Loading...
HomeMy WebLinkAboutAPA4020b17 TK r-1L:\.;4.'v ~s~ A;t3 flO,iot2ly ATTACHMENT B ANNOTATED BIBLIOGRAPHY OF SEDIMENTATION PROCESSES IN GLACIAL LAKES AND RIVERS LI .-SHP,Suppl.Info.,Vol.IB of III ~(, i:'.-~-" ,i,·r fNl I -.y ARLIS L'b Alaska Resources I rary &InfonnatJOn S Anchorage,Alaskaervlces "•.-:i: " J NTRODUCTION A literature search was conducted to obtaIn information on glacial fa ke trap efficiency of suspended sediments,with emphasis on mat.erials sma!ler than 50 microns.Relevant information will provide a bas-is for predicting the fate of suspended sediments entering the reservoirs of the proposed Susitna Hydroelectric Project. The literature searchinetuded a review of University of Alaska theses and publications of the University of Alas ka1s I nstitute of Water Resources and Geophysical Institutej the'U.S.Geological Survey,and the U.S"..Army Corps of Engineers·Cold Regions Research and Engineering Laboratory (CRREL).A computer search was conducted on the CRREL BIbliography and on Selected Water R esou rces Abstracts. I I I I I ---I I I I I I I I 4 I I2-'37--//c, susi8/h The bibliography contains annotations for 36 references with relevant information and a listing of 31 additional references with no specific information.There is information on depositional processes when proglacial rivers enter standing water bodies (Church and Gilbert 1975;Carmack,Gray,Pharo,and Daley 1979; Embleton and King 1975;Gilbert 1973,1975;Gilbert and Shaw 1981;Hamlin and Carmack 1978;Pharo and Carmack 1979;Smith 1978;Sturm and Matter 1978),with details on particle size dis- tribution for two ancient lake environments (Ashley 1975;Shaw 1975).However,research reveals that reconstructing modern depositional environments fr·om analyses of ancient environments may be misleading,as distance from source and shore and depth of lake are not as significant as density,wind-induced currents,and stratification (Bryan 1974a,b).Furthermore,misinterpretation of depositional events can lead to overestimation of the time involved in deposition (Shaw,Gilbert,and Archer 1978).A method is presented for determining sedimentation rates by radioactive fallout (Ashley 1979).One study on a modern lake shows that suspended sediment concentrations affect density stratification (Gustavson 1975b).Two studies (Ostrem 1975;Theakstone 1976)address lake trap efficiency and distance of deposition from the source. Il _ !' - - PART I -RELEVANT INFORMATION t4.rnborg ,L.,H.J.Walker,and J.Peippo.1967. load in the Colville River,Alaska,1962. Annaler.49A (2-4):131-144. Suspended Geografiska .... - - ... LO cococo ~g o LO LO "(V) (V) Discussion of suspended sediment data collected during one year (1962)for hydrologic-morphologic study of the Colville River delta.Three aspects of suspended load considered were:quantity transported in water;size of particles in suspension i and total quantity transported in a given period of time.As unit volume increases,median grain size and total load carried increases.Grain size analyses for samples representative of selected locations,depths,and times are presented.The amount and size of suspended material increased with depth at one location. 2"Ashley/G.M.1975.Rhythmic sedimentation in glacial Lake Hitchcock,Massachusetts-Connecticut.Pages 304-320 in A.V. Jopling and B.C.McDonald/eds.Glaciofluvial and glacio- lacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa/OK.Special Publication 23. Discussion of seasonal silt and clay deposition (varves)in an ancient environment.Suspended sediment concentration affects water density far more than temperature in glacial lakes.The settling velocity of a 60 silt grain in 4°C water undisturbed by currents is 0.05 em/second.Therefore,such a grain would settle 50 m in 1.15 days.However r silt was found in all winter clay layers,and could indicate that lake currents were present,preventing settling,or sediment was introduced year-round.Mean grain size of silt layers de- pends on location in the lake whereas grain size distribution of clay layers is uniform.Grain size:;analyses are presented/ but there is no specific information on the distance traveled across the lake prior to deposition. 3.Ashley,G.M.1979.Sedimentology of a tidal lake,Pitt Lake/ British Columbia,Canada.Pages 327-345 in Ch.Schluchter I ed.Moraines and Varves.Proceedings of an INQUA Symposium of Genesis and Lithology of Quaternary Deposits, Zurich,September 10-20/1978.A.A.Balkema/Rotterdam. Sedimentation rates were determined by 137Cs dating techniques.Grain size analyses were determined for 190 samples and mean grain size distribution was3 mapped. Annual sediment accumulation equalled 150±20 x 10 tons,of which 50%was coarser than 50. 4.Ashley,G.M.,and .L.E.Moritz.1979.Determin~~of lacustrine sedimentation rates by radioactive fallout ( /Cs), Pitt Lake,British Columbia.Canadian Journal of Earth Sciences.16(4):965-970. Discussion of techniques for determining modern lacustrine sedimentation rates. 5.Borland,W.M.1961. streams in Alaska. 66(10):3347-3350. Sediment transport of Journal of Geophysical glacier-fed Research. Developed empirical formula for sediment yield rates for glacial drainage basins based on glacier area,total drainage area,and length of watercourse.No differentiation by particle size.Used five years of U.S.Geological Survey suspended sediment data from Denali and Gold Creek stations to test formula. 6.Bryan,M.L.1974a.Sedimentation in Kluane Lake.Pages 151-154 in V.C.Bushnell and M.G.Marcus,eds.Ice Field Ranges Research Project Scientific Results,Vol 4.American Geographical Society,New York,NY,and Arctic I nstitute of North America,Montreal,Canada. Study of bathymetry,thermal structure,and sediment distribution in Kluane Lake,1968.A weak thermocline developed in July and August,which was occasionally destroyed by storm-induced mixing.The lake is ice-covered for eight months,and receives sediment from the Slims River for four months.Statistical parameters of grain size analyses are presented..Sedimentation is affected by density,by wind-induced lake currents,and by stratification as well as by bathymetry,distance from shore and input,point and sediment composition.Highly turbid,cold glacial waters may be sufficiently dense to flow across the lake bottom regardless of thermal stratification.When the Slims River warms,it flows over the lake. - ',j - Discussion of processes affecting sedimentation in lakes from glacial streams.Bathymetric mapping of Kluane Lake in 1968 and 1970 revealed growth of the Slims River delta. Cartographic and statistical analyses of bottom sediments are presented.Finest sediments farthest from the Slims River 7.Bryan,M.L.1974b.Sublacustrine morphology and deposition ,Kluane Lake,Yukon Territory.Pages 171-187 in V.C.Bushnell and'M.B.Marcus,eds.I cefield Ranges Research Project Scientific Results,Vol 4.American Geographical Society 1 New York,NY,and Arctic Institute of North American,Montreal,Canada. susi8/h B-3 2 -3>?-I{~ - - t.·.. were·not in the deepest portion of the lake.Distance from source,depth of lake,and distance from shore are not signif· icant in controlling deposition.Reconstructing depositional environments based on sediment size analysis may be mis- leading. 8.Carmack,E.C.,C.B.J.Gray,C.H.Pharo,and R.J.Daley. 1979.Importance of lakeriver interaction on the physical limnology of the Kamloops Lake/Thompson River system Limnology and Oceangraphy.24(4):634-644. Discussion of physical effects of farge river entering a deep, intermontane lake.No information of particle size analysis. 9.Church,M"and R.Gilbert.1975.Proglacial fluvial and lacustrine environments.Pages 22-100 in A.V.Jopling and B.C.McDonald,eds.Glaciofluvial and glaciolacustrine sedi- mentation.Society of Economic Paleontologists and Mineralogists.Tulsa,OK.Special Publication 23. Discussion of deposition when proglacial rivers enter standing water bodies.Significant events are:aggradation on the bed due to deposition of bed load extends upstream from the lake,along with reduced flaw velocities;development of a high angle delta,with transport of sediment to the delta lip; movement of coarse material over the lip and down into the lake in turbidity flows (bottom flow);movement of river water down the delta front to lake water of equal density (inter- flow);movement of river water onto the surface of the lake if density is Jess than the lake (surface flow);deposition of fine-grained material and formation of varves,of which the silt (summer)portion is deposited by turbidity currents,and the clay (winter)portion by the turbidity current after stagnation,and then by slow,continuous settling from; suspension.Turbidity underflow is not a continuous event in the melt season.Varve formation cannot be directly correlated to mean annual discharge,because a single large flood can create a turbidity flow.Turbidity flaws resulting in more rapid deposition depend on discharge,river and lake water temperature,thermal structure of the lake,quantity of sediment suspended irJ the lake from previous events,and river and lake dissolved sediment concentrations.No specific information on particle size is presented. 10.Embleton, phology. C.,and C.A.M.King.1975.Glacial geomor- John Wiley and Sans,New York,NY.pp.532-558. Review of general principles affecting sediment deposition in lacustrine environments with examples~Lake fleor deposits become increasingly fine toward center or deepest parts of susiCl/h 8-4 r , r~ I : I L. ( lakes,requlrmg quiet water and long settling periods. Turbidity currents formed by cold,silt-laden stream water are important in distributing sediment across the lake floor. Rhythmites (laminated deposits)develop in cold freshwater lakes receiving intermittent streamflow,and in some cases form on an annual basis (varves).They can a[so form from sudden fluctuations in discharge (bursting of an ice-dammed lake upstream),unseasonal warm or cold spells,or periodic storms. 11.Everts,C.H.1976.Sediment discharge by glacier-fed rivers in Alaska.Pages 907-923 in Rivers 176.Vol.2.Symposium .on I nland Waterways for Navigation,Flood Control·and Water Diversions.3rd Annual Symposium,Colorado State University,Fort Collins,CO.Waterways,Harbors and Coastal Engineering Div.,American Society of Civil Engineers,New York,NY. Investigation of glacial sediments discharged into the coastal zone (Knik,Matanuska).Size distribution,composition,and settling characteristics of glacial sediment are important characteristics in determining where the sediment will be transported and deposited when it reaches the marine en- vironment.Based on particle size distribution analyses,it appears that fine-grained particles pass completely through the river system.Ice margin lakes fringing glaciers are depositories for coarse sediments.Clay minerals were absent, which is significant because clay particles form aggregates with other fine-grained particles and settle more rapidly. This absence may be common in other glacial areas because of negligible chemical weathering in the source areas. 12.Fahnestock,R.K.1963.Morphology and hydrology of a glacial stream:White River,Mount·Rainier,Washington. U.S.Geological Survey.Professional Paper 422A.70 pp. Investigation of formation of a valley train by a proglacial stream.Particle size analyses of deposited material showed silts and clays -were washed out of stream deposits.Analysis of suspended load indicated that silt and clay stay in suspen- sion and are carried out of the study area into Puget Sound. 13.Fahnestock,R.K.1969.Morphology of the Slims River. Pages 161-172 in V.C.Bushnell and R.H.Ragle,eds.Ice Field Ranges Research Project Scientific Results,Vol.1. American Geographical Society,New York,NY,and Arctic Institute of North America,Montreal,Canada. Investigation of the Slims River,a proglacial stream flowing 14 miles from Kaslawulsh Glacier to Kluane Lake.The river is modifying a valley train deposited when the glacier was up ..,., - - ~1 - susi8/h 8-5 - .- against a terminal moraine.It is regrading,ie,adjusting to a decrease in load at the source by cutting in the upper reaches and depositing in the lower reaches.The Slims River is also affected by downstream changes in the base Jevel, which is controlled by the extension of the delta into Kluane Lake and the variation in lake level.As the vol ume growth rate of the delta is not known,the sediment transport rate cannot be estimated.Suspended sediment is predominantly silt and clay.No data on particle size distribution. 14.Gaddis,B.1974.Suspended-sediment transport ships for four Alaskan glacier streams.M.S. University of Alaska,Fairbanks,AK.102 pp. relation- Thesis. I nvestigation of suspended sediment transport relationships in glacial streams at Gulkana,Maclaren,Eklutna,and Wolverine glaciers.Data on mean particle size Is presented for four glacial streams for one season at sites near the terminus. Sediment availability depends on amount of sediment,distance travelled downstream,and mechanical nature of sediment entrainment (no specific information on entrainment). 15.Gilbert,R.1973.Processes of underflow and sediment transport in a BritiSh Columbia mountain lake.Pages 493-507 in Fluvial Processes and Sedimentation.Proceedings of the 9th Hydrology Sympasuim,University of Alberta,Edmanton. Canada,May 8-9.Subcommittee on Hydrology,Associate Committee on Geodesy and Geophysics,National Research Council of Canada. Description of processes involved in formation of varved sediment deposits in proglacial Jakes,primarily underflow and interflow.Underflow increases with increase of water and suspended sediment inflow.Cores obtained to determine thickness and comparision of varves.No information on particle size distribution. Lillooet Lake receives sediment from a 3,580 sq km drainage b~sin,of which 7%is glacier-covered.I nterflow and under- flow distribute sediment through the lake in summer when the lake is stratified.Factors affecting distribution are:density characteristics of the lake and inflowing water,as determined by temperature and suspended sediment concentrations; currents induced by wind and inflow;thermal structure of the lake water,which determines the nature of circulation patterns and allows interflow along the thermocline;diurnal and seasonal fluctuations in infJowing waters and sediment; - - 16.Gilbert,R.1975.Sedimentation Columbia.Canadian Journal 12(10):1697-1711. in Lillooet Lake,British of Earth Sciences. susi8/h 8-6 2-3'2-/7-( l _ and the large annual volume of inflow (4.5 times greater than the fake volume on the average).I nterflow carries sediment at the base of the epilimnion to the distal end of the lake in one to two days.No specific information on particle size. 17.Gilbert,R.,and J.Shaw.1981.Sedimentation in proglacial Sunwapta Lake,Alberta.Canadian Journal of Earth Sciences. 18(1):81-93. Examination of hydrologic and limnologic conditions of Sunwapta Lake,a small,proglacial lake in the Canadian Rockies.Sediment input was measured and sedimentation rates were calculated.Sediments of small,shallow lakes with large and highly variable inflows are expected to demonstrate lateral and vertical variability,whereas those in large pro- glacial lakes are more predictable due to modification by large,stable water masses. 18.Gustavson,T.C.1975a.Bathymetry and sediment distribu- tion in proglacial Malaspina Lake,Alaska.Journal of Sed imentary Petro logy.45:450-461 . See next abstract 19.Gustavson,T.C.1975b.Sedimentation and physical limnology in proglacial Malaspina Lake,southeastern Alaska.Pages 249-263 in A.V.Jopling and B.C.McDonald,eds.Glaci- ofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23. Underflow,interflow,and overflow water entered Malaspina Lake,and the type of flow is dependent on the relative suspended sediment content of the lake water and the in- flowing melt water.The 18-km long lake is density stratified (increasing suspended sediment concentration with depth)but not thermally stratified.No specific information on particle size or trap efficiency is presented. - 20.Guymon,G.L.1974.Regional sediment yield analysis of Alaska streams.Journal of the Hydraulics Div.of the American Society of Civil Engineers.1 OO(HY1):41-51. Analyzed Borlandls (1961)formula.Considered particle size, but used an average particle size in the formula.However, concluded that particle size affects application of the formula. f '~ 21.Hamblin,P.F.,and E.C. currents in a fjord lake. 83(C2):885-889. Carmack.1978.River-rnduced Journal of Geophysical Research. susi8/h B-7 l Discussion of dynamics of strong flowing river entering a long,narrow lake (Kamloops Lake,B.C.).River-induced currents influence circulati00 patterns in a fjord lake.No specific information on sedimentation rates or particle size analysis. 22.Hobbie,J.E.1973.Arctic limnology:a review. Pages 127-168 in M.E.Britton,ed.Alaskan arctic tundra. Arctic Institute of North America.Technical Paper 25. Review of properties of lake in northern tundra regions. Thermal cycle of deep arctic lakes is highly variable,and stratification is uncommon,occurring only in warm,calm weather after fake waters rise to 4°C.Deep lakes maintain circulation even when ice covered.Deeper lakes are re- ,-latively turbid as a result of glacial flour from streams drain- ing active glaciers.Lake Peters is fed by glacial streams and drains via a 1-km rang,15-m deep channel into Lake Schrader in the Brooks Range.Both are 50-60 m deep.Lake Peters acts as a settling basin.When dense glacial water enters' Lake Peters in June,it sinks to the bottom,and the lake fills upward with turbid water ..- 23.Mathews,W.H.1956.Physical limnology and sedimentation in a glacial lake.Bulletin of the Geological Society of America.67:537-552. Garibaldi Lake,British Cofumbia,receives sediment from two glacial streams with relatively'low sediment content.Particle size and composition of bottom deposit analyses revealed slow transport to site of deposition and slow rate of deposition for clays.No information on amount of sediment passing through system. 24.Ostrem,G.1975.Sediment transport in glacial meltwater streams.Pages 101-122 in A.V.Jopling and B.C.McDonald, eds.Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23 .. Recognized problems of utilizing glacial waters for hydro- electric projects,specifically in reservoirs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers (based on 20 micron grain size variation).X-ray diffraction analyses showed that summer deposits contained more quartz (rapid sedimentation),and winter deposits,more mica (slower sedimentation).For one 1,800-m long proglacial lake over 29 years,about 70 percent of the total suspended sediment input was deposited. susi8/h B-8 2-32-/2.3 --,-----------"._,-----'--------------------~/ Discussion of dynamics of strong flowing river entering a long,narrow lake (KamJoops Lake,B.C.).River-induced currents influence circujation patterns in a fjord lake.No specific information on sedimentation rates or particle size analysis. 22.Hobbie,J.E.1973.Arctic limnology:a review. Pages 127-168 in M.E.Britton,ed.Alaskan arctic tundra. Arctic Institute of North America.Technical Paper 25. Review of properties of lake in northern tundra regions. Therm.al cycle of deep arctic lakes is highly variable,and stratification is uncommon,occurring only in warm,calm weather after lake waters rise to 4°C.Deep lakes maintain circulation even when ice covered.Deeper lakes are re- latively turbid as a result of glacial flour from streams drain- ing active glaciers.Lake Peters is fed by glacial streams and drains via a 1-km long,15-m deep channel into Lake Schrader in the Brooks Range.Both are 50-60 m deep.Lake Peters acts as a settling basin.When dense glacial water enters· Lake Peters in June,it sinks to the bottom,and the lake fills upward with turbid water. 23.Mathews,W.H.1956.Physical limnology and sedimentation in a glacial lake.Bulletin of the Geological Society of America.67:537 -552. Garibaldi Lake,British Columbia,receives sediment from two glacial streams with relatively low'sediment content.Particle size and composition of bottom deposit analyses revealed slow transport to site of deposition and slow rate of deposition for clays.No information on amount of sediment passing through system. 24.Ostrem,G.1975.Sediment transport in glacial meltwater streams.Pages 101-122 in A.V.Jopling and B.C.McDonald, eds.Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23. Recognized problems of utilizing glacial waters for hydro- electric projects,specifically in reservoirs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers (based on 20 micron grain size variation).X-ray diffraction analyses showed that summer deposits contained more quartz (rapid sedimentation),and winter deposits,more mica (slower sedimentation).For one 1,800-m long proglacial lake over 29 years,about 70 percent of the total suspended sediment input was deposited. ....., .~ susi8/h B-8 25.Ostrem,G./T.Ziegler,and S.R.Ekman.1970.A study of sediment transport in Norwegian glacial rivers,1969. I nstitute of Water Resources,Dept.of Hydrology,Oslo, Norway.Report 6/70.Report for Norwegian Water Resources and Electricity Board.Translated from Norwegian by H.Carstens.1973 ..Institute of Water Resources, University of Alaska,Fairban ks,AK.Report 35.1 vol. Investigations were conducted on water discharge and sedi- ment volume measurements in glacial rivers above and at the outlet of glacial lakes to calculate the sedimentation of fine material on the bottom of the lakes.Volum.e of material available for transport is probably largest at the beginning of the season.No data on partiel e size. 26.Pharo,C.H.,and E.D.Carmack.1979.Sedimentation processes in a short residence-time intermontane Jake, KamJoops Lake,British Columbia.Sedimentology. 26:523-541. Sediment transport and deposition in the lake is controlled by three interdependent processes:delta progradation at the lake-river confluencei sediment density surges originating along the delta face,which result in turbidite sequences lakeward from the base of the delta;and dispersal by the interflowing river plume,which,due to Coriolis effects, results in a higher sedimentation rate and greater fraction of coarser material along the right-hand of the lake in the direction of flaw.Suspended sediment concentrations are high above the thermocline where higher turbulence,main- tained by wind mixing and river inter interflow,reduces settling velocities.Particles settle rapidly once they enter the hypolimnion. 27.Ritchie,J.C.,J.R.McHenry,and A.C.Gill. recent reservoir sediments.Limnology and 18:254-283. 1973.Dating Oceanography. Discussion of radioactive 137Cs dating.Method could be used to date sediment in reserviars that have not been surveyed. 28.Shaw,J.1975.Sedimentary successions in Pleistocene ice-marginal lakes.Pages 281-302 in A.V.Jopling and B.C. McDonald,eds.Glaciofluvial and glaciolacustrine sedimenta- tion.Society of Economic Paleontologists ano Mineralogists, Tulsa,OK.Special Publication 23. Discussion of sedimentation in proximal portion of a glacial lake based on interpretation on the ancient environment. Mean grain size values were determined for sections of each facies from 0 to 80.No information on transport of fine materials. susi8/h B-9 29.Shaw,J.1977.Sedimentation in an al pine lake during de- glaciation,Okanagan Valley,British Columbia,Canada. Geografiska Annaler.59(A):221-240. Ancient lake sediments were examined to develop a model of alpine lake sedimentation based on changing depositional processes with time and distance from the ice margin. - 30.Shaw,J., lacustrine Research. R.Gilbert,and J.J.J.Archer.1978.Proglacial sedimentation during winter.Arctic and Alpine 10(4):689-699. Discussion of deposition of coarse-grained sediments during winter in Lillooet lake.Misinterpretation can lead to over- estimation of time seqences of deposition. 31.Slatt,R .M.1970.Sedimentological and geochemical aspects of sediment and water from ten Alaskan valley glaciers.Ph.D. Thesis.University of Alaska,Fairbanks,AK.125 pp. Studied five groups of glaciers with different bedrock lith- ologies;Worthington and Matanuskaj Castner and Fels; Gulkana and College;Rendu and Reed;and Carroll and Norris.Particle size analyses and mineralogy of superglaciaJ and suspended stream sediments are presented.The environment of transport has a much greater effect on grain size than the nature of the starting material. 32.Slatt,R.M.1971.Texture of ice-cored deposits from ten Alaskan valley glaciers.Journal of Sedimentary Petrology. 41(3):828-834. Revised and condensed portions of Ph.D.thesis (see above). 33.Smith,N.D.1978.Sedimentation processes and patterns in a glacier-fed lake with low sediment input.Canadian Journal of Earth Sciences.15(5):714-756.Snow melt and glacial melt waters carrying relatively low suspended sediment concentra- tions enter Hector Lake in the eastern Rocky Mountains, Alberta.When stratified,water and fine sediments enter the lake as interflow·and overflow.Grain size analyses were conducted on 42 cores.Deposition varies Jeft to right as well as distally due to katabatic winds generating down lake currents in the epilimnion that are deflected southward (rightward)by the Coriolis force. 34.Sturm,M.,and A.Matter.1978.Turbidites.and varves in La ke 8rienz (Switzerland):deposition of clastic detritus by density currents.Pages 147-168 in A.Matter and M.E. Tucker,eds.Modern and ancient lake sediments.Inter- national Association of Sedimentologists.Special Publication 2. ~: susi8/h 8-10 .- Discussion of sediment transport and deposition by overflow, interflow,and underflow in a long,narrow,deep basin with rivers entering at each end.Fine-grained sediments supplied by overflows and interflows settle continuously during summer thermal stratification.Most of the fine-grained particles remain in suspension at the thermocline because the vertical density gradient is more dependent on temperature than on an increase in density du~to suspended particles.During fall turnover,the remaining sediment trapped at the thermocline settles. 35.Theakstone,W.H.1976.Glacial lake sedimentation, Austerdalsisen,Norway.Sedimentology.23(5):671-688. A lake completely filled with glacial sediments,over which braided stream deposits formed.A new proglacial lake then formed.Discussion of bedding and composition of ancient lake sediments.Ini·tially,deposition was very slow in deep (80 m)water.In another lake 300 m from a glacier,about 75 percent of the sediment transported in suspension is retained in the basin,but the amount retained in one day is highly variable.The daily summer values exceeded the minimum by 200 times (data not presented). 36.Tice,A.R.,L.W.Gatto,and D.M.Anderson.1972.The mineralogy of suspended sediment in some Alaskan glacial streams and lakes.Cold Regions Research and Engineering Laboratory Corps of Engineers,U.S.Army,Hanover,NH. Research Report 305.10 pp. Investigation of the role of chemical weathering of bedrock in cold regions determined that no chemical changes occurred in fine suspended material.Suspended sediment samples were obtained for X-ray diffraction analyses"from gaJcial outwash streams and lakes in seven areas (Chackachamna,Palmer- Matanuska,Moose Pass-Portage,Valdez,Juneau,Mt.McKinley National Park,and Black Rapids)., susi8/h B-11 PART 11-NO SPEC)FIC INFORMATION 1.Agterberg.F.P ., for the deposition Ontario,Canada. 6:625-652 and I.Banerjee.1969.Stochastic modet of varves in glacial Lake Barlow-Ojibway, Canadian Journal of Earth Sciences. 2.Banerjee,I.,and B.C.McDonald.1975.Nature of esker sedimentation.Pages 132-154 in A.V.Jopling and B.C. McDonald,eds.Glaciofluvial and glaciolacustrine sedimenta- tion.Society of Economic Paleontologists and Minerarogists, Tulsa,O.K.Special Publication 23. 3.Boothroyd,J.C.and G.M Ashley.1975.Processes,bar morphology,and sedimentary structures on braided outwash fans,northeastern'Gulf of Alaska.Pages 193-222 in A.V. Jopling and B.C.McDonald,eds.Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK.Special Publication 23.- 4.Bradley,W.H.1965. 150(3702):1423-1428. Vertical density currents.Science. 5.Clague,J.J.1975.Sedimentology and paleohydrology of late Wisconsinan outwash,Rocky Mountain trench,southeastern British Columbia.Pages 223-237 in A.V.Jopling and B.C. McDonald,eds.Glaciofluvial and glaciolacustrine sedimen- tation.Society of Economic Paleontologists and Mineralogists, Tulsa,OK.Special Publication 23. 6.Everts,C.H.and H.E.Moore.1976.Shoaling rates and related data from Knik Arm near Anchorage,Alaska.Coastal Engineering Research Center,Corps of Engineers,U.S. Army,Fort Belvoir,VA.Technical Paper 76-1.84 pp. 7.Gilbert,R.1971.Observations on ice-dammed Summit Lake, British Columbia,Canada.Journal of Glaciology. 10(60):351-356. 8.Gustavason,T.C.,G.M.Ashley,and J.C.Boothroyd.1975. Depositional sequences in glaciolacustrine deltas. Pages 264-280 in A.V.Jopling and B.C.McDonald,eds. Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23. 9.Guymon,G.L.1974.Sediment relations of selected Alaskan glacier-fed streams.Institute of Water Resources,University of Alaska,Fairbanks,AK ..Report 51'.17 pp. susi8/h B-12 2.-3"2 -I'l.'i!' 10.Hobbie,J.E"!ed.1980.Limnology of tundra Barrow,Alaska.Dowden,Hutchinson and Ross, Stroudsburg,PA.US/ISP Synthesis Seiies 13.514 pp. ponds: Inc., 11.Howarth,P.J.,and R.J.Price.1969.The proglacial lakes of Breidamerdurjokull and Fjallsjokull!Iceland.Geog raphical Journal.135:573-581. 12.Jopling!A.V.1975.Early studies on stratified 4-21 in A.V.Jopling and B.C.McDonald,eds. and glaciolacustrine sedimentation.Society Paleontologists and Mineralogists!Tulsa, Publication 23. drift.Pages Glaciofluvial of Economic OK.Special 13.Kindle,E.M.1930.Sedimentation in a glacial lake.Journal of Geology.38(1):81-87. 14.Lawson,D.E.1977.Sedimentation in the terminus region of the Matanuska Glacier,Alas ka.Ph.D.Thesis.University of Illinois,Urbana-Champaign,I L.287 pp. -15.Long!W.E. streamflow; Resources! 1 vol. 1972.Glacial processes and their relationship to Flute Glacier,Alaska.I nstitute of Water University of Alaska,Fairbanks,AK.Report 18. """ 16.Ludlam!S.D.1967.Sedimentation in Cayuga Lake,New York.Limnology and Oceanography.12(4):618-632. 17.McDonald,B.C.,and W.W.Shilts.1975.Interpretation of faults in glaciofluvial sediments.Pages 123-131 .in A.V. Jopling and B.C.McDonald,eds.Glaciofluvial and g lacio- lacustrine sedimentation.Society of Economic Paleontologists .and Mineralogists,Tulsa,OK.Special Publication 23. 18.Moores,E.A.1962.Configuration of the surface velocity profile of Gul kana Glacier,central Alaska Range,Alaska. M.S.Thesis.University of Alaska,Fairbanks,AK.47pp. 19.Moravek,J.R.1973.Some further observations on the be- havior of an ice-dammed self-draining lake,Glacier Bay, Alaska,USA.Journal of Glaciology.12(66):505-507. 20.Reger,R.D.1964.Recent glacial history of Gut kana and College Glaciers!central Alaska Range,Alaska.M.S.Thesis. University of Alaska,Fairbanks,AK.75 pp. 21.Rust,B.R.1975.Fabric and structure in glaciofluvial gravels.Pages 238-248 in A.V.Jopllng and B.C.McDonald, eds.Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23. susi8/h 8-13 2 - 3 '2 -12-" 23.Ryder,J.M.,and M.Church.1972.Paraglacial sedimenta- tion:consideration of fluvial processes conditioned by glacia- tion.Bulletion of the Geological Society of America. 83:3059-3072. 24.Saunderson,H.C.1975.Sedimentology of the Brampton esker and its associated deposits:an empirical test of theory.Pages 155-176 in A.V.Jopling and B.C.McDonald, eds.Glaciofluvial and glaciolacustrine sedimentation.Society of Economic Paleontologists and Mineralogists,Tulsa,OK. Special Publication 23. 25.Sellmann,P.V.1962. central Alaska Range, Alaska,Fairbanks,AK. Flow and ablation of Gwl kana Glacier, Alaska.M.S.Thesis University of 36 pp. 26.Shira,D.L.1978.Hydroelectric powerplant siting in glacial areas of Alaska.Pages 59-76 in Applied Techniques for Cold Environments,Vol.1.Proceedings of the Cold Regions Specialty Conference,Anchorage,AK,May 17-19.American Society of Civil Engineers,New York,NY. 27.SJatt,R.M.,and C.M.Hoskin.1968.Water and sediment in the Norris Glacier outwash area,upper Taku Inlet,south- eastern Alaska.Journal'of Sedimentary Petrology. 38(2):434-456. 28.Stone,K.H.1963.Alaskan ice-dammed lakes.Association of American Geographers:Annals.52:332-349. 29.St.Onge,D.A.1980.Glacial Lake Coppermine, north-central District af MacKenzie,Northwest Territories. Canadian Journal of Earth Sciences.17(9):1310-1315. 30.Williams,P.F.,and B.R.Rust.1972.The sedimentology of a braided river.Pages 183-210 in V.C.BushnelJ and R.H. Ragle,eds.Icefi'eld Ranges Research Project Scientific Results,Vol.3.American Geographic Society,New York, NY,and Arctic I nstitute of North America,Montr.eal,Canada. 31.Yould,E.P.,and T.Osterkamp.1978.Cold regions con- siderations relative to development of the Susitna hydro- electric project.Pages 887-895 in Applied Techniques for I ~, - susi8/h 6-14 l-3?-/30 "'" Cold Environments,Vol 2.Proceedings of the Cold Regions Specialty Conference,Anchorage,AK,May 17-19.American Society of Civil Engineers,New York,NY. susi8/h 8-15 -z -3'2.-t 3 I .- EXHIBIT E 2:.Water Use and Quality ~:olllllE!nt 33 (p.E-2-96,para.2) Provide quantitative estimates of nutrient adsorption on suspended sediments (e.g.,glacial flour)that will be transported into Watana Reservoirs.Pro- vide data on levels of exchangeable phosphorus in soils in the Watana and Devi 1 Canyon impoundment zones. Besponse Quantitative estimates of nutrient adsorption on suspended sediments (e.g., £jlacial flour)that will be transported into Watana Reservoir are not avail- alb le at the present ti me.Data on leve 1s of exchangeab le phosphorus in soi ls in the Watana and Devi 1 Canyon impoundment zones do not present ly E!xi s t. Additionally,to our knowledge at the present time,approved and standardiz- E!d methods do not exi st for quantitati ve ly esti mati ng exchangeab le phosphor- UIS il1 soil samples.In fact,the definition of the term "exchangeable phosphorus"is not standardized in state-of-the-art limnological 1i terature. The present level of knowledge about the Susitna River drainage basin and the limnology of the two proposed reservoirs indicates that the project reservoi rs wi 11 mai ntai n a low producti vity (01 i gotrophi c)trophi c status clue to phosphorus limitation (Peratrovich,Nottingham and Drage,Inc.and Hutchison,1982;Peterson and Nichols,1982;Rast and Lee,1978;Stuart, 1.983;Vollenweider and Kerekes,1980). 2-33-1 Data about nutri ents attached to turbi d ity part ic les whi ch are potent;ally exchangeable with juxtapositioned microbial biomass are difficult,time con- sumi ng,and ex~ens i ve to acqui re.We hope that the FERC staff wi II agree with our position and withdraw or temper this request. References Peratrovich,Nottingham and Drage,Inc.and Ian P.G.Hutchinson,1982. Susitna Reservoir Sedimentation and Water Clarity Study.Prepared for Acres American Inc.,Anchorage,Alaska,35 pp. ~. Peterson,L.A.and G.Nichols,1982. Impoundment of the Susitna River. for Acres American Inc.,Buffalo, Water Quality Effects Resulting from Prepared with R &M Consultants,Inc. New York,18 pp. Rast,W.and G.F.Lee,1978.Summary analysis of the North American (U .5. porti on)DECO entrophi cati on project:nutri ent loadi ng -lake response relationships and trophic state indices.EPA-6DO/3-78-008.455 pp. Stuart,T.J.,1983.The effects of freshet turbidity on selected aspects of the bi ogeochemi stry and the trophi c status of Flathead Lake,Montana, U.S.A.,Ph.D.dissertation,North Texas State University,Denton,Texas, 229 pp. Vollenweider,R.A.and J.Kerekes,1980.The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the DECO Programme on eutrophication.Prog.Wat.Tech.,Vol.12,Norway, pp.5-18.IAWPR/Pergamon Press Ltd. 2-33-2 ..., EXHIBIT E 2.Water Use and Quality CORJDent 35 (p.E-2-100,para.4) Provide real and simulated.salinity data which show the accuracy of the Corps of Engineers salinity model for predicting salinity in Cook Inlet at differ- ent locations (e.g.,Node 27)under different flow conditions.Also,pro- vlide parameter values used in these simulations and document the source of the values used. RE~sponse RE~al and simulated salinity data for Node 27 near the Susitna River mouth are provided in pp.2-35-2 to 2-35-35. A'lso provided is a user's guide (pp.2-35-36 to 2-35-171)for the computer modeling effort conducted by the Corps of Engineers on the estuary hydro- dynamics and water quality of Cook Inlet.The user's ,guide documents'para- meter values and their source for use in the Cook Inlet water quality model- ing effort.An example problem data set and simulation results are present- ed on pp.2-35-92 to 2-35-131. 2-35-1 ,, ] 1 Volume 3 WATER QUALllY, ~<Nli<APJv\•UPPER (00[<INLEJ - .,....-.--' .-~ ,--.~-::~;;;~?0~"~'S;" :-:i;G~:.~~- ~."" .... .:""':. 0.:.,.•• '"'"',. ..... ~, -ANCl40 RAG L CONTOU'l lNTEi'<\AL. 0.1 S%. 1 l $ ..~. .. ~uJ HTEFlV~LO 5 __ 1 I I ·,'- j t. • +~ I CCfoITOUR ~ fHT£RVAl."O.~S%••1 ~ I COHTCUR t~INTERVAl..< 0.2 S~.r f~~••~ ! ~ ISO" -• FIef.Kinney.Groy""&Bunon,1970. 152" 30 nauticcJ miles I 2010o I r~ - -FIGURE 2.5 Surface Salinity Distribution in Cook Inlet 2-15 2-35-3 LEGEND 30 OSSERVED SALINITY REDUCED FRO~ Is,:lHALlNE MAP REPRESENTI~G ~ 2S SEPTEMBER :5-29.1972 CONDITIONS --CC~PUTED SALINITYc..20...END OF SEi"T.1972 ~>" ~15z :::::i<10 ::;,t:;~~1 5 '" _........c: 0(<0<>...... 0 125 \00 75 50 25 1 MILES FROM POINT WORONZOF I .LEGEND 30 """'i08S<:RVED SALINITY REDUCED FROM is,:lHALINE MAP REPRESENTING --AUGUST 22-.:3.1572 CONDITIONS o..20~ >"~, ~ % :::::i<10"" 0 125 100 75 50 2S 0 5 MILES FROM POINT WORONZOF LEGEND OBSERVED SALINITY REDUCED FROM ISOHAUNE MAP REPRESENTING ~ MAY 21-28,\968 CONOITIONS 30 COMPUTED SALINITY I END OF MAY,1972 ~ 1-o.. 0-J .>11- Z .~ :::::i ~... <Q 0...on i3 z zc>-0~~.....z:5 ...:c~co ~i<>z "'...0 I 100 i5 50 25 0 2S MILES FROM POINTWORONZOF ~ FIGURE 7.4 Computed and Observed Salinity between Anchor Point and Knik Arm 7-16 RESOURCE MANAGEMENT ASSOCIATES "-:?ese.'cl'l ..De .....';;;JD",&f'l1 •A.:;ohCdrJOflS 11 October 1982 As authorized by your letter to Dr.Robert Carlson,dated September 23a 1982.I have performed a numerical modeling study to deter~ine the effects of altered·Susitna River flows on the salinity of Cook Inlet. The following describes the results of this study. - Mr.Wayne M.Dyok Acres American Inc. Suite 305 1577 C Street Anchorage.Alaska 99501 Dear Hr.Dyok: HARZA-EBASC;, Susitna Joint Venture Document Number Please Return To DOCUMENT CONTROL -~ Background The construction and operation of the proposed Susitna River Hydroelectric Project will alter the amount of freshwater which enters Cook Inlet from the Big Susitn~River.With this project,inflows du:ring the high runoff summer months will be reduced and increased during the low runoff winter months.To assess the effects of this change in freshwater inflow on the salinity distribution within Cook Inlet,a numerical model previously applied to Cook Inlet during a Corps of Engineers sponsored study was used ~1.2). Model Application The numerical model used in this application represents the estuary as a series on nodes (discrete volume elements)and interconnecting channels.In the aggregate this node-channel representation provides a 2-dimensional (i .e.,2-dimensional in the horizontal plane and uniform vertically)description of the estuary including flow rates and velocities and water quality parameter concentrations over time and spclce. The model representation of Cook Inlet shown in Figure 1 was developed in the beforementioned study.This model representation is adequate for this study,therefore no modification or further calibration was performed.To provide a more detailed description of the model concepts and its application to Cook Inlet,excerpts from the report to the Corps of Engineers (I)have been included as Exhibit A. Typical hydraulic conditions were used for the study.r~onthly average inflows from the various streams tributary to Cook Inlet were provided by Dr.Robert Carlson.These tributary flows,including the pre and post Susitna Hydroelectric Project flows along with the model inflow locations are shown in Table 1. Study Res ul ts To assess the effects of the proposed project on the salinity of Cook Inlet,the following hydrodynamic and dynamic water quality simulations were performed. Cases 3 and 4 had very similar Susitna River flow and therefore the effects on Cook Inlet salinity were quite similar. fnt a:Y~ l!!i ;r,~~:"df' distribution through 7. presented in _. at six locations The end of month Exhibit B. The pre and post project salinities within the inlet are shown in Figures 2 salinities at selected nodal locations are I hope that this brief summary of our modeling appr:ach meets the requirements 'of your project.It has been providing this service to Acres American and I hope we assist you in future studies. Sincerely, and resul ts a pl eaSUl"e are able to Donald J.Smit DJS/ch cc:Dr.Robert Carlson Enclosures - - _____________________--=-"""-'-_,.."1-.