HomeMy WebLinkAboutAPA402117
TK
r-1L:\.;4.'v
~s~
A;t3
flO,iot2ly
ATTACHMENT B
ANNOTATED BIBLIOGRAPHY
OF
SEDIMENTATION PROCESSES
IN
GLACIAL LAKES AND RIVERS
LI
.-SHP,Suppl.Info.,Vol.IB of III
~(,
i:'.-~-"
,i,·r
fNl
I
-.y
ARLIS
L'b Alaska Resources
I rary &InfonnatJOn S
Anchorage,Alaskaervlces
"•.-:i:
"
J NTRODUCTION
A literature search was conducted to obtaIn information on glacial
fa ke trap efficiency of suspended sediments,with emphasis on
mat.erials sma!ler than 50 microns.Relevant information will
provide a bas-is for predicting the fate of suspended sediments
entering the reservoirs of the proposed Susitna Hydroelectric
Project.
The literature searchinetuded a review of University of Alaska
theses and publications of the University of Alas ka1s I nstitute of
Water Resources and Geophysical Institutej the'U.S.Geological
Survey,and the U.S"..Army Corps of Engineers·Cold Regions
Research and Engineering Laboratory (CRREL).A computer
search was conducted on the CRREL BIbliography and on Selected
Water R esou rces Abstracts.
I
I
I
I
I
---I
I
I
I
I
I
I
I
4
I
I2-'37--//c,
susi8/h
The bibliography contains annotations for 36 references with
relevant information and a listing of 31 additional references with
no specific information.There is information on depositional
processes when proglacial rivers enter standing water bodies
(Church and Gilbert 1975;Carmack,Gray,Pharo,and Daley 1979;
Embleton and King 1975;Gilbert 1973,1975;Gilbert and Shaw
1981;Hamlin and Carmack 1978;Pharo and Carmack 1979;Smith
1978;Sturm and Matter 1978),with details on particle size dis-
tribution for two ancient lake environments (Ashley 1975;Shaw
1975).However,research reveals that reconstructing modern
depositional environments fr·om analyses of ancient environments
may be misleading,as distance from source and shore and depth of
lake are not as significant as density,wind-induced currents,and
stratification (Bryan 1974a,b).Furthermore,misinterpretation of
depositional events can lead to overestimation of the time involved
in deposition (Shaw,Gilbert,and Archer 1978).A method is
presented for determining sedimentation rates by radioactive fallout
(Ashley 1979).One study on a modern lake shows that suspended
sediment concentrations affect density stratification (Gustavson
1975b).Two studies (Ostrem 1975;Theakstone 1976)address lake
trap efficiency and distance of deposition from the source.
Il _
!'
-
-
PART I -RELEVANT INFORMATION
t4.rnborg ,L.,H.J.Walker,and J.Peippo.1967.
load in the Colville River,Alaska,1962.
Annaler.49A (2-4):131-144.
Suspended
Geografiska
....
-
-
...
LO
cococo
~g
o
LO
LO
"(V)
(V)
Discussion of suspended sediment data collected during one
year (1962)for hydrologic-morphologic study of the Colville
River delta.Three aspects of suspended load considered
were:quantity transported in water;size of particles in
suspension i and total quantity transported in a given period
of time.As unit volume increases,median grain size and
total load carried increases.Grain size analyses for samples
representative of selected locations,depths,and times are
presented.The amount and size of suspended material
increased with depth at one location.
2"Ashley/G.M.1975.Rhythmic sedimentation in glacial Lake
Hitchcock,Massachusetts-Connecticut.Pages 304-320 in A.V.
Jopling and B.C.McDonald/eds.Glaciofluvial and glacio-
lacustrine sedimentation.Society of Economic Paleontologists
and Mineralogists,Tulsa/OK.Special Publication 23.
Discussion of seasonal silt and clay deposition (varves)in an
ancient environment.Suspended sediment concentration
affects water density far more than temperature in glacial
lakes.The settling velocity of a 60 silt grain in 4°C water
undisturbed by currents is 0.05 em/second.Therefore,such
a grain would settle 50 m in 1.15 days.However r silt was
found in all winter clay layers,and could indicate that lake
currents were present,preventing settling,or sediment was
introduced year-round.Mean grain size of silt layers de-
pends on location in the lake whereas grain size distribution
of clay layers is uniform.Grain size:;analyses are presented/
but there is no specific information on the distance traveled
across the lake prior to deposition.
3.Ashley,G.M.1979.Sedimentology of a tidal lake,Pitt Lake/
British Columbia,Canada.Pages 327-345 in Ch.Schluchter I
ed.Moraines and Varves.Proceedings of an INQUA
Symposium of Genesis and Lithology of Quaternary Deposits,
Zurich,September 10-20/1978.A.A.Balkema/Rotterdam.
Sedimentation rates were determined by 137Cs dating
techniques.Grain size analyses were determined for
190 samples and mean grain size distribution was3 mapped.
Annual sediment accumulation equalled 150±20 x 10 tons,of
which 50%was coarser than 50.
4.Ashley,G.M.,and .L.E.Moritz.1979.Determin~~of
lacustrine sedimentation rates by radioactive fallout ( /Cs),
Pitt Lake,British Columbia.Canadian Journal of Earth
Sciences.16(4):965-970.
Discussion of techniques for determining modern lacustrine
sedimentation rates.
5.Borland,W.M.1961.
streams in Alaska.
66(10):3347-3350.
Sediment transport of
Journal of Geophysical
glacier-fed
Research.
Developed empirical formula for sediment yield rates for
glacial drainage basins based on glacier area,total drainage
area,and length of watercourse.No differentiation by
particle size.Used five years of U.S.Geological Survey
suspended sediment data from Denali and Gold Creek stations
to test formula.
6.Bryan,M.L.1974a.Sedimentation in Kluane Lake.Pages
151-154 in V.C.Bushnell and M.G.Marcus,eds.Ice Field
Ranges Research Project Scientific Results,Vol 4.American
Geographical Society,New York,NY,and Arctic I nstitute of
North America,Montreal,Canada.
Study of bathymetry,thermal structure,and sediment
distribution in Kluane Lake,1968.A weak thermocline
developed in July and August,which was occasionally
destroyed by storm-induced mixing.The lake is ice-covered
for eight months,and receives sediment from the Slims River
for four months.Statistical parameters of grain size analyses
are presented..Sedimentation is affected by density,by
wind-induced lake currents,and by stratification as well as
by bathymetry,distance from shore and input,point and
sediment composition.Highly turbid,cold glacial waters may
be sufficiently dense to flow across the lake bottom regardless
of thermal stratification.When the Slims River warms,it
flows over the lake.
-
',j
-
Discussion of processes affecting sedimentation in lakes from
glacial streams.Bathymetric mapping of Kluane Lake in 1968
and 1970 revealed growth of the Slims River delta.
Cartographic and statistical analyses of bottom sediments are
presented.Finest sediments farthest from the Slims River
7.Bryan,M.L.1974b.Sublacustrine morphology and
deposition ,Kluane Lake,Yukon Territory.Pages 171-187 in
V.C.Bushnell and'M.B.Marcus,eds.I cefield Ranges
Research Project Scientific Results,Vol 4.American
Geographical Society 1 New York,NY,and Arctic Institute of
North American,Montreal,Canada.
susi8/h B-3 2 -3>?-I{~
-
-
t.·..
were·not in the deepest portion of the lake.Distance from
source,depth of lake,and distance from shore are not signif·
icant in controlling deposition.Reconstructing depositional
environments based on sediment size analysis may be mis-
leading.
8.Carmack,E.C.,C.B.J.Gray,C.H.Pharo,and R.J.Daley.
1979.Importance of lakeriver interaction on the physical
limnology of the Kamloops Lake/Thompson River system
Limnology and Oceangraphy.24(4):634-644.
Discussion of physical effects of farge river entering a deep,
intermontane lake.No information of particle size analysis.
9.Church,M"and R.Gilbert.1975.Proglacial fluvial and
lacustrine environments.Pages 22-100 in A.V.Jopling and
B.C.McDonald,eds.Glaciofluvial and glaciolacustrine sedi-
mentation.Society of Economic Paleontologists and
Mineralogists.Tulsa,OK.Special Publication 23.
Discussion of deposition when proglacial rivers enter standing
water bodies.Significant events are:aggradation on the
bed due to deposition of bed load extends upstream from the
lake,along with reduced flaw velocities;development of a
high angle delta,with transport of sediment to the delta lip;
movement of coarse material over the lip and down into the
lake in turbidity flows (bottom flow);movement of river water
down the delta front to lake water of equal density (inter-
flow);movement of river water onto the surface of the lake if
density is Jess than the lake (surface flow);deposition of
fine-grained material and formation of varves,of which the
silt (summer)portion is deposited by turbidity currents,and
the clay (winter)portion by the turbidity current after
stagnation,and then by slow,continuous settling from;
suspension.Turbidity underflow is not a continuous event in
the melt season.Varve formation cannot be directly
correlated to mean annual discharge,because a single large
flood can create a turbidity flow.Turbidity flaws resulting
in more rapid deposition depend on discharge,river and lake
water temperature,thermal structure of the lake,quantity of
sediment suspended irJ the lake from previous events,and
river and lake dissolved sediment concentrations.No specific
information on particle size is presented.
10.Embleton,
phology.
C.,and C.A.M.King.1975.Glacial geomor-
John Wiley and Sans,New York,NY.pp.532-558.
Review of general principles affecting sediment deposition in
lacustrine environments with examples~Lake fleor deposits
become increasingly fine toward center or deepest parts of
susiCl/h 8-4
r ,
r~
I :
I
L.
(
lakes,requlrmg quiet water and long settling periods.
Turbidity currents formed by cold,silt-laden stream water
are important in distributing sediment across the lake floor.
Rhythmites (laminated deposits)develop in cold freshwater
lakes receiving intermittent streamflow,and in some cases
form on an annual basis (varves).They can a[so form from
sudden fluctuations in discharge (bursting of an ice-dammed
lake upstream),unseasonal warm or cold spells,or periodic
storms.
11.Everts,C.H.1976.Sediment discharge by glacier-fed rivers
in Alaska.Pages 907-923 in Rivers 176.Vol.2.Symposium
.on I nland Waterways for Navigation,Flood Control·and Water
Diversions.3rd Annual Symposium,Colorado State
University,Fort Collins,CO.Waterways,Harbors and
Coastal Engineering Div.,American Society of Civil
Engineers,New York,NY.
Investigation of glacial sediments discharged into the coastal
zone (Knik,Matanuska).Size distribution,composition,and
settling characteristics of glacial sediment are important
characteristics in determining where the sediment will be
transported and deposited when it reaches the marine en-
vironment.Based on particle size distribution analyses,it
appears that fine-grained particles pass completely through
the river system.Ice margin lakes fringing glaciers are
depositories for coarse sediments.Clay minerals were absent,
which is significant because clay particles form aggregates
with other fine-grained particles and settle more rapidly.
This absence may be common in other glacial areas because of
negligible chemical weathering in the source areas.
12.Fahnestock,R.K.1963.Morphology and hydrology of a
glacial stream:White River,Mount·Rainier,Washington.
U.S.Geological Survey.Professional Paper 422A.70 pp.
Investigation of formation of a valley train by a proglacial
stream.Particle size analyses of deposited material showed
silts and clays -were washed out of stream deposits.Analysis
of suspended load indicated that silt and clay stay in suspen-
sion and are carried out of the study area into Puget Sound.
13.Fahnestock,R.K.1969.Morphology of the Slims River.
Pages 161-172 in V.C.Bushnell and R.H.Ragle,eds.Ice
Field Ranges Research Project Scientific Results,Vol.1.
American Geographical Society,New York,NY,and Arctic
Institute of North America,Montreal,Canada.
Investigation of the Slims River,a proglacial stream flowing
14 miles from Kaslawulsh Glacier to Kluane Lake.The river
is modifying a valley train deposited when the glacier was up
..,.,
-
-
~1
-
susi8/h 8-5 -
.-
against a terminal moraine.It is regrading,ie,adjusting to
a decrease in load at the source by cutting in the upper
reaches and depositing in the lower reaches.The Slims River
is also affected by downstream changes in the base Jevel,
which is controlled by the extension of the delta into Kluane
Lake and the variation in lake level.As the vol ume growth
rate of the delta is not known,the sediment transport rate
cannot be estimated.Suspended sediment is predominantly
silt and clay.No data on particle size distribution.
14.Gaddis,B.1974.Suspended-sediment transport
ships for four Alaskan glacier streams.M.S.
University of Alaska,Fairbanks,AK.102 pp.
relation-
Thesis.
I nvestigation of suspended sediment transport relationships in
glacial streams at Gulkana,Maclaren,Eklutna,and Wolverine
glaciers.Data on mean particle size Is presented for four
glacial streams for one season at sites near the terminus.
Sediment availability depends on amount of sediment,distance
travelled downstream,and mechanical nature of sediment
entrainment (no specific information on entrainment).
15.Gilbert,R.1973.Processes of underflow and sediment
transport in a BritiSh Columbia mountain lake.Pages 493-507
in Fluvial Processes and Sedimentation.Proceedings of the
9th Hydrology Sympasuim,University of Alberta,Edmanton.
Canada,May 8-9.Subcommittee on Hydrology,Associate
Committee on Geodesy and Geophysics,National Research
Council of Canada.
Description of processes involved in formation of varved
sediment deposits in proglacial Jakes,primarily underflow and
interflow.Underflow increases with increase of water and
suspended sediment inflow.Cores obtained to determine
thickness and comparision of varves.No information on
particle size distribution.
Lillooet Lake receives sediment from a 3,580 sq km drainage
b~sin,of which 7%is glacier-covered.I nterflow and under-
flow distribute sediment through the lake in summer when the
lake is stratified.Factors affecting distribution are:density
characteristics of the lake and inflowing water,as determined
by temperature and suspended sediment concentrations;
currents induced by wind and inflow;thermal structure of
the lake water,which determines the nature of circulation
patterns and allows interflow along the thermocline;diurnal
and seasonal fluctuations in infJowing waters and sediment;
-
-
16.Gilbert,R.1975.Sedimentation
Columbia.Canadian Journal
12(10):1697-1711.
in Lillooet Lake,British
of Earth Sciences.
susi8/h 8-6 2-3'2-/7-(
l _
and the large annual volume of inflow (4.5 times greater than
the fake volume on the average).I nterflow carries sediment
at the base of the epilimnion to the distal end of the lake in
one to two days.No specific information on particle size.
17.Gilbert,R.,and J.Shaw.1981.Sedimentation in proglacial
Sunwapta Lake,Alberta.Canadian Journal of Earth Sciences.
18(1):81-93.
Examination of hydrologic and limnologic conditions of
Sunwapta Lake,a small,proglacial lake in the Canadian
Rockies.Sediment input was measured and sedimentation
rates were calculated.Sediments of small,shallow lakes with
large and highly variable inflows are expected to demonstrate
lateral and vertical variability,whereas those in large pro-
glacial lakes are more predictable due to modification by
large,stable water masses.
18.Gustavson,T.C.1975a.Bathymetry and sediment distribu-
tion in proglacial Malaspina Lake,Alaska.Journal of
Sed imentary Petro logy.45:450-461 .
See next abstract
19.Gustavson,T.C.1975b.Sedimentation and physical limnology
in proglacial Malaspina Lake,southeastern Alaska.Pages
249-263 in A.V.Jopling and B.C.McDonald,eds.Glaci-
ofluvial and glaciolacustrine sedimentation.Society of
Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23.
Underflow,interflow,and overflow water entered Malaspina
Lake,and the type of flow is dependent on the relative
suspended sediment content of the lake water and the in-
flowing melt water.The 18-km long lake is density stratified
(increasing suspended sediment concentration with depth)but
not thermally stratified.No specific information on particle
size or trap efficiency is presented.
-
20.Guymon,G.L.1974.Regional sediment yield analysis of
Alaska streams.Journal of the Hydraulics Div.of the
American Society of Civil Engineers.1 OO(HY1):41-51.
Analyzed Borlandls (1961)formula.Considered particle size,
but used an average particle size in the formula.However,
concluded that particle size affects application of the formula.
f '~
21.Hamblin,P.F.,and E.C.
currents in a fjord lake.
83(C2):885-889.
Carmack.1978.River-rnduced
Journal of Geophysical Research.
susi8/h B-7
l Discussion of dynamics of strong flowing river entering a
long,narrow lake (Kamloops Lake,B.C.).River-induced
currents influence circulati00 patterns in a fjord lake.No
specific information on sedimentation rates or particle size
analysis.
22.Hobbie,J.E.1973.Arctic limnology:a review.
Pages 127-168 in M.E.Britton,ed.Alaskan arctic tundra.
Arctic Institute of North America.Technical Paper 25.
Review of properties of lake in northern tundra regions.
Thermal cycle of deep arctic lakes is highly variable,and
stratification is uncommon,occurring only in warm,calm
weather after fake waters rise to 4°C.Deep lakes maintain
circulation even when ice covered.Deeper lakes are re-
,-latively turbid as a result of glacial flour from streams drain-
ing active glaciers.Lake Peters is fed by glacial streams and
drains via a 1-km rang,15-m deep channel into Lake Schrader
in the Brooks Range.Both are 50-60 m deep.Lake Peters
acts as a settling basin.When dense glacial water enters'
Lake Peters in June,it sinks to the bottom,and the lake fills
upward with turbid water ..-
23.Mathews,W.H.1956.Physical limnology and sedimentation
in a glacial lake.Bulletin of the Geological Society of
America.67:537-552.
Garibaldi Lake,British Cofumbia,receives sediment from two
glacial streams with relatively'low sediment content.Particle
size and composition of bottom deposit analyses revealed slow
transport to site of deposition and slow rate of deposition for
clays.No information on amount of sediment passing through
system.
24.Ostrem,G.1975.Sediment transport in glacial meltwater
streams.Pages 101-122 in A.V.Jopling and B.C.McDonald,
eds.Glaciofluvial and glaciolacustrine sedimentation.Society
of Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23 ..
Recognized problems of utilizing glacial waters for hydro-
electric projects,specifically in reservoirs and turbines.
Grain size analyses of cores of varved sediments showed that
summer layers consisted of coarser material than winter layers
(based on 20 micron grain size variation).X-ray diffraction
analyses showed that summer deposits contained more quartz
(rapid sedimentation),and winter deposits,more mica (slower
sedimentation).For one 1,800-m long proglacial lake over
29 years,about 70 percent of the total suspended sediment
input was deposited.
susi8/h B-8 2-32-/2.3
--,-----------"._,-----'--------------------~/
Discussion of dynamics of strong flowing river entering a
long,narrow lake (KamJoops Lake,B.C.).River-induced
currents influence circujation patterns in a fjord lake.No
specific information on sedimentation rates or particle size
analysis.
22.Hobbie,J.E.1973.Arctic limnology:a review.
Pages 127-168 in M.E.Britton,ed.Alaskan arctic tundra.
Arctic Institute of North America.Technical Paper 25.
Review of properties of lake in northern tundra regions.
Therm.al cycle of deep arctic lakes is highly variable,and
stratification is uncommon,occurring only in warm,calm
weather after lake waters rise to 4°C.Deep lakes maintain
circulation even when ice covered.Deeper lakes are re-
latively turbid as a result of glacial flour from streams drain-
ing active glaciers.Lake Peters is fed by glacial streams and
drains via a 1-km long,15-m deep channel into Lake Schrader
in the Brooks Range.Both are 50-60 m deep.Lake Peters
acts as a settling basin.When dense glacial water enters·
Lake Peters in June,it sinks to the bottom,and the lake fills
upward with turbid water.
23.Mathews,W.H.1956.Physical limnology and sedimentation
in a glacial lake.Bulletin of the Geological Society of
America.67:537 -552.
Garibaldi Lake,British Columbia,receives sediment from two
glacial streams with relatively low'sediment content.Particle
size and composition of bottom deposit analyses revealed slow
transport to site of deposition and slow rate of deposition for
clays.No information on amount of sediment passing through
system.
24.Ostrem,G.1975.Sediment transport in glacial meltwater
streams.Pages 101-122 in A.V.Jopling and B.C.McDonald,
eds.Glaciofluvial and glaciolacustrine sedimentation.Society
of Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23.
Recognized problems of utilizing glacial waters for hydro-
electric projects,specifically in reservoirs and turbines.
Grain size analyses of cores of varved sediments showed that
summer layers consisted of coarser material than winter layers
(based on 20 micron grain size variation).X-ray diffraction
analyses showed that summer deposits contained more quartz
(rapid sedimentation),and winter deposits,more mica (slower
sedimentation).For one 1,800-m long proglacial lake over
29 years,about 70 percent of the total suspended sediment
input was deposited.
.....,
.~
susi8/h B-8
25.Ostrem,G./T.Ziegler,and S.R.Ekman.1970.A study of
sediment transport in Norwegian glacial rivers,1969.
I nstitute of Water Resources,Dept.of Hydrology,Oslo,
Norway.Report 6/70.Report for Norwegian Water
Resources and Electricity Board.Translated from Norwegian
by H.Carstens.1973 ..Institute of Water Resources,
University of Alaska,Fairban ks,AK.Report 35.1 vol.
