HomeMy WebLinkAboutAPA3504-
......
LOWER SUSITNA RIVER PRELIMINARY
CHUM SALMON SPAWNING HABITAT
ASSESSMENT
Draft Technical Memorandum
by
Jeff Bigler
Kim Levesque
1985
ALASKA DEPARTMENT OF FISH AND GAME
Susitna Hydro Aquatic Studies
620 East 10th Avenue
Anchorage,Alaska 99501
-rK
14;;15
.58
PtlaB
vtD."3 5"DLf
LIST OF FIGURES •-
TABLE OF CONTENTS
....-.iii
LIST OF TABLES .•0.••••••••co ••eo •••••••••••••••••- •..................vii
LI 5T 0F PLATES ..•.•..III c ••••III ••••••Cl iii •••••••x
INTRODUCTION .•
Background .•
Objectives •.
• • • • • • • • • • • • • • • • • • • • • •eo •••••co •••'••••••••••••••••••1
1
1
Habitat Data •••.
Biological Data ....•
METHODS •.•••.
Habitat Data ••.
Temperatures ..................•'.
Water Surface Elevations .•...•.•
Substrate .
Bi 01 og i ca 1 Da ta •••..•.•.•..••
...................
1
1
4
4
4
4
6
6
-
Chum Salmon Spawning Surveys •••.•.
Chum Salmon Spawning WUA .
Egg Survival and Development •.
Outmigration Occurrence •.•...•
..............6
6
12
12
59
59
59
59
--
~.
M
M,.....
......
"d-
"d-
ooo
lD
lD,.....
M
M
DATA SUMMARy ....•
Habitat Data ...
Temperature .
Upper Trapper Side Channel
Lower Trapper Side Channel ••••
Upper Sunset Side Channel .•
Lower Sunset Side'Channel..
Upper Circular Side Channel ••..•.
Lower Circular Side Channel •.
Water Surface Elevations •.
Trapper Side Channel ••..
Sunset Side Channel .•.
Circular Side Channel
i
14
14
14
14
14
14
37
37
37
:A:ItLIS
Alaska Resources
Library &Infomlation ServIces
Anchorage,Alaska
TABLE OF CONTENTS (Continued)
Substrate .
Upper Trapper Side Channel
Lower Trapper Side Channel
Sunset Side Channel ••.
Circular Side Channel.
...........................eeO.OIllIll 64
64
64
64
64
B;0109 i ca 1 Data "..V"•••III ••••••CJ ••1\•••"0 e ..Ii>•64
Chum Salmon Spawning Surveys.
Mainstem West Bank Side Channel.•••••••
Circular Side Channel ••
Sunset Side Channel.
Trapper Side Channel ..•••••..••••
Chum Salmon Spawni ng WUA ...••••••••
64
104
104
104
104
120
-
Egg Survival and Development.120
Upper Trapper Side Channel ••.•••••.•..••..••••.•
Lower Trapper Side Channel .•••.•...•••••..
Sunset Side Channel .....•••••••
Circular Side Channel ..••
Birch Camp Mainstem.
Outmigration .•••••...••
Trapper Side Channel ..
Sunset Side Channel ..e g~~e.D ••••
Circular Side Channel .•...•...•...•••.•.•.•.•.
CO NCLUSID NS.• •III ••III • • • • •..• • • • •....• • • • • •iii • • • • •III III • • • • •CI •••••CI •,.•III ..CI •
RECOMMENDATIONS FOR FUTURE STUDIES ••..••.....•.•.•.•...••••..•..
LITERATURE CITED CI e ..00 •Cl II III
CONTRIBUTORS ..
ii
120
120
120
123
123
123
123
123
123
125
127
128
129
.....
-
LIST OF FIGURES
Fi gure
1 Single probe freeze core sampling system used
for sampling substrate and eggs ........••.........•..5
2
3
Mean daily
temperatures
portion of
Trapper Side
Mean dai ly
temperatures
portion of
Trapper Side
intragravel and surface water
(°C)recorded at the lower
the observed spawning area in
Channe'..
intragravel and surface water
(OC)recorded at the lower
the observed spawning area in
Chan ne 1 III ..
21
28
F!'",
,.,...
iI,
I
,I
4
5
6
7
8
Mean daily intragravel and surface water
temperatures (OC)recorded at the upper
portion of the observed spawning area in
Sunset S;de Channel ":III ..
Mean daily intragravel and surface water
temperatures (OC)recorded at the lower
portion of the observed spawning area in
Sunset Side Channel ...•.••~•.....•.•..•..•.•......•••
Mean daily intragravel and surface water
temperatures (OC)recorded at the upper
portion of the observed spawning area in
Circular Side Channe'..•••••.••••••.•~.•.•.....•e •••1D
Mean daily intragravel and surface water
temperatures (OC)recorded at the lower
portion of the observed spawning area in
Circular Side Channel •••....••••.,~•••••.•.•••.•..•.••
Comparison of mainstem and side channel water
surface elevations over time at Trapper Side
Channel ..
36
44
51
58
61
9 Comparison of mainstem and side channel water
surface elevations over time at Sunset Side
Channel.~••••••$.·tt...................................62
10 Comparison of mainstem and side channel water
surface elevations over time at Circular Side
Channel eo _...........................63
11 Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 1 in Upper Trapper Side Channel .66
r iii
ARLIS
Alaska Resources
Library &Infonnation Sen/)ces
Anc.hora,ge,Alaska
" ' I
LIST OF FIGURES (Continued)
12
13
14
15
16
17
18
19
20
21
22
23
24
Depth integrated substrate compos i ti on by
wei ght from redd number 1 in Upper Trapper
Side Channel."IIl.".CI •••c ••••••••••••••••••••
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 2 in Upper Trapper Side Channel •..•...•.•
Depth integrated substrate composition by
wei ght from redd number 2 in Upper Trapper
Side Channe 1 $,.;"III Go Go "III ..
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 3 in Upper Trapper Side Channel .
Depth integrated substrate composition by
wei ght from redd number 3 in Upper Trapper
Sjde Channel Ct "0 ~"
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 4 in Upper Trapper Side Channel .........•
Depth integrated substrate composition by
wei ght from redd number 4 in Upper Trapper
Side Channel IDIIlIll •••••••••••••••••••••••••••o ••
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 2 in Lower Trapper Side Channel .•••.•••••
Depth integrated substrate composition by
weight from redd number 2 in Lower Trapper
Side Channel III .."III III S ..III 0 III III ..-I)III ..
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number G-6 in Upper Sunset Side Channel ........•
Depth integrated substrate composition by
weight from redd number G-6 in Upper Sunset
Si de Channel ..til •0 0 Cl Cl III ..II "e lEI "lI OIl III ..III II;;iii e Cl 0 III ..
Depth integrated substrate composition,
percent by weight passing each sieve size for
redd number 6A in Upper Sunset Side Channel •.•.•.•.•.
Depth integrated substrate composition by
weight from redd number 6A in Upper Sunset
Side Channel .....o •••••••••••••••"•••••••••••••••••••
iv
67
69
70
72
73
75
76
78
79
81
82
84
85
,~
-
-
,.."
LIST OF FIGURES (Continued)
-,
-
T
I
"1""
I
!
'i'
I
I
25
26
27
28
29
30
31
32
33
34
35
36
37
Depth integrated substrate composition~
percent by weight passing each sieve size for
redd number 7 in Upper Sunset Side Channel ••.•.....••
Depth integrated substrate composition by
weight from redd number 7 in Upper Sunset Side
Channel •.•...•.••..•••••.•....-CI .
Depth integrated substrate composition~
percent by weight passing each sieve size for
redd number 3A in Lower Sunset Side Channel ••.•••••..
Depth integrated substrate composition by
wei ght from redd number 3A in Lower Sunset
Si de Channel ..
Depth integrated substrate composition~
percent by weight passing each sieve size for
redd number 4 in Lower Sunset Side Channel .•.•.••...•
Depth integrated substrate composition by
weight from redd number 4 in Lower Sunset Side
Channel ..
Depth integrated substrate composition~
percent by weight passing each sieve size for
redd number 1 in Circular Side Channel ..••..•.•.•.•..
Depth integrated substrate composition by
weight from redd number 1 in Ci rcular Side
Channe 1 ..
Depth integrated substrate composition~
percent by weight passing each sieve size for
redd number 3 in Circular Side Channel ••..••.•••.•...
Depth integrated substrate composition by
weight from redd number 3 in Circular Side
Channe 1 ..
Depth integrated substrate composition~
percent by weight pas5ing each sieve size for
redd number 5E in Circular Side Channel •••.•.•••.....
Depth integrated substrate composition by
wei ght from redd number 5£in Ci rcul ar 5i de
Channe 1 '..
Projections of gross surface area and WUA of
chum salmon spawning habitat as a function of
site flow and mainstem discharge for the
Mainstem West Bank modeling site •••.•.•...•..•••...•.
v
87
88
90
91
93
94
96
97
99
100
102
103
109
LIST OF FIGURES (Continued)
38
39
40
41
42
43
44
Projections of gross surface area and WUA of
chum salmon spawning habitat as a function of
site flow and mainstem discharge for the
Circular Side Channel modeling site ...........•.•.•..
Projections of gross surface area and WUA of
chum salmon spawning habitat as a function of
site flow and mainstem discharge for the
Sunset Side Channel modeling site ....•.•••.•.•.......
Projecti ons of gross surface area and WUA of
chum salmon spawning habitat as a function of
site flow and mainstem discharge for the
Trapper Creek Side Channel modeling site •..•.•.•.•.•.
Time series plots of spawning chum salmon WUA
as a function of di scharge from May 20 to
September 30~1984 in Mainstem West Bank Side
Chan ne1 rno del i-n9 5 i te.III .....CI ..e ..8 c>'"e "•0 .... .. ......oe ........e eo ......
Time series plots of spawning chum salmon WUA
as a function of di scharge from May 20 to
September 30~1984 in Circular Side Channel
mode 1 i ng 5;te .,tl ill tl eo "0 II fl I>..II '"II ..Cl II!l ..
Time series plots of spawning chum salmon WUA
as a function of discharge from May 20 to
September 30~1984 in Sunset Side Channel
mode 1i n9 5 i te.e III .,..15 III Q II III III ..
Time series plots of spawning chum salmon WUA
as a flJncti on of di scharge from May 20 to
September 30~1984 in Trapper Creek Side
Channe 1 model i ng site tl .."III ..,;;G Cl "II ."ill ill ..
vi
110
111
112
117
118
119
121
.....
-
LIST OF TABLES
Table
1 A summary of data collected at sites selected
for biological and habitat assessment ••.•.••...•••••.
2 Depth suitability criteria for chum salmon
3
spawnlng................7
3 Velocity suitability criteria for chum salmon
spawnlng.....7
4
5
Substrate and upwell"i ng combi ned suitabil ity
criteria for chum salmon spawning ••.•.••••.•.•.•.•...
Lower River IFG modeling sites representing
side channels at which chum salmon have been
observed to spawn in 1984 ........•.......•...........
6 Substrate size classification system used to
evaluate substrate conditions at Lower River
8
9
study sites -e i:'..........10
7
8
9
10
11
Stages of embryonic development for chum
salmon identified for use in thi s study.
Stages correspond to information reported for
sockeye salmon by Velson (1980)..........•...........
Datapod temperature recorder data summary:
intragravel and surface water temperature (OC)
recorded at Upper Trapper Si de Channel,RM
96.0 ..
Datapod temperature recorder data summary:
intragravel and surface water temperatures
(OC)recorded at Lower Trapper Side Channel,
RM 92 ..7 ill I>..
Datapod temperature recorder data summary:
intragravel and surface water temperatures
(OC)recorded at Upper Sunset Side Channel,RM
86 ..9 e ill '"ill
Datapod temperature recorder data summary:
intragravel .and surface water temperatures
(OC)recorded at Upper Sunset Side Channel
when the site was frozen,RM 86.9 .
13
15
22
29
35
-
12 Datapod temperature recorder data summary:
intragravel and surface water temperatures
{OC)recorded at Lower Sunset Side Channel,RM
86 ..9 ' 'CI 41
vii
38
LIST OF TABLES (Continued)
13
14
Datapod temperature recorder data summary:
intragravel and surface water temperatures
(OC)recorded at Upper Circular Side Channel,
RM 75.3 •••.•••10 ••e •III CI •'I)e ••III •ICI •II"e 11&Ii ill
Datapod temperature recorder data summary:
intragravel and surface water temperatures
(OC)recorded at Lower Circular Side Channel,
45
RM 75.3 .•.•.•.•...•••..•.••••••..•II ••••0 •••olII 10 ••Co • • • • •52
15 Comparison of water surface elevations
obtained at selected side channels in the
lower Susitna River to those obtained from
adjoining mainstem locations •.•.••.••••••.•••..••.•.•60
16
17
18
19
Substrate sieve ana lysi s data
Trapper Side Channel redd number 1
Substrate sieve analysis data
Trapper Side Channel redd number 2
Substrate sieve analysis data
Trapper Side Channel redd number 3
Substrate sieve analysis data
Trapper Side Channel redd number 4
for Upper
(R ...l)4i.I!I •••••lCIlDe ••
for Upper
(R-2)••••••~.IIl .••.
for Upper
(R-3)olClo ••••
for Upper
(R-4 )iii •••
65
68
71
74
20
21
22
23
24
25
26
27
Substrate sieve analysis data for Lower
Trapper Side Channel redd number 2 (R-2)•.••...•.•..•
Substrate sieve analysis data for Upper Sunset
Side Channel redd number 6 (R-6).•........•.••....••.
Substrate sieve analysis data for Upper Sunset
Side Channel redd number 6A (R-6A)•••.•.•.•.•.•..••.•
Substrate sieve analysis data for Upper Sunset
Side Channel redd number 7 (R-7).
Substrate sieve analysis data for Lower Sunset
Side Channel redd number 3A (R-3A)•••••••..•••...•.••
Substrate sieve analysis data for Lower Sunset
Side Channel redd number 4 (R-4)•••••••••••••••••••••
Substrate sieve analysis data for Circular
Side Channel redd number 1 (R-l)..•.•..•.•.•....•••••
Substrate sieve analysis data for Circular
Side Channel redd number 3 (R-3).....•..•••••...•••..
viii
77
80
83
86
89
92
95
98
..."
LIST OF TABLES (Continued)
28
29
30
31
32
33
34
Substrate sieve analysis data for Circular
Side Channel redd number 5E (R-5E)....•........•.•.•.
Projections of gross surface area and WUA of
chum salmon spawning habitat at Mainstem West
Bank Side Channel .•.•.•...•...•.•5 •••••••••••••••••••
Projections of gross surface area and WUA of
chum salmon spawning habitat at Circular Side
Channel ..•.•.....•.,.,.
Projections of gross surface area and WUA of
chum salmon spawni ng habi tat at Sunset Si de
Channel.II ill ..0 ..ill ..0 III •••••II c.
Projections of gross surface area and WUA of
chum salmon spawning habitat at Trapper Creek
Side Channel "oIlo •••••••••••••••e •••••
Outmigrant fyke net catch data from Lower
Susitna River side channel sites April -May
1985 ill ill •••••••••••••••••
Deve 1opment stage of chum salmon eggs co 1-
lected from redds in Lower Susitna River side
channel sites,January 1985 .......••...•......•.•....
ix
101
113
114
115
116
124
122
.~,
LIST OF PLATES
Plate
"I"'"
I
1
2
3
4
Aerial photograph of Circular Side Channel and
Mainstem West Bank side channel with spawning
area and sampling sites indicated •.••••..•..•••••.•..
Aerial photograph of Sunset Side Channel with
spawning areas and sampling sites indicated .•.•••.•••
Aerial photographs of Lower Trapper Side
Channel with spawning areas and sampling sites
i nd i ca ted ..II •••••••••0 •II III III •••••••••III •••••••••••••••••
Aerial photograph of Upper Trapper Side
Channel with spawning areas and sampling sites
indicated ...Ill ••••••••••••••••••••••••••••••••••""••••
x
105
106
107
108
-,~
INTRODUCTION
Background
During the 1984 open water field season,six side channels located in
the lower Susitna River between the Kashwitna and Ta"lkeetna rivers were
modeled using IFG modeling techniques to evaluate rearing habitat for
juvenile salmon.During the course of these investigations,chum salmon
were observed spawning,in relatively high numbers,in five of the six
side channel modeling sites.Spawning surveys conducted from August 21
to October 17,1984 of the lower Susitna River as part of the Su Hydro
Adult Anadromous Study resulted in a conservative estimate of between
2,600 to 3,900 spawning chum salmon in mainstem and side channel
habitats in this reach (Thompson et ale 1985).Because spawning
observed in the IFG side channels and at other locations was greater
than expected it was necessary to conduct a preliminary baseline
evaluation of the newly discovered spawning habitats.These preliminary
baseline investigations were therefore conducted in conjunction with the
lower river rearing habitat investigations at no additional cost to
determine whether additional information may be needed to evaluate
whether post-project flows may influence the quality and quantity of the
habitats.This technical memorandum reports the findings of these
habitat evaluations.
Objective
The objective of this prel"iminary assessment is to evaluate selected
baseline habitat conditions and their relationship to mainstem discharge
to determing if further studies may be required to assess the impacts of
with-project flows in these habitats.To obtain this objective,the
following information was collected:
Habitat Data
1)Continuous surface and intragravel water temperature was
monitored at three side channels throughout the ice-covered
season (Trapper,Sunset,and Circular)to evaluate conditions
in areas of observed spawning activity;
2)Side channel water surface elevations was monitored throughout
the ice-covered season in the vicinity of observed chum salmon
activity to determine the relationship of side channel stage
to mainstem stage;and,
3)Substrate of viable chum salmon redds was sampled and analyzed
to determine utilized substrate composition.
Biological Data
4)Surveys were conducted to locate areas of active chum salmon
spawning in selected lower river side channel and mainstem
habitats;
-5)Calibrated IFG-4 hydraulic models developed in support of the
lower river rearing habitat investigations were run through
the habitat simulation model to project weighted usable area -
(WUA)of chum salmon spawning habitat at modeling sites at
which chum salmon spawning was documented;
6)Eggs were collected to evaluate the overwintering success of
selected redds and embryo survival and development;and
7)The occurrence and timing of juvenile salmon outmigration from
areas having active chum salmon spawning was evaluated to
determine the presence of successful incubation and rearing.
A list of study sites sampled and data collected at each site is pre-
sented in Table 1.The six side channels selected for this study were
also the subject of the 1984 rearing modelling study.The mainstem site
was chosen because it was used by spawning chum salmon and because there
is easy access to the site..
Due to time and resource constraints,all sites were not sampled for all
data types 1isted above.The three sites where all data types were
collected were selected because of the relatively higher numbers of
spawning chum salmon observed of the sites.
2
-,
-
·--]- j J )Dfi :l>AGE-l
8/21/85
MEN/Table 1
j <~.,)1 -}
Table 1.A summary of data collected at sites selected for biological and habitat assessment.
Egg Intragravel
Chum Salmon Chum Salmon Survival and Water
Spawning Spawning and Outmigration Surface Surface
Site Survey WUA Development Occurrence Temperature Elevations Substrate
Island Side Channel X
(RM 63.2)
Mainstem West Bank X X
(RM 74.4)
Circular Side Channel X X X X X X X
(RM 74.3)
Sauna Side Channel X
(RM 79.8)
Sunset Side Channel X X X X X X Xw(RM 86.9)
Birch Creek Camp Mainstem X X
(RM 88.6)
Trapper Creek Side Channel X X X X X X X
(RM 91.6)
',I:I
METHODS
Habitat Data
Temperature
Intragravel and surface water temperatures were obtained on a continuous
basis from the following three IFG side channel study sites (Table 1):
Trapper (RM 92.7),Sunset (RM 86.9),and Circular (RM 75.3).Water
temperatures were continuously recorded at each site using Omnidata two
channel datapod recorders.The datapod recorders simultaneously
recorded both surface and intragravel water temperatures.Field instal-
lation and monitoring procedures are outlined in the ADF&G Su Hydro
Aquatic Studies (May,1983 -June,1984)Procedures Manual (ADF&G 1983).
Withi~Trapper Side Channel,intragravel and surface water temperatures
were obtained from both the lower and upper portions of the chum salmon
spawning area.Sunset Side Channel also had two continuous temperature
stations located in the lower and upper portion of the spawning area.
At Circular Side Channel,continuous temperature recording stations were
located in both the mid-portion and lower portion of the spawning site.
All temperature stations were monitored bi-monthly.From the continuous
temperature data bases,daily and monthly minimum,mean and maximum
water temperatures were calculated and tabulated.From these data,
plots of the mean,daily intragravel and surface water temperatures were
developed.
Water Surface Elevation
Water surface elevations were obtained in Trapper,Sunset,and Circular
side channels and in the mainstem Susitna River adjacent to these side
channel sites to evaluate the effect mainstem discharge has on ground
water flow in the side channels.Pools located in the side channels
within the spawning sites were selected for these water surface ele-
vations.Water surface elevations obtained in the mainstem Susitna
River were made adjacent to the side channel.
Water surface elevations were obtained from both the side channel and
mainstem sites using the basic survey techniques of differential level-
ing.At each site a temporary bench mark (TBM)was established and used
to reference the water surface elevations.A separate TBM was estab-
lished for each side channel and mainstem site.Resulting water surface
elevations are therefore only relative to the respective TBM.Surveys
can therefore only be used to compare trends between mainstem and side
channel but not elevations.During periods of ice cover,holes were
drilled through the ice to obtain these water surface elevations.
Water surface elevation data were plotted to compare water surface
elevations of the side channels and mainstem sites over time.
4
-
-
-
-
-
-
J1
"0•'0 "()
,f'0 Od~
,
"
~.
<:I.
]
+--20.....ALlJMUIIY_
CAIIII.QN·OIO.,OC
".(,_UtlW1IH(_
.0 .0
----:0:-
9
"
g'
,...~
0
f)0 oD
0 ?cr'
1
;"oII\;JO __~
(),.
~:'(1..o "?(J,
.·o:··tJ 0'
o
",/J.u
~,....00
.;
o
IJ •
}
o ..
0,'0
":.
"0,
•••0
o
·0 "
)
<:;,••o.o
,"
,p.,to
o ,0 ,p..
'p.0 (),
.,<l a~.'"GP
UUl lUi''''.In·o,o.
.IU·1,0,.
)]
"0'~Ll ,
.DCl4 0....1'.......L ..I.d ..120·
C.iIIlt,.",n'"filM
.-SlI'".IOIUII 1:"'111\1.1 .,.«
.[1.'0.'[0 C~OTN COVU[O NOll
O il '.0,•
()•0,0,0
p ·tII <I ~0
o ~....(?"II'O~.,'.
o ":".''0'""C"•o.~""0.':..~C>0 ...
.c>a .•o,.•.~.~.·0'.•.'.0
NOZZLE ARRAY DETAIL
....
"
o
I).
o'
,,,0 ••
~.t f1.'
_J
..
011
G
(i'·()QD,,(l
o
8
-+I ,".--I
'HII PI'(
."
II""·I/t I JD
a.U,t .....c.,Ic._
o
,-I
'0 0
(),
0 0
"()
0 p.0 0
,.
D
.f)
o
.'
(>
~
o
III 61l11'OI.D
I
~
C','-
" '-----L-./:
!
.
c
t
:
D
Do.
"OUl.l ".At
"CI ..II.a.1
()
"
U1
Figure 1,Single probe freeze core sampling system used for sampling substrate and eggs.
II.'I
Substrate
Substrate samples were obtained at selected redds from each of the three
side channel study sites (Trapper,Sunset,and Circular).Substrate
samples were obtained using a single freeze core method illustrated in
Figure 1 (Wa1khotten 1976).Substrate samples were obtained to depths
of 12 to 16 inches.These samples were thawed in the field over a
series of 4-inch wide substrate boxes producing depth integrated sub-
samples.Analysis of these samples were performed by R &M Consultants
for substrate composition.The data are plotted by percent per sieve
size and depth of sample.Bar graphs describe substrate composition by
weight for six substrate size categories.The substrate classification
defined substrate sizes ranging from less than .002 inches to greater
than 3 inches in diameter.
Biological Data
Chum Salmon Spawning Surveys
Six side channels and one mainstem location were selected for site-
specific surveys of chum salmon spawning activity.These sites included
Trapper Side Channel,Sauna Side Channel,Mainstem West Bank Side
Channel,Sunset Side Channel,Circular Side Channel,Island Side Channel
and the mai nstem adjacent to the ADF&G Bi rch Camp referred to as the
Birch Camp Mainstem site.
To evaluate the presence of spawning chum salmon,both aerial and foot
surveys were conducted.Aerial surveys were made by helicopter to \
identify areas of chum salmon spawning.Foot surveys were conducted to
ground-truth the occurrence of spawning.Once i dentifi ed,redds were
marked using 6 foot,2x2 wooden stakes to relocate the redds under ice
and snow.
Chum Salmon Spawning WUA
The calibrated IFG-4 hydraulic models developed in support of the lower
river juvenile anadromous habitat modelling work during FY 85 (ADF&G,
1984b)were run through the USFWS IFG HABTAT model (Bovee 1982)using
the middle river suitability criteria for chum salmon (Tables 2-4)
developed by Vincent-Lang et a1.1984.The standard calculation method
to predict weighted usable area (WUA)as a function of flow was used.
Only modelled side channels at which chum salmon have been observed to
spawn were evaluated (Table 5).
Cover codes used in running the HABTAT models for juvenile anadromous
fish habitat were replaced with joint substrate/upwelling codes to
evaluate chum salmon spawning habitat.The first digit of the two digit
rep1 acement code represented the substrate cl assifi cation value from
Tab 1e 6 and the second di gi t represented the presence or absence of
upwelling.
Upwelling presence was determined by observations of obvious upwelling
locations during the summer of 1984,drilling through ice cover during
the winter and aerial surveys of open leads during April 1985.IFG
6
-.
-
-
-
-
Table 2.Depth suitability criteria for chum salmon spawning.
SU I TAB I L1TY
DEPTH INDEX
0.0 0.0
0.2 0.0
0.5 0.2
0.8 1.0
.-
8.0 1.0
Table 3.Velocity suitability criteria for chum salmon spawning.
"..".
.-
I"""'
i
I
I
-7
II !I JL
Table 4.Substrate and upwelling combined suitability criteria for chum
salmon spawning.
8
-
~I
-
-i
Table 5.Lower River IFG-4 modeling sites representing side channels at which
chum salmon have been observed to spawn in 1984.
"'"'
.-.
~.
I
I
IFG MODELING SITE
Mainstem West Bank Side Channel
Circular Side Channel
Sunset Side Channel
Trapper Creek Side Channel
9
RIVER MILE
74.4
75.3
86.9
91.6
Table 6.Substrate size classification system used to evaluate substrate
conditions at Lower River study sites.
~-
SUBSTRATE TYPE SYMBOL SIZE CLASS
Silt SI Very Fi nes "'""'"
Sand SA Fines
Small Gravel SG i l -1"
Large Gravel LG 1"-3"-
Rubble RU 3"-5"
Cobble CO 5"-10"
Boulder BO Greater than 10"--
-
-
10
.....
-
-
-
model cells were assigned a value of 1 where upwelling was observed and
a value of 0 where no open leads or upwelling were considered present.
Sunset Side Channel and Mainstem West Bank Side Channel had observed
upwelling and spawning occurring within the study site.At Trapper
Creek Side Channel,extensive upwelling and spawning were observed
within the side channel but outside of the modelling site.At Circular
Side Channel,a few cells in transect 1 had upwelling present.No
spawning was observed within this study site,but below the study site
where upwelling was also observed,extensive spawning occurred.When
the HABTAT model was run for Trapper Creek Side Channel and Ci rcular
Side Channel,the resulting WUA's were zero due to a lack of upwelling.
A second run of the HABTAT model was completed after simulated upwelling
data was entered in appropriate cells of these models in order to
represent the overall side channel with respect to upwelling.This was
done since spawning and upwelling were observed in the side channels
outside of the modeling sites and it was assumed that the modeling sites
are hydraulically representative of the side channels in which they are
located.