-_--1 _ .... ..... .... - REFERENCES 1..Tetra Tech Inc.,"Water Qua 1i ty Study,Kni k Arm and Upper Cook In1et,A1aska,"report to the Corps of Engineers,September,1977. 2.Smith,D.J.,"User's Guide for the Estuary Hydrodynamic and Water Quality Mode1s,u Tetra Tech report to the Corps of Engineers, September,1977 • .I -- I- UJ_ .....J-..... ::..:::oO"!'i"\ U u...a z """o..... f-;:: z: UJ V"J UJe:: 0-we:: ~c::o ~­UJc:: -~ ....., J J )~J i j I l,i II -~J J. TABLE 1 TVP ICAL R ~VER INFLOWS Ie h'TO COOK INLET RIVER LOCATION'.....cu-.....tiD!L ~.....>MlL ..f..EJL -..l:1AIL ~...J:I6L ~~-AllL ~ + ~DE ~7 ..CASE 1 :100:1:1 1~6:1B 8;;11 :I 7Y04 7031 63:l0 6979 60463 la3698 13193~110B41 .:19603 ++ NODE a7 ..CABE 3 3:l39:l 19191 17033 1610B 1470:1 13:100 13319 :17611 107381 117004 '102348 .a60:l9 ++ NODE 27 ..CAsE 4 3:l184 1917a 176:l0 16973 I :l9:2a 1441:1 13640 S:lY30 10:1702 11603:13 101733 603:2:14 NODE II "alo~an8 1787 1614 1330 I:lOO HIIB ~S6a 7:241\119"13S9S 1:1010 NODE 10 4441 2266 1:l107 794 631 :171 :173 737 1:119 4a93 7-434 707'1 NODE 7.394 309 Ill:l 140 173 20:1 :liB 723 401 :leo :lSI»3B7 NODE 8 .4:190 a243 1:I:lI 1140 939 8:lB B:lO .1938 10669 :l:l3:13 :la461 1I1l79 NODE 24 9329 .44:19 3073 2311 1909 .1682 1667 3939 126B2 4:142B 4:1641 2292a NODE :10 769:1 34:17 a06S 1646 13'il9 122:1 1707 74B3 ~8070 474:14 396:14 ~Y83 NODE 12S 761 2B8 193 IU 119 121 I:lS :161 2363 4048 3eU 20lo0 NODE :1:1 1083 400 20'il .'II 4:1 4:1 100 10:21)348:1 ~721 ~120 1:1" NODE 1110 3700 :lOSa 1:111 1130 904 869 BBO 34::17 73S4 6319 4aoo as,. +..PRE PRO~ECT 8UBlTNA RIVER FLowe ++••P08T ""o.JI:CT .UIITNA 'UW"nowe ~.~...----------------~._---.__........__._--. 630600 CASE 1 ..<> CRSE 4 ..+ 510540490.510 NODE.NO.12 450420 JULIAN DATE 390330300'10 U1 § I\) U1 § 0111111111111111111111111111'111'111111111111111 III I111I iii IIIII I I I I I i I I I I ~ § I\)o ~§ o (J)..- U1 ~§ "r ..- D § FIGURE 2 TEMPORAL VARIATION IN SALINITY ~IITHIN COOK INLET NEAR EAST FORLANb UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS I ~I I I I ),)J _J.1 I .~J J ;I J '...._.j J l 1 1 )J -J .~)J j J J ]1 ] ". NODE.NO.26 CASE 1 .•<) CRSE 4 ...+ W D § f\:> lJl § f\:> 0 -t § 0 (J) ".-Ul ~§ "-r -0 § lJl § o 111111111111111111111111,.1111111111111111111.111111111111111'11111111 ••• 270 300 330 3~0 390 420 450 490 510 540 570 .600 '30 ~ JULIAN DATE .-."-....(.-.._..---~.......-_.... FIGURE 3 TEMPORAL VARIATION IN SALINITY WITHIN CENTRAL COOK INLET SOUTH OF THE SUSITNA RIVER UNDER PRE AND POST .SUSITNA HYDROELECTRIC PROJECT CONDITIONS .: CASE t ...0 CASE 4 ..+ 1",0','m:,"'1tPJiu~n'i!I,:,~",r,,~,,;'i;"-"'3~....',"l ..<;j;r:"'..(~.;~ o Iii iii Iii i I I iii iii I i I I I iii iii iii iii I i I Ii.I iii iii 1 Iii I I I Iii I Iii I i I I I Iii I i I I\) § U1 § w § I\) ~'§ o U")......U1 ~§ '"r ..... § eTO 300 330 360 390 420 450 480 5iO 540 570 600 '30 JULIAN DATE • ,I j FIGURE 4 TEt1PORAL VARIATION IN SALINITY WITHIN COOK INLET NEAR THE SUSITNA RIVER UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS I J ,I I I I .1 I I J B ~• J I 1 J }}1 J 1 I j J J --1 J ---~ B NODE.NO.43 CASE 1 ..0 race 11 .-L\..t11\.lL •••I 630600570540510490450420390360330300270 o f I I I i I IiiIii i I .•i ,i I I i I •iii i i j I i I •Ii'•Iii iii'iiiiii [iii iii iii I I I ,j iii Iii 171 w 0 § I'\.'l l.I1 § I'\.'l 0 -i § 0 to -l.I1 ~§ "... r -0 § l.I1 § JULIAN DATE ...~__..---'--._-_. FIGURE 5 TEMPORAL VARIATION IN SALINITY WITHIN KNIK ARM NEAR ANCHORAGE UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS 630E.OO CASE 1 ..0 CASE 4 ..+ 570540· ---_._---- 510490 NODE.NO.50 4504~0 JULIAN DATE 390360330300~70 w § § l'I> § o ~~I I I I I""I I I ~I I I I I I I I I I I I I I I I I I J I I I I I I i I I I >n i I I ~iii I I.I Iii I Cl I I i I I.I I I I i l'I>o ~§ o U')...- U1 ~§ "r ...- § FIGURE 6 TEMPORAL VARIATION IN SALINITY NEAR THE UPPER END OF KNIK ARM UNDER PRE AND POST SUSITIIA HYDROELECTRIC PROJECT CONDITIONS ~lr-.J )]••I I I ••t J .~~J 9 I~j I 1 J J B 1 J --1 1 1 J } NODE.NO.55 CASE 1 ..<> rocr.J1 I \..IIliJC Lt ••I w 0 § 1'1.>lJl" § N 0 -i § 0 (J)-lJl6§ "r -0 § lJl § 630600570540510490450420.390360330300va o I ii'i i i.1 I Iii I iii I i I I ,i I I I I ...iii iii iii I I I iii iii iii I I I I Pi Iii I I iii I I iii I i I I I i I JULIAN DATE FIGURE 7 TEHPORAL VARIATION IN SALINITY WITHIN TURNAGAIN ARM UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS If. EXHIBIT A .... - 7.2 !stuary Model Application to Water Quality in Knik Arm and Upper Cook Inlet .. 7.2.1 Model Description ..... TILe numerical model used in this study was originally developed for the California State Water Resources Control Board (Evenson and Smith, 1974)and later modified for 208 planning studies on Long Island,New YClrk (Johanson,et aL,.1977).Further model modifications were made during this project and instruction on the model use can be found in the user I s guide (Smith,1977)prepared under this contract. The model represents the estuarine system.as a variable grid network of "n.odes"and "channels.II Nodes are discrete volume units of f,Jaterbodi, characterized"by surfac~area,-depth,side slope and volume.The nodes . . are interconnected by channels,each having associated length,~dth, cross-sectional area,hydraulic radius,side scope and friction factor. lo1ater is constrained to flow from one node to another through these 7-5 .-"2 -:<C.I"'" defined channels,advect:ing and diffusing water quality constituents bet'Ween nodes. Thefollo~ng are underlying assumptions of the estuary model: - o -The estuarine system is ~el~mixed vertically! o The law of conservation of mass is obeyed for water quality constituents. a Chemical reaction rates may be estimated using first order kinetics characterized by reaction-specific rate coefficients. I .~ \ f t· The overall estuary model is composed of tva separate components:a hydrodynamic model (HYDRO).and a tidally averaged dynamic/steady-state quality-model.(AQUAL).These numerical models are used in sequence so that the results of the hydrodynamic model become input to the quality models.The advantage of dividing the overall model into modular units is that the individual models can be calibrated separately. Considerable savings of computer time is realized by storing results of the hydrodynamic.model on disk files to be used repeatedly in the calibration of the quality model and during water quality evaluations. HYDRO calculates the hydrodynamics of the estuary using tidal time- stage data at·the estuary boundary,hydrologic conditions,and estuary geometry data such as depth,surface area,tidal flat slope and bottom roughness.HYDRO prepares a permanent file which portrays the two- dimensional hydrodynamic characteristics of the estuary,including tidally averaged values of flow,velocity,volume,depth,surface area and parameters indicative of the dispersive characteristics of tidal mixing. 7-6 - ..... .... AQUAL is a tidally averaged "quality model which can be operated in E~ither a steady-state or dynamic (time dependent)mode to simulate Bldvective-diffusive trap,sport as well as physical,chemical,and biological reactions of the parameters beip,g modeled.Net advective flows and dispersion coefficients to simulate the effects of tidal mdxing provide the physical mass .transport.The results are repre- sentative of the ~o-dimensional distribution of daily average.quality conditions in the estuary • , j \, I r~· ~~ '\ - - ,.... The dynamic mode.is used when the estuary quality does not approach ...J steady-state t,Jithin the period of time the boundary conditions remain'", constant.If significant changes.in tributary inflow ~~cur before steady-state is approached,the d~c operation gives more repre- sentative results.In the dynamic mode,the model uses multiples of the tidal cycles·as the basic time step and yields average daily re- sults. The AQUAL code prOVides the option to include up to.four user-specified, cl>ustituents in.addition to·the following parameters which may be se-· ll!cted for simulation. l.Salinity 2.Total Nitrogen 3.Total Phosphorus 4.Total Coliform Bact.eria 5.Fecal Coliform Bacteria 6.Carbonaceous BOD 7.Nitrogenous BOD 8.Dissolved Oxygen 9.Temperature 7-7 A more de~ailed description of the model and its use can be found in the model documentation. 7.2.2.Model Adaptation and Calibra~ion generated from.National Oceanic and Atmospheric Administration ·(NOAA) navigation charts numbers 16664,G&GS 8854,and 16660.The node and channel data are presented in Appendix III. A node-channel network scheme has been designed to represent:the entire Cook Inlet study area.This network,shawn in Figure 7.1,extends froll- Anchor Point on the south to the upper"reaches of lenik Arm and .Turnagain) Arm.This network scheme employs a coarse represent:ati~I?-in the south.-._(" em portion of Cook Inlet where the impa~t of .development ·in the AnCho~'-i age area is small.In Upper Cook Inlet and Knik Arm,where im~act of I waste discharge from the Anchorage area is greatest,a more detailed J representation has been utilized.0 The node and channel data were I !, Calibration of a tidal hydrodynamic model entails a series of simu- lations during which boundary conditions are held constant and the frictional resistance is adjusted.When the tidal stage,current ve- locity,and'the high and low water time lag are adequately represented ,throughout the estuary~thehydrodynam1cmodel can be considered cali- brated. For model calibration,average 1972 tributary inflow rates were used. An average tide was selected from the daily predictions at Seldovia - and adjusted to Port Graham,the NOAA tide stati.on nearest-the south- erly boundary of the study area.'This tide has approx~tely the same diurnal ti.de range as that reported in the 1973 NOAA Tide 'rabies.The OJ results of the comparison are summarized in Table 7.3.Good agreement.be~een the calculated values and tide table predictions of tidal stage and phase was observed at most locations. 7-8 \ .""" .~ .- - - - (~;,... \, "'"' (fJ 7-9 •/1. ..c:c:....c: U.. ] z .- ....- rs Table 7.3 CALCULATED AND PREDICTED HIGH AND LOW WATER: TIME LAG AND DIURNAL TIDE RANGE Time Lag(hrs)·Diurnal Tidal Range(ft) Network "High ~ater Low Water Node Location NlUnber Predicted Calculated Predicted Calculated"Predicted Calculated Port Graham 1 0 0 0 0 l6~5 16.6 .Cape Ninilchik 5 .7 .8 .8 1.1 .19.1 lB.l Kenai River Entrance 11 1.9 2.0 2.2 2.7 20.7 19.2 Nikiski ·12 2.4 2.7 2.7 3.3 70.7 20.0 East Foreland 12 2.6 2.1 2.9 3.3 21.0 20.0 Fire Island 100 4.5 4.1 4.8 4.9 27.5 2B.9 Sunrise,~urnagain Arm 58 5.4 5.6 6.7 6.8 33.3 30.4 Anchorage 124 4.9 •4.4 5.5 5.5 29.0 31.B North Foreland·21 3.8 3.3 4.0 4.1 21.0 24.3 Drift River Terminal 8 1.7 1.1 ·2.0 2.1 1B.1 19.5 Tuxedni Channel 4 .7 .8 .8 1.1 16.6 18.3 --------~----- ~J .1 ~J 'J j 1 ,J ),~~1\~ '. .~i I);f} Comparisons between computed current velocities and those based on NQaA tidal current predictions were made.Figure 7.2 shows the cal- culated and predicted tidal stage and tidal current near,Anchorage off Pt.Woronzof.The tidal current predictions were obtained by.' ,atlplying corrections to the d~ily predictions'at the Yrangel.l NarrowS.': !ol::h the.computed tidal stage and current velocity .co~pare 'well with predicted values. I J I I Surface current velocity data (Britch.1976)measured off Pt:·Yoronzof;,::.:'. current ve~ocities slightly ~ower than those observed.However,it would be expected that vertical integrated currents 'would be less than those· tiel~e compared with current v~locities calculated fo~a.similar period.,-. Figure 7.3 sho'WiS the resul ts of the current veloci ty comparison along .;\ rlth the corresponding tidal stage.The tidal stage comparison was I used only to obtain the proper current phase.,The model cal.culated .I I neasured at the surface due to lower velocities near the bottom. tid~11 phase lag and current velocity,the hydrodynamic ','medel can be . considered calibrated. ! r Bas(ad on the good agreement bet:'Ween calculated and reporced tidal stage.I I I '! - Callbtation of the water quality model is accomplished by first setting boundary conditions to observed values and then adjusting dispersion co- eff:l.cients so that:the measured concentrations of a conservative water !.j I ! is particularly the tributary in- being the tidal. Changes in salinity take place rather slowly in such a large e~tuary;,.. boundary. flo~'S are near zero with the sale source of sal:Lnity q,uality parameter are matched adequately.Salini.ty ,, Suited to this procedure,since the concentrations in l I I r consequently,a dynamic water quality simulation is required for dis-,I pers:!.on coefficient calibration.A steady-state approach would result I \1n unrealistically high dispersion coefficients for high flow conditions.I ! and low dispersion coefficients for low flow conditions.",I,._-.-,,.t 7-U't'~L::~~~2-~;tt,~~~f~r ,_,~~::i;,=~:-:,:-,:':·:~,~:1~i;~F~-~~,';~;~~~>"';':/;-~,:;'~f·t:~:?":'~~':"'f;:;'; _.~.:::;':'~.'",~i.:-~r.:;:..·"~::~;A;·'t~;"'.~~....-..\;. - - II • PREDICTED TIDAL STAGE COMPUTED TI DAL STAGE • 9 LEGEND 63 • 10 ~ 1- :E ~u... w t:l O}-----+-------------~-----<t 1- In ~ <t Q ·5 I- HOUR -Q 0 0 •LEGEND-l •U-S-0 OBSERVED CURRENT VELOGITIES -90MPUTED CURRENT VELOCITY -Cj G... '::3--0>o- J- U 0 -l W> 5 a::I ••a::I loU •-10 a 3 6 9 12 HOUR - • i - --.;..-_._-----_..'.:.' _. ..,I I"'..'''"'")-')~_-.~4' FIGURE 7.2 Computed and Predicted Tidal Stage and Tidal Current off?t.Woronzof 1 J 1 1 J J 1 ~J r-'\ )))1 ,)1 J JJi',,:.1 I LEGEND , TIDAL STAGE CURRENT VELOCITY*(ESTIMATE fROM •IESTlMATED FROM TIDAL TIDE TA,U.DATAl CURRENT DATA) CALCULATED --CALCULATED o § ~ J :I .'J''i \ 0 £ \\\-J ~ \ ·2 III \ \.> "-\ 3 ......_"",......·4_..... ••·fi ·8 ·1 Qi.,CD ~ E IIJ !!; IIJ (3 0(.:1 ~ ....·04« Q t= Ul i I ! , ~-1 •.1 .J (. 'j~ "I.\:~ .~~w:1 :'1 \,'j :;~~f: ';\. t.;'~, ·~:;··1 .. i '1 \~~ ".. I ;......l\i',.. I '"~I 'it -,'[~.~.~..\ \ TIME (HOURSI j v· '\.:;FIGURE 7.3 Curront V.loclty Compared with Tidal Stage .---.~~..~.,--_._'.....,.,-~,. ~ Flow data (U.S.Geological Survey,1973)for water year 1972 (October, 1971,-through September,1972)were examined,and the average flows during four periods calculated for all major tributaries to Cook Inlet.I Table 7.4 is a summary of t.he stream flows used for calibration.The November,1971 through April,1972,period is representative of low ruooff conditions and the mid-June,1972 through September,1972,:is representative of high runoff conditions.The other two periods serve as transitions becween the major flow conditions. Surface salinity data for Cook Inlet is available for the periods May 21-28,1968,August 22-23,1972,and September 2S~29,1972.To calibrate the dispersion coefficients,~~e model was run dynamically for the entire 1972 water year.A comparison between the calculated and observed salinity be~een Anchor Point and the end of Knik Arm are -presented-'in Figure 7.4.The calculated.salinity at the end of Au~sl: and September,1972,compares well with the observed salinities at those times.·-The salinities observed during the May 21-28,1968,period were compared with the computed end of May,1972,salinities.The observed and computed salinities for the end of May agree reasonably well,consider- ing the dissimilar hydrology. The above comparison indicates that the dispersion coefficients are adequately calibrated.The dispersion coefficients ranged from 2000 to 6000 sq ft/sec along the axis of the inlet and Knik Arm and 200 to 600 sq ft/sec perpendicular to that axis.These values are of the same magnitude as those reported by other investigators (Murphyet a1.,1~72). ~l - ~, - '" J .1 1 )J J j J j 1~'J 1 )1 1 1 1 •1 I ',' Table 7.4 FLOW RATES OF MAJOR TRIBUTARIES TO COOK INLET' ~ '::.I·.'i .~:<, ~l~ ;r,'~:I/';' ':,I (I. ,",r ~-f,t 7'-~-·-----(,"I·TTLI---....-.-/itr.~f)-·- I j') ;I,Z'(}"--" ..' .Average ,Flow Rate :(cfs) Nov 1971-May 1972-Mid-Junf'!,1912- Stream Oct 1971 April 1972 Mid-June 1972 Sept ,1912 Knik and Matanuaka Rivers 7.170 1.420 7.590 31,200 Petera &Cottonwood Creeks 120 30 120 280 Eagle River 191 .51 210 1.445 Ship Creek 126 25'114 270 Little Suaitna River 200 60 250 ~.800 Susitna River 18.600 5.800 58.300 77.500 Kenai River 4.800 1,310 2,590 11,600 ..., I' ,~~-I. • I 'i ~,. '.I'·'.,.' j J \ .\ -~ LEGEND COMPUTED SALINITY EN 0 OF SEl'T.\gn OBSERVED SALINITY REDUCED FROM lSOHALINE MAP REPRESENTING SC?TEMBER 25-29.19n CONDITIONS :lO 2S l- ll.2l)ll. ,,: t:15z :1<10 ~CICoOZU< 5 ...~..... ~z ..:::<-<0y~...... 0 \25 \00 75 50 2S o 2S - MILES FADM POIHTWORONZOF .•LEGEND30 OBSCRVED SALINITY REDUCED FROM ISOHALlNE MAP REPRESCNTING I-AUGUST 22-23.19n CONDITIONS ll. ll. ~ ~ -'<c.o 0 125 lIJO 75 SO 2S 0 5 WILES FROM POIHTWORONZOF LEGEND OBSERVED SALINITY REDUCEO FROM •JSOHALiNE MAP REPRESENTING MAY 21-28,1968 CONDITIONS 30 COMPUTED SALINITY •ENO OF MAY.1972 l-•a.a.••,:...z ~~... <0 0iN..Z ZU<"01M:.....%c~z "'C -0<-<0 2~UZ ...... 0 100 7S SO 25 0 S MIlES FROM POINTWOFlONZOF FIGURe 7.4 Computed and Obs"eNed Salinity ~tween Anchor Point and Knik Arm 7-16 EXHIBIT B TABLE B-1 COMPUTED SALINITY CONCENTRATION (~/Ll AT SELECTED LOCATIONS WITHIN COOK INLET I'I....RCH SEPTEMSEI!411!!') ~~ 30127 28642 30023 28:211 FEBRUARY ...uICusr 30100 :2813:5 :29900 :28383 .JANUAAY ,)I,jLy 29971 28298 DECEMBER ,)I,jNE' ~~ 29826 2976:3 29031 2910.04 NOVEMBER MAy :29624 :29851 29278 30:200 OCTOBER APRIL 2927b 30281 NODE • :28033 29609 28377 29411 :28371 2'7339 :28693 :28804 286S:! 28802 28971 27997 28906 280.041 29:219 27399 :29137 27477 :294:17 "27362 .04 27369 :29:299 27.0409 29172 :2778:5 291:28 2778.04 29031 2817:2 28.0483 :28130 28460 2851.04 270491 28.0443 27~39 28819 26673 :287:24 :26775 29086 :26577 28971 26ba~ :2697b :2903~ :27027 28906 :2731:5 29028 2733:5 28910 :27727 :28581 2770:5 :28516 29116 27696 280:58 :27705 284b8 2b746 :28379 :26S2b 26777 :263:21 :286b~ :2C430 27104 27088 :27960 :2787:2 27335"27261 266:2:5 :266l." 7 8 :2~80b 28500 :26706 2889:2 2.0466:3 :279.043 26182 28l.6~ 2~876 28332 26762 287~7 247:51 27741 2b24.04 28~19 2629.04 28508 270:50 28927 2:52.047 :2802:5 26610 28702 26319 283:50 :2707:5 28799 :2:5:2S6 :278:2.04 2683.04 :27907 :27.04S6 :28471 :25906 :27328 :26806 27823" :27468 2839:2 2:5882 27:217 :27903 27:50:5 26521 2:5721 27847 27:507 26.0437 25777 27~12 21!>~6.04 27783 25348 :28:281 :26484 270b8 241~04 :27669 2:5477 :28191 26563 :2b93~ :2431~ 2789.04 :25:5~1 :2817~" :24918 :2861:2 :2b0:28 28030 :2:5Cb:5 27372 :2:3804 2823:1 2~406 10 2:5018 28128 2:5097 279:3.04 :2:5:586 281:58 :2S618 :27971 :26:208 272:51 :26178 27161 26700 2:5~78 :27300 241M :27169 20430:5 :2n:50 :23931 :27:')83 :2~090 11 :!:i6:58 27201 2.0429.04 275:2:5 :2.04328 27284 2:5008 2 :5037 :26587 26473 25788 24~70 2b.0424 :2:2780 :2b:262 :2:2979 :26979 2b770 :2:2305 2:2:510 ~ 12 229.048 27179 230~8 2690.04 :!:i778 ":!:i81 7 27193 :26929 :2.04630 2.04:58.04 2:5983 2:5889 2:5402 23608 2~277 2380.04 :2608:5 :218.047 :25897 22077 :26680 :21:53:i! :2267:3 :2278:3 270661._'26?67 259042 25730 :21:281 21:539 :..~"1:3 1.04 :20786 :26:212 20922 2:5822 23:58.04 267:!:i 2191:5 21939 26062 2571! 24377 25:504 2301922919 2.04288 24226 23995 21290 23792 21~23 24849 19138 2456:5 19.047:2 :2b553 26:291 .- 211~_.21389 :25:591 1899:2 1~ 19717 :2:57:51 198:57 25:290 21049 2:5324 210~0 2.04959 22279 :22136 22';.044 22'77.04 233.047 19449 23088 19790 24276 17439 :2-:J930 17819 2~08:i! 17666 :2046bB 17979 22291 221~0 229~3 22985 232:53 231:53 24308 2.04275 21711 :2 I :565 " 22717 22705 1. 17 18 19 :20 21 21082 263.047 19023 2:541-1 18667 2:5271 197.040 2:57~9 1~:500 23773 16238 24119 17107 :24:526 21211 25966 19177 24921 1881:5 :247.049 19879 :25301 1:5668 :230:51 16402 23440 17268 2390:5 22183 26151 20.0403 2:5029 201.049 24073 17.0407 2:2:54:5 18043 23023 18787 236:51 22204 2:582.3 200413 2.04632 :201.041 :2.04280 :21066 2.04982 1736:5 2208:5 18009 22581 18767 23:2:24 21~0.1 21881 191104 18810 19668 19368 :2031.04 200431 21328 21959 IBS040 18976 1904:21 19~49 :20099 205046 24199 21300 22848 19218 22l.63 18037 23350 1939.04 ;;!0:558 14438 21046 1:5033 21l.17 1~83 23999 2155. 2:2363 18439 :20122 14910 :20639 1:5516 :21:252 16712 "2:502b 19333 :2:J838 169:51 23673 16000 2428:5 17-:J77 21807 123:2:5 :2:2239 1301:5 22745 14198 204749 1965.04 230472 17-:J040 23:275 IM19 239.041 1776.04 :21244 12787 :21711 13~79 22:267 14634 25746 19310 24096 16954 24548 Ib0402 :2:5090 17649 22890 12867 23:273 13652 25408 195-69 24257 172B~ :2407:5 167040 :204b79 17965 ~158 15027 :21090 :20398 10163 1063-4 :23 13861 2:2994 14143 2:1167 1.04027 2214., 16021 21209 1:5943 20738 1~44 20058 17911 16830 1821:5 160.0446 17:568 17076 17839 1677.04 19489 1227~ "197"'" 11~ 189:59 1:2777 1919B" 1:2"3 :20850 10:29:5 :2019.04 10760 :2:20-:J9 11008 2:2:24:5 11147 212:59 11394 ~, -TABLE 6..1 (continued) CClt".PUTED SALINITY CONCENTRATION 01C/LI AT SELECTED LOCATIONS WITHIN COO¥.INLET 21703 11647 MARCH SEPTEH!!.DL ~~ 21341 9534 21:::J94 10073 2:1499 11:102 19268 9058 19450 10045 20686 100l80l FEBRUARY AUGUST 20131 9598 2008:3 8::;7& 21382 9S45 19523 11845 18146 12200 17969 10748 ..JANUARY ..JUl.y 18630 10H.8 20088 11::137 18672 !l749 18203 16707 10066 16551 16~7 14819 OE:CEI"IBER ,lUNE 18594 16379 16990 16384 16966 14389 14795 19181 10042 20735 14948 20.261 NO\lE:MllER /'lAY 14<;142 19607 1~003 20785 14644 22~30 12717 21::143 13000 21544 '..........-,..,.._...---..................,....-~...~~~..~~...~~.~••~¥.......>"'-~•,..: !~~~~_~~,_:iw-_-;,:.:.-_::':;.-;:~.:,.:;:~ OCTOaE:R _AF'R1L 14506 23379 24 26 28 NOOe:• ..... ::n US03 2:L824 119<;11 20914 14011 :20160 13969 19608 15765 15639 17855 10842 17326 110l::i2 19399 87:;5 18702 ,9171 20737 <;1144 19909 9~16 32 1C)<;I76 2l:2<;14 11191 20412 13116 20078 1::1129 1945<;1 152::16 15447 14995 15432 17103 10565 10038 IOB69 1870!9 B368 1808::; 8730 201:::J8 8515 19352 8866 :10:115·1941:3 8::102 8650--::15 36 1C)<;I27 :21349 1C1~14 20814 11127 20456 10731 19<;171 13178 19875 12433 .20153 13177 19277 12497 19474 15331 14711 14512 16149 15069 14742 14347 15<;176 17199 <;1723 164:15 11406 16714 10042 16033 11605 18818 7852 18113 8787 18156 8212 17531 9103 19:;8:; 8402 18851 87:35 125::10,12580 20051,1'7.l87 ::17 43 44 7466 19584 10710 .20056 10684 .20333 7641 18791 10275 17328 1292:1 18S41 10:341 16714 14650 15611 15160 1:3146 12830 7231 14464 15482 14896 1:3191 12697 ,7182 16567 10668 17066 7886 15000 2535 16:;79 817Q 14651 2616 18246 83:37 18705 6042 1684'4 :2489' 17645 8659 18040 6963 16309 2609 19704 8228 20107 7612 184:21 4103 19:::J04 7938 17734 4290 45 46 47 ....48 6117 18696 5~<;I3 18300 4076 17035 2155 14:3::19 e:S4 11,285 6270 17950 5734 1757:3 4182 16367 :z:208 13766 872 10800 9045 15769 8532 15050 7100 12282 4856 7477 2<;161 3282 9126 15186 8612 14489 7177 11815 48<;19 7:102 2<;165 3174 11714 4760 11225 4114 9S83 1958 7499 432 5297 51 11625 4721 11149 4081 9836 1943 7457 430 1::3979 12:37 1:3~22 1012 12245 3:19 97<;16 44 737:3 3 13684 1276 13;247 1044 12018 340 7209 :3 15902 1332 15476 1099 14:260 405 11796 64 9;235 5 15019 115:3 13857 4:26 11464 67 9948 5 175::i0l :2786 17154 2408 16000 1262 10906 51 16916 2918 16539 :2~24 15442 1325 1::3080 358 10498 54 ,;ZI::1 8IJ<;I& :217 7702 1485 924 1468 899 3352 3 3275 3 5097 o 493:3 o 6706 o 6456 o 8:105 4 7855 4 50 52 53 1<;1 51J98 19 4780 10548 20100 , 10450 19660 12550 19776 12000 20088 ~29 83 12586 19133 12092 19379 1878 o 14735 14497 14036 16361 1789 o 14527 14421 13916 16096 31B8 o 16666 93:20 1:;969 11805 3035 o 16230 95::i8 15623 11930 447'1' o 18341 7474 17692 9014 4:150 o 177:22 ,nB8 171:;3 9291 5720! o 19787 7830 19:103 8333 ~412 o 19021 81:57 18506 8648 10165 :20'Hl 10387 19601 11900 20123 12000 19403 13932 16525 1:380!4 16235 1~87:3 11966 15::;38 1:2076 17606 9090 17076 9362 19127 832:2 18437 8635 10()b<;l :20110<;1 10281 19::J:z6 11637 19902 11751 19178 13579 16426 1:::J504 16082 1:1~5 12328 1:1:209 12375 17:153 9413 16761 9644 18799 8411 18143 8701 10:~41 19:121 10429 18796 11288 19948 11422 19109 ]2<;'6:3 17437 12<;'48 16972 14796 13779 14:178 1369~ 16::;44 10574 16130 10723 18134 S989 17,..9 9236 TABLE B-1 (continued) COMPUTED S~INITY CONCENTRATION (~Q/~'AT SELECTED ~OCATIONS WITHIN C~INLET ~, NODE •OCTOBER APRIL NClVE~BER !'lAy DECEI'IBER ,JUNE ..JANUARY ,JULY FEBRUARY AV9UST I'IARCH SEPTEMBER 178:50 "17306 10599 11026 58 :59 60 100 101 102 103 104 10~ 106 107 108 10692 18880 1127:5 18293 12039 17643 13014 16965 117:51 21817 12212 22124 11854 21928 11672 21784 11792 21877 11489 2172:5 11:572 217:50 11276 21625 10999 21479 10834 18220 11362 17694 12057 17112 12947 16506 11936 20893 12376 211:55 12029 20974 118:59 20860 11973 20937 1167:5 20797 11467 20704 11193 20:569 11132 19609 11143 19291 11267 18B74 11:574 18:360 13991 20036 14537 19787 14177 19780 13921 20024 14081 19922 1380:5 19831 "13853 19948 13617 19771 13366 19638 11269 18884 11269 18:l93 11372 18216 11643 17756 13941 19492 14430 19311 14097 19272 1387:5 1947:5 14017 19394 137:58 1928:5 13807 19399 13:582 19213 13344 19068 12441 18157 12067 18575 11731 18875 11512 189:51 16072 15248 16592 14789 16267 14754 16014 1:5200 16171 1:5003 15928 14728 1:576:5 14541 1 :5:542 14176 12472 17005 12128 17971 11816 1823;1 1160S 18294 15744 1 :5413 16186 I:Hl0 15894 14<196 15690 1 :5354 I:5S21 15203 1 :5001 14881 15638 1511~ 1:54:53 14600 1:5249 14263 1"1104 1509:5 13:531 16113 12<i41 17103 12404 17917 18307 1039:5 1802:5 10207 17802 10500 17941 1036:5 17733 9982 177:5<1 10194 17:594 9710 13960 14882 13445 1:5792 12'714 16672 12428 17391 17691 10913 17438 10673 17260 10919" 1737:5 10808 17187 10389 ..17216 10603 17061 10089 1688:5 9637 1:5812 11848 15171 1299<1 14483 142:50 13804 1:5488 1939:5 8592 19800 8596 19:5:51 8389 193:54 8508 1<1478 64:57 192<i:5 816:5 19317 8299 19003 76:52 15478 11897 14906 12950 14293 14091 1:J6S0 1:5213 18683 9013 1<1023 90:5:5 1879<1 882:5 lB643 892:5 1874:5 8884 18:579 8574 18605 8708 1B46~ 83:54 18313 8020 174:28 9794 16792 10633 16098 116;;16 15388 12740 ;;107:33 9050 21092 9318 20869 9036 ;;10690 8971 "20800 9021 20640 8752 206-02 8837 20:530 8:504 20374 8305 16918 ~ 1~51 10757 15732 11674 1~9 12700 19890 94;;14 20192 970:5 19<;190 941:5 19654 9344 .""" 19944 <1398 19792 <1121 19819 '7207 19693 89;;10 1954<1 8660 12168 12185 18842"18245 109 110 111 11 :5 116 117 12:5 127 128 11348 2164~ 109:59 2146:5 10498 21234 11120 21:537 1082:5 21396 10484 21232 9:584 20767 8891 20396 8233 20034 11:538 20726 111 :53 20:5:5:5 10691 20341 11311 2062:5 1101:5 20491 10676 20339 9774 19902 9077 19:554 841:5 19214 13662 198:55 13342 19591 12946 19392 13472 19724 13244 19396 12948 19344 115:51 18432 10<;168 17<166 13026 19297 13321 19022 12939 18810 1::344:5 19159 13222 18834 12939 18766 11:587 17823 11019 17352 1:5797 14617 1:5179 13042 1:5440 13609 1:5183 12912 14::'03 111 51 139&1 9862 13447 8630 1 :54Bb 14740 1:5231" 1413:5 14912 13093 1:533:5 14297 1:5149 13694 14276 11161 13767 9843 17617 9721 1738:5 9172 17083 7787 17477 9212 17312 6766 17067 7674 16488 5777 16009 4542 1::5:53 3:121 17086 10101 16871 9:51:5 16:593 8072 16957 9:564 16801 9090 1659:5 79:5:5 16040 5983 1 :5:595 4698 1:168 3639 19192 7901 1898~ 7:578 18720 6589 19069 760:5 18924 7317 18722 6517 18187 50B2 177:57 4128 1734:5 :3:310 18490 83:54 180:53 6908 18376 7977 19239 7674 17:5:59 532~ 17160 4328 10777 3470 20549 8587 20360 925~ 20119 7:598 20437 8330 202<16- 8103 20121 7:563 19637 645:2 192:50 56:51 18878 <1914 1<1714 894S 19:5:37 8011 1931:5 792:3 19610 86B2 19477 8447 1<;1310 7886 18867 67:33 18:507 5900 - TABLE B-2 .,... MARCH SEPTEMBER FEBRUARY "'U~UST .JANUARY ,.J!Jl.Y Oe:CEI"lSER ,JUNE NOVEl'IBER MAY CCI'lPUTEO SALINITY CONCENTRATION (1'tQI'L)AT SEl.-ECTEO LOCATIONS WITMIN COOII.INL£T OCTOSEI' APRIL NODe:•- 2 ;29276 :30:281 ;28033 ;29609 29:282 3019~ 28068 29493 29b2~ 298::.1 28377 29411 29:584 29839 28372 2933& 29826 29031 28693 28804 297:59 291t~ 286:51 28806 :29971 28298 28971 27~97 2989~ 28~89 28902 28046 30100 2813:5 29219 27399 30012 :28217 29127 27486 30209 28:585 ::l0117 2a640 3 ;27369 ;19299 21416 29160 2778:5 29128 27786 29029 28172 264&3 28128 28463 28:514 27491 28437 27:546 28819 26673 28713 :2678:5 29086 26:577 28958 26689 ;16976 ;!903:5 2703:5 28893 2731:5 29028 27339 2890~ 27727 28581 28116 276"16 280:54 27711 28468 26746 28371 :26836 28777 26321 28281·28183 26484 26:573 6 7 ;!:5806 :;!8:500 :;!6706 :;!8892 26770 2874~ 2629~ 28508 270:50 ~8927 2632~ 28339 27080 28791 26834 27907 27484 28471 26807· 27823 27469 28391 2733:5 2662:5 27903 27:50:5 272:56 26673 27783 2:5348 :276:58 25491 2817:5 ;;!4918 28612 26028 2801:5 2:;07~ 28486 26149 ;;:4663 ;;7943 24763 27721 2:5293 27809 2:5906 27328 25883 27217 26432 2:5789 27068 241:54 27:54:5 23628 27354 23816 - 8 9 .10 26182 2866' 2'018 28128 2:5108 2791:5 23671 27176 26610 28702 2:5:586 281'8 24284 2752:5 2:562~ 27959 27104 27960 2620& 272:51 2:5068 26S£il7 27089 27871 26179 27163 2:5037 2647' 27:572 26:5:57 2:578& 24:570 27:509 26'70 2669:5 2:5589 2:5678 24b8Q 27990 2:5464 27300 24164 26424 22790 27886 25:562 271:57 24320 26247 .23000 28:3:57 2:5284 27750 239:31 26979 2230' 28220 2541:5 26748 :2;;;:'23 11 12 :22948 :27179 23072 26874 23778 27193 2382~ 26912 24630 2:5983 24'84 25894 25402 2:J668 :2608:S 25880 :21847·.22100 26680 2153:Z 26416 .21767 23:55:5·23590 2699:5 26708 13 22673 27066 22~7 26736 20938 :;::5781 2191:5 26062 219~:5 2:5699 24442 2:5:568 23019 24288 2437:5 25:51:5 25239 230:56 .2399:5 21290 2:5082 23:Z:57 23779 21:5:5::3 2:5942 :Z1281 :14849 19138 24536 19:503 26553 211:54 2:5:591 18992 25206 19300 1~ 1:5 1'9717 2:57:51 1987~ 2:524~ 21049 2:532~ 210:5:5 249~6 :22:210 2:5807 ;/2279 22944 221:29 23002 231 :50 24293 24199 21300 23069. 19826 2398:5 215&:5 24274> 17439 25026 19333 23893 178:54 24721 1968:5 2:508:2 17666 257~6 19310 246:21 17993 2::1370 19b03 -! 16 17 18 1'~023 :2:5~11 1~1740 :2:17:59 19194 24871 18832 24697 19894 2'2:5:5 20403 25029 20149 24473 21063 25348 20418 24b16 20144 24270 22071 24970 22711 22717 21:501 21881 22291 229:53 21:319 21994 22143 23013 2:2848 19218 22663 .18037 2:33:56 lq39~ 22:5:59 19571 22:340 18479 ;;!3082 19781 0i3838 169:51 23673 16000 24285 17377 23434 17379 24696 169:54 24548 Ib40:Z 25090 17649 24:207 17302 24021 16753 23:273 z:!.581 136:52·14038 19 20 1:;:;00 :2:1773 1~,238 241119 1:5687 2~981 16421 23374 17407 ;/2:54:5 18043 23023 17366 22086 18011 22:580 19114 18610 19668 19368 18831 19026 19407 19599 :20:5:58 14438 21046 15033 :20086 1495:5 :20606 15:561 21807 12325 2:2239 1301:5 :11181 12829 . 216:53 13:519 22890 .12867 :221:52 132:58 17287 23844 18787 236:51 18770 23218 20314 20431 20088 20:;88 21617 16283 21224 16754 2274:5 14198 2221:5 1'167:3 23723 14669 2309:3 15040 14048 22070 16021 21.209 15';'40 207:51 17911 IbS30 17548 1713:5 1891:5 12823 20856 1029:5 20107 10801 22039 11008 21168 11 "06 1'1143 2;:)1167 1431:5 2223~ 163:50 21090 10239 20681 1821:5 17818 16444 .1 <!>S40 19'7:54 11904 191:51 1:Z490 21090 10163 20:317 10675 22:24:5 11147 21356 11540 _'J-<'<-. TABLE B-2 (continued) -I"lARCH SEPTEMBER FEBRUARY AV9UST .JANUARY ,JULY OECE/'\BER JUNE NOVE.!'IBER MAY OCTOBER APRIL 24 NODE. 2:5 14~06 23378 1466:5 224:54 16763 21134 16636 20761 18'94 16379 18180 16770 ;;10088 11337 1947:5 11687 21382 984:5 20604 10319 22"99 11302 21611 I1b74 26 12619 22419 l3021 21461 1:5003 2078:5 1"948 20266 16990 16384 166"8 16604 18672 11749 18104 122"6 20131 9:598 19374 1008:5 21394 10073 20501 10472 • 26 12:572 22337 12740 212:5:5 14942 19607 1"787 19220 16966 14389 16480 14896 18630 10168 17912 10796 20083 8:578 19171 ';>JOO 21341 9:534 20301 9931 31 11803 21824 12012 20827 14011 20160 13970 19609 16079 1:5:504 1'747 15688 176:5:5 10642 17283 11294 19399 87::1:5 186~:5 9209 20737 914" 19814 9~30 32 10976 21294 10927 213"9 11202 2032:5 11147 20369 13116 20078 13178 1987:5 1313:5 19440 13181 19263 1:5236 15447 1'331 14711 1"982 1546:5 1:10:5:5 14780 17103 10:56:5 171lj>q 9723 Ibb02 10906 1667b 10078 18729 83b8 18818 7852 18017 876:5 1808:5 824:5 20138 8:51:5 2021:5 8302 19;;:!62 888" 19322 8666 36 37 10:5l4 20614 1049:5 20912 10489 2122:1 107:52 19884 10730 19969 10703 20245 12433 201:53 12:530 200:51 12927 19427 12:507 19437 12'89 19:3:5:1 12927 18829 14:512 16149 146:50 1:5611 1:5160 13146 1"340 1:5994 144:5::1 1:5:50:5 14881 13227 16"2:5 11 "06 16:567 10688 17066 7686 Ib004 11637 i6123 10946 16:540 ~02 18113 8787 18246 8337 1870:5 6642 17474 9136 17:58:' 8692 17969 6992 19:58:5 8402 19704 8228 20107 7612 18770 87'7 18870 B~83 19212 79:53 - 1684"-162::17 ::1489 2620 44 6117 16696 76:5:5 16708 6281 17871 1027:5 17328 103:50 1067:5 913:5 1:5143 12630 7231 11714 4760 12691 7194 11621 4729 1:5000 2:53:1 13979 1237 14626 2626 13664 1281 15902 1332 1:5378- 1404 18421 4103 175:52 2786 176:58 4300 16847 292~ 46 :5:593 16300 :57":5 17496 8:532 1:50:50 8621 14447 1122:5 4114 11146 4088 13:522 1012 13229 1048 1:5476 1099 1"977 1158 171:54 2408" 16473 2:530 47 "076 1703:5 ;1:1:5:5 14338 4190 1629:5 2213 1370:5 .7100 1;;>282 4856 7477 7185 11780 "903 7189 9883 19:58 7499 432 983:5 1947 74:56 431 1224:5 329 9796 44 12004 341 9603 46 14260 40:5 11796 6" 13823 428 11436 68 16000 12bC! 13:5:52 339 1:5383 1329 13031 3~e "9 50 52 8:5" 1128:5 213 8098 19 :5098 10338 20966 874 107:51 217 766:5 19 47:53 10:568 20012 2961 3282 148:5 924 554 8:5 i2:5:50 19776 2966 3177 1"66 902 :527 84 12'94 19106 :5297 :51 33:52 3 1878 o 1473:5 14497 :5::132 :51 " 3270 3 1783 o 14:517 14447 7373 3 :5087 o 31sa o 166b6 9320 7197 3 "921 o 3021 o 16198 9:590 923:5 5 6706 o 4"79 o 183"1 7474 8922 :5 6431 o 4223 o 176:58 7818 10906 51 820:5 4 :5722 o 19787 "7830 104:51> ~4 7819 4 :5379 o 1893~ 8176 :54 10231 2047:5 1016:5 20411 10471 19::174 10408 19:516 12000 20088 11900 20123 12105 19332 1::1013 193:53 14036 16361 13913 16103 13821 162"0 1:5969 11805 15873 11966 1:5600 119:58 1:5:516 12104 17692 9014 17606 9090 17102 932:2 17027 9392 19::103 B:J33 19127 8322 19429 S671 18362 86::19 10069 20109 10241 19:521 10302 19243 10452 18719 11637 19902 11289 l'i'S48 11766 19123 li~o 1904:5 13::179 16426 12963 17"37 13:504 16080 129~ 169:54 1~:50:5 12328 14796 13779 1:5191 12398 1-4:567 13709 17253 9"13 16:544 10:574 16717 9671 " Ho096 107"6 18799 8"11 19134 8989 18072 872:5 17"e& 921>0 TABLE B-2 (continued) COMPUTED SALINITY CONCENTRATION (M~/L)AT SELECTED LOCATIONS ~ITHIN COOK INLET NODE ..OCTOBER APRIL NOVEMBER MAy DECEMBER ,JUNE ,JANUARY JUL'f FEBRUARY AU'j!UST ,..,ARCH SEPTEMBER 10090l 18880 10859 18151 .11132 19009 11290 18816 12441 18157 12482 1757::3 14104 1509:5 139:5:5· 14884 15812 11848 17428 9794 16808 1000::3 l1Ol75 18Ol93 11388 17032 11143 19291 12067 18575 12141 17929 1::3:5::31 16113 13446 1:5782 15171 12999 14889 lOl960 16790l 106::3::3 10::310 10770 00 lOl039 17643 12083 170:59 l1Ol67 18874 11 ::39:5 181:50 117::31 1887:5 118::33 18179 12941 17103 129OlO 10649 14483 14Ol50 1428::3 1409::3 Ib098 11020 15701 111>89 1::3::342 1::3::32::3 19:591·19016 1596:!.1:5619 14964 15164 17017 17044 9721·10.141 12404 124::38 17917 .17::35:5 1951:5 8097 19:12::3 79::38 19793 9438 19889 9427 197::!Ol 9221 194:54 867:5 19018 B9bOl 15077 12709 19757 9358 19596 8941 1984~ '?4HI 1909:5 91:34 20087 Q71:5 Ol05::30 8:564 204::37 8::3::30 20549 8587 2011Q 7:598 20::360 8::159 15388 1;;1740 21092 9::318 20::374 8::30:5 20869 90::30 20806 9021 20002 88::37 207::l:J 9050 20040 8750l :20096 8971 18::300 8010 18410l 8::3B7 18Ol26 7981 17982 09::38 182::38 8000 18::391 8390 1::3683 15Ol0:5 18933 9090 18b04 90:51 18602 8923 18:525 6746 1871:3 8864 18499 8609 18564 8963 19069 760:5 18720 0:589 18989 7578 19192 7961 19::395 8592 1::3804 15488 19800 8596 19003 7b52 19174 7961 19::317 8Ol99 19478 84:57 19O19:l 8165 195:51 8::389 19::354 8508 Ib554 8103 10916 9601 Ib8::30 9552 17:2oOl 11068 10844 9675 17389 10717 17018 10128 17170l 10044 17039 10960 17::329 108:51 17142 104::30 17Ol16 10961 17477 9210l 17::38:; 9172 1708::3 7787 17401 9Ol88 17850 10599 17594 9710 17802 10500 180Ol:5 10207 18::307 10::39:5 177:59 10194 177::33 9982 11628 182::35 14897 1::3129 15::318 14::341 1587::3 1505:5 16160l 15177 1 :5Ol 1 5 14177 1:5468 14787 15611 1540:5 154::36 14706 152::3Ol 14::30:5 1 :5801 I:5Ol:58 15:582 149::31 1576:5 14541 1/,072 15248 11512 189:51 1:50::34 14190 1:552::3 140:;1 15179 1::304:Z 16267 14754 16171 15003 16014 1:5200 1:5542 14170 15797 14017 16592 14789 1:59:28 14728 lOl943 18799 144Ol:5 19::3::36 1::3876 19478 14094 19288 1::3446 19156 1::3808 19402 13941 19497 14016 19404 1::37:l8 19289 1::3627 19296 1::3:583 19212 1::3346 19062 11067 17694 1::3472 19724 14177 19780 12946 19392 1::3::366 19038 1::3662 198:5:5 14:537 19787 1::3017 19771 1::385::3 19948 11:574 18360 1380:5 19831 14081 19922 13991 20036 13921 20024 lOl972 10402 115:58 Ol0038 11172 20467 lOl398 Ol1067 11880 Ol0772 10710 202:53 11780 20736 l1Ol12 20480 lOl050 2088:5 11487 20615 11696 20708 119:57 20805 11994 20849 11331 :20:536 11570l Ol1750 11854 Ol19:0!8 11790l Ol1877 11070l Ol17B4 13014 10905 10959 21405 10999 Ol1479 11348 21044 11489 Ol1725 l11OlO 21537 llOl70 21625 11751 21817 109 110 108 111 102 101 11 S 10"1 103 106, 100 107 105 ".. 110 117 10825 21396 10484 21232 11034 Ol0403 1069:5 Ol02:51 1::3244 19::396 12948 19::344 1:3225 1880lS 12943 18755 1 :5440 1::3009 1:518::3 lOl91Ol 151::33 1 ::37::3:5 14899 1::3001 17::31Ol 8766 17087 7b74 16700 91::31 105:56 798:5 18924 7317 187Ol2 6:517 181b4 7707 1798::3 b86::3 OlOOl90 8103 201Ol1 750::3 1938::3 8402 192::!4 7901 9:584 20707 9791 19816 12108 18842 12191 18:224 14:50::3 111 :51 14264 11188 Ib488 5777 1000:5 6006· 18187 :5082 17493 5352 lQ6::37 0452 18780 6747 127 8891 20396 9093 19469 11:5:51 184::32 11594 17795 13901 980:! 1 :3757 9864 Ib009 4:54Ol 1:5:50::3 4716 17757 41Ol8 17099 4::347 19250 :5051 18424 5913 2-3<-3C USER'S GUIDE FOR THE ESTUARY HYDRODYNAMIC AND W.A.TER QUALITY MODELS Prepared for the Department 07 the Army A1as ka 0is tr ic t Corps 07 Engineers Anchorage,Alaska Prepared by Donald J.Smith Tetra Tech Contract TC-827 DACH85-76-C-0044 September,1977 Tetra Tech,Inc. 3700 Mt.Diablo Boulevard Lafayette,California 94549 (415)283-3771 V' /, ?C At - ..... I. TABLE OF CONTENTS INTRODUCTION . BACKGROUND . . . . PURPOSE AND SCOPE .. MODEL DESCRIPTION. Conceptual Formulation .. Program Operational Sequence. General Modeling Approach. System Layout . . . . . . Page 1 1 3 3 3 4 7 7 .- I I.HYDRODYNAMIC MODULE ... INPUT REQUIREMENTS PROGRAM ROUTINES .. INTERPRETATION OF RESULTS. ...,~._...,.--....- -"-.._··~~1~~~·,~'-::~>~"-i7 :~~~i~~:~:~~,.~~;:'3'-:'~ INPUT REQUIREMENTS . . ... PROGRflJ1 ROUTINES . . . . . . INTERPRETATION OF RESULTS. APPENDIX A APPENDIX B APPENDIX C J~PPENDIX D J\PPEND IX E APPENDIX F i 9 9 20 22 29 29 48 50 ,.\ LIST OF F1 GURES 2 - Figure 1-2 Figure 11-1 Tidally Averaged Estuary Model Flow Chart . Estuary Hydrodynamic Model Subroutines . 6 21 ii 49 - ,..... .... Table 11-1 LI 5T OF TABLES i;; 10 30 I.INTRODUCTION BACKGROUND The Federal Water Pollution Control Act Amendments (PL 92-500) of 1972 establishes specific requirements directed to the control of point sources of pollution.The Department of the Army,Alaska District,Corps of Engineers was given the responsibility to determine the effects of various levels of treatment and levels of wastewater effluent discharges,as defined in PL 92-500,on the water quality of Upper Cook Inlet including Knik Arm. Tetra Tech,Inc.was contracted to prepare the Knik Arm and Upper Cook Inlet water quality report.Included in the study was the selection and use of appropriate mathematical models to aid in the evaluation of the effects of wastewater effluent discharges.The models selected and documented herein are~ • A two-dimensional horizontal,complete mixed vertical,dynamic hydrodynamic model interfaced with • A two-dimensional horizontal,complete mixed vertical tidally averaged dynamic/steady-state water quality model. This man~al provides basic instructions for the set-up and use of the general estuary hydl~odynamics and qual ity model s.An example problem data set and simulation results are presented in Appendix A through D.The example utilizes the node-channel representation (see Figure 1-1)used for the water quality evaluation portion of this project.A listing of the c~mputer program codes for the hydro- dynamic and water quality models are presented in Appendix E and F. 1 ..., - I- LU .....J Z--- ~oo U 0:: LUa..a.. ::::J rl I--- . ..;:J ;~ Cl (!) Z z <l:Cl LU => .....J Cl U 0 z <!l :2:--- ""'" 0:: Z 0 ~ ,---- u.~ ~~ <l: \' I-Z =>0:: 0 =>>-l- ~ ---l Cl .....J Z LU <l: Z ::.::: !~ Z -<t Z:::c ~u ~, 2 Detailed descriptions of the theoretical background and mathe- matical formulations essential in the estuary model development are presented in the Documentation Report*. PURPOSE AND SCOPE This manual is intended to provide the user \'Iith information y/hich is fundamental in the set up and use of the estuary hydrodynamic and quality models.It includes general instructions regarding: •Geoii1etr i c repres en ta t ions of the protot.ype sys tem; •Data requirements and input'format specificatio.ns; •Program subroutines and computational sequence; .