Investigations were conducted on water discharge and sedi-
ment volume measurements in glacial rivers above and at the
outlet of glacial lakes to calculate the sedimentation of fine
material on the bottom of the lakes.Volum.e of material
available for transport is probably largest at the beginning of
the season.No data on partiel e size.
26.Pharo,C.H.,and E.D.Carmack.1979.Sedimentation
processes in a short residence-time intermontane Jake,
KamJoops Lake,British Columbia.Sedimentology.
26:523-541.
Sediment transport and deposition in the lake is controlled by
three interdependent processes:delta progradation at the
lake-river confluencei sediment density surges originating
along the delta face,which result in turbidite sequences
lakeward from the base of the delta;and dispersal by the
interflowing river plume,which,due to Coriolis effects,
results in a higher sedimentation rate and greater fraction of
coarser material along the right-hand of the lake in the
direction of flaw.Suspended sediment concentrations are
high above the thermocline where higher turbulence,main-
tained by wind mixing and river inter interflow,reduces
settling velocities.Particles settle rapidly once they enter
the hypolimnion.
27.Ritchie,J.C.,J.R.McHenry,and A.C.Gill.
recent reservoir sediments.Limnology and
18:254-283.
1973.Dating
Oceanography.
Discussion of radioactive 137Cs dating.Method could be used
to date sediment in reserviars that have not been surveyed.
28.Shaw,J.1975.Sedimentary successions in Pleistocene
ice-marginal lakes.Pages 281-302 in A.V.Jopling and B.C.
McDonald,eds.Glaciofluvial and glaciolacustrine sedimenta-
tion.Society of Economic Paleontologists ano Mineralogists,
Tulsa,OK.Special Publication 23.
Discussion of sedimentation in proximal portion of a glacial
lake based on interpretation on the ancient environment.
Mean grain size values were determined for sections of each
facies from 0 to 80.No information on transport of fine
materials.
susi8/h B-9
29.Shaw,J.1977.Sedimentation in an al pine lake during de-
glaciation,Okanagan Valley,British Columbia,Canada.
Geografiska Annaler.59(A):221-240.
Ancient lake sediments were examined to develop a model of
alpine lake sedimentation based on changing depositional
processes with time and distance from the ice margin.
-
30.Shaw,J.,
lacustrine
Research.
R.Gilbert,and J.J.J.Archer.1978.Proglacial
sedimentation during winter.Arctic and Alpine
10(4):689-699.
Discussion of deposition of coarse-grained sediments during
winter in Lillooet lake.Misinterpretation can lead to over-
estimation of time seqences of deposition.
31.Slatt,R .M.1970.Sedimentological and geochemical aspects of
sediment and water from ten Alaskan valley glaciers.Ph.D.
Thesis.University of Alaska,Fairbanks,AK.125 pp.
Studied five groups of glaciers with different bedrock lith-
ologies;Worthington and Matanuskaj Castner and Fels;
Gulkana and College;Rendu and Reed;and Carroll and
Norris.Particle size analyses and mineralogy of superglaciaJ
and suspended stream sediments are presented.The
environment of transport has a much greater effect on grain
size than the nature of the starting material.
32.Slatt,R.M.1971.Texture of ice-cored deposits from ten
Alaskan valley glaciers.Journal of Sedimentary Petrology.
41(3):828-834.
Revised and condensed portions of Ph.D.thesis (see above).
33.Smith,N.D.1978.Sedimentation processes and patterns in
a glacier-fed lake with low sediment input.Canadian Journal
of Earth Sciences.15(5):714-756.Snow melt and glacial melt
waters carrying relatively low suspended sediment concentra-
tions enter Hector Lake in the eastern Rocky Mountains,
Alberta.When stratified,water and fine sediments enter the
lake as interflow·and overflow.Grain size analyses were
conducted on 42 cores.Deposition varies Jeft to right as well
as distally due to katabatic winds generating down lake
currents in the epilimnion that are deflected southward
(rightward)by the Coriolis force.
34.Sturm,M.,and A.Matter.1978.Turbidites.and varves in
La ke 8rienz (Switzerland):deposition of clastic detritus by
density currents.Pages 147-168 in A.Matter and M.E.
Tucker,eds.Modern and ancient lake sediments.Inter-
national Association of Sedimentologists.Special
Publication 2.
~:
susi8/h 8-10
.-
Discussion of sediment transport and deposition by overflow,
interflow,and underflow in a long,narrow,deep basin with
rivers entering at each end.Fine-grained sediments supplied
by overflows and interflows settle continuously during summer
thermal stratification.Most of the fine-grained particles
remain in suspension at the thermocline because the vertical
density gradient is more dependent on temperature than on an
increase in density du~to suspended particles.During fall
turnover,the remaining sediment trapped at the thermocline
settles.
35.Theakstone,W.H.1976.Glacial lake sedimentation,
Austerdalsisen,Norway.Sedimentology.23(5):671-688.
A lake completely filled with glacial sediments,over which
braided stream deposits formed.A new proglacial lake then
formed.Discussion of bedding and composition of ancient
lake sediments.Ini·tially,deposition was very slow in deep
(80 m)water.In another lake 300 m from a glacier,about
75 percent of the sediment transported in suspension is
retained in the basin,but the amount retained in one day is
highly variable.The daily summer values exceeded the
minimum by 200 times (data not presented).
36.Tice,A.R.,L.W.Gatto,and D.M.Anderson.1972.The
mineralogy of suspended sediment in some Alaskan glacial
streams and lakes.Cold Regions Research and Engineering
Laboratory Corps of Engineers,U.S.Army,Hanover,NH.
Research Report 305.10 pp.
Investigation of the role of chemical weathering of bedrock in
cold regions determined that no chemical changes occurred in
fine suspended material.Suspended sediment samples were
obtained for X-ray diffraction analyses"from gaJcial outwash
streams and lakes in seven areas (Chackachamna,Palmer-
Matanuska,Moose Pass-Portage,Valdez,Juneau,Mt.McKinley
National Park,and Black Rapids).,
susi8/h B-11
PART 11-NO SPEC)FIC INFORMATION
1.Agterberg.F.P .,
for the deposition
Ontario,Canada.
6:625-652
and I.Banerjee.1969.Stochastic modet
of varves in glacial Lake Barlow-Ojibway,
Canadian Journal of Earth Sciences.
2.Banerjee,I.,and B.C.McDonald.1975.Nature of esker
sedimentation.Pages 132-154 in A.V.Jopling and B.C.
McDonald,eds.Glaciofluvial and glaciolacustrine sedimenta-
tion.Society of Economic Paleontologists and Minerarogists,
Tulsa,O.K.Special Publication 23.
3.Boothroyd,J.C.and G.M Ashley.1975.Processes,bar
morphology,and sedimentary structures on braided outwash
fans,northeastern'Gulf of Alaska.Pages 193-222 in A.V.
Jopling and B.C.McDonald,eds.Glaciofluvial and
glaciolacustrine sedimentation.Society of Economic
Paleontologists and Mineralogists,Tulsa,OK.Special
Publication 23.-
4.Bradley,W.H.1965.
150(3702):1423-1428.
Vertical density currents.Science.
5.Clague,J.J.1975.Sedimentology and paleohydrology of late
Wisconsinan outwash,Rocky Mountain trench,southeastern
British Columbia.Pages 223-237 in A.V.Jopling and B.C.
McDonald,eds.Glaciofluvial and glaciolacustrine sedimen-
tation.Society of Economic Paleontologists and Mineralogists,
Tulsa,OK.Special Publication 23.
6.Everts,C.H.and H.E.Moore.1976.Shoaling rates and
related data from Knik Arm near Anchorage,Alaska.Coastal
Engineering Research Center,Corps of Engineers,U.S.
Army,Fort Belvoir,VA.Technical Paper 76-1.84 pp.
7.Gilbert,R.1971.Observations on ice-dammed Summit Lake,
British Columbia,Canada.Journal of Glaciology.
10(60):351-356.
8.Gustavason,T.C.,G.M.Ashley,and J.C.Boothroyd.1975.
Depositional sequences in glaciolacustrine deltas.
Pages 264-280 in A.V.Jopling and B.C.McDonald,eds.
Glaciofluvial and glaciolacustrine sedimentation.Society of
Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23.
9.Guymon,G.L.1974.Sediment relations of selected Alaskan
glacier-fed streams.Institute of Water Resources,University
of Alaska,Fairbanks,AK ..Report 51'.17 pp.
susi8/h B-12 2.-3"2 -I'l.'i!'
10.Hobbie,J.E"!ed.1980.Limnology of tundra
Barrow,Alaska.Dowden,Hutchinson and Ross,
Stroudsburg,PA.US/ISP Synthesis Seiies 13.514 pp.
ponds:
Inc.,
11.Howarth,P.J.,and R.J.Price.1969.The proglacial lakes
of Breidamerdurjokull and Fjallsjokull!Iceland.Geog raphical
Journal.135:573-581.
12.Jopling!A.V.1975.Early studies on stratified
4-21 in A.V.Jopling and B.C.McDonald,eds.
and glaciolacustrine sedimentation.Society
Paleontologists and Mineralogists!Tulsa,
Publication 23.
drift.Pages
Glaciofluvial
of Economic
OK.Special
13.Kindle,E.M.1930.Sedimentation in a glacial lake.Journal
of Geology.38(1):81-87.
14.Lawson,D.E.1977.Sedimentation in the terminus region of
the Matanuska Glacier,Alas ka.Ph.D.Thesis.University of
Illinois,Urbana-Champaign,I L.287 pp.
-15.Long!W.E.
streamflow;
Resources!
1 vol.
1972.Glacial processes and their relationship to
Flute Glacier,Alaska.I nstitute of Water
University of Alaska,Fairbanks,AK.Report 18.
"""
16.Ludlam!S.D.1967.Sedimentation in Cayuga Lake,New
York.Limnology and Oceanography.12(4):618-632.
17.McDonald,B.C.,and W.W.Shilts.1975.Interpretation of
faults in glaciofluvial sediments.Pages 123-131 .in A.V.
Jopling and B.C.McDonald,eds.Glaciofluvial and g lacio-
lacustrine sedimentation.Society of Economic Paleontologists
.and Mineralogists,Tulsa,OK.Special Publication 23.
18.Moores,E.A.1962.Configuration of the surface velocity
profile of Gul kana Glacier,central Alaska Range,Alaska.
M.S.Thesis.University of Alaska,Fairbanks,AK.47pp.
19.Moravek,J.R.1973.Some further observations on the be-
havior of an ice-dammed self-draining lake,Glacier Bay,
Alaska,USA.Journal of Glaciology.12(66):505-507.
20.Reger,R.D.1964.Recent glacial history of Gut kana and
College Glaciers!central Alaska Range,Alaska.M.S.Thesis.
University of Alaska,Fairbanks,AK.75 pp.
21.Rust,B.R.1975.Fabric and structure in glaciofluvial
gravels.Pages 238-248 in A.V.Jopllng and B.C.McDonald,
eds.Glaciofluvial and glaciolacustrine sedimentation.Society
of Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23.
susi8/h 8-13 2 - 3 '2 -12-"
23.Ryder,J.M.,and M.Church.1972.Paraglacial sedimenta-
tion:consideration of fluvial processes conditioned by glacia-
tion.Bulletion of the Geological Society of America.
83:3059-3072.
24.Saunderson,H.C.1975.Sedimentology of the Brampton
esker and its associated deposits:an empirical test of
theory.Pages 155-176 in A.V.Jopling and B.C.McDonald,
eds.Glaciofluvial and glaciolacustrine sedimentation.Society
of Economic Paleontologists and Mineralogists,Tulsa,OK.
Special Publication 23.
25.Sellmann,P.V.1962.
central Alaska Range,
Alaska,Fairbanks,AK.
Flow and ablation of Gwl kana Glacier,
Alaska.M.S.Thesis University of
36 pp.
26.Shira,D.L.1978.Hydroelectric powerplant siting in glacial
areas of Alaska.Pages 59-76 in Applied Techniques for Cold
Environments,Vol.1.Proceedings of the Cold Regions
Specialty Conference,Anchorage,AK,May 17-19.American
Society of Civil Engineers,New York,NY.
27.SJatt,R.M.,and C.M.Hoskin.1968.Water and sediment in
the Norris Glacier outwash area,upper Taku Inlet,south-
eastern Alaska.Journal'of Sedimentary Petrology.
38(2):434-456.
28.Stone,K.H.1963.Alaskan ice-dammed lakes.Association
of American Geographers:Annals.52:332-349.
29.St.Onge,D.A.1980.Glacial Lake Coppermine,
north-central District af MacKenzie,Northwest Territories.
Canadian Journal of Earth Sciences.17(9):1310-1315.
30.Williams,P.F.,and B.R.Rust.1972.The sedimentology of
a braided river.Pages 183-210 in V.C.BushnelJ and R.H.
Ragle,eds.Icefi'eld Ranges Research Project Scientific
Results,Vol.3.American Geographic Society,New York,
NY,and Arctic I nstitute of North America,Montr.eal,Canada.
31.Yould,E.P.,and T.Osterkamp.1978.Cold regions con-
siderations relative to development of the Susitna hydro-
electric project.Pages 887-895 in Applied Techniques for
I
~,
-
susi8/h 6-14 l-3?-/30
"'"
Cold Environments,Vol 2.Proceedings of the Cold Regions
Specialty Conference,Anchorage,AK,May 17-19.American
Society of Civil Engineers,New York,NY.
susi8/h 8-15 -z -3'2.-t 3 I
.-
EXHIBIT E
2:.Water Use and Quality
~:olllllE!nt 33 (p.E-2-96,para.2)
Provide quantitative estimates of nutrient adsorption on suspended sediments
(e.g.,glacial flour)that will be transported into Watana Reservoirs.Pro-
vide data on levels of exchangeable phosphorus in soils in the Watana and
Devi 1 Canyon impoundment zones.
Besponse
Quantitative estimates of nutrient adsorption on suspended sediments (e.g.,
£jlacial flour)that will be transported into Watana Reservoir are not avail-
alb le at the present ti me.Data on leve 1s of exchangeab le phosphorus in
soi ls in the Watana and Devi 1 Canyon impoundment zones do not present ly
E!xi s t.
Additionally,to our knowledge at the present time,approved and standardiz-
E!d methods do not exi st for quantitati ve ly esti mati ng exchangeab le phosphor-
UIS il1 soil samples.In fact,the definition of the term "exchangeable
phosphorus"is not standardized in state-of-the-art limnological
1i terature.
The present level of knowledge about the Susitna River drainage basin and
the limnology of the two proposed reservoirs indicates that the project
reservoi rs wi 11 mai ntai n a low producti vity (01 i gotrophi c)trophi c status
clue to phosphorus limitation (Peratrovich,Nottingham and Drage,Inc.and
Hutchison,1982;Peterson and Nichols,1982;Rast and Lee,1978;Stuart,
1.983;Vollenweider and Kerekes,1980).
2-33-1
Data about nutri ents attached to turbi d ity part ic les whi ch are potent;ally
exchangeable with juxtapositioned microbial biomass are difficult,time con-
sumi ng,and ex~ens i ve to acqui re.We hope that the FERC staff wi II agree
with our position and withdraw or temper this request.
References
Peratrovich,Nottingham and Drage,Inc.and Ian P.G.Hutchinson,1982.
Susitna Reservoir Sedimentation and Water Clarity Study.Prepared for
Acres American Inc.,Anchorage,Alaska,35 pp.
~.
Peterson,L.A.and G.Nichols,1982.
Impoundment of the Susitna River.
for Acres American Inc.,Buffalo,
Water Quality Effects Resulting from
Prepared with R &M Consultants,Inc.
New York,18 pp.
Rast,W.and G.F.Lee,1978.Summary analysis of the North American (U .5.
porti on)DECO entrophi cati on project:nutri ent loadi ng -lake response
relationships and trophic state indices.EPA-6DO/3-78-008.455 pp.
Stuart,T.J.,1983.The effects of freshet turbidity on selected aspects of
the bi ogeochemi stry and the trophi c status of Flathead Lake,Montana,
U.S.A.,Ph.D.dissertation,North Texas State University,Denton,Texas,
229 pp.
Vollenweider,R.A.and J.Kerekes,1980.The loading concept as a basis for
controlling eutrophication philosophy and preliminary results of the
DECO Programme on eutrophication.Prog.Wat.Tech.,Vol.12,Norway,
pp.5-18.IAWPR/Pergamon Press Ltd.
2-33-2
...,
EXHIBIT E
2.Water Use and Quality
CORJDent 35 (p.E-2-100,para.4)
Provide real and simulated.salinity data which show the accuracy of the Corps
of Engineers salinity model for predicting salinity in Cook Inlet at differ-
ent locations (e.g.,Node 27)under different flow conditions.Also,pro-
vlide parameter values used in these simulations and document the source of
the values used.
RE~sponse
RE~al and simulated salinity data for Node 27 near the Susitna River mouth
are provided in pp.2-35-2 to 2-35-35.
A'lso provided is a user's guide (pp.2-35-36 to 2-35-171)for the computer
modeling effort conducted by the Corps of Engineers on the estuary hydro-
dynamics and water quality of Cook Inlet.The user's ,guide documents'para-
meter values and their source for use in the Cook Inlet water quality model-
ing effort.An example problem data set and simulation results are present-
ed on pp.2-35-92 to 2-35-131.
2-35-1
,,
]
1
Volume 3
WATER QUALllY,
~<Nli<APJv\•UPPER (00[<INLEJ
-
.,....-.--'
.-~
,--.~-::~;;;~?0~"~'S;"
:-:i;G~:.~~-
~.""
....
.:""':.
0.:.,.••
'"'"',.
.....
~,
-ANCl40 RAG L
CONTOU'l
lNTEi'<\AL.
0.1 S%.
1
l
$
..~.
..
~uJ
HTEFlV~LO 5 __
1
I
I ·,'-
j
t.
•
+~
I
CCfoITOUR ~
fHT£RVAl."O.~S%••1 ~
I
COHTCUR t~INTERVAl..<
0.2 S~.r
f~~••~
!
~
ISO"
-•
FIef.Kinney.Groy""&Bunon,1970.
152"
30 nauticcJ miles
I
2010o
I
r~
-
-FIGURE 2.5 Surface Salinity Distribution in Cook Inlet
2-15 2-35-3
LEGEND
30 OSSERVED SALINITY REDUCED FRO~
Is,:lHALlNE MAP REPRESENTI~G ~
2S SEPTEMBER :5-29.1972 CONDITIONS
--CC~PUTED SALINITYc..20...END OF SEi"T.1972 ~>"
~15z
:::::i<10 ::;,t:;~~1
5 '"
_........c:
0(<0<>......
0
125 \00 75 50 25
1 MILES FROM POINT WORONZOF
I .LEGEND
30 """'i08S<:RVED SALINITY REDUCED FROM
is,:lHALINE MAP REPRESENTING
--AUGUST 22-.:3.1572 CONDITIONS
o..20~
>"~,
~
%
:::::i<10""
0
125 100 75 50 2S 0 5
MILES FROM POINT WORONZOF
LEGEND
OBSERVED SALINITY REDUCED FROM
ISOHAUNE MAP REPRESENTING ~
MAY 21-28,\968 CONOITIONS
30
COMPUTED SALINITY
I END OF MAY,1972 ~
1-o..
0-J .>11-
Z .~
:::::i ~...
<Q 0...on i3 z zc>-0~~.....z:5 ...:c~co ~i<>z "'...0 I
100 i5 50 25 0 2S
MILES FROM POINTWORONZOF
~
FIGURE 7.4 Computed and Observed Salinity between Anchor Point and Knik Arm
7-16
RESOURCE MANAGEMENT ASSOCIATES
"-:?ese.'cl'l ..De .....';;;JD",&f'l1 •A.:;ohCdrJOflS
11 October 1982
As authorized by your letter to Dr.Robert Carlson,dated September
23a 1982.I have performed a numerical modeling study to deter~ine the
effects of altered·Susitna River flows on the salinity of Cook Inlet.
The following describes the results of this study.
-
Mr.Wayne M.Dyok
Acres American Inc.
Suite 305
1577 C Street
Anchorage.Alaska 99501
Dear Hr.Dyok:
HARZA-EBASC;,
Susitna Joint Venture
Document Number
Please Return To
DOCUMENT CONTROL
-~
Background
The construction and operation of the proposed Susitna River
Hydroelectric Project will alter the amount of freshwater which enters
Cook Inlet from the Big Susitn~River.With this project,inflows
du:ring the high runoff summer months will be reduced and increased
during the low runoff winter months.To assess the effects of this
change in freshwater inflow on the salinity distribution within Cook
Inlet,a numerical model previously applied to Cook Inlet during a Corps
of Engineers sponsored study was used ~1.2).
Model Application
The numerical model used in this application represents the estuary
as a series on nodes (discrete volume elements)and interconnecting
channels.In the aggregate this node-channel representation provides a
2-dimensional (i .e.,2-dimensional in the horizontal plane and uniform
vertically)description of the estuary including flow rates and
velocities and water quality parameter concentrations over time and
spclce.
The model representation of Cook Inlet shown in Figure 1 was
developed in the beforementioned study.This model representation is
adequate for this study,therefore no modification or further
calibration was performed.To provide a more detailed description of
the model concepts and its application to Cook Inlet,excerpts from the
report to the Corps of Engineers (I)have been included as Exhibit A.