The process for simulating upwelling was as follows.First,the range
of depths and velocities present in cells having upwelling in Mainstem
West Bank Side Channel and Sunset Side Channel modelling sites were
evaluated.A comparison of mainstem discharge versus site flow indi-
cated that Trapper Creek Side Channel and Circular Side Channel were
more closely related hydraulically to Sunset Side Channel than to
Mainstem West Bank Side Channel.Cells in Trapper Creek Side Channel
within the velocity range of cells in Sunset Side Channel having upwell-
ing were examined.If depth and substrates were within the range of
those in Sunset Side Channel upwelling cells,they were assigned an
upwelling present code.Mainstem West Bank upwelling cell depth,
velocity and substrate ranges were taken into consideration secondarily.
Upwelling areas were refined by evaluating areas of upwelling outside
the study site and "ex tending ll these down into the site.
The same procedure was used to simulate upwelling in Circular Side
Channel except that since upwell ing was observed from cross-section
poi nts 142-148 of transect 1,thi s wi dth was extended up through the
study site in cells that met the previously described criteria.
Weighted usable area projections generated from the HABTAT model runs
were entered into a Lotus computer program for graphing.The following
graphs were completed:
1)Mainstem discharge versus WUA.
2)Mainstem discharge versus WUA and gross surface area.
3)Site flow versus WUA.
4)Site flow versus WUA and gross surface area.
In addition,time series plots were developed by interfacing a synthe-
sized record of site flows during the 1984 spawning season with the WUA
versus site flow function.
11
!Ii,I
Egg Survival and Development
To evaluate viability of the redds and embryo survival and development,
chum salmon embryos were peri odi ca lly excavated by hand,egg pump or
freeze core sampl i ng throughout the wi nter.Embryoni c development was
determined by identifying the stage of development methods presented in ~
Vining et ale (1985),(Table 7).
Outmigration Occurrence
To evaluate the presence of successful incubation and rearing,fyke nets
were placed in Trapper,Sunset,and Circular side channel study sites
downstream of the spawning areas.Nets were installed as soon as ice
conditions permitted and remained until breaching conditions made
sampling impossible.Nets were monitored daily with species and length
recorded.
~,
I
.....
-12
J J J )-)1 1 ))J 1 )
Table 7.Stages of embryonic development for chum salmon identified for use in this study.Stages correspond to information reported for
sockeye salmon by Velsen (1980).Table adapted from Vining et al.1985.
Development
Period
Stage
Number Brief Description
Characteristics of Stage
Start End
I-'
W
,.~-
Cleavage
Gastrulation
Organogenesis
(early)
(1 ate)
Alevin
2
3
4
5
6
7
8
9
10
11
12
all of cleavage
embryo formation
blastopore formation
blastopore closed
caudal bud free
initial yolk
vascularization
eyed
anal fin formation
dorsal fin formation
pelvic bud formation
body pigmented
alevin
fertilized egg
terminal caudal bud
present
1/2 epiboly
blastopore closed
caudal bud free from
yolk surface
initial vascularization
eye pigment visible
through egg membrane
anal fin faintly visible
dorsal fin faintly
visible
pelvic buds faintly
visible
pigment present on
dorsum of head
just hatched
blastula
embryo clearly visible
3/4 epiboly
blastopore closed
parts of brain visible
2/3 yolk vasculariza-
tion
3/4 yolk vasculariza-
tion
anal fin distinct
dorsal fin distinct
pelvic buds distinct
pigment present on
dorsum of head and body
yolk sac completely
absorbed;ventral
suture remaining
DATA SUMMARY
Habitat Data
Intragravel water temperatures obtained at this site were relatively
stable and were warmer than surface water.Little variation from the
time of installation throughout the period of record was exhibited.
Intragravel water temperatures ranged from 3.2°C to 3.9°C for the period
of record.Surface water temperatures ranged from 1.4°C to a high of
4.0°C.
Lower Trapper Side Channel
The temperature station in Lower Trapper Side Channel was placed in a
pool approximately 2.5 feet deep and was ice covered throughout the
winter months.Intragravel and surface water temperatures were.obtained
at this site beginning on November 6,1984 for surface water and Novem-
ber 19,1984 for intragravel continuing to April 24,1985.Two gaps in
this temperature record occurred from January 22-27 and March 8-April 2
because of severed probes and a malfunctioning temperature recorder.
The daily and monthly minimum,mean,and maximum water temperatures
developed from these data are presented in Table 9.A plot of the mean
daily intragravel and surface water temperatures is presented in Figure
3.
Intragravel water temperatures in the lower site were also stable.They
were warmer than surface water and exhibited 1 ittle variation.Intra-
gravel water temperatures for the period of record ranged from a low of
3.1°C to a high of 4.2°C.Surface water temperatures fluctuated sub-
stantially and ranged from O.4°C to 3.7°C.
Upper Sunset Side Channel
The temperature station in Upper Sunset Side Channel was placed in a
shallow pool approximately .3-.5 feet deep and was ice covered through-
out the winter.Intragravel and surface water temperatures were record-
ed at this site from November 6,1984 to April 3,1985.Gaps in the
surface water temperature record occurred from November 27 to January 12
because of a mal functioning data storage module and from March 16 to
April 3 due to an ice-severed surface water probe.These temperature
data are presented in Tables 10 and 11,with a plot of mean daily intra-
gravel surface water temperatures presented in Figure 4.
-14-
-
-
-.
-
-
-
Table 8.Datapod temperature recorder data summary:
intragrave1 and surface water temperatures (C)
recorded at Upper Trapper Side Channe1~RM 96.0.
----~-----------------------------------------------------------------------
November 1984
Date
Min
Intragrave1
Mean Max Min
Surface Water
Mean Max
,......
-
'-,
'i
I
841105
841106
841107
841108
841109
841110
841111
841112
841113
841114
841115
841116
841117
841118
841119
841120
841121
841122
841123
841124
841125
841126
841127
841128
841129
841130
Monthly Value
3.g-
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.8
3.9
3.8
3.9
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.8
3.9
2.7
2.6
2.5
2.5
2.5
2.5
2.3
2.3
2.4
2.4
2.7
2.6
2.5
2.7
2.5
2.6
2.8
2.7
2.9
3.0
2.9
2.5
2.5
2.8
2.8
3.0
2.3
2.9
2.9
2.9
2.8
2.8
2.6
2.7
2.7
2.7
3.0
3.0
2.8
2.9
2.8
3.0
3.4
3.1
3.1
3.2
3.1
3.0
2.9
3.0
3.2
3.2
2.9
3.0
3.2
3.2
3.3
3.1
3.1
3.0
3.0
3.0
3.2
3.2
3.2
3.3
3.3
3.1
3.3
3.5
3.4
3.3
3.3
3.3
3.3
3.2
3.3
3.4
3.4
3.5
-r
!
""'"i
-----Data not available.
15
.....
Table 8.(continued)•
.....
-----------------------------------------------~--~-------------------------
December 1984
~---------------~------------------------------------------------------------Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max ~
---------------------------------------------------------------------------~
841201 3.8 3.8 3.8 3.1 3.3 3.4
841202 3.8 3.8 3.8 3.0 3.2 3.4
841203 3.8 3.8 3.8 3.2 3.4 3.5
841204 3.8 3.8 3.8 3.2 3.4 3.5
841205 3.8 3.8 3.8 3.1 3.4 3.5
841206 3.8 3.8 3.8 2.9 3.3 3.4
841207 3.8 3.8 3.8 3.0 3.3 3.4
841208 3.8 3.8 3.8 2.6 3.2 3.4
-~841209 3.7 3.8 3.9 2.5 2.9 3.3
841210 3.7 3.8 3.8 2.4 2.7 3.1
841211 3.7 3.8 3.8 2.5 2.8 3.0
841212 3.7 3.8 3.8 2.3 2.7 3.1
841213 3.7 3.8 3.8 2.4 2.6 2.9
841214 3.7 3.8 3.9 2.4 2.7 2.9
841215 3.7 3.8 3.9 2.5 2.7 3.0 ~
841216 3.8 3.8 3.8 2.7 2.9 3.2
841217 3.7 3.8 3.8 2.8 3.0 3.3
841218 3.7 3.8 3.8 2.5 3.0 3.2
841219 3.7 3.8 3.8 2.4 3.0 3.3
841220 3.7 3.7 3.8 2.4 2.7 2.9
841221 3.7 3.7 3.8 2.4 2.8 3.1
841222 3.7 3.8 3.8 2.5 2.8 3.1
841223 3.7 3.8 3.8 1.8 2.3 2.8
841224 3.7 3.7 3.8 1.8 2.2 2.5
841225 3.7 3.7 3.8 2.0 2.3 2.6 -841226 3.7 3.8 3.8 1.9 2.4 2.6
841227 3.7 3.7 3.8 1.8 2.0 2.4
841228 3.7 3.7 3.8 1.6 1.9 2.2 ~841229 3.7 3.7 3.7 1.5 2.0 2.4
841230 3.7 3.8 3.8 1.5 2.1 2.7
841231 3.7 3.7 3.8 2.2 2.9 3.1 .....
Monthly Value 3.7 3.8 3.9 1.5 2.8 3.5
------~----------------------------------~~-~~-~~-------~~------~-----------
16
Table 8.(continued).
--------------------'--------------------------------------------------------
January 1985-----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850101 3.7 3.7 3.7 3.0 3.1 3.2.....850102 3.7 3.7 3.7 2.8 3.1 3.2
850103 3.7 3.7 3.8 2.3 2.6 3.1
850104 3.7 3.7 3.8 2.0 2.4 2.7
850105 3.7 3.7 3.8 2.1 2.6 3.0
850106 3.6 3.7 3.7 1.9 2.2 2.6
850107 3.6 3.7 3.8 2.2 2.6 3.0,-850108 3.6 3.7 3.7 2.6 3.0 3.2
850109 3.6 3.7 3.7 2.3 2.9 3.1
850110 3.6 3.7 3.7 2.4 2.8 3.1
850111 3.7 3.7 3.7 2.6 2.9 3.1
850112 3.7 3.7 3.7 2.4 2.9 3.2
850113 3.6 3.7 3.7 2.1 2.4 2.7
850114 3.6 3.7 3.7 2.1 2.6 2.9
850115 3.7 3.7 3.7 2.6 2.8 3.0
850116 3.7 3.7 3.7 2.6 2.9 3.1
850117 3.7 3.7 3.7 2.7 3.0 3.2,-850118 3.6 3.7 3.7 2.7 3.0 3.3
850119 3.6 3.7 3.7 2.5 2.8 3.1
850120 3.6 3.7 3.7 2.5 2.9 3.2
850121 3.6 3.7 3.7 2.4 2.8 3.2
850122 3.6 3.7 3.7 2.5 2.8 3.1
850123 3.6 3.7 3.7 2.7 3.0 3.2
850124 3.6 3.7 3.7 2.7 3.0 3.2
850125 3.6 3.6 3.7 2.5 2.9 3.1
850126 3.6 3.6 3.7 2.7 3.0 3.2
850127 3.6 3.7 3.7 2.7 3.0 3.2
""""850128 3 .6 3.6 3.7 2.9 3.1 3.2
I 850129 3.6 3.6 3.6 2.5 2.9 3.2
!850130 3.6 3.6 3.6 2.5 2.9 3.2
850131 3.6 3.6 3.6 2.5 2.9 3.2
Monthly Value 3.6 3.7 3.8 1.9 2.8 3.3
---------~------------------------------------------------------------------
17
ill I
o.-,Table (continued).
"""----------------------------------------------------------------------------
February 1985
--------~--~~--~-------------------------------------------~~---------------"""I
Intragravel Surface Water
Date -----------------------~-------~--------------Min Mean Max Min Mean Max
----~---------------------------------------------------~-----~-~-----~-----
~~
850201 3.6 3.6 3.6 2.6 2.9 3.1
850202 3.6 3.6 3.6 2~7 2~9 3.2
850203 3.6 3.6 3.6 2.4 2.7 3.0
850204 3.6 3.6 3.6 2.4 2.7 3.0
850205 3.6 3.6 3.6 2.1 2.7 3.0 ~,
850206 3.5 3.6 3.6 2.0 2.4 2.8
850207 3.6 3.6 3.6 2.0 2.4 2.8
850208 3.6 3.6 3.6 2.2 2.5 2.9
850209 3.6 3.6 3.6 1.9 2.3 2.6 ,....
850210 3.5 3.6 3.6 1.7 2.1 2.5
850211 3.5 3.6 3.6 1.5 2.0 2.5
850212 3.5 3.6 3.6 1.5 1.9 2.3 -850213 3.5 3.6 3.6 1.6 2.0 2.4
850214 3.5 3.6 3.6 1.6 2.0 2.3
850215 3.5 3.6 3.6 1.7 2.0 2.4 -850216 3.5 3.6 3.6 1.6 1.9 2.3
850217 3.5 3.6 3.6 1.6 1.9 2.3
850218 3.5 3.6 3.6 1.7 1.9 2.3
850219 3.5 3.5 3.6 1.7 2.0 2.4 -~
850220 3.5 3.5 3.6 1.9 2.1 2.4
850221 3.5 3.5 3.6 1.8 2.1 2.4
850222 3.5 3.5 3.6 1.7 2.0 2.4
850223 3.5 3.5 3.6 1.8 2.0 2.5
850224 3.5 3.5 3.6 2.1 2.3 2.7
850225 3.5 3.5 3.6 2.0 2.4 2.8
850226 3.5 3.5 3.6 1.9 2.4 2.6
850227 3.5 3.5 3.5 1.8 2.5 3.0
850228 3.4 3.5 3.6 1.9 2.5 3.2
Monthly Value·3.4 3.6 3.6 1.5 2.3 3.2
-----------------------~------------~~~-~-------~-~----~---------------~----"""
18
Table 8.(continued)•
----------------------------------------------------------------------------
March 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850301 3.4 3.5 3.5 1.9 2.2 2.5
850302 3.4 3.5 3.5 2.0 2.5 3.2
850303 3.4 3.5 3.5 1.7 2.2 2.9
850304 3.4 3.5 3.5 1.8 2.3 2.8
850305 3.4 3.4 3.5 1.9 2.5 3.0
850306 3.4 3.4 3.5 1.6 2.4 3.0
850307 3.4 3.4 3.5 1.8 2.5 3.3
850308 3.4 3.4 3.5 1.9 2.5 3.0
850309 3.3 3.4 3.4 2.5 2.7 3.3
850310 3.4 3.4 3.4 2.3 2.7 3.1
850311 3.4 3.4 3.4 2.0 2.4 2.8
i"'"850312 3.4 3.4 3.4 2.3 2.7 3.3
850313 3 .3 3 .4 3.4 2.0 2.6 3.5
850314 3 .4 3 .4 3.4 1.9 2.3 3 .4
850315 3.4 3 .4 3.4 1.8 2.3 3.4
850316 3.4 3 .4 3.4 1.9 2.5 3.1
850317 3.4 3 .4 3.4 2.2 2.5 3.0
.-850318 3.3 3 ~4 3.4 1.9 2.6 3.3
850319 3.3 3.4 3.4 2.0 2.6 3.6
850320 3.3 3.4 3.4 2.1 2.7 4.0
850321 3.3 3.4 3.4 2.0 2.6 3.4
~850322 3.3 3.4 3.4 1.9 2.5 4.0
i
I 850323 3.3 3.3 3.4 1.7 2.5 3.9
850324 3.3 3.3 3.4 2.0 2.5 3.3
"""'1 850325 3.3 3.3 3.4 1.9 2.6 3.9
850326 3.3 3.3 3.4 1.6 2.4 4.0
850327 3.3 3.3 3.4 1.5 2.4 3.9
""'"'850328 3.2 3.3 3.4 1.5 2.4 3.9
.I 850329 3.2 3.3 3.4 1.8 2.5 3.8I
850330 3.2 3.3 3 .4 1.6 2.3 3.4
850331 3.2 3.3 3.4 1.7 2.2 3.3
Monthly Value 3.2 3.4 3.5 1.5 2.5 4.0
----------------------------------------------------------------------------
19
Table 8.(continued)•
April 1985
Date
850401
850402
850403
Monthly Value
Min
3.2
3.2
3.2
3.2
Intragravel
Mean
3.3
3.3
Max
3.3
3.3
3.3
3.3
Min
1.5
1.4
1.9
1.4
Surface Water
Mean
2.0
2.1
Max
2.7
3.2
2.5
3.2
JIJiii"':
-----Data not available.
20
J -]]])J
...,....~V.-----'"""---..,
",."....'"• "..,',-",,f'il ..,....","..,f''.-""""''''",•.#'t,"_"",\-,"..!-,•.!'.,\., "".,-'"-'V','",,"-\c'•,_,
""'.I '\,,"_,_,,'
UPPER TRAPPER SIDE CHANNEL
___--'<L..;..R;..;.;.M....,....;..9.o..;.l...;;...8)__--
--Ml.N D.ILY INTIIII .....VIL
-----MlAN D.ILY IU ..'.CI ••T."
7
I
S-0••-
L&J ,
a::
j
t-2
<ta:
L&J
0..
2
N L&J a
t-'t-
o::-1
L&J
t-«-2
~
-J
-i
~
SEP OCT NOV DEC JAN FEB MAFr-APR MAY
Figure 2.Mean daily intragravel and surface water temperature (oC)recorded at the upper portion
of the observed spawning area in Trapper Side Channel.
Table 9.Datapod temperature recorder data summary:
intragravel and surface water temperatures (C)
recorded at Lower Trapper Side Channel,RM 92.7.
November 1984
---------------------------------------------~------------------------------~
Date
Min
Intragravel
Mean Max Min
Surface Water
Mean Max
841106 3.6 3.7
841107 3.6 3.6 3.7
841108 3.5 3.6 3.7
841109 3.6 3.6 3.7
841110 3.6 3.6 3.7
841111 3.6 3.6 3.7
841112 3.6 3.6 3.7
841113 3.6 3.6 3.7
841114 3.6 3.7 3.7
841115 3.6 3.7 3.7
841116 3.6 3.7 3.7
841117 3.6 3.6 3.7
841118 3.6 3.6 3.7
841119 3.5 3.6 2.1 3.5 3.7
841120 3.5 3.6 3.6 1.6 3.3 3.4
841121 3.5 3.6 3.6 1.4 3.2 3.4
841122 3.5 3.6 3.7 1.4 3.0 3.4
841123 3.5 3.5 3.6 1.3 3.1 3.4 ~
841124 3.5 3.6 3.6 1.4 3.0 3.4
841125 3.5 3.6 3.6 1.1 3.0 3.4
841126 3.5 3.6 3.6 1.4 3.1 3.4
841127 3.6 3.6 3.6 1.3 3.1 3.4
841128 3.6 3.6 3.6 1.4 2.8 3.4
841129 3.5 3.6 3.6 1.2 2.9 3.4
841130 3.5 3.6 3.6 1.3 2.8 3.4
Monthly Value 3.5 3.7 1.1 3.4 3.7
~
----------------------------------------------------------------------------
-----Data not available.-
22
Table 9.(continued).
----------------------------------------------------------------------------
December 1984
------~---------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------,-Min Mean Max Min Mean Max
-----------------------------------------,-----------------------------------
841201 3.6 3.6 3.6 1.3 2.7 3.4
841202 3.6 3.6 3.6 1.2 2.7 3.4
841203 3.6 3.6 3.6
1.4 2.7 3.4
841204 3.6 3.6 3.7 1.3 2.6 3.4
841205 3.6 3.6 3.6 1.1 2.4 304
841206 3.6 3.7 3.7 1.1 2.3 3.4
841207 3.6 3.6 3.7 1.2 2.3 3.4
841208 3.6 3.6 3.7 1.1 2.2 3.4
841209 3.6 3.7 3.7 1.3 2.8 3.5
841210 3.6 3.6 3.7 1.2 2.4 3.5
841211 3.6 3.7 3.7 1.3 2.7 3.5....841212 3.6I 3.7 3.7 1.7 3.2 3.5
i 841213 3.7 3.7 3.7 2.0 3.4 3.6
841214 3.7 3.7 3.8 2.3 3.5 3.6
841215 3.7 3.7 3.8 2.4 3.4 3.6
841216 3.7 3.7 3.8 2.1 3.4 3.5
841217 3.7 3.7 3.8 1.1 2.8 3.6
841218 3.7 3.7 3.8 1.3 2.5 3.5
841219 3.7 3.7 3.8 1..1 2.2 3.4
841220 3.7 3.8 3.8 1.2 2.3 3.5
841221 3.7 3.8 3.8 1.1 2.2 3.5
841222 3.7 3.8 3.8 1.1 2.2 3.5
841223 3.7 3.8 3.9 .9 1.8 3.2
841224 3.8 3.9 3.9 .9 1.8 3.5
841225 3.8 3.8 3.9 .7 1.7 3.4
841226 3.8 3.9 3.9 .7 1.5 3.1
841227 3.8 3.9 3.9 .8 1.5 3.2
841228 3.9 3.9 4.0 .8 1.7 3.3
841229 3.9 3.9 4.0 .8 1.6 3.4
841230 3.8 3.9 3.9 .5 1.3 3.0
841231 3.9 3.9 4.0 .5 1.1 2.3
'i
I
i Monthly Value 3.6 3.7 4.0 .5 2.4 3.6
----------------------------------------------------------------------------
23
9.(continued)•
~Table
~
----------------------------------------------------------------------------
January 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date --~-------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850101 3.9 4.0 4.0 .6 0.0 2.3
850102 4.0 4.0 4.0 .5 1.0 2.2 ~
850103 3.9 4.0 4.0 .5 1.0 2.3
850104 4.0 4.0 4.0 .5 1.1 2.7
850105 4.0 4.0 4.1 .5 1.0 2.1
850106 4.0 4.0 4.1 .5 1.1 2.5
850107 4.0 4.0 4.1 .6 1.1 2.5
850108 4.0 4.1 4.1 .5 1.1 2.2
850109 4.0 4.1 4.1 .5 1.1 2.7
850110 4.0 4.1 4.1 .6 1.1 2.3
850111 4.0 4.1 4.1 .5 1.1 2.6
850112 4.0 4.1 4.2 .5 1.1 3.3 ~
850113 4.0 4.1 4.2 .6 1.2 2.7
850114 4.1 4.1 4.1 .5 1.1 2.9
850115 4.1 4.1
4.2 .5 0.0 2.4 ~
850116 4.1 4.1 4.2 .5 .9 2.0
850117 4.1 4.1 4.2 .4 .8 1.8
850118 4.1 4.1 4.2 .4 .8 2.1
850119 4.1 4.1 4.2 .4 .9 2.2
850120 4.1 4.2 4.2 .5 .9 2.1
850121 4.1 4.2 .5 2.6
850128 3.5 3.6 .9 1.5 ~,
850129 3.5 3.5 3.6 .9 1.2 1.9
850130 3.5 3.5 3.6 .8 1.3 1.9
850131 3.5 3.5 3.6 .7 1.1 1.7
Monthly Value 3.5 4.0 4.2 .4 1.0 3.3
.....----------------------------------------------------------------------------
-----Data not available.
...,
24
-
Table 9.(continued).
,....
----------------------------------------------------------------------------
February 1985
~.----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850201 3.5 3.5 3.6 .5 1.4 1.9-.,850202 3.5 3.5 3.6 1.0 1.5 2.0
850203 3.5 3.6 3.6 .5 1.4 2.1
850204 3.5 3.5 3.5 .7 1.2 1.8
850205 3.5 3.5 3.6 .8 1.4 1.9
850206 3.5 3.5 3.7 .7 1.9 3.4
850207 3.5 3.5 3.6 1.4 2.0 2.4
850208 3.5 3.5 3.6 .8 2.1 2.5
850209 3.5 3.5 3.6 1.7 2.4 2.6
850210 3.5 3.6 3.6 1.8 2.5 2.8
850211 3.5 3.5 3.6 1.9 2.7 2.9-850212 3.5 3.6 3.7 2.5 2.7 3.0!
850213 3.5 3.6 3.7 2.7 2.9 3.1
850214 3.5 3.6 3.7 2.6 3.0 3.1
f'WIIt:850215 3.6 3.7 3.7 2.5 3.1 3.3
850216 3.6 3.7 3.8 2.7 3.0 3.2
850217 3.6 3.7 3.8 2.8 3.1 3.3-850218 3.7 3.7 3.8 2.8 3.2 3.4
850219 3.7 3.8 3.8 3.1 3.4 3.5
850220 3.7 3.8 3.9 3.1 3.5 3.7
850221 3.7 3.8 3.9 3.1 3.5 3.6-850222 3.7 3.8 3.9 2.4 3.4 3.5
850223 3.8 3.8 3.9 2.7 3.4 3.6
850224 3.7 3.8 3.8 2.8 3.4 3.5
~850225 3.7 3.8 3.8 3.0 3.3 3.4
850226 3.7 3.8 3.8 2.9 3.2 3.4
850227 3.6 3.7 3.8 2.5 3.0 3.4
850228 3.6 3.7 3.7 2.1 2.9 3.2
Monthly Value 3.5 3.7 3.9 .5 2.7 3.7
.-.----------------------------------------------------------------------------
25
Table g.•(continued)•
----------------------------------------------------------------------------
March 1985
------------------------------------------------------------------~--------~~.
Date
Min
Intragravel
Mean 1:1ax Min
Surface Water
Mean Max Aif,'!'5"i&.
850301 3.6 3.7 3.7 2.2 2.7 3.0
850302 3.6 3.6 3.7 1.1 2.2 2.8
850303 3.5 3.6 3.7 1.1 2.0 2.6
850304 3.5 3.6 3.7 1.0 1.9 2.6
850305 3.5 3.5 3.6 .9 1.7 2.5
850306 3.5 3.5 3.5 .6 1.5 2.2
850307 3.5 3.5 3.6 .7 1.4 2.3 -Monthly Value 3.5 3.7 .6 3.0
-----Data not available.
26
~
Table 9.(continued).
".,..,
----------------------------------------------------------------------------
April 1985
-------------------~--------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max.....----------------------------------------------------------------------------
850403 3.2 3.3 1.6 2.5
r-850404 3.2 3.2 3.2 1.7 2.3 2.5
850405 3.1 3.2 3.3 1.8 2.4 2.8
850406 3.1 3.2 3.3 1.5 2.4 2.8
850407 3.1 3.2 3.2 2.0 2.4 2.7
850408 3.1 3.2 3.2 1.6 2.3 2.6
850409 3.1 3.2 3.2 1.7 2.3 2.7
850410 3.1 3.2 3.3 1.6 2.4 2.8
850411 3.1 3.2 3.3 1.7 2.5 2.9
850412 3.1 3.2 3.3 1.7 2.5 2.9
850413 3.1 3.2 3.2 1.9 2.5 2.7
850414 3.2 3.2 3.3 2.•0 2.6 2.9
850415 3.2 3.2 3.3 2.3 2.5 2.8
·850416 3.2 3.2 3.3 2.2 2.5 2.7
850417 3.2 3.2 3.3 2.2 2.5 2.7
850418 3.2 3.2 3.3 2.2 2.5 3.0
850419 3.2 3.2 3.3 1.8 2.5 2.7
850420 3.2 3.2 3.3 1.7 2.5 2.8r-850421 3.2 3.2 3.3 1.7 2.6 3.0
850422 3.2 3.3 3.3 2.3 2.7 3.4
850423 3.2 3.3 3.3 2.2 2.7 3.4
850424 3.2 3.4 1.8 2.7
Monthly Value 3.1 3.2 3.4 1.5 2.5 3.4
r-
----------------------------------------------------------------------------
----Data not available.
27
LOWER TRAPPER SIDE CHANNEL
(RMII.e)
7
•
5-0 ..
0-
L&J
,
a::
:;)2.-
c:(
a::
UJ
Q..
N 2 0coL&J.-
a::-1
UJ.-c:(-2
~
-3
-t
-S
---MIAII DAILY .IITIUIRAVIL
-----MIA"DAILY IUII'ACI .ATIR
--"'-,I',\,,~-'A,,\AI \
\I.'.-,..~,
",,/',,,,..,--,
,-'....d,I ,I,I ,I~,
~t·...,,
,''''"/'.,,",,\
",'~~,•
,-.,/----''''
SEP OCT NOV DEC JAN FEB -MAR APR MAY
Figure 3.Mean daily intragravel and surface water temperatures (oC)recorded at the lower portion
of the observed spawning area in TrapperStde Channel.