•General modeling procedure;and •Interpretation of model results. MODEL DESCRIPTION Conceptual Formulation The numerical model represents the estuarine system as a variable grid net\'/ork of lI no des ll and lI c hannels ll •Nodes are discrete volume. units of waterbody,characterized by surface area,depth,side slope and volume.·The nodes are interconnected by channels.each having associated length,width,cross sectional area,hydraulic radius, side slope and friction factor.Water is constrained to flow from one node to another through these defined channels,advecting and diffusing \'/ater quality constituents betvleen nodes. *Johanson,P.J.,D.J.Smith,F.M.Haydock,and M.W.Lorenzen, lIDocumentation Report for the E::tuary ~'iater Quality t~odels." A Report to Nassau-Suffolk Regional Planning Board,Long Island, New York,May.1977. 3 ,."" ~- .,.,. """ ,~ .- The follmving are underlying assumptions of the estuary model. • .The estuarine system is well mixed vertically. •The law of conservation of mass is obeyed for water quality constituents. •Chemical reaction rates may be esti~3ted using first order kinetics characterized by reaction-specific rate coefficients. Program Operational Sequence The overall b/o-dimensional estuary model is composed of two separate components,a hydrodynamic model (HYDRO)and a tidally averaged quality model (AQUAL). The numerical models are used in sequence so that the results of the hydrodynamic model become input for the water quality model. The chief advantage of dividing the overall model into segments is that HYDRO can be calibrated separately and then used repeatedly in the calibration and application of AQUAL. HYDRO calculates the hydrodynamics of the estuary using detailed information about geometric configurations,hydrologic conditions and predicted tidal time-stage relationships.The equations of motion and continuity are applied to determine the physical transport mechanisms of water flows and velocities in channels,and volume changes in nodes.The resulting data are averaged over the complete \ tidal cycle and written on disk files to be used as input to AQUAL. 4 ________________________...:1_-.2 (-I r:l. AQUAL combines formulations for biological and chemical reactions with advective and diffusive properties in a mass balance equation to calculate tidally averaged water quality at any location and time.Required inputs include system geometry and tidally averaged hydrodynamics from HYDRO,boundary conditions,dispersion coefficients,point and non-point source quality,reaction rate coefficients,and meteorological conditions.The dispersion coeffi- cients are used to estimate net dispersion in the prototype ,since tidally induced advection is not directly modeled.AQUAL may be operated in either a steady-state or dynamic mode.The final results in the steady-state mode are representative of daily average condi- tions which would prevail if all inputs remained constant over time. The dynamic mode is useful for simulating long-term change~in water quality which result when system con~itions or waste inputs change significantly over time.In this mode the model uses tidal cycles as the basic time step and yields average daily results.Figure 1-2 summarizes the program operational sequence for the tidally averaged qual ity model. The quality model can be used to simulate any combination of the following tllirteen parameters and have the capabil ity to include up to four additional user specified constituents.Optional constit- uents may include any dissolved or particulate constituent with first order decay,settling and transfer between constituents through decay. ~ 2.Total-Nitrogen 3.Total Phosphorus 4.Total Coliform Bacteria 5.Fecal Coliform Bacteria 6.Carbonaceous BOD 7.Nitrogenous BOD 8.Dissolved Oxygen 9.Tempera ture 10.-13.Optional Constituents 5 "~' ~I TIDALLY AVERAGED ESTUARY ~iODEl • HYDRODYNAI':ICS MODULE • HYDRODYNAMICS DATA INPUTS •TIDAL STAGE •PHYSICAL ~N~GEO~ETRIC DATA •CLI~ATOLOGICAL DATA OVER A TYPICAL TIDAL CYCLE TIDAL HYDRODVNMIlCS OYER THE TYPICAL TIDAL CYCLE •STAGE •CURRENTS • TIDAL HYDRODYN~V,lCS BEING AVERAGED OVER THE TIDAL CYCLE •AVERAGE STAGE •AVERAGE CUi'iKENTS I I ~/ QUALITY I",ODULE • I AVERAGE HVI;ROLOG IC A:.;';,'A TER I QUALITY INPUT DATA •INFLOW C~ALITY •~ATE COEFFICIENTS •DISFEriSICN CCE:FFICIENTS I· •TICAL EXCHANGE riATIO • AVERAGE WATER QUAL!TY OUTPUT AT VARIOUS NO:lES AND LINKS ( FIGURE 1-2 TAPE ) INTERFACE L, TIDALLY AVERAGED ESTUARY MODEL FLOW CHART ; ---------------" General Modelina Aoproach x'' The first phase of the modeling procedure is to "calibrate"the model using synoptic survey data from a suitable study period. Boundary conditions (tides,flows,\·iaste discharges,etc.)\o;'hich characterize the study period are input to the model and the results are compared to in situ data.Calibration involves adjusting system coefficients or modifying the nebJOrk until reasonable agreement between model and prototype is achieved. Once the model has been cu1ibrated,a second study period may be selected for model It ver ification ll •Hodel inputs are changed in accordance with results of t~is study period while system coeffi- cients and network geometry are maintained.If agreement between calculated and observed concentrations is good,the model can be considered verified.If agreement is poor,the reasons for the discrepancy must be determined and satisfactorily resolved.Any adjustments made to the model at this point must also be shown to improve the calibration results. The third phase of the modeling procedure is to evaluate model sensitivity to modifications in system coefficients,and unit response to changes in individual loading sources.This is accomplished by examining the effect of varying one parameter while holding all others constant.The sensitivity analysis allows estimation of the range of results possible and the relative importance of each system coefficient.The unit response analysis shows the relative importance of various waste sources and boundary conditions on water quality. System Layout The nonuniform grid system used in the numerical models enables the user to specify greater detail in areas where the impact of pollutants is the greatest.Efficient utilization of computer 7 ,, - - resources weighs channel system. tional time step sources. heavily on judicious preparation of the node and Among the most important considerations are co~puta­ increment,system geometry and location of waste - The computational (hydrodynamic)time step increment is governed by the stability criteria of the channel according to the following relationship: L 6t<v9R where: (1 ) bot L 9 R = = = = maximum hydrodynamic time step channel 1 ength gravitational constant hydraulic radius (approximately equal to the average channel depth) - Since the same time step is used for the entire system,a single short deep channel can necessitate the use of a much smaller time step than would otherwise be required.Channel lengths should be selected to minimize this constraint as much as possible without i ntel-feri ng wi th na tura 1 sys tern geometry. In order to obtain the greatest possible correspondence between model and prototype hydrodynamics it is important to attempt to align model channels wit~natural channels as much as possible.In addition,areas \·Jith vddely varying characteristics (e.g.depth, roughness)should not be combined in one node.Smaller nodes and shorter channels are warranted in regions which are known to have ~ater quality problems or where major gradients in water quality parameters exist. 8 2 -35-47 I I.HYDRODYNAt~IC nODULE INPUT REQUIREMENTS The following inputs are required for the computation of estuary hydrodynami cs: •Physical and geometric characteristics of the node- channel representation of the estuary; •Tidal time-stage relationships at seaward boundaries; •Meteorological and climatological data,including evaporation,wind speed and direction,and precipitation; •Point inflows and outflows; •Non-point inflows;and •Control specifications for computational options and output forma ts. Table II-l outl ines the card groups and format specifications required to set up the hydrodynamic model card deck.These card descriptions together with ~he illustrative example data presented in Appendix A and the simulation results presented in Appendix B should enable the user to set up,run,and interpret the results of the estuary hydrodynamics model. 9 -,..,C"_I fO .Table 11-1 HYDRO Estuary Hydrodynamic Model Data Requirements Card Card Number Column Format Variable Descriotion l~_ Cal~d Group 1 -Title Cards These headings t.;ill be printed on each page of the input data..... ,summary. 1a 1-80 20A4 TITLE Main heading- 1b 1-80 20A4 TITL Subheading ~'lliiMl Card Group 2 -rnput/Output Control Card Two or trxee tidal cycles are normally required to reach steady- state hydrodynamics.Resul ts of the final tidal cyc2e for each hydrologic condition are averaged and stored through NSTEAD for later USIS!as input to AQUAL.Examples of the plotting options are prese;J.ted in Appendix B. A renumbering routine is included in the HYDRO code which arranges the channel-node system to minimize storage and computational require- ments.Internal renumbering should begin with a node located at some extreme of the network such as a tidal boundary or lengthwise end of the system. - 2a 1-5 6-10 11-15 16-20 11 15 NSESON NHPRT NQPRT NTSL 10 Sets of hydrologic conditions (48 maximum) Number of nodes specified for printout (1-30 allowed) Number of channels specified for printout (1-30 allowed) Number of nodes specified for plots of mean tidal range and time of high water (max.48) .::2 -3.<~Lie Card Number Card Column Format Table II-l -Cant. Variab1 e Description Card Group 2 -Input/Output Control Card -Cant. 2a 2b 21-25 26-30 31-35 36-40 41-45 1-5 6-10 1615 NSTAGE NTFLOW NDYNAM NSTEAD NN MDAY (1) 1"mAY.(2) t~DAY (NSESON) Number of pages of tidal stage plots (3 plots per page) Number of pages of cha~nel velocity and flow plots (3 Plots pe r pa ge) Not used HYDRO/AQUAL interface 'unit number Node number to begin internal renumbering Number of tidal cycles for each hydrologic condition Card Group 3 1-5 6-10 1615 JPRT{1) JPRT(2) . JPRT(NHPRT) Nodes specified for stage printout (NHPRT nodes required) Repeat card type 3 as necessary to conform to limits set on card 2. 11 ~. Description Channels specified for velocity and flow printout (NQPRT channels required) Table 11-1 -Cont. Card Card Number Column Format Variable- Card Group 4 . 4 1-5 1615 CPRT (1) 6-10 CPRT(2) r- I I ..... - CPRT(NQPRT) Repeat card type 4 ~s necessary to conform to liwits set on card 2. Nodes specified here must have been included in JPRT array (card 3).NSTAGE (card 2)cards are required. Omit card 5 if NSTAGE =o. ..... Card Group 6 6 1-5 315 NCPLOT(NTFLOW,l ) Channel specified fOJ- 6-10 NCPLOT(NTFLOW,2)velocity plots 11-15 NCPLOT(NTFLOW,3) Channels specified here must have been included in CPRT array (card 4).NTFLOfv (card 2)cards are required. Omit card 6 if NTFLOW =O. 12 Ca rd Group 8 Hydrodynamic time step increment which is based on channel stability criteria can be determined by using Equation 1 or by previewing invariant channel data output generated by the model in a preliminary run using a large hydrodynamic time step. 8 1-10 4F10.0 DELT Hydrodynamic time step increment,sec. 11-20 DELTQ Printed output interval,sec. 21-30 PERIOD Length of tidal cycle,hours 31-40 Dt-1IN Anticipated maximum diurnal range in stage within the estuary (ft) 13 ~) - Ca.rd Number Card Column Format Table 11-1 -Cant. Variable Description - Card Group 9 -Node Geometry Node numbers greater than 200 are not allowed..ljve::age nodal dl=pt.h at mean sea level can be est.imated from nautical charts keeping in mind tha t the c.~arts show mean low wa ter.Nodes wi th si zeabl e tide flat areas require an estimate of change in surface area per ~,ot of change in depth.The X-Y coordinate location of nodes ri=lative to some origin is measured in arbi trary uni ts. - 9 1-5 6-15 16-25 26-30 31-35 36-40 41-45 46-50 76-80 IS 2F10.0 3F5.0 815 J AREA SLOPE DE? Xl Yl NTEMP(l) NTEr~p (2) NTEMP(8) Node number Water surface area at mean sea level,sq.ft. Change in surface area with increase in water surface elevation,sq.ft/ft. Water depth at mean sea 1evel,ft. X-coordinate,any unit V-coordinate,any unit Channels entering node -. Repeat card 9 for each node in the system terminating with a ~lank card.A maximum of 200 cards (including the blank card)is a.llowed. 14 Card Number Card Column Format Table II-l -Cont. Variabl e Description Card Group 10 -Channel Geometry Channel nUi;;.bers grsater than 300 are not a22 o;,'ed.Char.nel 1 ength, average width,and ~he change in width per foot of change in depth in tide flat areas (side slope)can be e5ti~ated :ro~nautical charts. The hydraulic radius is essentially equal ~o the c~annel depth except in tide flat areas where it is approxi~atejy equal to the avsrage cross-sectional area at wean sea level civid:eG by the s;;r::ace .ddth at mean sea level.Channel roughness,as represented by Xannings coefficient,is a function of channel config~:atior.,Dotto;;;rOtlqh~ess and obstructions.Coefficients range from .02 for smoo~h straight channels to 0.08 for rough,irregular,obstructed channels. 10 1-5 6-15 16-25 26-35 36-45 46-50 51-55 56-65 15 4F10.O 215 F10.D N ALEN WIDTH RAD COEF NTEMP (1) NTEHP (2) SLOPE Channe1 number Channel length,ft. Channel width at mean sea level,ft. Hydraulic radius at mean sea level,ft. Mannings roughness coefficient Nodes at each end of channel Change in width with increase in water surface e1evation, ft/ft. ~\) Repeat card 10 for each channel in the system terminating with a blank card.A maximum of 300 cards (including the b1ank card)is allo,,·ed. Ca rd Gro up 11 This subheading replaces the title read from card lb and .'>'ill be printed with the folloh'ing set of hydrologic conditions. 11 1-80 20A4 .TITL 15 Subheading Table 11-1 -Cent. Card Card Numb.::e~r__C~o:..l:....:u::.m:.:.:n.:...-_..:.F..::o:...:.r..:.:m.::a..::t:-_..:..V=-a:...r.:...:ia:.;b:.l.:...:e=--.=D.=€.=.,s.=.c,;...r.,;,.ip!:.,t.=.,'.:..;"o:..:n.:.-_ Card Gr6up 12 -Hydrologic Input Contrel Switch- :~ Set NTEMP():1 read if NTEl-lP ( )=0: otherwise specified. val ues. to skip the following inputs;new data will be Hydrological conditions are assumed zero until Inputs are retained until replaced with new Card Group 13 -Tidally Influenced Nodes 13 1-5 IS .NJEX Number of nodes with specified stage relationships Omit card 13 if NTEMP(l)(card 12)=1. Card Group 14 -Tide Data 14a 1-5 6-10 11-15 16-20 4F5.0 JEX(NJEX) NI t·'!AXIT NCHTID 16 Node number with specified stage relationships Number of points defining stage relationship (must equal 6 or 25) Maximum number of iterations for tide fit (50) Print control.tidal curve fit results will be printed if equal to 1 Card Group 14 -Tide Data -Cont. Card Number Card Column .Forma t Table Il-1 -Cant. Variable Description 14b 1-5 6-10 11-15 16-20 1 6F 5.0 TT(1) YY (1 ) TT(2) YY(2) TT(NI) YY (NI) 11me (TT=hrs)and stage (YY=ft)defining tide wcve (NI pairs of data are required) ~' - Repeat card 14b as required to define NI time-stage relationships.""'1 NJEX sets of card group 14 are required to define tides at all bo~ndary nodes. Omit card group 14 if NTEMP(l)(card 12)=1. ·Card Group 15 -Evaporation 15 1-5 6-10 11-20 215 F10.D Jl J2 EVAPA First node of an evaporation zone Last node of an evaporation zone Evaporation rate,inches/ month Repeat card 15 as necessaTy ter~inatinq with a blank card.A maximum of 20 evaporation zones are allowed ~~ich overrides the blank card requirement. Omit card group 15 if NTEMP(2)(card 12)=1. 17 Card Number Card Column Format Table II-l ..Cont. Variable Description Card Group 16 -Wind Velocity and Direction """16a 1-5 6-10 215 Jl J2 First channel of a wind zone Last channel of a ~ind zone 16b 1-5 16F5.0 WIND(,1) ~~i nd speed (mph)and direction 6-10 HDIR{,1)b10""";n9 from (degrees clock- ~~wise from Y-axis)at hour one - WI ND{,25 )One set of values for each 6-10 (Fourth Card)~'JDIR(~25.)hour Four"16b car~s required for each wind zone.Repeat care q~oup 16 c=s necessary termina ting I.d th a blank card.No blank care is required if 5 Idnd zones (the maximum allowed)are defined. Omit card group 16 if NTEXP(3}(card 12)=1. Card Group 17 Point Inflows/Outflows 17 1-5 6-15 16-25 IS 2F10.O N QQIN QQOU Node number Inflow to node,cfs Outflow from node~cfs Repeat as necessary terminating ~ith a blank card.A maximu~ of NJ cards are allowed lllhere NJ =ni.lr:".ber of nodes in the netidork. Omit card group 17 if NTEl-lP(4)(card 12)=1. 18 Card Number Card Column Format Tabl e II-l -Cont. Variable Description Card Group 18 -Groundwater Inflows 18 1-5 6-10 11-15 215 F5.0 Jl J2 GROUND First node for which ground- water inflow rate applies Last node for which ground- water inflow rate applies Groundwater inflow rate,cfs .... Repeat as necessary terminating with a blank card.A maximum of 199 groundwater inflows are allowed. Omit card group 18 if NTEMP(5)(card 12)=1. Card·Group 19 -Storm \·Ja ter Inflows 19a 1-5 .15 N 6-10 12F5.0 TN(l) 11-15 TN(2) Node number Average hourly storm inflows (cfs)for first 12 hours of tidal cycle 19b 66-70 1-5 6-10 61-65 13F5.0 TN(12) TN(13) TN(l4 ) TN(25) Average hourly storm inflows (cfs)for last 13 hours of tidal cycle Repeat;card group 19 as necessary terminating ~..i th a blank card. A maximum of 39 pairs are a11oh'ed. Omi t card group 19 if NTENP (6)=1. Repeat card groups 11-19 for each hydrologic condition.There must be NSESON sets as specified on card 2. 19 ·~ - ....., PROGRAM ROUTINES Figure 11-1 summarizes the general structure of the hydrodynamic model.Complete descriptions of model structure and solution techniques are included in the documentation report and will not be duplicated herein.The following brief synopsis is intended to serve only as a guide to aid in the interpretation of model outputs. The main program HYDRO coordinates the hydrodynamic cal~ulations~ first reading title and control information for printing and plotting, and then calling GEOMET.This subroutine reads channel and junction configurations,including interconnectivity of nodes.and channels, and computes invariant node and channel data before returning control to HYDRO. HYDRO then calls NUtlSER 'v/hich renumbers the nodes internally so as to produce a more efficient matrix configuration for tidally averaged quality computations.The original numbering system is retained for output purposes.Control returns to HYDRO which prints the invariant geometric data and stores duplicates on disk files for later use in the quality model AQUAL. The model then cycles through the following steps as often as required to compute steady-state hydrodynamics for each hydrologic condition.HYDRO calls TIDCF to fit the tide specifications with a polynomial which describes the time-stage relationship at a seaward boundary.Comparisons of observed and computed values are computed and printed.TIDCF is called repeatedly until the time-stage relation- ships are defined for each seaward boundary.Control is returned to HYDRO \'Jhich then reads the remaining hydrodynamic inputs.At this point the major daily time step and quality time step loops are initiated and subroutine DYNFLO is called. 20 TIDCF DYNFLO NUt-mER HYDRO GEor.,ET OUTPUT ~, CURVE SCALE I,-__PP_L_O_T__ PINE - - ~,: FIGURE 11-1 ESTUARY HYDRODYNAr·1j C f'loDEL SUBROUTl NES bX~ 21 DYNFLO solves the equations of motion and continuity to determine fundamental hydrodynamic properties including velocities,discharges, water volumes,depths,surface areas and channel cross sectional areas. DYNFLO 'is called repeatedly to compute hydrodynamic properties for each simulation day of the hydrologic period. Control then returns to HYDRO which averages the results of the final day of simulation over a complete tidal cycle and stored for later use in AQUAL.Finally,the subroutine OUTPUT is called which prints the results and controls the sequencing of the remaining sub- routines which produce the user specified plots. INTERPRETATION OF RESULTS If errors occur in the node and channel inputs,one or more of the following messages will be printed: •JUNCTION NU)'18ER IS LARGER THAN PROGRA)'i 01 i·ia~S I QjjS.-Junction numbers must not be greater than 200. •CHANNEL NUJ·1B ER IS LARGER THAN PROGRAM DIMENSIONS. Channel numbers must not be greater than 300. •CHANNEL CARD COMPATIBILITY CHECK,CHANNEL AND-- JUNCTION -Channel-junction interconnectivity is erroneous. •JUNCTION CARD COMPATIBILITY CHECK,JUNCTION AND CHANNEL -- Junction-channel interconnectivity is erroneous. 22 .~.7C / Assuming a HYDRO/AQUAL interface unit number was assigned,the first printed output (see Appendix Table B-1)shows the node renumbering scheme which is used internally in the steady-state/dynamic tidally averaged quality model.The maximum diagonal matrix width and the half band widths are also shown.The dimension limits in AQUAL will be exceeded if either of the half band widths are greater than ten (10). In this case the following error message is printed: THE HALF BAND WIDTH OF FOR EQUATION NUMBER ,NODE ,EXCEEDS THE DIMENSION LHUTS IN PROGRAt~AQUAL.PROGRAti EXECUTION WILL TERl·HNATE LATER. If this message is printed,one of the following modifications is required. •Select a different node which is located at some extremity of the network to begin renumbering (i.e.,a tidal boundary or lengthwise end of the system). •Restructure the grid system eliminating excess nodes which extend laterally from the lengthwise axis of the system. •Increase the DIMENSION limits in program AQUAL. When any of these errors occur,the model run will continue until invariant junction and channel data have been printed at which time the simulation will terminate. The next output (see Appendix Table B-2)summarizes the computa- tional and output control options specified on Card Groups 1-8. 23 ~i - ..... - ~I .... Invariant node and channel data follows the control summaries. An example of this output is presented in Appendix Table 8-3 and B-4. In additiOn to printing input data,some computed data are included. The column labeled "nAX THtE,SEC lI on the channel data printout is useful for checking the maximum allowable computational time step. The hydrodynamic time step increment specified in columns 1-5 of Card 8 must not exceed the smallest value appearing in this colu~n. The user may \'Jish to modify the network layout sl ightly by lengthening channels or decrease the depth (along with an appropriate increase in width)'.'Jhich will increase the allowabl e time step. The column labeled mN ELEV,FT on the channel data printout is the water surface elevation at which the channel width becomes negative.The column labeled MIN ELEV,FT on the node data printout is the water surface elevation at which either the nodal volume or surface area will become negative. The model checks to see if the anticipated low water level is exceeded by either of these minimum elevations.If potential problems exist,they will be noted by the following warnings incorporated in the list of junction and channel data. •NOTE --*INDICATES NEGATIVE WIDTH IS POSSIBLE WITH ANTICIPATED TIDAL STAGE. •NOTE --*INDICATES THAT DEPTH OF CHANNEL ENTERING JUNCTION IS LARGER THAN JUNCTION DEPTH. The latter message is to aid the user in modifying channel geometry data in the event that a negative node volume or surface area is encountered later in the hydrodynamic simulation. 24 •**INDICATES NEGATIVE VOLUME OR SURFACE AREA IS POSSIBLE WITH ANTICIPATED TIDAL STAGE. It should be stressed that these are only warnings and may not cause further problems since the actual nodal stage often does not reach the anticipated low water level.If any of these anticipated problems materialize later in the simulation,error messages will be printed and the model run terminated at that time. The remaining outputs will be repeated for each set of hydro- dynamic conditions.Appendix Table 8-5 shows an example of the output which is generated when the TIDCF subroutine successfully fits a polynomial with the input time-stage tide data*.The model will iterate until reasonable agreement is achieved between observed and computed.values.The model computes and prints the individual and total differences between derived and observed time-stage )"elationships. These results should be checked for individual differences exceeding 5%of the maximum tide range which suggest possible errDrs in tide data inputs.One or more of the following variables may be the cause: o Erroneous time-stage pairs defining the tide wave. •Insufficient iterations for the tide fit.(50 is usua 11 y enough). •Irregular spacing of tidal extremes. The next page of output (see Appendix Table 8-6)summarizes the evaporation,wind,inflows,and withdrawal data entered for the given hydrodynamic condition. *The user may suppress this output (see Card 14a). 25 - ...,.. - - ~odel outputs to this point may be previewed most cost-effec- tively by setting the hydrodynamic time step increment to well in excess of a reasonable time step iQcrement.The run will not go to completion,hO\'Jever~the output which is generated can be reviewed for input errors.The correct time step can be selected based on derived channel data output. Selecting too large a time step will result in an unstable solution,terminates the runstream and cause the following error message to be printed: HYDRODYNAMIC SOLUTION WAS.UNSTABLE AT HOUR ----- IN CHANNEL ,FLOW =CFS~DEPTH =FEET,--- VELOCITY =FT/SEC As noted earlier,termination of the runstream will occur if negative nodal surface areas or vol urnes are encountered causing the following error messages to be printed: •NEGATIVE SURFACE AREA ENCOUNTERED AT HOUR ---- AT NODE ,HEAD =FEET,AREA =SQ FT. •NEGATIVE VOLUME ENCOUNTERED AT HOUR AT NODE--- HEAD =FEET,VOLUME =CU FT. If this occurs one or both of the following adjustments in junction! channel configurations are required: •Increase depth of node. Decrease area slope (change to depth)in the junction. applicable when tide flats ..... • 26 in surface area with respect This adjustment may not be are being modeled .. 2-35-( •Decrease depth in channels which drain the junction. The channels which are sufficiently deep to cause the difficulty will have to be noted in the invariant channel data printout. Once all errors are corrected the computations will go to completion.Appendix Tables B-7,B-8,B-9,and Appendix Figures B-1 through B-4 show examples of the model outputs.The following is a check list for testing the hydrodynamic model results before proceeding to the quality codes: •Check for steady-state hydrodynamics by comparing heads at hour 25 with those at hour 50 for a given node.A similar check of flows and velocities for a given channel should also be made.Differences of more than 1%indicate that the model should be run for a longer period of time. •Predicted time-stage relationships should be reasonable within the system. •Check channel flows in tide flat areas to see whether times of no (or very little)flow are actually predicted. •The values of average head should be approximately the same everywhere except where there is a large net flow or in tide flat areas where average heads will be greater since the flow out of these areas is stopped when a minimum depth is reached. •The average velocity should be near zero except where there are net inflows or rapid changes in velocity such as in a narrow channel draining a large area. 27 - r i - •Water balance at each junction should be zero except at tidal exchange nodes where it is equal to the net gain or loss at the boundaries. • A flow diagram showing direction and magnitude of the average flm'Js is useful in detecting circular flow patterns.While minor eddies are acceptable, unexplainable major circular flows should be corrected by adjusting the roughness coefficients in the channels. Modifications in roughness coefficients or node-channel configura- tions may be required in orde"to produce acceptable model-prototype conformance.Once the above requirements are met to the satisfaction of the user,the model is considered calibrated and VJater quality computations can proceed. 28 INPUT REQUIREMENTS The following inputs are required for the computation of tidally averaged water quality: •Steady-state hydrodynamics as computed by HYDRO; •Tidal exchange ratio and water quality at seaward boundaries; "'" • •-•Dispersion coefficients; •Reaction rate coefficients (benthic oxygen demand, coliform de~ay,photosynthesis oxygenation,etc.); •Meteorological data,including cloud cover,dry and wet bulb air temperature,wind speed,and atmospheric pressure;and •Control specifications for computational options and output forma ts. Table 111-1 outlines the card groups and format specifications required to set up the card deck for the AQUAL quality model.These card descriptions together with the illustrative example data presented in Appendix C and the formulation results presented in Appendix-D should enable the user to set up,run,and interpret the results of the tidally averaged water quality model. 29 ~, Table III-l AQUAL Data Requirements Tidal Average Estuary Quality Model Card Card Number Column Format Variable Description Card Group 1 -Title Cards These headings will be printed on each page of the inp..t d.:-'"-'-- summary. .-la 1-80 20A4 TITLE r·1a i n hea ding 1b 1-80 20A4 TITL Subheading 30 Table 111-1 -Cant.- Card Card Number Column Format Variabl e Description Card GrouD 2 Input/Output Control Card Cont.~--! 2 41-45 NFILE HYDRO/AQUA~interface unit number - 46-50 1NQUAL Not used ~. Card Group 3 -Steady-State/Dynamic r~ode Switch The code allows the user to select ei ther steady-sta te or cynamic sol utions for each set of bouncary conditions.Set IDYN (.'=1 for steady-state solution,IDYN ( )=0 for steady-state' 3 1-5 6-10 1615 NQPERH(l) IDYN(l) Number of days for first boundary condition Solution type selector -) NQPERH(NHYD)NHYD pairs required IDYN(NHYD) Repeat as necessary to conform to limits set on card 2. Card Group 4 -Parameter Selection Set ISKIP()=0 to simulate any of the following 13 constituents. If ISKIP()=1 the constituent will be omitted. 4 1-5 1315 ISK1P(1 ) 6-10 ISK1P(2)Total nitrogen,mg/l as N 11-15 ISKIP(3)Total phosphorus,mg/l as P 16-20 ISKIP(4)Total coliforms,MPN/l00 ml 21-25 1SKIP(5)Fecal col;forms,MPN/100 ml 31 Table 111-1 -Cant. Ca rd Card ~Number Column Format Variable Description Card Group 4 -Parameter Sel ection -Cant . 4 26-30 .ISKIP(6)Ultimate carbonaceous BOD, ~mg/l 31-35 ISKIP(7)Nitrogenous BOD,mg/l ,~ 36-40 ISKIP(8)Dissolved oxygen,mg/l -41-45 ISKIP(9}Temperature,°C, 46-50 I":KIP(lO)Optional constituent #1 ",.., 51-55 ISKIP(ll }Opti ona 1 constituent #2 .' 56-60 ISKIP(12}Optional constituent #3 61-65 ISKIP(13}Optiona 1 constituent #4r;:. " Card Group 5 -Optional Constituent Name The names will be printed on the first page of output for optional constituent identifica tion. 5 1-16 17-32 33-48 49-64 16A4 CNAME(l) 1 Optional constituent #1 CNAME(4) CNAME(5} 1 Opti ona 1 cons ti tuent #2 CNM1E (8) CNAME(9)l Optional constituent #3 CNANE(12) CNA~1E (13)1 Optional constituent #4 CNAME (16) 32 .Table II1-l -Cont. Ca rd Card Number Column Format Variable Description Card Group 6 -Time History Plot Control One to four constituents may be selectee for time history plots. Constituents are numbered from 1 to 13 in the order shown on card 4. Constituents for time history plots (constituent number) Junctions for time history plots (NJP junctions required) 6 1-5 1015 IPLOT (1) 6-10 1PLOT(2) 11 -15 1PLOT(3) 16-20 IPLOT(4) 21-25 JPLOT(l) 26-30 JPLOT(2) . JPLOT(NJP)~\.~-.:) Omit card 6 if NJP (ca.rd 2)=O. Card Group?-Profile Plot Control One to four constituents may be specified for concentration profiles.Constituents are numbered from 1 to 13 in the order shown on card 4. 7a 1-5 715 UCONP(l) 6-10 NCONP(2) 11-15 NCONP(3) 16-20 NCONP(4) 21-25 IPDAY (1) 26-30 1PDAY(2) 31-35 IPDAY(3) Constituents for concen- tration profiles (constituent number) Julian day of profile plot 33 --------"--- Table III-l -Cont. Card Card ~Number Column Format Variable Description Card Group 7 -Profile Plot Control -Cont. 7b 1-5 1615 NODEP (1 ,NPP) 6-10 NODEP(2,NPP) Junction for concentra- tion profile (21 required) 21-25 (Second Card) NODEP(21,NPP) -NPP (ca.rd 2)sets of card group 7b are required. Omi t ca.rd group 7 if NPP =o. Card Group 8 -Initial Conditions A negative oxygen concentration signifies the fraction of saturation. .- - - - 8 1-5 215 Jl 6-10 J2 11-15 13F5.0 ALL(l) 16-20 ALL(2) 21-25 ALL(3) 26-30 ALL(4) 31-35 ALL(5) 36-40 ALL(6) 41-45 ALL (7) First junction for which data applies Last junction for which da ta a pp 1ies Total nitrogen,mg/l as N Total phosphorus,mg/l as P Total coliforms,MPN/1DO ml Fecal coliforms,MPN/l00 ml Ultimate carbonaceous BOD,mg/l Nitrogenous BOD,mg/l 34 Table III-l -Cont. Card Card Number Column Forma t Variable Description Card Group S - Initial Conditions -Cont.- 8 46-50 ALL(S)Dissolved oxygen,mg/l ~; 51-55 ALL (9)Tempera ture,=C 56-60 ALL (l 0)Optional constituent =1 61-65 ALL (11)Optional constituent =2 66-70 ALL(12)Optional constituent =3 71-75 ALL (13)Opt;ana 1 constituent =4 Repeat as necessary terminating with a blank ca~d.'~J initial condl tion cards are allo~~edr ~"here NJ -nUr.'.ber of junctions:"nthe network. Card Group 9 -Dispersion Parameters Dispersion coefficients provide a means for siwulating est~arine mixing.Generally these coefficients are adjusted as required for calibration based on a conservative constituent:and then do not change thereafter. The tidally induced dispersion parameter (el)includes the effect of flow induced and tidal mixing.Open embayrnents and estuaries which are st~ongly influenced by tidal effects will genera22y recuire a larger Cl than more protected regions.The values for this coefficient generally range from 5 to 25. 9 1-5 6-10 11-15 ~ 215 J1 First channel for \'/h i ch data applies J2 Last c hanne 1 for which data applies ~~ 2FS.O Cl Dispersion parameter tSlI\li: 35 Table III-1 -Cont. - Card Card Number ·Column Format Variable Description Card Group 9 -Dispersion Coefficient -Cant. 9 16-20 en -Repeat card 9 as required to define all dispersion zones ter~nating with a blank card.NC cards are allowed,k~ere NC =number of channels in the network. This SUbheading replaces the title read from card lb.It will be printed with the output for the following set of boundary conditions. "... 11 1-80 20A4 TITL Subhead;ng Card Group 12 -Read/Write Control Switches Set NTEMP()=0 to read new data;skip if NTEMP()=1.Hydro- dynamic conditions are normally read in order from the HYDRO!AQUAL interface tape;however the file may be repositioned if the user wishes a computation sequence different from that of the hydrodynamic simulation. Positive values of NTEMP(lO)will advance the file and negative values will rewind it a specified number of records. 36 '7 ...."'2 C-7< Card Ca rd Number Column Forma t Table II1-1 -Cont. Variable DescriDtion - Card Group 12 -Read/Write Control Switches -Cant. 12 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 1015 NTEMP(l) NTEIW(2) NTE1~P (3) NTHiP (4) NTEMP(5) NTEMP(6) NTEHP(7) NTEMP(8) NTENP(9) NTHlP (10) Read new hydrodynamic conditions Read new tidal exchange ratios and quality Read new inflow quality Print aggregated inflow quality if NTEMP(4)=O. Read new non-point source qua 1 ity Read new return water quality increments Read new system coefficients Read new meteorological data Print weather data if NTEMP(9)=0 Position of HYDRO/AQUAL hydrodynamic file -- - - - Card Group 13 -Tidal Exchange Ratios and Quality The tidal exchange ratio refers to the fraction of ebbing estuary wa ter I"hich is lost from the system a t the boundary node and does not return.Values can range from 0.-1. 13a 1-5 5X 37 Card identification Table 111-1 -Cant.'. Card Card Number'Col umn Forma t Va riabl e Description Card Group 13 -Tidal Exchange Ratios and Quality -Cant. - l3a 6-10 1OFS.0 XR(l) . XR(NBOUND) Tidal exchange ratio at each tidal input node If salinity is not modeled as constituent 1 then it must be entered as CEX (1,14)for dispersion coefficient calculations.A nega tive val ue for dissol ved oxygen signifie:;a fraction of saturation. Card identification Total nitrogen~mg/l as N Total phosphorus~mg/l as P Total coliforms,MPN/100 ml Fecal coliforms,MPN/100 ml Ultimate carbonaceous BOO~mg/l Nitrogenous BOD.mg/1 Dissolved oxygen,mg/1 Temperature,°C Optional constituent #1 Optional constituent #2 Optional constituent #3 Optional·constituent #4 38 Card Number Card Column Format Table 111-1 -Cant.' Variable Description "'"" Card Group 13 -Tidal Exchange Ratios and Quality -Cont. l3b 71-75 CEX(1,14)«:71'I p .. Repeat as necessary to de~ine conditions at a~~bo~~5ary noGes. NBOUND cards are required. Omit card group 13 if NTE}LD(2)=1 (card 12). Card Group 14 -Inflow Quality The model will aggregate the water quality i~to a qi~en noce ~hen multiple point source inflows occur.A negative =cn=en==atien siqnifies a mass emission ra te in pounds per da y or equi '."a.2 ent ex=epr;::e=oxygen ",here it signifies a fraction of saturation.No r:'Dre ~::=n 500 inf20ws are allowed ,,'hieh can be distributed into amaxir:;u:::of :..00 junctions. ~, ~, 14 1-5 15 JJ 6-10 14F5.0 QQ 11-15 ALL (1) 16-20 ALL(2) 21-25 ALL (3) 26-30 ALL(4) 31-35 ALL(5) 36-40 ALL(6) 41-45 ALL(7) 46-50 ALL(8) 51-55 ALL(9) 56-60 ALL (10) Junction number Infl 0\'/,cfs Total nitrogen,mg/1 as N Total phosphorus,mg/l as P Total colifor:ns,t,\PN/100 ml Fecal coliforms,MPN/100 ml Ultimate carbonaceous BOD,mg/l Nitrogenous BOD,mg/l Dissolved oxygen,mg/l Temperature,°C Optional constituent #1 - 39 ---- Table II1-1 -Cont. Card Card Number Column Forma t Variable Description Card Group 14 -Inflow Quality -Cont. ..- 14 61-65 66-70 71-75 76-80 ALL (11 ) ALL(12) All (13) ALL (14) Optional constituent =2 Optional constituent =3 Optional constituent =4 .- Repeat as necessary ter~~nating with a blank card.The blar~~card is:not allowed tvhen 500 infloh"s are specified. Omit card 14 if NTEMP(3)=1 (card 12). Card Group 15 -Non-Point Source These constituent concentrations represent aggregated qua2~ty of all non-point sources entering a q~ven node or successive group of nodes at t_'2e flow rate specifi::d in .r.,."}:"DRO.A negative dissol'."ed oxygen concentration signifies a fraction of saturation. -- - 15 1-5 1615 -Jl 6-10 J2 11-15 ALL(l) 16-20 ALL (2) 21-25 ALL(3) 26-30 ALL(4) 31-35 ALL(5) 36-40 ALL(6) First junction for which qual ity app1 ies Last junction for which qua 1i ty a pp 1i es Total nitrogen,mg/1 as N Total phosphorus,mg/l as p Total co1iforms,HPN/100 m1 Fecal col iforms,t,1PN/100 ml Ultimate carbonaceous BOD,mg/l -40 Table 111-1 -Cant. ~. Card Number Card Column Forma t Variable Descript.ion Card Group 15 -Non-Point Source ~, Omit card 15 if NTENP(5)=1 (card 12). Repeat as necessary t~rr.dnating with a blank card.A maxi~um of 29 non-point tvater types are allowed. Discharge influence =1 Discharge influence #2 Di scha rge i nfl uence #3 Discharge influence #4 Nitrogenous BOD,mg/1 Dissolved oxyg~n,mg/1 Tempera ture,::C 15 41-45 ALL (7) 46-50 ALL (8) 51-55 ALL(9) 56-60 ALL(10) 61-65 ALL(11) 66-70 ALL(12). 71-75 ALL(13) 76-80 ALL(14) Card Group 16 -Return Water Return water to any node may originate from as r.any as five other nodes.The model aggregates the initial concen~ration given the fraction from each node.Incremental changes specified on card 16b are then added to determine the return water concentration. 16a 1-5 6-10 11-16 46-50 51-55 15 15 F5.0 F5.0 J1 NTEMP(l) ALL(l) NT Et1P (5) ALL(5) Discharge junction Junctions from which dis- charge is withdrawn (NTEMP) and fraction of i,;ithdrawal which is discharged to junction J1(ALL) f@l!1l'irI. 41 - Table 111-1 -Cont. ..... Card Card Number Column Forma t Variable Card Group 16 -Return Hater -Cant. 16b 1-5 14F5 .0 ALL (1 ) 6-10 All(2) 11-15 ALl(3) 16-20 ALl(4) 21-25 AlL(5) 26-30 All(6) 31-35 ALL (7) 36-40 ALL(8) 41-45 ALL(9) 46-50 ALL(10) 51-55 ALL(ll ) 56-60 ALL (12) 61-65 ALL(13) Description I I I ncremen ta 1 total nitrogen Incremental total phosphorus Incremental total coli forms Incrementa 1 fecal col iforms Incrementa 1 carbonaceous BOD Inc rementa 1 nitrogenous BOD Incrementa 1 dissolved oxygen Incremental tempera ture,°C Incremental optional cons tituent #1 Inc remen ta 1 optional constituent #2 Inc rementa 1 opti ona 1 constituent #3 Inc remen ta 1 optional cons ti tuent #4 Repeat card group 16 as necessary terminating with a blank card. The blank card is not required if 20 sets of card group 16 are entered.ami t card group 16 if NTEl1P(6)(card 11)==1. 