Typical hydraulic conditions were used for the study.r~onthly
average inflows from the various streams tributary to Cook Inlet were
provided by Dr.Robert Carlson.These tributary flows,including the
pre and post Susitna Hydroelectric Project flows along with the model
inflow locations are shown in Table 1.
Study Res ul ts
To assess the effects of the proposed project on the salinity of
Cook Inlet,the following hydrodynamic and dynamic water quality
simulations were performed.
Cases 3 and 4 had very similar Susitna River flow and therefore the
effects on Cook Inlet salinity were quite similar.
fnt
a:Y~
l!!i
;r,~~:"df'
distribution
through 7.
presented in
_.
at six locations
The end of month
Exhibit B.
The pre and post project salinities
within the inlet are shown in Figures 2
salinities at selected nodal locations are
I hope that this brief summary of our modeling appr:ach
meets the requirements 'of your project.It has been
providing this service to Acres American and I hope we
assist you in future studies.
Sincerely,
and resul ts
a pl eaSUl"e
are able to
Donald J.Smit
DJS/ch
cc:Dr.Robert Carlson
Enclosures
-
-
_____________________--=-"""-'-_,.."1-.-_--1 _
....
.....
....
-
REFERENCES
1..Tetra Tech Inc.,"Water Qua 1i ty Study,Kni k Arm and Upper Cook
In1et,A1aska,"report to the Corps of Engineers,September,1977.
2.Smith,D.J.,"User's Guide for the Estuary Hydrodynamic and Water
Quality Mode1s,u Tetra Tech report to the Corps of Engineers,
September,1977 •
.I
--
I-
UJ_
.....J-.....
::..:::oO"!'i"\
U
u...a
z """o.....
f-;::
z:
UJ
V"J
UJe::
0-we::
~c::o
~UJc::
-~
.....,
J J )~J i j I l,i II -~J J.
TABLE 1
TVP ICAL R ~VER INFLOWS Ie h'TO COOK INLET
RIVER LOCATION'.....cu-.....tiD!L ~.....>MlL ..f..EJL -..l:1AIL ~...J:I6L ~~-AllL ~
+
~DE ~7 ..CASE 1 :100:1:1 1~6:1B 8;;11 :I 7Y04 7031 63:l0 6979 60463 la3698 13193~110B41 .:19603
++
NODE a7 ..CABE 3 3:l39:l 19191 17033 1610B 1470:1 13:100 13319 :17611 107381 117004 '102348 .a60:l9
++
NODE 27 ..CAsE 4 3:l184 1917a 176:l0 16973 I :l9:2a 1441:1 13640 S:lY30 10:1702 11603:13 101733 603:2:14
NODE II "alo~an8 1787 1614 1330 I:lOO HIIB ~S6a 7:241\119"13S9S 1:1010
NODE 10 4441 2266 1:l107 794 631 :171 :173 737 1:119 4a93 7-434 707'1
NODE 7.394 309 Ill:l 140 173 20:1 :liB 723 401 :leo :lSI»3B7
NODE 8 .4:190 a243 1:I:lI 1140 939 8:lB B:lO .1938 10669 :l:l3:13 :la461 1I1l79
NODE 24 9329 .44:19 3073 2311 1909 .1682 1667 3939 126B2 4:142B 4:1641 2292a
NODE :10 769:1 34:17 a06S 1646 13'il9 122:1 1707 74B3 ~8070 474:14 396:14 ~Y83
NODE 12S 761 2B8 193 IU 119 121 I:lS :161 2363 4048 3eU 20lo0
NODE :1:1 1083 400 20'il .'II 4:1 4:1 100 10:21)348:1 ~721 ~120 1:1"
NODE 1110 3700 :lOSa 1:111 1130 904 869 BBO 34::17 73S4 6319 4aoo as,.
+..PRE PRO~ECT 8UBlTNA RIVER FLowe
++••P08T ""o.JI:CT .UIITNA 'UW"nowe
~.~...----------------~._---.__........__._--.
630600
CASE 1 ..<>
CRSE 4 ..+
510540490.510
NODE.NO.12
450420
JULIAN DATE
390330300'10
U1
§
I\)
U1
§
0111111111111111111111111111'111'111111111111111 III I111I iii IIIII I I I I I i I I I I
~
§
I\)o
~§
o
(J)..-
U1
~§
"r ..-
D
§
FIGURE 2
TEMPORAL VARIATION IN SALINITY ~IITHIN COOK INLET NEAR
EAST FORLANb UNDER PRE AND POST
SUSITNA HYDROELECTRIC PROJECT CONDITIONS
I ~I I I I ),)J _J.1 I .~J J ;I J
'...._.j
J l 1 1 )J -J .~)J j J J ]1 ]
".
NODE.NO.26 CASE 1 .•<)
CRSE 4 ...+
W
D
§
f\:>
lJl
§
f\:>
0
-t §
0
(J)
".-Ul
~§
"-r -0
§
lJl
§
o 111111111111111111111111,.1111111111111111111.111111111111111'11111111 •••
270 300 330 3~0 390 420 450 490 510 540 570 .600 '30
~
JULIAN DATE .-."-....(.-.._..---~.......-_....
FIGURE 3
TEMPORAL VARIATION IN SALINITY WITHIN CENTRAL COOK INLET SOUTH OF
THE SUSITNA RIVER UNDER PRE AND POST
.SUSITNA HYDROELECTRIC PROJECT CONDITIONS .:
CASE t ...0
CASE 4 ..+
1",0','m:,"'1tPJiu~n'i!I,:,~",r,,~,,;'i;"-"'3~....',"l ..<;j;r:"'..(~.;~
o Iii iii Iii i I I iii iii I i I I I iii iii iii iii I i I Ii.I iii iii 1 Iii I I I Iii I Iii I i I I I Iii I i I
I\)
§
U1
§
w
§
I\)
~'§
o
U")......U1
~§
'"r .....
§
eTO 300 330 360 390 420 450 480 5iO 540 570 600 '30
JULIAN DATE
•
,I
j
FIGURE 4
TEt1PORAL VARIATION IN SALINITY WITHIN COOK INLET NEAR
THE SUSITNA RIVER UNDER PRE AND POST
SUSITNA HYDROELECTRIC PROJECT CONDITIONS
I J ,I I I I .1 I I J B ~•
J I 1 J }}1 J 1 I j J J --1 J ---~
B
NODE.NO.43 CASE 1 ..0
race 11 .-L\..t11\.lL •••I
630600570540510490450420390360330300270
o f I I I i I IiiIii i I .•i ,i I I i I •iii i i j I i I •Ii'•Iii iii'iiiiii [iii iii iii I I I ,j iii Iii 171
w
0
§
I'\.'l
l.I1
§
I'\.'l
0
-i §
0
to -l.I1
~§
"...
r -0
§
l.I1
§
JULIAN DATE ...~__..---'--._-_.
FIGURE 5
TEMPORAL VARIATION IN SALINITY WITHIN KNIK ARM NEAR
ANCHORAGE UNDER PRE AND POST
SUSITNA HYDROELECTRIC PROJECT CONDITIONS
630E.OO
CASE 1 ..0
CASE 4 ..+
570540·
---_._----
510490
NODE.NO.50
4504~0
JULIAN DATE
390360330300~70
w
§
§
l'I>
§
o ~~I I I I I""I I I ~I I I I I I I I I I I I I I I I I I J I I I I I I i I I I >n i I I ~iii I I.I Iii I Cl I I i I I.I I I I i
l'I>o
~§
o
U')...-
U1
~§
"r ...-
§
FIGURE 6
TEMPORAL VARIATION IN SALINITY NEAR THE UPPER END OF
KNIK ARM UNDER PRE AND POST
SUSITIIA HYDROELECTRIC PROJECT CONDITIONS
~lr-.J )]••I I I ••t J .~~J 9 I~j
I 1 J J B 1 J --1 1 1 J }
NODE.NO.55 CASE 1 ..<>
rocr.J1 I
\..IIliJC Lt ••I
w
0
§
1'1.>lJl"
§
N
0
-i §
0
(J)-lJl6§
"r -0
§
lJl
§
630600570540510490450420.390360330300va
o I ii'i i i.1 I Iii I iii I i I I ,i I I I I ...iii iii iii I I I iii iii iii I I I I Pi Iii I I iii I I iii I i I I I i I
JULIAN DATE
FIGURE 7
TEHPORAL VARIATION IN SALINITY WITHIN TURNAGAIN ARM
UNDER PRE AND POST SUSITNA
HYDROELECTRIC PROJECT CONDITIONS
If.
EXHIBIT A
....
-
7.2 !stuary Model Application to Water Quality in Knik Arm and
Upper Cook Inlet ..
7.2.1 Model Description
.....
TILe numerical model used in this study was originally developed for
the California State Water Resources Control Board (Evenson and Smith,
1974)and later modified for 208 planning studies on Long Island,New
YClrk (Johanson,et aL,.1977).Further model modifications were made
during this project and instruction on the model use can be found in
the user I s guide (Smith,1977)prepared under this contract.
The model represents the estuarine system.as a variable grid network of
"n.odes"and "channels.II Nodes are discrete volume units of f,Jaterbodi,
characterized"by surfac~area,-depth,side slope and volume.The nodes
. .
are interconnected by channels,each having associated length,~dth,
cross-sectional area,hydraulic radius,side scope and friction factor.
lo1ater is constrained to flow from one node to another through these
7-5
.-"2 -:<C.I"'"
defined channels,advect:ing and diffusing water quality constituents
bet'Ween nodes.
Thefollo~ng are underlying assumptions of the estuary model:
-
o -The estuarine system is ~el~mixed vertically!
o The law of conservation of mass is obeyed for water
quality constituents.
a Chemical reaction rates may be estimated using first
order kinetics characterized by reaction-specific
rate coefficients.
I
.~
\
f
t·
The overall estuary model is composed of tva separate components:a
hydrodynamic model (HYDRO).and a tidally averaged dynamic/steady-state
quality-model.(AQUAL).These numerical models are used in sequence so
that the results of the hydrodynamic model become input to the quality
models.The advantage of dividing the overall model into modular
units is that the individual models can be calibrated separately.
Considerable savings of computer time is realized by storing results
of the hydrodynamic.model on disk files to be used repeatedly in the
calibration of the quality model and during water quality evaluations.
HYDRO calculates the hydrodynamics of the estuary using tidal time-
stage data at·the estuary boundary,hydrologic conditions,and estuary
geometry data such as depth,surface area,tidal flat slope and bottom
roughness.HYDRO prepares a permanent file which portrays the two-
dimensional hydrodynamic characteristics of the estuary,including
tidally averaged values of flow,velocity,volume,depth,surface area
and parameters indicative of the dispersive characteristics of tidal
mixing.
7-6
-
.....
....
AQUAL is a tidally averaged "quality model which can be operated in
E~ither a steady-state or dynamic (time dependent)mode to simulate
Bldvective-diffusive trap,sport as well as physical,chemical,and
biological reactions of the parameters beip,g modeled.Net advective
flows and dispersion coefficients to simulate the effects of tidal
mdxing provide the physical mass .transport.The results are repre-
sentative of the ~o-dimensional distribution of daily average.quality
conditions in the estuary •
,
j
\,
I
r~·
~~
'\
-
-
,....
The dynamic mode.is used when the estuary quality does not approach
...J
steady-state t,Jithin the period of time the boundary conditions remain'",
constant.If significant changes.in tributary inflow ~~cur before
steady-state is approached,the d~c operation gives more repre-
sentative results.In the dynamic mode,the model uses multiples of
the tidal cycles·as the basic time step and yields average daily re-
sults.
The AQUAL code prOVides the option to include up to.four user-specified,
cl>ustituents in.addition to·the following parameters which may be se-·
ll!cted for simulation.
l.Salinity
2.Total Nitrogen
3.Total Phosphorus
4.Total Coliform Bact.eria
5.Fecal Coliform Bacteria
6.Carbonaceous BOD
7.Nitrogenous BOD
8.Dissolved Oxygen
9.Temperature
7-7
A more de~ailed description of the model and its use can be found in
the model documentation.
7.2.2.Model Adaptation and Calibra~ion
generated from.National Oceanic and Atmospheric Administration ·(NOAA)
navigation charts numbers 16664,G&GS 8854,and 16660.The node and
channel data are presented in Appendix III.
A node-channel network scheme has been designed to represent:the entire
Cook Inlet study area.This network,shawn in Figure 7.1,extends froll-
Anchor Point on the south to the upper"reaches of lenik Arm and .Turnagain)
Arm.This network scheme employs a coarse represent:ati~I?-in the south.-._("
em portion of Cook Inlet where the impa~t of .development ·in the AnCho~'-i
age area is small.In Upper Cook Inlet and Knik Arm,where im~act of I
waste discharge from the Anchorage area is greatest,a more detailed J
representation has been utilized.0 The node and channel data were I
!,
Calibration of a tidal hydrodynamic model entails a series of simu-
lations during which boundary conditions are held constant and the
frictional resistance is adjusted.When the tidal stage,current ve-
locity,and'the high and low water time lag are adequately represented
,throughout the estuary~thehydrodynam1cmodel can be considered cali-
brated.
For model calibration,average 1972 tributary inflow rates were used.
An average tide was selected from the daily predictions at Seldovia -
and adjusted to Port Graham,the NOAA tide stati.on nearest-the south-
erly boundary of the study area.'This tide has approx~tely the same
diurnal ti.de range as that reported in the 1973 NOAA Tide 'rabies.The OJ
results of the comparison are summarized in Table 7.3.Good agreement.be~een the calculated values and tide table predictions of tidal stage
and phase was observed at most locations.
7-8 \
."""
.~
.-
-
-
-
(~;,...
\,
"'"'
(fJ
7-9
•/1.
..c:c:....c:
U..
]
z
.-
....-
rs
Table 7.3
CALCULATED AND PREDICTED HIGH AND LOW WATER:
TIME LAG AND DIURNAL TIDE RANGE
Time Lag(hrs)·Diurnal Tidal Range(ft)
Network "High ~ater Low Water
Node
Location NlUnber Predicted Calculated Predicted Calculated"Predicted Calculated
Port Graham 1 0 0 0 0 l6~5 16.6
.Cape Ninilchik 5 .7 .8 .8 1.1 .19.1 lB.l
Kenai River Entrance 11 1.9 2.0 2.2 2.7 20.7 19.2
Nikiski ·12 2.4 2.7 2.7 3.3 70.7 20.0
East Foreland 12 2.6 2.1 2.9 3.3 21.0 20.0
Fire Island 100 4.5 4.1 4.8 4.9 27.5 2B.9
Sunrise,~urnagain Arm 58 5.4 5.6 6.7 6.8 33.3 30.4
Anchorage 124 4.9 •4.4 5.5 5.5 29.0 31.B
North Foreland·21 3.8 3.3 4.0 4.1 21.0 24.3
Drift River Terminal 8 1.7 1.1 ·2.0 2.1 1B.1 19.5
Tuxedni Channel 4 .7 .8 .8 1.1 16.6 18.3
--------~-----
~J .1 ~J 'J j 1 ,J ),~~1\~
'.
.~i I);f}
Comparisons between computed current velocities and those based on
NQaA tidal current predictions were made.Figure 7.2 shows the cal-
culated and predicted tidal stage and tidal current near,Anchorage
off Pt.Woronzof.The tidal current predictions were obtained by.'
,atlplying corrections to the d~ily predictions'at the Yrangel.l NarrowS.':
!ol::h the.computed tidal stage and current velocity .co~pare 'well with
predicted values.
I
J
I
I
Surface current velocity data (Britch.1976)measured off Pt:·Yoronzof;,::.:'.
current ve~ocities slightly ~ower than those observed.However,it would
be expected that vertical integrated currents 'would be less than those·
tiel~e compared with current v~locities calculated fo~a.similar period.,-.
Figure 7.3 sho'WiS the resul ts of the current veloci ty comparison along .;\
rlth the corresponding tidal stage.The tidal stage comparison was I
used only to obtain the proper current phase.,The model cal.culated .I
I
neasured at the surface due to lower velocities near the bottom.
tid~11 phase lag and current velocity,the hydrodynamic ','medel can be .
considered calibrated.
!
r
Bas(ad on the good agreement bet:'Ween calculated and reporced tidal stage.I
I
I
'!
-
Callbtation of the water quality model is accomplished by first setting
boundary conditions to observed values and then adjusting dispersion co-
eff:l.cients so that:the measured concentrations of a conservative water
!.j
I
!
is particularly
the tributary in-
being the tidal.
Changes in salinity take place rather slowly in such a large e~tuary;,..
boundary.
flo~'S are near zero with the sale source of sal:Lnity
q,uality parameter are matched adequately.Salini.ty
,,
Suited to this procedure,since the concentrations in l
I
I
r
consequently,a dynamic water quality simulation is required for dis-,I
pers:!.on coefficient calibration.A steady-state approach would result I
\1n unrealistically high dispersion coefficients for high flow conditions.I
!
and low dispersion coefficients for low flow conditions.",I,._-.-,,.t
7-U't'~L::~~~2-~;tt,~~~f~r
,_,~~::i;,=~:-:,:-,:':·:~,~:1~i;~F~-~~,';~;~~~>"';':/;-~,:;'~f·t:~:?":'~~':"'f;:;';
_.~.:::;':'~.'",~i.:-~r.:;:..·"~::~;A;·'t~;"'.~~....-..\;.
-
-
II •
PREDICTED TIDAL STAGE
COMPUTED TI DAL STAGE
•
9
LEGEND
63
•
10
~
1-
:E
~u...
w
t:l O}-----+-------------~-----<t
1-
In
~
<t
Q ·5
I-
HOUR
-Q
0
0 •LEGEND-l •U-S-0 OBSERVED CURRENT VELOGITIES
-90MPUTED CURRENT VELOCITY -Cj
G...
'::3--0>o-
J-
U
0
-l
W>
5
a::I ••a::I
loU •-10
a 3 6 9 12
HOUR -
• i -
--.;..-_._-----_..'.:.'
_.
..,I I"'..'''"'")-')~_-.~4'
FIGURE 7.2 Computed and Predicted Tidal Stage and Tidal Current off?t.Woronzof
1 J 1 1 J J 1 ~J
r-'\
)))1 ,)1 J JJi',,:.1
I LEGEND ,
TIDAL STAGE CURRENT VELOCITY*(ESTIMATE fROM •IESTlMATED FROM TIDAL
TIDE TA,U.DATAl CURRENT DATA)
CALCULATED --CALCULATED
o
§
~
J
:I
.'J''i
\
0 £
\\\-J ~
\
·2 III
\
\.>
"-\
3
......_"",......·4_.....
••·fi
·8
·1 Qi.,CD
~
E
IIJ
!!;
IIJ
(3
0(.:1
~
....·04«
Q
t=
Ul
i
I
!
,
~-1
•.1
.J
(.
'j~
"I.\:~
.~~w:1
:'1
\,'j
:;~~f:
';\.
t.;'~,
·~:;··1 ..
i '1
\~~
"..
I
;......l\i',..
I
'"~I
'it -,'[~.~.~..\
\
TIME (HOURSI
j
v·
'\.:;FIGURE 7.3 Curront V.loclty Compared with Tidal Stage
.---.~~..~.,--_._'.....,.,-~,.
~
Flow data (U.S.Geological Survey,1973)for water year 1972 (October,
1971,-through September,1972)were examined,and the average flows
during four periods calculated for all major tributaries to Cook Inlet.I
Table 7.4 is a summary of t.he stream flows used for calibration.The
November,1971 through April,1972,period is representative of low
ruooff conditions and the mid-June,1972 through September,1972,:is
representative of high runoff conditions.The other two periods serve
as transitions becween the major flow conditions.
Surface salinity data for Cook Inlet is available for the periods
May 21-28,1968,August 22-23,1972,and September 2S~29,1972.To
calibrate the dispersion coefficients,~~e model was run dynamically
for the entire 1972 water year.A comparison between the calculated
and observed salinity be~een Anchor Point and the end of Knik Arm are
-presented-'in Figure 7.4.The calculated.salinity at the end of Au~sl:
and September,1972,compares well with the observed salinities at those
times.·-The salinities observed during the May 21-28,1968,period were
compared with the computed end of May,1972,salinities.The observed
and computed salinities for the end of May agree reasonably well,consider-
ing the dissimilar hydrology.
The above comparison indicates that the dispersion coefficients are
adequately calibrated.The dispersion coefficients ranged from 2000
to 6000 sq ft/sec along the axis of the inlet and Knik Arm and 200 to
600 sq ft/sec perpendicular to that axis.These values are of the same
magnitude as those reported by other investigators (Murphyet a1.,1~72).
~l
-
~,
-
'"
J .1 1 )J J j J j 1~'J 1 )1 1 1 1 •1
I
','
Table 7.4
FLOW RATES OF MAJOR TRIBUTARIES TO COOK INLET'
~
'::.I·.'i .~:<,
~l~
;r,'~:I/';'
':,I
(I.
,",r
~-f,t 7'-~-·-----(,"I·TTLI---....-.-/itr.~f)-·-
I j')
;I,Z'(}"--"
..'