I .~)J I I ~.~I 1 I !J j ~~i .~
Table 10.Datapod temperature recorder data summary:
intragravel and surface water temperatures (C)
recorded at Upper Sunset Side Channel,RM 86.9.
----------------------------------------------------------------------------
November 1984..-----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
~841106 3.4 3.5 .1 .3
841107 3.4 3.5 3.5 .1 .2 .2
841108 3.4 3.5 3.5 0.0 .1 .2
841109 3.4 3.5 3.5 0.0 .1 .1
841110 3.4 3.4 3.5 0.0 .1
841111 3.3 3.4 3.5 ***************
841112 3.3 3.4 3.4 ***************
841113 3.3 3.4 3.4 ***************
841114 3.2 3.3 3.4 ***************
841115 3.2 3.2 3.3 ***************
841116 3.1 3.2 3.3 ***************
841117 3.1 3.2 3.2 ***************
841118 3.2 3.2 3.3 ***************
841119 3.2 3.2 3.3 ***************~841120 3.2 3.2 3.3 ***************
841121 3.2 3.3 3.3 0.0 .5 1.1
841122 3.2 3.3 3.4 -0.2 1.0
841123 3.3 3.3 3.4 -0.2 -0.2 -0.1
841124 3.3 3.3 3.4 -0.2 -0.1 -0.1
841125 3.3 3.3 3.4 -0.2 -0.1 -0.1-841126 3.3 3.3 3.4 -0.2 -0.1
841127 3.3 3.3 3.4
841128 3.3 3.3 3.4
841129 3.3 3.3 3.4....,
841130 3.3 3.3 3.4
Monthly Value 3.1 3.3 3.5 -0.2 1.1
,..."
----------------------------------------------------------------------------
Data not available.
*****Site frozen,data available in Table 6.
",.,.
29
Tab1e·JiO.(continued)•
December 1984
Date
841201
841202
841203
841204
841205
841206
841207
841208
841209
841210
841211
841212
841213
841214
841215
841216
841217
841218
841219
841220
841221
841222
841223
841224
841225
841226
841227
841228
841229
841230
841231
Monthly Value
Min
3.3
3.3
3.3
3.3
3.4
3.3
3.3
3.3
3.3
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
Intragravel
Mean
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.2
3.3
3.3
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.2
3.2
3.1
3.1
3.3
Max
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.4
Min
Surface Water
Mean Max
-
"""
-
----------------~-------------------------~-----------------~--~------------~
-----Data not available.-
.1!!"'!
30
Table 10 (continued)•
----------------------------------------------------------------------------
January 1985
~----------------------------------------------------------------------------
Intragrave1 Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
-------------------------------------------------------------------------~--
850101 3.1 3.1 3.2,....,
850102 3.1 3.1 3.2
850103 3.1 3.1 3.2
850104 3.1 3.2 3.2
..-850105 3.1 3.1 3.2
850106 3.1 3.2 3.2
850107 3.1 3.2 3.2
850108 3.1 3.2 3.2
850109 3.1 3.1 3.2
850110 3.1 3.2 3.2
850111 3.1 3.1 3.2
~850112 3.0 3.1 3.1 1.9 2.3 2.5
850113 3.0 3.0 3.1 2.1 2.4 2.5
850114 3.0 3.0 3.1 2.3 2.5 2.6
850115 3.0 3.0 3.1 2.3 2.5 2.6
850116 3.0 3.0 3.1 1.2 2.4 2.6
850117 3.0 3.0 3.1 2.1 2.3 2.5
850118 3.0 3.0 3.1 2.4 2.5 2.7
850119 3.0 3.0 3.1 2.5 2.6 2.7
850120 3.0 3.0 3.1 2.3 2.7 2.7
850121 3.0 3.0 3.1 2.2 2.7 2.7
850122 3.0 3.0 3.1 2.4 2.6 2.7
850123 3.0 3.0 3.1 2.6 2.6 2.7
850124 3.0 3.0 3.1 2.6 2.6 2.7
850125 3.0 3.0 3.1 2.5 2.6 2.7
850126 3.0 3.0 3.1 1.9 2.6 2.6
850127 3.0 3.0 3.1 1.8 2.5 2.6
850128 3.0 3.0
3.1 2.4 2.5 2.6
850129 3.0 3.0 3.1 2.3 2.4 2.5
850130 3.0 3.0 3.1 2.2 2.4 2.5
850131 2.9 3.0 3.0 1.6 1.9 2.4
Monthly Value 2.9 3.1 3.2 1.2 2.5 2.7
-------------------------------------------------~--------------------------
-----Data not available.
31
-Table IG (continued)•
~
~----------------------------------------------------------------------~----
February 1985
-------------------------------------------------------------------~--------~
Intragravel Surface Water
Date ------------------------------------~---------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850201 2.9 3.0 3.0 1.7 1.7 1.8
850202 2.9 3.0 3.0 1.7 1.8 1.9
850203 3.0 3.0 3.0 1.3 1.6 1.9
850204 2.9 3.0 3.0 1.6 1.9 2.0
850205 2.9 3.0 3.1 2.0 2.0 2.2
850206 2.9 3.0 3.1 1.9 2.2 2.3
850207 2.9 3.0 3.0 2.0 2.2 2.3
850208 2.9 3.0 3.0 2.0 2.1 2.2
850209 3.0 3.0 1.9 2.1 2.2 -2.9
850210 2.9 3.0 3.0 1.8 2.0 2.1
850211 2.8 2.9 3.0 1.7 1.7 1.9
850212 2.8 2.9 2.9 1.6 1.7 1.8 ~
850213 2.8 2.9 2.9 1.6 1.7 1.9
850214 2.8 2.9 3.0 1.7 i.9 2.0
850215 2.8 2.9 2.9 1.8 1.9 2.0
850216 2.8 2.9 3.0 1.8 1.9 2.0
850217 2.8 2.9 2.9 1.8 1.9 2.0
850218 2.8 2.8 2.9 1.8 1.9 2.0
850219 2.8 2.8 2.9 1.7 1.8 1.9
850220 2.7 2.8 2.8 1.7 1.7 1.7
850221 2.7 2.8 2.8 1.6 1.7 1.7
850222 2.7 2.7 2.8 1.5 1.6 1.7
850223 2.6 2.7 2.7 1.5 1.6 1.7
850224 2.6 2.6 2.7 1.6 1.6 1.8
850225 2.5 2.6 2.7 1.7 1.8 1.9
~I
850226 2.6 2.6 2.6 1.8 1.9 1.9
850227 2.6 2.6 2.7 1.7 1.7 1.9
850228 2.6 2.6 2.6 1.7 1.7 1.8 -
Monthly Value 2.5 2.8 3.1 1.3 1.8 2.3
----------------------------------------------------------------------------
32
~A,
Table lQ (continued)•
--
----------------------------------------------------------------------------
March 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850301 2.6 2.7 2.7 1.6 1.7 1.8-850302 2.6 2.7 2.7 1.6 1.7 1.7
850303 2.6 2.7 2.7 1.7 1.7 1.8
850304 2.7 2.7 2.8 1.7 1.8 1.9
~850305 2.7 2.8 2.8 1.8 1.9 1.9
850306 2.8 2.8 2.8 1.6 1.8 1.9
850307 2.8 2.8 2.8 1.6 1.8 1.9
r-850308 2.8 2.8 2.8 1.5 1.7 2.0
850309 2.8 2.8 2.8 1.7 2.0 2.0
850310 2.8 2.8 2.8 2.0 2.0 2.1
850311 2.8 2.8 2.8 1.9 2.1 2.2
850312 2.8 2.8 2.8 2.0 2.2 2.2
850313 2.8 2.8 2.8 1.8 1.9 2.0
850314 2.7 2.8 2.8 1.7 1.7
1.8
850315 2.7 2.7 2.8 .9 1.3 1.8
850316 2.6 2.6 2.7
850317 2.6 2.6 2.6-850318 2.6 2.7 2.7
850319 2.7 2.7 2.7
850320 2.7 2.7 2.8 -----
850321 2.7 2.7 2.8
850322 2.7 2.7 2.8
850323 2.7 2.8 2.8
850324 2.7 2.8 2.8-850325 2.8 2.8 2.8
850326 2.8 2.8 2.8
850327 2.8 2.8 2.9
850328 2.8 2.8 2.8
850329 2.8 2.8 2.9
850330 2.8 2.8 2.8
850331 2.8 2.8 2.9
Monthly Value 2.6 2.8 2.9 .9 2.2
----------------------------------------------------------------------------
-----Data not available.
-33
Table IG (continued)•
April 1985
-
Date
850401
850402
850403
Monthly Value
Min
2.8
2.7
2.7
2.7
Intragravel
Mean
2018
2.8
Max
2.8
2.8
2.8
2.8
Min
Surface Water
Mean Max
-----Data not available.
34
-
-
-
Table n Datapod temperature recorder data summary:
intragravel and surface water temperatures (C)
recorded at Upper Sunset Side Channel when the
site was frozen,RM 86.9.
November 1984 (Site frozen)
841110 +++++ +++++ +++++-0.7 -0.3 0.0
841111 +++++++++++++++-1.7 -1.3 -0.7
841112 ++++++++++ +++++-2.4 -2.0 -1.6
841113 +++++++++++++++-2.9 -2.5 -2.0
841114 +++++ ++++++++++-3.1 -2.5 -1.7
841115 +++++++++++++++-1.8 -1.2 -0.8
841116 +++++ ++++++++++-0.8 -0.5 -0.3
841117 +++++++++++++++-0.8 -0.7 -0.5
841118 +++++++++++++++-0.6 -0.5 -0.4
841119 +++++++++++++++-0.8 -0.7 -0.5
841120 +++++ +++++ +++++-0.6 -0.3 0.0
Monthly Value +++++++++++++++-3.1 0.0
-
-
Date
Min
Intragravel
Mean Max Min
Surface Water
Mean Max
Data not available.
+++++Data available;site not frozen.
35
7
•
s
-U t
0-
LU S
0=
=>2...«a:
lJJ 1
w
0-
m :E
l&J 0...
a:-t
LU
I-«-2
~
-J
-t
-I
UPPER SUNSET SIDE CHANNEL
(RM 86.8)
---III[AN DAILY HiITltA.,.AYI"
-----liliAN DAILY IU,.'ACI WATIIII
J"..,''''.1 ...,,,....-
""-\"".t ,f-"..,,,__,...,,\/~~\/,
"""",,""...,.....,,",,"
~
SEP OCT NOV DEC JAN FEB MAR APR MAY
Figure 4,Mean daily intragravel and surface water temperatures (DC)recorded at the upper portion
of the observed spawning area in Sunset Side Channel,
i t j J ·:1 )J j J ~J J ,t I t ,
=J
-
-
.-
I
"""
-
Intragravel water temperatures at this site had little variation through
the period of record with water temperatures ranging from 2.5°C to
3.5°C.The record for surface water temperatures was most continuous
from November 21 to March 15.For thi s time peri od,surface water
temperatures ranged from O.goC to 2.7°C.From November 10 to November
20 temperatures recorded from the surface water probe ranged from -3.1°C
to O.O°C although institial surface water was observed not to be frozen.
These low surface water temperatures resulted from the probe becomi ng
embedded in the surface ice.Intragravel water temperatures
corresponding to this time ranged from 3.1°C to 3.5°C.
Lower Sunset Side Channel
The temperature station in Lower Sunset Side Channel was placed in a
pool approximately 3 feet deep with ice cover.Intragravel and surface
water temperatures at this site were obtained from November 6,1984 to
April 3,1985.Daily and monthly minimum,mean,and maximum water
temperatures developed from the sites are presented in Table 12.A plot
of mean,daily intragravel and surface water temperatures is presented
in Figure 5.
Intragravel water temperatures were found to be similar to those in the
upper portion of the side channel and ranged from 2.1°C to 3.3°C for the
entire period of record.Intragravel water temperatures were warmer
than surface water until mid-March at which time mean daily surface
water temperatures slightly exceeded those of intragravel.Surface
water temperatures ranged from O.2°C to 3.1°C for the period of record.
Upper Circular Side Channel
The continuous temperature station in Upper Circular Side Channel was
placed in a pool of approximately 1 foot deep with ice cover.Intra-
gravel and surface water temperatures at this site were recorded from
November 6,1984 to April 3,1985.These data are presented in Table 13
as daily and monthly minimum,mean and maximum water temperatures.Also
a plot of the mean,daily intragravel and surface water temperatures was
developed and is presented in Figure 6.Intragravel water temperatures
were found to be generally warmer than surface water at this site.
Intragravel water temperatures ranged from -0.2°C to 4.O°C.Surface
water ranged from -O.l°C to 3.8°C.
Lower Circular Side Channel
The temperature station located in Lower Circular Side Channel was
placed in a pool of approximately 3 feet deep with ice cover throughout
the winter.Intragravel and surface water temperatures at this site
were taken from November 6,1984 to April 24,1985.Gaps in the data
occurred in the intragravel water temperature record from November 10 to
November 30,due to shearing of the intragravel probe.For both
i ntragravel and surface water temperatures,a data gap occurred from
February 10 to March 6,due to a malfunctioning temperature recorder.
Daily and monthly minimum,mean and maximum water temperatures were
developed from these data (Table 14).A plot of the mean,daily
intragravel and surface water temperatures is presented in Figure 7 •.
-37-
Table la Datapod temperature recorder data summary:
intragravel and surface water temperatures (C)
recorded at Lower Sunset Side Channel,RM 86.9.-----------------------------------------------------------------------------
November 1984
----~----------~~------------------------------~----------------------------~
Intragravel Surface Water
Date ----------------------~----------~-----------~
Min Mean Max Min Mean Max ------~-----------------------------------------------------~----------------
841106 3.2 3.3 1.3 3.0
841107 3.2 3.2 3.3 1.1 1.9 2.7 ...,
841108 3.2 3.3 3.3 .8 1.5 2.9
841109 3.2 3.3 3.3 .8 1.3 2.1
841110 3.1 3.2 3.3 .7 1.2 2.1
841111 3.1 3.1 3.2 .4 .8 1.8
841112 2.7 2.9 3.1 .2 .4 .8
841113 2.5 2.6 2.7 .2 .5 .8 ~841114 2.6 2.7 2.8 .2 .6 1.2
841115 2.7 2.8 3.0 .6 1.1 1.7
841116 2.9 3.1 3.2 1.1 1.7 2.7
841117 3.1 3.2 3.2 1.1 1.5 2.8 ,...,
841118 3.1 3.1 3.2 1.0 2.1 2.8
841119 3.2 3.2 3.3 1.2 2.1 2.8
841120 3.2 3.2 3.3 1.3 2.5 2.8
841121 3.2 3.2 3.2 1.4 2.4 2.8
841122 3.2 3.2 3.3 1.1 1.8 2.9
841123 3.1 3.1 3.2 .9 1.9 2.7
841124 3.1 3.2 3.3 1.0 2.2 2.9
841125 3.2 3.2 3.3 1.2 2.5 2.9
841126 3.2 3.3 3.3 Ll 2.0 2.9
841127 3.2 3.3 3.3 1.2 2.2 2.9 ~
841128 3.2 3.3 3.3 L5 2.2 2.9
841129 3.2 3.3 3.3 1.1 2.5 2.9
841130 3.2 3.3 3.3 1.2 2.6 2.9 -
Monthly Value 2.5 3.1 3.3 .2 1.7 3.0
---------------------------------~--------------~---~-----------------------
-----Data not available.
...."
38
Table U (continued)•
----------------------------------------------------------------------------
December 1984
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
pIfl!a,Min Mean Max Min Mean Max
----------------------------------------------------------------------------
841201 3.2 3.3 3.3 1.8 2.4 2.9
~841202 3.2 3.2 3.3 1.4 2.6 2.9
841203 3.2 3.2 3.3 1.7 2.9 2.9
841204 3.2 3.2 3.2 2.4 2.8 2.9
841205 3.2 3.2 3.3 1.5 2.8 2.9
841206 3.2 3.2 3.3 1.8 2.8 2.9
841207 3.2 3.2 3.3 2.1 2.8 2.9
841208 3.2 3.2 3.3 1.7 2.4 2.9
841209 3.2 3.3 3.3 1.4 2.5 2.9
841210 3.2 3.2 3.3 1.4 2.7 2.8
841211 3.2 3.2 3.3 1.9 2.7 2.8
~841212 3.1 3.2 3.2 1.0 2.5 2.8
841213 3.1 3.2 3.2 1.1 2.0 2.7
841214 3.1 3.2 3.2 1.2 2.4 2.7
841215 3.1 3.1 3.2 1.4 2.5 2.7
841216 3.1 3.1 3.1 1.7 2.5 2.7
841217 3.1 3.1 3.2 1.6 2.5 2.6-841218 3.1 3.1 3.1 1.7 2.5 2.6
841219 3.1 3.1 3.2 2.2 2.6 2.7
841220 3.1 3.2 3.2 2.5 2.6 2.7
841221 3.1 3.1 3.2 .9 2.6 2.7
;~841222 3.0 3.1 3.1 1.8 2.6 2.6
841223 3.0 3.0 3.1 1.7 2.5 2.6
841224 3.0 3.1 3.1 1.9 2.5 2.6
~.841225 3.0 3.0 3.1 .6 2.5 2.6
841226 3.0 3.1 3.1 1.8 2.6 2.6
841227 3.0 3.0 3.1 .8 2.5 2.6
841228 2.9 3.0 3.0 .4 2.0 2.5
841229 2.9 2.9 3.0 .7 2.1 2.5
841230 2.9 2.9 3.0 .8 2.3 2.5
841231 2.9 2.9 3.0 1.5 2.4 2.5
Monthly Value 2.9 3.1 3.3 .4 2.5 2.9-----------------------------------------------------------------------------
39
Tab1e12.(continued).
----------------------------------------------------------------------------
January 1985
----------------------------------------------------------------------------
Intragrave1 Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850101 2.9 2.9 3.0 2.1 2.5 2.5
850102 2.9 3.0 3.0 .8 2.5 2.5 ~
850103 3.0 3.0 3.0 2.1 2.5 2.6
850104 3.0 3.0 3.0 2.1 2.5 2.6
850105 3.0 3.0 3.0 2.5 2.5 2.6 -850106 3.0 3.0 3.0 2.4 2.5 2.6
850107 2.9 3.0 3.0 2.4 2.5 2.6
850108 2.9 3.0 3.0 2.4 2.5 2.6 ""'"850109 3.0 3.0 3.0 1.8 2.5 2.6
850110 2.9 3.0 3.1 2.4 2.5 2.6
850111 2.9 3.0 3.0 2.4 2.5 2.6
850112 2.9 3.0 3.1 2.4 2.5 2.6 ~
850113 2.9 3.0 3.0 1.5 2.5 2.6
850114 2.9 2.9 2.9 1.5 2.4 2.5
850115 2.9 2.9 2.9 1.1 2.4 2.5 -850116 2.9 2.9 2.9 1.6 2.4 2.5
850117 2.9 2.9 2.9 2.2 2.5 2.5
850118 2.9 2.9 3.0 2.4 2.5 2.5
850119 2.9 3.0 3.0 1.7 2.5 2.6
850120 2.9 3.0 3.0 1.7 2.5 2.6
850121 2.9 3.0 3.0 2.0 2.5 2.6
850122 2.9 2.9 3.0 2.5 2.5 2.6
850123 2.9 2.9 3.0 2.2 2.5
2.6
850124 2.9 2.9 3.0 2.1 2.5 2.6
850125 2.9 2.9 3.0 2.3 2.5 2.6 ~
850126 2.9 3.0 3.0 2.5 2.5 2.6
850127 2.9 2.9 3.0 .5 2.5 2.6
850128 2.9 2.9 3.0 1.8 2.4 2.5
850129 2.9 2.9 3.0 1.9 2.3 2.5
850130 2.8 2.9 3.0 1.5 2.2 2.4
850131 2.9 2.9 3.0 2.0 2.2 2.4 -
Monthly Value 2.8 3.0 3.1 .5 2.5 2.6
----------------------------------------------------------------------------~
-
40
Table12.(continued)•
----------------------------------------------------------------------------
February 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max'Min Mean Max
----------------------------------------------------------------------------
850201 2.9 2.9 3.0 1.8 2.0 2.1
850202 2.9 2.9 3.0 2.0 2.1 2.3
850203 2.8 2.9 3.0 1.9 2.1 2.4
850204 2.9 2.9 3.0 2.0 2.0 2.1
~850205 2.8 2.9 3.0 1.9 2.0 2.1
850206 2.8 2.9 3.0 1.8 2.0 2.2
850207 2.8 2.8 2.9 1.7 1.9 2.1
....850208 2.8 2.8 2.9 1.8 2.0 2.3
850209 2.7 2.8 2.8 1.7 1.9 2.1
850210 2.7 2.8 2.8 1.7 1.9 2.0
850211 2~7 2.8 2.8 1.8 2.0 2.1
850212 2.7 2.8 2.8 1.8 1.9 2.0
850213 2.7 2.8 2.9 1.8 2.0 2.1
850214 2.7 2.8 2.9 1.9 2.0 2.2
r-850215 2.7 2.7 2.8 1.8 1.9 2.0
850216 2.6 2.7 2.8 1.8 1.9 1.9
850217 2.6 2.6 2.7 1.7 1.8 1.9-850218 2.5 2.6 2.7 1.5 1.7 1.8
850219 2.4 2.5 2.6 1.3 1.5 1.7
850220 2.3 2.5 2.5 1.1 1.2 1.4
850221 2.3 2.4 2.5 .9 1.1 1.2-850222 2.2 2.4 2.4 .7 .9 1.0
850223 2.2 2.3 2.4 .5 .7 .8
850224 2.1 2.2 2.3 .5 .7 .9
850225 2.1 2.1 2.2 .8 1.2 1.4
850226 2.1 2.2 2.2 1.3 1.5 1.7
850227 2.1 2.2 2.2 1.5 1.6 1.8-850228 2.2 2.2 2.3 1.6 1.8 1.9
Monthly Value 2.1 2.6 3.0 .5 1.7 2.4
----------------------------------------------------------------------------
-
41
Table U (continued).
"""
--------------------------~-------------------------------------------------
March 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850301 2.2 2.3 2.3 1.8 2.0 2.1
850302 2.2 2.3 2.4 1.8 2.1 2.2
850303 2.3 2.3 2.4 1.9 2.1 2.2
850304 2.3 2.3 2.4 2.0 2.2 2.3
850305 2.3 2.3 2.4 2.1 2.3 2.3 ~
850306 2.2 2.3 2.4 2.0 2.2 2.4
850307 2.2 2.3 2.4 1.8 2.1 2.3
850308 2.3 2.3 2.4 1.9 2.2 2.4
""""850309 2.3 2.4 2.5 2.1 2.4 2.5
850310 2.4 2.4 2.5 2.3 2.5 2.6
850311 2.4 2.4 2.5 2.2 2.5 2.6
850312 2.4 2.5 2.5 2.3 2.5 2.6
850313 2.4 2.5 2.5 2.3 2.5 2.6
850314 2.4 2.5 2.6 2.3 2.5 2.7
850315 2.4 2.5 2.6 2.2 2.5 2.7
850316 2.5 2.5 2.6 2.4 2.7 2.8
850317 2.5 2.6 2.6 2.4 2.7 2.8
850318 2.5 2.6 2.6 2.4 2.7 2.7
850319 2.5 2.6 2.7 2.3 2.7 2.8
850320 2.6 2.6 2.7 2.5 2.8 2.9
850321 2.6 2.7 2.7 2.4 2.7 2.9
850322 2.6 2.7 2.7 2.4 2.8 3.0 -
850323 2.6 2.7 2.7 2.5 2.8 3.0
850324 2.6 2.7 2.7 2.6 2.9 3.0
850325 2.6 2.7 2.8 2.6 2.9 3 .1 """850326 2.6 2.7 2.7 2.5 2.8 3.0
850327 2.6 2.7 2.7 2.2 2.8 3.0
850328 2.5 2.7 2.7 2.2 2.7 3.0 -850329 2.6 2.7 2.7 2.6 2.9 3.0
850330 2.6 2.7 2.8 2.4 2.9 3.1
850331 2.4 2.6 2.7 2.1 2.6 3.0 -,
Monthly Value 2.2 2.5 2.8 1.8 2.5 3.1
---------~--------------~---~-----~---~~~-~-----~--~------~-----------------~
42
-
-
Table 12.(continued)•
April 1985
-Date
850401
850402
850403
Monthly Value
Min
2.4
2.4
2.4
2.4
Intragrave1
Mean
2.5
2.5
Max
2.6
205
2.4
2.6
Min
2.2
2.2
2.3
2.2
Surface Water
Mean
2.7
2.7
Max
2.9
2.7
2.6
2.9
-
-
-
-
-----Data not available.
7
•
I
,...
0 t
•-
~S
Q:
:::>
t-a
4
Q:
L&J
Q.
-l>o ~0
-l>o L&J
t-
o::-1
W
t--24
~
-I
-t
-I
LOWER SUNSET SIDE CHANNEL
___--:..(R..M__...8.....6.....9._.)_
--MIAIN DAILY INTIA ...AVIL
----.MIAN DAILY IU..'ACI .A'II
,....
•"v'V\.'-'.',~-.-.,-~--."
I',I '"'o.r'I I..II "v·~...~I •,.•....-...
I '"\0
,.."j,I ,I,I ,,
I I \I,I V, I
"
recorded at the lower portion
SEP
Figure 5.
OCT NOV DEC JAN FEB
Mean daily intragravel and surface water temperatures (oC)
of the observed spawning area in Sunset Side Channel.
MAR APR MAY
J ))J ~l }cS ·c.J .J B J ]J t J c __I ~.1
Table 13 Datapod temperature recorder data summary:
intragrave1 and surface water temperatures (C)
recorded at Upper Circular Side Channel,M 75.3.
November 1984
-
-
Date
841106
841107
841108
841109
841110
841111
841112
841113
841114
841115
841116
841117
841118
841119
841120
841121
841122
841123
841124
841125
841126
841127
841128
841129
841130
Monthly Value
Min
3.9
3.9
3.9
0.0
-0.2
-0.2
.3
1.6
2.5
2.9
3.0
3.1
3.1
3.0
3.0
3.0
2.9
2.8
2.9
3.0
3.0
3.0
3.0
3.0
3.0
-0.2
Intragrave1
Mean
4.0
4.0
3.9
2.6
-0.1
0.0
1.0
2.1
2.7
3.0
3.1
3.2
3.2
3.1
3.1
3.1
3.0
2.9
3.1
3.1
3.1
3.1
3.1
3.1
3.1
2.8
45
Max
4.0
4.0
4.0
4.0
0.0
.3
1.7
2.5
2.9
3.1
3.1
3.2
3.2
3.2
3.1
3.1
3.1
3.0
3.1
3.1
3.2
3.2
3.1
3.1
3.1
4.0
Min
1.6
1.9
1.6
0.0
-0.1
-0.1
.1
1.0
2.0
2.1
2.3
2.2
2.2
2.4
2.7
2.8
2.2
1.9
2.4
2.2
2.3
1.4
2.8
2.8
2.6
-0.1
Surface Water
Mean
1.9
2.2
2.0
1.7
0.0
0.0
.7
1.7
2.3
2.5
2.5
2.6
2.6
2.7
2.8
2.9
2.7
2.2
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.3
Max
2.4
2.4
3.3
3.8
.1
.3
1.4
2.2
2.8
2.9
2.9
2.9
3.0
2.8
2.9
3.0
3.1
2.8
2.9
3.1
3.1
3.2
3.1
3.1
3.1
3.8
Table 13 (continued).