42 The follotving coefficients representing first order decay kinetics vary as a function of temperature,oxygen concentration,salinity, light intensity,wind speed and many other physical and chemical influences.Optional constituent may include any dissolved or particulate constituent with first order decay,settling and trans=er between constituents (i.e.,am7.0nia decay to nitrate).Rate coefficients of constituents which may be of interest have been included.Typical values (at 20°C)are as follows: Card Group 17 -Quality Coefficients Chemical,Physical and Biological Coefficient Ra.nge of Val ues Descri pti onVariable Table 111-1 -Cant. Format "Card Column Card Number Stoichiometric equivalence between optional constituent decay .0-1 .a Rate coefficient temperature adjustment constant 1.02-1.08 _7 Carbonaceous BOD decay rate,day -.1-.3 -1NitrogenousBOn"decay rate,day .05-.15 -1Coliformdie-off rate,day Total nitrogen benthic sink rate,mg/m2 /day Total phosphorus benthic sink rate,mg/m2 /day .5-8.0 0-500 0-200 Alga~photosynthetic oxygen production, mg/m /day 0-15,000 Algae oxygen consumption due to respiration, mg/m2 /day 0-7,500 2Benthicoxygendemandrate,mg/m /day 0-5,000 _7 Reaeration rate,days - -1Ammoniadecay,day .1-10. .05-.2 ... 43 Car'd .Card Number Co 1umn Forma t Table.111-1 -Cant. Variable Description p- I (-;.' f I Card Group 17 -Quality Coefficients -Cont. Chemical,Physical and Biological Coefficient -1Nitritedecay,day -1Volatilesuspendedsolidsdecay,day Suspended solids settling,meters/day 17a.1-5 5F5.0 TYPEEQ(1) 6-10 TYPEEQ(2) 11-15 TYPEEQ(3) 16-20 QTEN(l) Range of Val ues .2-1. .002-.05 0-2 Fraction of an optional constituent produced with the decay at one unit of the preceding optional constituent (stoichiometric equivalence). Rate coefficient temperature adjustment constant for carbonaceous BOD decay (default =1.05) ..... 17b 21-25 1-5 6-10 11-15 16-20 21-25 26-30 215 4F5.0 QTEN(2) J1 J2 ALL (2) ALL(3) ALL(4) ALL(S) 44 Rate coefficient temperature adjustment constant for the remaining rate coefficients (defaul t =1.03) Junction limits for which coefficients apply Carbonaceous BOD decay rate,day-1 Nitrogenous BOD decay rate,day-1 Total coliform die-off ra te,day-1 Fecal coliform die-off rate,day-l Table 111-1 -Cont. One card 17a is required.Repeat sets of cards 17b and 17c as required terminating with a blank card.No blank card is required if NJ sets of card 17b and 17c are entered. omit card group 17 if NTEMP(7)=1 (card 12). 45 ___________________....;_.~,,_ii!!"!!f,__,__ - ___.1 Card Card Number Column Format Table 111-1 -Cant. Variable Description Card Group 18 -Meteorological Conditions 18a 1-5 6-10 11-15 16-20 21-25 26-30 IS 5F5.0 NWZONE DAY EPS AA BB DEW Number of weather zones (5 max.) Julian date East west longitude switch (-1 for U.S.A.) Evaporation coefficient a Evaporation coeffici 9nt b (Default =1.5 x 10-) Wet bulb/dew point switch~dew =1 for wet bulb temperature Hourly meteorological conditions for each weather zone are computed by interpolation of the information supplied on card l8c. ..... r- I l8b '18c 1-5 6-10 11-15 15-20 21-25 1-5 6-10 11 -15 215 3F5.0 IS 5F5.0 JWZONE(l) JWZONE(2) XLAT XLON TURB J2 CLOUD OBT 46 Junction limits of wea ther zo ne Lat;tude~degrees Longitude,degrees Atmospheric turbidity (2 for clear up to 5 for SlTDg) Hour of observation Cloud cover,fraction Dry bulb temperature,°C Card Number Card Column Forma t Table 111-1 -Cont. Variable Description Card Group 18 -Meteorological Conditions -Cont. 18c 16-20 WBT viet bul b or devi point ~ temperature 21-25 WIND Wind speed t meters/sec 26-30 APR Atmospheric pressure t mb ~ A set of between 2 and 25 cards (type l8c)are required fer each weat.l1er zone.Each set must begin ~vith values for hour;'and en:iing with values for hour 25.Repeat sets of cards l8b and lac as =ec~i~ec to define all weather zones (::r'lZONE sets). Repeat card groups 11-18 as necessary to define all boundary conditions.There must be NHYD sets as specified on card 2. 47 ??c pI r ~....•. - F I .- PROGRAt,'ROUTINES F~gure 111-1 summarizes the general structure of the tidally averaged quality model.The following brief description is intended to serve only as a guide to aid in the interpretation of model outputs. The reader is again referred to the documentation report for a more thorough treatment of model development,theoretical considerations, and solution techniques. The main program AQUAL calls INPUT to read system geometry, hydrodynamics,input/output controls,boundary conditions,dispersion and system coefficients and inflow quality.INPUT calls METDAT to read meteorological condition:,compute derived conditions,and write results.Control then returns to AQUAL which.directs SETUP,FORM and SOLVIT to compute salinity for dispersion coefficient computations. AQUAL then computes oxygen saturation based on sal inity and tempera- ture.SETUP is then called to set up the final coefficient matrix which is used in SOLVIT to compute the concentration of the water quality constituents in all nodes.The constituent concentrations are determined in the following order: ·""i8ilt1t!WJ •Temperature •Optional coefficients (us.er specified) •Total nitrogen •Total phosphorus •Total coliform •Fecal coliform •Carbonaceous BOD •Nitrogenous BOD •Dissolved oxygen 48 ~').......<,--T__~~___L______'_.L___'__'__~ FORM METDAT SETUP SOLVIT INPUT OUTPUT • CURVE SCALE PPLOT PINe FIGURE 111-1 TIDALLY AVERAGED QUALITY MODEL SUBROUTINES 49 ~I - .,?C.<iQ AQUAL then calls OUTPUT which controls the remaining subroutines in printing and plotting the results.The process repeats for each set of·boundary conditions. INTERPRETATION OF RESULTS Provided input formats are correct and program dimensions have not been exceeded the model will print out invariant data including computational control specifications,initial conditions,and dis- persion parameters as shown in Appendix Table 0-1 and 0-2.The model will check the junction limits assigned to the initial conditions and print the following message if errors are found: *ERROR *THE FOLLOWINS NODE LIMITS ARE IN ERROR: The remaining outputs will be repeated for each set of boundary conditions.Appendix Table 0-3 shows an example of the output which summarizes exchange conditions,observed and aggregated t inflow quality,non-point inflow quality,return water quality,system coefficients,derived flow and wind induced reaeration coefficients, and coefficients used by nodes.If dimension 1 imits have been exceeded the runstream will terminate and one of the following m~ssages will be printed: •\·IARNING **THE t·'!AXIr·1UM OF 100 INFLm~LOCATIONS HAS BEEN EXCEEDED.** • *ERROR *A MAXIMUM OF 29 GROUNDWATER TYPES ARE ALLOWED. • *ERROR *RETURN \~ATER IS ALLmJED AT 20 NODES tlAxIMUr~. t The user may suppress this aggregated inflow quality printout. 50 Appendix Table 0-4 shows an example of the printout of observed and derived meteorological data*.~wDBJ!t~'?~~'::.a:rspe.rsrotf ·~·m·.f-cn.lW__j;RutttJ;••f!m'l~l":B~~S:;:.:.tJ~~rnMlibl dispersion coefficients is an iterative process,the last two values of the coefficients are printed for comparison.If there is a signifi- cant difference between the values,dispersion parameter C4 may need to be reduced or the number of iterations for computing dispersion coeffi- c i ents increased.....·1...N*fi$.~~m:g:me~~. Jg!le...r;~·fjll!t.C~$~~~witag~=.~ cn~*ii§iiMt·• ~Appendix Table 0-7 shows the alternate output format.Examples of the plotting options are shown in Appendix Figures 0-1 and 0-2. Calibration of the tidally averaged quality model is accomplished in two phases.The first is to simulate a conservative substance such as salinity to establish the mixing characteristics of the estuary. The dispersion coefficients can not generally be specified a priori.The procedure is to start with values which have proven effective before and proceed,on a trial and error basis,to adjust the coefficients until model results compare reasonably well with field data.The -model is then considered calibrated for advective and dispersive transport.The second phase of the model cal ibration is to adjust reaction rate coefficients (benthic oxygen demand,photo- synthesis oxygenation,coliform decay,etc.)until in situ data are reasonably reproduced. *The user may suppl~ess this output. 51 ...,. -I ..... (;,. ;I '-i ><-cz u... D- C. .-.f" ...~.---..-....--,.- APPENDIX A ~l ..., ~, Table A-l Hydrodynamic Model Input Card Specification r-.~I Car lS 20 2S 30 35 40 45 50 5S 60 65 70 7S 80Group510 11 UP"E~COO ...I NLE T.K"III(.4R'".4/1iO TURNal;.l.IN .4Rl>\ 1b ,J."'PI.E ,.R"lSlE"I 2a 1 /I b 211 0 12 2b 3 3 1 1l 2b II~5/1 117 4 18 72 e3 127 III 0 157 5 1 111 IIq 6 7Z 127 1110 7 1 3 5 '7 \0 1\\2 14 17 20 23 2/1 101 lOll lOll 10'il 115 !I~121 125 127 128 II~(,10 Q7 lI6 "q SO 8 100 3/100 25 lIO 01 qQQ,.7"JO,+b 150 blO lI70 01 02 02 1'50,+7 00.+0 130 bOO 527 I'll 03 Oll 03 850,+7 00,+11 11010 oS>!525 1'12 03 OS 04 qOO,+7 2Il,+t1 150 b211 5011 011 00 07 05 090,+7 00,.0 Do tieS S711 nS 0&O~ Db 501'1.+7 18,u.100 01.15 03!>07 Oq 10 07 700,.7 OCl.+o 100 b"':bl<l 06 01;12oa37li,.7 l~,+o 080 oS2 601 III 11 09'a20 ••7 21,+0 C'So o6tl 70\I 1 1'1 15 10 1>90,+7 12,.0 oao 702 eSS ,2 13 f;;;"11 abO.+7 02,+11 100 ?til bq3 \3 la 10 \2 2110,+7 00,.0 UI)711 729 15 III 17 U 19\~13 120 ••7 01,+0 070 135 71.1Q i7 21 22 111 0~7,.7 vO,+o \00 721,j 751.1 ,a 20 21 23 111 1'10,+7 02,+0 053 759 75&<,2 25 27 F'"15 <'00,+7 2'5,+0 110 7Il1l 7SO \9 20 21.1 17 \35,+7 110,+0 va5 7110 770 ?l 25 20 28 16 1"17,+7 111,+0 70 '730 78\211 20 29 9 19 \lIO,+7 07,+0 0117 HII 770 27 30 32 20 11>1,+7 OO,H,095 772 ?as 28 30 31 13 21 1013,+7 01,H.0~5 ?b2 799 29 31 ~Il 22 n6.+7 oa,+1>05S 6(\0 768 32 3S J7 23 176,+7 00.+0 080 7"111 80'1 33 3S 311 38 20ll 105.+7 25,+0 abO 7S8 a 32 311 lEo 3'1 25 oSfI,.?fJ 1 ••0 070 822 799 :\7 110 III 21>120,+7 00,+0 OcO e \ 7 620 H liD Il 1 101 102 100 27 095,+7 ~O,+O 022 615 8ul ~9 I.ll .u~ 26 Ob7,.7 00,·0 DoS 639 808 1.l2 117 100 103 31 1170.+7 U3,·o 050 as"799 117 51 53 32 IIb7,+7 3,+0 111 801 8\11 Q6 51 511 55 35 ~92,.7 20,+0 020 0/>11 H8 Ii:>75 77 30 058,.7 00,+0 030 6711 Bo2 5"75 70 78n25,+7 15,+0 9 ob9 82'55 5b 120 121 1.13 o3 C1 ,+7 O:l,·/>035 9nl 805 1>5 lib 07 JIll 023,+7 03,+11 OeS 901 878 />0 oQ liS 1'125,+7 03,+0 025 9\1 870 &7 08 lib 051,+7 15,+0 GIS 915 86101 b8 c9 70 117 0211,+7 16,+0 012 929 8el7 70 71 liS 011,+7 22,+0 0 b 938 S9b 71 72 49 005,+7 lI'5,.1il 2 950 1399 72 73 So 002,+7 10,+0 I 95"1 901 73 52 03b,+7 28,+0 8 682 BID 50 7b 79 53 t02,.7 10,.0 030 a,H 7sa 77 7&&0 &9 r Table A-l -(Cont.) Hydrodynamic Model Input Card Specification ~! 511 OIlCl,.'2~,.0 010 !Cl5 !OO l'81 8Q 55 05'1,+7 JO,.o 020 qoo 767 ~o !II !lZ 5&002,.7 30,.to 020 ;25 7811 ..2 83 51 38,.7 20,+0 15 qll ~777 !3 eg 58 25,.7 I ~,.O 12 ClS7 771 ~11 85 SCi'32,·7 15,+0 12 C1111 171 s5 Bo 00 1!!,+7 10,-0 10 ,,~q 75'1 110 100 580,·0 0,+0 80 e1l3 820 101 103 1011 II!lOb -101 Slo,+~O,.b 75 53"62Ci'102 loa 105 101 102 3 U O,"0 15,.0 10 535 e 3'1 llil 105 IDS 103 2Z",+1>1 ,•0 00 853 SZCi'100 100 111 lOll 231,·1>0,-0 !:I °850 05 I ~7 lOCi'11 °112 111 105 ISb,-o 10,"1>10 ell7 All)108 110 11/1 !;I!~'I!;;(' 100 1 11 '1,+0 O,H,l:l0 600 836 I 1 1 112 115 107 I o~,+0 O,"b 3D eS7 /lu2 113 110 117 lOB C/O,·O b,.o S 85S S1l7 It ll 110 lIe 9 10'1 loO,+o 0,+0 7n c07 l!31 I \5 1 I 'I 120 lZI 110 17'!,·0 5.+0 30 B~3 8115 11 7 115 :2Z 111 811,+Cl 0,-0 IS !70 B30 120 11 q tZl 125 112 IIb,·O 2,5+0 15 8n 8~1 127 IZ5 1211 128 113 5 11 ,-0 .0,H.115 8701 835 120 123 121l 12C1 111l 52,+0 1,.0 30 S?'l 836 I?B 12'i'131 115 1 ZII.-0 0 ••0 55 875 SllO 1<'1 130 132 133 ~" H/)ll.lC1,·/)Il,·o liD 873 Blio 122 130 1311 135 117 lll.+0 D,./)115 651 ello l11 t32 1 ::;0 DB In 118 50,+0 0,"0 /)0 881 8ll::'133 !:Ill 130 137 1110 III 1 11'1 bO,+O 1,+0 35 881 Bilo 135 Li7 lu2 ~\120 30,+0 C.+b 30 8H !1l0 130 lill IllS ,) 121 ClO,-o 0,+1:>C/O 881:>eCll DCi'ICIO 1 ~1 I ~II 1111:1Q1 111 8 122 3<',"0 ,+0 50 881:>8'10 I a I 11.12 Ill~11ICi'150 123 33,+0 1,+1l 30 eqo !~I IllS 1110 151 1211 1I11.·0 0,.0 55 8Ci'Q 81111 1117 151 152 1511 125 33,-1:>0 ••0 70 8~1 8111:>la8 III C/152 !5 3 155 121:37,+0 1 ••to 110 88'1 8 ..8 15\1 1S 3 1St! 127 ~b,.o C,+/)Ci'5 eqs 851 I'iQ ISS 150 157 12a 130,•I:>1,+1>SO b'l7 858 157 tiS 01 oc/OilOO aooco 130 .0;)2 01 02 0000 02 '10\)00 80000 130 ,o<'z 01 03 0000 _Ol 08'1000 080-000 -ZOO .0-"Z 02 03 0000 0lI 100000 070000 120 ,022 02 Oil 0000 OS 08(1000 081:1.100 DO ,0,,2 03 OS 0000 06 OollOOO Od5iJOO 120 ,Oe2 011 05 0000 07 /1'12000 070000 130 .02Z 011 011 0100 08 077000 o'l2UOO 10~.0?2 05 07 0000 10 0'1 o:>&vOO 070uoO 050 ,022 Db 07 0000 10 075000 0"0000 oe5>,025 06 Oll 0300 l!Ob8000 OQOOOU 07D ,025 08 0'1 0300 12 00700D 110000·O'1Q ,022 07 10 0000 13 005000 oqsuoo Oqo .0;02 10 11 0000 10 o~7000 055vOO 01$11 ,oZ2 0'1 I 1 0000 15 o~~ooo Olloaoo 000 ,0?2 DCi'12 0300 11:>01:>(1,,1)0 OS51l0U 100 ,C22 11 12 0000 17 01l1l1l00 023uOO 070 .0i'5 12 1l ouOO Ie .(l1I5UOO OZ)\)I)O BO ,oZ2 12 11.1 0000 1'1 01131100 030000 llO ,022 12 15 0000 20 031000 0311\10 0 0111).oe2 10 1S 0000 ,. ..." Table A-l -(Cont.) Hydrodynamic Model Input Card Specification 11 OZSOOCl 0412000 oeo ,o?2 I J 111 ooou 2i!0<141000 (1215\100 060 ,025 13 1Q C~OO l~Z3 0<0141000 OZZO(\O 1110 .0 "Z 1 lj 17 0110101 2Q nS~aoo O.3e liDO IJO .02S IS 18 0500 25 n BOOO O~~IiOO 010 .0'2 10 17 oeoo 211 0111100 e511J00 OljO .O?S 17 Ja CUOIl 27 /\50000 n3Juoo OSu ,025 10 lq 0100 28 O<l,llOIlO 0.31000 100 .022 17 ZO oeoo 2q ~5eooo 028000 100 ,022 16 21 0050 30 eBOOQ 05')000 070 ,022 19 20 0000 31 0211000 055000 100 .022 20 21 0000 32 OljllUO\l 021000 CUO ,O?5 19 22 OZOtl :ll 1:15500\1 onooo OCIO .022 20 23 0000 -JQ 0011000 O}OvllCl 010 .czS ZI 211 0100 35 031000 01151100 abO ,022 22 2J OUOO 30 039000 052000 100 ,022 n 211 0;,;00 37 n 32 0 00 c.30voo ObO .e;>5 22 2S e.,50 38 038001/n:S1uOO 085 .0Zi!23 20 ocoo Jq OlleOOO 025000 030 .0;>;2t.l Z7 0700 "(I 035000 03"000 ~eo .02Z 25 20 0000 "1 0350llQ o 3~00 0 070 .OP2 Zll Z7 0000 42 O:U 000 onu 00 OH .022 25 26 0000 1I1i 3MOO 18000 7 ,025 27 102 12e. 1017 OZClOOO OllliiOU UllO .022 28 _31 00,)0 10 lie 32000 UOOC 50 .022 H lCO 0 51 025000 02';000 01:5 .oz2 31 32 OilOO (~53 021>00\1 025000 o~c .0;05 H 35 0500 SI.I oZ7000 l)Z20~0 OAO ,0('2 H 3b OOCiO 55 022000 022000 010 .O;>S 32 :H DeaD 50 030000 OC'2vOO 000 .025 37 52 1000 ~5 1250U 13ilOv SO .C20 ~3 128 30 lob 020000 015000 D2S .0;>5 ill 1111 0100 b7 OZ2000 01~000 no .0;>5 1:3 ~5 0100 bS 023000 012uoo 20 ,02 5 lj5 I.Ib oI CO 6';{lZ500Q 012"OU 20J .025 :'1I (;b 0100 70 023000 011:000 a .0;>5 .:Ib iH 0000-71 0211J0O OO:UOO 3 -'i25 ..7 I:~:00 U 72 020000 0041000 1 .O"S ..8 ~~10O~ 13 018001/oozooo 0,5 .oe s "q 50 1000 75 0211000 022000 030 .025 35 JO 0000 1b 018uOO 030000 010 .025 315 52 0000 77 fJHOCO o 3~u 0a 030 ,02S 35 53 01100 78 031000 OIQI)OO 035 ,02S 31>53 OCiO,) 7~oZ~oou 015\>00 b8 ,C25 52 511 1000 80 032000 01510100 OliO ,025 53 55 0100 81 021'00U 0251100 010 ,0;>5 51.1 5,0500 82 0.31000 015000 35 ,025 55 5b 0200 83 0.30000 012000 2S ,022 sb 57 ;)00 84 OZI:IOOO 010000 20 ,Oi'2 51 58 'lOaes02100001000015.C?2 55 5~500 6b 031000 bOOO IS ,O??Sq bO 350 6q zaoOO 2'i0~0 15 ,025 53 511 a 100 '111000 12000 1S ,020 2b 23 0 101 41000 12000 1S .020 21:1 100 0 102 41000 18000 75-.020 211 101 0 101 16000 19QOO cO ,020 26 100 0 104 17100 27000 GO .020 I 00 101 0 Table A-l -(Cant.) Hydrodynamic Model Input Card Specification 105 1 HOO 30000 13 .OC!O !0 t 102 0 lOb 23000 111000 bO ,020 100 103 0 107 2~5CO IS~OO 60 ,020 101 1011 0 108 21000 1~0(l0 7 ,Oi?5 10i?105 700 109 11300 ISIlOO bO ,0'0 103 1 011 0 110 1'1000 1701)0 III ,Oi?5 1011 105 0 I 11 13500 90:0 8S·,070 103 lOb 0 112 1 q 00 7000 75 ,ozo 10 Q IDe 0 ID 15200 8vno ZS ,022 loa 107 0 1111 111000 7000 7 ,0;>5 105 I ct:!500 115 115 vII 120"0 75 ,Oi'O lOb 11)9 30 lit>'HI 0 0 110(l0 111 .0(15 107 106 0 117 111100 /;~OO 30 ,022 107 110 0 1 !II 135VO 10000 !,0(15 108 110 300 119 11300 5':100 15 ,Oi'S 109 111 0 120 11500 a600 to5 ,0 ('0 109 113 0 121 1520\,1 8700 50 ,020 109 115 0 122 15200 12700 35 ,072 11 0 11 b ~50Inesoo550015.0~2 111 .13 0 12Q 1>\100 50(l0 IS ,025 I 12 III 0 125 nOll 7\l00 10 ,O?5 11 I 112 0 1210 110(10 7QOO 15 .075 :31 111 Q 127 15000 11000 5 ,025 37 112 250 128 11000 noD 15 ,0;:>5 112 1111 70 10 129 9700 11200 110 ,Oi'2 113 1111 0 130 10300 11500 35 ,020 I IS 1111 0 131 8200 ;clOO 35 ,070 l1a 117 25 1:12 10eOll 11500 55 ,020 115 117 0 lH 12000 11000 bO ,020 115 118 0 1311 111500 11000 ao .020 110 118 0 135 I Il 200 bSOO 35 ,oz2 tlb 119 SO 13b 8\,100 10000 bQ ,0'0 111 II e 0 137 8000 10000 bD ,ozo II a 11 9 0 I :I/l 7000 IIVOO 30 ,022 117 120 0 1JCi'8000 JOOO 75 ,0;:>0 117 12 I 0 l GO noD 11000 75 ,020 lIS 121 0 1/,11 Fl200 3000 55 ,020 1 15 122 0 1 G2 7300 3800 35 ,022 119 122 &0 111 3 10000 8000 bO ,0;'0 120 121 0 l/,1ll laouo acoo flO ,020 121 122 0 IllS b801l II ~oo >u ,022 120 123 20 I ll b 7000 3300 110 ,O?2 121 123 0 1/,17 12000 2300 75 ,020 121 12101 0 l G8 10100 2700 lIO ,020 121 125 .0 lQ~9000 2500 75 ,020 122 125 0 150 boOO ~:l00 aD ,022 122 12l!QO 151 bo(lO £l000 35 .02~123 1211 20 152 8000 10000 bO ,020 1211 125 0 1S 3 8000 10000 bO ,020 125 12b 0 ISII 120~0 3:'00 80 .020 1211 127 0 ISS 10100 ~SOO /10 ,020 125 127 0 1St>9900 3000 SO .0;:>0 Ill>127 20 157 11800 /ll)00 '15 ,020 127 128 30 11 {W1TER YEA=!1972 ......EIUGE HI IeU7,6.R'I'!!.IFLOWS 12 0 0 0 Q 0 I)0 13 1 r r Table A-l -(Cant.) Hydrodynamic Model Input Card Specification APPENDIX B ~) .J 1 1 1 ]~ ." Table B-1 Node Renumbering Scheme 1 J j ~,, w lJ\ I '-C -.0 CROS~REfERENC['••INTERNAL NODE NllMBER V5.fXTERNAL NODE NUMBER (VS[O IN QUALITY PROGRAM AQUAL) I I 2 2 ]'}/I Ii .'S 5 II tI 1 7 I)l)9 10 10 , II I I 12 12 \)lJ I G III 15 15 Itl ttl 11 11 18 18 19 19 lO lO 21 21 Z2 22 2)23 211 211 25 n 2t1 211 U 21 ze 2&Z~100 30 10& ~I 102 3Z )1 33 12 )11 10~35 lOll )11 IDS )1 )5 )6 311 )"31 110 1011 III 107 u2 106 II)5)1111 50l liS III lib ll~117 109 ,,/\110 "9 5S ~o 511 51 ill S(I tltI 5)115 Sll 1111 55 511 56 111 57 116 58 119 59 51 tiD 120 1.1 IZI liZ 122 bl 58 bll 123 115 IZII tlb 125 117 IZII b8 59 b"127 .10 tlO 71 IZ8 7i!III 7l lIu 7u 115 75 lib lb tiT 17 1111 78 49 79 SO THE ~ID[ST TOTAL BAND WIOTH Is III ,THE HIGH SIDE MAXIMUM "10TH IS 1 ,AND 1HE LOW SIO[MAXIMUM ~I01H 15 7 - Table B-2 Computational and Output Control Options uPPE~COOK I~~ET,(NIK AR~AND TURNAGlIN AR~ $H1Pr.£PROe~E.!'I - ~ESULTS PRINTED 4T TME FOr.r.D~ING II JUNCTIONS IiVHB E.R OF HYDR4.UL!C CC'.O IT I 0"'5 NU~BER OF TIOAr.CYCLES PER CO~OlTION NUMBER OF MYDRlULIC TIME STEPS PER CYCLE NUMBER OF QUA~ITT TI~E STE.PS pER CTCr.E NUMBER 'OF TIOAr.iTAGE PLOTS NUMBER OF TIDAL VEr.C:ITT PLOTS OTlU ....lC HYDliAUr.1E OUTPUT UlIIIT STE1DY 'TATE.HYDRAULICS OUTPUT UNIT o 3 1 12. 2S 900 1175021>12 lND FOR TME FOLLOWING II CH1NNEL.S 72 127 '.1110 157 TIOAL STAGE FOR JUNCTIONS 1 117 49 TIDAL FLO"FOR CM1HNEr.S 72 f27 luO 1 j )J 1 .~--1 1 J 1 ]1 1 Table B-3 Invariant Channel Data UPPER COO~INLET,KNIK ARM AND TURNAGAIN ARM SAMPLE PR08lEII INVARIANT CHANNEL DATA CHA"IIlEl LENGTH,Ft WiDTH,fT HYO IUD,fT HJN ELEV,f'T HANNING:)N fNO JUNCTI ON'~IOE Ill-OPt HAll 1111[,4[1: I '/0000:60000,1)0,0 110,0 ,022 I Z 0,ii!'l5, 2 90000~80000,I JO ,0 DO,O ,02Z I J 0,1295. J B'HOO"60000,~oo.o 200,0 ,OZ2 2 J O.1051, II 100000,700110.120.(1 120,0 ,(122 ~II u,11I6Y, 5 6000(1,111101)0.IlO,O 130,0 .oa 3 ~O.1151 • b bllQllO,650(10,I Z0,(l 120,0 ,02l II !>O.951. 7 9?000~10000.I 30.°111 5,I .022 II b 100,I JZij. 6 77000,'li'000.10'i,O 105,0 ,OZi!5 '7 0,l,n Il, 9 bbOOO,71)000.so,O 50,0 ,ou b 7 0,I HII. 10 7'i000~IIOuOO.05.(1 '1J3,J ,025 0 6 300,Il'lO, II b~OOO,uoOOO,10,0 I H,),02'i 6 9 30u.Illl j, 12 b7000,IloUOO,'10,0 90,0 .022 1 10 0,II Zb. Il bSOOO,'1",000,'10,0 '10,0 ,022 10 II 0,Ill'll, I II 37000.S')uoo,50,0 ':'0.0 ,022 'I I I o.17", 15 58000,110000.bO,O 'i 1.2 ,022 'I 12 300.1111 3, I!>bI)OOO.55uOII,100,0 100,0 ,Oll II 12 o.9bS, \7 1I/l~OO,2]'JOO.10,0 70,0 ,025 12 13 0,617, III 11<;000,2"\000,100,0 100.0 ,02?12 III O.1l ol , 1'1 Ill~OO,30000.130,0 130,0 ,022 Ii!15 O.b 19, 20 3 1000,311000,/lO,O 1l0,O .022 III IS o.10';), 1 I l5000~11;>000.1l0,O 60,0 ,022 13 14 °,II q I, l2 QIIUOO~2')llOU,00,0 110,0 .O~'i IJ I II O.71~, 2J IIUOOU,2<l000.III 0,0 I II 0.0 .022 III 17 0,b I }, 2~s~ono,3b(1)0.1]0,0 72,0 ,Ol'3 15 16 500,illS, 25 HOOO,"bOOO,10,0 70,0 ,022 10 11 0,ell 3, 210 }IOOO,SJClOO,110,0 110,0 .025 11 III 0,lOS, 27 50000.3"\0 0.).50,0 ~U.b ,Ol~10 19 100,I \IS l, 28 4 11 000.lIOOO.100.0 100,0 •0;>2 17 lO 0,712 • 2'1 5/1000.21\000.100,0 III ..,O~i!I ~21 so,'lB, 30 Ho 0 o.~nOOo,70,0 10,0 ,Oll 19 20 0,td l. } I lOOOO.55000,100,0 100,0 ,aU lO 21 0,11511. H uIlQOO.2100U,1l0,O 11O,",O'!')19 U.ZOU,100 I • H 55\1(10.Hono,'JO,O 'Jo.o ,022 20 n O.'111l, 311 b/lOOO.30000.70,0 til .0 ,025 21 21l 100,12b}, :IS 370(10./l~oOu,bO,O bO,O ,O?i!l2 23 O.7l<J • :III }9000.!J?OOU,100,0 100,0 ,Oli!2.1 lu O.bU, H 32000,loooO,00,0 1>],II ,(1l~II l5 !oo,b }0, 16 }{\O(lO.llono,l\5,O ~~,O ,022 n 2b 0,bS Il , N }9 UbOOO.2')1)110,lO.O j'),7 ,O~5 24 21 701J.I III II • I 110 35(100,300no,1l0,O 811,0 ,Ol2 25 ltJ 0,II I 7• II I Jsu(lO.J/lUOO.10.0 70,0 ,022 ll>27 0,I>5U. \.tJ u2 31000,2;>000,0'),0 b5.0 ,O<!2 lS 'l6 U,S?j. V\ 1111 J-COO.11\1100,7.0 1\'2 ,O~5 21 10i!120 U,120'1. 41 29000 •.1'1000.40,0 110,0 ,oa ltl 31 II ,bbO. «116 J2 0 00.16000.50.0 SO,O ,O.~2 J,!100 O•bl U, ...... 0 NOTE·••INOICATE~N[GATIV[~luT~I~PU~3J"L[~17H.ANTJCIPATEO TIDAL 5TA~[ Table B-3 -(Cant.) 1nvariant Channel Data UPPER coo~INLfT,KNIK ARK AND TURNAGAIN ARM 'AMPLE flROBL[H INVARIANT CMANNEL DATA CHAICNfL LENGTf4,fT "lnTI4,fT I4YD IUD,n HIN [LEY,I'T HANNINGS N [NU JUNCTIUNS SIDE SLOP[HAl(TIHto,ItC 51 25000~l/lUOO,115,0 115.0 ,OZi!31 32 O.'5l1b, 51 lbOOO.2/1000,110,0 5b,O ,025 31 J5 !I00,~9l, 511 27000.22000.110,0 110,0 ,022 JZ 3b 0,b I q, 55 22000,220011,10,a 10.0 .025 Jl :H IJ ,7011, 5b 10000,2?,001l,11,0 7,2 .025 37 52 1000.10]1 , 65 12500,1301)O.so,O 53,3 ,020 113 128 :hI,lId. lJb 20000.1'i000.25,&21,",Ol')q3 1111 100,52':i, b7 220~0~111000,20,0 Z 1,1 ,025 IlJ II!>1011 ,b1 J. b8 23000,12000,20,0 22,1 ,025 11'5 1111 100,b q I, bl)25000.IZOoo,2(1.0 22,1 ,025 1111 lib 1011 ,b Q 1, 10 23000,1/10 0 0,6,0 II , I ,025 lib 117 bOO,7bll, 7I e!1000 •.6000,3,0 II,!,O~s 111 1111 I UO 0,,lU, 1Z 2000U,QOOO,I •0 1.2 ,025 1I11 119 1000.H9, 73 111000,7.000,,,5 ,b ,025 119 50 1000.701 , 75 2 11 000.2Z00ll,JO,O lO.O ,025 35 3b 0,~ge, 7b I'~OOO~lOOOO,10,0 10,0 ,025 3b S2 II ,!>79, 71 33000,lOOOO,30,0 III.'5 .029 J!I S3 11011,eu, 78 31000,1'10011,15.0 35,0 .025 lb 53 0,1]1, 79_211000.151100,b6.0 IS,O ,025 52 511 1000,'Ji!lI, 80 32000.l'iOOO,110,0 1I1,b ,025 53 S5 100,1211, III 211000,25UOO,10,0 I I,3 ,025 511 S~'JOO.I)0 I, 82 1101)0.15000,35,0 !I'j.7 ,025 !IS 5b 200,731, 63 JOOOO,'1;>000,'25,0 110,0 ,02l 5b 57 30u,7611, 1111 lbOOO,1001111,ZO,O 25,0 ,022 57 5e 1100,7211, 65 i!lOOO,1/)000,15,0 ~O,O ,11~2 511 59 500,60~, 86*:J1000,I,OOU,15,0 I 7, I ,022 59 bO no,92 J, 89 ZUOOO,2O;1l00,15 ,0 IS,O ,025 5j 511 0,11 ~, 100 110000,1;>000,75,0 75,0 ,020 2b za o.72 J, 101 IIIU~O,\;'000,75,0 75,0 ,020 2b 100 0,7 UI • 102 <l1001J.111000,75,0 15,0 .020 2b 101 0,7 II \ , 103 !lIOOO,IQOOO,bO,O bO,O ,020 26 100 0,15S, IOu l1JOO.21000,UO,O 110,0 ,0<'0 IOu 101 0,)QII, 105 11I>1l0.:'\1\0011.13,0 I :.\,(l ,020 101 10l 0,~UII, lOb Z3000.!tIOOO,bO.O bO,O ,020 100 10 J O.II 53, lOT ~0500~1';000.bO,O bO,O ,020 101 IOU 0,1l0<l, 106 2\uoo,10000,7,0 I Z ,J .025 102 toll 100,71l, 10'l 1Il00,1'\000,bO,O bO,O ,020 103 1011 0,22 J, I 10 1"0(10,17000.IU.O 1",0 ,O~S \04 10~0,~21, I II Il~OO~9000.65,0 65.0 .020 103 lOb 0,2H, liZ I U100,.TOOO,75,0 75,0 ,020 1011 lOb 0,lSS, N III 1'5200./10011,25.0 25,0 ,022 1011 101 0,jqq, (II II IUOOO.1000.7,0 I 11,0 ,025 10~1011 500,<J1~, 115 IISOO,12000,75,0 63,6 ,020 lOb Illq lO,2011, W II b 'lUOO,11000,IU,O I 11,0 ,OZ5 107 106 0,2611, '"117 111100.IJ!>OO,lO.O 10,0 •022 101 1\ 0 0,ii!8~•,NOTE ••-INDICATES NECATIVE WIDTH 18 POS91ULE HITH ANTICIPATED TIDAL 9TAGf...... () ~ I t.I I I i J J ~J J ,) 1 B 1 1 1 1 J J J j 1 Table B-3 -(Cont.) Invariant Channel Data UPPE~coo~INL~T,KNIK ARM AND TURNAGAIN ARM SAMPLE PR06LEM INVARIANT CHANNEL DATA CHANNEL LENGTH,FT WIOTIf,'t IfYD RAD,'T MIN ELEV,FT rUNNINGS N tNO "UNCTIONS SiDE s\.opr;KAX TlI1£,lltC 116 13~00:/'000,0.0 II • I ,025 108 110 JOO,IIbO, 11 q I \~O a•5500,15,0 15,0 ,025 109 I I I o.JH. 120 115po.U800,bS.O b5,O ,020 10'1 11 3 O.Uo. 121 15200.1\70 ').50,0 50,0 ,OlO 109 115 0,HO, 122 15Z~0.1?71)0,l5,O "q,s ,022 110 II b 150.)b I • 12)1.'500~5')00,15,0 15.0 ,022 I I I III O.25 J, 12"bOOO.5800,15,0 15,0 ,025 112 II 3 0,17<;1 , 125 7700,701)0,10.0 10,0 .n'i I I I I I i!II,2 U8, 12b 11000,7UOO,15,0 15.0 ,025 J1 I I I 0,ol2 u, 127 15000,~OI)O,5.0 b.J ,025 J7 112 250,~2'1, 1211 11000,HOO,IS,Il 18,I ,025 112 II II la,li!II • 12'1 'JHO,~200,00,0 110,0 ,oa 113 11/1 II,II I. 130 10)011.II~OO.35,0 l5,O ,020 11-5 lib O.ill':i, 131 e200,ll:lO\l,)5,0 1I0 i ",020 1111 II 7 is,1'15, 132 10~00,u500.55.0 .'i5,O ,020 115 111 0,220, l.\l 12000,u60U,bO,O 1.0,0 ,020 115.1111 0,i!h, IlQ IU500.uOO'l,00,0 40,0 ,020 lib 116 0,BO. Il5 1"200,/,500.35,0 111.1 .022 lib 11'1 5u,H1. I Jb aooo,10000.bO,O bO,O .020 111 1\8 O.l':Iu, 137 6000:10<)00,bO,O 60.0 ,020 116 I I 'I 0,1511, IJII 7000,ul)Oll,lO.O 30,0 ,022 117 120 0,l1u. IH 8000~)00 0,15,0 15,0 ,020 111 121 II,1/1'), luO noo.~OOO,15.0 15,0 ,020 118 121 0,I li, I u I 1.'2(10,JII 00,65,0 85,0 ,020 1111 122 O.1/11 • 1"2 Hoo,JIJOO,35,0 b 3,J .°2 2 119 122 60.113. I ~}100PO,11000,bO,O bO,O ,ozo 120 121 O.1'17, I ~II 10000.11000,btl.O bO,O ,020 III IU 0,1'11. I ~5 beoO.03011.30,a l1.,5 .022 120 IB 20,Ib'l. 111 1.70P()~3100,~O,O /10,0 ,022 121 123 0,IS'l. I u 7 12000,2)00,7S.°15,0 ,020 121 1211 o.ll1, 1116 10lPo,2100,60,0 80,0 ,020 121 125 O.118. 1~'1 '10no,2500,75,0 75,0 .ozo 122 125 II,Ib). 150 1."00,JIlPII,110,0 51,3 ,au 122 IZb qO,15'.>. 151 bono,~/\Oll.H,O 3/\.I ,022 123 12u ZOo Ib2. ~152 1l0ClO.10000.bO,O bO.O ,020 12u 125 0.158. 15 J "000,ItlOoO.bO.O bO,O ,020 125 12b 0,1511, \1511 Il000.1 'j 0 a•60,0 60,0 ,020 1211 127 0,2 II • W ISS 101(\0,35011,dO,O 60,0 ,020 IZ5 121 11,1711, 15b '1'100,.1000,50,0 t.J,~,020 12b J21 20.lO'l. VI 1$1 11600,600O,15,0 90,3 .020 Ii!1 lie 3O.21l, ( NOTE·••INOICATt3 NEGATiVE "10TH I~pa~3lijLt WITH ANTICIP~T£n TIOAl StAGE-() W Tabl e 13-4 Invariant Node Data UPPER COO~fNL[T,KNIK ARM AND TURNAGAIN ARM &AMPLE PA08lE'1 INVARIANT JUNCTION DATA JUNCTION AREA,HS'SLOPE,'1:I'IFT DEPTH,FT '1IN ElI::V,FT X-CURD V-CORD CHANNELS fNTfAING JUNCTION I 'l'lqO.~O 150,0 I ~O,0 blo,O 1170,0 I Z 0 0 Q 0 0 0 Z 6500.,0 I:lO,O IJO,O bOO,O 527 ,0 I 1-II 0 0 0 0 0 3 1151)0,,0 111 0,0 1110,0 1>511,0 525,0 Z 1-5 0 0 0 0 0 Ij '1000,20,0 ISO,O 190,2 b21l,O 5tlll,O II b 7 0 0 0 0 0 5 1>'100,,0 130,0 130,0 bb5,O 57 a ,O 5 I>e 0 0 0 0 o. b 5000.111,0 100,0 130,11 1>115,0 bJb,O 7-9 10-0 a 0 0 0 T ?b0 o.,0 100,0 100,0 b82,O bl'l,O 8-'I 12 0 0 0 0 0 &:no 0,3 0 ,0 110,0 123,1 b52,O btl I ,0 10'II-0 0 0 0 0 0 q 11200.Z1,0 50,0 !l8,b tllill , 0 101,0 II •III 15-0 0 0 0 0 10 1>900.IZ ,0 60,0 6b,I>70l,O b':l5,O 12-p-o 0 u 0 0 0 II lIbOO,Z,O 100,0 102,3 71 11,0 I>'IJ,O Il III I I>0 0 0 0 0 12 lIlOO.,0 I :10,0 1:10,0 711,0 72'1,0 15 Ib 17 16 1'1 0 0 0 I]1200,I;0 10,0 U,i!735,0 71111,0 17 ZI-2Z-0 \I 0 0 0 I Q 910,,0 100,0 100,0 7i!Il,O 7':1 11 ,0 Iii 20 21 2 J-0 0 0 0 15 2000.lS,O II 0,0 110,0 7(111,0 Hb,O 1'1'20 211 0 0 0 0 0 II>11100,2,0 51,0 55,2 759,0 7':1b,O 22-2S,27 0 0 0 0 0 17 1350.,0 65,0 1l5,O 7 11 b,O 770,0 23·o!5 Zb 28'0 0 0 0 III 1'170,18 ,0 70,0 IU'l,1I 7 lo.')HII,O 20l 2b 2'1'0 0 0 0 0 19 11100,7,0 111,0 511.1I 700,0 770,0 27':10.II 0 0 0 U 0 20 1I>10,,0 '15,0 '15.0 7"(2,0 711'),0 i!1l-lO 31 •11 0 0 0 0 21 lb&O,1,0 05,0 67,3 1h?,°1'1"1,0 29'.H'JIj 0 0 0 0 0 2?II bO,11,0 55.0 I>I,I>800,0 Ib~,1)32 35 37'0 0 0 0 0 21 IHO.,,0 tlO,O 110,0 7 Q b.0 80'/,0 3j·15 3D']A-0 0 0 0 211 11>50,25,0 bO,O bh,O 7/1/j,O 1I:1i!,O 14 -jt,.19 0 0 0 0 0 25 6~O,1,0 70,0 73,1 6U,O 7'1'1,0 31 00-IIi!0 0 0 0 0 Zb 120U,,0 60,0 IlO,O 61',\I 1120,0 3t\·110 ~I '0 I 10l 100 0 0 27 \l50,40.0 22,0 23,1 615,0 /lu 1,0 3''''~I-IIIj 0 0 0 0 0 28 1>10,,0 b'i,O b5,O b 39,0 t'OIl,O II.!117 100'10J I)0 0 0 31 700,J,O ~O,O 57,0 6511,0 1<,q,O a7 51 5J 0 0 0 0 0 n lJ 7 0,1,0 II J,0 ~l\,J Il hi.0 8111,0 uo·51 5"55 0 0 0 0 35 Q20.20,0 20,0 2 9 ,/1 1l1>~,O 706,0 5 j'15.71-0 0 0 0 0 3lJ 580,,0 Jb,O :!t>,O 6711,0 6U<1,O 5~.75 11>18 0 0 0 0 31"~~O,15,0 9,0 Ib,7 tlbQ,O tI~U,O 5~5b 1211 127 0 0 0 0 III ]90.",0 15.0 lI"i,6 "10 1,0 OeS,O 1>5-bb tt7 0 0 0 0 0 IIIj 2)0,J.O 25,0 ]1,5 '10 1,0 016,0 bll t>"I U 0 0 0 0 0 05 25ry.3~0 25,0 JO,7 "I 13,0 !l10,O b7 bll 0 0 0 0 0 0 III>'),O.15 ,0 15,I)22,"'115,0 111\11,0 bU 0"1 TU 0 \I 0 0 0 ('oJ '11.-2bO.Ill,(.I 12,0 I a,U 92"1,0 1l111,O 70 71 0 0 0 0 0 0,utl._I H.22~0 b,O 5,9 'I'Il,O lI'1h,O 7I 12 0 0 0 0 0 0 \..J IIq.-50.115,0 2,0 I • I '150.0 U"I"I,O 72.11 n 0 0 U 0 0 0 50 <10,10,Q 1,0 2,0 95'1,0 9 U1,0 7J 0 0 0 0 0 0 0U-,52--Jb O.28,0 6,0 12.Q 1l132,V 610,0 51>7b 1'H 0 0 0 0 0 \~3 10lO.IV,O 30,0 lb,b /J87,O 7r1Il,O 77-78 60-0'1 0 0 0 0-'ill II Q o.23,0 10,0 I b,I 1l 9 5,O !lUO,O 19 III 89 0 0 0 0 0 ()55"5"10.lO,O lO,O I q .7 QOI>,O 71n,O 80'&1 OZ-0 0 0 0 0 ~NOTf •••I~OICATE3 THAT DEPTH OF CHAN~EL [NTlRING JU~CTION IS lARGlR TIIAN JUNCTlu N DlPTH _6 INDiCATES NEGATIVE VOLUME OR AREA JS POSSIBLE HITH A~TICIPA1Eo TIOAL STAG~ ,j I I f I I I I B ,~B I I t"'....,~""\--1 1 1 J -1 1 }i 1 -~J."]]1 J 1 ,1 ] ...Table 6-4 -(Cant.) Invariant Node Data UPPER COOK INL[T,KNIK ARM AND TURNAGAIN ARM 3A HP U PROBLEM INVARIANT JUNCTION DATA JUNC TtoN AREA,"SF SLOPE,H$f/Ff DEPT~,,.,MIN ELEV,FT X"CORP V-CORD CMANNE~a [NT~RING JUNCTION 51>1>20,JO ~O 20,0 20,7 925,0 76/1.0 8Z·83·0 0 0 0 0 0 510 ..JOO "20,0 1'i,O 19,0 9u J,0 771,0 a:H 8110 0 0 0 0 0 O. 58 ;130,10,0 12,0 20,I 957,0 771.0 /lu.liS 0 0 0 0 0 0 5"HO.IS,O 12,0 i!I ,~'1711,0 771,0 liS 6b 0 0 0 0 0 0 b~."It'0,10,0 10,0 111,0 9/19.0 759,0 5b 0 0 0 0 0 0 0 100 ~~O.,0 60,0 60,0 6 UJ,ll 620,0 101 103 1011 /18 lOb 0 0 0 101 Sit••,0 75.0 75,0 639,0 629,0 10i!1011 lOS 107 0 0 0 0 102 Jll 0,IS \I)10,0 1/1 •q 63~.O /I J9,0 IIll 105 lOti 0 0 0 0 0 10 J .?2'i,I .0 bO,O 11 ,1 65 J,0 6lQ,O lOb lo'}Ill-0 0 0 0 0 lOll 2 3 1,,0 50,0 50.0 650.0 /I J'i,0 101.10'}·110 liZ·ll)0 0 0 lOS"1'>(,.'0 \0 10.0 I';.b 6 Ul.0 611 3,0 lOll 1 10 11 II 0 0 0 0 0 lOb 1/1 q,,0 60.0 80,0 6bO.O II JIl,0 III.11 i!115·0 0 0 0 0 107 106,,ll lO,O 30,0 651,0 6112,0 III II b II 7 0 0 0 0 0 106 ..90,b,O 6,0 1':>,0 6'j5,O 6~7,o 1111 II II 118 0 0 0 0 0 109 IbO.,0 10,0 70,0 8hl,O 8H,O 115 ,119 120 121 0 0 0 0 110 116,S,1l 30,0 .is,II lib l,ll 8115,0 1 I 7 118 In.0 0 0 0 Q lA1 8 u•,0 15,0 15.0 1170,0 1130,0 12b 119 In 125 0 0 0 0112_./I !>,',5 15,0 16,/1 6n,O 6.S!,0 127 Il')1211 128 I)0 0 0 ID SU,.0 IIS,O 45.0 11711,0 8 J'i,0 120.113 Ilil Il"0 0 0 0 II q 52:I : 0 30,0 52,0 II1Q,U 8 Jb,0 1211 Il9 III 0 0 0 0 0 115 I"U:,0 55,0 ~'5,O 615,0 6110,0 PI IJO I!Z In-0 0 0 0 II b 1 11 9,/j.0 110,0 H.Z 871,ll 6<111,0 12l.110 ISU,llS·0 0 0 0 117 Ill.,0 45,0 ll5,O 8111,0 8UO,O III IU·llb.1J8 1396 0 0 0 116 SlI,,0 bO,O bO,O 681,0 au l,0 III j}1I Db iH 1110"1111.0 0 II q flO.1,0 j,),O bO,O lllli ,U 8/1b,O ll'i l.H Ill2'0 0 0 0 0 120 lQ.,0 30,0 .}O,O !lOb,O 8uO,O I 36 III.h lU~'0 0 0 0 0 121 II O.,0 90,0 '10,0 88b,O 8u 1,0 119 hO 1/1}Il1/1 IUb 1117 lU 0 122 32.,0 50,0 50,0 116b,O 811b,O 1111.IqZ.luh Il1'U ISO.0 0 0 12l J 5,1,0 jO,O H,O 6 9 0,0 6111,0 11I'j lub.lSI-0 0 0 0 0 1211 lJll:,0 55,0 55.0 6 Q ll,O 81lu,O 1111-I~I I~l'15u.0 0 0 0 Il5 ll,,0 70,0 70,0 6 9 1,0 /lub,a IUO·III'"ISl 153 155.0 0 0 I(,b H.1,0 110,0 H ,0 68'1,0 8116,0 ISu·I!do ISb'0 0 0 0 0 127 'Ib,,0 '15,0 95,0 6 9 5,0 651,0 154 155 15b 157 0 Q 0 0 rJ 128 I3b,1.0 SO,O bb,I 11 9 7.0 6:8,0 157.b5 0 0 0 0 0 0 \HOlE·...I~OICATlS THAT DEPTH UF CHANNEL ENTERING JUNCTION IS LARCER THA~JUNCTIUN DEPTH ...INDICATES NEGATIvE VOLUME OR AREA IS POSSI8LE WITH ANTICIPATED 11~4L STAGl v) VI I ESTUARY STATISTIC'(AT MSL)-TOTAL VOLU~(,CU FT ~::~~::~()TOTAL ~UqrACF.AREA,so fr lr,HE AN OfPTH,FT •'IQ511+02 Table 8-5 . Tidal Time-Stage Data N \ V VI r ....... (;) ~ UPPER COOK INLET,~NIK ~R~AND TU~HAGAIN ARM HATER yEAR 197i AVERAGE TRIBUTARY iNflOWS TIDAL COEFFICIENTS FOR JUNCTION I -,13117 -,60fJ7 7,511 l8 -.lJU TII-I[O/lSERVED cOhlPUrEl>DII'F -2,9000 -1>,'5000 -I>,1I70S ,O~'IS J,IIOOO 7,/1000 7,H96 -,0202 9,bOOO -'1,0000 ·9.01'10 ..,01'10 II>,OUOO T,bOOO 7,5'1'1b -,OOOli 2l,IOOO .10,5000 -/',11705 ,02'15 26,/lUOO 7,/1000 7.37'16 -,0202 -1,3250 -II,Ubl1 -a,S220 -,OSIlIi ,2500 ,/150O ,UjtJb -,O151l 1.625u '5,'b Jb 5,uH2 ,OTIl5 a,'1500 a,Q'171l 1I.'IULlO -,O'lJII 11,5000 -,11000 _,H25 ,027S 8,0500 _b,5Q11l -/"~I'll ,071l1 11,2000 ..b,5b81 "II,hHb -,0715 12,81100 ",7000 ",bllIO ,01'10 IIl,UOOO 5,Ib61 5.I'll},OS/l2 17,5250 '5,SJ/l~5.tJ 1l29 -,OSIIl 1'1,05 0 0 .';500 ,S2]Q .,02bl 20,5150 "u.1l3 1l /l -/l,3119 .01,25 21,b7'i0 ..lI,UbJ1 -11,522 I _,OS61l 25,2500 ,/lSOO ,U1IIS -,OIS, 210.8250 5,JI>III 5,IIj81 .07 1l 5 TOTAL ,899l SUMMARY flY HOUR I l,02 2 5.1\5 1 7~lO Il b.en 5 /l.7b I> 11 .7.1 9 12 ..l,91 Il ,III 111 3.91 15 b.I>S 1b U ..5.32 22 ..10.115 23 ..5.85 211 .],1>1 25 _,aG 2& ,7 9 711 1.24 7 7.110 17 3.02 -1.01195 -2.80 8 b.b5 18 -,ObOb -1>.37 9 GolO!19 ..8.59 10 ,70 20 .S.8 9 ..2,7~ .1 I J ]j ;,I I J m §.~J ~I J 1 J i ]1 J L D I 1 ]j J 1 } Table 6-6 Summary of Boundary Conditions UPPER COO~INLET,KNIK ARM AND TURNAGAI~ARM HATER yEAR S97i AVERAGE TRIBUTARY INFLOH~ JUNCTION TO JUNCTION 110 EVAPORATION HATE,INCHES/HONTH l.OO HOURLY WI~O V[lotiTY (MPH)AND DJRECTIUN (DEGREES CLOCKWISE fRO~NORTH) CHANNEL 10 CHANNEL 1/)0 I .0 O.Z .0 O~)• 0 O• b .0 0,7 ,0 O.B • 0 O•I I .0 0,12 • 0 o•lJ ,0 0,Ib ,0 O.17 .0 O.III .0 0, 21 ,0 O.ZZ ,0 0,B • 0 O• INFLOW AND OUTFLOW DATA /I 9 III 19zq .0 .0 ,0 .0 .0 o. O. 0, O. O. 5 10 I'ZO 2~ ,0 ,0 .0 .0 .0 0, O. O. O. 0, JUNCTlaN II 27 uS 116 50 bO 108 117 IZIl INFLOW,CPS IIbOO:OO HO~O:OO 1170'-00 120.00 101160.00 .1000.00 tlOO,OO 75.00 110.00 IIlTHORA Wl,CFS ,00 .00 ,00 ,00 .00 ,00 ,00 ,00 ,00 c-J ( t....J vI, ...... () '\.l JUNCTION TO JUNCTION I lln JUNCTION CROUND WATER JNfLUW,CFS .00 STORM HATEp INFLOH,HOUR AND fLOH,CFS Table B-7 Computed ;l;,1me-Stage at Selected Nodes UPPfR COOK INLET,KNIK ARM lN~TURNAGAIN ARM ~ATER ytAR 1972 AVERAGE TRI8UTARY INFLOwS JUNC HIJII i JUNCTION Ii JUNCTION 2/1 JUNe TJON 119 JUNCTION 511 JUNe flOII III HOIlR HEAO(J'EEf)HEAU(HET)H[lDlfE£T)HEA{)(f H T)HlAOlfHT)HlAU(f[lT) 1,00 3:02 -7,l8 -iO,'I:!10,78 ·z,ei!-'1,110 2.00 ~,6S -1,Z 1 .1 I ,20 '1,Il6 .1,III • I l ,117 l,OO 7 ~.so I.n .&,7'1 '1,0&-11,12 -11,'1'1 11,00 to,'1l 5,H .,III tI,l5 - I I ,0 I ·q.o.1 5,00 1I~1b 6,OT S,tJ 3 1,11 ·2,~l ),61 b,Il0 1,2 11 tI,1l8 10,15 7,15 5,I b 10,111 7.00 .Z,IIO 7,7U IZ,b8 7,n I I ,25 I II,I 1 8.\10 .b,l7 11,110 I I ,'I b '1,lIb 15,05 I q , 7'I 9.00 .iI,S'I ,7'1 8,115 12,1 b 15,01 12,lO 10,00 .e,lI?·2,b5 J,!>1 I j,bO 11,0'1 7,0'1 I I ,00 .1.1'1 .b,III .1,0'1 IZ,tJo 1,12 I,ll I Z,00 .3,'11 ·'1,12 .b,t,z 11,111 l,lIb -II,'>i! 11.00 ,III ,,10,.n _10,81>\",7i!-2,l2 ·'1,38 \11,00 l,'11 -l.bl ·ll,C,}'1,tll ·b,72 -Il,lb \5 ,00 b~b'.1,'1 \_12,n '1,02 ·11,1'1 -15,01 Ib,OO l~hO l,lll>.11,j9 tI,ll -\11,11>-10,711 11,'1/0 b,b5 b,'1 1 2,I.l2 l,be .7,Ib -,'1'1 \6,00 1.l,1i!'1,2]8,111}7,12 ,lI 1,01 1'1,00 ,10 '1,511 ,2,]2 b,b3 6,Il 12,y J 20,00 .2,7J 7,511 1],b5 l,Il6 IJ,811 15,50 21,00 .5.3<'II ,17 11,1)5 IO,Il0 Ib,lIB 15,1 5 22,00 -b,1.l5 •III 7,7b IJ,50 14 ,56 I I,11'1 n,oo -S,1l5 ·2,35 Z,7b I II ,22 '0.b J 5,'15 211,00 .3,b1 .1;,,1111 .2,1'1 Il,f)?b,II2 ,Ii! 25~00 .~II11 ·7,5].b,bb I I,'Ii!1,70 ·,,06 Zb~OO ],02 .7.2&.,0,0'1 10,81 -i!,1l5 .'1.j8 27.00 5 65 ·3,22 -I I ,16 '1,'111 -1,I b -Il,II II 26,00 7'30 1,311 .b,7ll '1,13 - I I ,11 -II,'1b, 29,00 b,'1l '5,31 .,I IJ 6,I.lI .-10,'16 "1.1,00 H,OO Q,1b 8,01 S,Bl 7,71 .2,52 3,BI 1 1,00 I ,2/1 8,'18 10,)';7,20 '),I b 10,III H.OO .2,60 7,13 \2.b6 1,]I 11.25 I II,I } H,oO .b,J7 11.110 I I ,~5 '1,!iO IS,O'!>111,7'1 ]11.011 .11,5'1 ,7'1 ~,il5 I l,1'1 I~.OO I Z.1'1 H,OO .6,6'1 -2,bll 3,50 IJ,ob I 1,0'1 1,0'1 lb,OO -7.1'1 ·0,I II .1,b'l 1<:.61 7, I I I,ll 37,uO ..3.'1 I ·'1,12 .b,oi!11,75·2,IIb .11,':>2 }6,OO ,III .IO,]}.,0,tl7 10,73 ·l,U ..'I.j6 )Q,OO ],97 -7,bl -I l,1>]'1,Ili!.0,71 ·\j.H 1I0~00 •b,ob .1,'1 \_,2,11 '1,02 -II,1'1 • I ':l,b} rJ 111.00 1~bO 2,67 .il.36 II.3!-I 11,1 b -10,711 Oil i!,00 b,bS b,9 J 2.IJ2 7,b6 .1,I".,'1'1,II},OO 11,12 'I •.?]6,11'1 7,12 .ll 7 101 1111,00 ,10 '1,50 Il,]2 b,b]B,I l 12,'I] W /15,00 -2,73 7,56 ,.s,b'5 7,11'1 IJ,ou 15,5b ~IIb,OO .':l,32 II,11 I J.IlS 10,Il 0 10.II fI I ~,15 117,00 .",115 ,61 7,7b 1].50 111 ,':>11 I I ,uQ,116,00 .5,BS ·2,35 2,7b 1/j,22 \0,b]5,'15 ~11'1.00 -],b7 ·S,/jo .2,1'1 Il,O'1 b,il.?, I l 50.00 -,qll -7,~3 .b,bb \l,n \ ,10 -S,Ob ~ :1 J I J ,J J J ..~it D I J 1 1 1 -)i ,)~j)1 1 j 1 i I Table B-8 Computed Flow and Velocity in Selected Channels UPPER eOUK INLET,KNI~ARM AND TURNA~AIN AR~ WATER YEAR 1972 AVEPAGE TRIRUTARY INfLOwS CI-jANII[l'1ll CHANNEL 72 CHANNEL 83 CHANNEL lZ7 CHANNEL 1110 CHANNrL In HOUI!FLo'"VEL,FLOW VEL.nuw VEL.fL.OW VEL.flOW VEL.'LOW nL, (CF S)eFP3)(Cf S)e F PS)e CF 5)[FrS)cetS)CI'PS)eCfS)(FPS)(CF S)UPS) 1:00 -551 6 131.'_2,56 -191101>,-2,12 -1111b006,-5,00 O•,00 ..7111Jbtl,-2,112 -1611jbl7,-j,IlQ 2.,Ot'1I0J?225,1 ,87 ·I'570~b,.2.01 ..IIJlb25._11.60 O..00 .501l1J7'1,·2.03 ..IVc>bb5.·2,lIb 3,00 1JO~511'?,5.b7 -130121,·1 .91 -61116b2...11,11'"0,.00 -b7Ylb.-.25 -2 11 "1'16,",ll7 11.00 Ib71052'),b,'lIJ -10'10;01.-I.III -IIY'HI~,-2.7I -b72.-.~q 'lblll1l.3.11 ,2c>'j JIIIlII,II •O'.i 5:00 16120813.b.1I 9 .92521,..1.1 11 101l31bll..II,Ol -b9893,-I .111 Ib21l'Jld.').III IIbO')'i2b,1,)11 b.OO 1176l1 11 O.lI.b7 -l'1'lbl3.-1.11'1 ICl,?IJ,?b3.5,5"-1711 11 113.-2.52 151701'1,IJ,Uj 1115111Y I.b,OS 7:00 1126H Q 8.l,b9 1<;11219,2.10 2509015.5.1b -2123Ql,-2.I b t1lJb U2.3.III 2q1')000.II.IZ 6,00 .5SbbI\Ol~-2.H 11273tlO.J.5 11 i!52i'Ofl7,5.00 ..'IIHI,".1l7 Illqll~,I.l.!91HIJ,I.n 'I.OO-i3Qllb12...5,5~U'I~21,),3,lll 133~IZ<l.2.55 b3110..15 ..lllluLIU,.1,111 -ll')u202,.l.~O 10,OO-I~:'':l'l111...b.'1b 751''10,,Il'l .13b?,YiO,.",95 71 5 53,1.31 "'llb311>5..J.';ll ..31007tll,-5.57 11.00,-151210 11 1...b.9 b -25 u 5JO."2.0 11 .2102~"I..5.11 38'101>.1.56 ..121l>HO..U.III ..Jblu2uCl,.",117 12.0(\.121>11915,.1:>,0<1 .2l 'l1U'l,-l,lij .ltlObjdll.•5.1'1 57"3 •,'1'1 -IO')I}I)bu ••l,l11 ..27110'1111,.a,'IO 11,00 -ljb2Zbf',9.•Il ,I tI ·1 (I II 3'n ,-l.IO -llIb'ljlj?•_5.0b 0•,00 .6Ib~b,)...1.10 ."01211"b,·1.8" 111,00 •80412b~-.l6 ·15~30ij,-2.00 ..IIIIlU'II,..Il.'ll ,.,0O -b05990..2,1l~-11I5Z211b..2,'12 15;00 1102 Ul l1 b.Il.'H .llll'll'1..1.'10 -'1.11111511,.11.15 O•.00 --lllYYu J..1,0 b -/jCl)511 0 •·1,17 I II ,.00 112IbG?8.7.JIl ·IOtl4411,•1.0 1 "b'HbU~..11,211 0,,00 501l'lB,2,01 II il~'III,Z.JI 11.00 Ifl 0 3P.i97.7,52 -'l2100,-I .1b UI!:/)16.2,I I ..2'1117."2,011 I /J 111 Z.!•5.02 36'10')'H,.b,10 16.00 15 13 I')7l37.b,lll -111192,-I,'(>8 119120b.1l.6C1 -1240QII...Z,1l3 1111/,'118.5.115 41/u'I001,7,5b 1'l.OO 'lb'jO'1bll.3.19 _')u:~I\...I .03 l151Y'IY •b.10 ·229'1jl.·l.!J'I·I 1II1'/.!5 I , ij.Z j Uol19J5.5,b9 '20.00 112100 I"•Uj 2 Q5>'l'1,1.12 260ijlJ1l1 •5./16 -1'1161111,·1.16 "''''JIlOl.Z,bl>Z45 11 119,J,B 21.00 .61>(>'1111,-::l.bl 51ll?,'15.3.'13 2112Ilb05.11.55 -ZYbbl....2b 2~U80..bJ 82'i j I ,.O? 22,OO-11l2U5'J01,-b.II 1111805,2.6 11 50171l'l,.'lJ 711 I 15.,'16 -10U050.-2,05 .lbbYS'IIl.".1,81 ('3,00-15')1 106 3,-b,lIb -llnol."1.115 -1'1.1110'11.-11."1 7u BII.I •!J I ..121Ib35.-3."'Z ")'l025b5 •.5.95 2I1,OO ..IJ'lIj]ql/j.-h.1I0 -,,7.1 IH,·";1"-i!O'lIlIOb,-5,22 3320'1,.1,57 00122)]111,"U.Ob -llQll'llO,"S.bl 2S,00-1011j5531.•5,Ob -2~Slu9.-2,20 -1731tl5J.•')•III Jbbl.•II 1 -'111511'1..1.46 -25ub~"Il•..Il,';>Z lb.OO .''J0~151..2.51 ·IQQl n Cl.-Z.ll -IUI/'I2I1q..1l.'l1l 0,,00 -}1l2121,-Z,1l2 ..11111/510,":i,~O 21.00 1I015~H•.I.Mil ..I'j'l'h J,-2.oZ ..lli!(,U'IIl..Cl,18 o,.00 -50"1115 •.Z,Ol.l2lllb l/II ,.2,"1> ZII.OO IlOu5.,'1u.5.bb "I l.!~~':I.-I.'12 ·fl(1I.\2'1,_1l.1l8 0,,00 .b'/,)IlO,·,2"-~uq~IIl,",11& 2'1,00 Ibb'l Q 81",'b,qj -1\1217.-I,tlll •IIQ3QaO,.2,bl -b'l3 •-.')0 91>~'I61 ,l.<lb 2bQ~blS.1l,61 311.00 Iblllu u 5,!I.u'l -Qj Q 2b,-1,75 lOll ]IIZ J,11,02 ..b96.,'j."1,07 I b.!b j'/ll,5,11 <I"OU6jO.7,H 3 1.0 (I 1171I>IlZ'I.lI,bl •81101.>.-1.10 1'l.!1I'10U •5,55 -176 11 9'1,.Z,S2 1,lllj511.1l.1I!1ll<lllbH,b.OIl 32,00 1li!1llulll.I .6'l 157GIIJ.2.10 2506/j?Z,5.7b -212"~O.-2.I to IIUI311,J.III Z'I7~6,{I,11,11 B.OO ."571151.-(',lJ 11216~~.J.51 2521'lob,5.00 •'11610.",117 411115<.,I •32''1111 10 •I,i!1 311;00-1 lO.!212 I ,-5.56 11912511,3,21 I H1\21l2.2,55 bl""l..75 ..3'1}'1l1b,-1.15.11S)Q21.-2.~0 J5.0I)·I'i"6'12}~..",'Ib 125 11 0.,ub -111>10';9,.2.'15 715 lS.1 •.H ..llbB5'1,-J.!:>ij .}l(1o'l70,"5,57 3':I,OO.!'}12IU Il 'l,-".'11>·2')')II II.-Z.O".ZI023 1l 'l..5.II 3tl8711.\,58 -121111')11,"uoItl -.ibIOllll...5,117 H.on-l2t:>l b 2lll...b,UIl -2?\>15 11 •-Z.lu -1"ObIOb,.5.19 51Q J,,'lq -10,;>1I0q1,·).111 .ZlI110<J2,.11.'10 1'1.00 ..11112101'1._1l.18 -"I/lUI.-2.10 ·IU"'l151...S.Oo O..00 -Ill bHIl,-3,111 -l03'b5b,•J,eij 3'1,00 -'J ~I 'Ill I , ••18 -15')'5b",.-",00 ..lltlj;>'lU,·1I.'l1 o.,00 .bl/I>OIl"..2,11')"\1I5lllllll.-'l,Yl 1l0.0/l II0ll>IZI>.1l,'ll -12'1162,-1.91 -938b"'5...1l.15 O.,00 ..1I1'1'lb 3,-1.llo -6<J.,1I57.·1,17 ~Ill.00 112Ib'l}2~1.jU "IOtll.lO'l,"I.lll·-"Qll1t11,.1I.i!b O..1/0 501l'jIlO,2.01 '1Hb'lZ,i!•.I I,112.00 184.1 11 5 1 1,7.5f!..'li.?lQ.·1.111 11111100....II ..2'1131,"Z.O/l 111110'1 I.'),02 3!l91l5H •b.l0 41.00 IO,1110 u }]•b.,'11 .7n?QU..\•bll 1:\'11 jJb,1I,/lU -12ijOI.>5...Z,IIJ 11l1hll)ij,~.II~U'iUbbUb,1,"bW4u.DI''1b'jOII~,3,1'1 •~i Q'}1'l •..I •U 1 21~!l132.".10 -22'1'lbl.-l.~9 IUf:tIIOl/j.Il.l 1 Il a,?11l ~2,~.o8 ""05,')0 IIZ'J15t>,,Il j Z'I51/1 Q,j,I?2'liju,:>71,5.~tl -I '1187~,-1.111 'loll~"'1,l,hb 2u'd~Dl\,l,j) «U't,Or.-~I>HI21'1.-~.I>I ~'lu~"O,\.'Il i!Il ~".,5 1•Il.')')