.Average ,Flow Rate :(cfs)
Nov 1971-May 1972-Mid-Junf'!,1912-
Stream Oct 1971 April 1972 Mid-June 1972 Sept ,1912
Knik and Matanuaka Rivers 7.170 1.420 7.590 31,200
Petera &Cottonwood Creeks 120 30 120 280
Eagle River 191 .51 210 1.445
Ship Creek 126 25'114 270
Little Suaitna River 200 60 250 ~.800
Susitna River 18.600 5.800 58.300 77.500
Kenai River 4.800 1,310 2,590 11,600
...,
I'
,~~-I.
• I
'i ~,.
'.I'·'.,.'
j
J
\
.\
-~
LEGEND
COMPUTED SALINITY
EN 0 OF SEl'T.\gn
OBSERVED SALINITY REDUCED FROM
lSOHALINE MAP REPRESENTING
SC?TEMBER 25-29.19n CONDITIONS
:lO
2S
l-
ll.2l)ll.
,,:
t:15z
:1<10 ~CICoOZU<
5 ...~.....
~z ..:::<-<0y~......
0
\25 \00 75 50 2S o 2S
-
MILES FADM POIHTWORONZOF
.•LEGEND30
OBSCRVED SALINITY REDUCED FROM
ISOHALlNE MAP REPRESCNTING
I-AUGUST 22-23.19n CONDITIONS
ll.
ll.
~
~
-'<c.o
0
125 lIJO 75 SO 2S 0 5
WILES FROM POIHTWORONZOF
LEGEND
OBSERVED SALINITY REDUCEO FROM
•JSOHALiNE MAP REPRESENTING
MAY 21-28,1968 CONDITIONS
30
COMPUTED SALINITY
•ENO OF MAY.1972
l-•a.a.••,:...z
~~...
<0 0iN..Z ZU<"01M:.....%c~z "'C -0<-<0 2~UZ ......
0
100 7S SO 25 0 S
MIlES FROM POINTWOFlONZOF
FIGURe 7.4 Computed and Obs"eNed Salinity ~tween Anchor Point and Knik Arm
7-16
EXHIBIT B
TABLE B-1
COMPUTED SALINITY CONCENTRATION (~/Ll AT SELECTED LOCATIONS WITHIN COOK INLET
I'I....RCH
SEPTEMSEI!411!!')
~~
30127
28642
30023
28:211
FEBRUARY
...uICusr
30100
:2813:5
:29900
:28383
.JANUAAY
,)I,jLy
29971
28298
DECEMBER
,)I,jNE'
~~
29826 2976:3
29031 2910.04
NOVEMBER
MAy
:29624
:29851
29278
30:200
OCTOBER
APRIL
2927b
30281
NODE •
:28033
29609
28377
29411
:28371
2'7339
:28693
:28804
286S:!
28802
28971
27997
28906
280.041
29:219
27399
:29137
27477
:294:17
"27362
.04
27369
:29:299
27.0409
29172
:2778:5
291:28
2778.04
29031
2817:2
28.0483
:28130
28460
2851.04
270491
28.0443
27~39
28819
26673
:287:24
:26775
29086
:26577
28971
26ba~
:2697b
:2903~
:27027
28906
:2731:5
29028
2733:5
28910
:27727
:28581
2770:5
:28516
29116
27696
280:58
:27705
284b8
2b746
:28379
:26S2b
26777
:263:21
:286b~
:2C430
27104 27088
:27960 :2787:2
27335"27261
266:2:5 :266l."
7
8
:2~80b
28500
:26706
2889:2
2.0466:3
:279.043
26182
28l.6~
2~876
28332
26762
287~7
247:51
27741
2b24.04
28~19
2629.04
28508
270:50
28927
2:52.047
:2802:5
26610
28702
26319
283:50
:2707:5
28799
:2:5:2S6
:278:2.04
2683.04
:27907
:27.04S6
:28471
:25906
:27328
:26806
27823"
:27468
2839:2
2:5882
27:217
:27903
27:50:5
26521
2:5721
27847
27:507
26.0437
25777
27~12
21!>~6.04
27783
25348
:28:281
:26484
270b8
241~04
:27669
2:5477
:28191
26563
:2b93~
:2431~
2789.04
:25:5~1
:2817~"
:24918
:2861:2
:2b0:28
28030
:2:5Cb:5
27372
:2:3804
2823:1
2~406
10
2:5018
28128
2:5097
279:3.04
:2:5:586
281:58
:2S618
:27971
:26:208
272:51
:26178
27161
26700
2:5~78
:27300
241M
:27169
20430:5
:2n:50
:23931
:27:')83
:2~090
11
:!:i6:58
27201
2.0429.04
275:2:5
:2.04328
27284
2:5008 2 :5037
:26587 26473
25788
24~70
2b.0424
:2:2780
:2b:262
:2:2979
:26979 2b770
:2:2305 2:2:510 ~
12
229.048
27179
230~8
2690.04
:!:i778 ":!:i81 7
27193 :26929
:2.04630 2.04:58.04
2:5983 2:5889
2:5402
23608
2~277
2380.04
:2608:5
:218.047
:25897
22077
:26680
:21:53:i!
:2267:3 :2278:3
270661._'26?67
259042 25730
:21:281 21:539
:..~"1:3
1.04
:20786
:26:212
20922
2:5822
23:58.04
267:!:i
2191:5 21939
26062 2571!
24377
25:504
2301922919
2.04288 24226
23995
21290
23792
21~23
24849
19138
2456:5
19.047:2
:2b553 26:291 .-
211~_.21389
:25:591
1899:2
1~
19717
:2:57:51
198:57
25:290
21049
2:5324
210~0
2.04959
22279 :22136
22';.044 22'77.04
233.047
19449
23088
19790
24276
17439
:2-:J930
17819
2~08:i!
17666
:2046bB
17979
22291 221~0
229~3 22985
232:53 231:53
24308 2.04275
21711 :2 I :565 "
22717 22705
1.
17
18
19
:20
21
21082
263.047
19023
2:541-1
18667
2:5271
197.040
2:57~9
1~:500
23773
16238
24119
17107
:24:526
21211
25966
19177
24921
1881:5
:247.049
19879
:25301
1:5668
:230:51
16402
23440
17268
2390:5
22183
26151
20.0403
2:5029
201.049
24073
17.0407
2:2:54:5
18043
23023
18787
236:51
22204
2:582.3
200413
2.04632
:201.041
:2.04280
:21066
2.04982
1736:5
2208:5
18009
22581
18767
23:2:24
21~0.1
21881
191104
18810
19668
19368
:2031.04
200431
21328
21959
IBS040
18976
1904:21
19~49
:20099
205046
24199
21300
22848
19218
22l.63
18037
23350
1939.04
;;!0:558
14438
21046
1:5033
21l.17
1~83
23999
2155.
2:2363
18439
:20122
14910
:20639
1:5516
:21:252
16712
"2:502b
19333
:2:J838
169:51
23673
16000
2428:5
17-:J77
21807
123:2:5
:2:2239
1301:5
22745
14198
204749
1965.04
230472
17-:J040
23:275
IM19
239.041
1776.04
:21244
12787
:21711
13~79
22:267
14634
25746
19310
24096
16954
24548
Ib0402
:2:5090
17649
22890
12867
23:273
13652
25408
195-69
24257
172B~
:2407:5
167040
:204b79
17965
~158
15027
:21090 :20398
10163 1063-4
:23
13861
2:2994
14143
2:1167
1.04027
2214.,
16021
21209
1:5943
20738
1~44
20058
17911
16830
1821:5
160.0446
17:568
17076
17839
1677.04
19489
1227~
"197"'"
11~
189:59
1:2777
1919B"
1:2"3
:20850
10:29:5
:2019.04
10760
:2:20-:J9
11008
2:2:24:5
11147
212:59
11394 ~,
-TABLE 6..1
(continued)
CClt".PUTED SALINITY CONCENTRATION 01C/LI AT SELECTED LOCATIONS WITHIN COO¥.INLET
21703
11647
MARCH
SEPTEH!!.DL
~~
21341
9534
21:::J94
10073
2:1499
11:102
19268
9058
19450
10045
20686
100l80l
FEBRUARY
AUGUST
20131
9598
2008:3
8::;7&
21382
9S45
19523
11845
18146
12200
17969
10748
..JANUARY
..JUl.y
18630
10H.8
20088
11::137
18672
!l749
18203
16707
10066
16551
16~7
14819
OE:CEI"IBER
,lUNE
18594
16379
16990
16384
16966
14389
14795
19181
10042
20735
14948
20.261
NO\lE:MllER
/'lAY
14<;142
19607
1~003
20785
14644
22~30
12717
21::143
13000
21544
'..........-,..,.._...---..................,....-~...~~~..~~...~~.~••~¥.......>"'-~•,..:
!~~~~_~~,_:iw-_-;,:.:.-_::':;.-;:~.:,.:;:~
OCTOaE:R
_AF'R1L
14506
23379
24
26
28
NOOe:•
.....
::n
US03
2:L824
119<;11
20914
14011
:20160
13969
19608
15765
15639
17855
10842
17326
110l::i2
19399
87:;5
18702
,9171
20737
<;1144
19909
9~16
32
1C)<;I76
2l:2<;14
11191
20412
13116
20078
1::1129
1945<;1
152::16
15447
14995
15432
17103
10565
10038
IOB69
1870!9
B368
1808::;
8730
201:::J8
8515
19352
8866
:10:115·1941:3
8::102 8650--::15
36
1C)<;I27
:21349
1C1~14
20814
11127
20456
10731
19<;171
13178
19875
12433
.20153
13177
19277
12497
19474
15331
14711
14512
16149
15069
14742
14347
15<;176
17199
<;1723
164:15
11406
16714
10042
16033
11605
18818
7852
18113
8787
18156
8212
17531
9103
19:;8:;
8402
18851
87:35
125::10,12580
20051,1'7.l87
::17
43
44
7466
19584
10710
.20056
10684
.20333
7641
18791
10275
17328
1292:1
18S41
10:341
16714
14650
15611
15160
1:3146
12830
7231
14464
15482
14896
1:3191
12697
,7182
16567
10668
17066
7886
15000
2535
16:;79
817Q
14651
2616
18246
83:37
18705
6042
1684'4
:2489'
17645
8659
18040
6963
16309
2609
19704
8228
20107
7612
184:21
4103
19:::J04
7938
17734
4290
45
46
47
....48
6117
18696
5~<;I3
18300
4076
17035
2155
14:3::19
e:S4
11,285
6270
17950
5734
1757:3
4182
16367
:z:208
13766
872
10800
9045
15769
8532
15050
7100
12282
4856
7477
2<;161
3282
9126
15186
8612
14489
7177
11815
48<;19
7:102
2<;165
3174
11714
4760
11225
4114
9S83
1958
7499
432
5297
51
11625
4721
11149
4081
9836
1943
7457
430
1::3979
12:37
1:3~22
1012
12245
3:19
97<;16
44
737:3
3
13684
1276
13;247
1044
12018
340
7209
:3
15902
1332
15476
1099
14:260
405
11796
64
9;235
5
15019
115:3
13857
4:26
11464
67
9948
5
175::i0l
:2786
17154
2408
16000
1262
10906
51
16916
2918
16539
:2~24
15442
1325
1::3080
358
10498
54
,;ZI::1
8IJ<;I&
:217
7702
1485
924
1468
899
3352
3
3275
3
5097
o
493:3
o
6706
o
6456
o
8:105
4
7855
4
50
52
53
1<;1
51J98
19
4780
10548
20100 ,
10450
19660
12550
19776
12000
20088
~29
83
12586
19133
12092
19379
1878
o
14735
14497
14036
16361
1789
o
14527
14421
13916
16096
31B8
o
16666
93:20
1:;969
11805
3035
o
16230
95::i8
15623
11930
447'1'
o
18341
7474
17692
9014
4:150
o
177:22
,nB8
171:;3
9291
5720!
o
19787
7830
19:103
8333
~412
o
19021
81:57
18506
8648
10165
:20'Hl
10387
19601
11900
20123
12000
19403
13932
16525
1:380!4
16235
1~87:3
11966
15::;38
1:2076
17606
9090
17076
9362
19127
832:2
18437
8635
10()b<;l
:20110<;1
10281
19::J:z6
11637
19902
11751
19178
13579
16426
1:::J504
16082
1:1~5
12328
1:1:209
12375
17:153
9413
16761
9644
18799
8411
18143
8701
10:~41
19:121
10429
18796
11288
19948
11422
19109
]2<;'6:3
17437
12<;'48
16972
14796
13779
14:178
1369~
16::;44
10574
16130
10723
18134
S989
17,..9
9236
TABLE B-1
(continued)
COMPUTED S~INITY CONCENTRATION (~Q/~'AT SELECTED ~OCATIONS WITHIN C~INLET
~,
NODE •OCTOBER
APRIL
NClVE~BER
!'lAy
DECEI'IBER
,JUNE
..JANUARY
,JULY
FEBRUARY
AV9UST
I'IARCH
SEPTEMBER
178:50 "17306
10599 11026
58
:59
60
100
101
102
103
104
10~
106
107
108
10692
18880
1127:5
18293
12039
17643
13014
16965
117:51
21817
12212
22124
11854
21928
11672
21784
11792
21877
11489
2172:5
11:572
217:50
11276
21625
10999
21479
10834
18220
11362
17694
12057
17112
12947
16506
11936
20893
12376
211:55
12029
20974
118:59
20860
11973
20937
1167:5
20797
11467
20704
11193
20:569
11132
19609
11143
19291
11267
18B74
11:574
18:360
13991
20036
14537
19787
14177
19780
13921
20024
14081
19922
1380:5
19831
"13853
19948
13617
19771
13366
19638
11269
18884
11269
18:l93
11372
18216
11643
17756
13941
19492
14430
19311
14097
19272
1387:5
1947:5
14017
19394
137:58
1928:5
13807
19399
13:582
19213
13344
19068
12441
18157
12067
18575
11731
18875
11512
189:51
16072
15248
16592
14789
16267
14754
16014
1:5200
16171
1:5003
15928
14728
1:576:5
14541
1 :5:542
14176
12472
17005
12128
17971
11816
1823;1
1160S
18294
15744
1 :5413
16186
I:Hl0
15894
14<196
15690
1 :5354
I:5S21
15203
1 :5001
14881
15638
1511~
1:54:53
14600
1:5249
14263
1"1104
1509:5
13:531
16113
12<i41
17103
12404
17917
18307
1039:5
1802:5
10207
17802
10500
17941
1036:5
17733
9982
177:5<1
10194
17:594
9710
13960
14882
13445
1:5792
12'714
16672
12428
17391
17691
10913
17438
10673
17260
10919"
1737:5
10808
17187
10389
..17216
10603
17061
10089
1688:5
9637
1:5812
11848
15171
1299<1
14483
142:50
13804
1:5488
1939:5
8592
19800
8596
19:5:51
8389
193:54
8508
1<1478
64:57
192<i:5
816:5
19317
8299
19003
76:52
15478
11897
14906
12950
14293
14091
1:J6S0
1:5213
18683
9013
1<1023
90:5:5
1879<1
882:5
lB643
892:5
1874:5
8884
18:579
8574
18605
8708
1B46~
83:54
18313
8020
174:28
9794
16792
10633
16098
116;;16
15388
12740
;;107:33
9050
21092
9318
20869
9036
;;10690
8971
"20800
9021
20640
8752
206-02
8837
20:530
8:504
20374
8305
16918
~
1~51
10757
15732
11674
1~9
12700
19890
94;;14
20192
970:5
19<;190
941:5
19654
9344 ."""
19944
<1398
19792
<1121
19819
'7207
19693
89;;10
1954<1
8660
12168 12185
18842"18245
109
110
111
11 :5
116
117
12:5
127
128
11348
2164~
109:59
2146:5
10498
21234
11120
21:537
1082:5
21396
10484
21232
9:584
20767
8891
20396
8233
20034
11:538
20726
111 :53
20:5:5:5
10691
20341
11311
2062:5
1101:5
20491
10676
20339
9774
19902
9077
19:554
841:5
19214
13662
198:55
13342
19591
12946
19392
13472
19724
13244
19396
12948
19344
115:51
18432
10<;168
17<166
13026
19297
13321
19022
12939
18810
1::344:5
19159
13222
18834
12939
18766
11:587
17823
11019
17352
1:5797
14617
1:5179
13042
1:5440
13609
1:5183
12912
14::'03
111 51
139&1
9862
13447
8630
1 :54Bb
14740
1:5231"
1413:5
14912
13093
1:533:5
14297
1:5149
13694
14276
11161
13767
9843
17617
9721
1738:5
9172
17083
7787
17477
9212
17312
6766
17067
7674
16488
5777
16009
4542
1::5:53
3:121
17086
10101
16871
9:51:5
16:593
8072
16957
9:564
16801
9090
1659:5
79:5:5
16040
5983
1 :5:595
4698
1:168
3639
19192
7901
1898~
7:578
18720
6589
19069
760:5
18924
7317
18722
6517
18187
50B2
177:57
4128
1734:5
:3:310
18490
83:54
180:53
6908
18376
7977
19239
7674
17:5:59
532~
17160
4328
10777
3470
20549
8587
20360
925~
20119
7:598
20437
8330
202<16-
8103
20121
7:563
19637
645:2
192:50
56:51
18878
<1914
1<1714
894S
19:5:37
8011
1931:5
792:3
19610
86B2
19477
8447
1<;1310
7886
18867
67:33
18:507
5900
-
TABLE B-2
.,...
MARCH
SEPTEMBER
FEBRUARY
"'U~UST
.JANUARY
,.J!Jl.Y
Oe:CEI"lSER
,JUNE
NOVEl'IBER
MAY
CCI'lPUTEO SALINITY CONCENTRATION (1'tQI'L)AT SEl.-ECTEO LOCATIONS WITMIN COOII.INL£T
OCTOSEI'
APRIL
NODe:•-
2
;29276
:30:281
;28033
;29609
29:282
3019~
28068
29493
29b2~
298::.1
28377
29411
29:584
29839
28372
2933&
29826
29031
28693
28804
297:59
291t~
286:51
28806
:29971
28298
28971
27~97
2989~
28~89
28902
28046
30100
2813:5
29219
27399
30012
:28217
29127
27486
30209
28:585
::l0117
2a640
3
;27369
;19299
21416
29160
2778:5
29128
27786
29029
28172
264&3
28128
28463
28:514
27491
28437
27:546
28819
26673
28713
:2678:5
29086
26:577
28958
26689
;16976
;!903:5
2703:5
28893
2731:5
29028
27339
2890~
27727
28581
28116
276"16
280:54
27711
28468
26746
28371
:26836
28777
26321
28281·28183
26484 26:573
6
7
;!:5806
:;!8:500
:;!6706
:;!8892
26770
2874~
2629~
28508
270:50
~8927
2632~
28339
27080
28791
26834
27907
27484
28471
26807·
27823
27469
28391
2733:5
2662:5
27903
27:50:5
272:56
26673
27783
2:5348
:276:58
25491
2817:5
;;!4918
28612
26028
2801:5
2:;07~
28486
26149
;;:4663
;;7943
24763
27721
2:5293
27809
2:5906
27328
25883
27217
26432
2:5789
27068
241:54
27:54:5
23628
27354
23816
-
8
9
.10
26182
2866'
2'018
28128
2:5108
2791:5
23671
27176
26610
28702
2:5:586
281'8
24284
2752:5
2:562~
27959
27104
27960
2620&
272:51
2:5068
26S£il7
27089
27871
26179
27163
2:5037
2647'
27:572
26:5:57
2:578&
24:570
27:509
26'70
2669:5
2:5589
2:5678
24b8Q
27990
2:5464
27300
24164
26424
22790
27886
25:562
271:57
24320
26247
.23000
28:3:57
2:5284
27750
239:31
26979
2230'
28220
2541:5
26748
:2;;;:'23
11
12
:22948
:27179
23072
26874
23778
27193
2382~
26912
24630
2:5983
24'84
25894
25402
2:J668
:2608:S 25880
:21847·.22100
26680
2153:Z
26416
.21767
23:55:5·23590
2699:5 26708
13
22673
27066
22~7
26736
20938
:;::5781
2191:5
26062
219~:5
2:5699
24442
2:5:568
23019
24288
2437:5
25:51:5
25239
230:56
.2399:5
21290
2:5082
23:Z:57
23779
21:5:5::3
2:5942
:Z1281
:14849
19138
24536
19:503
26553
211:54
2:5:591
18992
25206
19300
1~
1:5
1'9717
2:57:51
1987~
2:524~
21049
2:532~
210:5:5
249~6
:22:210
2:5807
;/2279
22944
221:29
23002
231 :50
24293
24199
21300
23069.
19826
2398:5
215&:5
24274>
17439
25026
19333
23893
178:54
24721
1968:5
2:508:2
17666
257~6
19310
246:21
17993
2::1370
19b03
-!