~
---------------------------------------------------------------------------~
December 1984
----------------------------------------------------------------------------
Intragrave1 Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
841201 3.0 3.1 3.1 2.3 2.9 3.1
841202 3.0 3.0 3.1 1.6 1.8 2.3
841203 3.0 3.1 3.2 1.3 1.8 2.1
841204 3.1 3.2 3.2 1.1 1.7 2.1
841205 3.1 3.2 3.3 .1 .9 1.8 -841206 3.0 3.1 3.3 0.0 .1 .3
841207 2.9 3.0 3.1 0.0 .2 .3
841208 2.8 2.8 3.0 000 .1 .3
841209 2.7 2.7 2.8 0.0 .1 .3 """'i
841210 2.7 2.7 2.8 0.0 .2 .4
841211 2.7 2.8 2.9 .1 .8 2.3
841212 2.8 2.9 3.0 1.5 2.2 2.9
841213 2.9 3.0 3.0 2.2 2.5 2.8
841214 2.9 3.0 3.1 2.5 2.7 3.0
841215 3.0 3.1 3.1 '2.6 3.0 3.1 ~841216 3.1 3.1 3.2 2.4 2.9 3.1
841217 3.1 3.1 3.2 2.2 2.7 2.9
841218 3.1 3.2 3.2 2.5 2.7 3.0
841219 3.1 3.2 3.2 2.7 3.0 3.1 ~
841220 3.1 3.1 3.2 2.2 2.7 3.0
841221 3.1 3.2 3.3 2.1 2.5 2.9
841222 3.2 3.3 3.4 2.2 2.5 2.9
841223 3.4 3.5 3.6 2.1 2.3 2.8
841224 3.5 3.6 3.6 2.0 2.2 2.6
841225 3.6 3.6 3.7 2.0 2.2 2.3
841226 3.6 3.6 3.7 2.2 2.6 3.4
841227 3.6 3.6 .3.7 2.5 3.2 3.4
841228 3.6 3.6 3.6 2.4 3.0 3.3
841229 3.5 3.6 3.6 1.8 2.5 3.3
841230 3.4 3.5 3.6 2.0 2.4 3.1
841231 3.4 3.4 3.5 1.9 2.2 2.5
"""
Monthly Value 2.7 3.2 3.7 0.0 2.0 3.4
-----------------------------~------------~----------------------~-------~--~
-46
cn.a M tt
Table 13 (continued)•
----------------------------------------------------------------------------
January 1985
----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850101 3.3 3.4 3.5 1.8 2.2 2.9-850102 3.2 3.3 3.3 1.9 2.1 2.7
850103 3.2 3.3 3.3 1.9 2.1 2.7
850104 3.3 3.4 3.5 2.2 2.8 3.1
~850105 3.4 3.5 3.6 1.9 2.6 3.0
850106 3.5 3.6 3.7 1.8 1.9 2.1
850107 3.6 3.7 3.8 1.8 2.0 2.2
850108 3.7 3.8 3.8 1.8 2.1 2.5.-
850109 3.7 3.8 3.9 1.8 2.2 2.5
850110 3.8 3.8 3.9 2.1 2.5 3.1
850111 3.8 3.9 3.9 2.0 2.2 3.5
r-"850112 3.8 3.8 3.9 1.9 2.9 3.6
850113 3.8 3.8 3.9 1.9 2.5 3.3
850114 3 .8 3.8 3.9 2.1 2.7 3.0
~850115 3.8 3.8 3.9 1.6 2.6 3.4
850116 3.8 3.8 3.9 2.1 2.5 3.3
850117 3.8 3.9 3.9 2.0 2.2 2.5
850118 3.8 3.9 4.0 2.0 2.2 2.3
850119 3.8 3.9 4.0 1.9 2.1 2.4
850120 3.8 3.9 4.0 1.8 2.0 2.2
850121 3.8 3.9 4.0 1.8 2.1 2.6
!"'"850122 3.8 3.9 3.9 2.0 2.2 2.4
850123 3.8 3.9 4.0 2.0 2.2 2.6
850124 3.9 3.9 3.9 2.0 2.2 2.5
~850125 3.8 3.9 4.0 1.8 2.2 2.4
850126 3.8 3.9 4.0 2.1 2.2 2.4
850127 3.9 3.9 4.0 2.1 2.2 2.4-850128 3.9 3.9 3.9 2.1 2.3 2.6
850129 3.9 3.9 4.0 2.2 2.3 2.5
850130 3.8 3.9 4.0 2.1 2.4 2.6
850131 3.8 3.9 4.0 2.1 2.2 2.6
Monthly Value 3.2 3.8 4.0 1.6 2.3 3.6
----------------------------------------------------------------------------
47
48
-
-
Table 13 (continued)•
----------------------------------------------------------------------------
March 1985,-----------------------------------------------------------------------------
Intragrave1 Surface Water
Date ------------------~---------------------------
Min Mean Max Min Mean Max
----------------------------------------------------------------------------
850301 3.7 3.8 3.9 1.8 2.0 2.2
~850302 3.8 3.8 3.9 1.9 2.1 2.4
850303 3.7 3.8 3.9 2.0 2.1 2.3
850304 3.7 3.8 3.9 1.9 2.1 2.3
"""I 850305 3.7 3.8 3.8 1.9 2.2 2.5
850306 3.7 3.7 3.8 1.8 2.2 2.3
850307 3.7 3.7 3.8 2.0 2.4 2.8
850308 3.7 3.8 3.8 2.0 2.5 2.9
850309 3.7 3.8 3.8 2.1 2.4 2.8
850310 3.7 3.8 3.8 2.0 2.6 2.8
850311 3.7 3.8 3.8 1.8 2.3 2.8
850312 3.7 3.8 3.8 1.9 2.2 2.6
850313 3.7 3.8 3.8 2.3 2.6 2.8
850314 3.7 3.7 3.8 2.2 2.6 3.4-850315 3.7 3.7 3.8 2.6 3.1 3.4
850316 3.7 3.7 3.8 2.8 3.1 3.4
850317 3.7 3.7 3.8 2.4 3.0 3.4
850318 3.7 3.7 3.8 2.5 3.0 3.2
850319 3.7 3.7 3.8 2.4 2.8 3.2
850320 3.7 3.7 3.8 2.3 2.7 3.1
850321 3.7 3.7 3.8 2.4 2.7 3.0
850322 3.7 3.7 3.8 2.4 2.7 3.0
850323 3.6 3.7 3.8 2.3 2.6 2.9
850324 3.6 3.7 3.8 2.3 2.6 3.0
850325 3.6 3.7 3.8 2.4 2.7 3.2
850326 3.6 3.7 3.8 2.4 2.8 3.2
850327 3.6 3.7 3.8 2.4 2.8 3.1
850328 3.6 3.7 3.8 2.4 2.8 3.2
850329 3.6 3.7 3.8 2.7 3.0 3.4
850330 3.6 3.7 3.8 2.6 3.0 3.3
850331 3.6 3.7 3.8 2.6 2.9 3.2
Monthly Value 3.6 3.7 3.9 1.8 2.6 3.4
"""----------------------------------------------------------------------------
49.
Table 13 (continued)•
April 1985
-
Date
850401
850402
850403
Monthly Value
Min
3.6
3.6
3.6
3.6
Intragravel
Mean
3.6
3.6
Max
3.7
3.7
3.7
3.7
Min
2.4
2.3
2.7
2.3
Surface Water
Mean
2.8
2.7
Max
3.2
3.1
3.4
3.4
-----Data not available.
50
~,
-
-
-]...]""}]J J -))])J .]1 1
7
I
5
-0 t
•-swa:
;:)2
t-
~a:1
W
Q.
(J1
:&0
j--l w
t--1
a:
Wt--2
c:(
~
-3
-i
-5
UPPER CIRCULAR SIDE CHANNEL
____...1.(,:..=..R:::.M_7:..;:5:.,.:.,.:..3,_
--MIAN DAILY INTIAHAYIL
--~_.lilIAN DAILY aUI'ACI .ATII
"
r.._;,_,\.'"a/-.P~I "J,.J"I\A ':"\,_,v,_,rV'.
'"\",.",--'\."-'.J''.....I,"'.r
I
I,,
I,
I ,\'.'
SEP OCT NOV DEC JAN FEB MAR APR MAY
Figure 6,Mean daily intragravel and surface water temperatures (oC)recorded at the upper portion
. .tif the spawn~ng area in Circular Side Channel,
Table 1£\
JL_
Datapod temperature recorder data summary:
intragravel and surface water temperatures (C)
recorded at Lower Circular Side Channel,RM 75.3.
November 1984
Date
Min
Intragravel
Mean Max Min
Surface Water
Mean Max
..."
841106 3 .1 3.6 4.3 3.2 3.6 3.7
841107 3.3 3.7 3.7 3.1 3.6 3.7
841108 3.6 3.7 3.8 2.9 3.5 3.7
841109 .8 3.4 3.9 .2 3.0 3.7
841110 -0.2 0.0 .5
841111 -0.2 -0.1 0.0
841112 -0.2 0.0 .1
841113 .1 .2 .5
841114 .4 .7 .9
841115 .7 .8 .9
841116 .3 .5 .7
841117 .2 .3 .4
841118 .4 .5 .7
841119 .6 .8 1.1
841120 1.0 1.4 1.7
841121 1.3 1.7 1.8
841122 0.0 .5 1.3
841123 -0.1 0.0 .1
841124 -0.1 0.0 .1
841125 0.0 0.0 .1
841126 0.0 0.0 .2
841127 .1 .2 .5
841128·.2 .4 .6
841129 .2 .4 .5
841130 .3 .4 .5
Monthly Value .8 4.3 -.2 .9 3.7
----------------------------------------------------------------------------
-----Data not available.
.52
-
~)
-
.....
--
Table 14 (continued).
----------------------------------------------------------------------------
December 1984
----------------------------------------------------------------------------
Intragravel Surface Water
Date -----------------------------------------------Min Mean Max Min Mean Max
----------------------------------------------------------------------------
841201 -0.1 .2 .5
841202 -0.1 0.0 0.0
841203 -0.2 -0.1 0.0
841204 -0.2 -0.1 0.0-841205 -0.1 0.0 .1
841206 -0.1 0.0 0.0
841207 -0.1 0.0 0.0
841208 -0.1 0.0 0.0
841209 -0.1 0.0 .1
841210 -0.1 0.0 .2
841211 0.0 .1 .3
841212 .1 .3 .6
841213 2.8 3.0 3.1 .4 .7 1.2
841214 3.0 3.2 3.2 .6 .7 1.2
841215 3.1 3.2 3.2 .6 1.3 1.8
841216 3.1 3.2 3.2 1.2 1.4 1.7
841217 3.0 3.1 3.1 .9 1.2 1.4
,~841218 2.9 3.0 3.1 .8 1.0 1.1
841219 2.9 3.0 3.1 .7 .9 1.3
841220 3.0 3.2 3.2 .8 1.2 1.7
841221 3.1 3.2 3.3 1.1 1.6 2.2--841222 3.1 3.2 3.3 1.0 1.9 2.4
841223 3.0 3.1 3.1 .5 1.5 2.0
841224 3.0 3.2 3.4 .3 1.1 1.6-841225 3.2 3.2 3.4 .9 1.2 1.5
841226 3.1 3.2 3.2 1.2 1.6 1.9
841227 3.1 3.3 3.4 1.6 1.8 2.1
841228 3.2 3.4 3.4 1.6 1.8 1.9
841229 3.3 3.3 3.4 1.7 1.9 2.1
841230 3.0 3.1 3.3 1.8 2.0 2.2
841231 2.7 2.9 3.0 1.7 1.9 2.1--
Monthly Value 2.7 3.4 -0.2..9 2.4
-----------------------------------------------------------------------------
-----Data not available.-
53
Table 14 (continued).
----------------------------------------------------------------------------
January 1985
----------------------------------------------------------------------------
Intragrave1 Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max ~
----------------------------------------------------------------------------
850101 2.7 2.7 2.7 1.6 1.7 2.0
850102 2.7 2.7 2.9 1.2 1.4 1.7
850103 2.7 2.9 3.0 1.1 1.2 1.4
850104 2.9 3.0 3.1 1.2 1.6 2.0
850105 2.8 2.9 3.0 1.3 1.6 2.0 ~
850106 2.8 3.1 3.2 1.0 1.4 1.6
850107 2.9 3.1 3.3 .9 1.2 1.5
850108 2.7 2.8 3.0 1.1 1.3 1.4
850109 2.5 2.8 2.9 1.1 1.3 1.4
850110 2.5 2.9 3.0 1.1 1.3 1.4
850111 2.7 2.9 2.9 1.0 1.2 1.3
850112 2.6 2.7 2.8 .7 .9 1.1 ~
850113 2.6 2.9 3.2 .5 .7 .9
850114 2.9 3.1 3.2 .4 .7 .8
850115 2.8 2.9 3.0 .4 .5 .7 ~
850116 2.7 2.9 3.0 .5 .5 .7
850117 2.6 2.7 2.7 .3 .5 .7
850118 2.4 2.7 2.8 0.0 .1 .4
850119 2.4 2.9 3.0 0.0 .1 .5
850120 2.6 2.9 3.0 0.0 .1 .3
850121 2.4 2.8 3.1 0.0 .1 .3
850122 2.7 2.9 3.0 0.0 .1 .3
~
850123 2.7 2.8 3.0 0.0 .1 .3
850124 2.6 2.7 2.7 0.0 0.0 .3
850125 2.6 2.6 0.0 .1
850129 .5 .7 .9
850130 3.1 3.2 .7 .8 .9
850131 3.1 3.1 3.2 .5 .7 1.1
Monthly Value 2.4 2.9 3.3 0.0 .8 2.0
~----------------------------------------------------------------------------
-----Data not available.-
54
Table ll\(continued)•
February 1985
Date
Min
Intragravel
Mean Max Min
Surface Water
Mean Max
850201 3.1 3.2 .6 .8 1.0
850202 3.1 3.1 3.2 .9 1.0 1.2
850203 3.1 3.1 3.1 1.0 1.2 1.7
850204 3.1 3.1 3.2 1.2 1.3 1.6
.....850205 3.1 3.1 3.2 1.3 1.6 1.8
850206 3.0 3.1 3.2 1.4 1.7 2.0
850207 3.0 3.1 3.2 1.7 1.9 2.0
850208 3.0 3.1 3.2 1.6 1.9 2.1
850209 3.0 3.1 1.8 2.0
Monthly Value 3.0 3.2 .6 2.1-
-----Data not available.
-
--
-
..-
I
55
JL._
"""
Table 1£1 (continued).
~
------------------------------------------------------------------~---------
March 1985
-------------~---------------------------~----------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max ~----------------------------------------------------------------------------
850307 2.7 2.8 1.8 1.9
850308 2.6 2.7 2.8 1.6 1.7 1.8
850309 2.6 2.7 2.7 1.7 1.7 1.8
850310 2.6 2.7 2.7 1.7 1.7 1.8
850311 2.6 2.7 2.7 1.7 1.7 1.8
850312 2.6 2.6 2.7 1.6 1.7 1.8
850313 2.6 2.6 2.7 1.7 1.7 1.9
850314 2.6 2.7 2.7 1.7 1.7 1.9
STh
850315 2.6 2.7 2.7 1.7 1.7 1.9
850316 2.6 2.7 2.7 1.7 1.8 1.9
850317 2.6 2.7 2.7 1.7 1.8 1.9
850318 2.6 2.6 2.7 1.7 1.8 2.0 -850319 2.6 2.7 2.7 1.7 1.8 2.0
850320 2.6 2.7 2.7 1.7 1.9 2.1
850321 2.6 2.7 2.8 1.7 1.9 2.1
850322 2.6 2.7 2.8 1.7 1.9 2.3
850323 2.6 2.7 2.8 1.7 1.9 2.2
850324 2.6 2.7 2.8 1.8 2.0 2.2
""'1
850325 2.6 2.7 2.8 1.8 2.0 2.4
850326 2.6 2.7
2.8 1.7 2.0 2.4
850327 2.7 2.7 2.8 1.8 2.0 2.3
850328 2.7 2.7 2.8 1.7 2.0 2.3 ~I
850329 2.7 2.7 2.8 1.8 2.0 2.3
850330 2.7 2.7 2.8 1.8 2.0 2.4
850331 2.7 2.7 2.8 1.8 2.0 2.3
Monthly Value 2.6 2.7 2.8 1.6 1.9 2.4 -----------------------------------------------------------------------------
-----Data not available.
56 -
Table 14 (continued).
----------------------------------------------------------------------------
April 1985
~----------------------------------------------------------------------------
Intragravel Surface Water
Date ----------------------------------------------
Min Mean Max Min Mean Max
F~----------------------------------------------------------------------------
850401 2.7 2.7 2.8 1.8 2.0 2.1
850402 2.7 2.7 2.8 1.8 2.0 2.1
850403 2.7 2.8 2.8 1.9 2.0 2.2
850404 2.7 2.7 2.8 1.9 2.1 2.3
850405 2.7 2.7 2.8 1.9 2.1 2.4
850406 2.7 2.7 2.8 1.9 2.2 2.4
850407 2.7 2.7 2.8 2.0 2.2 2.3
850408 2.7 2.7 2.8 1.9 2.2 2.3
850409 2.7 2.7 2.8 1.9 2.1 2.4
850410 2.7 2.7 2.8 1.8 2.1 2.4
850411 2.7 2.7 2.8 1.9 2.2 2.3
,,"JiPIt.850412 2.7 2.7 2.8 1.9 2.1 2.3
850413 2.7 2.7 2.8 1.9 2.2 2.3
850414 2.7 2.7 2.8 1.9 2 .1 2.3
850415 2.7 2.7 2.8 1.9 2.2 2.6
850416 2.7 2.7 2.8 2.0 2.3 2.6
850417 2.7 2.8 2.8 2.0 2.4 2.8
850418 2.7 2.8 2.9 2.0 2.5 3.1
850419 2.7 2.8 2.9 2.1 2.5 2.8
850420 2.7 2.8 2.9 2.0 2.5 2.9
850421 2.7 2.8 2.9 2.1 2.6 3.4
850422 2.8 2.9 2.9 2.1 2.8 3.6
850423 2.8 2.9 2.9 2.2 2.9 3.8
850424 2.8 3.0 2.2 3.5
Monthly Value 2.7 2.8 3.0 1.8 2.3 3.8
----------------------------------------------------------------------------
----Data not available.
-
57
7
I
I
-0 t
0-
UJ s
a:
:::>2t-
eta:1UJa.
<.11 :f
ex>UJ •
t-
a::-1
W
t-et -I
~
-s
...
...
LOWER CIRCULAR SIDE CHANNEL
(RM 7~.3)
---MlAN DAILY UnRAeRAVIL
-----MIAN DAILY IURPACI WATIR
"'~
,4 A ,-'''\"..'",-"1,/"l!\
I',I ,\,.1!'\r.."~"~'',v....;\".,....\.,_"'\.........'\-..•
"""'-
,,
,I,,v
~-,-"---,...,.,---""..~,..'
SEP OCT NOV DEC JAN FEB MAR APR MAY
Figure 7.Mean daily intragravel and surface water temperatures (oC)recorded at the lower portion
..of the obser~ed spawning area in Circular Side Channel.
]I ,)))J ))J ))]J I )J ~J
F""'.•
"""
Intragravel water temperatures at this site ranged from a low of 0.8°C
to 4.3 c C.Surface water temperatures ranged from -0.2°C to 3.8°C.
Water Surface Elevation
Trapper Side Channel
Water surface elevations were obtained at Trapper Side Channel and in
the adjacent mainstem Susitna River on six occasions.Both the side
channel and mainstem water surface elevations are relative to separate
temporary bench marks;each of which have assigned elevations of 100.00
feet.These water surface elevations are presented in Table 15.A plot
of side channel versus mainstem water surface elevations are presented
in Figure 8.
Water surface elevations were found to be very stable varying only 0.04
feet from February 20-May 1.Mainstem water surface elevations fluctu-
ated 1.08 feet for the same period.Corresponding mainstem discharges
were 3,600-5,000 cfs.The final water surface elevation measurement
occurred on May 8 and corresponded to a mainstem discharge of 7,000 cfs.
This discharge resulted in an increase of 0.1 feet for the side channel
water surface elevation and a mainstem water surface elevation decrease
of 0.86 feet.This decrease in mainstem water surface elevation has
been specul ated to result from an expansion of the wetted area of the
mainstem adjacent to this side channel due to ice melt.
Sunset Side Channel
Water surface elevations were also taken in Sunset Side Channel and the
mainstem river adjacent to the side channel.These water surface
elevations are presented in Table 15.A plot of side channel versus
mainstem water surface elevations are presented in Figure 9.
Water surface elevations were stable in this side channel.A maximum
variation of 0.15 ft occurred over a mainstem discharge of 3,500-7,000
cfs.A variation of 0.61 ft occurred in the mainstem over the same
range of mainstem discharge.
Circular Side Channel
Water surface el evations obtained in Ci rcul ar Si de Channel exhi bited
slightly more variation (0.55 ft)than Trapper and Sunset Side Channels
over a lesser range of mainstem discharges (3,600-4,800 cfs).Mainstem
water surface elevations exhibited less variation (0.14 ft)than those
obtained from the mainstem sites adjacent to Trapper and Sunset Side
Channels.These water surface elevations are presented in Table 15.A
plot of side channel versus mainstem water surface elevations are
presented in Figure 10.
-59-
Table 15.Comparison of water surface elevations obtained at selected side
channels in the lower Susitna River to those obtained from adjoining
mainstem locations.
Mainstem .".,
WSEL (ft)Discharge
Location Date SIC MS at Sunshine
~~
Trapper Creek Side Channel 850220 96.39 89.13 3,600
850321 96.42 89.18 4,100
850411 96.42 88.54 3,600
850424 96.41 88.26 4,000
850501 96.43 88.10 5,000
850508 96.53 87.24 7,000
Sunset Side Channel 850221 94.02 91.66 3,500
850321 93.90 92.16 4,100 .1Ili@:'
850410 93.90 91.70 3,600
850423 93.87 91.55 3,900
850430 93.90 91.61 4,800 ~
850508 93.96 92.06 7,000
Circular Side Channel 1J 850220 82.81 ~~::12/3,600
850321 82.77 4,100 ~
850410 82.39 88.31 3,600
850424 82.26 88.20 4,000
850430 82.35 88.34 4,800 ~j
,~
Jj Side channel and mainstem water surface elevations are not "tied"to same
T6M.
~/Data not available.
60
.....
asp P 7
Figure 8.Comparison of mainstem and side channel ,water surface elevations over time at Trapper
Side Channel.
SUNSET SIDE CHANNEL
L
~
850508850430850423850410
94.2
94
93.8
93.6
93.4
93.2
....-..93t
'-"
-J ·92.8w
(f)92.6
O'l 3;
N
92.4
92.2
92
91.8
91.6 -
91.4 -. .
850221 850321
o SIDE CHANNEL WSEL
DATE
+MAINSTEM.WSEL.'...,..,
Figure 9.Comparison of mainstem and side channel water surface elevation over time at Sunset
Side Channel.
!t ,
---~j J 1 J J ..)I ~!...~J ~~
l'J -))1 }1 ]J 1 1
850430
CIRCULAR SIDE CHANNEL
89 I ,
+
88 -
87 -
,......
t 86 -
........
_I
ld
O"l
Ul
w ;:85 -
'84 -
83 -[]B
-a-=
82 I I I I . I I
850210 850220 850321850410 850424
tJ SIDE 'CHANNEL WSEL
DATE
+MAINSTEM WSEL
Figure 10.Comparison of mainstem and side channel water surface elevations over time at
Circular Side Channel.
Substrate
During January,substrate samples were obtained from Trapper,Sunset,
and Circular Side Channels.The results of the analyses of these
samples are presented in Tables 16 through 28 and Figure 11 through 36
and are discussed below by site.
Upper Trapper Side Channel
Four substrate samples were collected from the upper portion of the chum
salmon spawning area observed in this side channel.Aggregate substrate
composition was primarily large gravel (1-3 inch diameter)from the
surface to a 4 inch depth.Substrate size from 5 to 16 inch depths were
primarily small gravel (.8~1 inch diameter)although large gravel,sand,
and silt were present to varying degrees.
Lower Trapper Side Channel
Only one substrate sample was obtained from this site due to ice con-
ditions and water depth.Substrate size from the surface to 4 inches
deep was primarily large (76%)and small (23.9%)gravel.Substrate from
5 to 20 inches deep was primarily small gravel although large gravel,
sand,and silt were present to varying degrees.
Sunset Side Channel
Five samples were collected from this side channel;three from the upper
portion and two from the lower portion.All five samples were relative-
ly similar in substrate size.Large gravel was predominant from the
surface to 4 inches deep wi th small gravel bei ng the predomi nant sub-
strate size from depths of 5-16 inches.Large gravel,sand,and silt
were also present in relatively small quantities from 5 to 16 inches
deep.
Circular Side Channel
Three substrate samples were collected at this site.These substrate
samples were found to vary from the samples collected at either Trapper
or Sunset Side Channels relative to substrate size at various depths.
The aggregate size in Circular Side Channel was relatively larger than
Trapper and Sunset Side Channels.
Large gravel was predominant from the surface to a 13 inch depth.Redd
#R5E contained 69%rubble (3-5 inches in diameter)from a depth of 5-8
inches.Substrate size from a depth of 12-16 inches was primarily small
gravel.Some large gravel,sand,and silt was also present.
Biological Data
Chum Salmon Spawning Surveys
The locations of observed chum salmon spawning activity noted during the
spawning surveys in Circular,Sunset and Lower and Upper Trapper Creek
-64-
-
~I
~,
..",
'lIIml,
/~;
Table 16.Substrate sieve analysis data for Upper Trapper
Side Channel redd number 1 (R-1).
..------------_._--------------------~----~--~..~~-~..~"_..------~-------_......~----..----~~---~~"":...-..-
SIEVE SIEVE am I t PER
HU~BER SIZE (IN)MEI6HT (G~S:PASSING CLASS
SAI\PLE
NUKBER
SIDE
CHANNEL
-----------------------------------------------------------------------------------
-----------------------------------------------------------------------------------
-
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPfER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
R-IA
R-tA
R-IA
R-IA
R-IA
R-IA
R-IA
R-IA
R-IA
IHA
R-IB
R-IB
R-1S
R-IB
a-IB
R-IB
R-IB
R-IB
R-IB
R-IB
R-le
a-Ie
R-Ie
JHI:
R-lC
R-Ie
R-IC
R-IC
R-1C
R-l1:
R-10
R-ID
R-I0
R-I0
R-I0
R-ID
R-1D
R-ID
R-1D
R-lD
5
3
I
4
10
35
SO
tOO
230
TOTAL
5
3
1
4
10
35
50
100
230
TOTAL
5
3
I
4
10
35
50
100
230
TOTAL
5
3
1
4
10
35
SO
100
230
TOTAL
3
I
0.187
0.0787
0.0197
0.0116
0.0059
0.0025
5
3
1
0.187
0.0787
0.0197
0.0116
0.0059
0.0025
5
3
1
0.187
0.0787
0.0197
0.0116
0.0059
0.0025
5
3
1
0.187
0.0787
0.0197
0.0116
0.005~
0.0025
o
776
1140
1155
USB
1159
1160
1161
1161
o
576
1284J
1371
1406
1412
1415
1419
1420
o
940
1624
1184
1900
1930
1946
1952
1965
o
443
781
827
814
ee1:2
899
901
913
100
33
LB
0.5
0.3
0.2
0.1
o
100
59
9.2
3.5
J
0.6
0.4
0.1
100
52
17
9.2
3.3
1.8
1
0.7
100
51
14
9,4
4.3
2.3
1.5
1.3
67
31.2
1..3
0.2
0.1
0.1
0.1
o
100
41
49.S
5.7
2.5
0.4
0.2
0.3
0.1
100
48
35
7.B
5.9
1.5
0.8
0.3
0.7
100
49
37
4.6
5.1
2
0.6
0.2
1.3
100
-----------------------------------------------------------------------------------
HI-A:Substrate sa=ple ottaio!d frol chul r!dd labeled Rl at a depth of 0-4 inches.
RI-8:5-8 inches
RI-C:9-12 inches
RI-D:13-16 inches
65
I II ~l
IIu.s.Inch••I U.S.SI.y.511••I WyllT"O_Ur"
I
0 0
~on 0 0 ...