-Z'l/lJZ.-.eb ..I;>III c ,,b .1 8<'1<19.,OQ .........47.on-\""ll~"")I.~b.II 0717';u,2.1111 511 III"'~.,1/1 70 I <!ij..'111 _ll/u l'>u,-l,O')-ltlh"'~'JO...J ,Ill a Ub .0 (l _I ',"I 7 1'1 q •MhgRh _ll.\1119,-I .1I'i •I"jfl II OJ I •-11,21 10 JJII,1.':>\·1i!llhlv,-J.?t!-~~/O.!b~b..".~'> uq,OU-l }'l(l 7'1~u,..o.OU .,!l.'~hl ,-'>.I U .,>11'111 II ~,-~,22 Hi!Ol,t.~1 ·llll1~tl,•II ,°b •\J'/Dq l)'>,"",bl -t\~O.LII':Qll:l'j ~5u..00,Ob -23,,1 Yl.•...20 -11Hb 1d,.5.I q ll>bb.,Ill ..'l11'J'io.-),<1".l)~Q~dll.....'>1 Table B-9 Summary of Miscellaneous Computed Hydrodynamic Data UPPf~coo~INLET,~NIK ~A~ANn TVRNAG~IN AHM MATER T~~R 197Z AVERAGE TAI~UT~AY IN'LO~S AVERAGE HEAOS 'OR A ~IDAl.cYeL[ I 2 1 II 5 b 7 6 9 10 I TO 10 .,III ·,nbb -,lIbS ,001 -,onl ,0311 ,115 ,181 ,110),ZSl II TO 20 ,311 I ,'ib7 ,b72 ,b70 ,1>i!1I ,7U8 ,7011 ,bb2 ,71/2 ,7111/ 21 TO 3D .71l/j ,'Ibb ,Q }'),lilt>1,0 '0 1,027 I,02/j I ,10 /j ,OOU .000 II TO 110 I,Ub7 1,110;11 ,OOU ,DUO 1,5RS 1.5"'3 1,1'57 ,DUO ,Oou ,OliO /I I TO 50 ,000 ,nOD ,,118 a 1,11>5 2,1,,2 2./jJ]b.tlbll 1I,5/j5 10,051 10.077 51 TO 1.0 .000 2,521 1,6/j1l 2,HII Z,I'lb 2,/j\J5 3,Ob}3,SH l,7111 3,725 b I TO 70 ,·000 ,000 ,000 ,000 ,000 ,ODD ,DOD ,000 ,0(10 ,000 7I TO 110 •000 ,noo ,01)0 ,000 ,000 ,000 ,1/00 ,000 ,00 ~,000 III TO liD ,ODD .000 ,DOD ,aDo .000 ,000 ,000 ,000 ,ODD .0uO 'II TO 100 ,000 ,000 ,000 ,000 ,ODD ,OUO ,DOD .VUO .OOU 1,I1U 101 TO 110 I , I I I I,Uqll I.170 I.11.1 1,32 11 1,II1b 1,2td I,II 13 I ,Z0 Il I ,30 2 I I I TO 120 1,71l0 1 ...26 1,21 i!I ,2111 I ,31 I I,H7 I,JIIIl I ,3~J I,J5 t!I ,)I.} 121 10 1)0 I,JI.ll 1,3bb I,j111 I,lllb l,lllS I,l8b I,/j 08 I ,Il III ,ODD ,000 AV[RAGE VELOCITlf8 FOR A TIDAL CycLE I <»J /j 5 b 7 1;\II 10 I TO 10 ••IUII -,lOll -.038 -,0'15 "01/19 ".027 -.oul -,22b ".06 11 -,ZIl II 10 20 ·.lOb ..,220 -,2l 11 ••01.11 ",II,".,J1l7 ·.11'1 -,215 .,I bb ••01) 21 10 30 _.OUII .11 I b -.0117 .,175 ,030 , I c2 ••01l5 .,II b -,lBI .0111 )1 TO 110 ,101 ·,2)11 .,20}.,1211 ,00'1 ,DUb -,I a 3 ••207 -,IZ>,O~5 II I TO 50 ",Olll ·.165 .000 ...211'1 ,000 ,ODD .,~bl ,1173 ,0011 ,000 51 TO bO ,071..000 ..,}/11 -,\S5 ...lO l -,Ob9 ,uoo ,0 u0 ,aDO ,000 bl 10 70 ,01)0 ,01)11 ,000 ,aDo ,23 0 ~,3711 ~,SU5 .,lb5 ",5.l3 -I,U5'.i 71 TO 60 .1.I'IZ .,!i 1J ",IllS ,ODD ",lOb ·,1110 ",~SO ",Z~6 ",001 ·.SZO U TO '10 -,In 3 _,/1)11 .,bbO .,bll'j ••II 'II ",0911 .UOO ,ODD ".I R'i ,OliO '1\10 100 ,000 ,000 .000 ,DOD .000 ,OuO ,000 ,000 ,00 U -,I lb 101 '0 110 .,Z2)_,I I II ..,U21 .132 ·,OSt>,051.-,I b)-,116 ,0 Q I .,022 III 10 120 ,0'l7 ,02'1 -,)0 I -,238 .0'I ,001 -.177 ~,1/;10 ..,III U ,2 ~1 121 TO IlO -.2 (1 )-01 /j 7 -,005 .,2 11 9 ·,2117 .,J~II ~,lOO .,.Ill ",11.11 ,IllS I 31 10 I UO .,317 -,?05 -,Z'1I1 ,0..11'",0''3 .,Oll ·,IIZU -,I b2 .,I Z 1 .,a lZ 1111 fa 150 ",1)'1 ..,100 -,Ulli!...01 J ·,0,«1 , a II .,0'1'1 ",I7I -,II 7 -,252 lSI TO IbO -,022 ,n02 ,OJ)·,121 ·,21)/1 -.Ilb ·,1112 .000 ,000 ,000 AVEqAGf 'LOMS fOR A TIDAL cYClE I 7-J /j ')I.7 B 9 10 I 10 10 ·2'.illlOO,.2 I /)/j 78.;'1I'.i'1)89.2071!JII •~2I1Q7)7,~221 bBII.IIl711tlO,..472U6'1,/lUbO'i,Ull'lll, II TO 20 II S )A ,-SOli),..S06bQ,..2'1lal,29~)b;>,-3H1I2b,/;IZJ5,-u I b I I , ....U I l,..JI5~22 • 2 I 10 30 ·)'Il665,20Z01HI.11111 J 7,•.llS021l,130;>'1 /1,21>1b5,71SlIll.IlIlbllO,.2'1111111 11 ,27lb'.iZ, 31 10 110 ll/)f19I1,..2021'16,fdl>lIb,'I/j~q'1..Z70lb',·17bObJ,bbOSII,-lOblb,-017\'1,101.1111, III TO 50 ,,'i63I1b,.}AII15.0,·IOll QQ •n.°,·150615,)I S 7,O.0, ~51 TO bO -101.01,0,;'II1UH'I,125uOII,·1ll/Z2u,IIISu ....0,0,0,0,,b I 10 70 O.0, 0,o~111111,~2 7111,-II/IOl,-1991,.ZOO),_IOb55, 7I 10 80 ..IOIl9b,·10111 Z.-IOAb1.0,..IIOOIIS,..9 l J I ,.50)113.llaSlll,SibS,.bB'iOZ • W III TO '10 b8170,-799,.1170,..9 III,·'111;>,~1I1tl,0,0,b.lObO,II , \rt 'II 10 100 0,0,0,0,n,u,0,0,0,50700, f 101 TO 110 .ZlI u52,IOl b 02.Ib70118.-j'lOII,52 b11,IlIlllbl,IIBb 7,-51l'ib/j.1I1 11 b O,1St>'7, .......II I 10 120 1)7 ;>111,9 09 56,~51Zb5,..)/Jqb~.i!JV2S,10b7b,-1>l9~l,"UTol,-b'>~',15 b llIJ, .......121 10 DO 81 'HO,"811bb9,·7I1b)5,"511221>,-S;H17 ,-IZI8H,-)1'172,·BII611,27\Ju7,IllqUO, ~.. ~.~____~I J !I I J J D J J I Table B-9 -(Cont.) Summary of Miscellaneous Computed Hydrodynamic Data 7J 118111:2870/1.711 U.o.75 3Jb!\I1.12J7711.70 3b8225.Hn'JiJ, 77 IIS01JJ.1200 117 11,16 QUII?q.927 9 02.7q Jo~5Ub.lO03tll.60 II'Ib216.li!b51Z0, 81 3161'17.250027.62 11111'110.1I 11 i/70'l.83 H1I702.7b~'.i7I,611 SZ8QS5,521;\9 b9, 65 3b'l315,lb'l2bl,.61t 11I077b.11I\75 u •87 0,0,Btl 0,0, BCl )zaSZ9.i!1I1111t'l.ClO U.0,'11 o.0,92 0,0, Cll 0,0,ClII 0,O.Cl5 U,0,9b 0,0, 97 0,f),Cl6 0,0,'1'1 0, 0,100 111115Y'lI.lal\Z'll, 101 IIl0ZBO,162h711l ,102 25Q91C111.,,"C155"I>,10)1552b5'1,1365%/,1011 1180IUIt,5 I 'II b2, 105 1'5958'-III H611,lOb BaI039,115«>272,107 IblOb'ill,11I11l7'11,108 352711,896H, 109 ISUlln.?,IOb9J~.~IO 1i!i!7Ql,107/1;\0.I 1I IJlIII'IH,1111 7b';.B,112 /l9'1d511,1l0116'l1l, III HI190,u U 2 U5 ';,11.11 1.1111100.6 73b5.115 ZI18';.2tt.l11llb)U I ,II b 177U"nOllb, 111 26!>QIJ6.3 11 11/1'/'1.118 z"",7ZIl,'31 112 5,11'1 11111 II 3,I 10 I>IJ b ,120 blH92,II 11119, III 12Cl1l2511.1212325,122 Inb)5,21\2JOII.123 bb1l1l2.111 1017.1211 719n,12b 1'1 9 , 125 117'19,b2';21.12b IllIb5b,i!Jbllllll.127 11111 1\7,IIbOS 9 ,126 170bb,Obo,"II, 12'1 H~19b,J102 11 9,IJO )11 11 91'1,21 2 '1./9.III 30'1007,3125';.11,Ilc!1I0?II5l,lillicH, IH IlH1I75.51Hlb,IJII 11120211.15 111111,135 21 BII JII,207 11 37,13b 20lltlCi5,1'1'0 .IS , I J7 JO'l7 0,b31 QI,138 12113115,157b72,139 373729,HOUbB,1110 Utili 195,UU4b72, \UI 3IJ'Ib06.3'l6727,\lIZ IIIIlb5 11 ,IbQU6J,\II 1 6215,JIl2t>O,11111 57TH,It'.>I.??, IU5 10lluJ,1\0311Il,Illb InUbll,11271l5,1117 2750l5,2bl8JO,1116 177ult5,HobbS, Iq9 11l~""S,lHA05.ISO 2Z'Hi!l,2b60bll,151 2~2'lbll,199?}),lSi!7bl05,nSl5, IS}7lb09,1l051~,1511 50117111,1192590,155 577J17,59115119,151>258tl211,2bb61>8, 157 127150Co,126111>110, HlhlHUH HEA!),HHIHIIH HEAO Pln TIDAL RANliE I ~Q,02 7.bO Ib;Coi!2 ..9,211 6,011 17.32 J .9,27 6,111 17,II I II _9,b8 6,5 9 16,27 5 -9,51 6,Su 16;I I b .10,\}9,07 19,20 7 ..9,b5 /1,90 111,511 8 -IO,lll ?,II 0 I q I SU 9 .10,I U ",U?1?,bZ 10 ·Q,/'9 q,03 1Il,72 II .9,'Ib 9,27 19,23 12 ..10,J5 '1,1>7 20,02 U.J1,06 10.11 1 21 ,SI)III ~II.OII 10,1I1l 21,116 IS ,,10,96 10,36 21,.II>I It .11,7T II.I b ~2,9u 17 ·11,75 I I ,11 22,92 III ·11,b7 I I ,ob 22,73 19 ..12,~5 II,Qb 211,50 20 ~12,SO 11,'111 2 11 ,113 2\.12,Ull 11,'10 211,lu 22 ·13,50 11,Oe 211,56 23 ,,13,35 12,')7 2b,J I 211 "11,25 12,67 i'b,12 25 "13,93 13,b5 27,511 21>-13,£'6 1).117 21,55 27 ,,13,011 13,hI>27,50 26 "1 11 ,311 IU,2i1 lB,511 29 ,00 ,00 ,00 30 ,OU .00 ,00 JI ,,111,28 15,7.2 2'1,';>\l2 "1 11 ,30 IS,C7 2 9 ,S1 lJ .00 ,00 ,00 JU ,00 ,00 ,00 J5 .11I.b2 IS,IO JO,J2 Jb "lu,b7 15,7b 30,QJ :n·II,b2 15,57 27,l'l JIl ,00 .00 ,OU 19 ,0O ,00 ,00 Uo ,00 ,uO ,00 III ,00 .00 ,00 112 ,ou ,00 ,00 u3 ..lb,IIQ Ib.Bb 31,35 1111 "lb,Ol 17,08 H,ll 115 "IJ,6b 17.\}30,'1'1 lib .13.b2 17,jll lO,?b 117 ·,7b 17.n 17,"7 ull lI,b'l Ib,2u 11,55 U?b,bO I 11,35 7~7u 50 b,72 111,57 7,11"51 ,00 ,OU ,00 52 -11,17 15,'1'1 27,I b 53 -lu,l1 Ib,O?JO,llb SII -11,1l 16,2b 21,l'I 55 ..llI,79·I b,l?3 1,16 ~b "III,6~10,52 31,37 57 "11,'15 lb,lIZ 30,17 SII-ll.OII Ib,b'l 29,73 59.II,ub 17,75 2'1,21 bO -12,b8 Ib,06 J \ ,31t b I ,00 •,00 .lJO b2 ,110 ,00 ,00 b3 ,00 ,0 0 , 0°bll ,all ,00 ,Oil b5 .00 ,00 ,00 bl>,00 ,00 ,00 b7 ,00 ,0 0 ,00 b8 ,OlJ ,00 .0 U b9 ,00 ,00 ,0O 70 ,00 ,00 ,00 71 ,0O ,00 ,00 72 ,00 ,00 ,00 7J .00 ,00 ,on 711 ,00 ,00 ,00 75 .00 ,ou ,0O 1b ,00 ,00 ,0lJ 77 .00 ,00 ,00 76 ,OU ,00 .00 79 ,00 .0.0 ,00 60 ,00 .00 ,00 81 ,0O ,00 .on 62 ,00 ,00 ,00 83 ,00 ,00 ,00 llu ,OlJ ,00 ,OU 85 ,00 ,00 ,00 6b ,ou ,110 ,00 87 ,00 ,00 ,00 66 .00 ,00 ,00 e9 ,00 ,00 ,1111 'II),(10 ,00 ,00 91 ,0O ,00 ,00 '12 ,au ,00 ,00 ?J ,00 ,00 ,00 9U ,no ,00 ,00 95 ,00 ,00 ,00 9b ,ou ,00 ,00 ('l 97 ,00 ,00 ,0O 'ill ,00 ,00 ,OU '1'1 ,00 ,00 ,00 100 "I II,Ull I u,'.>0 28,'18 I 101 "III,u~1ll,IIJ 26,'11 102 -11,09 \11,51 25,bO 10J .la,80 1 11 ,6l 29,bll loq -IU,7ll 1II,6l 2'1 I b I W l0S -12.78 I u,9 I 27.oil lOb ·111,96 15.05 30,03 107·15,31 IS,III 30,U9 Ivl.l -12,II?1'),1 8 26,0' 109 -1';,17 1'5,2'1 JO,Ub 110 -1'5,5~I OJ,UO 30,Q2 II I -11,1.12 15,'i2 21,lU 112 "I 'i,511 15,5'5 3 I,I u V)II}-15~li!15,50 JO.II1 1111 _15,lIb IS,b2 31,OB lIS -1'i,1I5 15,'5/J 1,02 lib -15,'50 IS,'.>8 J \ ,I u I 117 -,5,bU 15,7b J I,ll 0 116 -15,bll 15,71 31,'15 II?·15,b Q 15,77 3 I.II b 120 "15,76 15,67 J I.b '5 ......121 -15,78 1'5,66 3 I,bb 122 -15,7'1 15,'10 31,b?123 _15,65 15,9'5 31,1.10 1211 -IS,'Ill lb.a b 31,'I?......125 -Is.n Ib.05 JI.96 lill>-15,9)ill.llb 31,96 127 ..lb,11 lb,29 J2.IIO 126 -lb,31 Ib,bO J2,91 rJ -.. .,~••I •.1 »I J 1 J )J 1 _..~"1)J 1 J J J J Table 8-9 -(Cant.) Summary of Miscellaneous Computed Hydrodynamic Data TiHE 0'HINJMU~AND ~A~IMUH HfAD,HnUR I q,b ll Ib,OO Z 10.I II It>.}'1 l 10.1'1 1t..1I 1l II 10.15 It..&l 5 10,75 16.61 6 II.O}17.II 7 11,31 17.l5 6 1\.75 lY.e.?'1 Il,u?111.00 10 11.'ll \7.611 I !Il,}?11.1,00 12 IZ.'1Z 16,69 D 1l,26 16.qq III 1l ,26 16,Qq 15 I J,11 16,'12 II>D.1l1 19,\11 I 7 I },II 7 1'1,1II 16 I J.39 1'1,17 1'1 \}.15 I'I.IJZ Zo IJ.7~IQ.Jb 21 !1,72 I q,)I 22 1'1,17 1'1,15 Zl III • I I 19 ,01 Zll I II.II 1q.6tJ ZS Ill,B 1'1,6'1 2b Ill,:H IQ,,,,q 21 I U ,}I 1'l.8b 7.6 Ill,II 1 ZO,Ol 2'1 ,0O .00 )0 .00 ,00 31 15,Ob 20.l!!H IS,'H 20.h 3l ,00 ,0O 30 .00 ,00 l~15,lll 20,01 lb 15,51 ZO.50 17 16,00 20,nq 30 ,00 .00 )'1 ,00 .00 110 ,00 .'10 III ,0O ,00 112 ,00 ,°°II)IS.lI 20.5.1 1111 15.I>Y ~O.Sb 1I5 !b,013 20.56 lib 16,n 20.bl 117 17,'"20.'12 1I11 16.1111 21 •.l9 11'1 l'l,I <l Z2.7',)so I q,'i)22.7!!51 ,00 ,00 S2 1b.lY 20,Sb 53 \5,"11 20,5b SII Ib,lIi!20,56 55 15,69 20,75 56 I b ,I I il.lll 57 I b,II 7 i!I,'i6 511 Ib."'b 22,06 59 11,1111 22 t H bO 17.61 22,50 til ,0O .00 b2 ,0O ,00 b3 ,00 ,0O bll ,Oli .00 b~.00 .00 6b .00 .00 b7 .00 ,0O btl ,00 ,00 b'l ,0O ,00 70 .00 ,00 71 .00 ,00 7l .00 ,00 11 •00 .00 7u ,DO ,00 7'i ,00 ,00 1b ,00 ,OU 77 ,00 .00 76 .00 .00 79 ,00 .00 60 •no .00 &\.00 ,DO ~i!.00 ,00 II).00 .00 011 .00 .00 65 ,0 a .00 6b .00 ,00 61 .00 ,0O 611 ,00 ,00 69 ,00 .00 90 ,ou .00 91 .00 ,00 '12 .OU .00'l),00 ,DO q~.00 .00 95 .00 .00 QI>.00 ,DO 97 .~O ,00 qli ,00 .00 q'l .00 .OU 100 14,5b ZO',II I °I I 11,51 20,I II 10~2.61 2 0.1'1 10j III.bll 20.1'1 I O~lu .....u 20,19 105 1'i,1I 2 20,1'1 lOb III,to?20,22 107 111 •9 2 :;>n.H 101i 1'i,7~20,)1> 109 Ill,75 20,28 I 10 15,00 20,1'l III 15.12 20.H 112 15,I II i O.ll> III I ~•1\I 20.:\}IIIl III.QZ 20."\1>II ~15,00 20.3'1 11 I>15.0)20.IlZ 1\7 15,Ob 20.11 2 llli 15,011 20,~2 11'1 IS,Oll 20,IlZ 120 IS,I I 20.1I i! 121 IS,II 20.11 2 122 15.\I lO.lIl IlJ 15.II 20.11 2 1211 I')• I II lO.1l1l 12 5 15.III 20,1111 Ilb 15.I II 20./JQ 127 15.19 20.""1211 15.i!~ZO,50 TOlAl EVAPOPATla~RAlE,a9 .1 uno,os A\'E.QACE SUkfACE AP[A,9Q fT .IIJHI2 AVERAGE VOLUl-tr,CU FT ,11?lItl li AV[RAG['DEPTH,fT ,991 11 '02 r' \ \;J VI •--W ."0 0 0 0 0 0 0 0 0 0 0 0 0 0.........,•.,•......,...--'....., "'".,... 0 z ...-<C...Il<Z- _I., UJ f- <tz: Q c:: 0 0 U I X C/) :::l ~ C/) a:: UJ :> UJ ~ <!'z: <t 0::: ....J <t Q-J-~ o ooo 00 o ooco oo oo 0 00 c oocoo <>o ooc 00 ooo o <>oo o o oo...o coco 00-00 00000 o oo o o oo o c o c o <:> 00co o oc oo oco ooo o o ~oo C cco<>0oo o o '0'0,0,, a•• •0.... &0 •01>,...••ta•10 .0·....o ... I o, o Io 0.... ,0 ,~,co•oa••a 0.... '0,~,co••••t 10....'"J 0.... '0 ... •co <C.f :z·... • 0 t r::r f 0 00 0 uo0::. ,:>c t•••10..... f 0 IN I~ 1•I 1•.0.... •0.•co •.b••,•1.0..... f 0 .~ '.0 1••1•10 ~~~~~~~~-~1~~~_~_~~_'~~_~__~~_'~_~~_~'_~~~_~·· o co 0.0o. - 0-·10 I CO •0I••••10-.I 0 I 41 I ... I••UJIl-I•0 <:-. •0 Z I '"......I ~•ClIc:::•I 0I0I<:>-·U•0 Ir<0 I C ><I I I ent:::J•1<>en-· •0 c:::I ..UJ •0•>-I•I c::I UJt0 '"l-10:>...<:10 0- I""c :3=. I 7-r I 0 ::::c,:r <!lI0 I 0 0u ::I:C> 41..-U-X 0 0 UJ 0 :£: l'\I .......-f- o r c> . I C>r 41•r I I I.0 ..- co o o o oo o o .' o o oo <:>o o o oo o oo 0 000 0o o o oo o 00 o o o C> o o C> o o 00 o oo o o oo o o oo o o o o <:>o oo oo o o o oo <>o <> <>o C>o o 000 00 00 o ~~• o •." CO I"o .41oI C>I o • C>I I·'"~~-~~~--~~I----~-~-~'-~-~---~~I~--~--~--.~-~--~~~--~<::>o ."CO o '"41 o '" oo o C>0 0 0 <:>0 0 0 0 C 0 0.. ~...C C> '"........-..a: ~z :::>--0...:z:: - -----~-----,--..,.-"""_._-------------------------------------------------- 1&.000 • 1 II I I I 1 II II 2 I I I I Z 1 II 2 I 122 I I l I 122 1 I 12 2 I 2 2 I 12 2 I 12 2 1 I 2 2 I i!2 I 2 2 I 2 2 1 I 21 2 I 21 2 I 21 2 I 21 122 I 2 I 2 I 2 I 2 I i!1 2l I 21r22I2I22I2IZ2I2I2I2I 1 22 I il I az I l I 22 I 2 I Z2 I 2 I 8.000 •221 2 I 22 I 2 I 22 2 I 2UI 2 I 00 2Z2 I 0022 Z I 00 222 I 0022 i!Io0 I I o 0122 I 0 01 I 0 012 I nAG!I 0 01 I 0 I I 0 01 I 0 01 I 1 0 I I 0 I I 0 I I 0 I IIN1 0 10 I 0 10 I 0 I I 0 10 I 10 10 I 0 10 I 0 10 I 0 10 IPEnr10I0101010I010I 1 I 0 I 0 10 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I .000 •I 0 I 0 I 0 I 0 I 0 I 0 I 0 IrI0 I 0 I 0 10 I 0 I 0 I 0 10rI0I 0 I 0 10 I 0 \0 I 0 I 1 I 0 10 I 0 I I 0 10 I 0 I 1 I 0 I I 0 01 I 0 I I 0 I 1 I 0 I I 0 01 I 0 I I 0 01 1 I 0 I I 0 o I I 0 I I 0 0 I I I 0 01 I 0 o I I 0 I I o 0 1 I 0 01 I 0 I 1 0 o I I 0 1 I 0 o I I i I 0 o I I -&.000 • I o 0 I I I I o 0 I I I I 000 I I I I 00 I I II I I I I I I I 1 1 I I I I I I I 1 I I I I I I I IrIIIIIIII I I I I I I I I II I I 1 II II 1 ,I I ~16.000 J·~··.·.··J·...··..11·.~····--I·~··._·_·I.··.~~.--'·.·.-~.··I-·..-.•.·I ••••--··.I ••-¥••••-r ••••-•••-I .0 &.0 \b.O 211,0 32.0 110,0 1111.0 5b,O bll.O 72,0 110,0 UHf IN HOURS PLOT LECEND JUNCTION I a 0 JUNCTION 117 •I JUNCTION 11'1 •2 ~, \.oJ VI \ ;::: ~ I I J ) u.ooo FIGURE B-3 t STAGE VERSUS TIME AT SELECTED NODES J I ]~],~)I )J 1 }]1 -J '9)J -1 1 1 J 12.000 I I I I I I I I I t ~.OOO ~ 2 2 2 222 2 22 22 2 2 22 Z Z i!2 2 2 2 2 2.2. 4.000 -2 2 2 2 0 Z i!2 2 0 2 2 0 i!2 00 i!20 2 200 2 200 2 2 0 Z 2000 2 2 0VELDtITY12202202200220 1 2 2 /l 2 2 0 2 2 II 2.02 0INr22020202oc!0 i!02 0 2 02 0 I 2 02 011 2 02 0 I 2 02 011 'TlSEe I 2 o 2 1)11 Z o 2 I I i!02 011 2 02 0 I I I 2 o 210 1 2 o 2 1 1 2 02 10 i 2 o 21 1 I 2 o 21 0 I 2 o 210 I 2 0 2 0 1 2 0 20 .000 -11li!0 2 0 11121 0 20 112 0 2 0 lUi!0 2 0 I 21 o 12 0 21 o 120 21 0 2 0 2 I 0 2 0 1 2 I o I Z 0 i!I o Ii!0 21 o 12 0 2 I o 12 0 I C!I 0 12 0 2.I 01 2 0 2 I 0 I Z 0 2 I o 12 0 I 2.1001 2 0 2 100 I 2 0 2 1001 Z 0 i!100 I 20 1002001 I 2 00002001 I 2 0000200 I I 2 0000200 I 1 2 00r21122III2o2II2i1II2 0 12 2 2 I i!i!2 2 2 I 2.2 2.2 2 2 2 I 2 2 2 l 2 ?2 i! -4,000 ..22 22 U H 81/,0H.Obll,O5b.0111:1.0110.032.0211,0I b .O . CHANNEL VELOCITY VERSUS TIME IN SELECTED CHANNEL TJ "IE I N HOURS PLuT LEGEND C~AN~f.L 7Z.0 CHAN~EL 127 • I CHANNEL lUO •2 8.0 IN··-··~~~I~_·_··_~·l._.•~_.__I·_.·_·I_···.I_~_-•.••~I ••••••_••I-••--._••I--•••••••r••••-~•••I .0 FIGURE B-4 -11,000~, \,J VI I--.. "'" APPENDIX C - - I~ Table C-l Tidally Averaged QuaJity Model Input Card Specifications ""'"UFPE~I~L!Tri1aCOOII;1<"111\.,4.RH ,4.~O TURN,4.G.:.IN AQM 1b SAI1PL:'Fl;<1'3LEM 2 1 1 JS 211 0 0 3 12 3 1 t 4 ..0 0 0 l)0 0 0 0 0 1 5 NH3-"I,"'G/L PRI~"'lO:S-'i,"'GIL PQIH 7a 1 0 0 0 13S 7b {5 1 10 11 12 14 17 20 21 20 101 107 115 117 121 127 44 '1&liB uq SO 8 {1 1 30 10 1 10 10 JOoo 9 {17 100 S_ 10 1 1 11 AVERAGE RUNOFF CUNDITIONS -STEAOY STATE r:.12 0 0 0 0 1 1 0 0 0 0iI""'" \.13a 1 ,1 13b 1••;'1 10 ~.25 ,01 0 0 0 -I 10 ,25 ,01 0 0 0 -I 10 II II n .25 ,01 0 0 0 -I 1 tI liB leO .25 .01 0 0 0 -I 10 1,~5010880 ,25 ,01 0 0 0 -I 10 bO 1(100 .2'5 ,01 0 0 0 -I 10 108 bon .25 .01 0 0 0 -I 10 1211 I 1O .25 ,01 0 0 0 -I 10 117 ,5S JO 335000 120 QO 2 1';)20 ,5 liS IS.5 2'5 510000 30 75 b 15 17 ,5.... 1h 1 0 0 1 ,0 a 1,oa 17b 1 1 :So ,2 t 1 1 0 17c 0 (')0 0 0 0 10 , 1 .-n lBa 1 135 -I 0 0 0 lBb 1 po bl 150 2 lBc {1 ,75 e z 3 1000 25 ,75 a 2 3 1000 --------,_.__.....---------~---------.~-------- APPENDIX D - - ""'"I Tab1 e 0-1 computation and Output Control Options SI~ULATION BEGINS ON DAY TII'1E STEPS OF PRINTOUT EI/E~Y HYORAULIC INTERFACE UNIT 135 2Q HC1U~(5) TIMF'STEPCS) 12 ..... OUALITY INTERF'ACr UNIT NUMHER OF ADUNDA~Y CONDITIONS Tl~E STE9S FOR CQNDITIQN o STEADY STATE THE FOLLDNTNG CUNSTITUENTS ARE 8EIN~~QDELEO - -TOTAL N TOT A\.P TOTAL cnUF CAR;:I.rJN ~OD NIT~U tlClD OXYGt:J..J TEHP~RATUR€, QPP CONST 1 opp CONST 2 Nf'3-N,MGI\.PRIlo! NOJ-N,~G/L PRIM -------,------------------ Z-35-J?.( ('J, W v\ I- Table 0-2 Initial Conditions and Dispersion Parameters UPPER COOK INLET,KNIK AR~AND TURNAGAIN ARM SAMP~E PHnUL£M I INITIAL QUALITY CONDITIONS "UN 10 JUN TOT N TOT P T CUL F COL C 60/'1 "N aDD o 0 TE~P caNsT 1 CONST l CUN~T 1 CaN'T I1G/L MGil NO/11l0ML NlJ/100HL.HG/l HGIL I1G/L c UNITS UNITS Ut-lITS UNl T. 130 ,00 ,DO ,DO ,'00 ;00 ,00 ,00 10,0 ,00 .00 ,~o .0(, DIsPERSION COEFFICIENTS CHAN TO CHI,N Cl C4 1 1&10"3000. 17 1&0 5.1500, I J ~J J t.",1 ,J , 1 1 J J --I I ~J 1 J J Table 0-3 Summary of Boundary Conditions and System Coefficients UPPER COOK INLET,KNIK ARI1 AND TURNAGAIN ARM AVERAGE RUNOFF CONDITIUNS •STEAOY STATE fil!!if.f CONDITIONS DUPING HYDRULOGIC CYCLE JUIt EXCH £88 FLOOD .TnT N Tur P T COL F cOL C BoO N BUD OllY TEMP tUN 1 CU"Z eON ,CON • RATIO tltFS MtFS "MG/L I1G/1,.N/I DOl'll N/lOOl1l 11(:/l I1G/1.MGIL C UNITS UNITS UNiTS UNITS ,10 31.0i!1I 30.96}•.1AW .00 .00 .00 .00 .00 .00 9.3 10.0 .00 .110 .00 .00 INFLO"CONDITIONS DURING ~YDRAULlc tYClE IJUNINflOwTOSTOTtJTnTP T COL f COL C ROO N 80l)Oxy TEMP CONST I CONsT i!CUNST 3 CONS T II CfS tlG/l I'G/l ~G/L NO/IOOML NO/IDOl'll Hr,/L MG/L I1G/L C UNITS UNITS urHIS UN!T3 ~u/JOO.OO o.:25 ,01 ,00 ,DO ~OO .00 II •]!°.0 .UO .00 .00 .00BooO,OO GJ :2<;,01 ,00 .00 ,00 .00 II.J 10.0 .00 ,DO ,DO .011u5u70,OO 0,.2'5 .01 ,00 .00 ,00 ,ou II •J 10.0 .00 .00 .00 .00ij(j 12u.oo 0,.25 ·°I ,00 .00 ,00 .00 II,J 10,0 ,DO ,DO ,DO .005010BulI,Oo °,,25 ·°I .00 ,00 ,DO ,DO II •3 10,°,aD .OU ,00 ,DO 1.0 10%,00 0,,2'5 ,01 ,DO .00 ,DO .00 II •J 10.0 .00 .00 .00 .06 106 bOO.OO O..25 ·°I ,00 .00 .00 ,DO II ,.]10,11 .00 ,DO .00 .0012ijII(),00 0,:25 ,III .00 ,00 ~oo .00 II ,]10,0 ,00 ,00 •0O .00II7IS<;"OO 0,lo.Oo 3,00 ,15'05 .UO 120,00 90,00 2.0 15,0 20,00 ,SO .00 ,00u515,50 0,25,00 "i,OO ,111'05 ,00 30.00 75.00 b.O 15.0 11.II 0 ,51>,DO .00 AGGREGATED QUALITY II ijbOO,OO o.;25 ,01 ,Oil .00 ~OO ,DO 11 ,J 10.0 ,011 ,00 ,00 .00 27 HOOl1,oO 0;,2'\.01 .00 ,00 ,00 ,00 II •J 10,0 .00 ,DO ,00 ,DO 05 ij70,OO O.1.07 •11 ,Hi 0 l .00 ,911 2,1/1 II ,5 10.5 .~b .fJl .00 ,DO "6 IZU.OO O.,'25 ,(II .00 ,DO ,00 ,ou 11 •]10,II ,00 .00 ,00 ,DO 50 IO{l80,OO °,,25 ,01 ,00 ,UO ~O .00 II •]10.0 .ou ,00 .00 .00 I bO 1000,00 0,.25 .01 ,DO .00 '00 .00 \1,3 10,0 ,UO .00 ,00 .O~ I 106 bOO,OO 0,.25 •(II ,DO .(1)'00 .ou II •]10,0 .00 ,00 .00 .00 111 7~,OO o.112.00 b,ZO ,711'05 .uo l1l8~00 1811,00 ij • I ]1.0 ai,H I,OJ .00 ,00 12"110,00 0,,25 ,01 .00 .00 .00 .ou 11.1 lu.o ,00 .00 .00 ,o~ I SYSrEM CPlFflClfNTS JUN TO JUN BOO DECAY COU"OltAy 8lNTHIC SINK HATES ALGAL UXYr.EN Rf...lRATION opp CO~ST OECAY opp CUN3T aETtLIN, CARa NlTq TOTAL HCAl N P 0 PHOTO /lOP MIN HAl(I 2 1 a I I-]a I/OAY .,OAY Hf /MVOAY 11r./tlUDAY I/OAY I/OAY H/OlY (0 .\30 :ZO •10 1,'00 ,Oil O.0,O.o•o..0 10,0 .10 ,00 .00 .00 .00 .00 .00 ,00,STOICHIOMETRIC EQUIVAlE~tE RlTW[EN oPTIONAL CONSTITUlNTS W CO~'T NO I DECAY 10 cnN3T NO ~.I •II 0 \.J\CJ~S1 ~a 2 ry[CAY 10 cn~~1 NO 1.,1)0,0 1151 '.u )nlOY 1U (O"sr Nil II,•r.u "'N IUTC (UUFICH ..,H"P I'llA Illo/f AoJU!lT"I"'T (fl/l!lTMH 'UII W liD:"I •r,1I 0 III ~ t= C1)..- u..- ~ 4- Q;l 0u E C1) ~ III >...-Vl ~-0 t=t= 0 Itl U.......III t= 0..- r")~ I .... (:)-0 t= Q.l 0....U ~ Itl >... l-s.. Itl "'0 t= :::::I 0 CO 4- 0 >...s.. Itl E E :::::I V') ~~~~~~~OD~~~O~O~OOO~~~~~~ G~~~~O~O~~~~OOOOOOO~~~~~~ OOOOOO~O-~~~O~OOOOOJ~_O_O N-~~~O~~D~ft~OOO~O~O~_~~~~ a~~~_o~O~~~~OOOOOOO~~~~~~ OOOOOO~O-~~~OOOOOQOO~-O-O·...... .......-.-.-...... 3C-O~O~~~OO~O~~OOO~_~_'~~ _NNN~O~OCO~~OCOO~OC~~~~~~ OOO~JOOO-~_~~O?~O~OO~~~~O·...... .................. A~~O~O~~~O~O~O~O~~~~~O~~~ --~N~~~~~~~~~~~~a~OO--~N------ 4~~O-~OO:~~~OO~~O~OO~~~~~ ~C~-~Ooo~~C~OOOOOC~OO~~~~ ~-C-O~~~-~~~OO~~~~~~-~--O ~~~~-OO~~~ObO~~OOOO~~~~~~ ~O~-~OOC~~C~~ooo~OOOO~~~~ o-O-O~OO-~~~O~~~~~~~_O__Q· ..... ... ....... ..--..... N~~~-OOO~~~~?OO~O~O~~~~~­ _~N~~OOC~~_~OOOOOOQO~4N~~ oooooOOC-~-N~O~Oo~~O~O_oO·.. ................... ... ~~~~~~~~~~~~~~~~~~~~~~~~~ --NN~~~~~~~~~~~~~~OO--N----- ~~~~~=~~O~4~O=O~O~~~~~~~~~~ ~~~~~~¢OO~~D~COOOOOOC=~-~~O oo=~~~~~~-~-~OOOO~OO~O~-~-­................................... ·~~~~=~~=~~~~oo=e~o~~~~=~~~ ~~~~~~~·OC~~~~ocOeOOoQ~N-¢~O ~~o~oooo~_~_~~ooooo~~~~-o_­ ,0 •••••••••••••••'••••••••••• ~ ;Z O~~~~~OO-~O~ooo~OOOO~~~__~ >'-~Nn~VCC~~~~ocecoccc~~C~~~ ~OCOO~OOO-~_NCOQOOOOCO~_~OO·......................... Q... ~~=~=~~~C~~~~~,~~=~~~~~=~~~= ~--NN~~~~~~~~~~C~~~OC--NN.. "'"......o U~~~~D~-=o4~=~oc=o~~o~~~~~~ ~~~~C~Nl~CN~~OOOCOOOQ~~~_O~ OOOOOO--~~~~~OOOCOOOO~-~--O '2 •••••••••••••••••••••••••• C ~N~N~~~-O~~~=OC~OOO~ON~~~~~ :=~~~a~N~C~~~COOCOOO~~~__C~ ~OO~O~--~O~~~=O~O~O~O~-N--Q-". U-~O~N~~N~ZO~~~OOO~OO~O~~~~~O ~-N~~~~~~C~~:COOOO~QO~~~~~~ ~~=~OO~~~O~_~O~O~OOQO~-~OO~ C",."..,.."."..",.,.,.-,",".,",.,..',",••,,,,\IU• Z~~N~~~~~N~N~N~N~~~N~N~N~N~o --NN~~~~~~~~~~~~~~OO __N~ ~------~ C II: W C W~~~_=~~~ONO~OOOOOOOON~~~O~ tt~~~O~~O~G~O~OCOOOOOQ~~N-~- OOO-~O--O~ONOOO~OOOOOO~-O­o •••••••••'•••••••••••••••••... C>U #J~~~_Oe~~ONO~oCOOOOOO~~~~o~o e~~~o~~o~OOC~OCC~COCO~~~_~_ •zooo_oo_-O~o~ooo~OOOOO~~_o_-_~.,.. - - ~ ll<... X-o o Z~~~_~~OOO~OOOOOOOOO~~~~~~~ _-~N~N~~_~~O~OOCCOOOC~~O~~~ ~OOO~OOO_ONO_OOOOOOOOOO~~OO·.........-.... ........... Q % ~-~-~-~-~-~-4-~-~-~-4-~-~-4 --~N~~~~~~~4~~e~~~oo--~~..... 1 )j I B J 1 cc41 1 1 j 1 1 1 J I l Table 0-4 Meteorological Conditions UPPER COOK JNL~T.KNIK A~M AND TURNAGAIN ARH AVERACt RUNOFF CO~OrTIONS •STEADY STATE TA9LE OF ~£T£OROlOGJC DATA FOR ~EATHER ZONE I,JUNCTION I TO 130 LATITUDE.•"1 10 LUNGITUDE •1)0 1 0 "QltR HIND CLOUD DRY BULIl _..fl".ATMOSPHEHIC SHORT wAVE LONG wAH VAPOR spEED CnVfH tt:"'PfH ATURE TEMPEUTUAt.PRE93UHE SOLAR SOlAH PR~S::lUH£ (M/SEC)f '"CTIUN (C)(t)(Mil)(KCAL/MZ!SI:C)(ICCAL/M2ISlC)(Hill I 1,5 :75 7,0 1 ,0 100O,,0000 ,Obll?7 12J,'i :75 7,0 I ,0 100 Q,,DODO ,Obll'il 7, l 1,5 ~7S 7,0 1,0 1000.,0000 .Obll'l 7. II J,S \75 7.0 I.°1001),,0000 ,Obll~,, S 3,'5 75 7,0 1.0 I q 0 °•,00 0 7 .Ooll?7 1 0 3,5 >S 7,0 I ,0 I q °0,,DIDO ,01>11'1 7, 1 J.5 \75 7,0 1.0 1000,,Oe!hJ 10bQ'il TI 6 3,5 \75 7,1)1,0 1000 1 ,0'1 'i~,Ob llll 7. 'il 3.5 ,75 7,0 I ,Il 1000,,Otlll~,ObU'il 7 1 10 3.5 ,75 7,0 1.0 1000,.01llO ,Ot>U'il 7 , 11 3,5 :75 7,0 I ,0 1000.,O'I~b ,O"U'il 7, 12 3.5 ~7'5 7,0 I ,0 1Il00,,10u'J 10bll~7, I)3.5 ,7S 7,°1.0 1000,.107e!.(II.U'il 1. 14 3.'5 \75 7,0 I .0 1000,,IOU j 10bU'I 1, IS 3,5 ,75 7,0 I .0 1000.,l)'1'ib ,ObU'il 7. I b 3,5 ,75 7,0 I .0 1Il0l),,O~lO ,Ob U9 1, 17 3.5 ,,10;7.0 I ,0 10UO.,Oblll:l ,Obll'!1 1 16 3.'i ,75 7.0 I .u I Ou'O I ,OIl~5 ,/lbU'l ,, 19 J.S ,'5 7.0 I , 0 1 0 00,.Oe!bJ ,OoU'I 7, 20 3,5','0;7,0 1.0 100(1,.0100 ,O"u'/7. 21 3,5 .1';7,0 I .0 11)00.,oa07 ,UhU'il 7. i'Z 3.5 :'')7,0 I ,°100O,,OOIlO ,ObU'I 7 1 ('J i.'.l 1.5 ~75 7,0 I ,°10UO,,ooou ,l)bQ'/1. ill J,'i ~75 7,0 I ,0 100O,.ouoo l(lbllQ 7,, -,.,.,.DE"POINT\N V't, -.. N lr\ Table D-5 Dispersion Coefficients and Steady-State Salinity IHRATH1N5) I "II Ib 21 ib 11 lb ~I ~t> !II H bl 6t> 71 h III lib 'I I 'Ill I °IlOt> III II b III Ilt> IJI Ilb I ~I I~" 151 156 CHAlIN[L 111110, 'o~, S7H, 110 °2, 2 I 5, 50'1, Su~, IIb2, 2ftb, 0, 2u', lll, 0, 116~, !lZb, 022, lU, 110], 0, ~, HH, 21 t>', 1211, I ~"J1l'I, hl, lll', "i.II, llll, 'IA~, II '1~, ll12, OI5P[R910~ IIIj1U, !l5'1. '.>7107. II °Ill, 11'1. 51~. 5'.>0, 6bl, Hb, II. 2~I\, 225. 0, 1201,. 56~, "i'''. 12". ~H. O. O. ]S]", lln b , 3211, 1'18, J 1U I. 7b1, 2"IIl, 51 Q • 11'.>i'. 100'.>, 122S. 20''1'', COH F 1tIEN15, l 8'11", 1 5'100, U b'l'>o;, 11 l?,n, 2l 2f',-lb, 21 18112, l<!!'IU, J1 12 0 '1, "2 HII5, II 1 21l51, 52 0, 57 0, 102 0, b1 11'12, 1l 11 b, 17 10bl, 82 l'l2l, 111 0, 92 0, '11 0, 102 BOb, 101 2".1", III.21\7/1. 111 lon, 122 1110, I·V ?02, III 2]tll, 137 12S, 1'12 11'12. 1"1 "1150, 152 t 'II, IH ll'.11, 81l FTlSEt S'Ij'l, '.>'111 \, bQh"i, lU'I, 2/1]0, 1!lIII, I I;\JZ , 2Z'.>5, 2112, 211,>1, 0, 0, 0, 12 u O, HI>, lOb", 1'126, 0, 0, 0, ].1011 , C!"~2, 21118 , 10l", 1112, lOU, 2 0 0'1, 11.6, \2l0, 21115, 1"'2, H01, (LA"1 101 0 1 8 I) III 2] 16 II JII oj lib 5J 511 "J bll 1] 18 II] 611 '1j 'III 101 106 III 116 In 1C8_ IH 11b Ill] lUll 15) I 3JA, 772 I, 73711, !>"4b, ,>'1211, a7b7, lllln, j'lllll, 0, lU2'1, Ibll>, 0,°,811, Ill, Il~II, I b'l1, 0, 0, 0, I A71 , I'll, ISb", 117, bll 1, 2'1Z, i!bll, I O~J, b t,• HilI, 152, 1)11 0, 7121, I1tlll, 5 0 '.>5, '.>'lH, U71b, II 6 J'l , ]'l 'I 'I , 0, )4.1 0 , Ib)8, 0, 0, 11'.>1, '10, 1)0'1, 1701,°,0, 0, 11171, 20 I, ISb5, 17", "~b, J(15, 2tol>I, 10711, 11 , )110'1, 15b, ] II 'I I q 1'1 24 2'1 1" l'I 00 4'1 !j" 51/ b" 1>'1 1"1'1 8" /1'1 'I" ""10~ 10'1 110 11'1 17" 12'1 1111 IH loll 10'1 ISIl 7015, 1ft JO, Q ..~. b'.>1b, "U2'1, "j'lO, l12b, '1'/1 , 7.17, 0, 111'.>7, 0, 0, Illl • 0, ~b7, 145i!, 1l.11>, 0, 0, 111111, 241, Jill, 1>54, S 11, 21 JI , II H, JO JO, In, HOl, )U o!7, 70111, I R.I'I, QS I, 1.51:'>, ~o jb, 4H5, 27.111, lon, lu~, 0, IA'.>l, 0, 0, 1112, 0, "b6. 1 4 b7, u.lb,°,0, "I>A, 254, )(lb, "1>0, SIlQ, 21'.>11, 1151, JO')5, i'.I6, 3.1 I.I , 10~'1, '.I 10 IS 20 25 10 l~ 40as 50 55 bO "5 10 75 60 6'> '10 '15 00 05 I U ,'.> 20 7.S 10 )5 "0 45 SO 55 1l58'1, "7~2, S'.>o~. 702, I °~, 121, 8'14, I'.>0, 0, 0, i'J I, 0, 2"15, ~12, lI'I,. 20'1 I, 1121, 0, C, 21111, JOO, .1IS, H'>b, 211", I II 4, ""'1, '112, lA08, 7 V I, 1762, 1I0.!5, 85'15, "7"2, '.>0110, 10], 10'1, IH, bilL, 1'.>'1, 0, 0, 2H, 0, 24"'1, 8.1'1, tl",lOQ l, 114", ~, 0, 26.12, ] I j, ]J'5, )'102, 2111, 1110, "'15, '155, 2Ub, 1 b I, 161 J, 1I0Sl, ('J \ \.....I V, I-N '" 'llf9~!'ir"';;'iiirGfjrtg 10,I" "l'l,J~1 211,bl II 26,17 12 2h,Ib Ib 2",9'11 2 11 ,06 21 21,,0;n 21,<;H~~~~:~:~·12 lb 1'l,BU 11 1'I,O;d UI ,0 I Ill,°I "b 7,11>Ul J,?O 51 ,01 52 IY,ll !>6 1',111 51 le,lb bl ,00 hi!,OU bit ,0 I I>1 ,0 I 11 .00 H ,no 7b ,01 71 ,01 III .01 82 ,01 bll ,01 81 ,00 'H ,00 '1l ,00 '6 .00 ''11 ,00 101 20,1"10l 1'I,1i! leb 1','11,101 IQ,05 III 1'I,5~112 I~,ab II"18,1'1 111 III,IU III 17.1,~In 17.'0 Ilb Ib.10 III I~.O~ m 1 ~ 11 III 21 2/1 H 31\ Ul ~II 51 511 bl b8 13 lA III 111\ 'IJ 'III 10 } 101\ III 111\ In !lll 2'1,89 l!6,'41 l~,jS 2",0<' 2 I,to2 20,110 ,0 I ,0 I 1),'1'1 ,15 1"',7J 11,211 ,\10 ,0 I ,00 ,~I ,III ,00 ,00 ,00 20,I" 18,b1 1'I,bl 11,'1'3 l7,n I ~.~.o. U 'I III 1'1 24 2'1 :l~ l'l UII 49 50 5'1 bV f,Q 7" 7'1 84 1\'1 'l" '1'1 10" 10'1 II q 11'1 I~" 2~,7q 21,06 7.S,Ii! l2,711 21 ,O~ ,0 I ,0 I ,0 I 11,4 } .''1 1'1,14 15,S5 ,00 .01 ,O~ ,0 I ,0 I ,0 I ,00 ,00 1'1,"4 I ~,11 1'1,01> 11,61 Ib.711 '.> 10 15 20 ,.~ .10 35 QO 115 '.>0 55,,0 I.'.> 70 1~ 110 liS I/O 'IS 100 105 110 11'5 1i!0 1~5 2Y,2J n,lI 2'.>,02 2.1,''1 21,v} ,v I IY,6b ,v I 10,41 ,110 1'1,b I Io!,oi! ,v I ,C I ,0 I ,v I ,II I ,00 ,00 20,lO III,I " IlI,II 4 I II.'10 11,l>Q I",e I J 1 J , eft OQO'O~ocoooo¢~o~oo~~o~ooo~~o~~ooooooo~o~ooooooo~~o ~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOO~ooo~OOOooo _",..••••••••••••ID ••••••••••••••••••••••••••••••..zz:)o... ~ft ooooooooooooooooooooooOOOOQoOOOOOOOOoDOO~ooooooooo OQ~~~O~~~oo~ooooo~~~oa~o~oo~~~o~~ooo~~o~oo~o~ooooo • • ••• • • • • •..0 ••e _d _ •n • • • • • • • • • • • • • • • • • ••••• • • • • •..• • "'zZ;;) ;;)... ..... ...... - ..... - l.O: I '0 :a:.... z_w....."'.....-z .. '":>~ ...""..ow:::....... :a:I......:z ",0 z ... "'-<:> .2 ...0"'....J,....-...o TZ 0::>o eo:...... a:u.,.. ..0:.....:».. "'..-...-"'z.z:;:I.e... -.. ""zZ:lo U ....J..... "'''':ce ~.J,.... f.: ~.; .~:a: a~jI:r u<' <'...-....oz ~~ex. u<' <>...-.... .:lz..-'......~oae... z-'.... "'<,S O~- Z J... O~~OOO ~~~~~~~~~~~~~~~~~~~~~~~_?~O~~~3~'~~~ ooooooooooooooooooooooooooooaco~OOOOOCOOOOOOOO~OO~ • •..• • • • • • • • • •a • •••• • • • • • • • • • • •~• • • • • • • • • • • • • • • •~• • ooooooooooooooooooo.oooooooooo-o ~ooo-~ooooooo OOC~~OOOQ~O~O~Oo~~~oo~~~oo~o~~o~oo~o~o~~oo~oooo~~o • • • • • • • •_• •e •••.•• • • • • • • • • • • • • • • • • • • • • • • • ••••• • • • • • oo ~_-_-_-_---------_o--_--- ••_ ••• • • • • •Q • ••••e _ • • • • • • • • • ••• • • • • • • • • • • • • ••• • ••• oOQOOO~O~OOOOOOOOOOOOOO~QOOOOCOOOOOQQO~~OQOOO~~~oo-------------------------------------------------- ~~~~~~~~~~~~44~~~~C~~~C~~~N~~eeoe~~~~ONN~OOQO¢--~~·.................. . . . . . . . .~.... . . . .. ....... .. ... . ~~~~~~~~~~~~~~~~~~~~~~~~~vo~~cooooooc----coooooooo--------------------- ~~~~~~~~~~~~4D~~~~~~~~~~~~N~~~~~O~~~OO~~~OO~O~--~~ •~• • • ••• • • ••• • •c ••_ • • ••• • • • • • • • • • • • • • • • • • • • • • • • ••• ~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~OOQ~--__OO~OOQO~~ OOOOOOOOOOOO~OQOOOOOOOO--_~-~~~~~~~~~_OOO~~N-__OOO o~oo~~~ooo~~oo~~ooooo~~~o=~o=~QOOOOOQ~~OOO~~~Oo~o~ • •e • • • • • • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • •.•• • • • • _ • • _ ~OQOOO~OOO~OO~OOOOOOO~OOO_~__~~~ft~~~N_O~Q~-~__O~OQ QOOOOOOoooo~ooooocoooe~ooooooooeoo~oeQCOOOO~oooooo • • • • • • • • • _ • • • • • • • • • • • • • • • • • _ • • • •e _ • • • • • • • • ••• • • • •• OOOOOOOOOOOO~OOO~OOO~OOOOOo~oe~~OOOOOOOOO~~~~OOOQ~ OQOOOOQOooooooeoooooooeoooooooeoQOOOOO~OQOOCOOOooo·...... ...... . . . . ..... .....-...-.. . ....-...-.. . . .. O~~~~C~4~4~~~~~~~~N~N~N--_O_O_OO--O-O-N~~OOO--~~~~ _eooocoooocooeoooocooccooOooe~e~oco~coccoooooeoeoo .,.'•••••·1 7 '.1 ,'1 ••• c--~~c~~~~-~~~~~~¢~~-~~~-~-_~_~~~~O~_~~~O=-c~~~~O~ ~__D~~4--~~-~Q~~~~-_-~~--~~~_--fl~-~~~~N~~~--~-~~-­.,,,,,~.,,,.,,,,,,~,,,-,-~~,,~,~~-,,-,-,~~,,,,,,,,. ocooooocoooocoeo N _ OOOOOOOOOCoo~OOOOOOOOOOOoo~~o~oo~ooeocoo~ooooooooo •~~,r ,•,,~,,•,,,~~,,••~r ,,~••~_,,~~,,,~~•~~,,~,,~•• __~~~N~~~~~~~e~e~~_OONNN~~~~~~4~~~~~~~~~~4~~~~~Q~O OOO~OCOOOOOOOOOOOO---------------NN~~N~~N--~•• ••••• • • • • • •••••_ • • • • • • _ •e _ • _ • _ • • ••• _ _ • • ••••• ••• • ·........-..,"". ...".."~.D~~~~~~~~~_~4-?~~_O~~~_~~~~~~~~~~_~~~N_~~_~~~~~~~ ~~C~~c~c._~r~~~~<~~O~<~~~~·~~~~-~-_~~__c -~~O~~~~~ ~-~-~~~~O~~_-_~~~O_~~~~cO~...-~~~~fl~~~~~Q-~~_4_~~~O OO~~~~«,~~_~~~~~~~~~~~~~~~~~~~-O_~~~~O~~~~~ ~_~~~~NNNNNNN~__N~NNNN~~_N t----------------- _~~~~4~O~O-~~~~~_e~o-N~~~~~-~~~~~~~~~~~ON~~~~~~~O_.I"oIII"'I"\,I~NI"\,IN,·"'................"'""',....~f::ta.,.~~~~.,...r"r'\W""V"\.......w'\...~ z..-iS-rZ7- r-J \w lr, ( Table 0-6 -(Cant.) Standard Printout Format for Computed Water Qual ity UPPtQ too~I~L!T,KNrK -~~~ND TURN~G~JN ARM TETRA nCH,IhC. AV!RAG[RUNOFF CONDrTIONS •STl~nv STAlE LAFAnTTf,CALI'. nU~LITv l!£SVLT!I,DAY Ilb JUN TOil TO T Ii TOT P T CllL F COL C 6011 N 800 OXY o :lAT Tt~p CUNH 1 CON:ll l tU"IlT )tONH II "GIL "~/L "roiL NO/lnO~L NO/I~OML ~G/L MG/l'HG/L HelL C IJN II :I UNJ"v"Il!V'iJT. 100 lO)O},, I a :01 ~Utno ,00 ,0 I .01 '1.9 '1,'1 0.1 ,~O ,OJ ,00 .00 101 ~O}H •,I a ,01 ,lltOIl ,00 ,01 ,II 1 '1,'1 'l,'1 0,1 .00 .0 J ,00 ,00 1~2 10 111,, 1'.I ,II I ,II .011 .00 ,OJ .11)10,u 10,0 0,I ,II 1 ,0),00 ,00 10J i!OISU,• I ~.01 ~~~:~~,00 ,02 ,02 9,9 '1,'l 0,1 ,00 .0 J ,~0 ,00 IOU I Q9)1,.15 ,0 I .00 .02 .02 '1,'1 'l,'I 0,I .01 .0 J .00 .00 le5 10 1l5.•11 ,0 I ,111'01 ,Oil .os ·°u I II,v 10,°V,I ,V I .0".00 .00 lOb 10Q~1',• I ')• Q I ,I I.II I ,00 .02 .V'?'1,'1 'l,CI Q,J ,0 I ,0 J ,00 .00 11)7 10 0')1.• I ,·°I ,~~:~:,00 .Oll .1/5 10,°10,0 0,1 .01 ,ou .60 ,00 106 lP.bli!..1&~Ol ,00 .Oll .Ob 10.1/I ~,O 0,1 ,II I .ou ,00 ,00 10'1 I 'l t 73,, I b ,01 :a./JI ,nu .03 ,Ill '1,'1 10,°O.I ,01 ,0 J .00 ,DO 110 1'~''1.•1(\,01 ,uuoOI ,00 ,01 ,0"10.0 I ~,0 0,1 ,V I .Ou .00 ,00 III 17 '>".'•.Ib ,01 \a1.0 I ,00 .05 ·°U 0,'1 I (J,0 0,I ,0 I ,0 J ,00 ,DO 112 l'I u b2..11 .0\,"ItO I ,0(1 .Ol>.05 10.0 10,0 v,I ,0 I ,0 l ,00 ,00 II J 1'I~b",• I b ,01 ,J"t 0I .011 .Ou ,I/u 'I,Y 10,°0,I ,v I ,OJ ,00 ,00 1\u l'IOb).,I S •vI ,I hOi!,00 ,O?,Oll 10,0 10,0 0,J •02 ,oa ,110 ,00 115 1~'1fJ2,• I II \0I ,~, t ()I .00 ,06 ,1/1 10,0 10,0 10.\.02 ,Qq ,~a ,O~ \1 b IH.o.9., I II ,0',1>1'01 .OU ,Oll .~1 \~,0 10,0 \U,I ,O~.Ou ,~O ,00 II 7 I~\H,.21 ,02 \JO,02 ,00 , I1 , Iu \0.0 \'J,I \ U• I ,01 .Ou ,00 .00 I 10 t1'lq..20 ,01 ,I I.°i ,00 ,10 ,oq \o.a 10.I \u,I •I,Z ,Oq ,DO',DO 11'1 17 H7r-,,lO •q I ,h~.OI .00 ,Otl .01}10,V I U,\\/),1 ,02 ,Oq ,00 ,01/ \20 I h~O,,21 ;0I 1~,o2 ,00 • I i!• I I 10.°10,1 \0,I ,Ui!,Oq ,U0 ,00 12 I \lb O b,,20 .01 ~IJ'~2 ,00 .11 ,10 10.0 If)•I \0,\,02 ,O~,00 ,00 IZl P201,,20 ,U I ~1l~tUI .00 .O?,VIl \11 •I 10.1 10,1 ,112 ,Ou •II 0 ,DO In I7.?P \ •,2 I •0 I \1~''12 ,OU ,10 ,oq 10,I 10,I 10,I ,02 ,ou ,00 ,00 12q I b 1O~,.21 ;UI HtO\,01/,oq ,06 \V,I 10.I \ 0,I ,02-,Oq .00 .00 In 1';llllO,.21 •°I :~~:~:,DO ,0'1 ,UIl 10,\\ 0 ,\\0,I ,02 .Oq ,00 ,00 12l>H 1~',,21 .01 .00 ,I)II ,V'J I v.J 10,l \°,I .v2 ,Ou ,00 .00 127 H~~1,,2 I ,01 ~U~tOI ,00 ,01 .01 I II,I 10,2 I u,l ,02 ,uu .00 ,00 us 1521b,.22 .01 .0 0 01 .00 .Ob ,U1 IU,2 10 ,l I ~,I ,u I ,Oq ,00 .00 -... (\l ~ I J t )J B ~~I J )]J ]J 1 l _.,f_':"","~1\J }J 1 )B ]i i rJ \ W "",-N 4) Table D-7 Alternative Printout Format for Computed Water Quality (This printout was not generated by the sample problem) I Y[AR OYN'HIC 'J~ULATI0~0'"LINJTY AND STP JNrLU[NC[ UPPER COOK INLCT,KNIK Ap~AND TURNAGAIN ARH JUNE.SEPT RUNO,F CO~OJTIONS •DYNAMIC IUU auUlt ewwN,r'''W I 10551l~Z )010 6 ,)2'1711.II 2'1b1>2,,Z1J9Z5 ~~2'120).1 ZIlIi ~~II nll7 I,,i!5ue,10 h800. II Z51l01l,U 2 11 501.I:)2lll>8,I II Z2'11>0.15 UllOa,Ib 221111,IT __21 '131,I D 21B9,19 19 101.20 I99H. ZI 199 h,22 Ira )0,2)170<;2,211 II>11 O.25 II>157,2l>15)17,~#~JMr 20 15 11 11>,29 0,)0 O. 11 1"91>11,l2 Illl99.H O.311 O.lS 111 11,),3b IIIU9'5,)8 0,)9 0,110 0, III 0,112 O.0)55~I,011 12 Q 7.liS ,i'15~,01>11'10,117 21 II.116 Ill,11'1 I • 50 0, 51 0,5Z 1II H2.53 1117 I I • 511 I 1I!ollll ,55 I UI>U 3,9b IIli!III,57 13005,56 IIZoB,59 81H,flO eroo. 1>1 0,bi!0,b:)O.611 O.1>5 0,I>b 0,tIT O.1>6 °,1>9 O.10 o. 7I a,12 0,7)0,70 O.75 0,11>O.17 0,76 0,r9 0,eo 0, 6 I 0,~.°.81 o.ell O.65 a,lib 0,III 0,116 0,D'I O.90 0, 91 0,9Z o.'11 O.'Ill 0,95 a,9l>O.97 0,'16 O.'19 0,100 "IH. I0I 150 II,102 IJlJS},101 111 8';'1.1011 I U JIl 0,105 128 b'l,lab 11111115.101 IHlll,108 12010,10 9 1"006,I i a IIHu, III 11731,III 1)11 71,I!1 llen,11/1 127 II,115 12 1l 'l},lib IZZ'li!,117 111l>},118 10~jQ,119 lour,120 10)lIl. 121 1025S,III 917tJ •121 '1755,IlII 900~,125 1:'031,12C1 11617 •127 19116,126 ClIl19, opp CUNST I ,uNrrs fOR DAY 31>0 I ,au 2 .011 1 ~IO II ,12 S oil>b .15 7 .20 I],22 9 ,31 10 ,11 II ,33 12 ,l8 11 113 I II .115 15 .US Ib ,lib 17 .119 18 ,51 19 ,bO 20 •'HI 21 ,55 Z2 ,bb 2l 'b)211 ,58 i!5 ,7l>2b ,11 27 ,';7 28 ,05 29 ,00 )0 ,00 )1 ,'17 Ja I,~2 3l '00 }II ,00 3S I ,0 I lb I,°2 ]1 I ,II ]6 ,00 l~,00 ~O .00 III .00 aa ,00 III '70 1111 ,112 q5 035 lib •15 III ,01 118 ,00 a'l ,00 50 ,00 51 ,00 52 1,06 51 1'02 5q I ,0)55 I ,0 i 5b .'11.51 ,81.'36 ,7]5~,51>CIa ,'a bl ,0O 62 ,00 tol '00 /Ill .00 b'5 .00 61..00 l>7 .00 b8 ,00 flq ,00 70 .00•71 ,00 12 ,00 11 ,00 711 ,00 75 .on 7b ,00 77 ,00 76 ,0O 7'1 .00 eo ,0O 61 .00 ez ,0O III ,00 811 ,00 65 .00 8b .00 87 •aa 66 .00 6~,00 90 ,00 91 ,~o 4Z ,00 '13 00 'Ill ,00 '15 ,00 'II>,00 '11 .00 'Iii ,00 '1~,00 100 ,e. 101 .81 10l .CJu Jll)'''I lOll ,'IS 105 l.0'1 lOb ,911 107 1018 100 I , I 7 lot 1,02 110 I ,ill III 101o III I.I II III 1'07 1111 I,lJ 115 1,25 III>I,l!l .a7 I ,11'1 11 11 I.li!119 1.211 IU I ,II Z 121 1,]4 12l I,ZI 12 )I ~29 IZII I,P 125 1.15 12b I,ll IV I,Ol 126 ,60 oz '"o- .., ~...... ;:) IX ~ Zo...-~rr-z....... Zou 0 ... 001\ o o o0"02o o • 01o_Cl 00 t:::r 00 •<:>, 00 ,o ,... o I ..o , o I CO I o "'2oT~o , 00 , o •o •"-o ,.... o .-o I o 1 COo 'N CO ,-o ,o , o ,"- o ,- <>.-o 1o, o _Ll""IlAJ o .-0 0-.-0.,., Z o I <>I ...o 10 o I-e , ~1 COco 10 o 1- o 1 o IoI ... o IN o I CO I CO I o -~C I~ o Io•o , Do 10 0 o INo• • o •o I ~ C -......, o .-o • co I ...•CI: 00 I ~oC. CO •.... o •~ CO •o I ... a -....,1 o 1-~ C • CO t .... o .-•0o1_ o 1->-o t ~ co •Q o tco_0 co .-o •o 1o, o .... o • o • <:>I CO •---~------I--~--_---I---------'---------'----~--~--~a a 'OJ ... 0 0 0 "'"•.Z •..,.0 ...0 0.....:s:...0........N -'......... U II:r 0 ~q......, H ~ U d -I Jo.~ I CI]j ~cr: ~.~~H <tj ~.~ Q"~ .~.J.., , :..J ,] i.·...•..~.;j.'.: ~':'.' ,cd :.~~~ ~, "'""':E: UJen--l UJ a:l Ci 0 0 a:::z CL 0 UJ w --l I-a... u :E:w e::t --l (,/) w (,/)lJ.J:c l-I- c:x::>- lJ.J !Xl :E:-0 f-lJ.J l- (,/)c:x:: :::::>a:::en LUa:::Z LU W >-<!j N.-Z l- on 0 0 AI -Z I- <t:<ha:::<t:•I-3=...ZNW I- U :::::> <>z 0..0 l- N U Z-0 a::: llJ CL..I-'"IaJ ::J (,/)... :II:CL -:::l :E::::I:z IaJ 0 I- <>U ---0:z C"-J I Q llJa::: :::::> l!)-U- o-.10 10,~,,,,•10-.'0·..,,", •••,•10 10·...,I'"•••1 t '''''-.10 let I ....•1 1 I 1 •0 10·'"....••1·~·..•c>Q-.'0 '0 IN-,•1 I,·.,.-. •<>1-41·-I••••10·..'N,- I•J••·...... •0.,..••I•••.0-.,0 .~ t•I•I I •<>1--------_...·. --- no III--- ---- ......--0 ""0 ""•z •••0 ...""0 ""0 '"......0.......j ...-...u CI: :II:0 ... N III III '"no ....... no '"N_N .-~--~----.----~~--- -.--- --- -- -- -- ---- 1 _ ...,.. '"no... '".... N...... '"'"'"'"...."'..... '".........."'".....",no ... '"""...NNI'U-N rwNt"JiN""..-'"- N-'"-.......... '"-...--........ 1\1.............. N.... '"... ,ftl ... no '"...- N III 1\1 no.... '"N '"""'"no '",.., """'no N '"..... '"III N IV............. ----- .. o•o...... o o o<>oo.. o.. oo """"o ""oo """"o <>o.. o<> <> ""o o ""o """".,. """".,. COo o... o....,..,..,..,..,. o <>.,....,..,. o oo.,..,. ""o .,. o.,. o.,. <>o ""C> <>.,. "".,..,. o.,. o o C>o.,. oo ""C>o o.,..,..,...o•o... '" .o:z f-a .. Q... ~ IX 0........u_-z :z:..., :::l ... j X ~... z ...- tL-• 0z.. ~...-z--~.... IL Q Z 0-..... ...J :::l:c-.. U-:II:.. Z ~ 0 CI:..... ~ -- -- z..-~5-/31 APPENDIX E - 1 1 1 1 1 )1 ......,""'1'.1 1 J 1 .']1 c .c....IITLE ''''II'''''TIO~ pLAD Is,lunl TIILE,IIIL 100 IU~~4T (?J4~1 110 fOG"l'(l"I,20lij,IO~,ITllHA T(C~IHC.',/ll,l04q,IO~,'LAfA'(TTf.CA ILIJUa~IAI,/,I"~OK,ITIDAL IlYDIIOO.N,"ICS P~OGRA~I/) cc....G(~£AAl CU'IIAUl fOR ~IM~LHIOPj ~NO pRINT ",.~(~,12~1 h~l~0,/,q~rRT,NupPjT,~1~l,N3Il~E,NTflOH,NOYNA~,N3T[AD,N I ~ ~OY"''''''cO nu')I~,llill (f\OAYIll,I.I,"3l~IIN) aI''''-;~H)'¥~.'" IJ J 'I :I .,~1 ,t "[) 110 t!Ju'''1 (lbDl Qu£slI,,,,S RlG&quP,G litE COHI'UIEH (nOE OR IHl IIUOEL API'L1CUJON ~H"ULi)<l~IJIALClfO II)OLJNAIU J,3'1J1H,T[lRA HCH,INC., 3100 HT.Ol&"ll)~lVO.,LAfAYETll,CALIf,.Qu5AQ (ijl'-~8l-)T71) [UMHO~11101 ~Jlx,J(((IOl.AX(7,IOj~w.TTISU),YYI50),I'EHIUO,JGH(lOO) I.~'NGrll~0,11,TLAGI20o,21 CO~HON/GEOHI JUNI200l,NCH'~(200,nl,NJUNCI'OO,ZI,NDIN(100) I,~SINIRI.2b),~LI~llOOI,O~UI20~1,~IN(lOO),l()OOI,AC~(J~U) 2,.bl!~Ul,F.~,uI2~01,A~IJ~01,A312~OI,AS'12UO),ATIJ~O),"(Jou) 3,r"'"I J ~Dl ,or 1'1 >i I 2~Ul ,.«l U0 I,L f'H J DOl,III JU 0),VI JII UI ,Xl 1.00) R,VUL(l~ql,YI2nul,qIJJO),~CAVf IjOUI.i~AYlI2UOI,lS~lloul S,A.VLI!001,nLplvl(lOOI,DLPI""'lOOI,r.I~~IJOO).HlV~12UO) b,..'"2~II I ...TI 2 DOl,Q AV LI J 0 U ) ,r...I J 0 0 I ,I}P I JIt 0I, RAV l ('0 Ul ,~(J1l (200) 1,II 51 '0 u I,II 5 r.IJU0I,~f UJ.12.1 UI,u aIt ~I '001 ,VA ytl '00 I,Il'.('0 u) e,yUL Hl (20 U, ,VOL III lou I ,VS(JO 0\ , yS'](100 I, yII J uo I,Ylell IU0) CO'4HON i"I sr.1 "J,'.e ,~.:l , ,Ilt LI fJ ,N"S 1 •P ,''0 S([P •T,12.on 11.lOA Y I;Il'll~,Ill,~HUlAlj,I 1'_,'.TL,w/1l1 ,'llllullnl ,~fLO"()IIO) ~0"'10~I I n I PIP .."~~~I ,I.';U ij T,.....~'l I , I r.Jl ( I 0 , ,J ~II I ( J 0 I •L I'"I (j U) I,pijIHI5~,J~l,PIIIV(~n,101,1'411)/50,IOI,>illll"I'.iO)",.II·LUII~,}) 2 ,"e ~L rlll S ,j I ,11 11.f (]C I, 1I TL(Z0 I, LTI"L'J 'III un I,..T51. ~I"[N',O~"~1~1(S,2),~I~OIS,2~1"DIIlI~,l~),OYOllluOI,1~llS) ol'llPlSION '4IJAY(~~) OI"E~~I~'~'.'19l ~I "t -,~1'1'·£v ,~(J (l ~I,4.I NO (~~I,fY Ap p 12 U,o!'i I,..~01'12 u,i!) ,SUIIE V IlOO J nl-'l"S"",£v~P"lt'O,25)."'l HPI20,21.$U'I[VI~Oul l'''tGLp CpAI PL.L L'-' fOYIVALl"C£('1~(II,DVOTIIII OlTl STA~O/lll I,STAQl/lllol c " , C....CAlL UINI"~II£qltIG Il(JUTlNE H·SIOOY SUU:QUALITY 'VI:II e'l.Cl'HO IF ("~llAO.GI.O)CALL NU~UEH INN) 150 CONTJ:-<IIE IF IN":LD,~Q~1 "Exlll' HRITE /b,IIO)l11Lf,TllL WNI TE Ib,IbOI ~~f ~n ..,(HOlYIIl,1~1,IjSrsON) WHilE Ib,110l NI1SI£P,,,nSTlP,NSTAGt;HTFLOw,NZO,H30,PC_IOD IbO F~~~ll (IO~U"rllH OF HYORlUllC CO"OTTIUNSI,T50,15/,'ONUPj~tR 0''IDA Il (YCUS pru Cu:"OI TIU"',no,Ibl~/,"50,IblSIl 170 fOAl'1lJ (.lnNIJtt/ll~Of IIYOI/AIILIC IIHr SILl'S r£Q CHL['''5~..~/.'0ItVH IR£~Of QUALIIY IIHE 51~P~plQ CYCLr',T'iu,I~/,'ONU~~lR ur 'lUlL ", i!GE PLUIS 1,I,q,/~/.'ONUH"lR Of tlOlL YElOC{TY PL~13 )I,T<;01/5/,'OOYNAHIC HYO'UIIl.IC ouTPuT u",IT 1,I'iO,JS/,'oa ijTlAOY ~TA IE IIT0HAVLICS UII/PUT Urlff I "~I1"'.i/,'OIlUlL "tHruD,HOU 5~5',T!lo,1 ~.Ull wRIIE (6,I~OI ~lIf'kT IJPHTIT),I"'~IIPQTI 180 fUR,.,l[(,~lSUL1S PHIN'lO II ..'~fOLLIl"ING',JJ,'JUNCIlUllSl/ltClOJl 1,lIdl>l\ w"lll (b,I~O\t1'JjlIlT,ICP~"II.I'I'"I1PQTI 19~lun~AT 11115t,'A~O fUH Till fOLLOhlll~II)I'CIlANNlLS'/I(IOM.lb'.» ..,,[If 11>,2001 200 IOR~iT l'UrullO-lhG PLQls A~E HAOE'//I 00 llu I~I,~SIAG[ ~1I"l Ib.ilUI INJPLUTlI,'l)."DI,J) 210 fOw""IISK,'TlD'L sl~Gr ftlll JU"ClIO:,S',lIS) 220 [11'<'1 ~lIt 00 lij~1.I,NTflUW w~ll£Ib,lIO)"(NCI'I.UT(I"'),"'I,ll 2)~'lIw~q liS.,'11l1.L 'LtlH filII CHAN"ElS ',lU) 2AO rll'"r:~ll " UNarM." lNO JUIlC!IO R[AO AND PROCESS SYSI(M GEOMETRY D4TA N£xIT.~ CALL GIO"[T (NEXll) IF CNLxIT,.I.O)CO TO 150 M ,0 II 0 ~EAD ("llO)(JP~~III,I.1,N~PRT) READ (5.llO)(CP~TII).I.l,N~~T) TF (NSTAr.~.GT.O)READ (S.13U)((NJPLOr(I,Nt.H.l,3).X"I,HSTAO!) IF (NlrLUH.~T.OI READ 1~,110)I(NCPL01Cl,N),H.I,3J,I-I,HT'LUW) FUqt1AT DISI JIRIZJo,O Tf (~T~L.GT.U)HEAD 15,1201 (JI~III,J.l,H1SLJ RlAD (~,Iq~)DELI,DELTQ,p~AIOo,O'1IN OHIN>D~INIl. I'[JRl1ll Ilb,.,.OI NU~I£I'.!600.'Pf~rUq/OlLTO.O,1 ~1l5'J~.j60n••PfNTUO/DELT.O:l NIIPLAU='Ht~Ill'/~US IEP NI'RT=~..l'fUII UO .lao e c , . C•••• C C...:..AI It TrlVAI/If.Nl t;l')Hf"I"Y DilA 2')0 1I1"~1l ('IQ','IIIvAIoTA',1 t"A~"'L Dil&'I/,'CltANHfL I "lUI ..,f I "YO IIAO,f I kl"lLEv,fr kaNt/IHOS H ~",.