16
17
18
1'~023
:2:5~11
1~1740
:2:17:59
19194
24871
18832
24697
19894
2'2:5:5
20403
25029
20149
24473
21063
25348
20418
24b16
20144
24270
22071
24970
22711
22717
21:501
21881
22291
229:53
21:319
21994
22143
23013
2:2848
19218
22663
.18037
2:33:56
lq39~
22:5:59
19571
22:340
18479
;;!3082
19781
0i3838
169:51
23673
16000
24285
17377
23434
17379
24696
169:54
24548
Ib40:Z
25090
17649
24:207
17302
24021
16753
23:273 z:!.581
136:52·14038
19
20
1:;:;00
:2:1773
1~,238
241119
1:5687
2~981
16421
23374
17407
;/2:54:5
18043
23023
17366
22086
18011
22:580
19114
18610
19668
19368
18831
19026
19407
19599
:20:5:58
14438
21046
15033
:20086
1495:5
:20606
15:561
21807
12325
2:2239
1301:5
:11181
12829 .
216:53
13:519
22890
.12867
:221:52
132:58
17287
23844
18787
236:51
18770
23218
20314
20431
20088
20:;88
21617
16283
21224
16754
2274:5
14198
2221:5
1'167:3
23723
14669
2309:3
15040
14048
22070
16021
21.209
15';'40
207:51
17911
IbS30
17548
1713:5
1891:5
12823
20856
1029:5
20107
10801
22039
11008
21168
11 "06
1'1143
2;:)1167
1431:5
2223~
163:50
21090
10239
20681
1821:5 17818
16444 .1 <!>S40
19'7:54
11904
191:51
1:Z490
21090
10163
20:317
10675
22:24:5
11147
21356
11540
_'J-<'<-.
TABLE B-2
(continued)
-I"lARCH
SEPTEMBER
FEBRUARY
AV9UST
.JANUARY
,JULY
OECE/'\BER
JUNE
NOVE.!'IBER
MAY
OCTOBER
APRIL
24
NODE.
2:5
14~06
23378
1466:5
224:54
16763
21134
16636
20761
18'94
16379
18180
16770
;;10088
11337
1947:5
11687
21382
984:5
20604
10319
22"99
11302
21611
I1b74
26
12619
22419
l3021
21461
1:5003
2078:5
1"948
20266
16990
16384
166"8
16604
18672
11749
18104
122"6
20131
9:598
19374
1008:5
21394
10073
20501
10472
•
26
12:572
22337
12740
212:5:5
14942
19607
1"787
19220
16966
14389
16480
14896
18630
10168
17912
10796
20083
8:578
19171
';>JOO
21341
9:534
20301
9931
31
11803
21824
12012
20827
14011
20160
13970
19609
16079
1:5:504
1'747
15688
176:5:5
10642
17283
11294
19399
87::1:5
186~:5
9209
20737
914"
19814
9~30
32
10976
21294
10927
213"9
11202
2032:5
11147
20369
13116
20078
13178
1987:5
1313:5
19440
13181
19263
1:5236
15447
1'331
14711
1"982
1546:5
1:10:5:5
14780
17103
10:56:5
171lj>q
9723
Ibb02
10906
1667b
10078
18729
83b8
18818
7852
18017
876:5
1808:5
824:5
20138
8:51:5
2021:5
8302
19;;:!62
888"
19322
8666
36
37
10:5l4
20614
1049:5
20912
10489
2122:1
107:52
19884
10730
19969
10703
20245
12433
201:53
12:530
200:51
12927
19427
12:507
19437
12'89
19:3:5:1
12927
18829
14:512
16149
146:50
1:5611
1:5160
13146
1"340
1:5994
144:5::1
1:5:50:5
14881
13227
16"2:5
11 "06
16:567
10688
17066
7686
Ib004
11637
i6123
10946
16:540
~02
18113
8787
18246
8337
1870:5
6642
17474
9136
17:58:'
8692
17969
6992
19:58:5
8402
19704
8228
20107
7612
18770
87'7
18870
B~83
19212
79:53 -
1684"-162::17
::1489 2620
44
6117
16696
76:5:5
16708
6281
17871
1027:5
17328
103:50
1067:5
913:5
1:5143
12630
7231
11714
4760
12691
7194
11621
4729
1:5000
2:53:1
13979
1237
14626
2626
13664
1281
15902
1332
1:5378-
1404
18421
4103
175:52
2786
176:58
4300
16847
292~
46
:5:593
16300
:57":5
17496
8:532
1:50:50
8621
14447
1122:5
4114
11146
4088
13:522
1012
13229
1048
1:5476
1099
1"977
1158
171:54
2408"
16473
2:530
47
"076
1703:5
;1:1:5:5
14338
4190
1629:5
2213
1370:5
.7100
1;;>282
4856
7477
7185
11780
"903
7189
9883
19:58
7499
432
983:5
1947
74:56
431
1224:5
329
9796
44
12004
341
9603
46
14260
40:5
11796
6"
13823
428
11436
68
16000
12bC!
13:5:52
339
1:5383
1329
13031
3~e
"9
50
52
8:5"
1128:5
213
8098
19
:5098
10338
20966
874
107:51
217
766:5
19
47:53
10:568
20012
2961
3282
148:5
924
554
8:5
i2:5:50
19776
2966
3177
1"66
902
:527
84
12'94
19106
:5297
:51
33:52
3
1878
o
1473:5
14497
:5::132
:51 "
3270
3
1783
o
14:517
14447
7373
3
:5087
o
31sa
o
166b6
9320
7197
3
"921
o
3021
o
16198
9:590
923:5
5
6706
o
4"79
o
183"1
7474
8922
:5
6431
o
4223
o
176:58
7818
10906
51
820:5
4
:5722
o
19787
"7830
104:51>
~4
7819
4
:5379
o
1893~
8176
:54
10231
2047:5
1016:5
20411
10471
19::174
10408
19:516
12000
20088
11900
20123
12105
19332
1::1013
193:53
14036
16361
13913
16103
13821
162"0
1:5969
11805
15873
11966
1:5600
119:58
1:5:516
12104
17692
9014
17606
9090
17102
932:2
17027
9392
19::103
B:J33
19127
8322
19429
S671
18362
86::19
10069
20109
10241
19:521
10302
19243
10452
18719
11637
19902
11289
l'i'S48
11766
19123
li~o
1904:5
13::179
16426
12963
17"37
13:504
16080
129~
169:54
1~:50:5
12328
14796
13779
1:5191
12398
1-4:567
13709
17253
9"13
16:544
10:574
16717
9671 "
Ho096
107"6
18799
8"11
19134
8989
18072
872:5
17"e&
921>0
TABLE B-2
(continued)
COMPUTED SALINITY CONCENTRATION (M~/L)AT SELECTED LOCATIONS ~ITHIN COOK INLET
NODE ..OCTOBER
APRIL
NOVEMBER
MAy
DECEMBER
,JUNE
,JANUARY
JUL'f
FEBRUARY
AU'j!UST
,..,ARCH
SEPTEMBER
10090l
18880
10859
18151
.11132
19009
11290
18816
12441
18157
12482
1757::3
14104
1509:5
139:5:5·
14884
15812
11848
17428
9794
16808
1000::3
l1Ol75
18Ol93
11388
17032
11143
19291
12067
18575
12141
17929
1::3:5::31
16113
13446
1:5782
15171
12999
14889
lOl960
16790l
106::3::3
10::310
10770
00
lOl039
17643
12083
170:59
l1Ol67
18874
11 ::39:5
181:50
117::31
1887:5
118::33
18179
12941
17103
129OlO
10649
14483
14Ol50
1428::3
1409::3
Ib098
11020
15701
111>89
1::3::342 1::3::32::3
19:591·19016
1596:!.1:5619
14964 15164
17017 17044
9721·10.141
12404 124::38
17917 .17::35:5
1951:5
8097
19:12::3
79::38
19793
9438
19889
9427
197::!Ol
9221
194:54
867:5
19018
B9bOl
15077
12709
19757
9358
19596
8941
1984~
'?4HI
1909:5
91:34
20087
Q71:5
Ol05::30
8:564
204::37
8::3::30
20549
8587
2011Q
7:598
20::360
8::159
15388
1;;1740
21092
9::318
20::374
8::30:5
20869
90::30
20806
9021
20002
88::37
207::l:J
9050
20040
8750l
:20096
8971
18::300
8010
18410l
8::3B7
18Ol26
7981
17982
09::38
182::38
8000
18::391
8390
1::3683
15Ol0:5
18933
9090
18b04
90:51
18602
8923
18:525
6746
1871:3
8864
18499
8609
18564
8963
19069
760:5
18720
0:589
18989
7578
19192
7961
19::395
8592
1::3804
15488
19800
8596
19003
7b52
19174
7961
19::317
8Ol99
19478
84:57
19O19:l
8165
195:51
8::389
19::354
8508
Ib554
8103
10916
9601
Ib8::30
9552
17:2oOl
11068
10844
9675
17389
10717
17018
10128
17170l
10044
17039
10960
17::329
108:51
17142
104::30
17Ol16
10961
17477
9210l
17::38:;
9172
1708::3
7787
17401
9Ol88
17850
10599
17594
9710
17802
10500
180Ol:5
10207
18::307
10::39:5
177:59
10194
177::33
9982
11628
182::35
14897
1::3129
15::318
14::341
1587::3
1505:5
16160l
15177
1 :5Ol 1 5
14177
1:5468
14787
15611
1540:5
154::36
14706
152::3Ol
14::30:5
1 :5801
I:5Ol:58
15:582
149::31
1576:5
14541
1/,072
15248
11512
189:51
1:50::34
14190
1:552::3
140:;1
15179
1::304:Z
16267
14754
16171
15003
16014
1:5200
1:5542
14170
15797
14017
16592
14789
1:59:28
14728
lOl943
18799
144Ol:5
19::3::36
1::3876
19478
14094
19288
1::3446
19156
1::3808
19402
13941
19497
14016
19404
1::37:l8
19289
1::3627
19296
1::3:583
19212
1::3346
19062
11067
17694
1::3472
19724
14177
19780
12946
19392
1::3::366
19038
1::3662
198:5:5
14:537
19787
1::3017
19771
1::385::3
19948
11:574
18360
1380:5
19831
14081
19922
13991
20036
13921
20024
lOl972
10402
115:58
Ol0038
11172
20467
lOl398
Ol1067
11880
Ol0772
10710
202:53
11780
20736
l1Ol12
20480
lOl050
2088:5
11487
20615
11696
20708
119:57
20805
11994
20849
11331
:20:536
11570l
Ol1750
11854
Ol19:0!8
11790l
Ol1877
11070l
Ol17B4
13014
10905
10959
21405
10999
Ol1479
11348
21044
11489
Ol1725
l11OlO
21537
llOl70
21625
11751
21817
109
110
108
111
102
101
11 S
10"1
103
106,
100
107
105
"..
110
117
10825
21396
10484
21232
11034
Ol0403
1069:5
Ol02:51
1::3244
19::396
12948
19::344
1:3225
1880lS
12943
18755
1 :5440
1::3009
1:518::3
lOl91Ol
151::33
1 ::37::3:5
14899
1::3001
17::31Ol
8766
17087
7b74
16700
91::31
105:56
798:5
18924
7317
187Ol2
6:517
181b4
7707
1798::3
b86::3
OlOOl90
8103
201Ol1
750::3
1938::3
8402
192::!4
7901
9:584
20707
9791
19816
12108
18842
12191
18:224
14:50::3
111 :51
14264
11188
Ib488
5777
1000:5
6006·
18187
:5082
17493
5352
lQ6::37
0452
18780
6747
127
8891
20396
9093
19469
11:5:51
184::32
11594
17795
13901
980:!
1 :3757
9864
Ib009
4:54Ol
1:5:50::3
4716
17757
41Ol8
17099
4::347
19250
:5051
18424
5913
2-3<-3C
USER'S GUIDE
FOR THE
ESTUARY HYDRODYNAMIC AND
W.A.TER QUALITY MODELS
Prepared for the
Department 07 the Army
A1as ka 0is tr ic t
Corps 07 Engineers
Anchorage,Alaska
Prepared by
Donald J.Smith
Tetra Tech Contract TC-827
DACH85-76-C-0044
September,1977
Tetra Tech,Inc.
3700 Mt.Diablo Boulevard
Lafayette,California 94549
(415)283-3771
V'
/,
?C At
-
.....
I.
TABLE OF CONTENTS
INTRODUCTION .
BACKGROUND . . . .
PURPOSE AND SCOPE ..
MODEL DESCRIPTION.
Conceptual Formulation ..
Program Operational Sequence.
General Modeling Approach.
System Layout . . . . . .
Page
1
1
3
3
3
4
7
7
.-
I I.HYDRODYNAMIC MODULE ...
INPUT REQUIREMENTS
PROGRAM ROUTINES ..
INTERPRETATION OF RESULTS.
...,~._...,.--....-
-"-.._··~~1~~~·,~'-::~>~"-i7 :~~~i~~:~:~~,.~~;:'3'-:'~
INPUT REQUIREMENTS . . ...
PROGRflJ1 ROUTINES . . . . . .
INTERPRETATION OF RESULTS.
APPENDIX A
APPENDIX B
APPENDIX C
J~PPENDIX D
J\PPEND IX E
APPENDIX F
i
9
9
20
22
29
29
48
50
,.\
LIST OF F1 GURES
2
-
Figure 1-2
Figure 11-1
Tidally Averaged Estuary Model
Flow Chart .
Estuary Hydrodynamic Model
Subroutines .
6
21
ii
49
-
,.....
....
Table 11-1
LI 5T OF TABLES
i;;
10
30
I.INTRODUCTION
BACKGROUND
The Federal Water Pollution Control Act Amendments (PL 92-500)
of 1972 establishes specific requirements directed to the control
of point sources of pollution.The Department of the Army,Alaska
District,Corps of Engineers was given the responsibility to determine
the effects of various levels of treatment and levels of wastewater
effluent discharges,as defined in PL 92-500,on the water quality
of Upper Cook Inlet including Knik Arm.
Tetra Tech,Inc.was contracted to prepare the Knik Arm and Upper
Cook Inlet water quality report.Included in the study was the
selection and use of appropriate mathematical models to aid in the
evaluation of the effects of wastewater effluent discharges.The
models selected and documented herein are~
• A two-dimensional horizontal,complete mixed
vertical,dynamic hydrodynamic model interfaced with
• A two-dimensional horizontal,complete mixed vertical
tidally averaged dynamic/steady-state water quality
model.
This man~al provides basic instructions for the set-up and use
of the general estuary hydl~odynamics and qual ity model s.An example
problem data set and simulation results are presented in Appendix A
through D.The example utilizes the node-channel representation
(see Figure 1-1)used for the water quality evaluation portion of
this project.A listing of the c~mputer program codes for the hydro-
dynamic and water quality models are presented in Appendix E and F.
1
...,
-
I-
LU
.....J
Z---
~oo
U
0::
LUa..a..
::::J
rl
I---
.
..;:J
;~
Cl
(!)
Z
z
<l:Cl
LU
=>
.....J
Cl U
0 z
<!l
:2:---
""'"
0::
Z
0 ~
,----
u.~
~~
<l:
\'
I-Z
=>0::
0 =>>-l-
~
---l Cl
.....J
Z
LU
<l:
Z ::.:::
!~
Z -<t Z:::c ~u
~,
2
Detailed descriptions of the theoretical background and mathe-
matical formulations essential in the estuary model development are
presented in the Documentation Report*.
PURPOSE AND SCOPE
This manual is intended to provide the user \'Iith information
y/hich is fundamental in the set up and use of the estuary hydrodynamic
and quality models.It includes general instructions regarding:
•Geoii1etr i c repres en ta t ions of the protot.ype sys tem;
•Data requirements and input'format specificatio.ns;
•Program subroutines and computational sequence;
.•General modeling procedure;and
•Interpretation of model results.
MODEL DESCRIPTION
Conceptual Formulation
The numerical model represents the estuarine system as a variable
grid net\'/ork of lI no des ll and lI c hannels ll
•Nodes are discrete volume.
units of waterbody,characterized by surface area,depth,side slope
and volume.·The nodes are interconnected by channels.each having
associated length,width,cross sectional area,hydraulic radius,
side slope and friction factor.Water is constrained to flow from
one node to another through these defined channels,advecting and
diffusing \'/ater quality constituents betvleen nodes.
*Johanson,P.J.,D.J.Smith,F.M.Haydock,and M.W.Lorenzen,
lIDocumentation Report for the E::tuary ~'iater Quality t~odels."
A Report to Nassau-Suffolk Regional Planning Board,Long Island,
New York,May.1977.
3
,.""
~-
.,.,.
"""
,~
.-
The follmving are underlying assumptions of the estuary model.
• .The estuarine system is well mixed vertically.
•The law of conservation of mass is obeyed for water
quality constituents.
•Chemical reaction rates may be esti~3ted using first
order kinetics characterized by reaction-specific rate
coefficients.
Program Operational Sequence
The overall b/o-dimensional estuary model is composed of two
separate components,a hydrodynamic model (HYDRO)and a tidally
averaged quality model (AQUAL).
The numerical models are used in sequence so that the results
of the hydrodynamic model become input for the water quality model.
The chief advantage of dividing the overall model into segments is
that HYDRO can be calibrated separately and then used repeatedly
in the calibration and application of AQUAL.
HYDRO calculates the hydrodynamics of the estuary using detailed
information about geometric configurations,hydrologic conditions and
predicted tidal time-stage relationships.The equations of motion
and continuity are applied to determine the physical transport
mechanisms of water flows and velocities in channels,and volume
changes in nodes.The resulting data are averaged over the complete
\
tidal cycle and written on disk files to be used as input to AQUAL.
4
________________________...:1_-.2 (-I r:l.
AQUAL combines formulations for biological and chemical
reactions with advective and diffusive properties in a mass balance
equation to calculate tidally averaged water quality at any location
and time.Required inputs include system geometry and tidally
averaged hydrodynamics from HYDRO,boundary conditions,dispersion
coefficients,point and non-point source quality,reaction rate
coefficients,and meteorological conditions.The dispersion coeffi-
cients are used to estimate net dispersion in the prototype ,since
tidally induced advection is not directly modeled.AQUAL may be
operated in either a steady-state or dynamic mode.The final results
in the steady-state mode are representative of daily average condi-
tions which would prevail if all inputs remained constant over time.
The dynamic mode is useful for simulating long-term change~in water
quality which result when system con~itions or waste inputs change
significantly over time.In this mode the model uses tidal cycles
as the basic time step and yields average daily results.Figure 1-2
summarizes the program operational sequence for the tidally averaged
qual ity model.
The quality model can be used to simulate any combination of
the following tllirteen parameters and have the capabil ity to include
up to four additional user specified constituents.Optional constit-
uents may include any dissolved or particulate constituent with first
order decay,settling and transfer between constituents through decay.
~
2.Total-Nitrogen
3.Total Phosphorus
4.Total Coliform Bacteria
5.Fecal Coliform Bacteria
6.Carbonaceous BOD
7.Nitrogenous BOD
8.Dissolved Oxygen
9.Tempera ture
10.-13.Optional Constituents
5
"~'
~I
TIDALLY AVERAGED
ESTUARY ~iODEl
•
HYDRODYNAI':ICS
MODULE
•
HYDRODYNAMICS DATA INPUTS
•TIDAL STAGE
•PHYSICAL ~N~GEO~ETRIC
DATA
•CLI~ATOLOGICAL DATA
OVER A TYPICAL TIDAL CYCLE
TIDAL HYDRODVNMIlCS OYER
THE TYPICAL TIDAL CYCLE
•STAGE
•CURRENTS
•
TIDAL HYDRODYN~V,lCS BEING
AVERAGED OVER THE TIDAL
CYCLE
•AVERAGE STAGE
•AVERAGE CUi'iKENTS
I
I
~/
QUALITY
I",ODULE
•
I
AVERAGE HVI;ROLOG IC A:.;';,'A TER I
QUALITY INPUT DATA
•INFLOW C~ALITY
•~ATE COEFFICIENTS
•DISFEriSICN CCE:FFICIENTS I·
•TICAL EXCHANGE riATIO
•
AVERAGE WATER QUAL!TY OUTPUT
AT VARIOUS NO:lES AND LINKS
(
FIGURE 1-2
TAPE )
INTERFACE
L,
TIDALLY AVERAGED ESTUARY MODEL
FLOW CHART
;
---------------"
General Modelina Aoproach
x''
The first phase of the modeling procedure is to "calibrate"the
model using synoptic survey data from a suitable study period.
Boundary conditions (tides,flows,\·iaste discharges,etc.)\o;'hich
characterize the study period are input to the model and the results
are compared to in situ data.Calibration involves adjusting system
coefficients or modifying the nebJOrk until reasonable agreement
between model and prototype is achieved.
Once the model has been cu1ibrated,a second study period may be
selected for model It ver ification ll
•Hodel inputs are changed in
accordance with results of t~is study period while system coeffi-
cients and network geometry are maintained.If agreement between
calculated and observed concentrations is good,the model can be
considered verified.If agreement is poor,the reasons for the
discrepancy must be determined and satisfactorily resolved.Any
adjustments made to the model at this point must also be shown to
improve the calibration results.
The third phase of the modeling procedure is to evaluate model
sensitivity to modifications in system coefficients,and unit response
to changes in individual loading sources.This is accomplished by
examining the effect of varying one parameter while holding all others
constant.The sensitivity analysis allows estimation of the range
of results possible and the relative importance of each system
coefficient.The unit response analysis shows the relative importance
of various waste sources and boundary conditions on water quality.
