIllE SPECIES SITE SET CHECKED SET CI!£CKEll KlNS SOCKEYE COHO PINK CHU"RMF SRAYLINS SUCKER onlL Y SCULP IN RBT - -----_..........._-------------_..._-------------------------------.._------------------_..._-_..---------------..- TRAPPER mE CHAm' TRAPPER SIDE CHANNEL TRAPPER SIDE CHANNEL TRAPPER SIDE CHANN.El TRAPPER SIDE CHANNEL TRAPPER SIDE CHANNEL TRAPPER SIDE CHANNa TRAPPER SIDE CHANNEl TRAPPER SIDE CHANNEl TRAPPER SIDE CHANNEl .TRAPPER SIDE CHANNa TRAPPER SlOE CHANNEl. TRAPPER SIDE CHANNEL TRAPPER SIDE CHANNEL TRAPPER SIDE CHANliEl TRAPPER SIDE CHANNEL TRAPPER SIDE CHANNEl2 TRAPPER SIDE CHANNEl TRAPPER SIDE CHANNU 2 TRAPPER SIDE CHANNEl. TRAPPER SIDE CHANNa TRAPPER SIDE CHANNEl TRAPPER SIDE CIlANNEl TRAPPER SIDE CIlANNEL TRAPPER SIDE CHAIiMEl TRAPPER SIDE CHANNEl. TRAPPER SIDE CHANNEL rom SUNSET SIDE CHANNEL4 SUNSET SIDE CHANNEL SUNSET SIDE CHANNEL TOTAL CIRCULAR SIDE CHANNEl.5 CIRCULAR SlDE CHANNEl CIRCULAR SIDE CHANNEL CIRCULAR SIDE CHANNEL CIRCULAR SIDE CHANNEL CIRCULARSlDE CHANK£!. CIRCULA!!SIDE CHANNEL TOTAl. BIRCH cPom SIDE CHANNEl. TOTAl. 850m 850417 850417 850418 850~18 850m 850422 850m 850m 850424 850425 850426 850430 85050 I 85050 I 850502 850508 850509 850509 850510 8S051l 850m 850514 850m 850515 850516 850m 850516 850515 850515 850516 850517 850m 850520 850519 850519 850m 850521 850523 850523 850524 B50525 850525 850525 850525 850527 850525 850526 850526 850527 850526 850m 850527 850528 850524 850525 850525 850525 850526 ~50527 850430 850502 850509 850510 850515 850516 850515 850515 850521 850~2 850522 850522 850523 850524 850430 850502 700 800 900 JOCO 1000 SOO 1900 1030 1100 HOO 1800 900 1200 1200 1200 920 1500 1100 1100 fOO 1800 1000 1800 1000 1800 1000 1930 1000 1000 1930 1000 1000 1700 1330 1030 1700 1330 1000 800 1800 1800 900 900 1800 900 1800 1800 900 1800 900 900 1800 1800 900 1800 1000 1000 1830 1830 1000 1000 740 1000 1000 18CO 1200 900 L800 mo 1200 1200 1800 1800 930 1400 900 o 17 3 n 17 10 ~2 54 17 18 17 8 o 21 7 14 5 20 54 I 4 3 o 1 fJ 1 372 o I 2 2 13 o 29 227 25 14 310 2 2 I 10 12 11 3 7 17 50 J 9 4 7 9 43 8 85 29 17 9 18 4 10 2 6 o 0 2 I 3 5 5 9 200 3 38 ~I 6 288 ~ I I 51 12 3 0 ~0 ~3 5 3 o 0 5 1 671 436 o I o 2 o I o 4 o 0 o S o 0 o 23 26 76 b 25 4 11 36 143 02 o 2 o o o o o o o o o o o 1 o o o I o o 1 I 1 o 9 6 11 13 1 45 2 o o 2 o o o o I o o I I 1 o o o o o o I o o o o I o I o o o o o 11 I 3 I 3 I 8 32 9 18 138 165 o o o I m o ~ 131 I 1 o o I o I J 3 1 o 1 o o o o o o o o o o o o o o o o o 8 o o o o 3 o o 6 295 o o 304 o o o o o o o o o o o o 2 o o o o o o o o o o o o o o o o 2 o o o o o o o 3 8 o o 11 o o o o o o o o o I • 0 o o o o o o o o o o o o o o o o o o I o o o o o 4 o 1 21 o o 2& o o. o o o o o o o o 1 o ·0 o o o o o o o o o o o o o o o o o o o o o o o o 1 o o I o o I 8 7 18 10 11 15 16 o 25 o 22 o 14 7 o 8 e o o o o o o o o 175 o o o o o o o o o o 5 2 o I I 13 I 1 q 7 1 I o o o o o o 8 o 2 o o o o o o o o 45 o o o o o o o o o o o o 3 3 - - ....., - - 1 "iuing dates at Trapper Side Channel represent days the net wu not set. 2 Thru juvenile sockeye ulaDn with coded wire tags ure caught. 3 An additional 250+sockeye was released due to length of tiae in saaple tucket. 4 "i55ing dates at Sunset Side Channel represent days the net was set but no fish were caught (April 1&to April 231, 5 "i55ing dates it Circular Side Channel froa April lb to April 29 are days the net us set but no fish ure caught.Oata gaps fra.ilprii 30 ta May 2i are tiue to Ice jus causing net praHe.s. 124 - - The Circular net was installed on April 6 and monitored through May 25. A summary of the total catch is as follows:King salmon,310;sockeye, 36;coho,143;pink,1;chum,131. CONCLUS IONS Preliminary lower river salmon spawning habitat assessments were begun in the fall of 1984 following observations made by ADF&G personnel of significant chum salmon spawning within side channel habitats of the lower Susitna River.The preliminary habitat assessments conducted indicate that several of the physical variables evaluated may be crit- ical to availability of spawning habitat and to the viability of in- cubating chum salmon embryos deposited in these habitats. Habitat Data Groundwater flow appeared to be a critical factor affecting the over- wintering success of embryos at study sites.From field observations the quantity of groundwater