~IOJ 'lll~l.IU.11"l,511:'/) 'laO II .,0 "0 ~YD~O I'A ~lT~£HATICA~"OOEL DEVE~OP[O TO ,IHULAT! THE HYOqODY~AHICS OF AN fSTUA~". OEVELOp~(NT Of THE HOOEL Hl'DONE UNP~R T~[sPONSOq,HIP Or THE C~LIFQ~~IA OEPAqT~E~r OF ~AT£A A~3UURC£3,CALIfORNJ4 ST.I£~AT(q RfSOUACE3 CU~TRUL 8UAR~AND THE NASSAU-SUFfULK ~fGID~~L fLANNI~G 8UA~O.NfH ru~~. ADOITln~'L H'lOIFlcalIU~'-[H[HADE UNDER CONT~ACT NO. O.r.~~S~1~·C·OOUq.OfP.qT~fNT Of IM'-ARHY,ALASKA OISTRICT, .~C~~4.Ll.ALASKA. c ,c ••••c C C C C C C C C C C C C C t ..•c •••• w w - ('J \ \,oJ VI I "...0 II U '. H Y 0 R 0STIRl~\.'''~O Ir lTC.LT.RSINII STA~I"'.ST'AI lao eu~I I NI.IE ~~IIE ,~,uooi J,9tlRI'JI,STAR(91,A8IJ),ASIIIJI,OEPTHIJI,TC,KIJ),YtJI I ,(lIC HA.'I J,"I ,9"n I KI.II.I ,UI I~lHUnlll,uS).Ea.OI R~ITE 16,4101 Ho (I)'HINIIE 000 FU"~AI Il7,l'I,.6~Flo.o,r'l,l,oP'I,.I"I'.I"IJ,I,rll.I,J7,&1,'tl. I,AI )I IF 1~~nlll,a"jI.N[,OI ~RIIE lh,QIOI alO FUII"lI l'O'lllll •~•l'IOI(AIlS IHAT OEPIH 0,C/4I'JN[l ENIERI"G JU'IC IT III"I~lAIlGfH "'A'j JU'ICTIII'l O~~TI""H,'"I~OIC&T!S "EIUTlV[VOL 211"E UN ,P[A IS pnS~lulr.wITH ANlIC1PAlfD \lOll HA'll) I"IO/Tt: I'~"!Ib,alol IP,If.,Tl 120 Fo"~.1 lllllftH 191V.Ai 91.TISIICS liT HSll",X,laH TUlll VOlUHI,C Iv f',lIJ.U,/'i ••Z6H IOlAl ~UR"Ct AREA.)U 'I,Ell.Q,,5x,2bH H UAN Dip""fT ,E1J.Y) If l'llr.lf.OI CU TO alO PE~lhO NlO w411E IlllOI "J,"C,IINCHANIJ,II,I-I:BI,J.I,NJ),IINJUNCIN,II,I_I,ZI, IlENINI."-"NCI IIll/rtl"II~II( If IN]r,ll.OI CO 10 qQO Qlwl"U 'J\O ~klIE INIUI NJ.NC,IIQ . wRIIE ,"101 (JVNlJI,INCH'NCJ,II,r_i,BI,J_l.NJI.INJUhCIN,II,"JUNCIN 1.2 I .lU,I"1 ,'J:I,I,e I aaO CII'.II""t C c C C...:HYOIlAlIllC CllwIlIuNS LOOP 00 Illn 15=1,"'[SUN R[IU 1~,lool Illl RUO l'i,,..q)I.TtHP ~"II[Ib.IIU)IIIlE,TITl IF lNlf~Plll.[n.11 co 10 860 C ••C•••••I,,"vr IIOll cn~PltiONS II[AU (~,llOI NJlX w=l"l:lul~q/PrRIOD on ~So Ii ......nX GrAD 1'..1·201 J'.('d,llI,H'XIT,NCHTlD GLAD l~oIYrl Illlll,Hlllolal,Nl) Cli L "OU Pll ,111xl T,'JCHTlD,NI 1150 (11 ..11 ",IF.. w~"l Itt,lIUI 1I1~[,T1Tl 860 If I~IFMPlll:lQ.11 GO TO 510 C C.o,.~V.PIIIIA I IU" '=I./ll~,·IIl.~.nhqOu.1 "Ria Itt,u1vI q1~,1l'l,'.l,'oJ""CrloN IU JV"CIIO'J fV4~OIl'TION IIITE.INCHfS,"OIlTMI/I C al0 "I"""l'OI"JII~LY LVAPOIlATInN 4"0 IIAI'IrAll RATE',.,JUNCIIlJ"to JU'f C ICIIU"IlvIPOIlAJION,I"CHE3/~O'fT~I RAlN'ALL,I'IC~lS'I1~UII') 00 uau J"I,NJ . SI,.AREA./4sr Y·tOHD '. 00 )00 J'I ,~C I"\NJ,,~ClJ.lI.tll.OI GO TO 300 If I~O~III,Y~I.Nt.O)CO TO Z~O williE 1·~"IUI TIYL[,TlTl. I'AllE Ill,l501 160 11 0 11'1 ,TlIlIll'~TA"O TC,klJ! I~lIC~IJI.lE.O.OI CO TU Z~O TU·U,.'J I'll)00 l'I.lOUOO "J-I'I'~"TA'~IJ\'.'JI.I8'IO(JI'181JI·T~0'CMIJIII"'0 IF lTA.lI.O.OI GU 'U 280 lTo CO'"II'I,l ileo yt='llJIOC·,JI TC•I"I 'I I I IC, Ttil IF IA1~llb·ICI.~T.O,ol.AND.TC.L1.0MINJ STARCll."'1l1 190 CII"I I""l a~IJl·TC wUllE Ib,llul J,STIKll',LlHlJI,~IJi,RCJI.1C,tHHCJ),CMJUNCCJ,KI,K-l l;ll,Al.lJJ,VTlJI ,F \~U~(II,U~I.[~,OI ~RllE (6,IZOI )00 CII';T lilliE )10 FUU~IT \17,ll,FI),0,Flu,0,'IQ.I,Pla.I,"IZ.l,19,IO,'ll.0,"IU.0I If I~Ulllll,u"jI.IIE.OI "RITE 16,Hul ll0 'U~·ll 110~U'E •••I~UICIIE'NEGATiVE WlU1H IS POSSIBLE ~I'H AHI IICIP"fO IIOll STI~['1 ))0 ,qudl I~P.,'l"~IAIANI JU~ClIUN OAt,'II'JUNCTION InPf,"~F/'T OEPIH,"HIN llEV,,.,~·COAO 2 CWl~~[lS "NIE"l~G JUNCTIO""I II"°TO .'J. 1(:\1 • llfJ HII J ..,N.I If 1"C ..l"IJ,II.fa.O)GO 10 190 IF I"Jnlll,'I'iI.Nf.OI C;O 10 luO wUII~Ib,lllIl 'llLE,TITL w"l IE Ib,Hul lao TI·II" TU=III'\llIllJI Tl-I£,.HJI lC"~tPT"IJI "A"('J\"S"~O IF lA~~IJI.lE.O.OI CO TO 170 th:l'J.U Ill)J";U 1-1010000 TUt ',lop,I I"'Ul,JI.ru'IA'IJltCA'IJI-TOoA,K(jll,ll.O 'F cr<U .0.01 GO TO 360 )50 CO'<lI"'"l ]~O T(·.51JI/I~~IJI TC"~I"'llC,TOI I'lAtI,ITU.ICI.GT.O.OI,ANO:IC.lT.OMIHI ST AR I91-STAIlI ]70 CO"i I '''/It: nil )"0 Kol,a .....CHI ..lJ,1I1 N, 'W VI,-"'"-.t... I .~,J J J ~J ,, -)J -]1 I l)»1 )~1 J 1 l c•••~"'~o V~LPC'IY AND DIRECTION •~Ile 1~,~uOI Sao Id'"A1 110><IlIJIILT HIND VElOCIH (MPH)AND DIRECTION (DfGRfU CLOCKII liSE F~nM NnRTH)'/,'CHA~NEL TU CHA~NEL'/) (II)~1U I =l •r.J R[AO 15,110)JI,JZ If IJI:fO,OI GO 'U 5~0 "AIt,rllr.1 PH ..,"1 ',0 II ,Z I •J l RlAO (~.~~nJ IWINDII,J),"D1N(I,J),J-I,25) 550 luQ~A'(lb F 5.0) ,lU'"I "4111 Ib.5bO)JI.JZ,IJ."'NOll,J),HOI~II,J),J-I,25) 5bO tIJQ~IT 11~,11115119,'b,I,'bI0)/,lI9~,5(19,Fb~I,'b.O)) 510 (WllI'IIIL 5~?crl"'I"'1~ If IN"Hrlult"I[HPISltNl[HPlbl,LT.11 ~Alff (b,5901 59Q ,~Q~~I (II.'I.'LU~AND nUlfLO"DA1~1) .00 IF IN1/HP(~),lO.I)~n fo 670 C C•••;l~FLn.A~D OU'~LO~ no blo J=I,NJ 'lllllJl=O.O 'l'lll()J.o.o .10 CUl/lIt'lIl w~"E ,b.~lO) bZO nW'Al l'oJIJ',CqoN INflUH,C:fll Il'l b~O J=I,~J RlAO ('.~}~I ",OOIIl,OOOU 6}o flJ~""I h.l'10.Q I II 1".1 t.~I 1;"II)I>bO ....'Il ,~.hU,n ",U"IN,UllOa bUO F'lw~AJ llR,f 1~.l,fIU.ZI 11"(""11111" 1','JI"I:'H,;,I! h'lO r J 1'1'l'llll "....a r II·'f •'ollL C 1;11.0 IHI I.!'f)~lll.!,0 "=",li 'Ol \bOO ••PEIlIODI lll"l=n nil ,,10 '=I,~O n')II'uJ=I.JO ~..'"l I : "J •n •0 rlll·JI I ,J I •n.0 " G~OUNO MATfR 1~'LO".crs'. H Y D II 0 ~"")OXI''NOONA"Ttll~IHAll0N Out 10ao'UIY )J C~OU.D HATER INflOW OO'b~O J*I,NJ QGIN(J\·O IjRlll rb,b'lO) 'Oq><'T l'oJUNCTJON TO JUNCTJON /)0 110 Iq,NJ RLAD 1~,luOI JI.Jl,C~OUND 'UUMAI 121~"5.01 Ir IJI.\,r ,01 Go 10 110 williE Ibo1lo)JI.J2.GIIOU~IO rUlf"o (IQ.1I2.f I".l) nO no J,I=J I,J). ll"r"CJ.lI=fo"U'JNO ru'"I "Ill If (NlfH~lbl.lO.I)GO TO Oao 710 600 690 10(1 710 7)0 hO 670 Tr (NTtH,(".[a.l)GO TO '40 t , C••IO c C.~.~S10~~wATtH INFLOW /'10 1S0 J=j ,2 .. 750 IlSI"lu,.JI'O • on lbo .I=I,NJ 71>0 ~lJ JI.I J i =UI "'II H ,b,710) 770 fUR~"l'OJUNCTJONI,Tll,13TORH WAT!1l IN'~Ow.NOUIl AND ,~Ow,cr"l nil flO J<I,uO R[AU C~.1601 N,ITN(I),r-I,12) 1lI 0 t lIill1'1 II ~..US.0) If IN,,'J,OI GO TO IIlO ~['O (~,7ROI 11N(I),lcll,lSI 190 rllll"q Ill'5.0) TA .0 (II)(lUll l=ld5 1l31NIJ~lldN1I1 1100 fA=r"I"lIl 1l~INIJ.lbl"A/25, w~II£,b,6lul N,~I,Q'INIJ,II,I.I'2') elO FOQ~~I (lq,/lllII','h.I1» »lJINI"i'J eZQ CO'IlI"lIl Olo rll'.'IN"t:. $UO CllOj I IN"t If 1"[~lf.L[.OI GO TO ebO w~1 H ,b,6';01 e~D 'U~"'l 1111,10lI0~"OP I PI'r:v 1,),,3 lllf/nH 1,11,1 0 CI Olf ,'1)" ebO rU"I '''1)[ "I'HD~lWL,""1) H Y D R 0 nlP(J\-o no 510 I-,.ll R(lD (~.10~1 J,.JZ.[VAP4 I'IJI.L(,OI CO TO 520 PEAD 15.~501 l[v.pnIJI.~AI~UlJ).J_i,~') ww'I(I~.a911 JI.Jl,EvAPA f ,)Q ~A I 119 • I 12,,lO.21 wAlle ".aRO)JI.Jl.EVAPO.~AINO FJ~~AI (19.lll./15x,l~F5.1» t..I!.\'::I ",[VA'!(,II&Jl ~~vA;>I,.ZPJZ ,A.[YAPA.' 1)0 5?O Jq.~5 fVIPwl"JI'" ['A~"II.J):fVAPUIJ).F.RAINOIJ)/a)lnO. ClJ&J r )lillt CU'In ~'J~ IF l"'lf"~(,).[n.l)GO TO .00 '490 c allO c C HO 500 C 500 510 520 5}O , rJ I W VI --.. vl V"\ ., H .,D R 0 H .,D R 0 C 930 vOI"I'n,O If IN~O.ll.U'roo 10 105U hu I~Qn I-I,HJ M••IIIl',!I I 10qO nlll·IJ~IIJI",11J1 ~411[rNlO)IV,(OlPTHuIJI,VUlIJ),.I,OIJI,OINIJI,aIJI,aC,NIJI,QUU(J) l,JDI,N./I,IIlUINI,AIlINI,VUIN1,Nol,Nc\ c C rV.lPO".IIUN IlU Yllu Jel,IIEv ,11:lll VAptl,I I ,I ~:-,l ~."I I ,i?)nil '1'1V J:JI,Ji!.ao fV#PIJ\:fvAPRll,IUI WINO 'nllr.E Oil '150 "'.I,NC ,"1'101'11-0.0 nO HOI.I,IlUN Tf 1~I'Inll,llll.l[,O.O)GO TO '70 JI="·'"llll,1 L H ......'"n(1,.!1 OU YI>U "':JI,J~ If "'JIIII(P',II.lll.O)GO TO HO "l:NJU',CI'I,11 'l't:"Jw.,I 'I,~I ~O='I"'."-~(I·L) vO:Y(II"I-rrrlll If (A~'I~OI,AdSIYOI,lE,u.oj 00 TO ,~O FWIIIUlyl ••wINotl,IOlooZ-CUSIWOJ Hll:IO)/5f.-ATANZCXD,YD))"1.![-. [n'll ""lle""I I HIll CAll lIyNfllJ If 1I0:lI,IOJYj co TO 1050 f=~'lfJ'T 1'1.11'[111') 011 1'1U J:I,HJ OEPAVlIJ'-~[PA~lIJI+OEPIH8IJI ll!P '''urJ)'''ll'IHIIIJI/" VOlll I J \"V III UlJ IIF J3IllJl:~SU'JI/F '90 (O'lf Illlit OlJ 10110 '..I,IIe 1)1\I"I oMl 1"I/F H'~l ('''=HAvlINI.l6IN) 'II I ~I"•~I ,n IF 1000 V~'NI'V"(NI/F IllJ 10jn J:I,IIJ If INCtl.lNlJ,lI.l 0 .0)cO TO 10JO f.l=~.U nu 1~ln ".I,n If I'IC"AIJI.'_~).lD.OI co TO 1010 Jol ="'C ~t,'"(,I,'<) 10 IOTA'I A , •U S IIII N )I IOlO 3IluwI./'.0.~.rA.0(l'0/VOlIJI 1010 ClI"'lllllt C 'hO '1'0 C.,,e.,•••qao '150 C ,'C••••ru.~llv 'I"l 3T(P lOor n~IO~n l~al.NQ$llP fill'I" If IIO:lT,IOAYI CO TO '.0 MPHI·-H,I(T oil q I 0 J <I ,NJ O[",Hllr JI •O, VU\IIIJl'n, •SI'(./1 .0.° '1 0 r.IJ~'I"..t:: DU 1'U '>I,"'(V JI°.,lV&Pllrll .r ~="[~AI'II ,l' OIJ 'IlO JDJI,Jl'Zo 3UM[V(./leSUM[YIJltEVAPRCI,IQloASCJ\ 00 '1l0 Ha l,"IC nlllNlon, .I8104l o n. .70 PRfvII;Jloq.O M ~~u JOI,NJ SU"lVUI-O. JliwlJloO AS IV [1.1)-0•0 RIJ~IJ,"O.O oYnlIJ\<O,O yIll.AH I J I =0•0 n[PAVf IJI:O.O IlHlIJ\=n, Ql"r.~1.1'11.·1000 _"hE 1.1,1I=1000 nLl ~A~I-I,l 100 flJGIJ;lI=O.O Of.'~1U "=l,NC YSI"I=n,O aHul'n.O V.l1I31"1=/l, J(Hf.I"I-O .0 II S nI "):U.V VSlll"I.O,O AlV tl t,i .~.0 nlVll'I\=O. DAVlIHi-o Ol',,":n 1),,110'0 n"0 yAvI.I'Ij.O, Oil 9/)0 ,,,,,PlJEIl J>./lll." JG~IJI=II nfLU'lOtHlaO,O I)tHII(I,\.n,O lIOO tiJ'"l'lI,t C •.C••••OJIlY ll"E ~TtP LOOP ,uU=wnAVlISI O~10~n II.I,IOAY IU:II vJ ~ - ('J \ W VI J I I I I 1 I .>c,1 .~.]J ~J J J ]1 ~ -.. ......... ""r--... ( \l.,,, oz... u JI: 0 J... % C>C> '"N""...%Z...-...'".......J Z --,.... ....... r 00 :::Z...,..'".... co .. C>... -::>-...Co.~c.:. --.II ••==c.C"OZ~"'"-z%..........--a......Z C ....OI4~~Uc..l''--." u ~ N Z ...-- • z "-...... >--....,.. --"';1--"'..,,..-..~--2;...->wc,.. J'"0",",....,-~%-...-...-..%...z , >-..-•nz .....-.. '...-->........--0 ......,>>-c..z &.&.-......'"C0>.. '.. '"-u ::!..,.....'"-...,0-0-'"C>>.,-;:)oz... -o.o... '"-%-... -CI..,.-->..,...->:z ::>-.,... ~c-. o. ::>-, ;:), J-....., .....:11- C!'~"a: WoI_::1:_a: c::a:-u J:.......--,w ...z --'C:IC C'-...a..-....._-,_':II-e2.--'JIt 2"e __q >-11-...->':)~z ~oX'.z.,'-'c '"":::,..L,)u ....._::n..lol:'=_.JJ_ --c %2 =._=_..::::=f: -"'=3U~..,.,:---z."\I---4':::=-2'--YJ-'tJ"':_ZI:lo.---u -.:=__ cQ 7-cr--..z »=~">=.%»o~ WOQ-z--Cc..l'.Z'....u- -N C> 4> -...->-.x ~...•0 -... '"'-::> 0 0a,..I-::4 N - uu -- ...... ~..a %-..... Q J...... o... o... ".... o...--00 0 0_N-- . '"...--""...-... > Cz:•--..,- " c ~ 7o.. :z:...c-,...z:, ..... Z...-U-.........o... .. >...::-•.~ N .. .....o~_0 u 0 -Z-u ~• "'.......s:""'%-&W:::I -0 --U%lZ."'"7r:c~'C c %;~~;:-~a ~-~X.~Z ~~ _~Lo.l':',.,.ClI ~.-~-u ~"~_>C ~---~.2>•-%c-~-w...--""Z'---.0 ..._J:-y-....-.uU":%,.--.;:li ~U II ...02 ~-...&_"".%:I:»O J:~"-2 ••-~_-,.c ....-.·-_>.:.c2 _..,J.----c..~Z-. c •••-.w u~-=:1'>~...~~....•-'?..,,_~~__c:eo CI c:.7 _;.==.Q.v._4/'.==I.=C e - -C".-c:%_~="'"n ..Q ~.:J ~n II It II .1 :;:-.;:,-"'"":::"'"_.....u .z._ ~_~c..l'_=7~~U:~==__~_~__M :_~ ..,J.-~~-~-7~4C~~~------~--~--~~~%~~:11~~:]-%~=7:==-__~X u=~~=~~-~~u~u;:li~:~=~C~-->~~.;:li C~~~Z--'~4%~>~Y~au~C.c>~,_~~ o... ..... o- ........ C>o C>- ..oo- ....... o... ......-...-...~ >---e ,-_o X ONf\tOO U ...1.,3 •••• II..-....•..--......,""-J'-t, 0-o=%~~......-,x'-J -____"z c-~~-e~~',~~~~~--....- ~~,....~~»-_,"',z ~O,~_>_.>·...:~7::"l.W=:-• ~~_~~_4 u->:--~~zz:~,~~~..z_....I_-,a..Z_t'Ig')C"'lI __....__>:=!'.,.J-...I .........0 ....-........--'>:r.w....J~.w~_.....':t'. ~_~»~~-~~~--~>e»u _~:c ~~_~~~~'1 C~~44C ""_~ Z~%-~II_~uca~~~o»~y ~-C2-c..,~--,w ~1~~=~I'III'~I'_~ZI'. ~e =---....=.C =::0 Q.l".v.__~_.._._•=c _~_C' ~_u~~_~~:~"MIIII==~==-7>OZ~OoZ>-~>_c:~_o=_~ ~--~W>4---~=~r~~~~~~--~~-~~>4~7 __~_»:~>4~~_ .O'~4"~OC~~~~~4444~UO~_~' .C->:4Cvc->~>a~O»~4~COC- ~~zz----7.7: 00 U ... 00"'..00--u o OIl: co.. 0z: .-I - _____.,~~~~,~G,........------------_ c C C C C t C C C C 100 105 C t C C U "y [ sUaqOUTI~[CURVE (.,y,NPT,NCy,NP~OTI OI~tNSlO~'(~PT,NCVI,YINPl,NCVI WHlRt ~prD~U~Ueq OF INPUI POiNTS ON (ACH cURVE Ntv.~Uwurp U'CuRVES UN EA(H GRAPH' ..PlUl ••ql~lEll 1(0,• I'I~PlOl1 D -I,Nn PACt EJECT UR rilLE IS PRINTED. .CU~Vl.00£3 "OT HAVE VAR/AHlf.OIH,rITJUNS.CHANCE NEXT CARD IlI U ["SIUIi .1101,11.HIO),I),NPTlil,DOHXlql,00/1'11 11 1 CU~H~~IlAUI XlI8111I,YLAij(bl,TITlt(I~),HURIIII)I,V[h'lb),IUNITO ~(T UP •AND Y SCAll. XH'~'-\,~[JO .'11'''I.UI jQ yH&t.~\.Ol )0 YH/>j·t.OllO I)U I~U lIol,NC'/ /I'',P T I"/ OU 100 J <I,N T'ItIJ,III.Gr.XHAX)XHAXDXIJ,K) "PI,"~I,Lf,.'1l1ll XH/NdIJ,K) l'IYll.KI,GI,YIIAX'YHAX.I,J,K) IF ,IIJ,-I.LT,YHIN)YHIN.YIJ,K) CO"T!'l,t[ nU"_11 jnH'N OoJ u "/iUI1'X CALL ~rIL[,PUH.,IO.o,i,l) OU'"II i ",,,It. llu"'lli'l'1H C"ll ~r.ll['~UHy,S.O,l,l) 0'.1 In.,I\'I,"C,/ H.'W reO(I ,("'1,,,1-0"".'J) •pal,0(J-UlI/n (II I 'II'''1,v I 0 DIIM Y(]I 'I1~.l,O(J.U\lI1YIII) cU"IINlIl ;O,,"'X lA8fl'AND 'ACTORS C C ccc C C C 120 125 1)0 C C C .. 'ICD~IOO CALL PpLOI IO,O,NCD,NPlOT) ~·I 00 DO ~cl.tIC'/ IF IUPTILI.E~,OI GO TO 12' .U·K~CIL·'X'I,ll·XHINJ 'Q.V3CAl·(Vl1,LI-YHIIlI "I'U/NI.NPT\l I OU 120 N=l,NPUIIl' XI"SC'l'IX'N,ll-KHl~1 YI·"CAL·IY'N'll·Y~llll CAll PIN!(KO,YO,XT,y,,~,NPLOII .J'KT 10'"(Ull rI NilE K oK.I CIJ'H /NUE /lCAq'! C~Ll PPLOT (O,O,HC,NPLOTI RETUIIN (NO CUll V r: INITIALll[''lOT OUTLI~r: nRA~IN fACH CUAVr: JOININC XO YO AND XT YT oUTrUT fiNAL PLOI lllllt,cO"MK I)) fllllK'nUHnul .lIUII\·...IN nu I I 0 I'I •10 110 JlAUII,III-LAijll)tOe~T' .Sr.ALD,uO,/IKLA81111-XHIN) rJ, w ~,-w ~ c C C 115 c IHTNtO'I'IT(}J IIH tyoOUt'VIII) Yllijlbjol'llll OU II S 1-1,5 Yl·HI~_IJ.YlA817-I)tD[LTY Y3CllD~O,/(YlAijlll-Y"I~1 ;ORI1 Y LABELS AND 'ACTORS 1 )J J .~J J I I .~..~J I )J J J ]J )"J 5 i ,.........T)I J J 1 )1 tJ "~,L 0 II "!!,!.!! IN H~) lHl IU~""l.I,e IF IIJu"C IN,I);LE,O)IOn TO Iqs NL.NJIl.,CIN ,I)"'I.·..JlIIICe'II~)O£lll=P;5·I"II"~)-~IIt~I·~T(NLI.HCNL') rA'"I~l·Ac~eNI·OELH ATI"I·.t~l.u.~.e81~I·TA)'O[LH 111,1:A I ,1/)/" HEAOS .r T'OElT eTfHPOIIAIIILY ~IUAED 00 11~J'I,~J Tf e~CHAHIJ,').L(.O)GO TO t7S If (Jc"eJ).EQ.O)CO TU 15S /f CNC~AItIJ.II.L[.OI GO TO I)' IF IJCwIJI.fQ,OJ GO 10 115 II •.IC"I.I) TA~~'I;» HI IJ)••XlI IN' 110 II U·1=i!I q 111.1-1 HIIJI·"IIJl.A((I,N).SIN(f ••TU)t'X(lt),N).COSC"ATI) roll I III j~ co",r (t'"[ l.·.."1;,J) ,U"I):~nUIJI-Q1NCJI·QGINIJ)-O'lNCL,IIQ)t[VA'(J).AS(J) 00 IZS ~"I.U If e~CH~~eJ,~I~LE.O)co 10 110 II=..t'1AIl(J,~) If 1-J.'II::.NJU'ICIN,1l1 Oil TO IlO 5')"'}.51/'HI.1}I II) roll t Ij •ZS SU'ia=51I lt D-l}eN) CU'l I I'U/E' HrIJI=HeJ)·OELTZ'SUHO/AS(J' CU'lll"l/~ CHUH'll .HEAS AT r+OELTlZ VI::l0CITIES A'1 fOllY ILO-'AI r.otlT/Z 1110 C t~•••••••(HFC-fUR OilY CA.LT.~.5 'T)CHlHNlL· /f (~Nl,GI,O,50)G~TU IqO v 1'1)•0 ~0 Dlll)OU. r,ll II)IU5 CU'IlltllJE IIELV?2~,'VTINI'II,.AIN)/ArCHII+OELi.(~YT(N)••2/RHr)·]l.I"'I.'"'IH IHI-~rl~L))/lENIHI VI.=vl"'\'O£Lvz TEMP=vrLr.A~IN)/I!NT··I.)J'J'J] QElvl=n.~,eel,/rEHP.z,·A~SIVZ)I·50RT((II/lfNP.J••ADSCVJII ••l ••••yl II'Z II OELVI ••5IGNllIlLVI ,Vl) VIN)'V,N'.oELV,.OtLV2'O[Lr'f~INDIN'/AHf ~1~I=O:~'lij(N)'VIN)'ATINI) ell"1/NilE 110 us I., C C•••• 120 125 1)0 1]5 Cc.·.· C....C.·•• C00lTO1~'I,NHPfRQ TZ·I.OrLlZ ,.I.l'Il!.T ~URAOUTINE OYN'LOCO~~O~ITI?I NJr~,J(~IIOI.A.Ll,101:~,TTeSOI,YYe501.PE~IOO,JG~1200) It IIh'vr(ZOp,21"LAOe>'O~.ll eOH~ONlv~D~I JU~I~OOI,NC~~~IZOO,ftj;NJU~eelOO,ZllNQINe~OUI ••n31~(Ull2bll~GI~llOOII?UUeZOnlluINIZnOllAe]OOllACK(]nOI .'A"I'OOI,EVAPllOOI"_ljOOI,A"znOI,A~~IZUOI.AII'UOI.81]o~) ••rM~I]001.O[P'~'ZOOI,~IZUOI'lrNI]001.RI]UOI,VI'Oul,)12001 .,v0ll,uol.'1200I,~I}Uol.ACIVl,]nul.ASAVfI200IlA5UllOOI .,PAv[!jO~I,OrDAvEllnOI,OlPI"eIZOOI,FRINne}OOI,~lvEeZonl ..,,"POOl IHI UOO I,OIV[1 Joul lOill }oOI ,IlPI JOUl,llAVll }OOI IIIu"UoOI , ;pSI I QUI I II 5 QI I Q 0I,H L0 ~f 2 00 I I VAll a I }n 0 I,VAVl(J 0 0 1 I 0"I JQ 0I • •vUl AVE 12 PuI I VoJl 0 Il POI,vS I Jo 0 i I V~)I IO 0 I I VI I lo II I•vtI e ]u 0I CO~~O~/113CI NJ,NC,UELr,ntllll,N"Srrp,N1Srt P,l,1Z,OELll,IOAY ••o~"',I'l"",Ptl'·J.ll","'HMP'1II,DLJll11101,1.I.lIII/OIIOI CU~HON/101 "P~I,.PAr.~oP"I,N"'''I'I[UlIIUI,JP~II'Ol,LPNIC]OI .,P~IM'~Ol\OliPAIVISP,]OI,PijID,~Ol)ol,~UUHI~0IlNJPLllIC5,1) "NCPLUrl~,jl,IIIL(IZOl,IIILe201,LT1"l,JTNeq8),NT~L "HUll!CPAr ilEAL Lpl OArA I~I(lP IQI OATA II'If/I),Ol 01 'OEL T I h.OO. ,,,-I/1,,uO, IU C C••••~E4D'IT I.OELT/Z 00 In J-I,ItJ 100 no I0 ~ti:I I Ne If I"JII"lrc",I),LE ,01 GO TO 105 c t ••••••••CMrC-fUq DAY (A~LT.O.''T)eH,NN~L 'I',T.A ('I )fill H) Ir IQ~r.&T.0.51 GO 10 100 VlI"I'~'O DI ...)a~,O r,/1 IJ I O~ CO'"l~"l IIL'·lIu.,C (N,II "'H,"hJ"C ''l,l)OELVl.vl~)'II,.AI('l)/AIN,).OELT2.crYrN)••Z/RNf).)Z.17)'I·(H(NHI·HC I~U I/L,"'''l vz=vl"i,r,ElVZ lE~~:~fLI2.A~IN)/H~r'·I.)1»»] rElvl'Q'~'III./I[HP'Z,.A8SIY21).~QRTICl./T["PtABSCZ••YZJI ••Z·q.·VZ I ••21 I O[lv.:.3IG NIQELVI,vll vII~):vl~),uELVI'OELY2.oELTZ.fH1NOINI/Ahf QI"laVYl")'A(tll CO"IINlll C C••••VEl~C1Tlf3 AT T.OfLT/~ C••••'l~·S AI T.DELT/q C t c r-J \ \.oJV,, ...... \J-> ...{) '.(HEeM P'O~A8NOA~AL YELDeJlJ!!S DV"'LO IP'(1'Tnp.Ol.50)O~.TO lllZ CONTINuE .. ~I J I "".(J 1 rrllo.~E.I?AY)GO TO i'00 IrltlIJI.ll.'u~GE.IJ,II)1;0 TO lOZ uA~r.fl,r,Ilol1(J) TL&r.IJ;lloIIME GU I'J ;>00 ,FIH(J\,Gr.R'~G!IJ,lll GO TO lOO q A"G[I ,I'?I.ti I JI TL'GlJ:lIulI"[ CU'If I "I,E SUH FIIR LAI[H AVERAGI"G SII"'I U"S III [.tr.1l C'CANNEI. I'(IIn,[Q.IDAV.II.A~O,\IH.E,O.'lI1PEROIIGO TO "" IF (IO:LT.IOAVI &U 10 l70 00 ZIS J'I./l.1 OfPI"UrJI=OlPltlHIJI'O£PlIiIJ) VlIlll CJ j <VOlIlC J I HilL IJ I A5~IJI.A5"IJI'A9IJI VO~AV[IJI=vULAVLIJI,vOLIJ) I1 ..Vl(J\'''.VEIJI"I(JI CU"II 'Jill I)lJ ~lv ":I,N( 00 1.IQ N0I,Ilr. T'CIIJU'IC(N,IJ.Lf.OI no In ZIO Ir C'",CVCNII.LE.ZO.OI GO TU liD I S I UI'=I Sf II"• I ~HIIE (b,lOS'IH.N,QCNI.RI~I,VINI rll"""l/'O"V(I"',"Y>lA",e ,uLulln .."A'U""AftLE AT liOU"'",.! ..•1"(,•.t"lltL',!••','Lilli ",['1.1.'C'S,O[I'IH ."',.l II ''Ftl,HVICIIV .',~,.p,''I"rtl) IfI191~~,GT.'O'GO Tn 2bl eUN I I "liE In I'Dl lOOee C l05 llOe n&VE(Nj"UAVECP/"9(NI V""l:r'41 Ko vAvf Ctll."I(") U ~:PJ ,",t:....:,.,("I)•If (N )...2 V'j!)('":V~,'J('11 'VI")"i! RlVU"i=c&VI (11/.111"1 0"('~'rOll«q 1 II'(I,. "11«q):l II«'~1 •A (") h "f ( "\="&q I"1 "1('I) V ~It H ..i =Vl 'I ~('II ,All ~I V I OJ)l ec C Zl5 C C C I r I lU I N J I ,I;T .0.11)GO Til U 0 n"INI=nN(~I~nINI r:n III ;>l,) lZO nPI"I'~PI"I.nINI 125 r.fl N II"'IIE C o y ~,L 0 "VOAAU,IC A,oluS AT POELT CI1&'I"E,'~['S 'T r-UELT 'loJGl((J) T"·"'·Y~~(J)OAXII.Il) no 150 I"l,. TAol~1 ~N(JI·~~(J)·4KII,NI·'J'l(T4.l8)'AXli·,,~)·CO'CTA'TB' G~T'J 175 CO~T I "liE '5'J=·5(J)·ASK(J)'(HT(J)~H(J) l •...,'},,'r J I ~uw~=U"U(J)~QINIJ)~QGIN(J).051'l(L,'JO)'lYAP(J)'AS(J) I)'J I""~ol,6 IF (~C~A~IJ,M).L(.O)GU TO 110 'l"jC~&':IJ,K) IF IJ,~!,~JU~CI~,11J GO TU I~O ~u":;·s,,..a'''I''I G!/PI l~~ ~U",J·S""'l.nl") CU',r I ~I'£ ~~(JI·~IJI·O[LT"U"Q/A3AJ CO'II I ""~ Oil 160 "'I,NC I'("JIl"C I",I ),'U.O)GO TO 1110 "'L.:lJU'.C I".II "","JU"C I",II (ltL"'O:'"(I'"I NI11 -H INIi)Hl'l ('ll.)-11 ('11.') P('I)'h/""r)ELI1 T"~(N;"C~(~)'O~LI1 '(1I1='rNI'O.5·IH(Nl.rA)·O~LH ~('I I'I • CO"I I '''Il CllwPlJlr ~["SURFACE AAEA',VOLUH!,O(,lH S111,1 I1E'OS AI T'I TO H AARAY rFllo,rn.lo.vI TIHE'T1HE'OT nil l.'v J'I,NJ IF (IIC"'"IJ,II.t'l.OI GU TO loo O[LH·....(JI~"lJl nt.PIHln·ofPIIIlJ"r)[Ltt 'SAJ=A~(JI·ASKIJI·OELIi V~LIJI.vUL(J)tO••'IASAJt'S(J)·~!1.1i 'S(JI=ASlJ I~(VYL(JI.GI.U.OI GO 10 IHI 1511I"=151:1I"1 ~~Iltl,,"HI P,.J,tllJ),vnLlJ) IlIl 'Utlf1AII'r".[GAllvE VUl'J'l[E'ltOlJ'lHFI~O Al HOUR',p'r.Z,'AT NOOE,' II I.,',"lAO ","1.1,'~f.lT,VnLUMf .',r:~.i','CU 'T'l I el CU'"I'",l T/'lI'C.II,GI,O,Ol GIJ III I~S ....IHI,.oIvO)P',J,"IJld1(JI 1'10 '"J~'·AI/'('·;'f.AII.l 'uo,ltE A~(A f.PJcnU'llEFlCl)'T HUUlI','7,Z II 'AT '11"""~.I,"L&lI ""'01,'FEET,AREA ".lV.i','SO 'T') 15 T'J"'I;1("'" 150 155 1&0 C•••• C•••• C 1110 B5 170 175 CC.·•• CA ".It C -..t:.. () ('J \ VI '", 1 ~J J J ~.~I ..;..:;}I J J J J J • ]J 1 J }..)J ./'''''~\ ]i 1 -J !B i~.1JI o r If ,L 0 rJ, \..oJ VI, .t:.- 2)0 C C C Zl5 ZqO lq5 Ho C C C iiS5 Cc•••• ZIIO Cc....... Zb5 170 lHZ Z6) ZIlG zn lOb VUIN)'V8INltYIN) SV~TIDlL (un AND 'LOUD OU 250 J'I,NJE~ leJ(Xl,1J . Dll Zqg ul,1l N:~C"'A"I'.~) IF 1",FU,OI GO TO 2q, '.1, IF I"Ju"C("4,21,(Q,1l '._1, I'IF'(J("),Lr,O,1 GO TO ZU Qf LUI)()I J):IJF LUllp (J )H 113 I n(H)) roo f(I ?ij~ C1f~u(Ji:O[ijU(J)+AH3(n(N)~ CIJ"4 I I"IJ( CUrUllllIE CUf>/T1NlJf STOAE QUPUT DAIA 'OR SU83EgU~NT PRINTOUT If llt<f>/E,MPAT)GO 10 no MPIII:~pHT.'II'RI l T1"£=1.T'"Etl SIOH(~lAD9 TU BE PRINTED OU lbu I:I,NHPIIT J.1 J I'III :.J I'II I(1) P"TI-f(LTI~(,I)'H(HJPRT) eU"T I""l ,TUHL FLOwS AND VELOCITIES TO BE '~JNT£D rll ~h~1<1,"OI'AI MC PIf I:r I'll II J) PIIJI)(LTI~f,II:Q("'CPIIT) p~,vllTI"'£,ll:vl~tPIIT) CI)'rll'lllE CUNT)""L If IISI/1P.£O.O)ROWIN ~RiJtl".l6i) F11""ATI'OCl-flm'fL DEPTH AIfD YELOCIJY'I) wRIIEI",Zij~1 (1,lIlI1,VII),lol,NC) FIJII"AII~(lb.UIO,I)) wlIJ!f (",Z(\51 FIJRMAII'O"PDAL DfPTH'/) ~lIllfl",l6b)(I,HII),I'I,NJ) fU~"AIIIOllb,fl,ll) ,WP [NO G I:n ..(T G ED"E T cc••••JUhCllnN DAI'e llC"O OU 1)0 I·,,~CHAH nU UO J'"l NJUNCII,J)'O COMPA'i~'lITY CHECK CO'lIINlJ[ DU 150 '"I,"CHAN ... a~~OI5;']51 '1,ILlN,HIOTH,fljO,COE',IHTE"'(KI,K_I,Z),OLO'[ rURH~TrI5,.fIO,0,ll"FIOoO) IF (1I,(l,Ol GO 10 ISS IF 1",lE,"CHANI Go TO 14S "flilt ,~,J40)N rU~Hlr I'U 000 lflHOH •••CHANNEL NUHijEHI,••,'II LAR'ER TNAN 'RDG IRAH OI~f.ll3IUNSI) ~(TIP CI"~.II "/ll IF \II,"',NCI HC.II C'I'Il'lI,COfF II tq II).'Il'l 6I N I,.,UII1 RINI""W ~~II~1 :cufF VINP~:U ~C~l'll=5l0PE "J 1I1.r.1'1,1I •M I NO I 'I TE HI>(I ),N TE HP (2)) OJJ,,·,t I 'I,ll'H'~O (NT[HP (II.NnHP (2») r.O'IlI·/lll DER1VEn [HAfiNEL O~T4 ('IU lqS'j:I.'/C If I'U,,'jC[N,I',lE,OI GO TO 195 AK(NI.l'117~QOA~(N)••2/2.20&19~ 'INI.~I~.qlNI (10 170 ".I,NC no 11 0 1<\,2 I fiN J II"C(N,I)•I.E,0I GO TO 170 Jo.IJII·,r.(II,'I 00 lbO ~=I,ll If 1".rll.'ICHINCJ,K\)1'{1 TO 170 CO'H 1"'J~ Nt XIT"Il XlIII will If lb,Ib~l N,J FC)Rt<n I'Or.HANN[L CARll COHPATlBlllTY CHECK,CHANNEL'',n,'ANa JUH Ir.IJ:J~',Ill CON'I-'lIl OU 1"0 J<I,"J nil ,0"~.1.6 IF IIlCNANIJ,~I.LE,O)CO TV IQo N'NC"A'dJ,~1 no I7~I =I,i! IF (J.'Y.NJU~CC~,I»GO TO 1&5 COIl rI "Ill "lQr",lX/T>I willIE rb,lAol J,N FOIIH~'l'uJUNCTION CARll CUHPATIUllJTY CHECK,JUNCTIO~1,1),'ANO t IHU"jf~I ,Ill Co'<'1 tlI'E ell"11 'llll 1)0 JqO 1)5 '45 ISO 155 C C.·A. C 160 IU 170 175 leo 165 190 C C.--'jl. C " JU~CTIO~NUH8[M',I~,'IS LARGER THAN PR CHAN/Ill.llUA II 5U~AOUTIN[GEa~lT(NEXITI CUH'IO",(;[O'4'JUN(200 I,llCHAOI(2g0,8 i ';IlJUIIC ()OO,ZI,NO IN(lOO I n31~(al,2~I,QGI~(lOU),~~~120~I,OIN(lOO),~IJOOI.ACK(JOO) j8()OVI,[VAPll~011~~()Oul'~SllOgl,jSK(?001,jTllOO),bll001 CMNllOOI,OrPIH(200),HIZOO)'Lrlll'OU),RllOUJ,VI)OOI~XIlO0) vOlI2001,YIZOgl,allonl,At~VfrlOO),A5~V£llOOJ,~3"12QO) ~AV£(~n~J,Ol~AVlI~QUI,UtPIHarlnUJ,~·INn()VOI,H~vlllOOI ~~(20UI,HI(lngIIQ~vLIJOOI,08rJOOI,nr(lnOIIRAvlllnOI,~uR(lUO) p'IJOOJ,a5QIJOQII'FLn·l~uOl,V~"SIJ"~),VAVlIJOOIIUhIJOOI "VVl~VLI~nUI,vVl~1200J,VSIJO~i,V5"IJOO),VII}00),VHllUOI CO"HON~MI~CI NJ,NC,DlLI,QllIO,N~9IFP,NUSTLP,T,T2,O(LI~,IOAY .'nl1!II ,ID,IlHPERII,Illl,Nlll'PIII),11I::llt11101 ,"'lOLJO(III) a(jL LrN l)1"Pj9IU~~'G(I) ,'lUi VAl E~C[CJuNII ),~IGlI») •I·,.. ·,·,, I NJIO OU 100 101 ,HJUN HIll'O: ('\U IOU J=I,8 "C'U~II,JI'O co"r 1','It 0\1 IZn l'I,'1JUII al~J (~,IOSI J,~aEA,SLOPE,oEP,Xa'YI,(NT[HP(K),K-a,8) ro~"~1 11~,2Flo,0,lr5,O,81~1 IF (J,ll,OI Gil 10 125 If IJ,ll,~JU~1 GO To II' wRllE 1~r1IU)J 'U~H11 1'0 000 LRROR .,. an,,~jH ~1~E~~ION9') ,Tnp (lJ'lIltl/lE If IJ,r-I,NJI ~J.J ~5IJI"~~A I ~~tJ I .~LUPl fll P '''ll l 'O£P _IJ'--I vIJ,-q 00 120 ~"Ill NC"~NIJlkIIN'[HPI~) (0"I P'uL CU'I'IN"f. "CHAN'lOO ..JIJ·"ZnO ll.12·~JUN'2~II'CHAH"I·l~ all 10 J I I,Ij 10 1I1l;IJ)pO,O lOS au c 110 In Cc.·•• C I" 100 ('l, w VI, ...... "{" I I J I )J I .J I m ]I J J ),ft 1 1 1 1 -1 1 J J ·0 c 0 H t t 1 -J j rJ, vJ VI \ J:... \....I 'T1NI"'CN) I"CONTIN"e: C . c ••••oERIVED JUNCTION OAT A C flO 205 J"I,NJ If (~("AuCJ,II.EO,O)GO TO l05 V~L(J):'SIJI·O(PTHIJI tf 10Ipl~IJI.Gt.0.)GO TO lO' VUL (JI:O. Tf IA~(Jl.L(.O.Ol GU TO l05 AHIA-O: VlJl.u·11 :~, 0')lOo ~'I,1l N",t"",(.I,") If 1",1 E.O)GU to 200 A~~"'pIA.~(HI·L[NINl vUl~MI=vrLU~['~(N)·LENIHI·RJN) ZOO (IlNIIt'"1 fllP'~I.lI·vnLuHf/.H(A V'll I J I =01 P '>i I J I•A51 J I l05 (U'III"lIl C:5"~II12.21 tP:u I'lIJ 22')":"NC If l"UI"'C(NoIl.[f).O)GO TO U5 OG=S~HT(HI~).O~IN)'G Tl·Lf.,jrNI/lll; VII'f):,1 liS (IJ"II'I,,1 Ifl"rx,I.GT.1'l1 ~HIT[I&,2Z71 ZZ7 f(,q",A I,'OI'IlI)GHAH (ll[(UIION loIH.\.Tr:~"IHATE un,.out to CHANNI:L."H .nflf lr.rO"PAlIlltLITYIJ ALIU H" C (NO /I V "II E R If U "II !" N, W Vi (hO-~ laS -" DO 155 KII_I,e N~_NCHAHIJorp,~K) I'INN:LE,O)GO TO I~O JJOPP·IA~S(NJVNC(NN,II) If IJJ"PP,En;JQPPI GO TO 150 NJI/..e I H'j,Z I"I 4hS INJUNC (NN.2» roo 10 155 NJUNCI>J N ,lla-IA6S(HJUNC(NN,II) ell N 11."lIl e(J'lTllUll CliN II'jlll NJUNCI~,II-·14~5IHJUNCIH,ljl '111/"e 1'"i'1"1411S INJUNC (H,2))cut.I I "liE CO"I I Nlll eUN II IIIIE OU 1~5 1=\,200 JHQLIl(I.II·JHU\,O(I.21 J H'lL 0( I,i'l <0 If IJHn~:(I,II,[Q,OI GU 10 1'5 [ND OF HAIN LOOP ellN I "lIlE (liN I ""IE OJP=- 1"l!HI~,20QI 20u FU~/1A t (,I CPOSS R[HA[NCf·"..IHnANAl NODr;NVH8U YS.UT["ItA~HQll( IE NUM»rR (USED IN DUALITY PROGAA"AQUAl"/) OU ~oo H=I ,NC OU cou <~.',l IIJI)HC (N,~K)a I A611(NJUNC (h,KK» ~nlll (1.>,2051 (J,JUN(JI,JII,NP) 205 rO RtH IIIOIl1,15)) III I <!I0 ~.I,NP J=.IU"(~) .lP'(J,"" nu 2Ju ~=I,"P J'.!V~I<1 1)0 au Mal.6 N....c>UNIJ.·q IF 11I,1.Clll roo TO US .TOPI··~.lUI,CIII,II IF IJ.,,~,JnppI GO to lU JIIP,,·...lu··eIH,ll ell"I \tOIlE lllnn~I~''''I'JIH(JOPPI ([)'I TPIllE efl"11 tHll (II"I /tllll nu 25u Jq,IIP ,"""'1 p ......:::IJ 011 "u"K,I •U IF Il"nIlK(J,KI.LE·.OI GO TO lao p'I ',•..,TIl 0(lllllO <I J ,~I, IHI '/1 I.H J(:I\A J(0( I Hnu.I J,<I ,pH XI lOS 110 115lao c c C 190 1~5 llO 215 lOB 220 Zz5 230 150 .155 I~O 165 00 I~o MAIN_I,NJ ".1 00 115 I-I,ZOO J>J"OLII(',II I'(J,\,l.O)GU 10 100 K.~d JU'I(KIoJ 1)0 110 \,-,.a N.IIC"A~IJ,lI IF (1I,ll,OI Gil TO 170 JODP'IAUSI"JUNC(N,II) IF IJ.r\l,J'lPPI GO TO IGO JOPP"'l,I';(IN,II'F IJJPP,\,~,0)GO TO 165 GO HI I~" J·.lP~'''.IIJ··(IN,ll IF (1I1PI',LLOI GO TO Ib5 Jh'lL[llu,ll=JOPP......., 3V8P.OUTI~E .HUMOtRI~HICOHHO~/GEOHI JVN(lOOI,NCHA~(lnO,~),HJUNe(300,Z),3PACE(11150) .,I~QU~(lO~,~I.J~OLO(IOU,~I,JI~(2VO).N3TA~T(IO),fILl(bOO) cO~Mo~iMI3el uJ,~C,DELT,DELTO,N~STrp,~~~T(~,T,TZ,orLTZ,10AY .'OHIN,IO,N~~lRU,IIU,Hll~P(8),OlOU(10),~fLUUO(10) 1310P-~ 13U~"-O IS\JHL=O NHA;r'>J~ .TV~(11.'jSTA~ PI r>O 1)0 L<\,8 .....(..".('IS I All,\,) 1F (OJd LOI GO TO 135 JIJPP "/IV'((N,II I'(~STlR,EO,JO~PI GO TO 10' CO "-I 110 10'Jo·paNJUOJ(IOJ,ZI 110 JHIjLllll ollaJnP P pl.' n:1 I?u ~.=I ,1\ Nh=~(Hl'jIJ~PP,~KI IF 1'.....U .01 CO TI)125 JJIjPP~ll~SINJUNt(NN,II) I'(JJnPP.[l.JOPPI CO TU 115 NJIj'j((~N,21··IA03(NJUHC(NN,Z)) roo 10 ,lO 115 NJuNe(~~,lla.IAU3(NJUHC(NN,I)) HO CO',II'llll 1Z5 CO'.TI''',l ...III'.e ('J,I I-~I A ~~(rlJ U'It (N,I I ) NJu~C(u,ZI··IARS~NJUNC(N,ZI) 110 C'j'III"ul 1)5 CONTf~lIlE 1111 C C II A IN LUOP C I I J J,~_.],•J J J I I J,J I J )1 j »1 1 1 :~ N U M 8 [A J -B I ) rJ, vJ \Jj ( ..... -.t::..lr, 200 CO'lTl'lI)t-: IOIF~I"H_IHIIl IOll'laIHAt-J IDlfl>.,-P'lll IF 115U HH .LT.IOIFI)TSUHH-IOI" IF lIS I I"L.LT .10IF2)l3IJIIL-,D,Fl ""AXO(I~IFI,10IF21 1f(~.LF.IOI Gu TO 250 ,,1/,VQ9 "'~IH Ih,Z~51 t<,J,JIIIlU) Zq,'U~HlT(IO'Hl HAlf U4'10 ~IOTH 0'1,10,1 'OR EOUATION NUHB[R',I' ••"~OO(',14,1 EXCEEDS THE OIHEIl~ION LIHIT3 iN PROGRAH AOUALI .,/'PRUCHAH [x[CUTION ~ILL T[RMINATE LATERI) ~50 COfltl,,"E IS,,"1=15lJI1H'ISUHL wRllt (b,2551 ISUHT,ISUMH,ISUNL l55 FOAH l l(16TH(~IDE9T TOTAL RAND ~IOTH 13'15,1 ,THE HIGH 31D~MAXIM IUH .IO,H 13'15,1 ,AND TH[LO"SID~HAMIHUM HIOTH 18 1 15,1/1) C 2'0 CD'"1'Illl ,IO="AxO(i3UHH,ISUHLI REtuRN E~O o V T P V T o V ,POT wq"rl~tlO)lITL on I)v '01"0 IJO Ic"Lln-, I'IH III I ~,I .\',)lIeVLlI"101 •101 Ill)fU~~~l I'OJV£H&GE ~E4D9 fUR A TIO&L CY~LL'llll.,I.,tlll) nu IU')1~1,~JoIO L olt q w"lll IbolUu)I,Ld"AV(IJ),J-I,L) 1110 f.l1~"&1 II~,I 10 IOolvFIl,) 14')ell"Tl'II'1:.c WillIE ,btlqOI lICOLII)oI.IoIO) "0 FUUH&I ('OI'l.Tln OlL4NCE ~I l4CII JUNCTIOH (C,')'111III,I"'III) flO lOU 10l,N,'0I0 L:1•'I w,,'IE (bol'l'))I,L,(HHIJ),J.I,L) Iq5 FOq,UI lI~,'10 'oIl"O..I.O) l 00 C1'1'1 Tl "Ill C WIlliE Ibtl';O)('CUI.II )0101 "0) 150 FORII'T I'O~YEH&G(YlLO[ITIES fOH A TIPAL CYCLE'IIIIW,I','.'I) l)1)IbO 101,HC,10 L 0 I'q ~II'IE (~,15~)I,L,IV&VEIJ),Jol,L) ISS fUllti'I II~,'TO '13t10fll,) IU CUHIINIIE C C WilliE lbtlhS)IICULlI)"el,IO) 165 m41\q l'OAVEN&G!:.F1.0,,9 FUR 4 'Io&~C;YCLt'lIl1J1d,,'IIU Dll 115 lel,lI[,10 L:I t q "1111£Iboll0)I,LdYlvllJ),J-I,I.) 110 fl)~'141 lIu,'TO IlltlOHI.O) 17 I)({I""'4111:. C DO 120 Lot,LT1~! I~O "RilE Ib,I~51 ~UUAII.),p~Tall.,l),P~TVI~,l),'ATarL,ltl),'RlvrL,ltl', IPR1DIL;l t ll,PijTVIL,lt2),PijTUII.,lt)I,PHTV(L,lt),I'ATQIL,I",,'RlvIL 1,lt"),DRIUll,ltS),PIIIYII.,I.S) 115 '0~"41 IIIM.FU,2,rIO:o,rf,2,rlO,o,;ft~,fI0.O,fl.Z,'10.0,r7.1,'10.0 l,f1,2,rlO,O,f',I) WillIE Ib,2nS)lICOLIO".loIO) lOS 'OUM&'110'v[A&G[Nunll.VULUME ICo ,,)I,IIIIW,19,'II') n(l 215 I'I,NJ,IU L'~I'q "Hilt.Ib.lIO)I,L,IVUL&V(lJI,J-I,lI 210 rnnti&1 114,'10 ',IU,IOE1I,,,) II S [u'n I HIIE [ C T"I'Elf"Jbvo"PEHIUO) ou aI,1/'1,NC nJ'(N):nPINI-T4 220 ONllllonNINI_TA wIIIT[Ib.2J~)IlH&,QPlHll,ON(HA»),H&.I,NC) i25 '011"4!l'Ol'U5ITIV(&HO II[C4TIV['LOW''O~[,c"CHANH[I.',I,I.IIIO I tlOU 'LO"Vl It(5)raS CH&NNLL II~.' " "O&IA pAI"T FLnk~&110 YlLUCI1,[S no Ilu Iq,NOPATib ""IlEI~"O)TIlL ~Alr[Ib,IIS)CPAIII),CP~IIJ'I),CP~'II.~),CPA1(1.]),CPA111.q).CPRI 11l'~1 'OQ"41 ('0'211,'CH4,."£L'IS,'CH&N~EL 'IS,1 I CH&~"flIIS,1 C"'l"lilL'IS,,CH.OJN[L'15,/' 2.ttu"VEL.FLO"VLL.ILUtl VEL. lI.,nu~vn.fLO"VEl ,'/ZSX,'lCFS)IFPS) "lf P 5)ICtS)('I'S)ICH)I'Ps)ICfS)1'1'5) 51 1/1',\1) SU~~OUTI~E OUTPUT lNPUINT,~Sl&Cl,NtFLU~) CO"HUN 11101 hJE.,JEXlIO),&I·',IOi.H,!TISO),YYI~O),PEHIOO,JGHIZUO) .,R&hG(1200,l),TLIClZOO,Z) CU~HONI&[O·'JUhlZOOI,NCMI~12UO,6),NJUNCr300,2),NQINllOO) .,n3INI41,lb),OGINI20U),OnUI20~),UINI~Oo),&IJOO),ACKIJOO) .,1~IJ~0),EvlPllOO),&KlJ9U)'&SI20u),&SKI200),ATlJUO),"IJ00) ,;fM';1 Jon),OfP1H(200),Io(~OO)'I.~~l JOI,l,fll J?O),vi JOO).WllOO) "VUlllunl,.llOOI,nl,on),IC'V(IJOO),I~&VlIZUO),ISOI2nv) ,.plHlJoul,nll'lvl liOO).nll""lIll0U),f.I',D(JUn),t.&vl 1100) ,...."llnO),,,I llnO).IUvll JOOI,'lnl Jnu),IWI )')I/),IIAVlI JOU),1Il)1I1l00) ,;1131 JI'OI,II~nllun),~rLIl"li"u),vln:'(JOU),VAYlI )1)0),n"l JOU) • ,vlll &V[I 2?°),vVI./I I l 0 0),St'll.£I ~1'n ,l r.I 10 1,J),•[II V J,1),liP ,IJ) cO~HOHi"'T5C1 '1J,1l[,lifll ,llll,II),""~lrfl,NII:'HfI,T,Tl,lHL Il,lOll "I1HI",In,""l'l.I""Ilu,t"I.'·I""IJ~nlll10),Ill LlllIIIIIU) CUM"ONtJOI "P ..,••1'''1",1'''111,''''''''''1r..'L IIOI,J'''''IJ''),l"~II lU) .,p"IHl~o,)o),I'lIlYl'iO,,v),P',T'lIS?,)v),I'I,IIJIII')n),"Jlll\JTI~,J) ..',C"Vlll'"Jl ,11lLlU(I),L 'IHI ,JINlu~),~I:ll. CUHHQN IL'/Il .1.1~(11),YLIOlb),IITL'112),~Ullllllll,Ylkllb),JUNI'0 INfEClA CPAI Al4L LrN OI""NSfOIl V[ATllb,l),Y[RTllb,I),~nqlllll).2) 114T&tlnillJl/b'UH ,ijllflMr,A.'IOJ ;UII"UVR,ij,,~,),,,,1 ..b'UH ,UII_~,u"r.VlIlI;"f.IIII1&,UHTES ,}.u" DATA VlIIII/UIlVlLV,uIICIH,'IH I,A"",UH 'f/,ultSlC .UII Sf',u"&€,U"I,U"",111.,",qHtT I HAIUllt1 f/U,UH&L ,UH !I'N,UIIG/:,ij'HIN f,'IIIELT U~II,u~,,",ijlt I,UHN ,UH HU,UHVRS I 00 10~I.,.N"PR1,b "llllll ...aO)TilL 10 'U~,uT 11'11 .20&U,IOC,ll£Tk&f[CH INC,''''_,20lU,IO_,'LA/AVErt!:, IC'L"OA~lll,I,11I qn_,'TIDIL IIyOttOOyN''''ICS p"nGIIIM') ,,~II£(b,IOO)J";IIII),JP~Tlltl),JPATII'l),JPRfll'),JPATll.u),JpAf IIlt~) ,01l'1AII'OII,U,'JUNC1ION'!'.;,'JUNCTIOII'15,'JUNCflOI'f'IS,' I JU~CTI')I/'I'5,'JUNCTlUN'I';,'JUII[11ON'15,/' 2 H1UA HlIVlff.lT)HE&OlfElT)HEAl/I/lEl) ]"['UlfEET)~[I~lfElT)IIEIl/CfEEf)'/) T·n.O ou lOS L:I,UP'[ TaT,O[1 T'fLU&l",PRf) HUII~IL \.TnbnO, ~AIIE lb,llv)~UU~ILt,PR't11L,I),pATHlL,1'1),pATH(L,I'l),pH1H(~,I') II'~"THIL,I··).PRTHIL,I'~),oq·",1I11,fO,2,HU.2,Sfl6,l) IU c: 100 110 CC.·... '05 rv I \;oJ VI, .c.. ~ ,1 ,..i I ;.~~,J I J J I t I I I -1 ("'''-..... 1)--J J J J 1 1 )j 1 1 i ]I 1 1 OUT P y T OUT ,U , CHAI/NU,I "UNCTlON,l ~ORllll'"HORllllr.IJ ou 25b 101,~_ vERtll\-VERrllr,l, ~U l5S ~cl,N'flGE liD 2115 "1'1,) 00 ll':i L'I,)O IF I~JDLOII~,N).EQ:J'RTlL')50 TD I" CU'lrl"lIl DO l.~M:I,NrUINT ~C(~,~\~r~Tt1IM,L) CO"II "',}l '-ALL C,,'I'IE PC,YC,"PT,NCV,1l1 "~"l Ib,l~OI INJPLOT(lI,NI,Hol.)J fOU'lAI IIl1n,]ID,?'IIlI'LOT LEGENO JUNCHOIf,I',.H.O,'OH ••,UIl •1.10rt JUNCTlONdll,lItj.l) [IJlllllIIll TIO'l rLO ..PLur Illl ~~I I.I ,b ~(QT(li=v(IlIIII,I' DO 2~O ~:I,NlflOw 00 11 0 'l'I,j (Ill 2 b a L:I ,H IF ("[PLI}T(~.N),EQ.CPRfILII CO TO !.5 C,)1I11 "ilL (\II l10 H:".,PUINT YCIII,lli:p~IVIH.LI CU'JII Nlll CUL.C,i>(VE (XC,VC,NPT,HCY,M) ~HI'(tb,lrSI INCPlUfIM,NI,H"',3' FO~lIll 11l1o,lo~,llllPLOf LEGE"'O CHANNfL,I',4H.O,.OH .u,u'j Q IdOlt C"UNHELoIII,lItl"U ' [1I1t1 """E RlTU~N rllo IIU z,.. llli l!)5 ZIIO 2115 250 lSS C C··.lt! lbO lb'l ZTO Z1S lllO ·//EN "NEil ·"'E .. ONI::I/ °N[1f oNEw .NE" ·"'E" 0"[11 ··~5 ,Ell.II ,(12.11 ,EI<!.II ,£li!.4 lVAPIII,AT01AL,tl,lO TOtll [VAPU9lTIO'l AlTr,C" AvlRlGE 3UP'lCE APEl,50 'T AV(4.r.E VOLUME,CU 'T lvlRA~l DEPTH.fl IOT'l £VAPQ~ATIUN RAIL TA:O, AlQI'l:u, 110 ]19 J ..,NJ TA :,,,utiL AVlIJ I AT~IAL=ATJI'l"'A1l(JI TU'P I.IOIAL w41lElh11l21 ruP·'1·'llIl9'i IZ~H 1l9t1 Il911 TlD'l D"il;(PLOT Ir(JTRI~I,fU.OI GO TO GIO Oll vil 1:I,b VlRI(lj=vl4Illl,11 ollu2ol:loIl >,u q I Z III ='ill;/(lill ,<!I Oil qlU I1Q,,,,nl .I'JI~I~) ~C('1,Ij:SPAClIJI ~C(t1,11:~IJI ",1I10h f4 PI C'l.l (.,Rvt IXc,vC,NPTol,U IlIJ "12 I =I ,b Vlollli=VEqilll,l, DI)uju Hcl,Ilr3L .I :.1 r 4 ('1) YC (11,1 )'llA(;(J,I) pI CAlL C"RV[(.e,ve,NPT",!) [0"11',,,( " .;Ull.oll) 00 zqs 1 0 1,N" T,(NCHANCI,lj,OT,O,00 TO 295 q."GEll,lPO, q ••;(;~CI ,2 I • 0 , 29'~PACl(II:~'NG[(J,I)~RlNG(1,21 wRI'E(~,lqO)II,Pl~G(1,2j,RlNGE(I;.,,3P'CE(I',I"I,NJ' 190 FJP'1ll,'O"II<l f4 U"H(l!l,/lAXII1UM ttE:lD 'flD TIDAL RAN,.f l ...i(~(I10']f1,l))1 . ..4 I r[I ~I H II (I,Il A(;(I,2 I, TlAG (I, I ),1"1 ,'1J) rOR"A'c'OII'1[I}f IiINII,UH lNO IIlXlHUII HEAO,HOURI,/11I1110,UO.Z)J1III -'II aH lIZ 420 1112 1110 414 )10 C .• C••I • c C • C•••• rJ, W VI \ ....t... ~ C '.e v c I n,l ll'I'I."[V ••~IIII:~PU1"'1 nu 210 J:II~PUINT ,t (J I 1\:"11''Ill J I 2'0 y[IJ,li.n.o C C••••IlqAL ,'AC[~LOf O,)~21 1"1011 w z o•·......~: ·......-III ~-'"·'"~"'-~.% --Ocr -.....::t ~..c ~)(O"".i:--c.:.::w '"0....-- o _0'-- _.o.........-.. tv- -c.:>-• c o tv- o ",,0 ._P'I-o 0-::»..o <>0::> C>_OC>_ -"''''•->......", ~"'z-.-..~r,.>->---",_ •u "'.,.-::::t::::l-c." ••••')C • 00..,"'0 •...I • ~~~U'\~~__~c ~~..._JIll,• ....•+....::.....J .... =~:...a-.~=c_~~.._. ~>_~_~=.~>~=.>_?~.c_...»~~_......__-.__z¥___~"~"-"MI1.1 ~_U • :~40C~4~~~:~~4n.4 C~».~~_·~~~~_-~>c~. y_4~4C~--__~_--~-~_Z ...., '"o ~.. ~........... c a: ~... % Q-.. u.... :r:-o ....-UUu- ....o-.. '"c I '".....- ..--'"CO-o CO oo o- C 0-0..o ~O C-0_ 00_-"'r·.~ 0-..."Ct'CZ·.-...-cr ...:>---«Ii "·-..-1Z':r _ - 0':)-...II'!2:1 • •••,...X ooc:co ...·.'"....",l.f\II'.U'!'......._Q""''''' ~~..->~~..: :...I+.....~-......J ....._':7 ~=_~.~~.c>~c_• w~_~_~_~~>z_~_~~·~• .~~»-........---I--~C--~_WII"'I_"U".I .I_"._~..=_=:.~C=~~=C11"=~_~~>~~.>~~~~-O~·>II~~_cc.c~~__..u-._2_~ -c.. c.... .." o.. zo-.. U... '"'-CO X '"o.... '"......... :t...- l> ~........ '" uu ... -0 0 I/O...--J Q..oJ--.. %.... u .0 %-OS.-L %0 ->---.....z-~....c N_t ~c....·.~N·_C XJ\.....-"".. -~r ... >0 -~.-. .---.. X'"r oJ -U -. 4-.-W~.....,O c2.,-r X-:E.-c0..,,.,,•:t ..""..~'".. :....z>-4 -':':"::J" ~.......-., :>~.,-"\I-"'W '"O'::'Z '"'">->-~ u:rW4 ..".."C-,7 .....c:~::-::t:=;i-oe-.,..>->.... r)U,o.g-e ~.....:- oo --o-.. ----0 0-..--..............-..........----.. ..--....- - o-.. •"'--CO ..-....-..-..... ~r ~~-u_~~_ 2.......4 N # ~.~----"X _............. ..en ~.....lZ cz:a::: ~-~,-~~~.----.......o..n>0>1J"l:>..,.-.-oil oC "0 _:-0 _=-",...t\I......c_----~---~-_~~~00 ~ ..~W -~:::::2 -:J -~-..-.I - - - _..U m%O =~_~__c--..~~~ -<_~__c =%Z ~~4~~~~ O~~~.~e =~O~O~~O---~... j~_.0 ~~~>~>~>x=o ....._~---__ ~%%~~~-~-~cce_~o~o~~- tL ......>-.....- _- _- _..........l"\,I ..,.--~.- - - -..=-:r C"')tr <II -e _ -Q ~-CC ~~..,...r::",,",,I.f'\l'"'='>C',...e e ....._ _...~..Z -- ....'::)c .....::1>a_tl J'l _n t'\I4:J I\.l'~""\l..Q ~..,...a~_t'\I.."..__=%_~_~_% 7.:"'Z~""'O*N%--1:-'--c __c:..-0---_...............'11',..)110o 1.V:a:V)"" -0.:>'::t ......::"•..~...,\IJ ..."".J ........w ....,........L6J.-I ...._ - - -:"..._-"~:")-J -,II -II -....,W......"'"__)0'"oD _ooC 4 •:-<:_.....::_~.c._.c.===~..c _II u::.__#"Ift-= ~2~7n~--~--=-_._-~=~-----__O~__:~-,~_ft_~% 0020 l.L.:......,-....-..._-~C'-......:=-...J=W---""""....·..............:::::'''''''~--:!::...~.~--.:c~T~1 ...~-r-.~--.----------~----~~=~T __..J ~X%r~-C-~___ _ _ _~~~~--~=~~2 __~~~-Z_o ~~-~4~n%O~I'~~~I.~~~~%~~~=~~~C~%OC~~~~~__~~_~_~_C~% ~uQUC--~~~-~-O__%C_~~_~~~~uu~3~~~~~Ce~4~C·C~G~u~~ 0 ~-z:>-..-•-0- C...>-....--... 0 -0 a:...:;l-•~~.. ~-0 -..... ~..--.., IL ~ 0 ... L -~ .- ."•0 '"0 V"'OU'!'D """C'~C-C''"..It'l 0 .....-'"t\I~"".:r I.....t/"l.~-...'"..~~...--:- - ('J ( w VI, ......v, () ece 100 c C 105 110 115 Izo C C C cc C C C C US 1)0 C C C C \]5 C ( C C t C :I C A ..r: $U8~OUTI~($C~..r:(AA~Ay,Ax~tN,NPTS;INC' DI~lNSIUN Ak~lY(NPT$),INI(5' OA'A I~T Il,q,5,O,I~1 'NC'·I'!lSlt~C) SCAN 'OR MAX'AND "1M '''"~'lORAY(11 '~fI~o'RIlAy(1l 00 100 N0I,NPI"INCT TF C'~,••LT.INqAY(~"A~AXoARqAY(N~ I'('''I~.~T,AARAY(~)1 AH'N.AAHAYCN~ CO'";"1'£ "(A~•••A~IN'120,105,120 IF Cl>1\N)II~,I~O,IIO ''1I'''Q 0'~I_:l'O'AHAJI (;~10 \~O ''''-'0 0,"P..:i :OIA>1JN CO"1I NI)l tOM,UTE UNITS/IHCH RA'l·(lHAX.AHIN)/AX~[N SCA,,[INTERVAL TO LEU THAN 10 ldLOlilO(AAtfJ ...A "(A.I T.0)N'''O.''" ~ATE:",lf/(lo••oN' l'lllTE~I.00 ,INO NEXT HIGH[R IHT[AV,.. /)0 Ilo 1 0 1.5 11 (~·INTII)IJ5,IJ5,1,0 CU'ltl'<IJl l IS N[XT HIGHER INtERVAl. ~ANCE I'SCALED B~CK to 'UL ..·StT l°I'JT ( , ) RA~C£·'LOIT(L)OIO.·ON I'(INC.LT,O'GO TO 1~5 5[T UP POSiTIVE 'TEP5 KO'HI'I/R~NGE IF (AHIN ...',O,)N.~~I CHEC~FOR HAX VALUE IN RANGE I'C'-,.,CT.IKtAXLEN)oRANCE)GO TO 1~0 c C t IU cc C I., 150 155 I e A L (. tONPT$~JNCT·1 AARlYllloKoRANCr: to'-'NCT ~AAlY lJ)0AANGF. ~[TU"~ t'OUTsiDe:RANC[.Re:lr:T I"AND N L°I,OI IF 1~.I,T.II''0 TO 125 I,.l ~.N_I GO 10 \25 SET UP N[GATIV[ITtPI Ke '~I.ifuNGE IF (A"lX,GT.O.)~.K+I'F ('"IN,LT.(K.AX~[NloRANG[)GO TO 1-0 ",,<CI.NP,," lRIlIY(')=~."ANC[ ,el_'"rl ,RIlIVII»·QUIGE REIUNN "'''Ill rb""~) FOD"ll (IIIOX,'NANGE AND SCALE ARe:ZERO ON PLOT ATTEHPT"RlIVIl'l E,<0 .~I..~1 ~I i J 1 -..J )I J I I ~~J J 1 1 ])]~J 1 j 1 .., ('J 150( \A U, vt t \ ---U\ c lou 105 110 lIS !ZO 125 lJD 115 ..0 T lOt , ~U~~QUTINE TIDcr 'NI,"AX",NC~1ID NHICO~MOU ITIOI UJE.,JEXIIO)'A.~,101:~,tT(50).YYC501,P[RIUO,JGW(lOO) .,QANC[IZU~,Z),TlAGI2UO,2) nIMt~'IO~lA(IO),X.IIO).,.X(IO,IO).OXY(IO),MNC2.) DATA 0fLIA,N11.N.IU.OU~,l••' IF I'll >.(.~)GO 10 10~ 00 100 lal,5 J.r•I "1''<''\TII~I)=ll,'1TIII·rTIJI)/U. TTI~II.0.6~j50YYIII'0.lq.5.YYCJI ~I=..I.j 11l tl ll,IIIllltTTlJlllZ. YTlNII.\YY\II+,YIJII/Z. "'Is'll.j 'II~I).IITIII+l.·'T(JII/O, TYIIIII.O.IQo'·'YIII.O.aSlS.YYIJI CO"I I ~.IIE Cv'"r !"IIl I"u liS J-,,>lI' I"u 110 .'I,NlT ,liIK,.I)OO. PIJl:/I. 30(.1),0, .1)Z"I I"l.I DU lJ~Iq,'l1 Ill]Ii~J"I.Nrr fJIOILnA/(J-11 FJ)"lfl"lJ-"JZI I'IJ.ll,NUI GU 10 120 xilJlarUSlIJl.""1111)) roLl IU liS JiIJl'~IUIFJ1·~.TTII)) 1 F I J •r 'I,I)l X1J).I• ,lTIJl.SIYIJ)'.XIJ).YYIJI nu 1.10 J'I ,'<TT nU 11J .'"Ill1 3.il~'.IJ·3ll(~,J)tXX(K)·XXCJI CUIlllul)l ., ,,'0 11'11'1 Oll'UiaU. no I~O K'I,NTT :\U"'a'l. I'll .as J'I,14H IF IJ"fl,.'CU 10 IqS ~u~03~~-AAIJ)·SXX(~,J) CUIIII Illlf ~uHoI5"M.51fl1"'II"XXII(,to nlL"u~ISU~-AAI"')) Ir l~ll.r.I,O£L"AX)DfL"A.·OfL UI~I·.W" n I I I :.Gt .M All T)1;1)till'S '5 "IO(IIU ••G1.DElIAI CiO 10 1-0 CU"II"1I1;. ,IDe , DO ITo J a l,1 1'0 lXIJ,,.,,,)cAAIJ! Ir I~CHIIDa"~")GO 10 ZIO w~IT£rb,11S)JfXINNI,IAx(!,NHI,I_j,71 17'fOQMlT 1 1 0 TIDAL COEFfICIENTS fU~jU~CTIONI.I',/7'IJ." will If I~",11I0) 1.0 ruRM&II~tHO TI~E OBSERVED COMPUTED 01") II(SoO, IlU 19'>I"I,N' ~".·=O. 1)0 1'10 J=2,I<" FJlo'LnAIIJ-I) FJl.FLn A1IJ-NJZ) I F I J •II ,11./Z )GO 10 I n ~U>i=l.'~'AA1.1 I-COSlF Jl ...."(I) rou If)1'/0 las SUII.3YM'&&IJI.SIHl'JlOW.1TCI'1 I"ClllIlI'",l ~UIl.SU""&r I) OIFl ,s'j"·nl') AE"~Lf"lhSllllrfl /95 I<ul If.1"'0.2(;0)TT(I),VY(Il,SUH,OJ". loo '(JRMAl l~llo!.~) Will II ,'<6,?05)liEs Z05 'U~...IT l~hOl~IAL,lOX,'I~••1 DU 102 Jea.Zb TA:/lU,IlJl'" "N (J I •AA l I ,"'j) OIl 70Z "2.11 TIl'I-1 10Z MIlIJl.~NlJ).A_(I,NN).OIHI1A.1~I.AKCJ.S.NN)'coaC'4.TI) ~il1 TE (610'11 ."FUR.UTI/,20X,'5U"/14RY Oy HOUAI) ~qlTf.lb,7U71 (I,HH(II,I-I,••) 101 FU~/1AIIIOIIJ,fa.l)1 ~10 CO-IT 1Nuf· C A(TURN (NO APPENDIX F '2..-35-1':)2- - j ---~1 ]j ]J )J jl\-]j ]]I 1 ) c C no 7~O ~CYClol,~HYO "CYCH ...CTCt ,ATOXYI(.t)'lq.S5J~.Q.]8lI7.Xt,.g2~d£.).KAK_O.'~5.Y.CI.b~'E ••·s.a. Ib[·.·A.~.lq~l·d'X'() CAll I"PlIl 101 IPe~OZ?t1~lLI If 'l~fHr..ll.l)II'£MOol In£L'lolll UU IF (IOfL.LI.11 10Eloi A II U A l. tALL ""PUT I I) c CALL Sf!lIP C , • c ••••3fT UP fINAL ALPHA "ATAI~ C c • •e••••DISPEH,ION coEr, IF IIEr.LI.ul GO TO I'D "OY"·I ijO 100 N'I,I.C IF INJU"CCN,IJ.LE.OJ GO TO 100 IINI·Cr.IINI·CVA~SC"I.VSCH))·CRAvt(N).R'(NJ) £E p.I;1 I "I nlfl'll.t£IN).ACIN)/KLLNCN) 100 CIl'AT I NilE nil I I 0 J:I,NI' K :JV"1 II SAL II-\.TOI'(KI AAIJI<n.O 110 "'ICJI=n.(I nu 110 Il".loIEE r.ALL SF Il'P CALL fn~"I~ALT,~ALTIN,~.LTEK) CAI.L SnLVl1 (SALT) 1111 I~U 'jEI.',e ,1I.'oJ1IJ./C (",II IF (J1:lll.~I 00 TO 120 J7.=!dl'··C (II,21 ,1I=JII''lJII J7.=JIINIJZI ~X;A"5(5AL'IJII.SAlTIJZII lll"I>11~I.cr~I'I)·S./IL£NINJ £t..~A Y[I'll.H I'll U I '.I •,f(I III •11 I Iq ) •0•5 nlF (''l.u 1"I.lCI,nIlLENIN) IZO ClI"''''I,l If 1"N:"f.HEI CO TU 170 wllllE (b.1 lUI "~ Ilo Foq~AI II~I.,OX,I CHANNEL olSPERSION C:Ot"ICI1NTI,'0 ,T/I(C (LA" I I ~(I III ~AII0"Sl') wHI rE I""QU)(II,EESlVEIN),UI~),Nol.~l:1 luO FuR'HI 1'>(!ln,2HI.Oll wH/I~10,,',0) 150 fOR ...,A!1".Inx,'STEAOY SUU:SALlttin,PpJlJ WHilE (b,InO)IJ,$ALTIJ),Jol.NJ) 11>0 'u~H·1 ISIIIJ,-JPfd.Z)) 170 rO lll l""Ec...;£5Tl'lAl~C"LIIIIICI" no I ~~J J.,,"1' "=JI,,,(,J I I;;H"P I J ) •''I.'J TfIJJ,II'uHIIIZI"1 If I J J I ?I UI H "CI I ..I lao OSAIIJ1=SAIIJXYCTEMPCJ),SALTCJ)) I 90 COli I I "Ill 'lOY,,'IOTNI'ICYCti) A 0 U A L ADUAL I'A ~ATHEHATICAL HUD~L DlVE~OP[D TO 51HULATE THE MATl~QUALITY OF AN r'TUA~Y. O[VElU~H[~T nr THl HnOEl MA3 UOHE uNOEq THE SPONSORSHIP 0' THE CAlIFOR"IA 3TATE ~AIEH HESOURCES CONTHUl dOAAO ANO THE NA3SAU.~Uf'Ol~RlGIOIIAL PlANNlllij BOARO,Nl~YORK. 6001Tln~6L H~0IFICAfTUll3 ~EHr HADE O"OIH CO~TAACT NU. DAc~aS~7~.c·O~bq,DEPAAIMENT uF THE ARHY.ALA3~A aISTHICT,. A"CH~~.Gf,ALASKA. ~ufslln~S RlCAROI~G fHf CO~PU'[H enOE OH tHE HODEL APPLICATION 3Hn~LD ijE DIRICleD TO OO~ALO J.SHt'H,tEIAA TrCH,INC" 3100 ~T.alARLO ULYD.,LA'AY~TTE,tALI'.,9u~q9 luIS·Z6).l77IJ CUH>tO~I'lluG,ll.nuC IZuO) CO~HU~/~IGI "C~L"I~o~lnl,~JU"CIJUO:ZI,JU"llOOI,XLlN(jOQ) I,ALrHlzoul.ALPHIIZvol,AAIZUQI;fi~12uOI.O[IA(200) ZI A3.VE II 0",2 II ,A(l ~r.Z I I,HP"lI2 0 0,Z II ,H I Jo 0 I,AS I ZOO I 1.nIFll'lOI.