System Layout
The nonuniform grid system used in the numerical models enables
the user to specify greater detail in areas where the impact of
pollutants is the greatest.Efficient utilization of computer
7
,,
-
-
resources weighs
channel system.
tional time step
sources.
heavily on judicious preparation of the node and
Among the most important considerations are co~puta
increment,system geometry and location of waste
-
The computational (hydrodynamic)time step increment is governed
by the stability criteria of the channel according to the following
relationship:
L
6t<v9R
where:
(1 )
bot
L
9
R
=
=
=
=
maximum hydrodynamic time step
channel 1 ength
gravitational constant
hydraulic radius (approximately equal to the
average channel depth)
-
Since the same time step is used for the entire system,a single
short deep channel can necessitate the use of a much smaller time
step than would otherwise be required.Channel lengths should be
selected to minimize this constraint as much as possible without
i ntel-feri ng wi th na tura 1 sys tern geometry.
In order to obtain the greatest possible correspondence between
model and prototype hydrodynamics it is important to attempt to
align model channels wit~natural channels as much as possible.In
addition,areas \·Jith vddely varying characteristics (e.g.depth,
roughness)should not be combined in one node.Smaller nodes and
shorter channels are warranted in regions which are known to have
~ater quality problems or where major gradients in water quality
parameters exist.
8
2 -35-47
I I.HYDRODYNAt~IC nODULE
INPUT REQUIREMENTS
The following inputs are required for the computation of estuary
hydrodynami cs:
•Physical and geometric characteristics of the node-
channel representation of the estuary;
•Tidal time-stage relationships at seaward boundaries;
•Meteorological and climatological data,including
evaporation,wind speed and direction,and precipitation;
•Point inflows and outflows;
•Non-point inflows;and
•Control specifications for computational options and
output forma ts.
Table II-l outl ines the card groups and format specifications
required to set up the hydrodynamic model card deck.These card
descriptions together with ~he illustrative example data presented
in Appendix A and the simulation results presented in Appendix B
should enable the user to set up,run,and interpret the results of
the estuary hydrodynamics model.
9
-,..,C"_I fO
.Table 11-1
HYDRO
Estuary Hydrodynamic Model
Data Requirements
Card Card
Number Column Format Variable Descriotion
l~_
Cal~d Group 1 -Title Cards
These headings t.;ill be printed on each page of the input data.....
,summary.
1a 1-80 20A4 TITLE Main heading-
1b 1-80 20A4 TITL Subheading
~'lliiMl
Card Group 2 -rnput/Output Control Card
Two or trxee tidal cycles are normally required to reach steady-
state hydrodynamics.Resul ts of the final tidal cyc2e for each
hydrologic condition are averaged and stored through NSTEAD for later
USIS!as input to AQUAL.Examples of the plotting options are prese;J.ted
in Appendix B.
A renumbering routine is included in the HYDRO code which arranges
the channel-node system to minimize storage and computational require-
ments.Internal renumbering should begin with a node located at some
extreme of the network such as a tidal boundary or lengthwise end of
the system.
-
2a 1-5
6-10
11-15
16-20
11 15 NSESON
NHPRT
NQPRT
NTSL
10
Sets of hydrologic conditions
(48 maximum)
Number of nodes specified for
printout (1-30 allowed)
Number of channels specified
for printout (1-30 allowed)
Number of nodes specified for
plots of mean tidal range and
time of high water (max.48)
.::2 -3.<~Lie
Card
Number
Card
Column Format
Table II-l -Cant.
Variab1 e Description
Card Group 2 -Input/Output Control Card -Cant.
2a
2b
21-25
26-30
31-35
36-40
41-45
1-5
6-10
1615
NSTAGE
NTFLOW
NDYNAM
NSTEAD
NN
MDAY (1)
1"mAY.(2)
t~DAY (NSESON)
Number of pages of tidal stage
plots (3 plots per page)
Number of pages of cha~nel
velocity and flow plots (3
Plots pe r pa ge)
Not used
HYDRO/AQUAL interface 'unit
number
Node number to begin internal
renumbering
Number of tidal cycles for
each hydrologic condition
Card Group 3
1-5
6-10
1615 JPRT{1)
JPRT(2)
.
JPRT(NHPRT)
Nodes specified for stage
printout (NHPRT nodes required)
Repeat card type 3 as necessary to conform to limits set on card 2.
11
~.
Description
Channels specified for
velocity and flow printout
(NQPRT channels required)
Table 11-1 -Cont.
Card Card
Number Column Format Variable-
Card Group 4 .
4 1-5 1615 CPRT (1)
6-10 CPRT(2)
r-
I
I
.....
-
CPRT(NQPRT)
Repeat card type 4 ~s necessary to conform to liwits set on card 2.
Nodes specified here must have been included in JPRT array
(card 3).NSTAGE (card 2)cards are required.
Omit card 5 if NSTAGE =o.
.....
Card Group 6
6 1-5 315 NCPLOT(NTFLOW,l )
Channel specified fOJ-
6-10 NCPLOT(NTFLOW,2)velocity plots
11-15 NCPLOT(NTFLOW,3)
Channels specified here must have been included in CPRT array
(card 4).NTFLOfv (card 2)cards are required.
Omit card 6 if NTFLOW =O.
12
Ca rd Group 8
Hydrodynamic time step increment which is based on channel
stability criteria can be determined by using Equation 1 or by
previewing invariant channel data output generated by the model in
a preliminary run using a large hydrodynamic time step.
8 1-10 4F10.0 DELT Hydrodynamic time step
increment,sec.
11-20 DELTQ Printed output interval,sec.
21-30 PERIOD Length of tidal cycle,hours
31-40 Dt-1IN Anticipated maximum diurnal
range in stage within the
estuary (ft)
13
~)
-
Ca.rd
Number
Card
Column Format
Table 11-1 -Cant.
Variable Description
-
Card Group 9 -Node Geometry
Node numbers greater than 200 are not allowed..ljve::age nodal
dl=pt.h at mean sea level can be est.imated from nautical charts keeping
in mind tha t the c.~arts show mean low wa ter.Nodes wi th si zeabl e
tide flat areas require an estimate of change in surface area per
~,ot of change in depth.The X-Y coordinate location of nodes
ri=lative to some origin is measured in arbi trary uni ts.
-
9 1-5
6-15
16-25
26-30
31-35
36-40
41-45
46-50
76-80
IS
2F10.0
3F5.0
815
J
AREA
SLOPE
DE?
Xl
Yl
NTEMP(l)
NTEr~p (2)
NTEMP(8)
Node number
Water surface area at mean
sea level,sq.ft.
Change in surface area with
increase in water surface
elevation,sq.ft/ft.
Water depth at mean sea
1evel,ft.
X-coordinate,any unit
V-coordinate,any unit
Channels entering node
-.
Repeat card 9 for each node in the system terminating with a
~lank card.A maximum of 200 cards (including the blank card)is
a.llowed.
14
Card
Number
Card
Column Format
Table II-l -Cont.
Variabl e Description
Card Group 10 -Channel Geometry
Channel nUi;;.bers grsater than 300 are not a22 o;,'ed.Char.nel 1 ength,
average width,and ~he change in width per foot of change in depth in
tide flat areas (side slope)can be e5ti~ated :ro~nautical charts.
The hydraulic radius is essentially equal ~o the c~annel depth except
in tide flat areas where it is approxi~atejy equal to the avsrage
cross-sectional area at wean sea level civid:eG by the s;;r::ace .ddth
at mean sea level.Channel roughness,as represented by Xannings
coefficient,is a function of channel config~:atior.,Dotto;;;rOtlqh~ess
and obstructions.Coefficients range from .02 for smoo~h straight
channels to 0.08 for rough,irregular,obstructed channels.
10 1-5
6-15
16-25
26-35
36-45
46-50
51-55
56-65
15
4F10.O
215
F10.D
N
ALEN
WIDTH
RAD
COEF
NTEMP (1)
NTEHP (2)
SLOPE
Channe1 number
Channel length,ft.
Channel width at mean sea
level,ft.
Hydraulic radius at mean sea
level,ft.
Mannings roughness coefficient
Nodes at each end of channel
Change in width with increase
in water surface e1evation,
ft/ft.
~\)
Repeat card 10 for each channel in the system terminating with
a blank card.A maximum of 300 cards (including the b1ank card)is
allo,,·ed.
Ca rd Gro up 11
This subheading replaces the title read from card lb and .'>'ill be
printed with the folloh'ing set of hydrologic conditions.
11 1-80 20A4 .TITL
15
Subheading
Table 11-1 -Cent.
Card Card
Numb.::e~r__C~o:..l:....:u::.m:.:.:n.:...-_..:.F..::o:...:.r..:.:m.::a..::t:-_..:..V=-a:...r.:...:ia:.;b:.l.:...:e=--.=D.=€.=.,s.=.c,;...r.,;,.ip!:.,t.=.,'.:..;"o:..:n.:.-_
Card Gr6up 12 -Hydrologic Input Contrel Switch-
:~
Set NTEMP():1
read if NTEl-lP ( )=0:
otherwise specified.
val ues.
to skip the following inputs;new data will be
Hydrological conditions are assumed zero until
Inputs are retained until replaced with new
Card Group 13 -Tidally Influenced Nodes
13 1-5 IS .NJEX Number of nodes with specified
stage relationships
Omit card 13 if NTEMP(l)(card 12)=1.
Card Group 14 -Tide Data
14a 1-5
6-10
11-15
16-20
4F5.0 JEX(NJEX)
NI
t·'!AXIT
NCHTID
16
Node number with specified
stage relationships
Number of points defining
stage relationship (must
equal 6 or 25)
Maximum number of iterations
for tide fit (50)
Print control.tidal curve
fit results will be printed
if equal to 1
Card Group 14 -Tide Data -Cont.
Card
Number
Card
Column .Forma t
Table Il-1 -Cant.
Variable Description
14b 1-5
6-10
11-15
16-20
1 6F 5.0 TT(1)
YY (1 )
TT(2)
YY(2)
TT(NI)
YY (NI)
11me (TT=hrs)and stage
(YY=ft)defining tide wcve (NI
pairs of data are required)
~'
-
Repeat card 14b as required to define NI time-stage relationships.""'1
NJEX sets of card group 14 are required to define tides at all bo~ndary
nodes.
Omit card group 14 if NTEMP(l)(card 12)=1.
·Card Group 15 -Evaporation
15 1-5
6-10
11-20
215
F10.D
Jl
J2
EVAPA
First node of an evaporation
zone
Last node of an evaporation
zone
Evaporation rate,inches/
month
Repeat card 15 as necessaTy ter~inatinq with a blank card.A
maximum of 20 evaporation zones are allowed ~~ich overrides the blank
card requirement.
Omit card group 15 if NTEMP(2)(card 12)=1.
17
Card
Number
Card
Column Format
Table II-l ..Cont.
Variable Description
Card Group 16 -Wind Velocity and Direction
"""16a 1-5
6-10
215 Jl
J2
First channel of a wind zone
Last channel of a ~ind zone
16b 1-5 16F5.0 WIND(,1)
~~i nd speed (mph)and direction
6-10 HDIR{,1)b10""";n9 from (degrees clock-
~~wise from Y-axis)at hour one
-
WI ND{,25 )One set of values for each
6-10 (Fourth Card)~'JDIR(~25.)hour
Four"16b car~s required for each wind zone.Repeat care q~oup
16 c=s necessary termina ting I.d th a blank card.No blank care is
required if 5 Idnd zones (the maximum allowed)are defined.
Omit card group 16 if NTEXP(3}(card 12)=1.
Card Group 17 Point Inflows/Outflows
17 1-5
6-15
16-25
IS
2F10.O
N
QQIN
QQOU
Node number
Inflow to node,cfs
Outflow from node~cfs
Repeat as necessary terminating ~ith a blank card.A maximu~
of NJ cards are allowed lllhere NJ =ni.lr:".ber of nodes in the netidork.
Omit card group 17 if NTEl-lP(4)(card 12)=1.
18
Card
Number
Card
Column Format
Tabl e II-l -Cont.
Variable Description
Card Group 18 -Groundwater Inflows
18 1-5
6-10
11-15
215
F5.0
Jl
J2
GROUND
First node for which ground-
water inflow rate applies
Last node for which ground-
water inflow rate applies
Groundwater inflow rate,cfs ....
Repeat as necessary terminating with a blank card.A maximum
of 199 groundwater inflows are allowed.
Omit card group 18 if NTEMP(5)(card 12)=1.
Card·Group 19 -Storm \·Ja ter Inflows
19a 1-5 .15 N
6-10 12F5.0 TN(l)
11-15 TN(2)
Node number
Average hourly storm inflows
(cfs)for first 12 hours of
tidal cycle
19b
66-70
1-5
6-10
61-65
13F5.0
TN(12)
TN(13)
TN(l4 )
TN(25)
Average hourly storm inflows
(cfs)for last 13 hours of
tidal cycle
Repeat;card group 19 as necessary terminating ~..i th a blank card.
A maximum of 39 pairs are a11oh'ed.
Omi t card group 19 if NTENP (6)=1.
Repeat card groups 11-19 for each hydrologic condition.There
must be NSESON sets as specified on card 2.
19
·~
-
.....,
PROGRAM ROUTINES
Figure 11-1 summarizes the general structure of the hydrodynamic
model.Complete descriptions of model structure and solution techniques
are included in the documentation report and will not be duplicated
herein.The following brief synopsis is intended to serve only as a
guide to aid in the interpretation of model outputs.
The main program HYDRO coordinates the hydrodynamic cal~ulations~
first reading title and control information for printing and plotting,
and then calling GEOMET.This subroutine reads channel and junction
configurations,including interconnectivity of nodes.and channels,
and computes invariant node and channel data before returning control
to HYDRO.
HYDRO then calls NUtlSER 'v/hich renumbers the nodes internally so
as to produce a more efficient matrix configuration for tidally
averaged quality computations.The original numbering system is
retained for output purposes.Control returns to HYDRO which prints
the invariant geometric data and stores duplicates on disk files for
later use in the quality model AQUAL.
The model then cycles through the following steps as often as
required to compute steady-state hydrodynamics for each hydrologic
condition.HYDRO calls TIDCF to fit the tide specifications with a
polynomial which describes the time-stage relationship at a seaward
boundary.Comparisons of observed and computed values are computed
and printed.TIDCF is called repeatedly until the time-stage relation-
ships are defined for each seaward boundary.Control is returned to
HYDRO \'Jhich then reads the remaining hydrodynamic inputs.At this
point the major daily time step and quality time step loops are
initiated and subroutine DYNFLO is called.
20
TIDCF
DYNFLO
NUt-mER
HYDRO
GEor.,ET
OUTPUT
~,
CURVE
SCALE
I,-__PP_L_O_T__
PINE
-
-
~,:
FIGURE 11-1 ESTUARY HYDRODYNAr·1j C f'loDEL SUBROUTl NES bX~
21
DYNFLO solves the equations of motion and continuity to determine
fundamental hydrodynamic properties including velocities,discharges,
water volumes,depths,surface areas and channel cross sectional areas.
DYNFLO 'is called repeatedly to compute hydrodynamic properties for
each simulation day of the hydrologic period.
Control then returns to HYDRO which averages the results of the
final day of simulation over a complete tidal cycle and stored for
later use in AQUAL.Finally,the subroutine OUTPUT is called which
prints the results and controls the sequencing of the remaining sub-
routines which produce the user specified plots.
INTERPRETATION OF RESULTS
If errors occur in the node and channel inputs,one or more of
the following messages will be printed:
•JUNCTION NU)'18ER IS LARGER THAN PROGRA)'i 01 i·ia~S I QjjS.-Junction numbers must not be greater than 200.
•CHANNEL NUJ·1B ER IS LARGER THAN PROGRAM DIMENSIONS.
Channel numbers must not be greater than 300.
•CHANNEL CARD COMPATIBILITY CHECK,CHANNEL AND--
JUNCTION
-Channel-junction interconnectivity is erroneous.
•JUNCTION CARD COMPATIBILITY CHECK,JUNCTION AND
CHANNEL --
Junction-channel interconnectivity is erroneous.
22
.~.7C /
Assuming a HYDRO/AQUAL interface unit number was assigned,the
first printed output (see Appendix Table B-1)shows the node renumbering
scheme which is used internally in the steady-state/dynamic tidally
averaged quality model.The maximum diagonal matrix width and the half
band widths are also shown.The dimension limits in AQUAL will be
exceeded if either of the half band widths are greater than ten (10).
In this case the following error message is printed:
THE HALF BAND WIDTH OF FOR EQUATION
NUMBER ,NODE ,EXCEEDS THE DIMENSION
LHUTS IN PROGRAt~AQUAL.PROGRAti EXECUTION
WILL TERl·HNATE LATER.
If this message is printed,one of the following modifications
is required.
•Select a different node which is located at some extremity
of the network to begin renumbering (i.e.,a tidal
boundary or lengthwise end of the system).
•Restructure the grid system eliminating excess nodes
which extend laterally from the lengthwise axis of
the system.
•Increase the DIMENSION limits in program AQUAL.
When any of these errors occur,the model run will continue until
invariant junction and channel data have been printed at which time
the simulation will terminate.
The next output (see Appendix Table B-2)summarizes the computa-
tional and output control options specified on Card Groups 1-8.
23
~i
-
.....
-
~I
....
Invariant node and channel data follows the control summaries.
An example of this output is presented in Appendix Table 8-3 and B-4.
In additiOn to printing input data,some computed data are included.
The column labeled "nAX THtE,SEC lI on the channel data printout
is useful for checking the maximum allowable computational time step.
The hydrodynamic time step increment specified in columns 1-5 of
Card 8 must not exceed the smallest value appearing in this colu~n.
The user may \'Jish to modify the network layout sl ightly by lengthening
channels or decrease the depth (along with an appropriate increase in
width)'.'Jhich will increase the allowabl e time step.
The column labeled mN ELEV,FT on the channel data printout
is the water surface elevation at which the channel width becomes
negative.The column labeled MIN ELEV,FT on the node data printout
is the water surface elevation at which either the nodal volume or
surface area will become negative.
The model checks to see if the anticipated low water level is
exceeded by either of these minimum elevations.If potential problems
exist,they will be noted by the following warnings incorporated in
the list of junction and channel data.
•NOTE --*INDICATES NEGATIVE WIDTH IS POSSIBLE WITH
ANTICIPATED TIDAL STAGE.
•NOTE --*INDICATES THAT DEPTH OF CHANNEL ENTERING
JUNCTION IS LARGER THAN JUNCTION DEPTH.
The latter message is to aid the user in modifying
channel geometry data in the event that a negative node
volume or surface area is encountered later in the
hydrodynamic simulation.
24
•**INDICATES NEGATIVE VOLUME OR SURFACE AREA IS
POSSIBLE WITH ANTICIPATED TIDAL STAGE.
It should be stressed that these are only warnings and may not
cause further problems since the actual nodal stage often does not
reach the anticipated low water level.If any of these anticipated
problems materialize later in the simulation,error messages will
be printed and the model run terminated at that time.
The remaining outputs will be repeated for each set of hydro-
dynamic conditions.Appendix Table 8-5 shows an example of the
output which is generated when the TIDCF subroutine successfully fits
a polynomial with the input time-stage tide data*.The model will
iterate until reasonable agreement is achieved between observed and
computed.values.The model computes and prints the individual and
total differences between derived and observed time-stage )"elationships.
These results should be checked for individual differences exceeding
5%of the maximum tide range which suggest possible errDrs in tide
data inputs.One or more of the following variables may be the cause:
o Erroneous time-stage pairs defining the tide wave.
•Insufficient iterations for the tide fit.(50 is
usua 11 y enough).
•Irregular spacing of tidal extremes.
The next page of output (see Appendix Table 8-6)summarizes the
evaporation,wind,inflows,and withdrawal data entered for the given
hydrodynamic condition.
*The user may suppress this output (see Card 14a).
25
-
...,..
-
-
~odel outputs to this point may be previewed most cost-effec-
tively by setting the hydrodynamic time step increment to well in
excess of a reasonable time step iQcrement.The run will not go to
completion,hO\'Jever~the output which is generated can be reviewed
for input errors.The correct time step can be selected based on
derived channel data output.
Selecting too large a time step will result in an unstable
solution,terminates the runstream and cause the following error
message to be printed:
HYDRODYNAMIC SOLUTION WAS.UNSTABLE AT HOUR -----
IN CHANNEL ,FLOW =CFS~DEPTH =FEET,---
VELOCITY =FT/SEC
As noted earlier,termination of the runstream will occur if
negative nodal surface areas or vol urnes are encountered causing the
following error messages to be printed:
•NEGATIVE SURFACE AREA ENCOUNTERED AT HOUR ----
AT NODE ,HEAD =FEET,AREA =SQ FT.
•NEGATIVE VOLUME ENCOUNTERED AT HOUR AT NODE---
HEAD =FEET,VOLUME =CU FT.
If this occurs one or both of the following adjustments in junction!
channel configurations are required:
•Increase depth of node.
Decrease area slope (change
to depth)in the junction.
applicable when tide flats
.....
•
26
in surface area with respect
This adjustment may not be
are being modeled ..
2-35-(
•Decrease depth in channels which drain the junction.