'l"'"-.....,on -N
0.·lw~I I I ..1
'I r 1090I,
\
SO 20l~
70 \30
1\\I "•...,
J::n•..\40 ::l~60 ~<P:s
1\
n,.,0aI-..,
~50 50 '.'~I
•c ,...,.1L
oe·..
60~i ~O I~\I •..-c.a•:rlL.<P
30 70
20 1\SO
\"'""'1"'-~9010............r---~......-=~...'-1000
100 to t .1 .02 .Ot .OOS .002 .00t
~.ln Size In Mlll1~\
II&RAva.~SAIIJ I SILT DR CUY
Co.,..e I F1ntI MHl~I Flne
SI~le I~lflC8tlon Claalf1C11tlan Deta unUled FllI-.rIcaS,.Hale s..~th Clli CZ LL PI Sll"g Cl •••
....-u.....ACE
0 Rt-e ~"I
0 At-C ,-
0+>...W 12"
I
!.
DWI(:=:~~Fa.
~~AlASKA t:E?T OF FISH &GAME GIIiO.:ICD A..\\'\R&M CONSUL.TANTS,INC.-SUSI'l'NA Ei\BlTAT SUBSTRATEOAT..,..-_/85 ---........--..........-...-~~
PItO.lNO 551053UPPERTRAPPER.1 DATAPOD SITE
SCALE DWliNO
Figure 11.Depth integrated substrate composition,percent by weight passing
each sieve size for redd number 1 in Upper Trapper Side Channel.
66
.-m,-
-
-
}]}
-'-l
!
I
J
'49
1--,
48
.1
10.6
)
TRAPPER
SUBSTRATE COMPOSITION
R-1B R-1C R-1D
SAMP~UMBERvzzaN.,,~.......IX:!)..Mi_.(0001
...-ntATlIIZI OATIOOflY On),.
],
UPPER
--I
ts:SI."'1
-~
~).
)()
100
~'')
SO
.........70 .,871-.
J:
(!,.,
w 60~
>-CD 50'-'
I-
Z
40w
m U
-.....J u:::
L.L..
Ll....30
20
10
o~a
R-1A
Figure 12.Depth integrated substrate composition by weight from redd number 1 in Upper Trapper
Side Channel.
-...--._.<\.,....,_.....'._..__....._-...A '.'
"""
Tabl e 17.Substrate sieve analysis data for Upper
Trapper Side Channel redd number,2 (R-2).
""""
-----------------------------------------------------------------------------------
-----SiD:-----------SA~PLEl---~;~VE------s;;~;---------cu;--------;-----~;-~;;----t I ......",.....d J.Joi ,_"
CHANNEL IiUl'IBER NU!!SER 5rzE WI}IIEIEHT lSl'lS)PASSIN6 CLASS -
-----------------------------------------------------------------------------------
UPPER TRAPPER-R-2A 5 5
UPPER TRAPPER R-2A 3 3 0 100 9:.3
UPPER TRAPPER R-2A 1 1 906 6e 7 :.7
UPPER TRmER R-2A 4 C.157 992 0
UPPER TRAPPER R-2A 10 V.01S7 m 0 0
UPPER TRAPPER R-2A 35 0.0197 992 0 0
UPPER TRAPPER R-2A SO 0.0116 992 0 a
UPPER TRAPPER R-2A 100 a.OO59 992 0 0
UPPER TRAPPER R-2A 230 0.0025 992 (}a
UPPER TRAPPER R-2A TOTAL 992 100
UPPER TRAPPER R-2B 5 5
UPPER TRAPPER R-2B 3 3 a 100 11
UPPER TRAPPER R-2B 1 1 94 89 71
UPPER TRAPPER R-2B 4 0.181 n7 IS 5
UPPER TRAPPER R-2B 10 0.0787 774 ,-5.8.~
UPPER TRAPPER R-2B 35 0.0197 824 i.2 3.9
UPPER TRAPPER R-2B 50 a.Olill m 3.3 I.e
UPPER TRAPPER R-2B 100 0.0059 875 1.5 1.2
UPPER TRAPPER R-25 230 0.0025 8es 0.3 0.3
UPPER TRAPPER R-2B TCTAL 8SB 100
UPPER TRAPPER R-2C 5 5
LIPPER TRAPPER R-2C 3 3 0 100 15
UPPER TRAPPER R-2C 1 1 200 85 50 ~
UPPER TRAPPER R-2C 4 C.1S7 B~2 35 10
UPPER TRAPPE~R-2C 10 0.0787 m 25 13
UPPER TRAPPER R-2C 35 0.0197 1135 f?8.4..
UPPER TRAPPER R-2C 50 0.0116 1246 3.6 2.4
UPPER TRAPPER R-2C 100 0.0059 1277 1.2 O.il
UPPER TRAPPER R-2C 230 0.0025 12B5 0.6 0.6
UPPER TRAPPER R-2C TOTAL 1293 100 ~~
UPPER TRAPPER R-2D 5 5
UPPER TRAPPER R-2D 3 3
UPPER TRAPPER R-20 1 1 a 100 31
UPPER TRAPPER R-2D 4 0.187 44 09 8
UPPER TRAPPER R-2D 10 a.om C:~61 28....
UPPER TRAPPER R-2D 35 0.0197 95 ~T 26J~
UPPER TRAPPER R-2D 50 0.0116 iT?7 7....
UPPER TRAPPER R-2D 100 O.ot5~142 0 a
UPPER TRAPPER R-2D 230 0.0025 142 C 0
UPPER TRAPPER R-2D TOil'll 142 lOO
-----------------------------------------------------------------------------------
1 R2-A:Substrate sa~ple obtained free thuc reed labeled R2 at a de;:h of 0-4 inches.
R2-B:5-8 inches
R2-C:9-12 inches
R2-D:13-16 i nche:-
68
i"u.s.Inch..U.S:51 ....51z..Hydl"o_tel"
a 0
2 on a a
....
.opl"l .......on ...N
100 0
~t'-.'\I .1
t\~1\,1090\"(\,\
80 \\20
70
\.30.~.....i',~
~..
1"-
,.r::.n....
:60 40 ~
:s \1\f'P
:0-\n
".a •
k50
,
50 •,•c:;\,..........a'
~
..,
~40 60 :II:
CI ..
'"-a..~::r
~L ...
30 "70
'\\~20 !l,.~80
i',\r---......10 ......90....,~t1 .....~~/--0 100
100 10 1 .1 .02 .01 .OOS .002 .001
\,~.1n 51ze 1n Nl11l••t.ra
&RAVEl.~SAP«)
SILT DR CUY
CO.,.••Ftn....du-Fine
~
I
s..ple Identification Cl...lflcstlon oata &-.1tl...
ClUB AtI_ks
SY·Hale SUp Depth QI I:Z LL PI S org
A fR-otA &R='ACE
c iR-28 4·
0 A-2C ,-
+R-2D 12·
DWI(
DATE.7 1/85
SCAl.E
~FlI.
R&M CONSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME:GIlID.
SOSITNA HABITAT SUBSTRATE.--.._-..................................,..-.
PRO.l.HO 551053TRAPPERREDOCORE112
OWG HO
Figure 13.Depth integrated substrate composition,percent by weight
passing each sieve size for redd number 2 in Upper Trapper
Side Channel.
69
LJPPER TRAPPER
SUBSTRATE COMPOSITION
t
o
39
o 0.6
60'
o.3oo
100
90
80
,...........70l-
I
'-'w 60;;:
>-(Q 50........,
~w 40ua::
-...I W
a 0-30 -
20
10
0 10
R-2A
[ZZ]>3 (SSJ 3-'
R-28 R-2C R-2D
SAMPLE NUMBER~'-,8 ~,8-,02 .~.02-,002 £88B1 ,(,002
SUBSTRATE SIZE CATEGORY On)
Figure 14.Depth integrated substrate composition by weight from redd,·number.2 in Upper Trapper
Side Channel,'
J l-I 1 ~J ',1 D ],,l J J 1 ~)
.-
Tabl e 18.Substrate sieve analysis data for Upper
Trapper Side Channel redd number 3 (R~3).
f#AI ------------------------------------------------------------------------.----------
-----srD£-----------SA~PLEr----SiEYE------srEvE---------cur--------i------i-p£R----
CHAKIIEL NUl'lSER NU!!BER SIZE mil WEI5HT (5"5)PASSIN::LAS5
-----------------------------------------------------------------------------------
UPPER TRAPPER HA 5 ....
UPPER TRAPPER F;-3A 3 3 a 100 96.9
UPPER TRAPPER F,-3A 1 1 1378 3.1 3.1
UPPER TRAPPER 1i-3A 4 0.167 1422 0 0
UPPER TRAPPER 1i-3A 10 C.OiS]1422 0 0
UPPER TRAPPER HA 35 a.om 1422 a 0
LIPPER TRAPPER P,-JA 50 a.om 1422 0 0
UPPER TRAPPER R-3A 100 O.O~5q 1422 0 a
UPPER TRAPPER R-JA 230 0.0025 1422 0 0
UPPER TRAPPER R-3A TOTAL 1422 0 100
UPPER TRAPPER 1i-3B 5 5
UPPER TRAPPER R-39 3 3 0 100 6B
~UPPER TRAPPER R-3B 1 1 475 32 30
UPPER TRAPPER R-3B 4 0.187 -1)O 2 0.60_.
UPPER TRAPPER HB 10 0.0767 m 1.4 0.4
,.-.UPPER TRAPPER R-3!35 0.0197 696 I 0.1
UPPER TRAPPER R-3B 50 C.0116 697 C.9 0.3
UPPER TRAPPER R-3B 100 0.0059 699 0.6 0.5
UPPER TRAPPER R-3B 230 0.0025 702 0.1 0.1
UPPER TRAPPER R-3B TOTAL 703 100
UPPER TRAPPER P'-3C 5 5
UPPER TRAPPER R-3C 3 3 C 100 15
UPPER TRAPPER Ht 1 1 121 85 57
UPPER TRAPPER P,-3C ~0.187 587 28 10
UPPER TRAPPER R-3C 10 0.0767 IIb3 18 7
UPPER TRAPPER R-3C 3S 0.0197 720 11 1.11
UPPER TRAPPER R-3C SO o.om m u 4.7
UPPER TRAPPER R-3C 100 0.0059 777 4.4 3.8
UPPER TRAPPER R-3t 230 0.0025 80B O.b 0.6
UPPER TRAPPER R-3!:TCTAl 813 100
UPPER TRAPPER ii-3D 5 5
UPPER TRAPPER R-3D 3 3
UPPER TRAPPER It-3D 1 1 0 100 42-UPPER TRAPPER R-3D 4 0.H!7 44 :8 28
UPPER TRAPPER ND 10 0.0767 13 30 19
UPPER TRAP.PER R-J1J 35 0.0197 93 11 4.3
UPPER TRAflPER R-3D 50 0.0116 97 6.7 5.7
UPPER TRAPPER R-3D 100 0.0059 103 1 I
UPPER TRAPPER ii-3D 230 0.0025 104 0 a
UPPER TRAPPER R-3D TOTAL 104 100
------------------------------------------------------------.----------------------
1 R3-A:Substrate sa~ple cztained froe chul redc la_eled R3 at i depth of Q-4 incoes.
R3-B:5-8 inches-R3-C:9-12 incnes
R3-D:13-16 inches
~(\l
71
IIu.s.Inc"'.I U.S.Sieve Slzee r Hyara..te,.
0 0
0 II')0 0 Of)
<r'"......II)a ..C\I 0-.tOO-\I -.1
t\1\SID ,10\\80
,"20\
~3070
\"0•41 ,.c nIII•:60 '"'~
\..z
n"'"1\a.a 1\;..'~50 50 :r:\1\~..
a'lL.....41
60 x~.040 1\•u -'-~a•~lL...
7030
'i\1\1\i'\..8020\"-
9010'L t-.,~~"-
1000
.1 .02 .01 .005 .002 .001100101
,\sr.ln Size In Ml111 ..t.,..
I &RAYa.~SAIIJ I IIISILTDR-CUV
Cl:iraa FlM Iledllm F'lM
s..pl.Idantlflc.tlan_Cl...1flaUan o.a Un1fll1d Aaurb
Sr-1tD1.sup.DlI$Itb eu CZ u.PI S llrll Cl...
A IfHA UFACE
C ~38 .-
0 R-l!IC .-
+1A-3D 12-
DWN.--~FIl
:O:D.R\'\\R&M CCNSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME GRID
DATE.~l/85 ----.........--.............-.............SUSITNA HABITAT SUBSTRATE PIIO.l.NQ
TRAPPER REDDCORE #3SCALE DWGNO
Figure 15.Depth integrated substrated composition,percent by weight
passing each sieve size for redd number 3 in Upper Trapper
Side Channel.
72
-miA:'lid.r Si
-
-
....,
Table 19.Substrate sieve analysis data for Upper
Trapper Side Channel redd number 4 (R-4).
-----siD~----------SA~PLEl----5iEVE------siE;~---------Cu;,--------i-----·z-~~~----
CHANNEL NUMEER MUMEER SIZE (!~:.EIGHT (5~:;PASS INS CLASS
-
-
-
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UrPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPFER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER "-
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UFf'ER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
.UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
UPPER TRAPPER
RH
R4-A
R4-A
R4-A
RH
R4-A
R4-A
R4-A
RH
RH
RA-!!
R4-!!
R4-B
R4-B
R4-B
RH
R4-B
R4-B
R4-B
R4-B
RH:
R4-C
R4-C
R4-C
R4-C
R4-C
R4-C
R4-r;
R4-C
R4-C
R4-n
R4-D
R4-D
R4-D
R4-D
RH
R4-D
R4-D
RH
R4-D
5
3
1
4
10
35
50
100
230
TOTAL
3
1
4
10
35
50
100
230
TCTAL
S
3
I
4
10
35
50
100
230
TOiAL
S
3
1
4
10
3S
50
100
230
TOTAL
3
0.lE7
0.07e7
0.0197
o.cHc
a.om
a.om
0.137
o.om
0.0197
0.0116
0.0059
0.0025
S
'3
0.187
o.om
0.0197
a.om
0.0059
0.0025
3
1
O.lE7
0.0787
0.0197
0.OU6
O.0059
O.OC2~
c
1m
1m
128:
1284
1254
1m
1254
1284
o
147
m
m
481
483
423
454
484
2H
606
m
739
781
795
m
602
o
43
79
111
120
!21
121
100
l'..
o 1
0.1
o
o
o
o
100
70
3.5
~.4
O.b
0.2
0.2
a
100
69
24
17
7.9
2.6
U
0.4
100
64
sa
35
5.3
0.8
o
tr,<:.\t ..
r,'i
f,I...
o
c
a
100
30
6U
O.S
0.4
a
0.2
o
100
31
45
7
9.1
5.3
L7
0.5
0.4
100
36
Q
23
26.7
7.S
o ~
o
"'""
-
-
1R4 -A:Substrate sa~?le obtained from ch~1 re:d labelej R4 2:a de~th of 0-4 :n:nes.
R4-B:5-8 i ncnes
R4-C:9-12 inc~es
R4-D:l3-16 incnes
74
.-
-
-
I u.s.Inch..!U.S.Sleve Slze.r Hyar-oHte,.I
0 0
0 II')0 0
r<J
~............,on ..(\j
100 0
\I If J
III I I I1\1\I I
90
I
10
r\\
eo \I
20
70 ~"30
\\"1:1.....,•
.c
,
...n
1\•;&0 40 ::J
S '\\""...
\..,n
~.a
,co-.
fisa
:'
c \'\
50·:..~
IL I:l'.....
;-60 E
co \
J
•
L -•~a
L
~...
30 \
70
20
\"
'-.
1\
SO
~A...10 '"
90
~-r'-.r-.,'"-I-.~~
0 100
100 10 1 .1 .02 .01 •DOS .002 .001
~.ln 51z.1n M1111 ..t.r.
I •~I IliAAva.SAND
I ,SILT OR a..AY
Cuar••Fin....dlUil Fin•
5aaDI.Id.ntlf1c.t1an CI...1f1c.t1an Dat.lkllU.d
CI ...Anrks
~HoI.Sup DaDth eu CZ u.PI I org
..,......,.ILI'F.u:e:
0 ~-B ",-
01 IM-C 8-
+A4-O 12-
1 I
I I
~;>...~c,;
~a
:"0 t~"R&M CONSUI-TANTS,INC.ALASKA DEPT OF FISH &GAME GRIQ -
Q£TE :l"P1./85 ...._.....0 ..._.........._............--.SUSITNA HABITAT SUBSTRATE f "1tC.l.NO c;c;,n <;~
TRAPPER REDDCORE #4
SC<lLE OWIONO
Figure 17.Depth integrated substrate composition,percent by weight passing
each sieve size for redd number 4 in Upper Trapper Side Channel.
75
-.-
LJPPER.TRAPPER
SUBSTRATE COMPOSITION
o
42
o 0.4
62'
o.8 .6 0
68.6
R4-B R4-C R4-D
SAMF.'LE NUM8ER ,
~1·,8 ~,8-,02 IZ:ZI .o2!",002 tl888a (,002
SUBSTRATE SIZE CATEGORV (In)
100
90
80
'P 70
I
e."
W 603:
>-([)50'-'
I-
ZLIJ 40
U
0::::
"-J LLJ
O"l 0..30
20
10
o lJ?E"n
n 0
R4-A.
IZZl >3 lSSI 3-1
Figure 18.Depth integrated substrate composition by weight from redd number 4 in Upper Trapper
Side Channel ,"~"
I I ),t J ~))J ~J i •J ))~,
Table 20.Substrate sieve analysis data for Lower
Trapper Side Channel redd number 2 (R-2).
-_......_--...----_....._------------------------------------_.-_._----------------------
..···s iff"····SA;P ~Et--·-SiE ~E·"'·~··sIEY£-~-~.··~ur._-:------i'"'PER----
CHAkkEL H~~EER M::~SEii SIE mJ kElm (6~S)FAS:IM:C~AS5
------------...------------------------_....----------------------------------------
-
-~
-
LOiiER TRAPPER
LOilER TRAPPER
LOliERTRAPFER
LOilER TRAPPER
LOIER TRAmp.
LeliER TRAPPER
mER TRAPPER
LO~ER TRAPPER
LOIiER TRAPPER
LOWER TRAPPER
lOilER TRAPPER
LOllEfi TRA?PER
LOIiER TRAPPER
LOIiER TRAPPER
LOIlER TRAPPER
LOWER TRAPPER
LO.:R TRAPPER
LOl/ER TRAPPER
LOIiER TRAPPER
LOIIER TRAPPER
LOIiER TRAPPER
LOIj£R TRAPPER
LOIiER TRAPPER
LOIIER TP,I\PPER
LOIIER TRAPPER
LOIlER TRA?PER
LOiiER TRA PPER
LOIlER TRAPPER
LOllER TRAPPER
LollER TRAPPER
LOIiER TRAPPER
lOIiER TRAPPER
LOllER TRAPPER
LOllER TRAPPER
LOIiER TRAPPER
LIliiER TRAPPER
LOIiER TRAPPER
LollER TRAPPER
LOliER TRAPPER
lCIiER TRAPPER
LOWER TRAPPER
LOIlER TRAP PER
LOllER TRAPPER
LOliER TRAPPER
LOiiER TRAP PER
LOlER TRAPPER
LOkER TRAPPER
LO~ER TRAPPER
LQkER TRAP PER
LO~ER TRAP PER
RH
R2-A
RH
RH
R2-A
R2-A
RH
R2-A
RH
RH
RH
RH
RH
RH
RN!
RN
RH
RH
RH
RH
RH
RH
RH
RH
RH
RN
RH
RH
RH
R2-C
R2-D
RH
R2-D
RH
R2-D
R2-D
RH
RH
R2-D
R2-D
RH
R?-;
R2-E
R~-£
5
10
35
50
JO~
230
TOTAL
5
3
(
10
35
50
100
230
TOTAL
S
3
1
4
10
35
SO
100
230
TOTAL
5
3
1
4
10
35
SO
100
230
TOTAL
5
3
1
4
10
35
50
100
230
TOTAL
3
US1
0.0787
0.0197
M1l6
O.OC59
0.0025
5
3
1
0.IS7
0.0151
0.0197
UI16
0.0059
0.0025
3
I
0.187
0.0787
0.0197
0.0116
0.0059
0.0025
5
3
0.187
0.0787
0.0197
0.0116
0.0059
o.om
5
3
1
0.187
0.0727
C.Q19i
O.Cl16
0.0059
O.OC'25
o
106£
140'1
141C
1410
1411
1411
1411
1411
o
m
1037
1120
IlC~
1178
lI96
1198
1203
(I
363
1239
1414
150B
1541
1579
15B8
1m
o
me
2023
21Bl
2344
2409
24Bl
2506
252~
o
B8
406
471
605
736
BOb
BH
821
100
24
0.1
0.1
0.1
o
o
o
100
65
14
6.9
3.2
2.1
0.6
0.4
100
77
22
11
5.3
3.2
O.B
0.3
100
49
20
14
1.1
4.6
l.7
0.7
100
89
•51
43
10
L8
0.6
76
23.9
o
o
0.1
o
a
o
100
35
51
1.1
3.7
1.1
1.5
0.2
0.4
100
23
55
11
5.7
2.1
2.4
0.5
0.3
100
51
29
. 6
6.9
2.5
2.9
I
0.1
100
11
38
8
11
16
8.2
1.2
0.6
100
-----------------------~_.._---------------------------------------------------
1 R2-A:Substrate suple :btalnej from cnul recc labelec R2 at a depth of 0-4 !ncMes.
R2-E:5-8 i n:nes
R2-C:9-12 inches
R2-D:13-16 incnes
77
__11
IIU.S.Inch••I U.S.51 •••SlZ ••[Ityllf'"a..ter
0 0
0 ~0 0 If)
~.......-"1 n -Naoo 0IIIr
--,I ----r-t'--
"go 10
\1\\I\\
SO
I
20
!\I\1\\
\
\
70
I
30
\~f I I ~
1\1\•...,.r;n..•';;60 40 :I
\\1 ~:II:
".;nc.a •\.,
~50 50 •i\\~\~•~.,
II."-G'oc..,
;40 60 a::\,'"•u -L-a•:rL...
3Q 70
~"1\8020'\~~1\~r-....~9010~~l\Ir-...t'\.
a 100
100 10 1 .1 .02 .01 .005 .002 .001
sr.1n S1ze in Mi111..tara
I 61'1AVEl.~SUIJ I IIIs:z.T DR CLAY
!:Ger••Fine M8di..Fine
sa.ale Identification Cl...lflcatlan D8t.laI1f~Anarka
S.,.Hal.Snf,i
_til eu CZ LL PI S Or,a.-
.J,....-....ACE
IJ fa-e 4"1
I
0 jQIH:••I..~12"
x ~e 1«S·I
I I
~@ 11awlt~FlI.
:1(0_{tl)---'---'--'ALASKA DEPT OF .!'-S:&Q.MER&M CONSUL.TANTS.INC.CiIttl1
DATE 7rll/85 --------...••~.___ae ___....-..:I SUSITNA RABIn,:s:ssTRATE PIlO.l.NO 551053
LOWER TRA?~SCALE a.GNO
Figure 19.Depth integrated substrate composition,percent by weight
passing each sieve size for redd number 2 in Lower Trapper
5i de Channel.
78
"'""',
-
...."
-
-
J .l 1:.J ]J ))f j 1 )
LOWER TRAPPER
SUBSTRATE COMPOSITION
66
68.1
F~2-B
o'
R2-C R2-D
46
r~2~E
SAMPLE NUMBER
~1-.8 ~.8-.02 IZ:zI .02-.002'~<.002
SUBSTRATE SIZE CATEGORY (In)
Figure 20.Depth integrated substrate composition by weight from redd number 2 in Lower Trapper
Side Channel.
I "__II
Table 21.Substrate sieve analysis data for Upper
Sunset Side Channel redd number 6 (R-6).
-----sIDE-----------SA~LET---_SiEVE------SIEy£---------c~;,--------i------i-PER----
CH~MNEL KU~ER NU~EER SIZE (INI ~Ersr.T tS~Sl PA55!XS CLASS
-
-,
1 ,RS-e-A:5ubstrat~siEcle attained froE "h~redd ]abele:R:-6 at a de~th of 0-4 inches.
RE-:-E:5-8 inches
R~-~-r.9-12 in"hes
RS-b-D:13-16 inChes
UPPER SUNm
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
lIPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SIJtjSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER WHSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
UPPER SUN.SET
UPPER SUNSET
UPPER SUNSET
UPPER SUN5£T
UPPER SUNSET
UPPER SUNSET
UPPER SUNSET
U?PER SUNSET
Rh-A
R:-~-A
RS-b-A
RS-H
R:-H
RS-b-A
R5+A
R:-i:-A
RS-c-A
RH-A
RS-H
R5-i:-B
R5+B
RS-e-B
RS-H
RS-e-B
fiS-e-B
RH-B
Re-I:-B
RE-6-B
RH-C
R5-6-C
Rt-H
RHI-C
RH:-C
RH-C
R5-i:-C
RH-C
RE+C
R6+D
RS-c-D
fiE-c-D
RS-b-D
Re-:-n
RH-D
RH-D
RH-D
R::-i.-O
RH-!!
5.00
3.00
1.00
~.oo
10.00
3S,00
SO.OO
100,00
230.00
TOTAL
5.00
3,00
1.00
4.00
10.00
3S,00
50.00
100.00
230.00
TOTAL
5.00
3.00
1.00
4.00
10.00
35.00
50.00
100.00
230.00
TOTAL
5.00
3.00
1.00
4.00
10,00
35.00
5C.00
100.00
230.00
TOiAl
5
3
1
0.187
0.0787
0.0197
C.Ollb
o.em
o.ons
5
3
1
0.lB7
0.0787
0.IH97
0.0116
0.0059
0.0025
5
3
1
0.le7
0.0787
0.0197
0.0116
0.0059
0.0025
5
3
1
0.187
0.0787
0.0197
0.0116
C~0059
o
378
m
m
420
m
m
420
420
()
269
alB
667
682
b87
1:95
704
70B
o
~21
636
693
7ll
740
764
m
o
~i1
312
366
39S
405
4!6
4'''
4?:::
100
10
C.2
0.2
o
o
o
o
100
62
11
S.B
3,7
3
1.8
o.c
100
32
17
10
7.7
3,9
0.8
100
es
27
14
7.1
4.7
2.1
A <:
""'a ...
90
9.B
o
0.2
o
o
o
o
100
38
51
5.2
2.1
0.7
1.2
1.2
0.6
100
68
15
7
2.3
3.8
3.1
0.8
100
12
61
13
6.9
2.~
2.6
1.6
(1,5
100
-
-
-
-
80
""""
jr-.I u.s.Inch••I U.S.'Sl.ve Slz ••I HyGl"'o_te,.
0 0
0 ot')0 ~....
~...;:-...-""
....,111 '"._..--.__.C100\I I I
1
90
,10
~"'\I•
80 20
-\\\
70 ".30
\\~.....\\."1
~n
ao III ..
-=60 040 :3
Z \\
r0-
n»0
.a •\\
.,
~50 50 •
\•c:.,..
IL.a-
M
...
~.cO &0 ~
\..
a -l.co..~
CL.\~...
7030,\
,\f\80,...,20 l~~10
q 90
"-"-',,;........t::....""-.-......
0 100
100 10 1 .1 ,02 .01 .005 .002 .001
.,&rain 51%8 in Millint....
GRAVEL SAND
SILT OR CUY
Coar ••Fin.COli"••M.diUli Fine
-
511l1C1l.IdanUUation Cl ...iflcatiDn Data unUied AIIark.
SY·Hel•se.Depth eu CZ LL PI S QrD Cl...
A •.,.....,..ACE
0 SS 11&-&-1 ~.I I
0 as li&-&-c '."+!IS ~i2"
I I
I I
-.
0....~,
CUE 7~1l/85
SCAL.E
'-='1r~rrN,-_eo;~"\I
R&M CONSULTANTS.INC.____.. ....._.....-....__.""'''''.''0_.ALASKA DEPT OF FISH &GAME
SL'SITNA HABITAT SUBSTRATE
SS RG-6
P"O~..o <:c;,n <:.,
cWGHO
Figure 21.Depth integrated substrate composition,percent by weight passing
each sieve size for redd number G-6 in Upper Sunset Side Channel.