(l(H61 ,V~I.lOOI ,CUl/12 0 UI,1I1 JO\l1 ,Yul (2001,lOOOJ u,r.CII l~nl,eC~ljQOI,ijlPI2001,UAvlIJUOI,HSllOOI,VAbSI1UOI COHHO"'/'Il"ll JIII.I"!loH •.lU'II;I"lo!ooi ,."I'lAIIOu I ,Q1'1I2001 ,UI:INliOO) I,'OSI"I I~QI,1'11"11·1 I~~I,10'1'1.,1 l'>OI.ClJL TI"II~OI ,CI.ILfINII~OJ l,10:)C I"(I '>0I d'W'1I "I 1'>0 II IjX YI "1150 I, I EIt"II",I OJ 0 I l.T1 P l I ~I ISo,~I •~II ,1'1(1"'11 ~,lIJ3Il0QII"II'.I?IJUI.ln"'(2110).eOLII~oOI.(;IlLfllOOI,unOCliliOI 5.A'ln'lI l r n ),'11 Y(,1001 ,r r 9 I 211 n 1• I YI'l I ~u 0,III ,I Y1'[DKII.0 ".U) 6,n Al G I Z 0 II I .111 [II(l 00I ,n~r.l'1 I ~0 0 i ,P'IIIlC OK I l 0 \I I,'1111)',II~I Z0 \I I 7.r Jl I fl ~Il n u )I [IIlf (h I ~/I 0 I •u:,AT,'0".I ,III '114 (lO 0 I ,nt.Np I ZOO ) COHH~~/AC~/I'Plt~lql.lt5(ILIZUO,ij).UII~121 CQ~~nll/~'C~1 l'IA.fI2n,5),FACI~HIln,'>1 COHt10·1/1115C/',J."C.',~,'H1f",·/'I·'!J.I1II ..,l>lL l,IPAGE,""iYll,ID'Y,lOll r I...J~.'lt ••PlUI,1~'IP(lb).Allr701.IUY~I,>ZI,11'LIII.O),IlllClol l."CPllhlf,>n,IPC,(;.LI)IY,'1cye lt •p.1u AL C004'10"i~1et ',UI)'J"O •.I il lJlI 'H)I'UI,!lUI'II'0),UFLr)UD I'0 I,xu (10),10~EK 1101 I, TUIt,f x I I01I Ii1 I P/1 I I U)dill (I XI I0) Ie OL r I XII 0I,tlUII t Lx I 10) 1.'l1)[,"fA(IOI.IJHftIIOI,lll1l·(XI,ul.IYrl[XIIOIUII~ALnXII01 COIl ..lJtl/l'l.II r I I P LnI 1111 , CP I I 0 I,b,II 1 I flAY I 101 ),NP UI ...I,J"L0 I lid I.IPI""p~.I"nA1IJl.~lJI)I.PIZI,2\,PHOfAI21,),ul,NCIlllpCU) 2.pMrfijlll,J,lI1 ' r.OHIIO"i ~r II ~A iO,I.•.1';llJ"ll b.Z I•f 0"£110 UI•f T"O I ZoO I I,FVIlOUI.~h~llq.bl,hl~OA(lOnl DIH£~3io~(E~AYl 1II,lllll,IE ..Pllli.3ALIIII,CONIZUO,I) [OU I VA,l ~U II:ES.~fill,YA0 3 I I II,I £F.I I )•~S (III I.11F.~PIIII,MAVl(III,(3~LIIII,R~CII),ICIJII(J,II.IOs(II) .,. C••,. C c: Cec Cc C C C Ccc c:".c.... rJ \ W \J'j \-v, l.J A 0 U "L c C.:.:DUALITy ~OOP,CO~STA~r HYDRAW\ICe C cC.~.:10'IF IISNIPII',EO./'GO TO ilO I)/j ZOO J'I,~P H lJI'o,O I\BI Jltn,O iOo CO ..IINIIl I'All 'n~~ITns,TOS/N,TOSlXI CALL SnLV,'1'0$' llO CU"II"I'!' TUIAl r.lll.l'UH'1 II AC1[111' IF '1~~lrl.',fQ,11 GO TO 4&0 H'INUVII,'_'I,1 I CO 10 QlO nu qlU J ..,NP .IJo.I''''I.J I I A I J ) :r 1)1 T n~I J J I 0 VUl I J J I 0'LP H I I J'."lJ,I ) 1\,11.1 I:.cnl Hili (iJ I'VOl IJJ I ulPt1(J I.COl'I JJ)'"(J,,) cUI<11"I,l TOT'l 'dlHflGfN I'(1~~IPI2I,I.O,I)GO TO )'0 011 1''0 J o l,IIP JJ'JU"IJ I uIJl:l\. ~II 1 J I :• VIII r JJ I •6E N 'l I J J ) r.All fn4 N rIOIN,TOTNIN,TOTNEXI CAll ~nlVIT IrOINI Cl)"II "11£ TLIT AL rlt(l~D'lII"U'· If 113~II'O"I:D,\)Co TO G'O nu qOU J ..,'jP .JJ"·1Il'If J I 'A(JI.", ~"rJI·.vnl(JJI·"ENDIJJI CALL ,,,II"IIIIIr,TU'I'II<,TOlpl!XI CAI.l ~lIlV(T flOIPI (II"1 l'I"t llZO 410 190 100 1I0tl A g U A L c .,. C•••• 19t1 COI/T1 NuE C ...C••••~PTIO~Al CON'TITUENT, DO J7 0 1-\.' IF IIS~IPII.ql,EQ,11 ~O TO 170 IF INI1Y",'E/),11 00 10 )10 00 JoQ J=I,"P JJ'JIINIJI 'lIJl'rTYPfIJNIJJ,/I.TY'ETLIJJ,/»'VO~IJJ).A~P"I(JI·T'(J.l' 100 ~~IJI:.IlyPlO~IJJ,ll.'VSE'LtJJ,I)oVOLIJJ)'ALPHIJ)"YP[IJJ,I,-T'IJ I , II, CI nC I J , roll ."J ,JO 110 0"H 0 J ..,NP .JJ'JI,..IJ i ••(JI:rly~rUKIJJ,II.1Y'ETLIJJ,III.VOLIJJIAT'IJ,I' '20 I\HIJ1'r.lnCIJI 3H CO'lII"II[ CALL 'n""llYI'EII,fI,rYPr:IN(J,J),TyI'EEKII,Il) Clll ~nlVIT ITYI'EII,II) IF (TYrl[')(I I,U,O,OI OU 10 no nO .lllU Jol,,,I' .1 J 'JIJ'l{J I )40 crUCIJ\.rYP[OKIJJ,lloTfIJ,\I"VP[IJJ,II'TYP[[OII).VOLIJJJ1:1'/I','0 151\.II'(I,fll,ql GU If'HO 00 JbO J'I,I<P lbO (l'le 1.1 \'0, Htl l'u N II""E c C•••• c .c •••• " ~Qwo~QPl~HINC1CH' 00 750 ~C1COol,HOH wPLOT'wPlflTtI ~OHoLn'Yt 10[10 DO b70 ~CYCO'I,IPlRO cC.;.:"""EH'TUllE If II~~IPI~I.[O,II CO TO i90 IF It'OvN,E'',''CO TO Z)O CAll HET~Ar II,TE~P' ou UO J:I,NP .IJ·JU'IrJI AAIJI.n,no)l8"'3IJJ'·'THOIJJ'·A~PMI(JJ nlll J lon,00 Ilft IUS I JJ I'IfOII[(JJ ''''TwOIJJ)-U:HP IJJ J "ALPH(J') oUt CO"I I'IIIE CALL f"Ii'1 IIE'1P,ntlPIN,J[IIPEll) C'lL SnLVl1 II[HP, ·nu IU ?l0 1)0 I'U'lr'''I'!' ll."blJ pLP(j,f ILL:U,'.'Uol 00 l~O l'I,lL CAll H[IO,T 11,1[HP, OU l"O Jol,NP JJ.JIJ'lIJI ,AIJI:n,OO)lAI·ASIJJ)·FTHOIJJ, ~"IJI.n,ooll~I·"SIJJI·fUlilIJJI lllO CU'lll'o"L CalL /'11'1'1 IIE.1 P,HHPIN,lEHPEX, CAll "llVlr IIEHP" rr Il,~~,lll &0 TO lbO 01''-'u J'I,~J lSO I[U~IJ\'lllHPIJI'l,OorEHPrIJ')')~O 2/00 I'U'"I'u,f. Z70 (1)"11'<1,1. 0",HO JJo.,NP .rdU"I.lJI pIlH"(J)'I9,~ T'IJJ"I'I,Ol"lIf'Jl,lloql(q(llool IIIJJ,'l oallN(II·.1 r.TOclJ ",o,U leo nS"JlJ\O:lAWXYlHIlPIJI,tOHJ)) c v, ~ rJ, \,J\/, f J J !I I J ,~1 J .~I .~;J I .....------/ ---1 J 1 J J J J 1 1 )t j 1 A 0 U A I.A D U A .. c C IF I"'JI'I"PI,IlT,/PtyCI,[O,O)CALI.OUTPUT (L04y) II I~OY".l~.O.At/O.IPUAY(IPPI.N[.LniY)GO TO 7iO ,,,OAYIII'I'I<l,/lAY cc.:.:~IIIHI p'l!l1 Ilf.PUll 0 ... If III'p,I.D.ul GU TO HO no 11 U II =I,U IF ("t(l~P(III,EQ.61 GO TO 710 p"l'p'PIIII nil 100 K=••II PP nil 1>'10 Ll.1.1I 1 011'In III I I L •K I If llor'I.OI ro'l 10 110 It (·.f II.>!I foil IlJ 66ft D'IIlt A (,l •1"1'.111 =C Uli 1\"11 r,'l 111 1,'10 6110 Pllnttl(1 L.lI'p,Jll:cn"IL,O 1I0l0 CO'"I ',"l Ton r,','d"'"l 110 (IJ"II:",'. 11'1'=II'I't I 720 C'J'/II'.lll '. 00 TO 600 . CONTINUE • no ~qo J.I,~" JJoJ\"1C J I lA(JI:nUONOKIJJ)'YOLIJJ)*T,IJ;I) IllllJI=n.O CO".PIllE CALL InH~IUOO",BOONr~,UOON[XI CALL SnlVIT (HOO~I Cll'"It/liE 590 bOO "10 ,ao c C.~.;DI3S0lvlO O~VGlN IF 113.1"/111.[0,11 GO TO 6"0 IF (NO'''.(Q,I)GO TO ,,)0 1)1)b'U J=I."P JJ'JUN/Jl U 1J I <vlll (JJI-OROH I JJ I-.LP".IJI Jjll 1J I ·vOl (J J I'I ~!lOOC I JJ)-0'10CO'<(JJ ~.11"IJ .llt (-aOON CJJlonOOllOI(IU)- Inllf"IJJI'~iLGIJJII-IFIJ,I)+O~OR(JJI-(O'AT(JJI-'L"H(JJ'O~'IJJ)'I 1120 [1,/;1.""l GIl I'l ~'iP 6)0 CIJ,,"t'l.l no b"O J'I.t;P JJ=JU'IcJI AAfJI·vl'l IJJ)'OIlORIJJI IIR 1.1 I =vIIL IJJI'I ·I!UOC (JJ I-UODCOK (JJ \.HI J;2)tl-1l00N(JJ)'1I0DNOK lUl- I (lll~II(J I )+Oll.G(JJ I)-IF IJ;I )tUROR CJJI-0,4T (JJ H lIug CO',T\NI,Il 650 r.II'III"lIl (AI.l Ir'~~IIlH,(J.nN.oxT£~1 CALL SnLVIT (O~Y) 11"0 Col'HIp/lll 470 C,J'II,N,,[ "I THUG,"nu,'11110 IF ('~.I~("~l~.11 GO 10 1110 If (~lJv".lfl.11 GO TO 580 t')ll ~'O •••"t,p JJ-J\"',JI A A1 J I •"'In'.n~IJ J I -YOl (J J I-il P 111 (J)-T rc J,II AijIJ):.~~u~u~(JJI-vaLIJJ)-4LPH(JI-nOONIJJ)*"(J,I) r;U'III"lll CAR,JII".(fIjU3 ~oo IF 113'IO(~I.[Q.I)GO TO ~1I0 IF (,.')v'I.Ul.')cO TO 5'0 00 'icu J'I.". J I-J'P"Jl ;;(JI=.untO~IJJ)·Y~lIJJ)'AlPHI(JI.i'(J,ll 11'11 J I '·'I(IlI(OK I JJI,VOL UJ)-iLPtHJ I./IOOC (JJ)'TI"IJ,l) (0"rr '",E Gu It)~)O (l,'I1I'",l f)')'.JIll}J;.I,t'lIP IJ:J"'"Jl Ai lJ I ,"un (OK ( J J ) -vOl.lJ J)•TF I J,l) AIIIJI=n,O r 11'111111,£ CoLL 11I~/4 IUOUC.1l00CIIl,bOU(lXI CAll SnlV/T (OOOCI Cwill ""[ GO TO 1150 tONT lilliE 1)0 ~uo Jol,N,. JJ'J\J~IJI iA(Jlcr\JLlo~IJJI·YOl(JJI·T'IJ;I) /I~(JI'~.O (U'"/'Id (ALL '~H~(COLT,COLTrN,CnlT~XI [All SnlV/T (COLTI [U"I J "Ill 'tCAl [Ull'U~~5ACT~RIA I~(1~"IPI5I,l~,11 CO 10 510 'f (,,~yH.fn,l)co '0 Q80 01)uTO Jel."p J J =J'J"tJ 1AAII)=ruLrO~IJJI'VOLIJJ).ALPHIIJ).i'IJ,11 II~I J )••((Il'l)~I JJ I'val.(JJ )OAlPHIJloeOLf (JJ).TI'(J;I) cu~r I'."t rofl 1'1 ~U1 C0'111 "'Il n~l"~'l J<!,NP JJ'J'I't(JI ;.IJl c r0LfnK(JJ)'VOL(JJI·TF(J,11 A~I 1 J I =0 • 0 cO\l'I"lIl [ALL Fn~~ICULr,COLFIN,COL,exI (ALL ~nLVIT (COl." r,o'.rll;lIl: UO U50 allO '10 510 5110 Ho 5lQ a80 010 aqo 500 .'0 Sao ,~O c . ,c .•.. c •••• c c .c.,.. \.J\ V, - ('l \ wv, ( c ('.l \wV, f ........ Vi " A 0 U A l. t~;.:,rOR(TI~(~r3rO~Y PLOT D~TA JF I~PllH.GT.IOOI CO '0750 1l~Y1~PlU'I·LOAY (10 '.U Kol •• l'(IPIU l IKI.EQ,O)GO TU 1.0 ,.JPlUlIKI nu 1 lO II_I,NJP JaJPlOTlIl1 CP(KPLnl,II,K)aCONIJ,I) 73n elll<l 1NIiE 7u 0 (1}~11I "11£ 750 (O"llNlIl IF (INIlUIL.GT,OI llAlTf lINDUAL)«CO NIJ,II),Ka"U),J"I,HJ) hO C0'<'"<Ill ,PPoIP,,-, IF (NPP,GT;O,ANO,IPP:GT,OI CALL OUTPuT 1.1) NPlJI11T.I\PlOT .I'INP~INT,GT,IOO)NPQINT-IOO IF (NJP.CT.O)CALL OUTPUT (0) [NO I J t 1 "I ,•~J .1 I ~I J 1 I ]]]1 .~4)1 1 .~..] X~Jt.·OU"'X()l 'l[l p.OIlHqU) tl'U(I\'~"I" O'l 2/00 1-1.10 260 YLA1(1.II.tl£UIIl.O[LTX t X~CAL IS J~L "UY~~~Or SPACES PER UNIT ALUNG THE X-AlliS (5 ru~PNO'ILESl t~r.~L·luD./(tLAUIII'.X"'I~) IF(~IPIS,lQ,2Il .SCALOS.O C C CU~v(fl~DS T~(MAX AND MIN X AND Y VALUES,AS N[LL AS X AND Y lAB[L8 C IT ClLL'SCAL(,PPLOT,AND PJNE C C ~1~lN'IU~XCNPT.NCY),VINPT.NCY)H~£RE C NPT'~Uy~rR U~INPUT PUINTS ON (ACM CUHV~ C ~cv.NU~~!R or CuPvE,UN EACH GRAPH: C NPlOT,pAINTLD KLY, C XMAX •llIJ,~) XHI"•X(J,Il) YHAX •VIJ,II1 THIN •V(J,II) nU'pU'"NAL 'LO' INI'IA~llf 'LO'OU'LI~r DRAw IN EAe"CURV( " c u "¥I .. DO ~50 Lal,NCII If(NPTIL),EO.O>GO TO all' CALL PPLOTIO,O.IOO,~PLOT) 1/•I 'tIlIH-puron)) DELIV.OUI1Y1Ql VLAtlI6\.Yf4IN DO Z1 0 J"I,S 210 VLAU(b.I)'YLAUl1-ll.OELTY 'tSC AL'SO,/IYLA8(1)-YHIN> CALL PPLOT(O,U,q"HP~OTl IILIUNN [hO JOINING XO YO AND .," 'OR pquFll(S T"£OklCTN IS '"E 'IRS'DATA paiNT IflNXPTS,EQ,ll1 XMIN'I.O xO.xSCAL·CX(I,l)-x""IN) vU:T3CALl(Y(I,ll·TH1N, ..POI'll'NDTlLl OU QOU N a l.NPOINT XT •~t.tALl('(N.LI •XHIN) VI •Y~CAl'(1(N.L)•yHIN) CALL I'I"LI~o,rn,H,YT.K,~PLaT) xn •(T yO •TT GOO (0'11 lilliE auo ~•«•I lI50 CONII'l/I" Co· ec t ccc C C C C t Ce " ,OqH Y L.~EL3 AND 'ACTORS 'ET UP X AND Y StA~fS ;ORH X LADELS AND 'ACTORS XMAX a -1,000 'Hlri.I,OE10 y.U(•-I,Otl0 YYI"~I,OEJO 00 ISO ~•I.'it V N •HPTIM) I)tJ I~O J •I.N Irl 'IJ,M',CT.rMA. Ifl X!.I.K),1.1,XHIN I~I T(J,k),GT,YMAX IFI T1.I.W),LT,THIN CO~I II.I/t 1~("'PT~,(O,ZI)XMINal.O If (N<PIS,En,21)XIUX.ZI.o OV"H Ii •'~Iri DUr'cl2\-XHA( plL S~llfl(IIIHX.lO.o,z'\l I)u"rll \•Y~IN nU'iTUi •"'AX CAll SC£lE(UU~T,5,O,Z,I) 0:1 IbO ~•I."CY N •'·I't(", Xu"I.Ml •O\l~X(]) rl'..2,~,•lllJ'lK(Ul VI'"I,.,•OllHy(l) T(,,,Z.M)•oll~y(q) CUIIT 1'",L CUR Y [ 'UeROUT1~[CURVEIX,V,~PT.Nty,NP~OT\ oIHfN)IO~XII03.ll.TII01,1),NPTII> ,,ouycC~l,DU~Ylul COY~UNiLA9/ClAqlll),VLA8Ib"T1TLElil),HOAllll",YlRTI6),IUNITO CO·~O~~XAXE/N(PTS cc 150 hO t· t t c Ce ('J I \"J ~ I-lr, '\J , 0 R H 3U8R~UTI~E 'ORMICON,CIN,C~XI CO~HONi~ISC/NJ,NC,~P,NOYN,NB~O,MlIH,OElT,IPAG[INHYO,!OAY,IDElT tl NJP,ltE,~PlOT,ISMI~(I~I,ALlI201,IOYNI52),TITlE(20),T!Tl(20) •:~U~EDH(52),IPtYt,LOAy,NCYCH,lNaUAl CO~~O~iBAC(1 IN1Af.EI20,51,'ACTU~12ft,51 CO~~ON,EtC'NUau~D,JnOU~PIIOI,Ql~~rIOI,UFLOOOIIOI,XRIIOI"lll(IQDJ CO~HU~,~IG'~C~ANI20?,81,~JUNCfJ?0,ZI,JU~12001,XLlNI]OO) .,AlPHllOUI,AlPHIIZOOI,AAI2o n l:UA\2001,n£IA\2uO) ~~AS1V[1200,211,1(200,?II,ILPHA\200,211,ACIJOOI,ASllOOI .''JIF I \001 ,uIHUI,v~I.l~ul ,UllurZOOI,llf 30uI ,Vlll\2001,Z1300) .,eC'IJOOI,CCUIJ10I,Q~P\200I,OIVEIJ001,~5IJOOI,VAOS\300) COI1'1n'I,U II AL'JIl"I'H 20U I,JU"G I"I ZOO i,JIJNA I ZOO I,Q I N 1200).DC 1 N1200) • 'r.P1Cf.ll~nu I OI~ENSIO~eO~III,tl"lll,e~~lll , 0 " H eETA(JI·eETAIJ)"CO~(K)+CINIIOO'KKI)oOOU(K)_'AeTOftCKK,I) CONTlNI,E CONTI NilE ROUNO'"y ExCHANGE IFINQYN.[O.11 00 TO 400 no u 00 LEI./lIlO"N!) J=Jhl)v'jOIL) JJ=JU"rJi TA ,'lFLrtUO IL 1'11,O.XIlIL I)·noll f~J AlP'"I."'"'I -'lPI<A I J,OII ~H'AlPHIIJI ~lTAIJi=HlIAIJ).tAoA~~H(J)oCO~(JJi.c!KIl).O'~OOD(~I_K"(~J CU'/Il NI,E • (;1)l:l 1118 ellN I "lIll ~u ulo L=I,I/RUIlND _Efl=,JtlrtU'I()fl..I CU"~=."lll·fOL~~ILlt~FlUO~ILI)/IZ ••XRI~I) CTwll=l.'iI-e EX IL I-I D'LlIUD Ill-II,O-XRIL I pO£8e (~lll U o..U (~J) ALr"II.~t,MI·'lPHAIK[U,MI·CUNE II E q ,~F0 I.'IE t.A I KEU I tC TwQ J.,IIlUl)t,lill"I TA=~'Ln~Olll'II,O-XqILII.D[1l8ILI AlPHAIJ,"I·AlPHAIJ,HI·IA RF.TAIJ\=eETAIJ)tCEKILloUFlOUOILI-KIl(lJ CU'I TI NilE CU'II !"IIE q[Iuqlj [I'I) QOO 400 Q20 °111 i!i!0 200 C •c•••• C C C C C I"'LI)W,! 'J'J ZOo JEI,H" JJdJU"IJl JI=JI'''T''IJJI H=J'u,~I~I 'Jl AlTAIJj.r[TAIJI+CINIJlloOINIJJI'C!N(JZ)OQC!H(JJ) IFlJIII·S I.JJI.£O,OI CO TO ZOO ~~=J'I'.A fJJI 00 au 1<1,5_-I ;H.£l~'''l If 100,E'l.~1 lOr]TO UO C C•••:'O~H 'INAL eUlFFICllNI I1ATRJM AhD CONSTANT vECTUR .,,=N!I"O,I I)')QZ .,'1,"p ROAIJi=o.o 00 q2 ~=I,'IL /11 '2 ALPHAlj,KI.ASAV(IJ,K) IFI"01".£U.11 CO to 150 niH 1')0 la .J'I.I~p 11>11., 1(1(tJ-'.p""O llllJ'r.B1'.D 1'1"...Ll.OI MM.I HIII,II.OI 11=0 IFflL.r.T.N~)LL.NP I"I I)U 110 K=KK,ll t =I" /J=JIJ"/K I AEIAIJ10RETAfJI+CONIJJI-4IJ,!) BlIAIJj.RlI4IJl.BUIJI ILP~'IJ,~I·ALPH4IJ."I.AA(J) CU'"I "'"lronTIl1(0 CU"I'~IIl nQ I~O J=I,t.P ILP'14(1,~I.AU'HAIJ,H).A~IJ) q[TA1J\=RlTAIJI.BUIJl CU'l TI ~lIl CO':1 I"I/l 110 100 ISO 160 -.J IZo C \ C:;•• .N '"«-'\ ~ t 'I I !~I !I .~.~J ;1 J I j zz a t."'~19_1\1 ....,,~--·M::....~===~:'=OQ='':l';:'e:t __.: f1'V,,"~-,_~uu_"'\If\I-__""",z=_ Z =~z:'=....lL=:=~j..=J,c-c-_vezzu ....••••--....... -....-•......o ~ .II. ~ c--: oJ, 0 ......- •'"'"..~- "'''' ... ...-...""..... -:r-.... • z ~ C> -o ~z:z -:. -<;> ~;r C> Z ..... ~.,. Z .----C _...1_ -----="011':1'_····u -e_t::c._00'::11~- -...;."-.::I _.=l .:.::.ot .::D -""'~"'U---:'-I"\6-_···:;,:,.·=.._.....-Cc .. _.c:L~C-C_#"c:J''''_:.~ ~'Q.=II-_---_--...,--:::=-:.."-......':2,2' ----=.~-C::.:IiO't'--::. _.......:4)ooo .....:rr .. ......"""":........=:.-.1.--::-=_0:.1"'...._----y._C'::l.2'II::r:::.....__g: .."-oCt'y", ...III .z_a.... ...I~o.._ -::ZO ..-", -... Z% uu 55....., zz.,., ==-u .....:-- ........ .. ZZ uuzz ~~...... ZZ---- uu ZZ ::>~......z::: !tuec:o :::.....,a .....co ... o Ca-'" c... C>.. ~.. OW u Z ::t ~ Z..-.. Z-u Z ~., Z-.. •-..--·., •....-.. C>.,- ~..=-a Z-..... J-~ Z........-...... Z.... ~ Z... U-u...-.... J "-..-...... 0-.;;.... 0- o 0 C> "..'"... 00 ... ::t.. Z I~ u u .' '"'"0........'".... c... .. !'II J\ c..,'"'"'"____~,...o,~..,. -oo:t -'II .......-....O~_e:t_:. Q'__..._tl_....,.""w. loW.t ...-,.--,.-------..----"":----"'_~O-,:»-e:t--':'-~_ ~--.:Iou-2 .....Q,-__;l_ -'z.z-.;:-"-~=-"'_=''"""_=r ':!.J C .J...__O-,.:>u:=v",C.=a... _C'C'O:ZC.c..z_C_c,-; ·>-·'"'"'" '"•..·""c... I....='"'"~ .........•~•............ ..... X Z .....0 U u -J::'X: .%:.::I'~~""'" ~-.- -_CO CO <:>_ 0.00 0 ,.., ~oW""0'.l(._N-Pel ..J.-'wN_____w-~_o _.02%u~--c-00-0_0 __0-00 ---__ oo""'U...ceoo'..-x..o.:::r _~~-~j ~O~~~--~~__o -N~'~..~-_~e:t e:t~__~ o ~-~_~--~~O~-u~~~ 1"\"IIC.-J"CO ..-oxoz _'=>oC~=...~::a.... -_.~>O_O o~:.."w ~~~~~~-z~Zo_>..~e:t~N~O~o~~~..~:c-,~o-uoo.--.....--.:I..:='_..._..._...-~.r..::= ..J.NO 0%--~~~-x---~_-X=~a~ K-""'"o--z -,_.:::11 z-Oe:t ..Z~0'::1'........-e-_......ez_C ._0 --0_-0 -04.:1'n -~ue:t-.._~u-o~~----~~~u~-z o,..........o~-_::..~c:._t.>f'\I ex-c...-)C C OG.~«O~"__~z 4~C~~~-0 -,O-u ~..O=_co-z ~-C~..-~~XX~: -__N_~U_~~~.._-~~~~--==~~~ ZOft/e:t_.._ruNc::"",,,.>-1..,.0:--.lL z-;z ..--. ::»0 O"C -0 --v ...--~-J'::JV>-~""-~...""" .,NCIt_.......ZOs,n -wO-2'-0-4 ..---::::".u Z'c..•-OC"-,:)~-~:".=J':::II"-'~..'=t ::r e:t .:::lo'2z .....':J~ _~NOw~__C~~o-~~-c~~-~~0 ~CuO"":)-....>..-2:v __"'I.l':J __C1..:,__':)....""-'...I-J=r::= ........4 -.....-2'- ----..~'1 .......- - - -C·--~-,.t.=~Q .:Io_X;;'a::Q_~--.;)--""--..:::l.-..~....-~_4~..._._ OOA.O"O~lIC.OOC'.~_-,_==....)C_.=~'-".z.= ~o-,c-~_~~~N~..%~~V~-...I~-~~--u .._=~~ -ftol.c.O-O.-l'\,,~-=O:::"""~=.JCA."f'\I ....""'.J-~u-.OZ--O--1:'-,:,,-~..u _=r c-:-=~::;)::;)-.z ..__""_.e::tV"'~~::'_~vZ_.=_u~..:...-...----e:t-=::.r.%' ,=,C-.::J-U_"""'__1:'%O_"'~;Q_~.__~,~ooo-u-,=,:,~~~.. .,-rtJ 0 a..=.0 - -"=...:-=<0 ,oJ....=-)0-0 - - -c C ..2.",-,0 - --:::..._.._ _'2 __P""i.....,'j;,r'l_Z'__..f'V_......_...._0 __:':)'O--f"\:-....Q._":"::..,.,. ..00-0-'-7'-_---l.o.J-Z~CO-c-~-:r----1.u-""""z f'\I ~~~~~~;Z:~~~6~~~;~~;=~~~~~~==~~;;5 ~ ....-__O':>_'::l~,:".::J"'._~..:VlV,:,.u.>C..~'::DUw"-:::t.::: o-oc_ocz=....,l"'\,/rv_.J_~.._~:-:::-..~·....-:-)C'-r::;"~':3a 0 :II:0:.0 ......."'_:1 ..__2::::__0...u~-:Ioo=_r.:::!l--...-....J.-~._....._ 11::'"'CL-O--~...-~~.....:u~...,=-:.....':'''oC_.._.....,f'\I-_.......,-.4 "'w _ --J -"""':3 .;:- _:I _"'il ::J _-....=-0 -~:J -.:Ii a - - -~-.0 -""'"_4 ~..%"'''''-u-..o ..=~;::!-c.....u~.=-..c:~_1"""iW")Oe:t __...-OOaa...r_ ....._.c ••OU~-loI'\-O_.._O~_~~_'='-_,oJ_.......:.=o~%-""-C-o:::::ft ... joX-o _":::O-W"\I ..._-e:t.....,.;:....."'=·ooc...-::'=:tru-O-_..".3:==:::.......c-e ~OUO~--~~---~~~~-~-~~---~-----~-w~~~~~~~.e:t ZN70rtJoo -z_co~_~=~-~--~~r-..:C-....l_.._.._e:t-w=__~-e:t~......__Z~~~~_............_=~.""":-Z~~>-....:~~f"\:U~4 Z .......-'""I""'l-"'l-'=:'U_~-_O ....Y"U-~......_.-J-"'~""<:UC"-':-';:'~:I"\o!:......-C'C' ~~UX>--~_C~_Z~_~u~-~u2~O~._~U_.......~~~~_, ZC-Q.-.....-=:"""uQ"."..O_~~...-..J"c.....-~_C.'-·_-::2~'...,Z~0--'"_..... ~xa-'~-uO~~~OD~~~~~~~~~c~-~~>n~~U.=J=xr~:r.~. -to-.......~...C v ,_~_cr C ................,.2 =:....._et......a."......w.- -~---e ~~:::~-:_-...- ~ZZ Z ~~Z Z ~=nn ..nz ~~"oC~ OO~0 000 0 0 0 7':>z _.- ~rY r rrT X ~~~~-~oc ~O~~fC/rr %r'l:'T X'1.7'Y::r:>.:t~__1_ ::»00 0 O~O 0 .=J,C --~-~,,~~4 .,U U·.."..-"..~...-..'..' -....U U I.J'.....v .....U .......r -C.C ........CO ..(,)n ~.cz. -ftol~~_N~~~~~-f'\I -~_~__~~. ... ::0.. Z ""'"I ..-, u N ,.U T IN"UT CUEr'lel[NTS'",x,'e~AN TO CHAN C C 00'Cl 30.1"',U CI1 N IJ,tl-UI;,IIJ 4]0 (O~I l'IIJl aaO CONll""E 050 CONIINUE SZO CONII""E Nov~'IQYNINCYCH) IPeYC·.HpJ' IF INOVN,lo.l)IPCYC-I pEAD 1~,170)IIIl AE'Oli,1801 (NI[HPIIJ.r-l,loJTOO' [\U ~)O J e l,9 5)0 1.1.~lr~P(J) IF II,.'.8)KHIfE III,ZOO)flTU,TnL 1[£=-.,~Slllf) IF IN'rMPll).~Q.11 GO TO ~90 '. C c.,•.nl'PEH~ION eoef'ICIENtS WHIlE ,Il,.I>O) 01>0 rOIlMAI 1111,IOx,'OISPlRSIO~ I cl cal) Clln IU"~"111,IO,2fI2,O) '>0 u8~"'=I,NC RE'U 15,uoOI JI,J2,CI,CCI If lJI:EQ,OI GO TO UYO wlllll Ib,u701 JI,J2,CI,C' 00 ul)u J'JI,U CellJhCI aon (C'IUbC. a9n eO"'INI,IE C •C.,••~E"'HI)hOUh/),qy •PlAO 1~,IOQ'NfiUUND,IJ8oUNDCJJ,JII:lO) DU 510 l=I,~HUU~O nfJ 'jOU K=I,~P T'(JlInU·'OII.).NE.JUNII\))00 TO SOo Jl:Iflll"U CI.I CI( 1;0 1"~I ° 'SOO CI)'1IIIlIlE .,I0 (1)"III'I"l qEIUIlN c , C,•••HVDRnOyh_HICS IF 1~lf~P(IOI)SaO,~80,51>0 5Qo t ••I'Il"PIIOI DO ~'iu ~=I,I ,>SO f\AC~~J'.C~"'ll.e GU 10 <,00 5110 1=IIIU1P(\0) OU ',7.,~=I,1 510 A(AU (~Fll[1 560 rUOIII""t nll.j)t',f lI.fl rHlltl,CFLOUO,InVDIIJI,t)~PIJ),A'CJ),YOLCJ),IJINIJ"OOr"C I ,I ) ,'JdU I J I,All""I J I,J.I•IIJ),I A CIII)•a t II I,R,I NI,A A 'It (N I,v Sf NI, VA II SI H), '. 1511 CONTI Nut I'I~DP.Ea;O)GQ TO l70 ~tAD 1~,IOO)INCONPI~),~.I,O),IIPOAYIIJ,I.I,,) I):)7.110 I=I,IIPP z~O '1['0 1~,IOO)INOO~PIJ,I),J.I,ll) 270 CO~1I'IljE ~~II[Ib,l'O)TITL[,IITl zeo 'OIl.'T (IHI,IOt,ZOAa,'IETRA TrCH,I~C.",IIX,ZOA4,.LA'AY Inn,C'll','/] ~~IIF.1~.l~OI IDAY,IQ[LT,IPCye,N'ILE,INQUAL.NHYD Z'I~rClII~q 1III,l~t,'3IHUI.AIIO'l OElil'l3 0'1 DIIY 'rl4,f"ZOK,' I'I~(S,lP3 u,',Ia,'~OURIS)',II,ZOX.'PHINTQ 211T lVE"Y ',Ia;'1111£STlPIS)',II,ZVX,'HYOHAUt. )Ie 1~lrHF'C[U~IT"T~I,la,II,ZOt"~UALIIYINTlRfACE UNIII,TS7,lq" ul,lOK,I',\Iulj[:t or flOll'jOAHy CUNDITfU~!3 I,lUI)• ,,~Bo 1'1."...,0 IF IIDrlT.OI,za)NQ~ERHIII=NQPlHHIT)~lq/IDELT IF l~ypf~~III.Ll.O)NQP£RHII)"1 IF IIOy"III.~U.OI iii)10 1I0 ~RIIf.11l,)00)NOPlIlHI"" 300 rOR~'1 12JI,ll,'TI"'[SIEPS fUH e~NDI)ION ',15,'SIEADY STATl P) liO III ))0 311)w~JlE /11"201 Ilep(R"I"" JZll rU~kAI (2).,IJ,'TIHE STlPS FUR CONDITION l,l~,'DTNAHIC') J)O ru'''I''lOl wIIIH IbIlUO) )qO 'U~·'I 1111.ZOX,ITl'Il fOLLOwiNG CoN311TUENTS ARt DEING "OOlllO'" OJ )~O K<\,9 T'IISKIPI~).lD.O)~RITE Ib,)bO)I~A~fIJ,K),J-II]) BI)en'"Ir,,)£ )~O IV~kAI I?Sx,JAO) 1=0 /)(1 Ho "CIO,\l I·ltl IF II'~IPI~).EQ.O)K~ITE 110,)80)I~A~lIJ,K),JII,),(CNA~EIJ,t),J.l I•II , 170 Cfl"I\NIIE )40 ~uq~~1 '2sx,)~a.lx,aAo) C • C,•••I~IIIAL ~V'LIIY tO~OllIONS h~I'[,b,ZhU)TITLE,TlTL w~lI~tb,)QU) )'10 ~OD~'T 111,JOt.'l"ITIAL OV~LITY Co~OITIONS'I,I JVN TO JVN TOS I TUf I.TOT P T COL f enl C BUD N 8UO 0 0 2 Tl·~CO~ST I C~~3T ~CUN,t)CaN'T a'I,llx,]I~X,'MG/l'),ZI' )':OJlOO"L'),H~x,'HG/L'),7t,'C ',ul'U'li fSl)I) 1),\•U U J.I.I,NJ "l'U (·...001 JI,J~,('LLIIl"Cltl)) 000 'uQ~.l (71~.1.'~.01 IF l,lI~l':.O'1.'1 Tu u,;O IF 'JI.~T .J2.·I~,JZ,r,T ."JHAXI ~III T[(1),0101 .I~1'l"~~1 ,.~.r ..uJu •THE FULLO~lhG ~ODE LIMITS ~H[IN lPHOH') I~I'Ll (~I.LI.u,nl ALlI61=~AlLI"I·,~TU~YIAlLly),4Lllll) 1~llf Ib.L~'1 JI.J2,J AllIJ\,J=I,11\ a2~c1~~'1 I'L.17,IY.O,l'Q,l,lr Y.Z,JFY:l,'Y.I,aF'I.2) Il')~Jo JtJI,Jl J , I I 'i ~I ,,I ~),I "-51 J ,D ,.~,,J I ~ 1 1 1 ".~~~1 ]]j -1)J J ]J ]'I J ~" J ! Cc•••:TIDAL CO~OITION~ IF INI~~P(21.E~.11 GO TO ~SO Q[AO l~.bl~)(XAIJI.J-I,N80UNDI IP'GE=IPnr_1 _kllf.I~.b~OI ~CYCII 600 Fuq~.,111,)o.,'[(CHANGE cn~DITION~DURING HYDROLOGIC CYCL[',IQ,,' I J~~r.CH l~U FLO~O TO~TOT N TOT P T COL f CO II C ~rjO N nuo OH TEMP CU"1 CON l CON)CON ". 31,S.,'QAtln HCFS HCf5 1,)(OX:'HU/L'l,ZII H/IOOML'I,)('"0 ~/L'I,~t,'C',?~,Q(I UN1T31)/I flll b)O •=I."HlJu',O Ql'O 1~,b10I (ClX(KoIloI.'oI~1 610 FQIl~ll IS.,lU~~.OI J.H')lJ.;CI~I J=.IU'I(.II If (SA,l[xIQ.Il.0.0)SALTEH.,.TO:\EX(KI IF IUt,lXC M l.LI.9,OI UXYfX(KI.·OKYEXI.I'3ATUXY(TEHPEX(KI.I03[X(KII _411l Ib,blOI J,XRIKI,OEOUIKI,U'LonD(KI,(CE~(K,II,I'I,,») 6Z0 IQ~~'T Ilu,.S.Z,·~PZF9,),UPFO.0"a:z,'I.l,lE9.l,'7.2,fO.l,l~0,I,., I~,n I>lO CO'jtl'lll[ /luO FO~"H 11l1,)ux,""fLO"eU',01T1U"5 DURING HyDRAULIC (HUlda,/1 J IU"I",Fl/)"IDS TOT N I'll P r CUl f CUL C DOD l :<U'1lJ OH aHP eLJ"SI I CIINSI Z CONST)(U"31 o'/QX l.'US 'o)(5x,"1I,/L'l,ZI'"OIlUOHL'l,)(~X,I"'G/L'),l.,'e ',ore UN 4113')/i i'II'I,NC \ HER-1Ff 5'10 CO'lTl~I)E Cc..... "0 HO /lT0 I>~O /lQO rJ, oJ \rj 100, ........... "710- IN,.U T r~FLn.~A'(R UVALlly IF 1·J1fHPlll.E,n.11 Gil TO 1110 "~IIE ,o,buOI NcyeH ''II).by J=I,NJ .JU'i I"(.r I'I ~o fll).10 J'loIOO OU b 1 V K=I , I U CI ••(.I ,•I •°.0 l') IlU 1)0 1I <I ,~°0 pE'O r~,~1~)JJ,nD.(ALL(KI,~.I,la) "JUliA I ('0'[I,quR •R(tURN HAlER IS AllUWED AI lO NODElI HA~IHU"IJ 104 '\1'(I~.15/~,Ol IF UJ:lO,O)\;11 Tl)7ao If I'Llllul.ll.u.UI 'LL(lUI.ALL(11 If I·Ll(~I.lT.O,OI ~LLlijl.~All(III"A7UWY(ALL('IJ,ALL(111 ~"IIE ,,,,h~OI JJ,~~,(ALLC~),K:I,I)i I fill:I r.,II J "'.1 N (J J I 1\ IIU /0 V K'I ,L J •• ,f IJl'''.'''UJI,EU,KI r.1I III 110 ([J'"I""l l'l • I J <l /',"·1 '1l.1 J \oj ['J"I I ,,"l ". N ,.U T TAR.4~aOOO.·)5.31.,(~el>"t.~·Ug, DO 710 tl R I,I4 F.t. I'(All(~I.L7.0.0)'-fA Tlo C'~(J,~)aCINCJ,~).All(~I.UQ" flo CU~II""l TaO eU'lIII'Iif. IF IJ.GI.IOO,~Hlr((1).150, T50 FuqH~1 (tO~A~N1NG ••THE HAMI"U"0'100 lNrLON ~OCAIIONS "AS It!" I tKLHoLO •-I) TF l'~II .OJ'( • ):E 'I,I)Gn I U III 0 IIq'll I".HOI • h"n 'u""41 (/,IOK,IAr.GqlGAHD QUALITY"• OU I~O J=I,lolJ ,1,1=Jll'II"CJ) IF (JJ:ln.15~I GO TO T80 IF Iq\qIJ).LE.O)UIN(JI=I,O OU I"'J .=1"4 710 CI"(JJ,KI,CI'lIJJ,KI/QIPIJ) IF P~I I l"CJ.lI.LE.O.1 3ALi"HJJ)~TllaIH(JJl 700 II Cqlu(JI,lr,~,O)Gn TU ,qO ~411f ,,,,dOOI J,QIN(JJ,(CINIJJ,tI"~R,,I]J 790 eWIIII,"l " 1101)FUq"'1 IJu,F'I,Z,F9,O,Zf9.Z,Z['I.2,lF'.l,U'.I,"'.U C C ...:r;"OU"D ~"..,"'FlU" 810 IF (.,'Ua 'I',),EQ,1I GO JlI qoo "'''"1.Ib,"lOI IIl0 FI)Ol"AI (/.IUK,'Ii"UU~Q "AHR INFLOw QUALity'",JUII 10 JUIf') flll HIO J=I,II.I IIjn JU"LI~IJI"~O 011 MO JJ~I,lO QlAO (~,noql JI,Jl,(All(I),I-I.I" IF (,/I :t",/)I Gil IU U'IO If PL'(ILI),ll,O,UI ALLlIUI.ALLlI, IF (ALI ("I.LI.O.O)ILll"I'-AlLCU)'~ATUlYCALL('l"LL(I)t "II II t ,~.~lIrJ)JI.JZ""LLllJoI;loIl{ 1140 FUII ..AI 11,,,1 "'·'.0.l~9.l,l''1.l,lrq.l,il''1.I,I'9.lJ H IJJ:lO,loI)"~ITI 11,,11',0) 1150 FIJ~"AJ ('0'(.""(111 •A....I'1lJt\II/h 'ROUND NAlllI Ty'[S U[A~~ONtO' II . 01)u"o Iq,lu IIbo,rl"lllo'JJ,II=ALLII) Ill)U'01 I'J I •U IIln ,IUNI;I."lIo,IJ.12u 000 r ',1'111 "'1[ 11'1/1 r.ll'lllllqE c C ...:nfTlIk""qru 1100 I'('11'-"'(''':£'11.11 Gil III 1010 ~"IIt,11>.1111) 9111 "11",,41 11I',I~),t,,(T""t~..AH"'I,'wlTHORAIoAL JUNCTIOll ANI)'/UC'IOIt I Ill.'''''"lO',I'DI:lCHlRlif JV',CTIO,.ANU COlletNTIlATlON IN(RLHl.NII/t 1"1 "/.0 J"I."'J 'tZII J""A (J ,='1 I'll "I"J~I,IO n"'1111 1\.I.~ Irt"UT Z N ~U T AIiD CO[I'I'o '. HEIE"J,UGICll CUNoIIIIl"5 IF I'IIPH'(A),NI,II'CALl pOE'U1T C-I:T(HPl'f 1>llr"~ll).lQ,\,A"O,NlfH~I~l.EO,I)GO TO 1170 If I'Hr llP (7),llf.l)GO 10 1110 00 Illn J=I,>lJ llIJ):o,O IllO nbIJ)=,OOQO. 1110 tll"r'~IlE 0,)11"0 J;I,NJ nU"-IJ\~O, (l~'J"IJi'(I,'F ("C"M,!,I"LEO,0)GO TU II aO ~O"~IJ!ao,~tl,o,Oq7'~I~OAIJI"Z R~"~IJI:nn""IJI'ISCJ)",l81/VUlCJ) 'll"HlJj:A"UllolJ~.IJI,1l0qHlJI) """"I J I :III I X I C1m 01.I J I ,A'I J I ) n"";ll ./\=I '11 r,I I nlllllll J I,lilt CJ )I Ilao (I)"TIIIII' w~lrL Ib,11501 CJ,R(lRltlJI,QIj~"lJl,ORORrJI,J.I,HJ) 1150 rU Q'1"1'0 'lU~l~O wl~O INOO(EO RfAfRATIU~CU('fICl[~T I U1l0 ~Y NnO(3,I/O~yI/ISllu"rCl,)\) T'=I. fll,linn J'I,'U If ClIl""'lJ,l),I 'J.OI I.n TO IlbO 0"""I J \;'a Tt (I l'lI111l111 J I ) II 60 C 11'/'I'",t IF ("II'rll'IQ).~L.Il (ALL HEll)O 10,/EIlPl liTo rIJ'III""l Ql.'U"'I (NO "OflND~IJ)'llll}) cOL/O~IJ'a'lL(O) CUlfO~IJl·1LL(5) DO lObO 1_I,a K=\Ztl 10110 TYPEU~/J,II'ILl(H) 'C=~.U~Jlel·lSIJl/VOl(JJ/e~Qooa ~EN~IJi:Tl·'e'lLlll>l "l HP IJj=ll.IC.ALLll) nl LGlJI=Il"C'llLlI81-ALLl'lll ~~f"IJ\=T"TC'lllll~' TC.le'IOOO, I'lll I Q 10 I aI,a ~.lb'1 107n 'OE ILIJ,')'AlLI~l'TC ulJI=ILlIIII nHIJI"ALlllll 10nO Cll"JI'!\lL 10'10 (IIU'It",l wNIIE 16,1100)ITYPlfOlll,lol,l),I'lT(NCII,f.\,t) 1100 PUQ~II 1'03TlIIC"IUHETRIC EOUIVAlE~CE U(TwEEN O~TIUNAL cON$TfTUfNT' 1'101'rllt'5T ,"}I nEClY To CU>lST NO l,','e,Z,/'CONH NO Z OECAY TO l CII"11,m J,',fa.Z,I'CU'IH NU'orCAY 10 CuNH NO 4.'"e,l,//'Ita lIE edOflcll>lT Tll1 0lR1Tuol AOJUST",NT tU"~lAIH rOR',1I1 HUD b',rlO,l,I'III U/lilR",HO.'ll 1110 CU"IINIIE C , C•••• " C t ••,:srSTE'I CIlEFf 'CtLNT~ 1010 IF (~Tr~Plll,Eo,l)GO To 1110 ~QlIE IbdoZO) 10ZO ,(JQ~"(111,30X,'3YSTEH COE'FICIENT"'/'JU~TO JU~DOD DECAY leOLI'OttlY eE~THIC SINK HlT[~ALGAL OXYGEN REAlRATION 0 z~p CO"~I OEC1Y opp (UN~T SETTLING',I'l~i'CA~~NITH TOTAL rEC III N P 0 !'MOTU RE3P HIN HAX I a u 1 u 1 Z l a I ,/I CllC,"IDA Y 1/0 AY HF S/liV[l'Y Hli/liZ/OAY I/OAY I/OAY CI 'lion'll 0E10 (~,'1bOI (TyPEEOIlI"'I,lldflT£NIIlII-I,Zl 'F IOT£~lll,LE,O,OI flT£NII':1.05 IF IOT~~IZI.LE.O,Ol QilNIZj a l,03 Tr P H 1 1U l a O,O /)0 10~0 JJ",NJ oE10 (~,UOO)JI,JZ,llllCII,laZ," TF IJI :l'l,Q)Gil 10 10'10 oElll 1';.10101 ULLIII,I<t.,Zv) 10lO 'O~HA'llb r 5,Ol ,f lJI:Gl.J'.UR,JZ.~T,~JH1Xl ~RIT[lb,OIO) ~~11E 1~,lo.n)JI,Jl.Illllll,l=l'7\,~LL(IO),ALLIDI,ALL(",(ALLrl), I r=Il,lOI lObO rO~H~T l,o,17,ZFb.Z,'U.l.F6,Z.lFT,~,'O,O,F7,o,fll,l,f7.1,'CI.~,lrS.l I •f 7 •l,l'';•1.I Ilal. T~I:I. llLll)=~'lrll"'ALLllll 'Ll(1);"'llllA'ALLI1)1 ILL("';""tll',AlLl")l ILLl~).N·'fl'A··LLI~I) 011 III~O I =1 j,l~ ,050 'l~III=.Alr(IA·'llllll Of)I'J"O "oJI,)? "1"C ..'·IU,II,tll,O)GU TO 1000 '(I1'C1I./J 1cA lI11.l P·UKf/JlK)·O '30 r~crO~/J,K)ao.O OJ 'IlIO J,.,ZI ~E10 /~,'IbO)JI,INTEHPll),ALLII',Z_I,') "0 'O~~~T 115,5115,'5.01) IF lJI :Ul,O)GO TU 1000 IF lJ,FlJ,Zl1 WRITE 11l,lleO) JU'·AlJI)"J 00 '1';0 1"1,5 T~I"lIJ,llaN/EMPll) '150 pC1U~IJ"'.lllll) o~lD (~,q~o)C1Lllll,la',la) IF I'llll'bl,LE,O,O)lLLCla)-ALLU) 91>0 rO Q '"r lib's.~) nl)no I:I"" '170 CI~IIVO'J,I).lLLIII ~""E l6,q~vl IINTAKrlJ,I),'ACTORc~,I),1-1'5',JI,IALLI1),J~I,13) 'leo '~~M"15I'5,f5,ZI"lu,FIB,O,~F'I.z,Z['I,Z,~r",Z,2r'l.I,a'''.2' '1'10 C(J'n T'I',E lono (n'l'''''It I"l~~:lPlli£'I , w VI ........ 6"'\ ~ rJ l I .i J )J I B I ]I ,1 , -J ]J )'I 1 '9))1 J J ----1 J ...]1 c J 1'1 DO lu~J~I,25 C C READ CLUUD COVEN fRACIIONIPCT),DRY PULUICI,WlT UULB(C),ATMO~PHEAIC PA t eH~I,AhD .Iho ,olEOIM/~[Cl C c C RElU "U~OfAS OF JUNCTI(IN3 DELIMITING THE HEATH[~lONE,THE LATITUDt C ANQ LONGIII'Df,ANU AlMnSPH[RIC IU~6IDI'Y e2 'O~CLEAR,UP TO ,fOR 'HO Rt1~1~,1201 (JwZUNlIL,Jl,J a l,2I,KLATILJ,KLONtLJ,TUR OtLI 120 fuqMAI 121~,lo'5.UI SHVRTWAYt 'OLAR RADIATION NADIATIO~AT OIV[H JHT~RVALI THROUGKOUT ,• CQMPUTt LO~G~AV[AIKOS'Ht~.R'OIATIOM DO 180 N"=I,Zb TA.I.Zl£·lb·II,O+O.IJ·CLOUDINN,l)A.Z) n~AINN;L).TA'(OUTI~N.L)+2J].0)"~ "!T D A T 1'0 WINDIJ~,~).~INO(JZ,L)ATA.MINDIJI.~'.TB IF IJ2.~~.251 GO TO 150 lao JI"jZ 150 CV~T I NilE t I'.,0 t t c . C.4 •• C C '1'0, 011 l'lu JJ>I,2b fAIJJlll'2.IJldfe'E~p(-bI57.0/(~OT(JJ,L)'l)';O'») IF 10£w,ro'.O,OI)lAIJJ,LI'fA/JJ,L)_A~RIJJ.l).(08T(JJ'~).~'T(JI.LIJ c c ., C..... e .. C•••• C llNS!'1'l,L)-O.O TIH(cNf/-1 IF Ill~E.LE.9UHUP.OR.TIM[.GE.'UN'[T)GO TO 170 cLn.CLOUO (tIN,LI NA'PI'(II~f·ll,O-OEL")/ll.O SI'U =1I >,z.ellS(HA) RAO=~IIOl'SI'IA 'I=O,I'B·u,O~q.ALOGIOtl.O/AU3(SI~AJ) TA=IUPq(LI·AI/SIHA nAQ:QAll/ltl'!IAI Rln;qAn·II,O·.hSACLO·'Z) NC=l,u.ICLO.I,O) IF ICLO.r,T,O.0~,ANO,CLO.L'.O.95)GP TD 160 IIC =I IF ICLn.GI~u,95)NC.qC.·.·. IbO ALHlOU3AI~CI'(51.J'ASI~ISINA)).'8(~C) C.~••• OMSlhll;LI:PA0111.-'LnrOU) IF (O~~I~N,LI,l'.O.)UNSINN,L).U • 170 (IJNIINllt. III 0 'c liN I I/illl ~HEHD·IS·IFIXIXLONILJ/15.oi OEL1S.[pa·(S~~RO-XLOH(L»/I'.0 CO'1PUH OtClINATlOH,aUOfUI',lIUI/Sn,AND CON3TAN'3 U,EO IN RADIATION to"PVTATIO~ OlCL'U:b092'CUJID,OITZI'111Z,O-OAy\) TA'IAN(~LA'tl)'DTUR)'IA~(OECl)C.·..·~'R.IZ:O.ACO~I-IA)/PI C.A'" ~UNUP·ll,O·H9A·DEL" 'UNS~I=IZ.O'H9~>DELTS 'I·SINIU~CllA3rNI~LATIL).D'UR) T2'C03IDECL)·C03(~LAT(L)·O'UR) " H [T 0 A T OA'A ALPHlh,OS,5.IO,2.bS,·2,OQ,-9,9b,.ZZ.29,-uO,b),-bb.901 nArA ~FIA/O.S2~,o,710,O.qSu,I,2bS",bSq,2.151,2.Tbl,3.SIII OA"A~I.1A,2.l~,O.qS,O.JSI QAlA Ui-O,77,·0.9J,-0.J),-O,U~1 OA'A Pr/l,lulS9/.~U~/O,ljjllj)/,oIOR/O.OITuSI qOI~IOI000,-lllt-l.9ftl·'2·1~'2B);,J/150J.5T.I~'bT.2b))) IF I}S<IP)100,ZIO,Z90 100 CO/ll r/,"t ql'O 1~,IIOI N_IO~E,OAY,EPS,AA,b8,OEW 110 FUOM1'IIS,IOFS,O) IF (~~:Ll,o,O)~~'1.5[-9 DU ZOO L.I,~~IDNE oEiD t~,IIO)JZ,IALLtl',l o l,5) (L~UO(J2,LI'ALlll) oIlT (J ~;U :iLL (2) ,,'IT (Jl;L)>,Ll I H i/,PCH;Ll:iLlt'll HINCIJ?,Ll:~lLlul ,f IH:lD,1 l Gil TO luO ~'<=J2·.JI·1 'F l'.....d ,n)GI)TU lijO 011 Ij'l "'1,"'1 .JJ:J I", 'i"l'll I ("l/FL()A'INtU I) lU=l.".I& (l1l'ln I.lJ,LI :CL~UDI n,L)>'A'CLVUDeJ I,L)ATB O"'(JJ,LI:nilIJ2,L)·TA'D~TIJI,l)·Tn ."I(JJ,L».~lIJ2,LI·IA·~~'IJI,L)·I~ 1pHIJJ.LI.1/'HIJ2,L)·'A'APH(JI,LI"~ ~UBROUTI~["ETDAT IJ3~IP,TW)c.§••• C T~I~R~VTI~E USE3 ARC 'I~A~D ANC CO~LI6NARY rUNCTION~. C TkESE rU~CTJONS ARE SPELL£O Asl~A~O ACVS IN THi'COOt. C*···~cOH~oNi~ISC/~J,NO,~P,NDYN,~"NU,MLI~,OlLT,JPACE,NHYD,IOAY,IOCLT I;~JP,llE,MPlOT,ISKIPllb),AlLI~01,IDYN(52).IITLEI201,TITLlzo) 2,N~Dfq~15l),IPCYC,LOAy,NCYC~,INOUAL . CO~~0~iA'/~LAIlbl,~L~Nlb),IUqhlbl,cLOVOI2~,bl,O~1125'b),HUT(l~,~1 I,,poll5,bl,HINOI2S,bl,uNAI~S,~I,lAI2S,bl CUHMJ~~HEI/'.lnhE,J.lu~tlh,2),JU~t,200I"IHVI200) I,,vI~~01,O~3Izu,bl,·I'UA(lUO) OI~EN3IVN ALo~lel,bf'AI~),Albl,nlbl ,T"120UI C C c r-J \ W vI I ........ 'i'> vJ C 14 E T 0 A T 1*1&.6!~a·7.5~!·T*WDT(JJ,~)~, TA.rh"'INOCJJ,~1 1'10.cON11 Nlll , ,A.'A/;J4. JII:J wll'lI[IL,11 J2 =J ~Zn~~II.,~I no 20U J=JI,H 200 "I":;IIJI'IA AE 'U~II llO C(P,TI'Illl no l~U L=I,NwlONE' TPAGl·IP'G~·1 ",RII~Ib.27UI TITL!,TIT~ lZO Fuq~'1 lIHI,lo~,ZoAa,1 TlTRA Tr.CH,INC.",llX,20AQ,'~AfAY IElll,(AI.IF.l/l wNIIE Ib,2~ul L,IJ"'ION[(~,JI,J'I'2"X~AT(LI,X~ONI~1 llo FUQ~AI 1111,ZU.,uqwTAULE or ~EIlOq~LOGIC OAT A 'UR N[ATHER lUNl ,12 I,IO~,JU'CII~~,la,}~TO,14/,T9~,12~LATITUO['"5.I/,T9~,12~LON~1 lTlIl)!:c ,'~.III";>o~H"UII wI'll!CLUUO OilY 1:j1)LIl S ••••AIMUSPHERIC SHual "AvE LONG "AVE VAPOR 4 112n~SPUD covER a .....EHAlUHE ,H'Pl Sql TUlll pDEHUIIE :lnLAI'SOLAH PPt5:1UH[ 6/120"IOl/SEC)'aACTlON ICI leI 1 (I'll I (l\eAL/Hl/SrCJ (IICAI/04USECI IHIlI /) no 240 '=1.2 4 wqllf.IlI,27uI 1."IIIDll,LI,CLO'UDII,LI,OtJIII,L),NI:lTII,LI,APHII,LI.ON 13 (1 .1.1 :U'.'1I ,L 1,fA II .l ) laO ca"II"ul I'IDl~.l~.,oll ~RII(lb.lSOI 250 ,uq~AI ('0 ••••Dl.~OINl'l If IO~~.GI.,OII ~Hllf (b.l~O) Zbn F~hMAI 1 1 0 •••••fl ~uL~'1 21 Q ,tJll'H T ( I I 0,'I },I"10.2"I o.I"13.I',11••0,F 12.11,FI &.II,'Ii!.0I 26Q CU'"l'IIIE qtlVolN tOHPUTt H£AT TRANSfER PARAHEIERS ••• '. C "[tOAT tVIJI-IWINOII,~)*t8.AA)*([!.[ACI'l')·[YCJ) 300 tONII~Ul • '10 CONTlNIJE no )20 J-I,.NJ rO~EIJ\·~U~EIJI/2a. Fl"111 J\",I"UIJ 1/2~. I'I~VIJI,L T:0.01 [YCJ1*0.O '20 rVIJI=,VIJI/2Q. AlluRN [liD '. rJ, ~ U\,........... ...t::.. I 290 CU'"1"11£ no Jlo LI:I.Il-Z0IlE J 1=,/·!11~[(L ,II Jl.J~ll1~'E (1..2)' nil jl~JIJI,Jl fV(JI=~.(' 'O',llJ\=O,O f ,w,1l J \=(I.n If ('~IJ1.L[.U.OI 00 TO 110 OQ JOO I ...lu p'ob,lr-6.APlllr,~1 ,,".I·C.ll/~,~.I.O I'("~:IoI,~1 "NO" I"1/l'';L I ,II 101'1=' C CI.I.n~~w'ut "AC~1I,01Al10N Rill ,'I.)II•tJ )I•I']q, •0-~•5T .,"1J II.II A.Ill)."1110 1I,L)I ,=o,Q~~"l.~rn ·1~LP~IN~I-[All,LI·PF.Dn'II.LII f ,j"t ( )\0 'JO.:;(I•t.I "PH (I .LI-I'.'u"ll J \ f 1~.JlJ\OIl(JI.'(,Jf IA ("'I),I").o.OOIQll.nwOlJ) ,&.ALP"lhhl·~tTAI~~I·lw(JI i I I B I I !.~.~.J .~,." J 1 )j J OUT PUT J J 1 OUT ,.U T ]i N \wV, I ......... 6" V\ e c SU8ROUTJ Nf OUTPUT CJSKIPI CO~~O~iL~9/Y,lA~IIII,YLAB(b)"lTl!liZI,HO~IZllll,VER'(b1,IV~lTO CO~HO~/PLOTI IPLOTI41,CPII01,b,UI,OAYII01I,~POTNT,JP~OT(bl I,IPP,NP~.IPOAYIJI,NOOt'(ZI,l\,p~OFA(21.},AI.~CON'(U) 2,pR(IF~(2J.I,A) CO~~ONIMI~C/~J,~C,~P.NDI~,N~~O,MLI~.D£lT.IPAGE,N~YO,IUA',IOElT Ii ~JP,llr,~PloT.is~IPllbl,~~L(lOI.IO'N(SZI,TITLI(201,TITL(20) 2.N(.PlRll(~ll .IPCYC.LI)AY,NCVC ll ,JNIlUAL CUI'~Oll I tll GI !.C,IA·,I 200,Ij I •f II LI I nil 00 I CU~"'UI'/U\'''LI JI)';("Il~u I,JU"!,IN Iluo ,JV"'~1200 I,III NIZOU I.UC;jN (lOOI I,TD~1''1 ,~~I,!(II q II (1 ~~I.1 111 PI"II ~ij I.COL T IIH 150 I.cnu I N(I ~O) 2;!lrD~I'd Isnl,h":J~I"(I ~ol d.llVlNIISO),H'II'I:'d ISul I,T ,P ll:!\I"0,A I •~Al I (1'1 I 5 (II A,Ill~(200),11"1''1 lUO).ffll P Ilu~I,CdL TIlllO I.COU 12uO).unllc (21101 ~,q Ur.'i Ii!0 u I ,I).I (l 00 I ,It liP Ii!'J UI , I Il'f 1200," I •"I'[ilK 12 u 0,U) b,nA!GIl~01.nul~llOU1,IlNI)HIlOo\.HJDCO~120UI."UD~0.(lOOI 7.(ULID.llOUI.CUL.D'(lou),OSAII20ul,~l"~I~OUI,ljlNP(lOul COH ...~../.·'f/\.~I5 /'11 "f"SI Uf.• (I U,.U ,VI 10 I,Ii,NP TI I),CON II 0 u,II OOU~Ll ~.lC 11111"v'lll S nlutl/~IU""~I I.q(I}I nlul~S/(J'1 TIIl~II~.ZI,HUqllIIII,21;VEIlII(1I1 OIJIHll"Cl 1(!l',II.lI,TOSlIII q[!L '''''l (ld Jl OAU NAME/u,OIlS .ZO~1i ,uHIUTA,u'IL N ,uti .utqOTA,uHl P I.Ali ,.4!~IA,uIiL CO.UhLIF ••"FlCA,~HL CO,UHLI'.qHCARD 2..,<1"1:1 II,~".JO ,U,jNIIR.u",O lin ...../),AHOXIG,.Jf['l .UM I,11"1["P."'IIR'T,.lilJ~f ,""IjPP ,.flCU'IS ••'11 I .u"OI'P ••IiCON' U.uhl 1 .....U.~••HCUll3,4"1 J .u>tOPP .UHCUNS.UHT u I /)ATA V,;II S I IIoeN~~/L .1'lJ"Na/IOoflL,Io"HH~/L .8HDE~t ,u'8HUN1TS , DATA TllllI/1,UN ,u"II~E,"n HI3:"NIORy,uAUH ,uHCO~C I,u"~N'~••IlHllI,ulltl P4,u"U'IL,lItt E ,lout.I Z.H~~llI/1'.1i ,UN O.Y.12'~1i .UHNUDE'~'UH I 3.vlPlI/A ..MG/L ......HPN ••nUH e.}.U"I I'IJSKIPI 410.JbO,IOO 100 CO'<IINII£ 110 FO~'1'"IlH'0I0K,ZOU,'lfl~A TfCH,INC,'/,II_,ZOAU,I LAP'A'\' If TTL.r~llf.11I IZO fUQ~AI I~OX.'IllllLlH IIESULTS,QAY':Iu,/'JUN T03 TOT Ii I lOT P T COL f CllL C IlOO N 600 OXY 0 "T IT[UP [~~3r I C~N3T Z CUNST 1 C~NST u'/,~.,l(5.,IHG/~II,ZII NOI I 10U"'L ' \••I 'i K • I MG Il 'I,1 W,'C I,U(u x,•UN lIS I III I'(1~~IPllbl·11 110.IIII.'z1>I1 130 II-u Of!1110 J-I.''; Tf ('Ie"H,lJ,II : E1).0)GO TO I 110 IF l"U"llI.'~I."r.ol GIJ TU 1411 .PIH /.0110\'ITLI,TIIl ••/If '.01201 J5"1' 140 T1:1I'l uPIIE III.ISo)J,(CflHIJ,II,I:I.61.0~AT(JI,ICOl/lJ,II,I-9,13) I~o FU4~AJ IJII"9,O.Z~9.;>,2[q,2,ZF'I,2,}''1,I,lIf'l,ll I bO [!I"II "liE Ullv"H c,. C•••• 110 180 190 ZOO 210 ZZo ZlO zqo 250 t ho 270 lao zqn }OO lID 3zo ))0 }qO )50 lbOc C••••e lIo lllO I'IO bon _L'[RN~TJV~~KJNTOUT CO"T!Nu[ wPITE (b.IIOI llTLl,TIlL flO 4!50 1"1,1) IF IISKIPIII,[Q,11 GO TO l50 wllIT[Ib,1601 INAHr.(J,II.J-l.)I,V~JrSll),JS~I" fll~I1AT 1I.50~,]AU,','.AII.''O~OAV ',Ill) GU III (Iqo,llo,llo,no,llll.lIO,lIO;UO,ZIO.llO,UO,.UO,UU,I wW1Il (b,lOOI (J,CIJ~IJ.II.J'I,NJI ,u~...AI Iloll\.FJ.OII roO 10 .,~~ w~I H I h.no)IJ ,CON I J.II , J al ,~J I FU~I1AI II0115.fb,lll roll III ;>~O ",Rill',b.2"01 IJ,CIl"IJd"J-I,NJI ,1)41'll IluIl5;(8,21) C(1'4TI "lJf AlTU~H CLI'<II'llll IC -0 on }~O 1-1;1) ,F (lbKIPIII,lO,I)GO TO 350 IC:IC .. IF I~Ul)llc.ll,EO,11 wllIT[(b,l70) HIIl.HI IIHII wRIIl 1°,211111 (NlI1E(J.I).J_I.).VN,TSII),JS~I" ffJRHAT IqOK,}~b,I,f,AlI.'fU~Dly ',IJI G')10 I~q~,HO,Jlo.HO.llO,IIO,310;]IO,]IO,]IO,UO.JlO,]II),I wtllll (b.}OOI fJ,ClIN(Jtl),J-I,NJI r I)R ~AI I ~I I 7.f q , 0 I I rolJ TO ,~o w~11f (".HII)IJ.CON(J.II,Jal.NJI fOIlHA,ISI11,fq,III GO If)\50 wI/I If (b.111111 IJ.CII~(Jdi.J",NJI fO~Hll 15('7.~'1,ZI) rll~1 ""Il PI.Tull~. ell'"I I NlIl 'lilt HI31UllY PLOTS 01'H~J<I.J 01;HOI"I 01 0 J wll.Jj:O,O III.JI:O,O II·-,POl'II/IOlIll til =-II 1)'1 I~O I:I.I , "II"I ,(I J:dOH III II ,I) 1)/1 }'IU I:I.b TIILll)I;JlILEIII,1) 1)11 III)U I:I •b vI"I (Ii:VI 'IJ I II I (III IIbU P I.q ..J \ ..J "i, .... :" " J OUt " U T "II.lOTll).tQ.O~,;~TO .~O t "'1 "\,n1l t) TIT\'(IIOI.~lYEll,t·) TITI.E(II)·~.~E(~,IP) TIT\'E(llI.~A~E(J,JP) J=o , ~u alO JJ.I,NPOINT,II J.J·I 0')a 10K =1 ,J r (J,~hOl'IJJ) AU eU'''I~\lLc 1<I'u("J,,-II/)'1 \'1.'1 ClO .~u tl~I,HN ,H._hi \'=U'l IF (~J".CI.L)\,.NJI' .'0 DU oJO 1II"'\,l,l wo.d J'~ Ill)0~0 K~."NPDINT,II J.J .1 Y(J,·).CP(KK,III1,I) oZO ~I)'"Ir"ll "PT (.!oJ QH CO"'I"\ll C OEI ",pis TO 0 30 X-ArI3 JNCREMENT3 WILL BE PRJNT[~IN !'PlUT "''''''0C_LL C~~vE (x,Y,NPT,K,NTj w~IIE f~,aqO)lJPLOTI\,I),\,/-lL,L) GaO 'u~l'q lIHO,}OX,'tlOOE HU'10E:H3'oI5,Q'1 "O,lS,O'1 "1,IS,OH "U lL·L.1 05~tWIII""E 11110 ('I'.II"IIE liE h/P~ c c ••,:Cu~eE~I~lTIU~PROFILE:3 C a70 ell"T IIlI/E u'.=o !)'J .60 1'1,21 IlU a,o J'I,IPP 060 xlI,JI.1 01)Q90 I-I,I) 0'0 "nl>lllll ..·nRIlIII,Z) f)Q ~OU 1'1,9 500 TI'LF.I"',ITLLIII,Z) ....\1 .,I U I:I,b 510 vI ~I r I j'\'lO"(I) ('II .,;u II:'.II IF ('·CI,,·t(III,f.U,U)!';O TO "0 I ,I.e 'I'",I I 11 11I\.fltul:"'''lll,lJ T 111l(lll:':Ao'[Il,I) t I I l [ I ,/1 .',."l I ),II J 'I )g I .~j I o u ,Pl U T DO 560 I-I,N""NH_HN.j 1'10 550 J-I,lpp NI'l (Jh~1 IF (I.EQ.~)roo TO '30 01)520 K=I,21 520 y(~,J):PRa'AIK,J,II) GO IIJ '1~0'Jo 01)~Utl ""1,21 5QO YI~.Jl.~porOIK.J,lr) 550 cWIll'lill C SET "~~T3 10 21 30 PAINTING 0',M-4Kls INC~t"t~Ta IN "'LOT ~ILL Bt 8U' ","r3'?1 r.ALL CII~vl (X,Y'~"TrlP",H"'~ ~'!,,£Ib.~f,Q1 (NOOEt'IJd),J-I,21) 5bO FUq·,q 111C;,2115./r7,)X.,'IO~f.') ""'Ill fb,51u)Il"OlYIJ),J'I,I"P) 510 F(IR'1l1 (30~,'1I4Y ur THE nlR',15,..,"0,1'.0"II l,n.OH "t) !i8n Cll,-II Nlll 590 Cll\,,'Nllt REh./ll r, C [NO J J ,!!!,! 1 1 1 J 1 J 1 ) ".....:--, J J J j j I J ) ccc c C c 215 250 1Il0 ~,N t !UftRUVr!N[PIN(XI.Y\.XZ.Yl.N!Y".~tf) CO~"ON/UIGI 3PAttI15laQI.A(5\,1011 01"['1310 N SY~(l1 nAIA SvH/IHO,IHI,IHll AXAcn Axll;X.! AyAan H'I;VZ N;' If(.~~IAXU·AXAI.LT.AB'IAYb.AYA)1GO TO ZQo SET P&RAHEfE~3 FOR X DIR£CflO~ TF(&X~:GT ••XA)GO To aa$ A";X~ ••~;q A'ia.1Z AVII;VI (fJ'JII""E ,,"A·,+.S 1"\;""'.5 IVA;'""S IVII;'',,'.5 ('J'I'i ",ll IF(i":LT.~,OR.IXA.GT,tOD)GO TO Z60 IrIIJ':LI.O.~R.IYA.GT.$OI GO TO 26D ,(~I·iJ·,IXAtl)·!YH('1'YH) (IJIII I ,JIlt ,.hl ...1 vA'(~'('VH.AYA)I/(A'B.AXAI IO~l(.'YA'O~$ 'I;-,.I Ir(lx':L~.lx~1 uO TO 2$0 r;iJ I,l a 00 5ET P'gA~ETER'FOR Y DIR(CTION t'IJYA~JYB)300,,~0,.00 ]i!O TXA •Txll GO TO ,00 aoo RETURN £~D .. ,,N r; Z'JO a?$ r-l )00 \ \,rl liD V\ (.... ""'tJ ((l'III-jllE IFI">:GI,AjA)GO TO Z15 l1~'Y1 AYlor.! A x ,\;•I AJA,:lA'1, (WIIII,"E IKAdX&+,S P~;'XI\'.S P"&14'.5 JY~"JPI,S CfJ~I (-"'l IF(IXA~ll.o,nR.lxA.GT.IOO)GO TO )10 I'111A.LI.O,OR.IYA,GT.501 GO TO 'ID ,(~1'lv',I'A'I'=3Y~I~5'HI (,I"11""l 110=11,01 ·':(~'I·JII.'.AI)/IAYI\.AYA) IJ"':l·"t·J"U.~ ~'''4.I " ..It \,0 T ~U~AOV+INt PP~OT1IX,I"K,NCT) OI~I~310~~Y~lq) CU~H~~ibIGI SPACtI152 UQ ),AISI,IO\) Co~-n~iX1X~/~XDTS CO~~0~/~A~/xLAalll),YLA81.I,TITL[lia),HoRltCI,),V(RTC~),IUNITu OATA 3yH/7.IH ,IHl,IH-/ c IF1K,IQ,100)G~TU Z30 IV'jllo.t> 1'0 If I~CT ,E'l,-I)GO Til 700 w~1 IEllv~ITU,IO})lTITLEIIN),IN.I,t»,CTITLEIIN),IN'\O,la),NCT 700 cU';TI"I'l C THE FClLtl~INr.~f:tTION (TtiRllUGH CARli 225)PAINTS All.BUT THt:X UU Ahl)LABU.S 00 U',110',. I-r tI wOllE Ilu~ITO,IOI)'LA81111,CA11,JI,Jal,IOI) IFIII"U ••)GU 10 Zl~ D(I lZu JJel,q r=I-I If(I,~f,l~1 Gil TO 211 ~qlrlll\l"ITU,IO.)VIIlTI5),V~RTC6),IA11,J),Jal,lOl) rou 10 ?l" UI If II,'"I (0)Gil TO llZ C Pili ~T ,.A ~13 1)'1[13 ~qlII11V~ITU,10~)VEIlT11),VfRI1Z),IA11,J),Jal,101) G~In 2l U ' HZ pII.~r,(~1 Gil 10 ZlJ wqllfIIV'ITU,I061 VlllJll),YERJI41,IA11,J),Jcl,101) r.J II);ol.a ZlJ w"lltIIU~ITO,IOOI lAII,J),J"I,IOI) 22u CU'lfl/,",E 2ZS CtJ~II"I)E 00 270 l~I,IOI,IO 270 lI51,1\"YH1&) DO zqo I-II,GI,IO Alld JoSYHlq) UO CONT IN')l 'JE T VAN [NO " ..It \,0 T .00 I U I 101 lo} 105 1010 12" N, ~ V\ ( ........ "~ c c C c C 22'cu~II'11I1 N~PT~I'A fLAG fOR CONCINTnATION PRO,lLf PLOTS,SET TO 21 IN OUTPUT I'~API'I~~I,DO NOT PRINT x-lXIS INCRlHlNIS OR ONITS 1l('.(Pt3.I'l,211 nu 10 U9 PAJ~T IHI A-AKI'UNITS FUR TI~l HI3TOR'PLOTS ~~I IE,"J"JTU.lO~1 XLAII "'"liE ,IV~[fn.lOSI "O~U ru""AT,I~',I01All 'U~~AI'IPEll,~.IK,IUIAI) "OQ~ATlflO,l,lnflu,ll fIJ Q"A1 1I lt l,QlK,'IA4,'Plf}l 1<0,1,1),,1 'O~Mq laOl,I )4U) rlJ":Ulln,2A~,!l,IOPI) C,J"II".,t DE fl).4 l • lI,q,~tlllll~PH,flU'f.3 p~ur r)VTLIN! lJ~1".'l~u 1=1,50 O~I l"~J-.oIU\ 14~AII,JI.Jv-111 Allol "~YNlIlJ ZSO CO',II',",!. I"JIJ e'fll Jc I •\f)I 1~0 AI'I,Ji'~'~I~1 J J.J 1 ]J ~J !....~]I J I J ~I J ~ J J 1 1 J J\J )1 J j ~J -"] CC RE3ET "AX A~O "IN 'DR ZERO RANG' C aCAN fOR "AX AND HIN a CAL E ,ueqOUTINE aC~LE .~ARRAy,AXLE~,NPTa:INC) CO~~O~iK~K(/~KPlS Ol~l~a,O~AqqAy(q),l~T(~) DATA I~T 12,0,1.&,101 I';CT o IA6SIIt<CI Tr(AHA~.GT~(K',xLfN)'RANGE~GO TO 1]0 l"~PTa.INCT+1 ARRAY(I)oKANANG£ 10'.I'1CT ARPAy(1 )"RANG£ RlIUR'l " I'OUT.IOt MA"Of Rt.t!~A"D N ft[T u,"fOATIV(ITt'. I e A ..! KOAhUiRAljG~ IFIAHAX.GI,O,)"OK'I I'IA"I",LT,(M+AXUlj)'RANr;t:~GO ID in 1:I~CI,"Pla', ARqAY/I)OKoRAljGE Tol'\"r:1 AkRAY(Ilc-PA~G£ RlTUll'l wllllEll,.IUO) FIJ~''''lr 1/IU,tRANGf ANO 'CAlf uf UIlO ON '~OT Alit"'" qf lUll'" ENO tottl IFIL,LT.II'GO 10 llO Lol 'j:N.1 GU IU 1110 e cc C ]]0 ]qo C C C 350 " QOO too SCALE INTERVAL TO LESS THAN to ~ET UP POSlllVE STl~S t la N(xT HIG~(R INTERVAL RANGE IS SCALED OACK TO fUL~aEl r.HECK rUR MAX VALUE IN RA~GE COMPUTE UNI,a,INCH ;INO NExT HIOHER INTlRYA~ AATEO(AHAX_AHIN)/AXLEN lZo LolHTlIl QANG(orlOATILloIO,"N 'fl1liC:LT,O)GO TO )SO pALO(;IOlRAIEl NnA IFll,lT,O)NoA_O,"'9 AilEoNAll/llO,ooN) LoRAll.I.OO ~o'MlliiHANr.E If/AHIN,l',O,)KOK-I zao Oil )00 10 1,5 IFIL·I~T/II)3Zu,3Z0,)00 ]00 CllNTINuE A"Al'AQHIYII) A"IN:AoRAY(I) 00 l5u N'I,~oTS,lNC' If/'''AY.lT,A~RAYlNI)A~AxoARRAYlNl IFIA"IN,tl.ARRAYlN»AMl~PAqRAY(NI ZSO (U"II',,)( Ifl AHAX -AHIN )ll5,2~5.Z15 2'5 If/AH1"I lbS,qOO,lbO 2~~A"IN °0.0 ,"Al •l,O °AHAX rou TO ~75 l~5 A"Al °0,0 ,"I~•l,O •'~I~ US tuN TI NuE C C c c C C C C C c C C C C C C C C c C C ..... ~ N \ vJ VI, -e .."