flow appeared to be a function of mainstem stage.Groundwater flow was observed to decrease as the mainstem stage decreased threatening exposure of redds until an ice cover formed on the mainstem.Within a short period of time following the mainstem ice cover in the vicinity of the three side channels (Trapper,Sunset,and Circular),the influence of groundwater flow increased to provide suffi- cient side channel flow for redd survival.However,lack of groundwater flow within the side channels prior to ice cover formation appeared to pose a threat to the survival of the chum salmon embryos at all three major side channelspawni"ng sites evaluated.The upper portion of Sunset Side Channel froze about one week prior to the formation of mainstem ice cover,resulting in a mortality of chum salmon embryos in some redds at this site.Following formation of mainstem ice cover stage data was obtained and indi cates that ground water wi thi n each study site remained stable and at levels sufficient for redd survival throughout the remaining winter months. The six lower river study sites had areas of upwelling during the open water season,however,five of these sites had an ice cover during the winter.Upwelling was observed at these five sites by drilling through the ice cover. Water temperature did not seem to pose a-threat to incubating embryos at any of the study sites as long as sufficient groundwater upwelling was present.In general,water temperatures were found to be similar between the lower and upper monitoring stations within each of the side channels with intragravel water temperatures consistently warmer than surface water.Circular Side Channel was found to have the greatest range of surface and intragravel water temperatures (-0.2 to 4.0 and -0.1 to 3.8,respectively)and the col dest water temperatures,al though the Upper Sunset Side Channel surface water temperature probe indicated frozen conditions from November 16-20.Overall,these basel ine data indicate that the intragravel water temperatures were sufficient to -125- provide adequate incubation and embryo development.However,prior to installation at temperature stations some freeze out occurred at Upper Sunset Side Channel prior to ice staging due to insufficient groundwater upwell i ng. Substrate did not appear to be limiting to incubating embryos at any of the redds evaluated.Substrate samples obtained from chum salmon redds indicate that larger particle sizes (.8 -3.0 inches)are predominant in the top 4 inches and particle sizes gradually decrease as depth increases. Biological Data Chum salmon spawning activity was observed within four side channels modeled using the IFG-4 method.For each of these side channels projections of gross surface area and weighted usable area of chum salmon spawning habitat were made using the calibrated IFG-4 hydraulic simulation models developed in support of the lower river rearing habitat investigations. Gross surface area projections at each of these study sites increased with increasing mainstem discharge and site flow.Projections of WUA of chum salmon spawning habitat peaked when or just after the site flow was controlled by mainstem discharge,then declined with increasing mainstem discharge and site flow. Overall,the sites with higher controlling discharges provided more WUA for chum salmon spawning over time (e.g.Trapper Creek Side Channel, Circular Side Channel,and Sunset Side Channel)than did the site with a lower controlling discharge (e.g.Mainstem West Bank Side Channel). Suitability criteria developed for the middle Susitna River indicate that upwelling is an "important variable for spawning chum salmon (Vincent-Lang et al.1984).When hydraulic models lacking upwelling are linked with middle river suitability criteria in the HABTAT model the result is WUAs of zero.Simulating upwelling in these models produced similar trends in WUAs as in models where upwelling was observed. Embryo incubation studies showed that embryos generally developed to alevin stage at sites where spawning occurred with the exception of those in Upper Sunset which were frozen due to a lack of upwelling groundwater prior to mainstem ice-staging.Development analysis of embryos collected at Trapper,Sunset,Circular,and mainstem at Birch Creek in 1ate January showed that embryos were developed to the caudal bud free stage.to pigmentation. Outmigrant studies at Trapper Side Channel,Sunset Side Channel,and Circular Side Channel confirmed the survival of embryos through emer- gence.In addition,it became apparent that a significant number of chinook,coho,and sockeye salmon utilize these same habitats for overwi nteri ng. -126- - - - ..