81
UPPER SlJf'JSET
SUBSTRATE COMPOSITIOI~
.!
.5
RG-6-D
o,8
RG-6-C
o 0./I~_.·_~,e'
56,2
RG-6-B
83
o
100 -
90
80
...........70l-
I
<..'
W 605:
>-m 50'-"
l-Z
LL.1 40un::
LLJ 30000...N
20
10
0 10
RG-6-A
tz:zl >3 cs::sJ 3-1
SAMPLE NUMBER
f2LZ),.,8 ~.8-,02 IZ:ZJ .02-,002
SUBSTRATE SIZE CATEGORY (In)
E8883 (.002
Figure 22,Depth integrated substrate composition by weight from redd number G-6 in Upper Sunset
Side Channel,.
-~J ,I ]I t J )j J J ~~)I.)-.~
Tabl e 22.Substrate sieve analysis data for Upper Sunset
Side Channel redd number 6A (R-6A).
-----------------------------------------------------------------------------------
------------------------~--------------------------------SIDE SMPLE SIEVE SIEVE CUll 1.HER
CHAH~EL ItUIIBER ItUIIBER SIZE (lit)WElSHT (SIIS]PASSIHS CLASS
--------------------------------------------
UPPER SUNSET R6A-A 5.00 :5
UPPER SUNSET R6A-A 3.00 3 0 100 63
UPPER SUNSET R6A-A 1.00 1 609 37 29.5
UPPER SUNSET RcA-A 4.00 0.187 894 7.5 1.9
UPPER SUNSET R6A-A 10.00 0.0787 913 5.6 1.9
UPPER SUNSET RcA-A 35.00 0.0197 931 3.7 1
UPPER SUNSET R6A-A 50.00 0.0116 941 2.7 0.8
UPPER SUNSET RbA-A 100.00 0.0059 949 1.9 1.4
UPPER SUNSET R6A-A 230.00 0.0025 962 0.5 0.5
UPPER SUNSET RcA-A TOTAL 967 100
UPPER SUNSET R6A-B 5.00 5
UPPER SUNSET R6A-B 3.00 3 0 100 20
UPPER SUNSET R6A-B 1.00 1 176 80 45
UPPER SUNS£T R6A-B 4.00 0.187 583 35 10
UPPER SUNSET R6A-B 10.00 0.0787 675 25 12
UPPER SUNSET R6A-B 35.00 0.0197 781 13 4.6...,
UPPER SUNSET R6A-B 50.00 0.0116 823 8.4 3.4
UPPER SUNSET RbA-B 100.00 0.0059 853 5 3.7
UPPER sum R6A-B 230.00 0.0025 886 1.3 1.3
UPPER SUNSET R6A-B TOTAL 898 100
UPPER SUNS£T R6A-C 5.00 :5
UPPER SUNSET RbA-C 3.00 3 0 100 23
UPPER SUNSET R6A-1:1.00 1 104 71 43
~UPPER SUNSET H6A-C 4.00 0.187 301 34 10
UPPER SUNS£T R6A-!:10.00 0.0787 341 24 16.3
UPPER SUNSET R6A-1:35.00 0.0197 419 7.7 3.5-UPPER SUNSET RilA-C 50.00 0.0116 435 4.2 2.2
UPPER SUNSET R6A-1:100.00 0.0059 445 2 1.6
UPPER SUNSET R6A-1:230.00 0.0025 452 0.4 0.4
UPPER SUNSET R~I:TOTAL 454 100
RcA-A:Substrate saaple abtained frol cnul redd labeled RcA at a de~th of 0-4 inches.
H6A-B:5-S inches
RbA-C:9-12 inches
R6A-D:13-16 inches
-
83
,U.s.Inch..j U.S.~1.ye 51z••!Hyllra..t.,.I
It'I 0 0a0a..,
~....-~.....,on .-(\I----100 -aIIIII1\
90
.,
10
~\,80 ~l\I
20
70 .\30!\'1J...•.r::..,
n'"•;60 ~~
:s ~...
""n
.Q
,0..
~50
.,
50 ••~.,..
II.1:1'...\""i ~o 60 :II:
u ,•
L.-~~0•:zlL...
30 f\70
\\-
~20 "\
80
I
10 i'90
,
"r-........-r---'!"-~.....
0 100
100 10 1 .1 .02 .01 .005 .002 .001
"sr.1n S1z.1n Ml11~
I
BRAVEL ~SAND
I IIISILT~CLAY
Co.r••F1n.Media n_
SI~l.Id.ntification Cl ...lflcation e.ta ""tn.1f
Cl_Reurtc.
SY·Hal.SlIII:I o.pth QI CZ U.PI s Or;
4 •......."ACE
c 55 ~A-B ~-.
0 IS tSA-C 8-
I
I
.
~OW'",.;cs F!l
ellD a')R &M CONSULTANTS,INC.AI.A.Sn DEPT OF FISH &GAME Gil It).I
D.l.TE·7iU/85 .....-...........-"......--.....-._.SUS:n;:A HABITAT SUBSTRATE PROJ.HO 551053
SCALE 5S R6A
OWG NO
Figure 23.Depth integrated substrate composition,percent by weight
passing sieve size for redd number 6A in Upper Sunset Side
Channel.
84
-
--
))1 l ]1 1 }1 J 1 })1 J
UPPER SUNSET
SUBSTRATE COMPOSITION
55'
o o
53
.4
R6A-B R6A-C
SAMPLE NUMBER
~1-.8 ~.8-.02 ~.02-.002 £8883 <.002
SUBSTRATE SIZE CATEGORY (In)
-Figure 24.Depth integrated substrate composition by weight from redd number 6A in Upper Sunset
Side Channel..
Tabl e 23.Substrate sieve analysis data for Upper -Sunset Side Channel redd number 7 (R-7).
------------------------------------------------~----------------------------------"""-----siD~----------SA;PlEl---_siEvE------S!£VE---------CUM--------X------i-PER----
CHANNEL NU~8ER NU!!BER S!E Wi)IEr5HT [6~SJ PASSIHS CLASS
-------------------------------------.--.------------------------------------.-----
UPPER SUNSET RH 5.00 ~
UPPER SUNSET R7-A 3.00 J 0 100 91.9
UPPER SUNSET R7-A 1.00 1 849 S.l 7.3
UPPER SUNSET R7-A 4.00 0.167 917 0.8 0.4
UPPER SUNSET R7-A 10.00 c.om 920 0.4 0.1
UPPER SUNSET R7-A 35.00 0.0197 921 0.3 0
UPPER SUNSET R7-A 50.00 0.0116 921 0.3 0.1 ~
UPPER SUNSET R7-A 10C.00 O.Oos;922 0.2 0
UPPER SUNSET R7-A 230.00 0.0025 922 0.2 0.2
UPPER SUNSET RH TCTAL 924 100 ~
UPPER SUNSET R7-S ~.oo '"01
UPPER SUNSET R7-B 3.00 3 0 100 45
UPPER SUNSET R7':S 1.00 1 B6S 55 4Q
UPPER SUNSET R7-B 4.00 c.m 1628 15 5 ~.
UPPER SUNSET R7"'B 10.00 C.07B1 112S 10 3.5
UPPER SUNSET R7-B 35.00 0.0191 1792 6.S 3.4
UPPER SUNSET R7-fl 50.00 0.0116 1856 3.1 2.1
UPPER SUN:SET R7-B·100.00 0.0059 1996 1 0.7
UPPER SUNSET R7-B 230.00 0.0025 1911 0.3 0.3
UPPER SUNSET R7-B TOTAL 1916 100
UPPER SUNSET R7-C 5,00 j 0 100 47 ~
UPPER SUNSET R7-C 3.00 3 !US 53 14
UPPER SUNSET R7-C 1.00 1473 39 20
UPPER SUNSET R7-C 4000 0.181 mo 19 5 ~
UPPER SUNSET R7-C 10.00 0.0757 2062 14 4.7
UPPER SUNSET R7-C 35.00 0.0!97 2171 9.3 5.,6
UPPER SUNSET R7-C 50.00 0.0116 2312 3.1 2.8
UPPER SUNSET R7-C 100.00 0.0059 2380 0.9 0.5
UPPER SU~SET R7-C 230.00 u.0025 2m 0.4 0.4
UPPER SUNSET R7-C TOTAL 2401 100
UPPER SUNSET R7-D 5.00 5
UPPER SUNSET R7-D 3.00 3
UPPER SUNSET R7-D 1.00 1 0 100 21
UPPER SUNSET R7-0 4.00 C.157 106 79 7
UPPER SUNSET R7-0 H).OO C.0187 139 72 14 """UPPER SUNSET 1l7-D 35.00 c,em 210 58 43
UPPER SUNSET R1-D SMO C.Clle 428 ~5 13.2
UPPER SUNSET Rl-D 10~.OO U.O~5"494 1.8 0.8 ~
UPPER SUNSET R7-0 230.00 0.0025 498 I 1
UPPER SUNSET RH TOTA~503 100
-----------------------------------------=-----------------------------------------
1 ~
R7-A:Substrate sample ctt.ined fro ••hul r!::labeled R7 at a depth of 0-4 inches.
R7-!::5-8 inches
R7-C:9-12 inches
1l7-D:13-16 inches ....
-86
-
-
~,
U.s.Inch••
1~.,....
..
J\I
90 1\
80
1\
70 1\..
.r::..
;60:s I,>-
.D
;50:1\1\.....l\~40u 1--."\
L•0.
30
20
10 ""-...........
0
100 10
j(')0
2 0 0
~t<l n -
I .1
,j
I'-.f',..
""'"I'"
I
iI
\
i'.Ili-i'-~r\--f.t'\
~""'-\
1 .1
o....
N
H'yoro_~.r !
0
I 10
I 20
30
"lI...,
n•040 ;;,...
na•'.,
50 :.,
cr...
60S:•-co
~,..
70
80
90
~.1n S1z.1n M1111..tera,I SAAva.~SAND I IIMild1U.,1
SILT III a.AY
Cas,...Ftn.F1M
sa~l.Ident1f1c.tlon I Cl..a1f1catlon Dat.lJnifled
I AaMr-ka
Sp Hale SUD Depth ClI CZ LL PI S Or"g Cl...
~
A •R7-A SWACE I
0 SS R7-e 4-I
0 as R7-C 8-,
-+as R7-o 12-I
i I
i I
DATE 7/11/85
501.'
"(5)~~
R &M CCNSUL.TANTS.INC.
....-....0&0Il0.__.........._.._......._.._.
AKASKA DEPT OF FISH &GAME
SU5ITNA HABITAT SUBSTRATE
55 R7
Fl!.
GIlIO.
PRO.LNOSSIOS 3
O_G NO
Figure 25.Depth integrated substrate composition~percent by weight
passing each sieve size for redd number 7 in Upper Sunset
Side Channel.
87
57
(
R7-D
o 0.4
R7-C
47
>3'
R7-B
u P PER SU I'~S ET
SUBSTRATE COMPOSITION
r .~;
100
I 1~9
90
80
'P 70
I
<:>
w 603:
>-m 50-..-
I-
Zw 40
(.)
a::::wcoQ..3000
20
r,,'10
0 IO·~.1.1 12
R7-A
l22J >3 ESSI 3-1
SAMPLE NUMBER
~1-,8 ~.8·.02 r;g:gJ .02-.002 ~(.002
SUBSTRATE SIZE CATEGORY On)
Figure 26.Depth integrated substrate composition by weight from redd nu~per 7 in Upper Sunset
Side Channel..
I ,J )~.~,I ,J I J ))1 ,.J I ~
Tabl e 24.Substrate si eve analysis data for Lower
Sunset Side Channel redd number 3A (R-3A).
-----------------------------------------------------------------------------------
-----------------------;7:r------:-~---------~:---------~~;--------;------;--~-----SInE SAri.I.:'Sl::lI..sm:.......•..P~R
CHANNEL NUP!BER NW!lBER Sm:!IN I WElSHT IB"51 PAS5INS CLASS
-----------------------------------------------------------------------------------
LOWER SUNSET R3A-A ~.oo 5
LOWER SUNSET R3A-A 3.00 3 a 100 78-LOWER SUNSET R3A-A 1.00 1 862 22 21.7
LOWER SUNSET R31l-A 4.00 0.lE7 1103 0.3 0.1
LOWER SUNSET R3A-A 10.00 0.0787 1104 0.2 0
LOItER SUNSET R3A-A 35.00 0.0197 1104 0.1 0.1
LOWER SUNSET R31l-A 50.00 O.Ol1li n05 0.1 0
LOWER SUNSET R3A-A 100.00 0.0059 1105 0.1 0.1
LOWER SUNSET R3A-A 230.00 0.0025 1106 0 a
LOWER SUNSET RJA-A TOTAL H06 100
lOWER SUNSET R3A-B 5.00 5
lOWER SUNSET R3A-B 3.00 3
t'lI:~LOWER SUNSET RJA-B 1.00 1 0 100 72
LDWER SUNSET R3A-B .4.00 0.1e7 770 28 9
LOWER SUNSET R3A-B 10.00 0.0787 861 19 8
LOWER SUNSET ~R3A-B 35.00 .0.0197 944 11 4.6
LOWER SUNSET R3A-B 50.00 0.0116 996 6.4 2.9
LOWER SliNSET R3A-B 100.00 0.0059 1027 3.5 2.6
LONER SUNSET R3A-B 230.00 0.0025 1054 0.9 0.9
lOWER SUNSET R3A-B TOTAL 10B4 100
LOWER SUNSET R3A-C 5.00 5
LOWER SUNSET RJA-C 3.00 3 a 100 28
LOWER SUNSET R3A-C 1.00 1 183 72 41 •LOWER SUNSET R3A-C 4.00 0.187 450 31 9
LOWER SUNSET R3A-C 10.00 0.0787 517 22 10
LOWER SUNSET RJA-C 35.00 0.0197 584 12 0.3
I"""LONER SUNSET R3A-C 50.00 0.0116 627 5.7 2.8
I LOWER SUNSET R3A-C 100.00 0.0059 b46 2.9 2.1
LOIlER SUNSET RJA-C 230.00 0.0025 660 0.8 0.8
LONER SUNSET R3A-C TOTAL 665 100
LOIlER SUNSET R3A-D 5.00 5
LONER SUNSET R3A-D 3.00 3
LOWER SUNSET R3A-O 1.00 I 0 100 60-LOitER SUNSET R3A-D 4.00 0.187 106 40 14
LOWER SUNSET R3A-D 10.00 0.0787 m 26 13
LOWER SUNSET R3A-D 35.00 0.0197 154 13 6.3
LOt/ER SUNSET R3A-D 50.00 0.0116 166 6.7 2.8
LOWER SUNSET R3A-D 100.00 0.0059 171 3.9 2.2
LOWER SUNSET R3A-D 230.00 0.0025 175 1.7 1.7
LOWER SUNSET R3i1-D TOTAL 178 100------------------------------------------------------------------------------------
1R3A-A:Substrate saeple cbtaine~froe chuc redd li"eled R3A it a oe.th of 0-4 inches.
R3A-B:5-8 inches
R3A-C:9-12 inches
P'3H:13-16 inches
89
-II _
I U.S.Incn..I U.S.Sl.v.511 ••I Hyllro_t.,.,
C'l 0 0
2 0 2 "'l~...-..."l n N100
\I .1 ---0
110 10
\,.
80 1\~
\\
20
\\'
70 30
1\
~...\\•
&.
.,
co n
:60 •.40 ;;,
z \..
\"...
.D a,•;50 \.,
50 •c •....,
IL.r:T...oc
;.40 60 :u -L.\a•~lL...
30 !t :\70[~s,'-\
t"--~~20 80
~~t'>
l\-ID "90
.~~
0 100
100 10 t .1 .02 .01 .005 .002 .001
srain Size in M1111..t.r.,,
I
GRAVEL.~SAHD I I,I SILT DR a..AY
Ca_e Fin-...d1U11 nne
S~l.ldentif1catlan Cl...lf1cat1an Oata !kIlf1"
CI...Aenrk.
Sywi Hale SMIP ~tI'i QI CZ LL PI S org
...•......,....ACE
D SS R3A-t .c"
0 IS IUA-C I"
+IS RSA-(12"I
I I
I
"-:=-"s::::;;OWN.~-<Ie;;.FB.
:KO ,{~\.\
,..~
R &M CONSUL.TANTS.INC.ALASKA DEPT OF FISH &GAME GRID
DATE_7f.,J.l/85 .-_-e ......-...............--.-....__SOSITNA HABITAT SUBSTRATE PIlO,J.NO ""In''~
SCALE 55 R3.A
OWG.NO
Figure 27.Depth integrated substrate composition.percent by weight
passing each sieve size for redd number 3A in Lower Sunset
Side Channel.
90
-
-,.
-
(ZZ)>3 ISSJ 3-1
SAMPLE NUMBER
~h8 ~.8-.02 ~.02-....Q02'
SUBSTRATE size CATEGORY (In)
ti888I (.09 2
Figure 28.Depth integrated substrate composition by weight from redd number 3A in lower Sunset
Side Channel.
Table 25.Substrate sieve analysis data for lower
Sunset Side Channel redd number 4 (R-4).
92
----------------------:D~r-------~:-------~r-;-----------;------------------------SIDE SA,,,..l:.SIEh S••'h.CU..1 1 PER
CHANNEL HU~:ER NU~EER SIZE (IN)k:ISHT (5~S)PAS5IN6 CLASS
(./rq/,,-
-100 32
68 47
21 7
14 6.'1
7.1 2,q
4.2 2.3
U 1.2
0.7 0,7
100
100 25
75 b4
11 .4.3
0.7 3.0
3.1 1
2.1 o.a
1.3 0.6
0.7 0.7
100.
100 68
32 31.8
0.2 0.1
0.1 0.1
(I (I
~(I
o 0
o 0
100
100 77
23 10
13 a
5 2,3
2~7 L,B
0.9 0.9
o 0
100
o
m
191
209
214
218
220
220
(I
bOC
m
878
879
m
879
e79
m
o
m
m
a <;~--e8a
B97
904
910
m
o
357
SB5
963
1043
1076
1102
1115
1123
5
3
1
0,187
0,0787
o,wn
C.OI16
Q.OOS'1
0,0025
S
3
1
0.167
0.07B7
o.(W17
0.0116
0.0059
0,0025
5
3
I
O.lB7
0.0787
0.0197
0.0116
0.0059
0.0025
S
3
1
0.187
0.0797
0.0197
0.0116
0,0059
0,0025
5.00
J.OO
1.00
4.Q0
10.00
35.00
50.00
100.00
230.00
TOTAL
5.00
3.00
1.00
4.<10
10.00
35.00
50.00
100.00
230.00
TOTAL
5.00
3.00
1.00
4.00
10.00
.35.00
50.00
100.00
230.00
TCTAL
5.00
3.00
1.00
4.00
10.00
35.00
50.00
100.00
230.00
TOTAL
RH
R~-A
RH
!H-A
R~-A
RH
Ro\-A
R4-A
R4-A
RH
R4-B
RH
R.i-::
RH
R4-5
RH
RH
R4-B
RH
R4-B
RH
RH
RH
RH
RH
RH
RH
R4-C
R4-C
RH
RH
R4-D
R4-D
R4-0
R4-D
RH
RH
RH
Rl-l)
RH
LUKER SUllSET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LOWER SIJHSET
LOWER SUNSET
LOWER SUNSET
LOm SUNSET
LOIIER SUNSET
LOIfER SUNSeT
LOWER SUNSET
LOWER SUNSET
LONER SUNSET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LOilER SUNSET
LOilER SUllSET
LOIiER SUNSET
LOIiER SUNSET
LOWER SUNSET
LOWER SUNSET
LONER SUNSET
LONER SUNSET
LOWER SUIISET
LOWER SUNSET
LOWER SUNSET
LOWER SUNSET
LONER SUNSET
LOWER SUNSET
LOIiER SUNSET
LOliER SUNSET
LOWER SUNSET
LOitER SUNSET
LOWER SUNSET
LOWER SUNSET
LOIlER SUNSET
'R4-A:Substrate siEple ::tained fre;cnul redd labeled R4 at i depth of 0-4 inches.
R4-e:5-8 inches
R4-C:9-12 in~hes
R4-D:13-16 inches
"""
.-
"....
_.
,I u.s.Inch••I U.S:Shy.SU••I ""","oeu.'"
on 0 0
0 a 0 ,.,
~..........I"l on ..N
'100 .-,,-0 __
~\I I I
II rl\
~\
90 10
l \
J
~.
\,
\,20BO\~\II I\3070\~,
II I
'V\.....~\..,
~\n..•
:50
I 40 ::I
x
II
rP
\n
>-0
..a •..,
~50 .,50 •
\\•~..,
lL.:a::r
""...
~40
f\
50 ~
u \-'"..e :ra..rP
30
.70-
20
1\~I aD
'\""~
Ii ~9010r--....~...",
0 100
100 10 \1 .1 .02 .01 .005 .002 .001
,.,sr.in S1z.in Ml11~
I GRAVEl.~....:'1 [IISILTDRCLAY
COllI'S.Fine n ...
S.-ol.Identification Cl...ific.tlDft e.te !.nifilld An:eI"tca
SYII HoI.SUD DIIpth eu CZ u.PI I s erg CI...
.,.•........ItWACE I
c SS fW-B .."I I
0 8S M-C s"I I
+SS Ro4-iJ 12'I I I I
I I I I
I I I
~~OWN F'B,c:.;
:0:0-i\\)R&M CONSUL.TANTS.INC.AS:u.sKA DEPT OF FISH &GAME IORIO.
oATQ)ri/85
..............QiI"CI__".--.____.............sosr~HABITAT SUBSTRA-:E
PlIOJ.HQ 55105355R4
SCAL.[OWClNO
Figure 29.Depth integrated substrate composition,percent by weight
passing each sieve size for redd number 4 in Lower Sunset
Side Channel.
93
--------~-------~--,---------.....--------_..--------------
LOW ER.SU r'~'s ET
SUBSTRATE COMPOSITION
oo0.7
64
o'
87
R4-B R4-C R4-D
SAMPLE NUMBER
~h8 ~,8-,02 l&:8J ..02-,00:11 r8883 (,002
SUBSTRATE SIZE CATEGORY (In)
100
90
80
~70 -l 68
C)
W 60
3
>-en 50........,.,
I-
Z
LLJ 40
0
0::
LLJ
\0 0-30~
20
10
0~.1 0 0 0
R4-A
l2:ZJ >:1 LSSI 3-1
Figure 30.Depth integrated substrate composition by weight from redd number 4 in Lower Sunset
Side Channel.
~.~....J ,J !J ,,J J J m )1 J J I
Table 26.Substrate sieve analysis data for Circular
Side Channel redd number 1 (R-l).
----------------------------_.-----------------------------------------------------
-----SiDE-----------SA~LE1----5!EVE------SIEVE---------CU~--------i------l-PEF.----
CHAkNEL NU~5ER KUKEER SIZE (IN)NEI6HT IB~S)PASSINE CLASS
-----------------------------------------------------------------------------------
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
.CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCl!i.AR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
AI-A
AI-A
RH
RI-A
Rl-A
RI-A
RI-A
RH
RH
Rl-A
RH
RI-B
RI-B
RH
RI-B
P.I-B
RI-B
R!-B
RI-B
RHI
R1-C
RI-C
Rl-C
RI-C
RH
RH
RH
R1-C
RI-C
RH·
RH
RH
Rl-D
Rl-D
RH
Rl-~
RHI
RH
RI-D
R!-D
3
1
4
10
35
50
100
230
TDTAL
5
3
1
4
10
35
50
100
230
TOTAL
:5
3
1
4
10
35
50
100
230
TOTAL
5
3
1
4
10
35
50
100
230
TOTAL
5
3
1
c.m
o.om
0.0197
0.0116
0.0059
0.0025
5
3
I
0.187
0.0757
0.0197
0.0116
a.om
0.0025
5
;)
1
0.187
0.0137
0.0197
0.0116
0.0059
0.0025
5
3
1
0.167
0.0787
0.0197
0.0116
O.Ot:?
0.0025
(;
412
m
m
742
74b
177
794
804
o
143~
2169
2225
2264
2301
2462
2522
2550
o
1933
25182m
2772
2949
3050
3108
3131
o
337
404
494
m
590
609
C18
100
48
9.7
7.7
7.2
3.4
1.2
100
44
15
13
11
9.8
3.5
1.1
100
3B
20
16
11
9
2.6
0.7
100
4S
3S
20,..
•J
,"..~
38.3
1.5
0.5
tU
3.8
1.2:
100
,,'.0
29
2
2
1.2
U
2.4
1.1
100
18
4
5
2
0.4
1.9
0.7
100
SS
10
15
7
E.5
l.5
100
1 RI-A:Suostrate sas.le obtained from :hu~redd labeled Rl at a depth of 0-4 ir.:nes.
RI-B:5-8 in:hes
RI-C:9-12 in:nes
RI-D:13-16 in:r.es
95
U.S.Inch••
--o..
U.S.'Sl.v.S1z ••
oo-o
If')
N
90
80
70
us:..
~60:s...
4
foso
.5
II.
30
20
1C1
o
tOO
\I .1
,
~\
\
,
\
~
\
~f\
""-
I ....~~~
"-
\
..............\
Sor-r-..1\N i\.
""'-~~
10 1 .1 .02 ~01 .005 .002
sraln Slz.1n Ml111..t.~.
GRAVEL ~SAND
SILT OR CUY
co-.Fine M41dl~Flne
0 ~
SO
'20
~\I
3D
~....,
n..
40 ;,~1..
n
CI•..,
50 •..
"':I ~1
IT
""
60 :c.....
a:::r
t'F ~~
70
BO ~,
90
~
100
,DOt
sa.pl.Identificatlon Clas.iflCatlon Data ltllUad Att..~ka
$}'II Hal.s.o DelIth QI ex LL PI S Drg CIa.
£em:Ai...,...ACE I
c CIRe R1-iS 4 G
CI CIAC M-c .-
+CIAC R1~12-
I
I
SeAl,.[
ALASKA DEPT OF FISH &G.a.ME
SUSITNA HABITAT SUBSTRATE
eIRe Rl
FIl
GIIIO.
"ROJ.NO <;<;1 n <;1
owe;NO
Figure 31.Depth integrated substrate composition.percent by weight
passing each sieve size for redd number 1 in Circular
Side Channel.
96
)1 1 )]»j ...])1 J j 1 ···1 .._.)
CIRClJLAI~
SUBSTRATE COMPOSITION
100 I I
90
80
65
56
o 0 0.7 0 0
40
10
62
60
52
70
20
50
.30 -
I-
Z
LLJ
(.)
n:::l.w
(L
r-eo
'--"
'P:c
C-'
LLJ
~
lJ)......
R1-A R1-B R1-C R1-D
IZZl >3 (s:sJ 3-1
SAMPLE NUMBER
~1-.8 ~.8-.02 I:&::ZI .o2~.002
SUBSTRATE SIZE CATEGORY (In)
t:888a (.002
Figure 32.Depth integrated substrate composition by weight from redd number 1 in Circular
Side Channel.
Table 27.Substrate sieve analysis data for Circular
Side Channel redd number 3 (R-3).
-----siDE-----------SA~?LE1----si~VE------sr~v~--------:~~-------i------i-~ER----
CHANNEL HU"eER kU~£EF.SIZE (!Hi ~~I6H;[6"5;PASSING CLASS
!flI!!9-'
CIRCllLAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIR~ULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CrR~ULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
m:ULAR
CIRCULAR
CIRCULA.~
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
R3-A
R3-A
R3-A
R3-A
R3-A
R3-A
RH
R3-A
RH
li3-A
R3-B
R3-B
R3-B
R3-B
RN
R3-B
R3-B
R3-B
R3-B
R3-B
R3-C
R3-C
R3-!:
R3-C
R3-C
R3-C
RH
R3-C
1t3-1:
R3-1:
R3-D
R3-D
RH
R3-D
R3-D
R3-D
R3-D
R3-D
R3-D
R3-D
3'
•1~
~=...