The channels which are sufficiently deep to cause
the difficulty will have to be noted in the invariant
channel data printout.
Once all errors are corrected the computations will go to
completion.Appendix Tables B-7,B-8,B-9,and Appendix Figures
B-1 through B-4 show examples of the model outputs.The following
is a check list for testing the hydrodynamic model results before
proceeding to the quality codes:
•Check for steady-state hydrodynamics by comparing heads
at hour 25 with those at hour 50 for a given node.A
similar check of flows and velocities for a given
channel should also be made.Differences of more than
1%indicate that the model should be run for a longer
period of time.
•Predicted time-stage relationships should be reasonable
within the system.
•Check channel flows in tide flat areas to see whether
times of no (or very little)flow are actually
predicted.
•The values of average head should be approximately the
same everywhere except where there is a large net flow
or in tide flat areas where average heads will be
greater since the flow out of these areas is stopped
when a minimum depth is reached.
•The average velocity should be near zero except where
there are net inflows or rapid changes in velocity
such as in a narrow channel draining a large area.
27
-
r
i
-
•Water balance at each junction should be zero except
at tidal exchange nodes where it is equal to the net
gain or loss at the boundaries.
• A flow diagram showing direction and magnitude of
the average flm'Js is useful in detecting circular
flow patterns.While minor eddies are acceptable,
unexplainable major circular flows should be
corrected by adjusting the roughness coefficients
in the channels.
Modifications in roughness coefficients or node-channel configura-
tions may be required in orde"to produce acceptable model-prototype
conformance.Once the above requirements are met to the satisfaction
of the user,the model is considered calibrated and VJater quality
computations can proceed.
28
INPUT REQUIREMENTS
The following inputs are required for the computation of
tidally averaged water quality:
•Steady-state hydrodynamics as computed by HYDRO;
•Tidal exchange ratio and water quality at seaward
boundaries;
"'"
•
•-•Dispersion coefficients;
•Reaction rate coefficients (benthic oxygen demand,
coliform de~ay,photosynthesis oxygenation,etc.);
•Meteorological data,including cloud cover,dry and
wet bulb air temperature,wind speed,and atmospheric
pressure;and
•Control specifications for computational options and
output forma ts.
Table 111-1 outlines the card groups and format specifications
required to set up the card deck for the AQUAL quality model.These
card descriptions together with the illustrative example data presented
in Appendix C and the formulation results presented in Appendix-D
should enable the user to set up,run,and interpret the results of
the tidally averaged water quality model.
29
~,
Table III-l
AQUAL
Data Requirements
Tidal Average Estuary Quality Model
Card Card
Number Column Format Variable Description
Card Group 1 -Title Cards
These headings will be printed on each page of the inp..t d.:-'"-'--
summary.
.-la 1-80 20A4 TITLE r·1a i n hea ding
1b 1-80 20A4 TITL Subheading
30
Table 111-1 -Cant.-
Card Card
Number Column Format Variabl e Description
Card GrouD 2 Input/Output Control Card Cont.~--!
2 41-45 NFILE HYDRO/AQUA~interface
unit number -
46-50 1NQUAL Not used
~.
Card Group 3 -Steady-State/Dynamic r~ode Switch
The code allows the user to select ei ther steady-sta te or cynamic
sol utions for each set of bouncary conditions.Set IDYN (.'=1 for
steady-state solution,IDYN ( )=0 for steady-state'
3 1-5
6-10
1615 NQPERH(l)
IDYN(l)
Number of days for first
boundary condition
Solution type selector -)
NQPERH(NHYD)NHYD pairs required
IDYN(NHYD)
Repeat as necessary to conform to limits set on card 2.
Card Group 4 -Parameter Selection
Set ISKIP()=0 to simulate any of the following 13 constituents.
If ISKIP()=1 the constituent will be omitted.
4 1-5 1315 ISK1P(1 )
6-10 ISK1P(2)Total nitrogen,mg/l as N
11-15 ISKIP(3)Total phosphorus,mg/l as P
16-20 ISKIP(4)Total coliforms,MPN/l00 ml
21-25 1SKIP(5)Fecal col;forms,MPN/100 ml
31
Table 111-1 -Cant.
Ca rd Card
~Number Column Format Variable Description
Card Group 4 -Parameter Sel ection -Cant .
4 26-30 .ISKIP(6)Ultimate carbonaceous BOD,
~mg/l
31-35 ISKIP(7)Nitrogenous BOD,mg/l
,~
36-40 ISKIP(8)Dissolved oxygen,mg/l
-41-45 ISKIP(9}Temperature,°C,
46-50 I":KIP(lO)Optional constituent #1
",..,
51-55 ISKIP(ll }Opti ona 1 constituent #2
.'
56-60 ISKIP(12}Optional constituent #3
61-65 ISKIP(13}Optiona 1 constituent #4r;:.
"
Card Group 5 -Optional Constituent Name
The names will be printed on the first page of output for
optional constituent identifica tion.
5 1-16
17-32
33-48
49-64
16A4 CNAME(l)
1
Optional constituent #1
CNAME(4)
CNAME(5}
1
Opti ona 1 cons ti tuent #2
CNM1E (8)
CNAME(9)l Optional constituent #3
CNANE(12)
CNA~1E (13)1 Optional constituent #4
CNAME (16)
32
.Table II1-l -Cont.
Ca rd Card
Number Column Format Variable Description
Card Group 6 -Time History Plot Control
One to four constituents may be selectee for time history plots.
Constituents are numbered from 1 to 13 in the order shown on card 4.
Constituents for time
history plots (constituent
number)
Junctions for time history
plots (NJP junctions
required)
6 1-5 1015 IPLOT (1)
6-10 1PLOT(2)
11 -15 1PLOT(3)
16-20 IPLOT(4)
21-25 JPLOT(l)
26-30 JPLOT(2)
.
JPLOT(NJP)~\.~-.:)
Omit card 6 if NJP (ca.rd 2)=O.
Card Group?-Profile Plot Control
One to four constituents may be specified for concentration
profiles.Constituents are numbered from 1 to 13 in the order shown
on card 4.
7a 1-5 715 UCONP(l)
6-10 NCONP(2)
11-15 NCONP(3)
16-20 NCONP(4)
21-25 IPDAY (1)
26-30 1PDAY(2)
31-35 IPDAY(3)
Constituents for concen-
tration profiles
(constituent number)
Julian day of profile plot
33
--------"---
Table III-l -Cont.
Card Card
~Number Column Format Variable Description
Card Group 7 -Profile Plot Control -Cont.
7b 1-5 1615 NODEP (1 ,NPP)
6-10 NODEP(2,NPP)
Junction for concentra-
tion profile (21 required)
21-25
(Second
Card)
NODEP(21,NPP)
-NPP (ca.rd 2)sets of card group 7b are required.
Omi t ca.rd group 7 if NPP =o.
Card Group 8 -Initial Conditions
A negative oxygen concentration signifies the fraction of
saturation.
.-
-
-
-
8 1-5 215 Jl
6-10 J2
11-15 13F5.0 ALL(l)
16-20 ALL(2)
21-25 ALL(3)
26-30 ALL(4)
31-35 ALL(5)
36-40 ALL(6)
41-45 ALL (7)
First junction for which
data applies
Last junction for which
da ta a pp 1ies
Total nitrogen,mg/l as N
Total phosphorus,mg/l as P
Total coliforms,MPN/1DO ml
Fecal coliforms,MPN/l00 ml
Ultimate carbonaceous
BOD,mg/l
Nitrogenous BOD,mg/l
34
Table III-l -Cont.
Card Card
Number Column Forma t Variable Description
Card Group S -
Initial Conditions -Cont.-
8 46-50 ALL(S)Dissolved oxygen,mg/l
~;
51-55 ALL (9)Tempera ture,=C
56-60 ALL (l 0)Optional constituent =1
61-65 ALL (11)Optional constituent =2
66-70 ALL(12)Optional constituent =3
71-75 ALL (13)Opt;ana 1 constituent =4
Repeat as necessary terminating with a blank ca~d.'~J initial
condl tion cards are allo~~edr ~"here NJ -nUr.'.ber of junctions:"nthe
network.
Card Group 9 -Dispersion Parameters
Dispersion coefficients provide a means for siwulating est~arine
mixing.Generally these coefficients are adjusted as required for
calibration based on a conservative constituent:and then do not change
thereafter.
The tidally induced dispersion parameter (el)includes the effect
of flow induced and tidal mixing.Open embayrnents and estuaries
which are st~ongly influenced by tidal effects will genera22y recuire
a larger Cl than more protected regions.The values for this coefficient
generally range from 5 to 25.
9 1-5
6-10
11-15
~
215 J1 First channel for \'/h i ch
data applies
J2 Last c hanne 1 for which
data applies ~~
2FS.O Cl Dispersion parameter
tSlI\li:
35
Table III-1 -Cont.
-
Card Card
Number ·Column Format Variable Description
Card Group 9 -Dispersion Coefficient -Cant.
9 16-20 en
-Repeat card 9 as required to define all dispersion zones ter~nating
with a blank card.NC cards are allowed,k~ere NC =number of channels
in the network.
This SUbheading replaces the title read from card lb.It will be
printed with the output for the following set of boundary conditions.
"...
11 1-80 20A4 TITL Subhead;ng
Card Group 12 -Read/Write Control Switches
Set NTEMP()=0 to read new data;skip if NTEMP()=1.Hydro-
dynamic conditions are normally read in order from the HYDRO!AQUAL
interface tape;however the file may be repositioned if the user wishes
a computation sequence different from that of the hydrodynamic simulation.
Positive values of NTEMP(lO)will advance the file and negative values
will rewind it a specified number of records.
36
'7 ...."'2 C-7<
Card Ca rd
Number Column Forma t
Table II1-1 -Cont.
Variable DescriDtion
-
Card Group 12 -Read/Write Control Switches -Cant.
12 1-5
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
1015 NTEMP(l)
NTEIW(2)
NTE1~P (3)
NTHiP (4)
NTEMP(5)
NTEMP(6)
NTEHP(7)
NTEMP(8)
NTENP(9)
NTHlP (10)
Read new hydrodynamic
conditions
Read new tidal exchange
ratios and quality
Read new inflow quality
Print aggregated inflow
quality if NTEMP(4)=O.
Read new non-point source
qua 1 ity
Read new return water
quality increments
Read new system coefficients
Read new meteorological data
Print weather data if
NTEMP(9)=0
Position of HYDRO/AQUAL
hydrodynamic file
--
-
-
-
Card Group 13 -Tidal Exchange Ratios and Quality
The tidal exchange ratio refers to the fraction of ebbing estuary
wa ter I"hich is lost from the system a t the boundary node and does not
return.Values can range from 0.-1.
13a 1-5 5X
37
Card identification
Table 111-1 -Cant.'.
Card Card
Number'Col umn Forma t Va riabl e Description
Card Group 13 -Tidal Exchange Ratios and Quality -Cant.
-
l3a 6-10 1OFS.0 XR(l)
.
XR(NBOUND)
Tidal exchange ratio
at each tidal input node
If salinity is not modeled as constituent 1 then it must be entered
as CEX (1,14)for dispersion coefficient calculations.A nega tive val ue
for dissol ved oxygen signifie:;a fraction of saturation.
Card identification
Total nitrogen~mg/l as N
Total phosphorus~mg/l as P
Total coliforms,MPN/100 ml
Fecal coliforms,MPN/100 ml
Ultimate carbonaceous
BOO~mg/l
Nitrogenous BOD.mg/1
Dissolved oxygen,mg/1
Temperature,°C
Optional constituent #1
Optional constituent #2
Optional constituent #3
Optional·constituent #4
38
Card
Number
Card
Column Format
Table 111-1 -Cant.'
Variable Description
"'""
Card Group 13 -Tidal Exchange Ratios and Quality -Cont.
l3b 71-75 CEX(1,14)«:71'I p ..
Repeat as necessary to de~ine conditions at a~~bo~~5ary noGes.
NBOUND cards are required.
Omit card group 13 if NTE}LD(2)=1 (card 12).
Card Group 14 -Inflow Quality
The model will aggregate the water quality i~to a qi~en noce ~hen
multiple point source inflows occur.A negative =cn=en==atien siqnifies
a mass emission ra te in pounds per da y or equi '."a.2 ent ex=epr;::e=oxygen
",here it signifies a fraction of saturation.No r:'Dre ~::=n 500 inf20ws
are allowed ,,'hieh can be distributed into amaxir:;u:::of :..00 junctions.
~,
~,
14 1-5 15 JJ
6-10 14F5.0 QQ
11-15 ALL (1)
16-20 ALL(2)
21-25 ALL (3)
26-30 ALL(4)
31-35 ALL(5)
36-40 ALL(6)
41-45 ALL(7)
46-50 ALL(8)
51-55 ALL(9)
56-60 ALL (10)
Junction number
Infl 0\'/,cfs
Total nitrogen,mg/1 as N
Total phosphorus,mg/l as P
Total colifor:ns,t,\PN/100 ml
Fecal coliforms,MPN/100 ml
Ultimate carbonaceous
BOD,mg/l
Nitrogenous BOD,mg/l
Dissolved oxygen,mg/l
Temperature,°C
Optional constituent #1
-
39
----
Table II1-1 -Cont.
Card Card
Number Column Forma t Variable Description
Card Group 14 -Inflow Quality -Cont.
..-
14 61-65
66-70
71-75
76-80
ALL (11 )
ALL(12)
All (13)
ALL (14)
Optional constituent =2
Optional constituent =3
Optional constituent =4
.-
Repeat as necessary ter~~nating with a blank card.The blar~~card
is:not allowed tvhen 500 infloh"s are specified.
Omit card 14 if NTEMP(3)=1 (card 12).
Card Group 15 -Non-Point Source
These constituent concentrations represent aggregated qua2~ty of
all non-point sources entering a q~ven node or successive group of
nodes at t_'2e flow rate specifi::d in .r.,."}:"DRO.A negative dissol'."ed
oxygen concentration signifies a fraction of saturation.
--
-
15 1-5 1615 -Jl
6-10 J2
11-15 ALL(l)
16-20 ALL (2)
21-25 ALL(3)
26-30 ALL(4)
31-35 ALL(5)
36-40 ALL(6)
First junction for which
qual ity app1 ies
Last junction for which
qua 1i ty a pp 1i es
Total nitrogen,mg/1 as N
Total phosphorus,mg/l as p
Total co1iforms,HPN/100 m1
Fecal col iforms,t,1PN/100 ml
Ultimate carbonaceous
BOD,mg/l
-40
Table 111-1 -Cant.
~.
Card
Number
Card
Column Forma t Variable Descript.ion
Card Group 15 -Non-Point Source
~,
Omit card 15 if NTENP(5)=1 (card 12).
Repeat as necessary t~rr.dnating with a blank card.A maxi~um of
29 non-point tvater types are allowed.
Discharge influence =1
Discharge influence #2
Di scha rge i nfl uence #3
Discharge influence #4
Nitrogenous BOD,mg/1
Dissolved oxyg~n,mg/1
Tempera ture,::C
15 41-45 ALL (7)
46-50 ALL (8)
51-55 ALL(9)
56-60 ALL(10)
61-65 ALL(11)
66-70 ALL(12).
71-75 ALL(13)
76-80 ALL(14)
Card Group 16 -Return Water
Return water to any node may originate from as r.any as five other
nodes.The model aggregates the initial concen~ration given the
fraction from each node.Incremental changes specified on card 16b
are then added to determine the return water concentration.
16a 1-5
6-10
11-16
46-50
51-55
15
15
F5.0
F5.0
J1
NTEMP(l)
ALL(l)
NT Et1P (5)
ALL(5)
Discharge junction
Junctions from which dis-
charge is withdrawn (NTEMP)
and fraction of i,;ithdrawal
which is discharged to
junction J1(ALL)
f@l!1l'irI.
41
-
Table 111-1 -Cont.
.....
Card Card
Number Column Forma t Variable
Card Group 16 -Return Hater -Cant.
16b 1-5 14F5 .0 ALL (1 )
6-10 All(2)
11-15 ALl(3)
16-20 ALl(4)
21-25 AlL(5)
26-30 All(6)
31-35 ALL (7)
36-40 ALL(8)
41-45 ALL(9)
46-50 ALL(10)
51-55 ALL(ll )
56-60 ALL (12)
61-65 ALL(13)
Description
I
I
I ncremen ta 1 total nitrogen
Incremental total phosphorus
Incremental total coli forms
Incrementa 1 fecal col iforms
Incrementa 1 carbonaceous BOD
Inc rementa 1 nitrogenous BOD
Incrementa 1 dissolved oxygen
Incremental tempera ture,°C
Incremental optional
cons tituent #1
Inc remen ta 1 optional
constituent #2
Inc rementa 1 opti ona 1
constituent #3
Inc remen ta 1 optional
cons ti tuent #4
Repeat card group 16 as necessary terminating with a blank card.
The blank card is not required if 20 sets of card group 16 are
entered.ami t card group 16 if NTEl1P(6)(card 11)==1.
42
The follotving coefficients representing first order decay kinetics
vary as a function of temperature,oxygen concentration,salinity,
light intensity,wind speed and many other physical and chemical
influences.Optional constituent may include any dissolved or particulate
constituent with first order decay,settling and trans=er between
constituents (i.e.,am7.0nia decay to nitrate).Rate coefficients of
constituents which may be of interest have been included.Typical values
(at 20°C)are as follows:
Card Group 17 -Quality Coefficients
Chemical,Physical and
Biological Coefficient
Ra.nge
of Val ues
Descri pti onVariable
Table 111-1 -Cant.
Format
"Card
Column
Card
Number
Stoichiometric equivalence between
optional constituent decay
.0-1 .a
Rate coefficient temperature adjustment constant 1.02-1.08
_7
Carbonaceous BOD decay rate,day -.1-.3
-1NitrogenousBOn"decay rate,day .05-.15
-1Coliformdie-off rate,day
Total nitrogen benthic sink rate,mg/m2 /day
Total phosphorus benthic sink rate,mg/m2 /day
.5-8.0
0-500
0-200
Alga~photosynthetic oxygen production,
mg/m /day
0-15,000
Algae oxygen consumption due to respiration,
mg/m2 /day
0-7,500
2Benthicoxygendemandrate,mg/m /day 0-5,000
_7
Reaeration rate,days -
-1Ammoniadecay,day
.1-10.
.05-.2
...
43
Car'd .Card
Number Co 1umn Forma t
Table.111-1 -Cant.
Variable Description
p-
I
(-;.'
f
I
Card Group 17 -Quality Coefficients -Cont.
Chemical,Physical and
Biological Coefficient
-1Nitritedecay,day
-1Volatilesuspendedsolidsdecay,day
Suspended solids settling,meters/day
17a.1-5 5F5.0 TYPEEQ(1)
6-10 TYPEEQ(2)
11-15 TYPEEQ(3)
16-20 QTEN(l)
Range
of Val ues
.2-1.
.002-.05
0-2
Fraction of an optional
constituent produced with
the decay at one unit of the
preceding optional constituent
(stoichiometric equivalence).
Rate coefficient temperature
adjustment constant for
carbonaceous BOD decay
(default =1.05)
.....
17b
21-25
1-5
6-10
11-15
16-20
21-25
26-30
215
4F5.0
QTEN(2)
J1
J2
ALL (2)
ALL(3)
ALL(4)
ALL(S)
44
Rate coefficient temperature
adjustment constant for the
remaining rate coefficients
(defaul t =1.03)
Junction limits for which
coefficients apply
Carbonaceous BOD decay
rate,day-1
Nitrogenous BOD decay
rate,day-1
Total coliform die-off
ra te,day-1
Fecal coliform die-off
rate,day-l
Table 111-1 -Cont.
One card 17a is required.Repeat sets of cards 17b and 17c as
required terminating with a blank card.No blank card is required if
NJ sets of card 17b and 17c are entered.
omit card group 17 if NTEMP(7)=1 (card 12).
45
___________________....;_.~,,_ii!!"!!f,__,__
-
___.1
Card Card
Number Column Format
Table 111-1 -Cant.
Variable Description
Card Group 18 -Meteorological Conditions
18a 1-5
6-10
11-15
16-20
21-25
26-30
IS
5F5.0
NWZONE
DAY
EPS
AA
BB
DEW
Number of weather zones
(5 max.)
Julian date
East west longitude
switch (-1 for U.S.A.)
Evaporation coefficient a
Evaporation coeffici 9nt b
(Default =1.5 x 10-)
Wet bulb/dew point
switch~dew =1 for wet
bulb temperature
Hourly meteorological conditions for each weather zone are
computed by interpolation of the information supplied on card l8c.
.....
r-
I
l8b
'18c
1-5
6-10
11-15
15-20
21-25
1-5
6-10
11 -15
215
3F5.0
IS
5F5.0
JWZONE(l)
JWZONE(2)
XLAT
XLON
TURB
J2
CLOUD
OBT
46
Junction limits of
wea ther zo ne
Lat;tude~degrees
Longitude,degrees
Atmospheric turbidity
(2 for clear up to 5
for SlTDg)
Hour of observation
Cloud cover,fraction
Dry bulb temperature,°C
Card
Number
Card
Column Forma t
Table 111-1 -Cont.
Variable Description
Card Group 18 -Meteorological Conditions -Cont.