- n!! RECOMMENDATIONS FOR FUTURE STUDIES Results of the FY85 studies indicate that a significant population of spawning chum salmon has been observed to utilize mainstem and side channel habitats of the lower Susitna River (Yentna River to the three rivers confluence).This,coupled with supplemental reconnaissance field data collected in association with the rearing habitat studies presented in this memorandum,indicate that further studies are neces- sary to better understand and defi ne how rna ins tern di scharge affect habitats used by chum salmon for spawning and incubation.The following recommendations therefore are made for future studies: 1.Conduct foot and aerial surveys of lower river side channel and mainstem habitats to further determine the location and numbers of salmon utilizing these areas for spawning. 2.Evaluate the effects that natural flow variations of the mainstem have on passage into spawning areas documented in thi s memorandum and those di scovered duri ng future spawning surveys. 3.Determine the relationship that mainstem ice-staging has on ground water upwelling in unbreached side channel spawning habitats,specifically during the critical period of mainstem icing in the fall. 4.During this study,it became apparent that a significant number of juvenile salmon utilized the evaluated side channel habitats for ove~intering.For this reason,studies should be initiated to determine the magnitude and timing of juvenile salmon inmigration into side channel habitats and to evaluate the potential impact that post project flow regimes may have on the overwintering rearing habitat potential of these sites. 5.Chum salmon embryos should be sampled during their incubation phase to determine redd survival over the critical time period when ground water flow is reduced prior to winter staging. Sampling should continue until side channel flow has stabilized. 6.Substrate and upwell ing conditions shoul d be documented for those areas where spawning is found.Surface and intragravel temperatures shoul d al so be monitored throughout the i ncu- bation period. -127- - ..... ""'"I ...... - -. LITERATURE CITED Alaska Department of Fish and Game.1984a.Susitna Hydro aquatic studies procedures manual (May 1983 -June 1984)(1 of 2).Susitna Hydro Aquatic Studies.Alaska Department of Fish and Game, Anchorage,Alaska. .1984b.Resident and Juvenile Anadromous Fish Investigations.------~Hydraulic models for use in assessing the rearing habitat of juvenile salmon in six side channels of the Lower Susitna River. Report No.7,Appendix D.Alaska Department of Fish and Game. Susitna Hydro Aquatic Studies.Anchorage,Alaska. Bovee,K.D.1982.A gUide to stream habitat and analysis using instream flow incremental methodology.Instream Flow Information paper No.12.Coop.Instream Flow Service Group.USFWS. Colorado. Velsen,F.P.J.1980.Embryonic development in eggs of sockeye salmon (Oncorhynchus nerka).Canadian Journal of Fisheries and Aquatic Sciences,Special Publication Number 49. Vincent-Lang,D.et ale 1984.An evaluation of chum and sockeye salmon spawning habitat in sloughs and side channels of the middle Susitna River.Chapter 7 in 1984 Report No.3:Aquatic Habitat and Instream Flow Investi gati ons (May-October 1983).Estes,C. C.and D.S.Vincent-Lang,Alaska Department of Fish and Game Susitna Hydro Aquatic Studies.Anchorage,Alaska. Vining,L.J.,J.S.Blakely,and G.M.Freeman.1985.An evaluation of the incubation life-phase of chum salmon in the middle Susitna River,Alaska.Volume 1 In:C.C.Estes,J.Sautner,and D.S. Vi ncent-Lang,editors.Wi nter aqlJati c i nvestigati ons (September 1983 -May 1984).Susitna Aquatic Studies Program.Report No.5. Alaska Department of Fish and Game,Anchorage,Alaska. Walkotten,W.J.1976.An improved technique for freeze sampling streambed sediments.Department of Agri cul ture,Forest Servi ce, Pacific Northwest Forest and Range Experiment Station,Research Note PNW-281,Portland,Oregon,USA. 128 -. 129