100
230
TOTAL
5
3
4
10
35
50
100
m
TOTAL
5
4
Ie
35
50
Ice
m
TOTKL
5
3
!
4
10
35
50
100
230
TOTAL
3
o.om
0.01,7
O.ell6
0.0059
0.0025
5
3
1
0.187
o.om
o.om
0.0116
0.0059
0.0025
5
3
1
0.187
C.0787
0.0197
a.CHb
O.0059
0.0025
3
C.167
0.0757
0.0197
0.0116
O.OC59
o.ens
o
1423
1661
lobb
1667
1668
1668
1668
16b8
o
893
1985
2110
2204
2268
2335
2377
2396
o
1478
1899
1979
2072
2145
2190
2213
2219
o
32
128
146
1::7
180
184
186
187
loa 85
15 14.6
0.4 0.3
0.1 0
0.1 0.1
o 0
o 0
o 0
100
lCO 37
63 46
17 5
12 4
8 2.7
5.3 2.8
2.5 1.7
0.8 0.8
100
100 67
33·19
14 :5
11 4.4
6.b 3.3
3.3 2
1.:5 1
0.3 0.3
100
100 17
83 51
32 10
22 11
11 7.3
3.7 2.1
1.6 1.:
0.5 0.5
100
-
,~
1 R3-A:S~ostrate sa,~le obtain!:fret ,num re::la:eled R3 at a eepth of 0-4 inches.
R3-S:5-8 inches
R3-~:H2 incnes
R3-D:13-16 inches
98
I~
-
-
.....
.e:::i
1:..-_U_.S_"_I"_C_ne_s u._s_._·s_u_"'_e_S_1_Ze_e H'f_l1r_O-_te_r -'
o 0oII(')0 0 I"Q
~f"'I ...1"').,-N
__-100.!'T."'_'"T"""""U---'-j_""'!~-.-'-ir-l"".-..-.-.---,r-----r"TlT"l''TT~r-"l"1jr.."""'TT"lTTn_r_r_r__,r-_,.TTTTT....__r_r_--,0';::I,.\Iji II .
gO I-H-i-H++--i--*~,....;...++--+HH_t++_t__+--tt++_Jn_H____!r__+ttt+++_t-+_---t 10::\I\~!I/!lll
80 ~f-\tl+-r...:,r+--~~~+-_+_--++iH+++_+__+--tttHn_H__jr__+ttttT+_j-_t__;20
\\.1/111170H-I.,H-\fH-\~_f_-++:_~~+--+---H-iH+H_+_-+-_tttH+H_;---_+tttrr+_j-+__;30~60 1+l+HH-+\~.J,+-\~III..-...o..+-III +-+---+1++++-+-+-+--+H-H-++-+--t---ttt+H-1 t-t--+----i 40 I
;\\\\J,'If II '~
~50 14+1+l-..t--lr+-+-~--~-+-_+_--++:f+++-+_+_+--+t+HH_+_t---r__t+++-+++_+-+_---t50:~\Illi 1 ;i ~o l+h1+l~+-+_~m.;.;_H_4-_+_--++if+++-+_+_+--+++HH_+_t__ir__t++++++_+-+_---t 60 ~~~i ,-i
30 H+H-1~..4._-_+;.;++_?+__+__+--++-Ho+-H_+__+--H++_H_+_I-I___1+H++_+_+-_+_--I 70
I""hi'"20 H+1+l-+-+-+--~"O_+';....;...-+-_P_-+l-H_+-H_+__+--+l+HH_H-I__t+H+++_+-_+_--I80",I t~~t--~
10 tttmTrT""'tttrrr-rT.,..~::ti:Et:t::\t_r"'""t-"i1trH_H-r4ttittrrr---t90"~l I ri~~::--.
o ill111U-L_.1JI[lrn......~..L.L-.JllLW~:::i5!=:U:ijuLl--l-lllWJ..JU-J 100
100 10 1 .1 .02 .01 .005 .002 .001
Gr.1n 51z.1n M1111-.tar.
--CD-.-r.-~--va.-r--F-1M--~_:,I nne
SILT DR a..lY
.....
Sa80le Ident1f1c.~1~Cl...1f1cation Da~~1f1.d
$aID I Cl...RnarQ5,.Hale Dntft Co!CZ LL PI S Orl
A CIRC ...,awAlZ
c eIRe ~-al .4"
0 eIRe ~I ,-
+eIRe fl3-Q1 12"I
I
I II
OWN
DATE 1/85
-SCALE
r=-'s:::;:;"~\'Fe.,...-"~"'--'
R&M CONSULTANTS,INC.AIASKA DEPT OF FISH &GAME GRID.*--.-_.............------SUSITNA HABITAT SUBSTRATE PItOJ.NQ I:;1:;,/11:;')eIRe R3
Qw;NO
Figure 33.Depth integrated substrate composition,percent by weight
passing each sieve size for redd number 3 in Circular
Side Channel.
99
CIRClJLAR
SUBSTRATE COMPOSITIOI,1
61
____0o.8
61
Q ...•1 0o
10
100
90
I 85
l'
80
t='70
I
C)
w 60
3
>-m 50'-'
f-
Zw 40<..>
(t:w
(L 30 -
20
......
oo
R,3--A
IZ:Zl >3 c:s::::Sl 3·t
f~3-B R3-C R3-D
SAMPLE NUMBER~1-.8 ~.8·.02 IZ:.Zl .02·.002 r88'8:t (.002
SUBSTRATE SIZE CATEGORY On)
Figure 34.Depth integrated substrate composition by weight from redd number 3 in Circular
Side Channel.
!].J !I i l S ,},J t ••,!
-Table 28.Substrate sieve analysis data for Circular
Side Channel redd number 5E (R-5E).
------------------------------------------------------------------------------------.
SIDE
CHAkNEL
SAInE
HUI1BER
SIEvE SIEVE CUI'!I 1 PER
~U~3ER SIZE (IN)_EIGHT (G~S)PASSING CLASS
-
CIRCUlAil
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CfRCULAR
CIRC:.!LA.'l
CIRCULAR
CIRCULAR
CIRCULAR
CIRCUlAR
CIRCULAR
CIRCUlAR
CIRCULAR
CIRCULAR
CIRCUlAR
CIRCII.AR
R5E-A
RSE-A
R5E-A
R5E-A
RSE-A
R5E-A
RSE-A
RSE-A
RSE-A
R5E-A
RSE-B
R5£-8
RSE-S
RSE-B
RSE-B
R5E-B
R5E-B
RSE-B
RSE-8
R5E-B
S
3
1
4
10
35
50
100
230
TOTAL
5
3
1
4
10
35
50
100
230
TOTAL
5
3
1
O.lB7
0.:)787
0.0197
O.OW,
0.0059
o.eezs
5
3
1
0.187
0.01B7
0.0197
0.0116
0.0059
0.0025
o
520
73a
743
74B
752
757
758
758
o
2693
3236
3719
3836
3875
3900
3914
3921
3928
IQO
31
2.6
Z
1.3
o.a
0.1
o
100
31
18
3.B
2.3
1.3
0.7
0.4
0.2
69
21l.4
0.6
0.7
0.5
0.7
0.1
o
100
&9
13
14.2
1.5
1
0.6
0.3
0.2
0.2
100
-
1\R5E-A~Substrlte suple obtilined frOI C/lUI nde hbehd RSE It •depth of 0-4 incbes.
R5E-B:5-8 indies
R5E-C:9-12 ian
R5E-D:13-16 inches
101
I rIu.s.Ineft..I U.S."Sl.ve S1z ••Ifydro_ur-
0 0
2 ""0 2 '"....'"n C\l
0
<l'P1 ...--11 I I I
II 1090
:
,
20
;
801
I
I
3070
~\•~n
...
•.c..
.olO ~-;60 ,..
n
:K
a,..
1\•....,.
50 ••;50 1 ...oS
erIL.I
oc!...
60 :I:i ~o •-U
DL.\=r•,.~
7030
f\!\f\.8020~\
"'-9010
fl.!:..
1000
1 .1 .02 .Dl .005 .002
.00110010
srain Slu in M1Ui_tara
~I II
&RAVEL,SAND
SILT OR a.AY
tCaar••I Fine Mtldl_Fine
5nPla IdenUf ieaticn Cl...ificatlon Date tkI1f1"AlI_rita
C%u.,PI S Dr,CI_Sy•Hal.s..o Depth CU
A CAe ....."All!
C C1RC ~-e ~.
I ,
I I II
~F!.0 ....._~c,;
ALASKA DEPT OF FISH &GAME GRtn:1(0 )\-..\'\R&M CONSULTANTS,INC.SOSITNA HABITAT SUBSTRATE
PJIIQ.L N0551C5 :;7All/85 ._........_0-.._.11'..........--.•__......
CIRC R5E
OATE
O_G NOSCALE
Figure 35.Depth integrated substrate composition,percent by weight
passing each sieve size for redd number 5E in Circular
Side Channel.
102
kiiilil!\i iiiil.iiiiI
-
-
)~.....J I -1 J ~-1 }]).)-))1 ..~}-.)
CIRCULAR
SUBSTRATE COMPOSITION
100
90
80
r--.70 I 69
l-
I
l?
W 60
3:
>-ro 50 -'--"
I-
Z 40W
0a::w 30 -to-'(L
0w
20
10
o J 0 ~.7 1,l-t.O ~:~~1'1.1 .2
R5E-A R5E-B
SAMPLE NUMBER
lZZJ >3 (SSJ 3-1 ~h8 ~.8-.02 .IZ:.8J .02-.002 E8S.83 (.002
SUBSTRATE SIZE CATEGORY On)
Figure 36.Depth integrated substrate composition by weight from redd number 5E in Circular
Side Channel.
Side Channels are depicted in Plates 1 through 4.These plates show the
relative locations of the observed spawning activities to other
monitoring activities in each of the study sites.Spawning was also -
observed in the mainstem adjacent to the Birch Creek ADF&G camp,Island
and Mainstem West Bank side channels.
Chum Salmon Spawning WUA
Figures 37 through 40 present projections of gross surface area and WUA
of chum salmon spawning habitat as a function of site flow and mainstem
discharge for the IFG-4 modeling sites at which chum salmon were
observed to spawn in 1984.Data used to develop these plots are
presented in Tables 29 through 32.These results are discussed below by
study site.
Mainstem West Bank Side Channel
The Mainstem West Bank Side Channel hydraulic model was run through the
HABTAT model us i n9 observed upwe 11 i ng codes.The proj ected WUA I S peaked
just after the site flow (13 cfs)was controlled by mainstem discharge
(19,600 cfs)and declined rapidly as discharge increased (Figure 37).
The time series plot in Figure 41 indicates that WUAs in this site were
relatively low throughout most of the open water season.When site
flows dropped during September,WUAs were highest.
Circular Side Channel
The first run of the Circular Side Channel hydraulic model through the
HABTAT model included cells coded for a small amount of observed upwell-
ing.The only upwelling observed was in 3 cells in transect 1.Suit-
ability criteria gives a value of °for cells without upwelling and the
proportion of upwelling cells was so small that the resulting WUAs were
all zero.When a second run was completed using simulated upwelling,
the results followed similar trends to those in Mainstem West Bank and
Sunset Side Channel.Projections of WUA of chum salmon spawning habitat
peaked just after the site flow (27 cfs)was controlled by mainstem dis-
charge (36,000 cfs)and decreased gradually as discharge increased
(Figure 38).Simulated WUA projections·in Circular Side Channel
remained more constant over time than in the other three study sites
evaluated (Figure 42).
Sunset Side Channel
Using observed upwelling codes,the Sunset Side Channel hydraulic model
was run through the HABTAT model.The resulting WUAs peaked soon after
the site flow (43 cfs)was controlled by mainstem discharge (32,000 cfs)
and decreased with increased discharge (Figure 39).WUA projections in
Sunset Side Channel varied considerably over time (Figure 43).
-104-
-
"'"
-
]J 1 <]1 -)-1 1 }1
j.,'"',
~,-.
""-.••
~,....
,'"....~~
"'t,,!;;,',';
l ..i''"
"1 I'.../,1
I".).,
,j
ED River Mile
o 1250
I I
FEET
(ApproxImate 8cale)
-I;•"rAl''"c'x H~'"
c,"',•'t\,:,/1""'I"
RMnE»
"It·~..
I
1m Temperature Site
o Fyke Net Site
o waEl Ue..urement alte
~waEl M...ur.ment"
Temperatur.Site
VlJJJ Chum Salmon 8pawnlng
Area
~'!.,,~
......o
(J1
Pl ate 1.Aerial photograph of Circular Side Channel and Hainstem West Bank Side Channel with
spawning areas and sampling sites indicated.
t'
0'
~~
'!
),
t-FEET-'~OO
(Approltlma,.Beale)
$\)5\1""tI",~tI....4~----
$RM87
.',
r
~:\~~:.:tj~~,,~(.t~·f/I.f J'J'...,,'•>',~~~+}'.~y~:;;~\~l/~~;1 Xi:i~;'.,~-J.\.\,~,I ,.-:r~K.~.~,f;;,~!1A({;;i~,fi,:!;:}.1'.If;r.)~,rl,~.,~e-lf~f1~l:.'1.t'i 1';;;1":'"•i'~~;"'Il;i,l,;,';\'k!:'\-,~.\;,{,~~.,yJ'f .1.JI....~.1 f'"',if ;"z!mJi;!(";~F;':1A;1'/;?r!'!il .('1'<\:t t'':f'~~t:.'
"~'">'i \"I"'\'"i/"::'i L'"r··tt'R~'I '• ,""";.{~jl '-~.M.~,*.~j!r.'!,k1J'i~}~'\':;}:ri;;~~~~·~1.~"'',:~~'~:/;i'~I,"~~I'~'tJ :~,!':,'.~!t\i ~l"'""<".,,rj~8,';./,1/",'.'f-'loJ "~,.t""~¢'1 ~r1',t,;,.,jj$j;l',','l~I'\'?'::f"')J.}·'""'
......om
Plate 2.Aerial photograph of Sunset Side Channel with spawning areas and sampling sites indicated.
~I })_.J 1 1 1 J J ).~J I'~.t 1
"."):"'f"';":T.)"!-n,-·,.,.:,,t.tt;,'t,<l".--;··-.~."'!+t'-"·~,.'I .~._-_.__.._--_
-
.-
-
Plate 3.Aerial photograph of Lower Trapper Side Channel with
spawning areas and sampling sites indicated.
107
I--'o
00
Plate 4.
~~':~~'"
o W8EL "o..uromOn'8lto ~~WSEL M...ur.m.nt I ;
Temperatur.Sit.~,rum Chum Salmon Spawning •
Ar ..
EB River Mil.
o 1000,,
FEET
(Approxlmat.Bcal.)
Aerial photograph of Upper Trapper Creek with spawning areas and sampling sites indicated.
J ).J ]].~})j 1 1 1 I )J l l ~
~'t
f 1 }~,!-)I J 1 1 "J }
170 170
11;0 ------~I ~(>......-..150 -,:I"~..............
1.\0 ~~i "1)".~130 1.30
E 120 E '20 I'~0 '11.1 /0 110.-VI~100 ,,-"'~~"'1/~.,l{tO0U~~90 ~c ~~O11:..~~...~60 80W.c;70 w"~t,'iE 70
"-t~n I.:tin 1ll:ll::J 50 :J ~J("~VI In
40 40 ~
JO ~JO ~20 ---CONUOLLINI 1I.'NITlII~---t'l:r'.~tUM:TIIIOIlUI,21)!!!DlICHAReIIf)~I()
0 0
I)O~4 0.6 1.2 1.6 2 2.4-10 JO·50 70~ThOU.Ond.~(Thouoondo)
SI E FLOW .(0 S)MAINSTEM DISCHARCE (CFS)
6 II I 0I-'I
0
'-Cl
~1\I 5
f 4-
0 EVl-~U1
00~~111'-,
~.,.)0 ~ac ..~c«~Il:i:1>Jf::«i!':(--~£"-ll:2 a:J "-In ll:
!~
I ~~of \.a 'j Iii ,--.CONUOLLU••IUI.ITI"u,---1IT1 'LQW AT
::!no...CQNTIIQI.I.INI DIiCMAllU OIiCHAIIU
(>D
I)0 ....0.8 1.2 1.6 2 2.4-10 3D ~O 70(Thou.gnd.~(Thousand_!SITE now (C S)MAlNSTEM DI$CHAR E (el'S;)
+GROSS SURFACE AREA o WUA
Fi gure 37.Projections of gross surface area and WUA of chum salmon spawning habitat
as a function of site flow and mainstem discharge for the Mainstem West
Bank modeling site.
..",
...-....--:;::;='---1
i
I
I
I
I
I
.._-CONTJlOLLJ...'1AJIlIIT...
OIiCHARtI
40 60
(Thou.undo)
MAINSTEM DISCHARGE (CFS)
.
.u
§
g
.--......-----
"-1(1
'\0
711
.;n
50
40
30
20
10 ~aa ..-a-'D-&-a-lH>e ..~e ..aaao a "I eBBS D~~ioGAiii
20
lIt)
1/.\0
120 -
160
I~(l
l~n ..,](\f
~
~;Q:.....,
co~g
~.3:JE,
@
r
Ii!..,
;t
800600400
SITE F\.OW (eFS)
200
---IITI:PLOW AT
CONTROLLIN.IlIRlIQU
.,
151\-
'60 I I
I ~n -1 I
",n I ,...-.------~_tl--~::tl===~-·-'~."l'I //-I:;\~·I ","/./
'.Hl I'....-
1'-\1\/
;:.:J1 ....~v r
~~l'l~~'\.~..
It.
'i _._~~esa B B Bi 1I EI 'f B a I,8 8 P (B i g
f
O'
VI~
~"'o
~ijac.,
~,
"w~<if.;...ac
J."
(J 8 r'iii I iii f
80
~,~
---CONT"OLLIMO ..AINITIl ..
DISCHl""l
fO GO
(Thou.and,,)
I.lAlNSTEI.4 DISCHARGE (CFS)
:!..
!.,
0.8 -l-U I I I I I I ~
2U
u I I \
•
3.9 -
3.6
3.'
3.2
3
~.@ -'
VI
~:1'
Z.Z
Z
1.8
1.8...
..Z
E
o"'~
Hb't~t"
II
J
'"
BOO600400
SITE FLOW.(CFS)
200
---I'tll PLOW AT
CONTItOl.LINI OI'CHAltOI'
~
"l;
<)
..
;8 ~
I 2
,j,b
~>:::
2.2
1.0
16
14
2.6
2.4
3,£.
28
_.~--,..~Ir,s
~,
""'~--------.f
oV).-
.~..
<'i5~
Q:"~~
Wi
'J!--to.,...,...
~
'"
............o
+GROSS SURFACE AREA o WUA
Figure 38.Projections of gross surface area and WUA of chum salmon spawning habitat as a
function of site flow and mainstem discharge for the Circular Side Channel
modeling site.
cl j>J J J J ~,t ,•}j l !,~~~~
....-..--+-----...--..-t
.,.-A/
//
,/
---~'J:TII~'t~~II:TtIlICH~ll"
0.6 0.8 1
(Thou.ond.)
SITE F'LOW (as)
1}.'~l
r-.....-v-..
/~.v"/
//
---COlClI\Ol.I.IW'WAlII,nM
tIl'CHARU
-))]
<)+_.u.-n...qn.rl""'Q ,'"!H!&¥e=lMHHtttUenSf\ftljln.fb-fl_~~_
1(,30 So 70
(Tho....and.)
MAINSTEM DISCHARGE (CfS)
:!20 -
200,
I AI)-
'6')-f
I·W~-;;~o
120L5ijn:..0'(,5 11)1)
W,C
~i·~...
Sr.1
/'
lJ.
!l:.
\>0.1
•
:::>
~,li
'"
--"
§
411 -{,.,-
~201
1.6
]
1.4
1
1.2
ll}
0.4
)
40 ..,••
'0
20 'w:
o -,
IJ
,
0.2
1 ))
220
200 -
IRll
E'169 -
a 140
1Il~
~..
0~~n:~<;I 1001>1"uf:
<~
LL 80n:
:::>
III
70
'an
---CONTI\OUIIIO MAINnlM
OIiCHAI\U
30 :IXTho....and.
MNNSTEU DISCHAR E (CFS)
(}--fl-B
III
3.31'------r----=A:"----------~3.2 •-I
3.1
:l
2.0
2.8
2.1 •
,Ul
2.~
2 .•
~.J
2.2 -
2.!-
2 ..
1.9
1.8
1.1
i,R
I.:)
U I ,,'I ii'I ~I
t
~~~
il
~t
LL<r.
~
1.61,41.20.6 0.8 1
(Thousand.)
SITE fLOW (CF'S)
0.4
___Iltf 'LO..,At
COlCTIIOLLlII&OlloH-.UI
0.2
--r ,1 , I 1 I !I-+I I I
3.03
';.2
3.1
:;
2.<)
E 2.8
~.7
CI ,2 h11"-'_'IIIJ :"'a;.'-'.,'-
liln ,'..\
II'V10
".:1 ]J
"Jc 2.2'JI-~'-2.1...
Q
:'~,n
1 g
13
I ,f'~I t'...
i .r.......
I ~
i)
I--'.....
I--'
+GROSS SURFACE AREA D WUA
Figure 39.Projections of gross surface area and ~!UA of chum salmon spawning habitat as
a function of site flow and mainstem discharge for the Sunset Side Channel
modeling site.
~.5 n~,0
,n
-&.-I n.
RO
..u
g....
I I ..;~~.
m 40 ~
(Thou.and.)
MNNSTEM DISCKoiIRCe:(CI"S)
~
~:
~/
---COl/UOlllNt IIAIIIITIII
DlICH~NU
~.
J'/,".I
//'
."
",'
---~."~'-'
.......--.-....--~_.-.--'".,,~-
---CO'UNOLLlllt 11411111111
DIICH",,,t£
o
o I I ,
'1\.~o ~(l£HHJ ~a G ,G ~D"OBD~£I£J~~aGa~:fih~flo
()2(\40 flO 'v,
(Thou.onds I
MAINSTEM DISCHARGE (CfS)
o,~
180 117/:-
11..,•
1',1'
1 ....:1
l.!oOt12')
(I
110V'~-~1(1)~g ""On ,-rr f.
.r .~au1>Jf:.
70':/...-
6t)J.,4'...
Cl:::>
SO'II
40
.;<'1
~O
4.~
~
·1 I ~f
:1.5 -I!
E'
0v,~......
11i~2.~.
~~wg ~-
':i,~...
II:1.:'1;)
Vl
-to---'~
...,,-....6-.--~._..-;".v··
_...-~
-~.....--.....
\
\,
\
\
,
'l.,
'n.
'.'1
---••rr flO"AT
CO~lROLUII'DlICHAftt.
.J'J ......J.-
;:;
..u
;:;
..u
.'Ii"
')
---lIT l flOW AT
tOllTNOllll/1 OllCH4ftU
aa-e-e-a--~B O:r -Vi ID i at I D-r----..-O-
i j I r 1 7.t 4I).:?I),"or..O.H t ..
."(Thuu.ol'd.)
SITE fLOW (Cf:S)
2 -
\,
\
\
\
b...
"-",-
"'-'-
0-.......-n_.
o -\-.!.....r--'--~""---r fir I I •r --;'-OY---,B ~
0.4 0.6 0,8 1 1.2 1.4(Thou~ond.)
SITE n.OW (CfS)
I 5 -
~-
O,~I
25
.i ~.
1130
'7(,•
.1 Gt)
'«'1\
I<lu
F 130
1~()
(J
11OUI~
~...
0 IDe~g
£1:.,
QI)·v.o:~80 -w(::
':1.---70...
Il:60.J
Vl 50·
40
30
~o
II)~.,.
o.
o
~~';;u
~~
(ten
..-~
1.It
f~G...
~on
E
I-'
I-'
N
+GROSS SURFACE AREA o WUA
Figure 40,Projections of gross surface area and WUA of chum salmon spawning habitat as a
function of site flow and mainstem discharge for the Trapper Creek Side Channel
modeling site.
J •J :.•t J J ~J J I ,,I ,~)
113
Table 30.Projections of gross surface area and.
WUA of chum salmon spawning habi tat at
Circular Side Channel.-------------------------------------------------------------------------
--------------------------------------------------.---------------------SITE FLC~~AINSTEK DISCHARGE NUA GROSS PERCENT
lCFSl ICFSl ....
------------------------------------------------------------------------6 25500 863.36 59464 1.45
9 28500 1386.12 62443 2.22
15 31500 2258.26 66672 3.39
18 33000 2604.95 68172 3.82
22 ;>4500 2932.24 69401 4,23
27 36000 3230.96 .71590 4.51 ~,
32 37500 3469.87 7~95a 4.63
38 39000 3720.11 76534 4.86
46 40500 3862.24 78289 4.93 ""'"54 42000 3909.12 80557 4.93
63 43500 4045.98 82962 4.88
73 45000 4072.96 85140 4.78 --85 46500 4054.99 89630 4.52
98 48000 39B8~53 92944 4.29
113 49500 3905.66 96923 4.03
129 51000 3827.92 102530 3.73
147 52500 3737.77 109035 3.43
161 54000 3M8.32 113323 3.22
189 55500 ~50.19 122067 2.91 ""'"213 57000 3477.77 125753 2.17
239 58500 3409.49 128955 2.64
2b8 60000 329&.24 134218 2,46 -,
300 61500 3145,33 IJ916b 2.26
334 63000 3015,39 143575 2.10
371 b4500 2891.60 147440 1.90
~,
412 66000 2755.44 150869 L83
456 67500 2627.87 153146 1.72
503 69000 2506.91 154657 1.62
610 72000 2295.74 157074 1.4b -733 75000 2119.94 159211 1.33
-------------.----------------------------------------------------------
~
114 -
Table 31.Projections of gross surface area and
WUA of chum salmon spawning habitat at
Sunset Side Channel.
-------------------------------------------------------------------.----
------------------------------------------------------------_.__._-SITE FL~W KAINSTEK DISCKAR6E IiUA GROSS PERCENT
..-ICFS)ICFS)
------------------------------------------------------------------------
1 13477 1620.67 41329 3.92
3 17400 1622.58 4b180 3.51
5 19594 1635.93 49562 3.30
7 21000 1646.52 52120 3.16
12 24000 1677 .50 59834 2.80
20 27000 1742.95 66575 2.62
31 30000 1939.56 72136 2.69-38 31500 2070.24 76222 2.72
47 33000 2292.32 78488 2.92
57 34500 2591.74 8161S 3.18
6B 36000 2906.95 89472 3.25
~81 37500 3219.76 93660 3.44
96 39000 3260.92 97943 3.33
113 40500 3231.93 101876 3.17
~132 42000 3144.49 106320 2.96
154 43500 3036.19 117194 2.59
178 45000 2932.83 122338 2.40
I'""'205 46500 2B31.39 129392 2.19
235 48000 2736.98 1354711 2.02
26B 49500 2649.22 142276 1.86
305 51000 2584.08 149248 1.73
346 51500 2533.30 155825 1.63
390 54000 .2495.48 165990 1.50
439 55500 2444.49 169787 1.44-492 57000 2371.20 173483 1.37
551 58500 2297.22 185336 1.24
614 60000 2212.36 188419 1.17
.~683 61500 2121.44 m398 1.11
757 63000 2033.02 194419 1.05
925 66000 1834.12 20:>000 0.90
1119 69000 1625.87 206972 0.79
~1345 72000 1488.11 210728 0.71
1603 75000 1402.62 2158bl 0.65
------------------------------------------------------------------------r-,
115
Table 32.Projections of gross surface area and
WUA of chum salmon spawning habitat at
Trapper Creek Side Channel.