., ,[T U ,. ~ueRO\lT l~~SETUP CO~~O~/QUALI 13P ACf(600),OIN(ZOO)"ILL(1TOO) CO~~ON/M'3C/NJ,HC,NP,NOT~.N~NU,MLlu,OELT,IP&~E,N~YO.1~AY.IOl~T .,NJP,'E£,~PLUr,IS~IP(I~I,AlLI7Q),IOTNI5Z),TITLlI20).tITL(~O) "N~PlRH(~7),'PCTC,LD&T,"CTC~,INOUAL CO~~ON/~IGI ~C~AN(200,&),hJuNC(J~0;Z),JUNIZOO),~L[N(3UO) , ,ALP '11 ,,00 I ,ALP''1 I 200 ),AA I 7 v 0);I,n Il v 0), Uf.1 A(700 ) , jbjvf(7Un,21),A(2ijn,71),ALP"AI7uU,21),~CI3nUI,A~llOO) nl'I lUO),'II JDU),vSI JDU),,)(IIII'OU),il(3DU),VUUlOOI,ZllOO) r.Clllun),CCqIJOU),OlPI1.UO',HaV[llOO),~SI)UOI,VA"SI300) C C •••:INIII.,llt C~lFrICI[NI MAIRI.10 lrHO ~.h~fjO.1 nO thO JOI,HP nU I~u ~=J ,uLlH 160 ASAYEIJ,~)'O.OcouInUDJ.I,NP JJ'JU~IJ) l'I~O'fj,ru,l)GO 10 laa &lPHIJj<0.5 C C,••:[l)u"E'.,'!!If)'l HIG'1 TRIIlUUIlY IN'LO'" TA,vf)L,JJ)/D[Lr.OIN(JJ) IF (IA,I r ,U,Vl AlPt<(JI.VOLl,IJ)/U.O~OELT.ll'N(JJ)) &l P,"(.I)"I ,0.ALPH I J) laa CO'I["'"L a3 j VEIJ,u).QOUIJJ) '. •~,U , AIJ,HI.&fJ,H)'VO~:JJ)/DfLT A3Avt(J,~).A'AY~(J.H)'YUL(JJ~D[LT 1000 CU'I,(N\ll A(TUIIN ['Ill " N \ \AI vI,-aI I C C•••:AnO AUvLCIIUN &NO D,ffUSIUN TU COEfrlCIENT HITR,. no "S\'."1," 1>:01u:u .....~...'"I JJ,KI lfIN,!~.r)G1 TO ~~O IflJ,l'l,NJIJ"CIN"I)1 GO To 200 JU~P'~.Ju"C (II,II If (rll'JI.LE ,0.0)"Olq.1 ror)1',1 120 lOO rU''\.''lIl .I111J~'·1 '''''CIN,2) IF IOI"I,GT.O.OI NOl~'1 Uo cr,~.II'·"[ JUI''J.JrjPP 104'1:!1H-Jr'lf" Ifl l ,rJln,to,lI r.o IrJ no A3",f 1.I''')H~AVEIJ''1J+OII'(N) .3'~ll r,"'1I:a3&VElJ,'1I1l~A03(CI(N».I)I'(N) r;'J PI l~O 210 A\"~I J,~I'A3&VfIJ,MI'&U3IQ(N)ltDlr(~) .,.~rl.l,·~I=&3'vrIJ,~MJ·olfIN) l50 CV".Jt,\,L t ,,c••"anQ vWU"l f~frCT5 A~n ,PPLY ALPw AND ALPHI fACTORS 'O~DYN&~IC If I',:),,,,,?,,)r.0 II)IQOU DO lh'I !>I,"liH A(.I.IJ.-A~.vrIJ,I)OAlPHIJI 200 &,Av[IJ,II'A5 AvlIJ,lloALP'1IIJ) J..I J ~m 1 t 1 ,J.J J J I I •J J J -1 j I I ]1 1 -£"'i')1 ,0 l:Y I r ) a 0 l v I , J J 8Y EKllHN4~NOD!HUMDENS .::0 N I W VI I ....... ~--. 'U~ROUTI~E 'O~YJTICONl cO~~ONi~13C/~JINC,NlD,NDV~,N8NDI~~tH.DE~TIJPAGt,NHYDIIOAY,JDt~T "NJr,Jlf,~PLOT,13Y.IPI\~),ALLC201,IDVNI~2),TJILlC20),rr,LllO) .,N~PE~HI~21,JPCVC.LDAy,NCYCH"N~OAL CO~HON/~IGI NCHANI~OO.~I,NJUNCI)~O~ll,JU~IZOOltXLENI]OO) I.ILP~(lO~I,ILPHI12001"'120Pl;~UI2uOl,BfIA(200) O'A3 I vfllUO,21I,lllOO,211,ILP"AI2uO,211,ACC}OUI,A3ClOOI 01 pltl]O~I,~(]~UI.VSCjnOI .Q~Utl001,llljoul ,YOLIlUU),lC)OO) e.cCIIJunl,CC~I]OOI,DlP(lOOIIR.VEI)OOI,H'()OOI,VI~31)OO) alMENllu N CU~lllcc••••,QP.AUo IlIH'N'IIU~ JH\N •"~"O • I JHAC •JMJ~t NUND NlD="l')-1 IIU l~O J ..,NEU c Coo "UN~'lrl£CIJHfICIENT3 ,.=AL·..·IJ.JHI"1 DO 200 J'J·I~IJH.~ 'lPH·("JI:AlPHA(I,JI/IA 100 ClI"ll~'IE AlTA(I;:AllA(II/TA c C..3lT-UP AO-3 fuR [LIMINATION ~.I',•I • I ~.I ••I •/jRI,O If ("Hll,CT.NED)~~A~aNED Jte;E.1dJI,(\t I DlI i~O ~=~HIN.~HI~ J1=Jo •• T/I.LP",CII,JK»l10,2bO,21O ZI0 CONTI"I,lcC..fll.IN.lf VAqJA~L[I fRO~EQUATIOH K J''<,1 "0.I JJ.I·'.J~el JJ-"•JK t NH~O O~Z.~JJIJJ~IN,JJ~A~ .I'J'I jl·"lto,JJI2IlP~~C~,JJI-ALPHACJ,Jl.ALPHAlK'JK) Hn C~I"rl'llll ~EI'(';'6E1A(III·BlTAlll.ALP~A(K,JKI ZbO Cu';I U"lJl lsn C')"'rt'lIlE c C•••••H,9(1tl5TlTlltJO~ .j ,~=V I ~("I'IIU).~lT'IN[QI/AlPHA(NEO,JMIN\ D'J "~O II=Z,II(11 1=",'»,-11 'J'~=,\".I If(~".tl.N8'1DI NN2Nt!NU.',J.'HJ""J.' (\I)"~U J J •I ,I." J r ,.I " AbO aBO e .• C•••• 510 1(11(+' PETAIJI°ft[TA(J)-ALPHAIJ,J).8lTACI()' CONT!Nul CONTI NuE AS'ICN CONCE~I~ATJON3 Ill)510 Jol,NEli JJ=JUIlIJI C(JN(JJ\.9ETAIJI CO'"."'lJl D('UIl" [Nil .. .- r;... ".... EXHIBIT E Water Use and Quality ~:olJllll!nt 36 Cp.E-2-112,para.2) Estimate the probability and magnitude of supersaturated water passing through Watana and Devi 1 Canyon reservoirs.Include specific estimates for water entering Watana reservoir,the likel"ihood of supersaturated conditions pers i sti ng through the reservoi rs to the intake str~ctures,any differences between saturation values of water entering outlet facilities and the tur- bine intakes,potential for air entrainment at both outlet facilities and the turbine intakes,and a description of the processes affecting supersat- uration at the turbine outlet facilities. £lesponse ~~t present,no information is available on the level of gas saturation levels in waters entering the upstream end of the proposed Watana Reservoir. Therefore,no definitive statement about the probability and magnitude of such an occurrence can be made.It is assumed,however,that no supersat- uration problem wi 11 exist in Watana Reservoir because of 1)the low poten- ti a1 for any sources of saturati on above the proposed Watana Reservoir due to the low gradient of the river and lack of major turbulent areas,2)the <long residence time of water passing through the reservoir,3)wind-induced mixing,and;4)contributions of additional water from tributaries. 2-36-1 Intake faci lities at both dams wi 11 be designed to prevent entrainment of ai r because such entrai nment can lower the effi ci ency of the turbi ne and cause structural problems.The outlet facilities will have a subsurface discharge that will not entrain air and therefore will not increase saturati on. Cone valves will be provided in both dams to pass any discharges up to the 1 in 50 year flood.These structures are specifically designed to prevent supersaturation.Any discharges above the 1 in 50 flood will be passed over the spi llway at each dam.These spi llways wi 11 be designed to avoi d or minimize any supersaturation problems.The final design of the spillways will follow the testing of a physical model before final design of the pro- ject is completed. Water leaving Devi 1 Canyon cou ld be supersaturated even if no supersatura- tion were added by either dam.This is because supersaturation naturally occurs due to turbulent mixing at the rapids in Devil Canyon below the Devil Canyon damsite.This naturally occurring supersaturation would be generally lessened under the operation of either dam.The reason for this is that, under natural conditions,there is a positive correlation between increases in flows and increases in supersaturation values (see attached Figure 41-3-45 from ADF&G 1983).This is probably related to the increase in tur- bu lence and entrainment of air associ ated with increased flows.Under operation,the incidence of these higher flows will be diminished as would the corresponding supersaturation levels. References ~, .... Alaska Dept.of Fish and Game.1983. II basic data report.Vol.4. studies,1982. Susitna hydro aquatic studies phase Aquatic Habitat and instream flow ,~ 2-36-2 j )J t I 1 j J j 1"'1 -)J j )j J »1 ] 14I~ - 12 ------ I Total gas saturation ---and·."I Nitrogen soturalion _.-'-.I Oxygen saturation . •Hashmarks indicate areas of rapids -----.-.-.-.-.-.-.-.-.-.-.-.--.',--",......--"""-'-'-........ ..... 45 6 7 8 9 10 " MILES ABOVE MOUTH OF PORTAGE CREEK .-<{ Gold Cieek Dischofij e ;;32.3 32 ., ".....,../ /"\ \\ \' \'.\.. \\ \'......... \./ \ .....\,.'\ ,/ ,;" 115 5 -1 (III III/Ill TIl If II I {1{III fI I ( { 9 I I I I I I I I I I o 110 120 1 I 105 f- Z w 100 u 0: w a... (f) w (f) c:( ~ 0 w > ..J 0 (/) (/) 0 I..L. 0 V,z W 0-f- c:( a: ::J f- c:( (J) Figure 41-3-45.Concentration of dissolved gases in the Devil Canyon rapids complex. N, \.N (f'", 0J F~) ;;.-.' EXHIBIT E 2.Water Use and Qua 1ity :COI1IIIent 38 (p •.E-2-117,para.2) Describe the uncertainties associated with data collected during this period. !~esponse Differences in the measured and simulated temperatures in the Eklutna Lake study (Acres American 1983,R&M 1982)may have resulted from uncertainties associated with the data collection and lake temperature measurements. Breakdowns of the instruments at the Eklutna Lake stati on resu lted in data 9aps in July and August.The missing data which occurred in periods of July !5-14,16-21,24-31,and August 1-11,13-27,1982,had to be estimated from the nearby stations (Figure 1)located at Palmer (Matanuska Valley Agricu 1- tural Experiment Station),Anchorage International Airport,and Chugach State Park Eagle River Visitor Center (Paradise Haven Lodge).Estimation of these missing data are the major sources of the data uncertainties. The uncertainties associated with the estimation of the missing data are described below: -- ,- 1.Air Temperature: The missing air temperatures at the Eklutna Lake station were estimated from the nearby stations,Chugach State Park Eagle River Visitor Center (11.4 miles southwest of lake,630 ft.above mean sea level)and Eklutna River Hydro Power Station (10.8 miles north-norhtwest of lake, 38 ft.above mean sea level). 2-38-1 2.Wind Speed and Direction: The missing wind speed and direction at Eklutna lake were estimated from the station at Palmer. 3.Vapor Pressure: The vapor pressures were converted from the relative humidity data. This was done by utilizing an empirical function of temperature to com- pute saturati on vapor pressure at the average dai ly ai r temperature, which in turn was multiplied by average daily relative humidity.The missing relative humidity data for the periods were estimated from wind direction at the Eklutna Lake station. 4.Sol ar Radi ati on: The missing data at the Eklutna lake station for these periods were estimated from the Palmer and the Anchorage stations. 5.Cloud Cover and Long-Wave Radiation: Due to various problems with power and connections to the instruments at the Eklutna Lake station,the cloud cover data obtained from the Anchorage station were used to estimate the long wave radiations. 6.Precipitation: During the aforementioned periods,the precipitation at the Eklutna Lake station were estimated from the Chugach State Park Eagle River Visitor Center Station.From October through December the rain gauge experienced icing problems,therefore,the data from the Eagle River Visitor Center station were used. 2-38-2 ~I - l.Measured Temperature Profiles: Error in measuring temperature profiles could occur from instrument's calibration being disturbed during relocation or operator error in reading the analog readout or instability in the temperature digital readout.In some cases during active convection,the instability in temperature would occur longer duration. f. References Acres Ameri can Incorporated,"Sus itna Hydroe lectri c Project,Feas i bi 1ity Study -Supplement,Chapter 8:Reservoir and River Temperature Studies," prepared for Alaska Power Authority,1983. R&M Consultants Incorporated,"Susitna Hydroelectric Project,Glacial Lake Studies,"prepared for Acres and Alaska Power Authority,1982. 2-38-3 .' / LEGEND .•WEATHER STATION ~I Figure 1 Approximate Location of Weather Station @j?-, .... - -I EXHIB IT E 2.Water Use and Quality Conment 45 (p.£-2-133,para.3) Provide data for each fracti on of nitrogen and phosphorus used in the calcu- lation of the N:P ratio in Susitna River water . Rlesponse The mass ratio for N:P of 28:1 listed in the FERC License Application on page E-2-133 was derived from data on concentrations of inorganic nitrogen fl~acti ons and inorgani c so 1ub le ortho-phosphorus found June 1980 and 1981 in Susitna River water samples (see attached excerpts from R &M 1981 Water Quality Report,Tables 3.1 and 4.1). 2-45-1 ---_~~-_;:;;;:l,-_-----------..,...r__"--------------------- r-------------------------..j ~ I -I ~ i J -'. I J J J ~ J -\ PREPARED FOR: DECEMBER 1981 \V A TER QUALITY ANNUAL REPORT 1981 .PROPERTY OF: ';AJaska:Power AuthorIty 334.W.5th Ave. ...·~.~C::horaga,Alaska 99501 ••iJ •';'.,-....~..:;'.';••••_••'". .. ; ,. ..... SUSiTf-JA t-~YDROELECTRIC PROJECT R&M CONSULTANTS.INC. PREPARED BY: ~-ALASKA POWER AUTHORITY-----'-j ~r-"~'----';2--J../.5 -"2- l 2:109 t: .~, j.. NOTE:Dash indicates data not available. r,- t J 10/17/80 13.8 104 7.6 142 -0.1 5.5 88 «0.1 <51 000 9/17/80 9.7 84 7.6 124 5.9 4.5 63 <0.1 14,200 9/5/80 7.8 171 5.3 3.6 81 <0.1 5,040 Date Sampled 8/8/80 7.9 144 9.3 1.7 54 <0.1 17,300 5.7 2.0 47 0.1 24,800 12.4 98 7.8 Dissolved Oxygen PE~rcent Sc3turation pH,pH Uliits Conductivi'ty,umhos/cm @ 25°C Temperature,°C Fr'ee Carbl:ln Dioxide (2) Alkalinity,as CaC0 3 Settleable Solids,mill Discharge c.f.s. (1)(3)Laboratory Parameters Field ParamE~ters (1) -~ I i J 1 1 I"'" i .- i_ I_ Ir;.:, \i , t_ tl"'" ~_·-....-'..~_.l~''."0 ""'"_~~}!!1oni a,'~~~s~g e';j Organic Nitrogen I ""'"Kjeldahl Nitrogen N\!~1;·~r?~~.~I~?7 _~~iil~"i~~~l Total Nitrogen _rOrth~-:pti~~:p~t~"1~'_.""~~"""lliJC'..r"-,~"""",,,":..,.,,.,~.__~~J Total Phosphorus AII<aJinity f as CaC0 3 Chemical Oxygen Demand ~~:26) <0 .1 0.26 ,~~ 0.45 :3.~Oi] 0.05 28 0.15 0.03 0.03 13 0.10 0.22 0.32 0.15 <0.01 0.47 0.05 0.09 <0.05 0.62 0.62 0.09 <0.01 0.71 <0.05 0.10 0.26 0.28 0.54 <0.10 <0.01 0.54 <0.01 <0.01 66 6 susi4/u 3-3 ___________,_~_-W(""----------~.-.,...,-------------------j TABLE 3.1 -CONTINUED Date Sampled 6/19/80 8/8/80 9/5/80 9/17/80 10/17/80 Laboratory Parameters (1 )(3) (continued) Ch Loride Conductivity,umhos/cm @ 25°C True Color,Color Units Hardness,as CaC03 (4) Sulfate Total Dissolved Solids Total Suspended Solids Turbidity,NTU Uranium Radioactivity,Gross Alpha,pCi!1 Total Organic Carbon Total I norganic Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2,4-0 2,4,5-TP Silvex ICAP Scan Ag,Silver AI,Aluminum As,Arsenic Au,Gold B,Boron 3 150 51 4 70 242 94 <0.05 1.6 <0.05 <0.as <0.05 9 40 76 9 90 310 97 <0.05 11.6±0.6 <0.0001 <0.001 <0.05 <0.001 <0.05 <0.005 <0.05 <0.1 <0.1 <0.05 <0.05 11 10 69 9 114 25 10 <0.05 0.28 <0.1 <0.05 <0.05 8 45 55 7 38 132 33 <0.05 2.2 <0.1 <0.05 <0.05 18 190 10 90 13 115 8.3 1.8 21 <0.05 0.18 <0.1 <0.05 <0.05 susi4/u 3-4 TABLE 3.1 -CONTI NUED Date Sampled 6/19/80 8/8/80 9/5/80 9/17/80 10/17/80.... LaboratoC:L£arameters (1)(3) """(continued) -Ba,Bar'ium <0.1 0.11 <0.05 0.07 <0.05 Bi,Bismuth <0.05 <0.05 <0.05 <0.05 <0.as r-Ca,Calcium 13 16 22 18 28 I Cd,Cadmium <0.01 <0.01 <0.01 <0.01 <0.01 Co,Cobalt <0.05 <0.05 <0.05 <0.05 <0.as er,Chl~omium <0.05 <0.05 <0.05 <0.05 <0.05 f-Cu,Copper <0.05 <0.05 <0.05 <0.05 <0.05 Fe,Iron 2.1 4.0 0.46 2.7 0.37 Hg,Mel~cury <0.05 <0 .1 <0.1 <0.1 <0.1 K,Potassium <1.0 2.3 2.1 5.0 <1.a Mg,Ma!~nesium 1.4 3.4 3.1 1.2 4.5 r-Mn,Manganese <0.05 0.10 <0.05 0.07 <0.as ! Mo,Molybdenum <0.as <0.05 <0.05 <0.05 <0.as Na,Sodium 2.6 2.4 5.1 3.5 7.2 Ni,Nic:kel <0.as <o.as <0.05 <0.05 <0.05 Pb,Le':ld <0.05 <0.as <0.05 <0.05 <0.05 Pt,Platinum '<0.05 <0.05 <0.05 <0.05 <0.05 Sb,Antimony <0.1 <O.1 <0.OS <0.1 <0.1 ~ Se,Sell:nium <0.05 <0.1 <0.1 <0.1 <0.1 Si,Silicon 4.8 5.3 3.6 6.9 4.1 Sn,Tin <0.1 <0.1 <0.1 <0.1 <0 .1 SrI Strontium 0.05 0.06 0.07 0.07 0.10 Ti,Titanium 0.13 0.24 <0.05 0.17 <0.05 - --z.-LiS-S -~susi4/u 3-5 _~~~tt-=P"'-"""'f\_""'1 TABLE 3.1 -CONTINUED -} -I l, ~4 t Date SamDled 6/19/80 8/8/80 9/S/80 9/17/80 10/17/80 (1)(3)1 Laboratory Parameters ! i (continued).. ~J ! W,Tungsten <1.0 <1.0 <1.0 <1.0 V,Vanadium <0.05 <0.05 <0.05 <0.05 <0.05 "l I In,linc <0.05 <0.05 <0.05 <0.05 <0.05 i Zr,Zirconium <0.05 <0.05 <0.05 <0.05 <0.05 "I j• (1)Table values are mgjl unless noted otherwise. (2)All values for free CO 2 determined from nomograph on p.297 of Standard Method,14th edition. (3)Samples for all parameters except chemical oxygen demand,dissolved and suspended solids,and turbidity were filtered. (4)Hardness calculated by R&M personnel. -,I l ~·1 :1 '\ .' £4. susi4/u 3-6 - 1, "";1 ~.JI'~- NOTE:Dash indicates data not available Date -, 'j f Jl Field Parameters (1) Dissolved Oxygen Percent Saturation' pH,pH Units Conductivity,umhos/cm @ 25°C Temperature,°C Free Carbon Dioxide (2) AI kaliinity,as CaC03 Settleable SoHds,mill Discharge c.f.s. 1/13/81 10.7 84 7.2 242 0.1 20.0 99 «0.1 1,800 5/20/81 10.4 83 6.6 100 6.5 ~O.1 9,810 7.8 120 11 .9 3.2 79 ~O.1 11,600 11.6 99 7.7 124 7.9 2.2 41 <0.1 13,700 ~P........(-""-~..""'Il"~-,~,,,,,,~,,.,,,....~.-.'1 0.12 <0.051 __._.......r"-._v~..""_,........;..'........:.0=----"....-.. 0.63 0.39 0.75 0.39 ~.....~*~-,,......."".~......,......q~..."~...:....--...-~"., ,;<0._10"..<0.10';-""....'---....-.-......-:-1 .<~::!!:!~...5.g-.Ql :1 0.75 0.39 -.-_.,_.w~",4 .D'"''k_~~.] <0.01 .O'.4g,_.~...--.-~"'~.~.....--;.:"".~.._..,,",,~.... <o.os 0.49 1I"'"'Laboratory Parameters (1)(3) -.Am~;;ia]!;~~~~....J -~"""""'~.....,Iil:'""_....~~..--~..- Organic Nitrogen Kjeldahl Nitrogen"'-,-_,:..Nlt~fi·~IU:oge":~~~· .Nitrite:.Nitrogen;:P --.......-'i'.._(c.·>c·'...~.l Total Nitrogen ~..o~B~§h-~t~-~] Total Phosphorus Alkalinity,as CaC0 3 Chemical Oxygen Demand susi9/j ____,w--.-,-- <0.05 0.85 0.85 <0.1 <0.01 0.85 <0.01 0.07 12 4 - 5 0.13 0.34 0.47 <0.1 <0.01 0.47 <O.01 <0.05 8 8 16 TABLE 4.1 -CONTINUED 1/13/81 Laboratory Parameters (1)(3)(Cont1d) Chloride Conductivity,umhos/cm @ 25°C True Color I Color Units Hardness,CiS CaC0 3 (4) Sulfate Total Dissolved Solids Total Suspended Solids Turbidity I NTU Uranium RCidioactivity,Gross Alpha,pCi/1 Total Organic Carbon Total I norganic Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2,4-D 2,4,5-TP Silvex ICAP Scan Ag,Silver AI,Aluminum As I Arsenic AU,Gold B,Boron 18 10 121 16 149 0.6 0.35 <0.05 10.3±O.6 23 106 <0.0002 <0.004 <0.1 <0.005 <0.1 <0.01 <0.05 <0.05 <0.10 <0.05 <0.05 5/20/81 4.5 15 40 4 100 93 25 40 46 <0.05 <0.05 <0.10 <0.05 <0.05 Date 6/18/81 5.0 5 49 8 170 340 66 11 46 <O.05 <0.05 <0.10 <0.05 <0.05 6/30/81 5.0 20 59 7 91 130 29 23 59 <0.0002 <0.004 <0.1 <0.005 <0.1 <0.01 <0.05 <0.05 <0.10 <0.05 <0.05 susi9/j 4 - 6 'Z.-4S-~ 1..-TABLE 4.1 -CONTINUED L_ 1~Date 1/13/81 5/20/81 6/18/81 6/30/81 J_LaboratlJry Parameters (1)(3)(Cont1d) j-Ba,Barium <0.05 <0.05 0.07 0.11 Bi /'Bismuth <0.05 <0.05 <0.05 0.19 j,..Ca,Calcium 36 13 16 19 Cd,Cadmium <0.01 <0.01 <0.01 <0.01 j~Co,Cobalt <0.05 <0.05 <0.05 <0.05 Cr,Chromium <0.05 <0.05 <0.05 <0.05 Cu,Copper <0.05 <0.05 <0.05 <0.05 1;;.·Fe,r Iron <0.05 0.08 0.05 0.07 '-r Hg,Mercury <0.10 <0.10 <0.10 <0.10 1-K,Potassium 2 1.6 2.0 2.1 .~.Mg,Magnesium 7.6 1.7 2.0 2.8 -1-Mn,Manganese <0.05 <0.05 <0.05 <0.05 Mo,Molybdenum <0.05 <0.05 <0.05 <0.05 i- Na,Sodium 6.S 2.0 3.3 4.6 Ni I Nickel <0.05 <0.05 <0.05 <0.05'''-,' Pb,Lead <0.05 <0.05 <0.05 <0.05 1-Pt J Platinum <0.05 <0.05 <0.05 <0.05 ...-J, Sb,Antimony <0.10 <0.10 <0.10 <0.10 .i..Se"Selenium <0.10 <0.10 <0.10 <0.10 Si J Silicon 5.0 1.7 2.0 2.6 i.Sn,Tin <0.10 <0.10 <0.10 <0.10 SrI'Strontium 0.13 <0.05 0.06 0.07 ,.~Ti,Titanium <0.05 <0.05 <0.05 <0.05 susi9/j 4 - 7 TABLE 4.1 -CONTINUED Date - Laboratory Parameters (1)(3)(Cant1d) 1/13/81 5/20/81 6/18/81 6/30/81 WI Tungsten 0.4 <1.0 <1.0 <1.0 "., VI Vanadium <0.05 <0.05 <0.05 <0.05 Zn,Zinc <0.05 <0.05 0.07 <0.05 Zr I Zirconium <0.05 <0.05 <0.05 <0.05 ..., (1)Table values are mg/l unless noted otherwise. (2)All values for free CO 2 determined from nomograph on p.297 of Standard Method,14th edition. (3)Samples for all parameters except chemical oxygen demand t dissolved and suspended solids,'and turbidity were filtered. (4)Hardness calculated by R&M personnel. - - susi9/j 4 - 8 - EXHIBIT E 2.Water Use and Quality Conment 46 (p.E-2-136,para.4) Provide data on water quality,including nutrients,dissolved oxygen,and tr'ace metal concentrations in Alaskan reservoirs of simi lar depths and in similar climatological regimes during and after filling. Re:sponse To our knowledge there are no Alaskan reservoirs of simi lar depths and similar climatological regimes from which to derive the data requested. 2-46-1 .... .-, - EXHIBIT E REVIEW STAGE 3 2.Water Use and Quality iConment 47 Cp.E-2-165,para.4) Provide a list of differences and simi 1arities among Lake Eklutna,Watana, and Devil Canyon,including physiographic characteristics (e.g.,depth, area,aspect,shoreline development)known to affect responses of reservoirs to meteorological changes and thermal characteristics. £tesponse Table 1 provides a list of differences and similarities among Lake Ek1utna, ~Iatana,and Devi 1 Canyon.Watana wi 11 have a much larger drainage area and Cl substantially greater inflow than Ek1utna.However,the most notable difference between Lake Ek1utna and Watana will be the size difference. Watana will be longer,deeper,wider,and have a much greater surface area atnd storage capacity.The shoreline length and shoreline development wi 11 al1so be greater.Maximum drawdown at Watana wi 11 be two times the drawdown alt Ek1utna.The length to width ratio at Watana wi 11 be approximately four times that at Ek1utna.Ek1utna is approximately 5 miles from the glacier, wrhereas Watana reservoir wi 11 be approximate 1y 85 mi 1es from its g1aci a1 source.This has a significant impact on the inflow water temperature dur- ing summer. The similarities between the two reservoirs are also noteworthy.The per- cent of the drainage areas covered by glaciers are 5.9 and 5.2 percent for Watana and Ek1utna respectively.Both reservoirs are glacially fed and have high a sediment input.Suspended sediment size distributions for both reservoirs indicate that a large fraction of the inflowing suspended sedi- .ment is finer than 2 microns.The ratios of live storage to total storage and the mean residence times wi 11 also be simi lar. 2-47-1 ._--"'-~-_............--f---·-------------.,....-------------------- A comparison of Eklutna and Devil Canyon reservoir yields similar findings. Devil Canyon will be four times longer.It will also be much deeper and have more than twi ce the surf ace area and storage capacity.Discharge and distance downstream from the glaciers are greater significantly for Devil Canyon.Mean residence ti me for Devi 1 Canyon wi 11 be much less than for ffl!!"1 Eklutna. The percent of the drainage basins occupied by glaciers is virtually the s arne for both Ek 1utna and Devil Canyon •Although sed i ment input wi 11 be reduced because of the presence of Watana reservoir,Devil Canyon is expect- ed to be turbid because of the fine suspended sediment particles passing through Watana.Maximum drawdown at both Eklutna and Devi 1 Canyon wi 11 be simi 1ar. 2-47-2 - TABLE 1 COMPARISON OF BASIN CHARACTERISTICS DEVIL BASIN CHARACTERISTICS EKLUTNA WATANA CANYON Drainage Area (mi 2)119 5,180 5,810 Glacier Areas (mi 2)6.2 290 290 %,of Drai nage Area 5.2 5.9 5.0 Gil ad ally Fed Yes Yes Yes ,,,,",A,n nu a1 I nf 1ow (ac.ft.)234,300 5,750,000 6,610,000 RESERVOIR/LAKE CHARACTERISTICS Length (miles)7 46.3 28.4 Maximum Depth (feet)200 735 565 Mean Depth (feet)121 250 140 Maximum Breadth (miles)1.0 5 1.5 Mean Breadth (miles)0.76 1.28 0.4 F~Surf ace Area (acres)3,420 37,800 7,800 C,9.pacity,Total (ac.ft.)414,000 9,470,000 1,090,000. Live 213,271 3,920,000 351,000-Shoreline Length (mi les)16 183 76 Shoreline Development 1.95 6.7 6.1 Normal Maximum Elevation of Water Surface (feet)868 2,185 1,455 Maximum Drawdown (feet)60 120 50 Live Storage/Total Storage 0.52 0.41 0.32 Total Storage/Surface Area (fe~t)121 250 140 Length/Average Depth 305 978 1,071 Drawdown/Average Depth 0.50 0.48 0.36 Length/Average Width 9.2 36 71 Mean Water Residence Time (days)646 603 60 ~Water Qual i ty Turbid Turbid Turbid 2-47-3 r EXHIB IT E ;~.Water Use and Quality Goonent 49 (Fig.E.2.63 and E.2.64) Provide clarification of the term Uwater depth ll used in these figures (i .e., maximum depth,mean depth,or hydraulic radius). !~esponse ""'" f"'" I F ! The term "water depth ll used in these figures (attached in 2-49-3)refers to maximum water depth in the cross-sections. distance from the water surface to the thalweg. 2-49-1 pp.2-49-2 to That is,the 15.00 .14.00 13.00 12.00 ~ W ILl I.L.11 ..00 ::I: ~ 0- ILl 10.000 ll:: ILl !i 9.00;: 8.00· 7.00 6.00 (~- 5.00 ~=-- 4.00 3.00 ••0 • n • A a ~• A ~0 • A • 0•~o·•A 1II 0 ~•AO h A •n -••A ~A ,A 0 0~I:> u -~!a •A .0 •A 0 ~0 •,A 6 ~A ~A •0 • •0 ....0 6 ~0 A A A 1\ 0 ~a ~ A . 6 , 128 130 132 134 136 LEGEND: GOLD CREEK FLOW: •23,400 CFS o 17,000 CFS ....13,400 CFS ~9,700 CFS z <{ :!Ea::w ::I: VI NOTE: WATER DEPTHS COMPUTED BY U.S.ARMY CORPS OF ENGINEERS H EC n COMPUTER PROGRAM MAINSTE DEVIL C, r 4152150 ~z UJ 0W>-a::z (.)« (.) w C)...J«:>l- CC UJ 0 '0 a. 148146144142'140 ~ffi RIVER MILE ">1_ :0:: •WATER DEPTIiS AT RIVE R MILE 150.2 :-•24.13 FEET 0 22.88 FEET 0 21.95 FEET... l:J.20.68 FEET0 --... ...I l:J. •••l:J.- 0 0 0--u ... .........--•• 0 •.0 l:J.0 l:J.l:J.t>......•...0 0l:J.••...l:J....u • 0 0•'I~ l:J.!...l:J.... ! 0I...I ! Do ....U . i ... l:J....; l:J.l:J.. ';,, " 15 WATER:DEPTHS (ON TO i RM 126 ,I ~II 18.00 ( 17.00 ,.'-~16.00 15.00 14.00 13.00 12.00 .- l&.I l&.I IL 1100 r.-a.. l&.I 0 10.00 a: ~ (~9.00~ 8.00 7.00 6.00 5.00 4.00 3.00 2.00 I I I I I I I- • I -0 a ... . ... t:..•t:.. - a •a...... •a t:..t:.. •a ... •• ••t:.. n A ~ a ...a.~ •...- A 6. A " NOTE: WATER DEPTHS COMPUTED BY U.S.ARMY CORPS OF ENGINEERS HEc-n COMPUTER PROGRAM.MAINSTEM RM 126 1 98 100 LEGEND: GOLD CREEK FLOW: •23,400 CFS a 17,000 CFS ...13,400 CFS 6.9,700 CFS 102 104 106 108 l&.Ien<tru 110 6124'22 >-a:a: ::Ju '201181/61141/2 ~IVER Mlt..£ ----~-~- to- - • 0 ..- I • 6- 0 "..... ~•( •i :- D-o • '"~".•aa •! ~A .r•'" •..•A - 6--00-0 '"~0 C1 '"'"•6.'"a-.......'A A 6.•- 0 0 A.A.0 '"6.6. "n. , IZ ~ATER DEPTHS I TALKEETNA 2-49-3 ,~ ""'" - EXHIB IT E 2.Water Use and Quality Comment 50 (Figure E.2.65) Provide a description of the modeling procedures used to generate the water surface elevations in this figure.Provide the appropriate reference to Trihey's work (Trihey 1982 is ambiguous)and other ADF&G or R&M reports con- taining data used in this analysis. E~esponse As stated in the response to Comment 4~(Exhibit E~Chapter 2)the water surface elevations (shown as solid lines in Figure E.2.65 p.2-50-3)for mainstem flows of 12~500 cfs and 22~500 cfs are based on water surface measurements taken on August 2~1982 and August 24~1982.The water surface l~levations at ADF&G gages #129.2 WIA and WIB (station -4 +50)for the 'intermedi ate mainstem flows of 16,000 cfs and 10,000 cfs (shown as dashed lines in Figure E.2.65)were obtained from the water surface elevation - mainstem discharge relationship shown on Figure E.2.66 in the Exhibit,which was based on observed data.The water surface elevati on was assumed to be the same at ADF&G gage #129.2 WI as it was at the upstream riffle,since pools existed at flows of 12,500 and 22,500 cfs.Also,since Slough 9 is not overtopped at mainstem discharges up to 18,000 cfs,outflow from the slough is quite small and it has no appreciable effect on the water surface profile downstream of the riffle at passage reach B.Slough flow was set at 3 cfs to represent a plausible worst case entrance condition during the inmigration period for spawning chum salmon.The depth of flow through the riffle at passage re'ach B for a flow of 3 cfs was estimated from water depths recorded by ADF&G while surveying the bed profile of Slough 9 on August 24~1982.Slough flow was measured as 3.4 cfs on August 25~1982. 2-50-1 -------------------------'"'1""'""------------------,- The reference to Trihey's work is given below: Trihey,E.Woody.1982.Preliminary Assessment of Access by Spawning Salmon to Side Slough Habitat Above Talkeetna.Prepared for Acres American Inc.Buffalo,New York.26 pp. Additional information is contained in the following references: Alaska Department of Fish and Game (AOF&G), Stud;es Phase II Bas ic Data Report Vol ume 4. Flow Studies.1982. 1983.Susitna Hydro-Aquatic Aquatic Habitat and Instream - 4,.4 R&M Consu ltants Inc.1982.Sus itna Hydroe lectric Project 1982 Hydrographi c Surveys Report,Prepared for Acres American Inc. 2-50-2 ~I - - ~\f\~ti\stluLr1rLflrLfiftri.riJiJt~ir11 I WSEL=592.1 SLOUGH FLOW"3 CFS PASSAGE REACH B WSEL=592.15 MAINSTEM"22,500 CFS 4.0 3.0 WSEL =594.1 1MAINSTEM"32,500 CFS WSEL=591.25 2.0 II MAINSTEM"18,000 CFS -\0-------CWS"E:C590:B;---------------~.~.:.::;!(~.-:. -.MAINSTEM"16,000 CFS •,:::.';.... _-1--"-:------y------------------'<-~..'.'... WSEL AUG 24,1982=590.00 .I\':-'~/.:'/ MAINSTEM::;12,500 CFS .';.';'.'. SLOUGH::;3CFS 't'::~:"~c:..... "•,0 .<:.~:;\li:i§~{i{)~:;h~j,~:,::::;.;::.. (MOUTH OF SLOUGH 9) ------- ADF 8 G STAFF GAGES' iLl1..c/low/II 12 '1.2 f.,JIIJ ..Jl"·o"'~~:"·J·' ;:;',;:/,.:::;::0 .PASSAGE I.....1 REACH A ~94 593 592 ~ I- I1J I1J 59/ lJ...- Ze 590 I-;; Lj 589 w 588 587 -5tOO 0+00 (MOUTH) N \V, o ~ NOTES:DISTANCE (FEET) I.MOUTH OF SLOUGH AT STATION 0+00. 2.SELECT MAINSTEM DISCHARGES MEASURED AT GOLD CREEK. BACKWATER PROFILES AT THE MOUTH OF SLOUGH 9 r·:...:;~.,::.,·_,·.'.~':''--;',.,/1 ''1'"~;("FIGURE E,E6'5: . -(_.., '. - - .- EXHIB IT E 2.Water Use and Quality Comment 51 (Table E.2.2?Table E.2.4) Provi de tab les of month ly average f low data at Gold Creek,Chu 1itna River, Talkeetna River,and Susitna Station for water years 1950 through 1981. Provide corresponding monthly average temperature data at these four stations for every month during water years 1950 through 1981 for which this is possible. Response Tables 1 through 4 of this response provide monthly average flow data at Gold Creek,Chulitna River,Talkeetna River,and Susitna Station for water years 1950 through 1981.The flow data is supplemented with filled in data obtained from a correlation analysis where flow records do not exist.The periods of estimated or filled-in data are noted in each table. Available monthly average temperature data for water years 1950 through 1981 are presented in Tables 5 and 6 for Gold Creek and Susitna Station,respect- ively.For the Chulitna River,there are no continuous records from which monthly average temperature can be computed.For the Talkeetna River,the only monthly average temperature data available is for water year 1954 and is as follows:May 7~2°C,June 11.1°C,July 11.7°C,August 1O.6°C,and September 7.2°C. 2-51-1 -r A \3>L~\ &OLl)CRE.~K MOt.JTH Ll''FLOW (CFS) VS&~bAbf.1'5 Z't 2000 W4T£fl YEAR OCT NOV (lEe JAN FEll MAR APR MAY JUN JUL AUG SEP .. ./'tru 6335.2583.1439.1027.7 BB ••726.870.11510.19600.22600.19880.830 1'. /'(J-I 3848.1300.11 00.960.820.740.1617.14090.20790.22570.19670.21240. ·CfH 5571.2744."1900.1600..1000.880.920.541'7.32370.26390.20920.14480. /f()--;8202.3497.1700.1100.820.820.1615.19270.27320.20200.20610.15270. ('I f 4-5604.2100.1500.1300.1000.780.1235.17280.25250.20360.26100.12920. ('tf:i'5370.2760.2045.1794.1400.1100.1200.9319 •.29860.27560.25750.14290. trrc.4951.1900.1300.980.970.940.950.17660.33340.31090.24530.18330. 11 f t 5806.3050.2142.1700.1500.1200.1200.13750.30160.23310.20540.19800. ,(t~8212.3954.3264.1965.1307.'1148.1533.12900.25700.22880.22540.7550. /'IN 4811.2150.1513.1448.1307.980.1250.15990.23320.25000.31180.16920. tro()6558.2850..2200.1845.1452.1197.1300.15780.15530.22980. 23590.20510. 1%1 7794.3000.2694.2452.1754.1810.2650.17360.29450.24570.22100.13370. t'iG2...5916.2700.2100.1900.1500.1400.1700.12590.43270.'25850.23550.15890. /'(6)6723 •2800.2000.1600.1500. 1000.830.19030.26000.34400.23670.12320. f(G4 6449 •.2250.1494.1048.966.713.745.4307.50580.22950.16440.9571. l16r 6291.2799.1211.960.860,900,1360.12990.25720.27840.21120.19350. ,IlfM"7205.2098.1631.1400.1300.1300.1775.9645.32950.19860.21830.11750. tVIPf 4163.1600.1500.1500.1400.1200.1167.15480.29510.26800.32620,16870. l?b6 4900.j}1'~1981.~?li1:,{.Ug:ltiJj ..Wii ~.1WI'f»}:.... /'(6'(.~.a.~~.I ,r .I 0 h'•...•_. (f(r-o 3124.1215.866.924.768.776.1080.11380.18630.22660 •19980.9121. {(I'll 5288.3407.2290.1442.1036.950.1082.3745.32930.23950.31910,14440. {"t)...~a47.3093.2510.2239.2028.1823.1710.21890.34430.22770.19290.12400. 17M 4826.2253.1465.1200..1200.1000.1027.8235.27800.18250.20290.9074. ((01-3733.1523.1034.874.777.724.992.16180.17870.18800.16220.12250. Itt.,S'3739.1700.1603.1516.,,1471.1400. 1593.15350.32310.27720.18090.16310. N /71'7739.1993.1081.974.950.900.1373.12620.24380.18940.19800.6881 •,(/"3874.2650. 2403.1829.16HI.1500.1680.12680.37970.22870.19240,12640, U\/Cf15 7571.3525.2589.2029.1668.1605.1702.11950.19050.21020.16390.8607.-/711 4907.2535.1681.1397.1286.1200.1450.13870.24690.28880.20460.10770,, N f't 04 (IJ 7311 •4192.241b.1748.1466.1400.1670.12060.29080.32660.20960.13280. /'101 7725.3-9"80'.'l-hZ-J •~1-2-:t6 •.1--H.-4.1-J.bB..I-J-3-l-1.1-~..J~-G •3U'::;J-D I 1-:J±T1, ;'>S'fo(1 t (/IS';L0I J ,<I rS-/j'Elj ~O..<j.O Ni:J'5'O /C"f'jQO 3:J'N0 -:;:.rtl+o I J '(-9'0 Y IJ (.(,(_I I "('/,,:t VI (~I \)I III (,1>/')(I I I '/'I '.f '1/h'((, I I f ;.r,I !,~l r /l¥.,.! '-...../ J I I I J i .1 'I r i )D -1 I I I L-JA lE~ YEAR )j I 1 )1 -J J i ] ().~ , TABLE 2 FUlW (Cr:S)UCH\J Lt TN A R\\I t:R Mo tJTH l.'1 llSbS GAbl%.15 Z 't2J-1 00 OCT NOV (IEC JAN FEEl MAR Af'R HAY JUN JUL AUO SEf' N l V\ I W 7'n'u 9314.327~.~214-=?'-rr~:--rr7.l~-1<\1071 -1-1:jJ~BBO:-f-rr2:?1--;-r-j.lbb7":'~:'6~,:-~:rr:-- NJ"/3U,O.1236.891.geO.91')...84~;.128;[.6101.\1976".'2416'1.20?6'.HHJ' /Vl 652fp.2401.,1774.l 1305.116{'D'107~'i:~~.11664,2lH[l9.!265q~196.2.-1.11001. 195''1 6aJ...204'1.'149 ....,.'1597.I 1 14 1.'95f1 1261.957~~'l H':'j71ol 22840,~'711.107.J.19}-zJ.~"43a~.1680 •.128.?,1221.1043..83.105~.1661.~'H.2528'\'2~B27.2706'1.1180 •.J~46lo8.~~1!.'._I~l:.._1~~_.89~L _~~~__1_0~1~_7'!.?1~,2~~~~J41~b!_-.l..l!J~j.~~~04.!. ~bOO.2005.1476,1323.1296-'-'1104.·1030.;l002.J.3.324.31196.233:'9.23260. 11(';)1 I 6iT 301.q...17"1.1 1673.1298.123'el"11 130(,.8447,1/2 '\9Il.286::;;'265H.1401".]: I Y.ra'~71 El • ''275'2.(1"I 9 •13 0 ~1044.,9 '10.~1220.1 0460.1 '231 70 •2::;0 I 0 ,;'I)761)•800 b .I . irS"j "11.,./.~nnr:r.l l.!b2.10'1'/.10<1'/,7JB,,-a?O;"",-nTJ-;-,I~'J6b(j-;-~~,!;65U;<:-'~TOC)-;-r-n--~-: 1ft..0 4723 •2283 • 1 700 • 1 448 •11 03 •9:13 • 1 000 • 1 38 ..0 •I I 7390 •~J6 5 0 • 1 9J ~0 • \ I 24;'0 • 1'161 ::i'135 ,1950.1745.14S2.1100.1079.(!bOO.10100.20490.~7420.24500.16030. 7VbJ..57 n.2400.-Isoo:-iIJbo-:--1000;---93<)';"-1-1'70';-'-774 :r:-'-'~0620;'--272~6·.-:'1980':'134'70;--- J'I(,,1 3506.1500.1552.1600.1300.846.700.11060.17750,'28'150.(18HO.11330. /CfC:l/l B062.2300.1000.1007.020.770.1133.2;\55.40330.24430.,'20250.9235. lib}",.564",...!900.:.l100.1600.:--r400.1300.1400.'7152.20070,2:1230.225JO.22260. ('f(.,~1 6071.1620.1350.1200.1100.1100.1300.3771.21740.23750.27720.12200. 1'1&1 '16EJ2.16~~!..~OO.1458,12~~~._!..9~~.:..~_9,~t~-!?.~_Q.2_~'_~~~~~!...~?~2.l..~H70~~~!~_It"I:'J ~..3 ·1 03 • 1 66 0 • 1 J 9 7., 1 '235 • 1 '2 00 • 11 4 fl •13 4 i'•10 9 4 0 •2 ..000 •3 0 I 4 0 •20 7 I 0 •7 3 7 5 •f .Ir(,,'1 :29 'jiG •I 490 •11 39 •974 •900 • 9 ~4 • I3 J3 ,600 I •I 0560 •:2 OB 2 0 • I I ]0 0 •(670 4.' _tirO'~S?I1.~007.1316.1200.(II~j~.11?0.~~~3~'~~~!-~~~~~(~JJ30•...:nil,,HI.!6 •..!2 I 0 •I 1 "03 •11 13 ,9,)0 • 9 :I 4 •982 •4 46 B •.!::!1 a 0 •I 27 200 ,J .J Il I 0 • 1 1 000 •. Nf1...:1 5439.2157.1'\32.1174 •.1041.939'1 on.976::;.'17900.42::;770.20970.12120 •• 11'1'1 :i.46I.:2171:1,,00.116~O'103;;,1 88q.I10b,4096.20005.2276t la67b.7112.~..[--"':;'~f--1-rrn-I--,·3.......,----"73.,.~'J'\l:'..-·-"'"..,-'·--,-,0;1---rl"'..---I-,,-;;'·_·'--;;-_·-----.,-'--0----""'::;T'"If{f .,'1 'I I (J.,..I "7..I.,, •.I ~'7.J.7 V"j •.I':8,,,~J 0 •.0 ,4 I 'J"6 8 I •~...7 '\1 .,I -.J ~,." 1'I'1J .I 4841.17aj.1371.1287.105().'1061.'1345.6'i'28.2:';2'14.3397.2230'7,12r~o.I Ilf${,5525.1525 ••1091.1129..107~'__8_?q~_~8'·.-lQ~%'~'2:!6'12'2537~'_~'12';1.l..1031;':':7rf.T.6.'.rH/·2537,',,09'1'149l:).99..962.1'14'(:/816a 33629.2~8o:l..1 ;'018,.Ina!],\' /'f1I3'54;!....2113.~1b'lf.1458.1123.'1fll.1052,4702.15387.'2·1633.1532','10351.', I'ln b 4~o.21(J".~1651.1406.llt'I.·93~.127~.113'i'6.!'i'61£'.I 2774(J.22897.112vl.JI' '{60 Co{2.0 3/eo /':'40 1')2..0 IJ 7'-1 I,,>O'~,':It..=f r IIO~?-24 '10 'J4 'ISO M'ffjO f.:AO~r81 5''711 '32../'J ,--0/(,./c.,.J.JI4/4 II ~I 1440 Cl(/'7-2.A.2..4.:.tc ?-?f:lloO '33/'7-0 IIrG.O .I ..·_.1-1 L w;Ji...(..~1~/tt S-O ~1'1,)7 ~ic:l...)"\ (I)/)~~r"r .'I ~~I ?J~6 /rO~r n~)~p.~~~O-~l'~}~.,~ft., ._-A.lA~19 r'J ...u'~.L../991.".-'"Ii _,0',~.I , ,--f-J"=r.;0 ~.(,.i-..~1--1---'-r:-l L,~....d .-1-'_L.~,....,.(,,~~r (~7.'-.c AVl ~~-rv;,rr-CA..~""~7j-L ,~._•..fj."..t.cAC......u.-k ~reJluzt::....-~~O~1 ~v--:--Il(;O-:~~r""'y.--.~-J fia-U(~t.L~r.JkJ:::....~~~~,-~~~~~?~~xL 'A~;t!J.~,,d.J...<A-~' \1\\3L~3 T ~\..\<.E.t=IN A )<lV~R MD NJ)-H.H l=L-oW US~SGAb£ISzQZ700 (c.~S)~ WIt1"EJL YE.Ar'OCT NOV [IEC JAN FEf!HAR Af·f.\HAY JUN JUL AUG 5EF' N ~ I .J:.. i'lfb J09W.lsit.,10:Z6,~'61 (.,'46El,',39t 384.431q.89IB.~1l7J~lObO!}.5;)lrL~ FIn ;~:I~9.,77'1L 51.(,536,4~,__3_?9.!.,607.31~~,~~,1012.".93~~..!.-_846 ~_ Ill'."J 231J"c).'109[).7eo.5B~.,46'(:'.4iJ.1 4[l~.:nJ8.11]6(.9'176.B;,/O.704'~ I'Il'1 3IDEI,15Scf.931.63".470,453.:65;1.,4946.,9B6~.9499,·80'2</.561. ,qU','2024.1134.693.6411,472.386.:429,.356~,9:Jsr.1 100~G:18033.692. 1't r r.2426 •'.n 6 •632 •594 •5:2:!•4"'I -:~::;0 I 2 sgcr.10'20.1 234 r:14 206 I,630'2, I'I'.J"'"n91.':t033.789.'68@'62B'502'497'641&:Halt"117_ W '(1293;1..'8179' 1751 3017,1766.1031.L 707..60~~!?kl 524.4~.:...u..u...!..~~-:...--1..llZh~?LI~3662.16B~101"'.,822.609.515.705.:446:4.1603~136<'•i I~O.451+1 /'(plt ;)42.4.'"82'/.61 $'.'57f.52i';436.'5f-fl.,417ft.I ~019.10'509.,~13065.1 7053, {%O,2940'.93,h"B03./,23.47.'II"'.49!.:lfl2~',--dl ,1 __9!JlJ-!-,!_LVlfL 7648. I({&!J '264 •14 as.12:1 9 •1001,.1 a 0 {J 621 •741...410 f.1 51 6 1.j .1 251 (j,-;14 030 •7879 • : /'(62..I 3095.,15Sf,10340.81"',7H1.569.648 3'2t:t\16992.9fob;;92 f/O.'5663, /tC:,?·35 7b •13 7 B.:11 07.-{!J;.'700 ,'5 ~7.!...__"~~fL::__9 ~~;...!..lQ~'-!..Q.2.Q2.!...3778.: "1&'1..!U,~91l>.'693,.5..,'440,:387/-.371.1694.:17080.(9020.8396.3815. IY(d'3115.1569.1100.72.620.(540.5BO.3474.11090.1:'180.11150.1 10610. ~~4430.1460,1 £176.711,526.3,95,422,2410',12970.10100."10730.''5370. ('(H 2J1JS7(-1f~r;;1,,0.6:J7.546.4'l'T;'"'In.4112.'9286.12600.H160.6911. 1 yb'rJ :2 0:2 9 • 1 :2 '5:S •9 B7 •B~1 •777 , (7"3 ,(9 B:I •Be"0 , 1 4 100 , 11 :2 J 0 •I 75 H •4 1 :2 0 • fYb?,!l 1637,0:0.::iS6.0459.401.(3Bo,::i19.3069,5:'07,7080.3787'1~2070. "fITFfr i4~0.765;-5U7.(5o;r;··~D;(--4407-s45.<-'jY50.7979.1032O:-'--07S~'599r:-"- l«':fl J 2817.1.647.1103.679.459.("02.'563.2145.19040.11760.16770.\5990. II(7J.::!63'2.1310.04::;.(727.628,4RI.519.__f it6 •12700 ••12030.9576'1 0709. 1'f1'J ·3630.1373.B89.748.654,'574.577.3R60.12210,7676,9927.3861. (,(1"~.1807..960.745,645.559,482.5J5.5679.8030,(7755. 7704.I 4763. Jtr.:/t.-!i 6 /!..1003~!--..22~~694'.~£!.~I_''5~!...I~?~!..__..i 08 1.!.._!l.!.Q~,-12 070 ,~~z......'-.l..J..!!.Q!,.._Ttf'i(;"":~u8 ~•(77 J • ('5 '5 9 •'5:2"•4 B 0 •4 70 •6 1 J •3 4J 9 •1 0'500 •'70:2 6 • '8088 •320'5 •l I lfl1 :III '5 7.•.1 105.(1069 •700.'549 •'506 • '548 •4'244 ."1 R2 B 0 •"344 •0 0 0 '5 •~'::;A2W'n (f(7a',3268.1121.860.746.~,7{"405,534,'2950.\1 ~429,'10790.700\,_J~67.~ Nt'f,1660.llJ(j,'~:r7:"762,~:!.'-:;;~716.7;nro;-~L,oIo.144407 B2J·\.'\0:1. tr8fJ \}:J-i'7 I=?'-l8 ~H.,13 €oi:J f41 rUO /oJ8 4P;i."J /1':>0,'IJ'iCtl T.Q..Lf ~~()2. frejj 7-1000./144 1/1 (,t;l...,'JJ._.....:j:!§~'f1 _1~.2..11 65~/PlI.u /4l.otJO 1.l~_L (I)/)~~,J..c;:k..A ~(.~195-0 ~19~4~~~W1At~~.~.~~cI-J-~-?~~/~~'1. I •,~I I J J J ) J 1 j 1 )J 1 ]»1 -~J J J ]I-',,.....• IA61,~()J I SV~ii"rJA ~Jr ATlO,J ',",,0 N ,.....L.y 1=="W}W (C.~5) Wn1'l3P-U Se:,S 6A&G '5"2'14-f3~O IIYEAROCTNOV[lEe JAN FEll MAR APR MAY JUN JUL AUG SEP I1 I IClJIJ 26869,11367.·,6197,6072.5256.5377 •5657.66294.101616. 124890.106432.39331. If(J'I 18026,6933,5981,7074,7295,6382,7354,59273,82255.123164,100947.73471. Irfl.31053.16364.6989,8274.7036.5853.5985.45294.132547.13732i.116186.82076. (f(r?44952.16289.9746.8069,6775.6350,7993.88040.130561, 125949.97610.Jl4160. /'ffl1 20169,11829.,5272 •"7202.4993.4980.6306.58516.108881.116732.128587.66275. tC(\'-23896,9168,6183.7255.5845.5316,6412,58164.169045.148877,120120.53504, I~j~19923.10522.7295.6179,6831,6324.7182.82486.161346.168815.131620.104218. /9rl 41822,21548.14146.10600,8356,7353,7705.63204.176219,140318.124813.87825. /'f}-'d 52636.19887.10635,7553,.6387.6679.8099.70321.112897.122280,99609.53053. tO~30543,9528.4763,7795,6564,5666.6468,56601,110602,146217.138334.67904. Jq(~)25754.10165.7005.6716,6310.5651.5830.50062.84134.129403.113972.81565. 1%1 33782.12914,13768.12669,10034.9193 ~'9803,85457,151715,138969,116697.62504. /'((,2 29029.13043,8977 •9050,'6183,5951"6635.54554.163049.143441.121221.74806. ,rb3 27716.10755,8865.8671,7854,,'.6058.,'5565,53903.85648,146420, 106707.70782. /'Wl·37846.11702.·5626.6351.5762.4910.5531.35536.153126.124806.92280.46110. I'l(S 28747.10458,,6127"6952,6196~6170.'7120.49485.110075,138407, 111846.89944. I C((,C,365~3.12313.9159.8031.7489.7091,'8048.52311.125183.117607.118729.·63887. Irl(,~26396,12963,8322;.8029.7726.6683,'7281,::iBl07.134801.136306,137318.89527. 1'((/0 ~~~.~.150811,1~11532,'M)};'e763.~i'~.130514.~.lf~r~.Q .L·.,:,1fJei ii;U;gm..I'>~.'{.&:.JJB,'((/f ~- • 'I •. • . 'I -..... ..'rNo 22683.6799.:'5016.6074.5581.5732:",5769.53036.94612.132985.117728.80585. I 'ITt 32817.16607.8633.6509,6254.5883'-~788.29809.122258,139183.133310.69021. l'(fl 32763,14922.;8791.9380.13458.6646. 6895.74062.176024.142787.107597.60220. I1'f1 26782,14853.,8147i 7609,.7477 •6313.'7608,64534.122797.123362.107261 •45227. (<(74 20976.10113.'6081,7402.6747,'6294,6963.61458.67838.102184.80252.56124. (ITf 19520,10400.9419,8597.7804.7048.6867.47540,128800.135700,91360.77740. tv 1'f7~31550.9933,6000.6529.5614.5368,7253.70460.107000 •.115200.99650.48910. rlr"30140,18270,13100,10100,8911,6774.6233.56180,165900,143900.125500.83810. \ U\Ir"fl?38230.12630.,'.7529.6974.'6771.6590.7033.48670.90930.117600.102100.55S00.-('179'36810,'15000.9306,8823,7946.7Q32.8683.81260,119900.142500.128200,~I V)(9f30 58640,31590.'14690.10120.9017.8906,12030.66580.142900, 181400.126400. 1'181 •34970.16200.·8516.7774.7589.6177 ,10350.83580.108700.152800.159600.67170. 0)b~d-.:J:<,A·~I'~-o 5"111 q ~~~~J"\.'"~; C~,,~~<:'~OJ~/974. ~......... t2-)f.J;w,u (76 J l:eviJ I i),.,~us 6-J" ",_. .--------------.-_...---_..------------------~ -,(;S 11iv~--:-.--;;;7-10 ';:j~~~:~~&7iv~~e~C~-,;~:-a~/i-.;fliiR£r ,(~c:J J~Qg w.Ai.TeR YEA ~5 .j:~:qR.wltjC~._!,-~:rA _t\K.E~.A..V.A U..A_S-t,.€_.. -LvAT"E-k Ytl11<6'cT-/l/Jv Df.C JJ1N fl/J InP;<.I1PR,mlJt ]f.J/V J1JL I7 Ct rr SLPt-.~."-- --_. ___,_~If-__.Ivo _.J_~__ov!tl~!~k1~.~_J~!t_!-'JJ~~Q-~L1-.tJ .____ ___~..;_