~
--------~----------------------------------------._-Q_------------------
-------.---------.----------------------------------.--------------------SITE FLOW KAIHSTEK DISCHARGE WUA GROSS PERCENT
(CFSJ .(CFSJ
~
------------------------------------------------------------------------
1 108~:mS.26 60705 5.7~
2 2292 3801.18 64646 5.8B
4 4823 4080.73 71757 5.09
b HS3 4245.94 73681 5.7b
~.12000 4364.55 7Sn7 5.75
12 15000 4421.75 77703 5.69
14 ISOOO 4440.10 80925 5.49
16 21000.4449.11 B1605 5.45
18 24000 4449.11 82503 5.39 ~)
20 27000 4449.11 83191 5.35
22 30000 4449.11 84833 5.24
24 33000 4449,11 85598 5,20
25 34500 4449.11 85917 5.18
26 36000 4449.11 86228 5.16
27 37500 4449.11 86472 5.15 .""'"
28 39000 4449.11 86895 5.12
29 40500 44411.11 87222 5.10
30 42000 4Wl.11 87541 5.08
~31 43500 4449.11 87853 5.06
39 45000 4449.11 97612 4.56
53 46600 4449,11 105163 4.23
72 48000 4429.08 109537 4.04 ~
97 49500 4294.86 114306 3.76
129 51000 4150.76 119963 3.46
169 52500 3996.94 125967 3.17 -221 54000 3821.62 129078 2,l?6
287 55500 3481.33 135178 2.58
370 57000 2918.17 140223 2,08 ~
564 60000 1467.05 149941 0.98
819 661)00 528.39 lOOB07 0.33
975 09000 256.17 167356 0.15
1151 72000 83.30 173256 0.05
1351 75000 1).00 178354 OvOO
------------------------------------------------------------------------
~
~I
J 1 1 ))-J 1 J }-1 -l,'J
(5 -".--------
!,,-r--
,-,
4-
;:"3 -
.2
/
t;:------"~---'~/IoMAYI~N i"r ,.jUL;;:;~".,f'"·l'A'Lin '-0"1'",oK SEP ,
.5
~
LL-J~'--'.,..,
~-=_c:::
tL bl_.>~
@r~~
~.--.
~t
MONTH
~...--..__._------_._-_..._------~---------.._-----_._--_-...-..._.._--~_._-.--------____'-_..._..-•......_-_.---.
.:3.15
.......
\
\~~JJ\f\·!\
'\..........-"-oJ
/......_.,--1/\/.,
-...\..----~,.
Q ......
~
1 ~~
2 ..~l _•••.,
("..').~
~~f
2 t~
S~'.-J_'__
............
-..l
MAY
o -l I i I . ; "'.I ~l \.~JUN 'JUl AUG SEP
MONTH
Figure 41.Time series plots of spawning chum salmon WUA as a function of discharge from
May 20 to September 30,1984 in Mainstem West Bank Side Channel modeling site.
\.1-\__/..
SEP
\
AU
/v-·..v/"'"
~
JUL
I ---.-_------------.-.--.-_.,.---_.--.-.~~.l::!:>
4-
.::5.~
~..:3
~i-v>"~.~2..~
~~:2"-E
r ~"I.es -~
1
lO.ts
0
MAY I JUN
MONTH
-"-T .......-
I-'
I-'co
~~:~r
G~~
~~
".~
::z..1=.e::t
1.Q
1.8
1."7
'1 .6
1 ~0
,.4 I1.~-
1 •.2
1 •1
1.0
=.Q ~VAI:~L )~'I ,~~\1-'SEP=.2 _..----J.I JUl
O.1 -r.-'·.11 IN0.0 UAV
MONTH
Figure 42.Time series plots of spawning chum salmon WUA as a function of discharge from
May 20 to September 30,1984 in Circular Side Channel modeling site.
~j ,J ,1 }t ,I ..~)J t J J •)I
)J }]j )1 1 -1 1 1 l 1 l
\,
1\
J~2.4-
2.3
2."2.
2.1
:2
1.19
1.0
"1.7
1.6
~:~::t MAY I 'JUN~L :'-f'1 OJ jUL "rl.L"AUO"I J I SEP I I
2 ..~,-
2 ..€'5
~.::!>
.:582
~.1 -
.:3 -
:2..9 -
:2.B e
2..'"7 -~
~-v;-
~l~~,
~
;..;MONTH
"7 -
~
~
1.0 e
C;
~~4-
~~
~S.E-.:3
:z
1
0
MAY
v'~-\.
~
AUG SEP
MONTH
Figure 43.Time series plots of spawning chum salmon WUA as a function of discharge from
May 20 to September 30,1984 in Sunset Side Channel modeling site.
Trapper Creek Side Channel
The Trapper Creek Side Channel hydraulic model was first run through the
HABTAT model using observed upwelling codes.There was no upwelling
observed in this study site and the suitability curves assign a value of
zero to cells without upwelling so WUA projections for this run resulted
in zero.When simulated upwelling was used in the model,the resulting
projected WUAs peaked well before the site flow (31 cfs)was controlled
by mainstem discharge (44,000 cfs),remained relatively constant until
after the controll ing mainstem discharge was reached,then dropped as
discharge increased (Figure 40).According to the time series plots in
figure 44,WUA projections in Trapper Creek Side Channel are highly
variable over time.
Embryo Survival and Development
Chum salmon embryos were sampled for survival and development from
Trapper Side Channel,Sunset Side Channel,Circular Side Channel and
Birch Camp Mainstem to determine relative overwintering success and
survival.The development and survival of embryos were determined and
are presented in Table 34.
Upper Trapper Side Channel
Embryos were collected in the upper portion of the chum salmon spawning
area in Trapper Side Channel from four redds on January 24 and 30.
Embryos were obtained by freeze core sampling and egg pump.A total of
56 embryos were collected,five of which were mortalities.Development
of the embryos ranged from the caudal bud free stage to pigmentation on
the head.Embryos collected by the freeze core method were at depths
ranging from 1 to 12 inches.The depths of eggs collected with an egg
pump cannot be accurately ascertained.
Lower Trapper Side Channel
Chum salmon embryos collected from the lower portion of the spawning
area in Trapper Side Channel were obtained from one redd by hand exca-
vation on January 24.A total of 31 embryos were collected,four of
whi ch were mortal i ti es.The dead embryos were observed as empty she 11 s.
Development of the live embryos ranged from the caudal bud free stage to
pigmentation on the head.
Sunset Side Channel
Chum salmon embryos were collected from five redds at Sunset Side
Channel on January 29 and January 30 using both freeze core methods and
egg pumping.A total of 56 embryos were collected,36 of which were
mortalities.All live embryos were developed to the eyed stage.
Embryos sampl ed by freeze core method were found at depths of 1 to 4
inches.
-120-
-
""'"
-
-
-
-
1 1 ),])1 1
.:5 -
-,
o ,MAY I .'UN ~(~j I 'JUL'i I I C.i 'AUG'I"J I SEP ,I'
4--
:.?:--•
--I A~'
2.~.....
~.o
,.,1-••~,···-In_~III'mIIJ:,a---====-----
e:~•t:>--
~
~:I·:tf
:;Cg:j~~~:;::>
to:}':-":!......c::=~'=J
ttl:tt=
MONTH
4-.!:',-r~-·-·---·--·----_.
..;&._R
I-'
N
I-'.:5 •.!:!a --
;::5 -
~-"ij
[~~
l;::!~D':!e
:':l...~
2·
·I.~-
1
c..J ..!5 _..
o
MAY SEP
MONTH
Figure 44.Time series plots of spawning chum salmon WUA as a function of discharge from
May 20 to September 30,1984 in Trapper Creek Side Channel modeling site.
Table 34,Development stage of chum salmon eggs collected from redds in Lower Susitna River side channel
sites,January 1985,
--------_..~----------._---_..----.._---~---------------------------.._--_-..---------------..--------_--_-..-------------__---------------_--------------__._----------------_--..-----------
__________________~.~__....___....•'n-..__
5llE I DATE STPP
ORGANOGENESIS E6GS DEPTH IN
CAUDAL BUD fREE YOLK VASCUL.EYED ANAL fIN DORSAL FIN PELVIC BUDS PlSnENTATlON LIVE DEAD SUBSTRATE IIN.I connENTS
...--------_---..-------__------_----_.._-----------_--------------------_..----------------_.._------_----_-..--_._._----____---_..---_..---------------------------_------------------_..---------
UPPER TRAPPER R-I B50130 EDO fun,0 3 EnPIY SHELLS
UPPER TRAPPER R-t B50130 EGG punp I I I I 31 0
UPfER TRAPPER R-I B5DUO EGO punp I I 1 0 POSSIBLY DEFORNEO
UPPER TRAPPER R-I B50130 ESG punp I I I I I I 0
UPPER TRAPPER R-t B50130 EGG PUIIP I 2 0
UPPER TRAPPER R-21CI B50121 FREElE CORE I I I 0 9-12
UPPER TR~PPER R-21CI B50121 fREEZE CORE 0 2 9-12 EnPn SHELLS.."UPPER TRAPPER R-31BI B50121 FREEZE CORE I I I I 0 5-B
UPPER TRAPPER R-~lAI B50121 FREEZE CORE I I I I
I 0 5-B
UPPER IR~PPER HlBI B50121 fREEIE CORE I I
I 6 0 5-8
UPPER TRAPPER R-llBI B50121 FREm CORE I I 2 0 H
LOWER TR~PPER R-2 850124 HANO PlCm I 5 0
LOWER TRAPPER R-2 B50121 HAN~PICKED I I I 2 0
LOWER TRAPPER R-2 850121 HAND PICKE~I I I I 20 0 mnm FAINT ON HEAOS
Lom TRAPPER R-2 850121 HAN~PlCm 0 I Enm SHELLS
SUNSET R-I B50130 EG6 punp I I 2 0
I-'SUNSET R-I 850130 EGG punp I I 1 0
N SUNSET HAlAI B50130 FREEZE CORE 0 I H EnPn SHELL
N SUNSET HC B5012B EGG punp 0 18 UNFERTlLIZEO OR DIED EARLY
SUNSET R-lIAI 850128 FREEZE CORE 0 11 H UNFERTILIZED OR DIED EARLY
SUNSET R-IO B50130 ED6 punp I I 10 0
SUNSET R-IO 8S013O E6G PUIIP I I I 0
CIRCULAR R-ll81 B50129 fREEZE CORE I 0 I 5-8
CIRCULAR R-lIB)B50129 fREEZE CORE 0 12 5-B RUPTURED E6GS/SHELLS UNIDENIlFlED
CIRCULAR R-IIBI B50119 fREEZE CDRE I I I 3 0 5-B LOOSE ENDRYDS
CIRCULAR R-3IBI B50m fREEZE CORE I 0 2 9-12
CIRCULAR R-3IB)8S0128 FREEZE CORE I I I 1 .
0 9-12
CIRCULAR R-3IBI B5012B fREEZE CORE I I 3 0 9-12
CIRCULAR R-3181 6S012B FRmE CORE 0 2 9-12
CIRCULAR R-3IC)8S012B FREEZE CORE 0 I 9-12 EnPIY SHELL
CIRCULAR H 8S0128 HAND PlmD I I I I 5 a
CIRCULAR R-SEl~1 850m fREEZE CORE I I I 3 0
CIRCULAR R-JElAI BSOl28 fREEZE CORE I 0 I
CIRCULAR R-5EIAI BSOl29 FREEZE CORE 0 2
UNfERTlLllED OR DIED EARLY
CIRCULAR R"~EIAI B50128 FREEZE CORE I I I I 2 0
CIRCULAR R"SEIAI B50128 fREElE CORE I I I I B 0
CIRCULAR R"JE 1~1 BS0128 FREEZE CORE 0 3 EnpIY SHELLS
CIRCULAR R-5EIBI 850129 fREEZE CORE I I I 15 0 5"8
CIRCULAR R-SEIBI B50129 FREEZE CORE 0 I 5-B UNfERTILIZED OR DIED EARLY
CIRCULAR R-SElBI B5012B fREEZE CORE I I a 5-B
CIRCULAR R-JElBI 9S0128 fREEZE CORE I I a 5-8
CIRCULAR R-5E IB)B5012B fREEZE CORE 0 3 5-8 EnPIl SHELLS
CIRCULAR R-SEIBI B5012B fREEZE CORE I I I I 13 0 5-B
BIRCH CREEK ns B50130 HAND PICKED I I I I I 26 4
-----.-_..----~--_..-.----------------------------...-....----------------_..---..----------_..------_..--..---------------------_.......-.....-----------------_.....-----------------_....------------.----------_.....----------------_.-~...-...----..--_..----
I L.It,r5 in II d,n,h '91 d.pth .5 10110••:A'O-~'l B'S-B'!C'9-12',
J )I ),B J J J J )J ..5 J ))_J -,
-
......
Circular Side Channel
Chum salmon embryos were collected on January 28 and 29 by the freeze
core method and by hand excavation.A total of 89 embryos were col-
lected~28 of which were mortalities.Development for the embryos
ranged from eye development to pigmentation on the head.Embryos
collected by the freeze core method were found at depths ranging from 5
to 12 inches.
Birch Camp Mainstem
Chum salmon embryos collected from this site were obtained from two
redds by hand excavation on January 30.A total of 30 embryos were
collected.All embryos sampled were fully developed and very close to
IIhatching".Depths of embryos sampled were found to be from 1-4 inches.
Outmigration Occurrence
Fyke nets were placed in Trapper~Sunset~and Circular side channels
during the spring to monitor outmigrant juvenile salmon activities.
Each net was placed below areas where significant numbers of chum redds
were known to exist.Nets were monitored once or twice daily depending
on the numbers of fi sh bei ng caught.The resul ts of the outmi grant
captures are presented in Table 33.
Trapper Side Channel
In Trapper Side Channel,a net was placed 1/2 to 3/4 miles above the
mouth of the side channel.Approximately 15 percent of the chum salmon
spawning activity during 1984 occurred below the net.The entire length
of the side channel could not be sampled due to channel geometry.The
net did,however,sample 80-90 percent of the width of the side channel.
The Trapper net was installed April 14 and monitored through May 28.
Total catches are as follows:King salmon,372;sockeye,671;coho,
436;pink,45;chum~32.
Sunset Side Channel
The Sunset net was placed below the downstream most chum salmon redd
whi ch was approximately 1/4 mil e upstream from the mouth of the side
channel.The entire width of the side channel was sampled.
The Sunset net was i nsta 11 ed on Apr;1 16 and moni tored through May 26.
Total catches are as follows:King salmon,2;sockeye~0;coho,4;
pink~2;chum~165.
Circular Side Channel
The Circular net was placed below the lowest chum salmon redd which was
150 to 200 yards upstream from the mouth of the side channel.Approxi-
mately 60 percent of the width of the channel was sampled.
-123-
Table 33.Outmigrant fyke net catch data from Lower Susitna River sites,April -
May,1985.
-------------------------------------------------------------------------..------..--~-----..------..-------...--~~DATE DATE mE TIllE SPECIES
SITE SET CHECKED SET CI!£CKEll KlNS SOCKEYE COHO PINK CHU"RMF SRAYLINS SUCKER onlL Y SCULP IN RBT
-
-----_..........._-------------_..._-------------------------------.._------------------_..._-_..---------------..-
TRAPPER mE CHAm'
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANN.El
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANNa
TRAPPER SIDE CHANNEl
TRAPPER SIDE CHANNEl
TRAPPER SIDE CHANNEl
.TRAPPER SIDE CHANNa
TRAPPER SlOE CHANNEl.
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANliEl
TRAPPER SIDE CHANNEL
TRAPPER SIDE CHANNEl2
TRAPPER SIDE CHANNEl
TRAPPER SIDE CHANNU 2
TRAPPER SIDE CHANNEl.
TRAPPER SIDE CHANNa
TRAPPER SIDE CHANNEl
TRAPPER SIDE CIlANNEl
TRAPPER SIDE CIlANNEL
TRAPPER SIDE CHAIiMEl
TRAPPER SIDE CHANNEl.
TRAPPER SIDE CHANNEL
rom
SUNSET SIDE CHANNEL4
SUNSET SIDE CHANNEL
SUNSET SIDE CHANNEL
TOTAL
CIRCULAR SIDE CHANNEl.5
CIRCULAR SlDE CHANNEl
CIRCULAR SIDE CHANNEL
CIRCULAR SIDE CHANNEL
CIRCULAR SIDE CHANNEL
CIRCULARSlDE CHANK£!.
CIRCULA!!SIDE CHANNEL
TOTAl.
BIRCH cPom SIDE CHANNEl.
TOTAl.
850m 850417
850417 850418
850~18 850m
850422 850m
850m 850424
850425 850426
850430 85050 I
85050 I 850502
850508 850509
850509 850510
8S051l 850m
850514 850m
850515 850516
850m 850516
850515 850515
850516 850517
850m 850520
850519 850519
850m 850521
850523 850523
850524 B50525
850525 850525
850525 850527
850525 850526
850526 850527
850526 850m
850527 850528
850524 850525
850525 850525
850526 ~50527
850430 850502
850509 850510
850515 850516
850515 850515
850521 850~2
850522 850522
850523 850524
850430 850502
700 800
900 JOCO
1000 SOO
1900 1030
1100 HOO
1800 900
1200 1200
1200 920
1500 1100
1100 fOO
1800 1000
1800 1000
1800 1000
1930 1000
1000 1930
1000 1000
1700 1330
1030 1700
1330 1000
800 1800
1800 900
900 1800
900 1800
1800 900
1800 900
900 1800
1800 900
1800 1000
1000 1830
1830 1000
1000 740
1000 1000
18CO 1200
900 L800
mo 1200
1200 1800
1800 930
1400 900
o
17
3
n
17
10
~2
54
17
18
17
8
o
21
7
14
5
20
54
I
4
3
o
1
fJ
1
372
o
I
2
2
13
o
29
227
25
14
310
2
2
I 10
12 11
3 7
17 50
J 9
4 7
9 43
8 85
29 17
9 18
4 10
2 6
o 0
2 I
3 5
5 9
200 3 38
~I 6
288 ~
I I
51 12
3 0
~0
~3
5 3
o 0
5 1
671 436
o I
o 2
o I
o 4
o 0
o S
o 0
o 23
26 76
b 25
4 11
36 143
02
o 2
o
o
o
o
o
o
o
o
o
o
o
1
o
o
o
I
o
o
1
I
1
o
9
6
11
13
1
45
2
o
o
2
o
o
o
o
I
o
o
I
I
1
o
o
o
o
o
o
I
o
o
o
o
I
o
I
o
o
o
o
o
11
I
3
I
3
I
8
32
9
18
138
165
o
o
o
I
m
o
~
131
I
1
o
o
I
o
I
J
3
1
o
1
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
8
o
o
o
o
3
o
o
6
295
o
o
304
o
o
o
o
o
o
o
o
o
o
o
o
2
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
2
o
o
o
o
o
o
o
3
8
o
o
11
o
o
o
o
o
o
o
o
o
I
• 0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
I
o
o
o
o
o
4
o
1
21
o
o
2&
o
o.
o
o
o
o
o
o
o
o
1
o
·0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
o
o
I
o
o
I
8
7
18
10
11
15
16
o
25
o
22
o
14
7
o
8
e
o
o
o
o
o
o
o
o
175
o
o
o
o
o
o
o
o
o
o
5
2
o
I
I
13
I
1
q
7
1
I
o
o
o
o
o
o
8
o
2
o
o
o
o
o
o
o
o
45
o
o
o
o
o
o
o
o
o
o
o
o
3
3
-
-
.....,
-
-
1
"iuing dates at Trapper Side Channel represent days the net wu not set.
2 Thru juvenile sockeye ulaDn with coded wire tags ure caught.
3 An additional 250+sockeye was released due to length of tiae in saaple tucket.
4 "i55ing dates at Sunset Side Channel represent days the net was set but no fish were caught (April 1&to April 231,
5
"i55ing dates it Circular Side Channel froa April lb to April 29 are days the net us set but no fish ure caught.Oata gaps fra.ilprii 30 ta May 2i are tiue to Ice jus
causing net praHe.s.
124
-
-
The Circular net was installed on April 6 and monitored through May 25.
A summary of the total catch is as follows:King salmon,310;sockeye,
36;coho,143;pink,1;chum,131.
CONCLUS IONS
Preliminary lower river salmon spawning habitat assessments were begun
in the fall of 1984 following observations made by ADF&G personnel of
significant chum salmon spawning within side channel habitats of the
lower Susitna River.The preliminary habitat assessments conducted
indicate that several of the physical variables evaluated may be crit-
ical to availability of spawning habitat and to the viability of in-
cubating chum salmon embryos deposited in these habitats.
Habitat Data
Groundwater flow appeared to be a critical factor affecting the over-
wintering success of embryos at study sites.From field observations
the quantity of groundwater flow appeared to be a function of mainstem
stage.Groundwater flow was observed to decrease as the mainstem stage
decreased threatening exposure of redds until an ice cover formed on the
mainstem.Within a short period of time following the mainstem ice
cover in the vicinity of the three side channels (Trapper,Sunset,and
Circular),the influence of groundwater flow increased to provide suffi-
cient side channel flow for redd survival.However,lack of groundwater
flow within the side channels prior to ice cover formation appeared to
pose a threat to the survival of the chum salmon embryos at all three
major side channelspawni"ng sites evaluated.The upper portion of
Sunset Side Channel froze about one week prior to the formation of
mainstem ice cover,resulting in a mortality of chum salmon embryos in
some redds at this site.Following formation of mainstem ice cover
stage data was obtained and indi cates that ground water wi thi n each
study site remained stable and at levels sufficient for redd survival
throughout the remaining winter months.
The six lower river study sites had areas of upwelling during the open
water season,however,five of these sites had an ice cover during the
winter.Upwelling was observed at these five sites by drilling through
the ice cover.
Water temperature did not seem to pose a-threat to incubating embryos at
any of the study sites as long as sufficient groundwater upwelling was
present.In general,water temperatures were found to be similar
between the lower and upper monitoring stations within each of the side
channels with intragravel water temperatures consistently warmer than
surface water.Circular Side Channel was found to have the greatest
range of surface and intragravel water temperatures (-0.2 to 4.0 and
-0.1 to 3.8,respectively)and the col dest water temperatures,al though
the Upper Sunset Side Channel surface water temperature probe indicated
frozen conditions from November 16-20.Overall,these basel ine data
indicate that the intragravel water temperatures were sufficient to
-125-
provide adequate incubation and embryo development.However,prior to
installation at temperature stations some freeze out occurred at Upper
Sunset Side Channel prior to ice staging due to insufficient groundwater
upwell i ng.
Substrate did not appear to be limiting to incubating embryos at any of
the redds evaluated.Substrate samples obtained from chum salmon redds
indicate that larger particle sizes (.8 -3.0 inches)are predominant in
the top 4 inches and particle sizes gradually decrease as depth
increases.
Biological Data
Chum salmon spawning activity was observed within four side channels
modeled using the IFG-4 method.For each of these side channels
projections of gross surface area and weighted usable area of chum
salmon spawning habitat were made using the calibrated IFG-4 hydraulic
simulation models developed in support of the lower river rearing
habitat investigations.
Gross surface area projections at each of these study sites increased
with increasing mainstem discharge and site flow.Projections of WUA of
chum salmon spawning habitat peaked when or just after the site flow was
controlled by mainstem discharge,then declined with increasing mainstem
discharge and site flow.
Overall,the sites with higher controlling discharges provided more WUA
for chum salmon spawning over time (e.g.Trapper Creek Side Channel,
Circular Side Channel,and Sunset Side Channel)than did the site with a
lower controlling discharge (e.g.Mainstem West Bank Side Channel).
Suitability criteria developed for the middle Susitna River indicate
that upwelling is an "important variable for spawning chum salmon
(Vincent-Lang et al.1984).When hydraulic models lacking upwelling are
linked with middle river suitability criteria in the HABTAT model the
result is WUAs of zero.Simulating upwelling in these models produced
similar trends in WUAs as in models where upwelling was observed.
Embryo incubation studies showed that embryos generally developed to
alevin stage at sites where spawning occurred with the exception of
those in Upper Sunset which were frozen due to a lack of upwelling
groundwater prior to mainstem ice-staging.Development analysis of
embryos collected at Trapper,Sunset,Circular,and mainstem at Birch
Creek in 1ate January showed that embryos were developed to the caudal
bud free stage.to pigmentation.
Outmigrant studies at Trapper Side Channel,Sunset Side Channel,and
Circular Side Channel confirmed the survival of embryos through emer-
gence.In addition,it became apparent that a significant number of
chinook,coho,and sockeye salmon utilize these same habitats for
overwi nteri ng.
-126-
-
-
-
..-
n!!
RECOMMENDATIONS FOR FUTURE STUDIES
Results of the FY85 studies indicate that a significant population of
spawning chum salmon has been observed to utilize mainstem and side
channel habitats of the lower Susitna River (Yentna River to the three
rivers confluence).This,coupled with supplemental reconnaissance
field data collected in association with the rearing habitat studies
presented in this memorandum,indicate that further studies are neces-
sary to better understand and defi ne how rna ins tern di scharge affect
habitats used by chum salmon for spawning and incubation.The following
recommendations therefore are made for future studies:
1.Conduct foot and aerial surveys of lower river side channel
and mainstem habitats to further determine the location and
numbers of salmon utilizing these areas for spawning.
2.Evaluate the effects that natural flow variations of the
mainstem have on passage into spawning areas documented in
thi s memorandum and those di scovered duri ng future spawning
surveys.
3.Determine the relationship that mainstem ice-staging has on
ground water upwelling in unbreached side channel spawning
habitats,specifically during the critical period of mainstem
icing in the fall.
4.During this study,it became apparent that a significant
number of juvenile salmon utilized the evaluated side channel
habitats for ove~intering.For this reason,studies should
be initiated to determine the magnitude and timing of juvenile
salmon inmigration into side channel habitats and to evaluate
the potential impact that post project flow regimes may have
on the overwintering rearing habitat potential of these sites.
5.Chum salmon embryos should be sampled during their incubation
phase to determine redd survival over the critical time period
when ground water flow is reduced prior to winter staging.
Sampling should continue until side channel flow has
stabilized.
6.Substrate and upwell ing conditions shoul d be documented for
those areas where spawning is found.Surface and intragravel
temperatures shoul d al so be monitored throughout the i ncu-
bation period.
-127-
-
.....
""'"I
......
-
-.
LITERATURE CITED
Alaska Department of Fish and Game.1984a.Susitna Hydro aquatic
studies procedures manual (May 1983 -June 1984)(1 of 2).Susitna
Hydro Aquatic Studies.Alaska Department of Fish and Game,
Anchorage,Alaska.
.1984b.Resident and Juvenile Anadromous Fish Investigations.------~Hydraulic models for use in assessing the rearing habitat of
juvenile salmon in six side channels of the Lower Susitna River.
Report No.7,Appendix D.Alaska Department of Fish and Game.
Susitna Hydro Aquatic Studies.Anchorage,Alaska.
Bovee,K.D.1982.A gUide to stream habitat and analysis using
instream flow incremental methodology.Instream Flow Information
paper No.12.Coop.Instream Flow Service Group.USFWS.
Colorado.
Velsen,F.P.J.1980.Embryonic development in eggs of sockeye salmon
(Oncorhynchus nerka).Canadian Journal of Fisheries and Aquatic
Sciences,Special Publication Number 49.
Vincent-Lang,D.et ale 1984.An evaluation of chum and sockeye salmon
spawning habitat in sloughs and side channels of the middle Susitna
River.Chapter 7 in 1984 Report No.3:Aquatic Habitat and
Instream Flow Investi gati ons (May-October 1983).Estes,C. C.and
D.S.Vincent-Lang,Alaska Department of Fish and Game Susitna Hydro
Aquatic Studies.Anchorage,Alaska.
Vining,L.J.,J.S.Blakely,and G.M.Freeman.1985.An evaluation of
the incubation life-phase of chum salmon in the middle Susitna
River,Alaska.Volume 1 In:C.C.Estes,J.Sautner,and D.S.
Vi ncent-Lang,editors.Wi nter aqlJati c i nvestigati ons (September
1983 -May 1984).Susitna Aquatic Studies Program.Report No.5.
Alaska Department of Fish and Game,Anchorage,Alaska.
Walkotten,W.J.1976.An improved technique for freeze sampling
streambed sediments.Department of Agri cul ture,Forest Servi ce,
Pacific Northwest Forest and Range Experiment Station,Research
Note PNW-281,Portland,Oregon,USA.
128
-.
129