18c 16-20 WBT viet bul b or devi point ~
temperature
21-25 WIND Wind speed t meters/sec
26-30 APR Atmospheric pressure t mb
~
A set of between 2 and 25 cards (type l8c)are required fer each
weat.l1er zone.Each set must begin ~vith values for hour;'and en:iing
with values for hour 25.Repeat sets of cards l8b and lac as =ec~i~ec
to define all weather zones (::r'lZONE sets).
Repeat card groups 11-18 as necessary to define all boundary
conditions.There must be NHYD sets as specified on card 2.
47
??c pI
r
~....•.
-
F
I
.-
PROGRAt,'ROUTINES
F~gure 111-1 summarizes the general structure of the tidally
averaged quality model.The following brief description is intended
to serve only as a guide to aid in the interpretation of model outputs.
The reader is again referred to the documentation report for a more
thorough treatment of model development,theoretical considerations,
and solution techniques.
The main program AQUAL calls INPUT to read system geometry,
hydrodynamics,input/output controls,boundary conditions,dispersion
and system coefficients and inflow quality.INPUT calls METDAT to
read meteorological condition:,compute derived conditions,and write
results.Control then returns to AQUAL which.directs SETUP,FORM and
SOLVIT to compute salinity for dispersion coefficient computations.
AQUAL then computes oxygen saturation based on sal inity and tempera-
ture.SETUP is then called to set up the final coefficient matrix
which is used in SOLVIT to compute the concentration of the water
quality constituents in all nodes.The constituent concentrations are
determined in the following order:
·""i8ilt1t!WJ
•Temperature
•Optional coefficients (us.er specified)
•Total nitrogen
•Total phosphorus
•Total coliform
•Fecal coliform
•Carbonaceous BOD
•Nitrogenous BOD
•Dissolved oxygen
48
~').......<,--T__~~___L______'_.L___'__'__~
FORM
METDAT
SETUP
SOLVIT
INPUT
OUTPUT
•
CURVE
SCALE
PPLOT
PINe
FIGURE 111-1 TIDALLY AVERAGED QUALITY MODEL
SUBROUTINES
49
~I -
.,?C.<iQ
AQUAL then calls OUTPUT which controls the remaining subroutines in
printing and plotting the results.The process repeats for each
set of·boundary conditions.
INTERPRETATION OF RESULTS
Provided input formats are correct and program dimensions have
not been exceeded the model will print out invariant data including
computational control specifications,initial conditions,and dis-
persion parameters as shown in Appendix Table 0-1 and 0-2.The model
will check the junction limits assigned to the initial conditions and
print the following message if errors are found:
*ERROR *THE FOLLOWINS NODE LIMITS ARE IN ERROR:
The remaining outputs will be repeated for each set of boundary
conditions.Appendix Table 0-3 shows an example of the output which
summarizes exchange conditions,observed and aggregated t inflow
quality,non-point inflow quality,return water quality,system
coefficients,derived flow and wind induced reaeration coefficients,
and coefficients used by nodes.If dimension 1 imits have been
exceeded the runstream will terminate and one of the following
m~ssages will be printed:
•\·IARNING **THE t·'!AXIr·1UM OF 100 INFLm~LOCATIONS HAS BEEN
EXCEEDED.**
• *ERROR *A MAXIMUM OF 29 GROUNDWATER TYPES ARE ALLOWED.
• *ERROR *RETURN \~ATER IS ALLmJED AT 20 NODES tlAxIMUr~.
t The user may suppress this aggregated inflow quality printout.
50
Appendix Table 0-4 shows an example of the printout of observed
and derived meteorological data*.~wDBJ!t~'?~~'::.a:rspe.rsrotf
·~·m·.f-cn.lW__j;RutttJ;••f!m'l~l":B~~S:;:.:.tJ~~rnMlibl
dispersion coefficients is an iterative process,the last two values
of the coefficients are printed for comparison.If there is a signifi-
cant difference between the values,dispersion parameter C4 may need to
be reduced or the number of iterations for computing dispersion coeffi-
c i ents increased.....·1...N*fi$.~~m:g:me~~.
Jg!le...r;~·fjll!t.C~$~~~witag~=.~
cn~*ii§iiMt·•
~Appendix Table 0-7 shows the
alternate output format.Examples of the plotting options are shown
in Appendix Figures 0-1 and 0-2.
Calibration of the tidally averaged quality model is accomplished
in two phases.The first is to simulate a conservative substance such
as salinity to establish the mixing characteristics of the estuary.
The dispersion coefficients can not generally be specified
a priori.The procedure is to start with values which have proven
effective before and proceed,on a trial and error basis,to adjust
the coefficients until model results compare reasonably well with
field data.The -model is then considered calibrated for advective
and dispersive transport.The second phase of the model cal ibration
is to adjust reaction rate coefficients (benthic oxygen demand,photo-
synthesis oxygenation,coliform decay,etc.)until in situ data are
reasonably reproduced.
*The user may suppl~ess this output.
51
...,.
-I
.....
(;,.
;I
'-i
><-cz
u...
D-
C.
.-.f"
...~.---..-....--,.-
APPENDIX A
~l
...,
~,
Table A-l
Hydrodynamic Model Input Card Specification
r-.~I
Car lS 20 2S 30 35 40 45 50 5S 60 65 70 7S 80Group510
11 UP"E~COO ...I NLE T.K"III(.4R'".4/1iO TURNal;.l.IN .4Rl>\
1b ,J."'PI.E ,.R"lSlE"I
2a 1 /I b 211 0 12
2b 3
3 1 1l 2b II~5/1 117
4 18 72 e3 127 III 0 157
5 1 111 IIq
6 7Z 127 1110
7 1 3 5 '7 \0 1\\2 14 17 20 23 2/1 101 lOll lOll 10'il
115 !I~121 125 127 128 II~(,10 Q7 lI6 "q SO
8 100 3/100 25 lIO
01 qQQ,.7"JO,+b 150 blO lI70 01 02
02 1'50,+7 00.+0 130 bOO 527 I'll 03 Oll
03 850,+7 00,+11 11010 oS>!525 1'12 03 OS
04 qOO,+7 2Il,+t1 150 b211 5011 011 00 07
05 090,+7 00,.0 Do tieS S711 nS 0&O~
Db 501'1.+7 18,u.100 01.15 03!>07 Oq 10
07 700,.7 OCl.+o 100 b"':bl<l 06 01;12oa37li,.7 l~,+o 080 oS2 601 III 11
09'a20 ••7 21,+0 C'So o6tl 70\I 1
1'1 15
10 1>90,+7 12,.0 oao 702 eSS ,2 13
f;;;"11 abO.+7 02,+11 100 ?til bq3 \3 la 10
\2 2110,+7 00,.0 UI)711 729 15 III 17 U 19\~13 120 ••7 01,+0 070 135 71.1Q i7 21 22
111 0~7,.7 vO,+o \00 721,j 751.1 ,a 20 21 23
111 1'10,+7 02,+0 053 759 75&<,2 25 27
F'"15 <'00,+7 2'5,+0 110 7Il1l 7SO \9 20 21.1
17 \35,+7 110,+0 va5 7110 770 ?l 25 20 28
16 1"17,+7 111,+0 70 '730 78\211 20 29
9 19 \lIO,+7 07,+0 0117 HII 770 27 30 32
20 11>1,+7 OO,H,095 772 ?as 28 30 31 13
21 1013,+7 01,H.0~5 ?b2 799 29 31 ~Il
22 n6.+7 oa,+1>05S 6(\0 768 32 3S J7
23 176,+7 00.+0 080 7"111 80'1 33 3S 311 38
20ll 105.+7 25,+0 abO 7S8 a 32 311 lEo 3'1
25 oSfI,.?fJ 1 ••0 070 822 799 :\7 110 III
21>120,+7 00,+0 OcO e \ 7 620 H liD Il 1 101 102 100
27 095,+7 ~O,+O 022 615 8ul ~9 I.ll .u~
26 Ob7,.7 00,·0 DoS 639 808 1.l2 117 100 103
31 1170.+7 U3,·o 050 as"799 117 51 53
32 IIb7,+7 3,+0 111 801 8\11 Q6 51 511 55
35 ~92,.7 20,+0 020 0/>11 H8 Ii:>75 77
30 058,.7 00,+0 030 6711 Bo2 5"75 70 78n25,+7 15,+0 9 ob9 82'55 5b 120 121
1.13 o3 C1 ,+7 O:l,·/>035 9nl 805 1>5 lib 07
JIll 023,+7 03,+11 OeS 901 878 />0 oQ
liS 1'125,+7 03,+0 025 9\1 870 &7 08
lib 051,+7 15,+0 GIS 915 86101 b8 c9 70
117 0211,+7 16,+0 012 929 8el7 70 71
liS 011,+7 22,+0 0 b 938 S9b 71 72
49 005,+7 lI'5,.1il 2 950 1399 72 73
So 002,+7 10,+0 I 95"1 901 73
52 03b,+7 28,+0 8 682 BID 50 7b 79
53 t02,.7 10,.0 030 a,H 7sa 77 7&&0 &9
r
Table A-l -(Cont.)
Hydrodynamic Model Input Card Specification
~!
511 OIlCl,.'2~,.0 010 !Cl5 !OO l'81 8Q
55 05'1,+7 JO,.o 020 qoo 767 ~o !II !lZ
5&002,.7 30,.to 020 ;25 7811 ..2 83
51 38,.7 20,+0 15 qll ~777 !3 eg
58 25,.7 I ~,.O 12 ClS7 771 ~11 85
SCi'32,·7 15,+0 12 C1111 171 s5 Bo
00 1!!,+7 10,-0 10 ,,~q 75'1 110
100 580,·0 0,+0 80 e1l3 820 101 103 1011 II!lOb -101 Slo,+~O,.b 75 53"62Ci'102 loa 105 101
102 3 U O,"0 15,.0 10 535 e 3'1 llil 105 IDS
103 2Z",+1>1 ,•0 00 853 SZCi'100 100 111
lOll 231,·1>0,-0 !:I °850 05 I ~7 lOCi'11 °112 111
105 ISb,-o 10,"1>10 ell7 All)108 110 11/1 !;I!~'I!;;('
100 1 11 '1,+0 O,H,l:l0 600 836 I 1 1 112 115
107 I o~,+0 O,"b 3D eS7 /lu2 113 110 117
lOB C/O,·O b,.o S 85S S1l7 It ll 110 lIe
9 10'1 loO,+o 0,+0 7n c07 l!31 I \5 1 I 'I 120 lZI
110 17'!,·0 5.+0 30 B~3 8115 11 7 115 :2Z
111 811,+Cl 0,-0 IS !70 B30 120 11 q tZl 125
112 IIb,·O 2,5+0 15 8n 8~1 127 IZ5 1211 128
113 5 11 ,-0 .0,H.115 8701 835 120 123 121l 12C1
111l 52,+0 1,.0 30 S?'l 836 I?B 12'i'131
115 1 ZII.-0 0 ••0 55 875 SllO 1<'1 130 132 133 ~"
H/)ll.lC1,·/)Il,·o liD 873 Blio 122 130 1311 135
117 lll.+0 D,./)115 651 ello l11 t32 1 ::;0 DB In
118 50,+0 0,"0 /)0 881 8ll::'133 !:Ill 130 137 1110 III 1
11'1 bO,+O 1,+0 35 881 Bilo 135 Li7 lu2 ~\120 30,+0 C.+b 30 8H !1l0 130 lill IllS ,)
121 ClO,-o 0,+1:>C/O 881:>eCll DCi'ICIO 1 ~1 I ~II 1111:1Q1 111 8
122 3<',"0 ,+0 50 881:>8'10 I a I 11.12 Ill~11ICi'150
123 33,+0 1,+1l 30 eqo !~I IllS 1110 151
1211 1I11.·0 0,.0 55 8Ci'Q 81111 1117 151 152 1511
125 33,-1:>0 ••0 70 8~1 8111:>la8 III C/152 !5 3 155
121:37,+0 1 ••to 110 88'1 8 ..8 15\1 1S 3 1St!
127 ~b,.o C,+/)Ci'5 eqs 851 I'iQ ISS 150 157
12a 130,•I:>1,+1>SO b'l7 858 157 tiS
01 oc/OilOO aooco 130 .0;)2 01 02 0000
02 '10\)00 80000 130 ,o<'z 01 03 0000
_Ol 08'1000 080-000 -ZOO .0-"Z 02 03 0000
0lI 100000 070000 120 ,022 02 Oil 0000
OS 08(1000 081:1.100 DO ,0,,2 03 OS 0000
06 OollOOO Od5iJOO 120 ,Oe2 011 05 0000
07 /1'12000 070000 130 .02Z 011 011 0100
08 077000 o'l2UOO 10~.0?2 05 07 0000
10 0'1 o:>&vOO 070uoO 050 ,022 Db 07 0000
10 075000 0"0000 oe5>,025 06 Oll 0300
l!Ob8000 OQOOOU 07D ,025 08 0'1 0300
12 00700D 110000·O'1Q ,022 07 10 0000
13 005000 oqsuoo Oqo .0;02 10 11 0000
10 o~7000 055vOO 01$11 ,oZ2 0'1 I 1 0000
15 o~~ooo Olloaoo 000 ,0?2 DCi'12 0300
11:>01:>(1,,1)0 OS51l0U 100 ,C22 11 12 0000
17 01l1l1l00 023uOO 070 .0i'5 12 1l ouOO
Ie .(l1I5UOO OZ)\)I)O BO ,oZ2 12 11.1 0000
1'1 01131100 030000 llO ,022 12 15 0000
20 031000 0311\10 0 0111).oe2 10 1S 0000
,.
..."
Table A-l -(Cont.)
Hydrodynamic Model Input Card Specification
11 OZSOOCl 0412000 oeo ,o?2 I J
111 ooou
2i!0<141000 (1215\100 060 ,025 13 1Q C~OO
l~Z3 0<0141000 OZZO(\O 1110 .0 "Z 1 lj 17 0110101
2Q nS~aoo O.3e liDO IJO .02S IS 18 0500
25 n BOOO O~~IiOO 010 .0'2 10 17 oeoo
211 0111100 e511J00 OljO .O?S 17 Ja CUOIl
27 /\50000 n3Juoo OSu ,025 10 lq 0100
28 O<l,llOIlO 0.31000 100 .022 17 ZO oeoo
2q ~5eooo 028000 100 ,022 16 21 0050
30 eBOOQ 05')000 070 ,022 19 20 0000
31 0211000 055000 100 .022 20 21 0000
32 OljllUO\l 021000 CUO ,O?5 19 22 OZOtl
:ll 1:15500\1 onooo OCIO .022 20 23 0000
-JQ 0011000 O}OvllCl 010 .czS ZI 211 0100
35 031000 01151100 abO ,022 22 2J OUOO
30 039000 052000 100 ,022 n 211 0;,;00
37 n 32 0 00 c.30voo ObO .e;>5 22 2S e.,50
38 038001/n:S1uOO 085 .0Zi!23 20 ocoo
Jq OlleOOO 025000 030 .0;>;2t.l Z7 0700
"(I 035000 03"000 ~eo .02Z 25 20 0000
"1 0350llQ o 3~00 0 070 .OP2 Zll Z7 0000
42 O:U 000 onu 00 OH .022 25 26 0000
1I1i 3MOO 18000 7 ,025 27 102 12e.
1017 OZClOOO OllliiOU UllO .022 28 _31 00,)0
10 lie 32000 UOOC 50 .022 H lCO 0
51 025000 02';000 01:5 .oz2 31 32 OilOO
(~53 021>00\1 025000 o~c .0;05 H 35 0500
SI.I oZ7000 l)Z20~0 OAO ,0('2 H 3b OOCiO
55 022000 022000 010 .O;>S 32 :H DeaD
50 030000 OC'2vOO 000 .025 37 52 1000
~5 1250U 13ilOv SO .C20 ~3 128 30
lob 020000 015000 D2S .0;>5 ill 1111 0100
b7 OZ2000 01~000 no .0;>5 1:3 ~5 0100
bS 023000 012uoo 20 ,02 5 lj5 I.Ib oI CO
6';{lZ500Q 012"OU 20J .025 :'1I (;b 0100
70 023000 011:000 a .0;>5 .:Ib iH 0000-71 0211J0O OO:UOO 3 -'i25 ..7 I:~:00 U
72 020000 0041000 1 .O"S ..8 ~~10O~
13 018001/oozooo 0,5 .oe s "q 50 1000
75 0211000 022000 030 .025 35 JO 0000
1b 018uOO 030000 010 .025 315 52 0000
77 fJHOCO o 3~u 0a 030 ,02S 35 53 01100
78 031000 OIQI)OO 035 ,02S 31>53 OCiO,)
7~oZ~oou 015\>00 b8 ,C25 52 511 1000
80 032000 01510100 OliO ,025 53 55 0100
81 021'00U 0251100 010 ,0;>5 51.1 5,0500
82 0.31000 015000 35 ,025 55 5b 0200
83 0.30000 012000 2S ,022 sb 57 ;)00
84 OZI:IOOO 010000 20 ,Oi'2 51 58 'lOaes02100001000015.C?2 55 5~500
6b 031000 bOOO IS ,O??Sq bO 350
6q zaoOO 2'i0~0 15 ,025 53 511 a
100 '111000 12000 1S ,020 2b 23 0
101 41000 12000 1S .020 21:1 100 0
102 41000 18000 75-.020 211 101 0
101 16000 19QOO cO ,020 26 100 0
104 17100 27000 GO .020 I 00 101 0
Table A-l -(Cant.)
Hydrodynamic Model Input Card Specification
105 1 HOO 30000 13 .OC!O !0 t 102 0
lOb 23000 111000 bO ,020 100 103 0
107 2~5CO IS~OO 60 ,020 101 1011 0
108 21000 1~0(l0 7 ,Oi?5 10i?105 700
109 11300 ISIlOO bO ,0'0 103 1 011 0
110 1'1000 1701)0 III ,Oi?5 1011 105 0
I 11 13500 90:0 8S·,070 103 lOb 0
112 1 q 00 7000 75 ,ozo 10 Q IDe 0
ID 15200 8vno ZS ,022 loa 107 0
1111 111000 7000 7 ,0;>5 105 I ct:!500
115 115 vII 120"0 75 ,Oi'O lOb 11)9 30
lit>'HI 0 0 110(l0 111 .0(15 107 106 0
117 111100 /;~OO 30 ,022 107 110 0
1 !II 135VO 10000 !,0(15 108 110 300
119 11300 5':100 15 ,Oi'S 109 111 0
120 11500 a600 to5 ,0 ('0 109 113 0
121 1520\,1 8700 50 ,020 109 115 0
122 15200 12700 35 ,072 11 0 11 b ~50Inesoo550015.0~2 111 .13 0
12Q 1>\100 50(l0 IS ,025 I 12 III 0
125 nOll 7\l00 10 ,O?5 11 I 112 0
1210 110(10 7QOO 15 .075 :31 111 Q
127 15000 11000 5 ,025 37 112 250
128 11000 noD 15 ,0;:>5 112 1111 70
10 129 9700 11200 110 ,Oi'2 113 1111 0
130 10300 11500 35 ,020 I IS 1111 0
131 8200 ;clOO 35 ,070 l1a 117 25
1:12 10eOll 11500 55 ,020 115 117 0
lH 12000 11000 bO ,020 115 118 0
1311 111500 11000 ao .020 110 118 0
135 I Il 200 bSOO 35 ,oz2 tlb 119 SO
13b 8\,100 10000 bQ ,0'0 111 II e 0
137 8000 10000 bD ,ozo II a 11 9 0
I :I/l 7000 IIVOO 30 ,022 117 120 0
1JCi'8000 JOOO 75 ,0;:>0 117 12 I 0
l GO noD 11000 75 ,020 lIS 121 0
1/,11 Fl200 3000 55 ,020 1 15 122 0
1 G2 7300 3800 35 ,022 119 122 &0
111 3 10000 8000 bO ,0;'0 120 121 0
l/,1ll laouo acoo flO ,020 121 122 0
IllS b801l II ~oo >u ,022 120 123 20
I ll b 7000 3300 110 ,O?2 121 123 0
1/,17 12000 2300 75 ,020 121 12101 0
l G8 10100 2700 lIO ,020 121 125 .0
lQ~9000 2500 75 ,020 122 125 0
150 boOO ~:l00 aD ,022 122 12l!QO
151 bo(lO £l000 35 .02~123 1211 20
152 8000 10000 bO ,020 1211 125 0
1S 3 8000 10000 bO ,020 125 12b 0
ISII 120~0 3:'00 80 .020 1211 127 0
ISS 10100 ~SOO /10 ,020 125 127 0
1St>9900 3000 SO .0;:>0 Ill>127 20
157 11800 /ll)00 '15 ,020 127 128 30
11 {W1TER YEA=!1972 ......EIUGE HI IeU7,6.R'I'!!.IFLOWS
12 0 0 0 Q 0 I)0
13 1
r
r
Table A-l -(Cant.)
Hydrodynamic Model Input Card Specification
APPENDIX B
~)
.J
1 1 1 ]~
."
Table B-1
Node Renumbering Scheme
1 J j
~,,
w
lJ\
I
'-C
-.0
CROS~REfERENC['••INTERNAL NODE NllMBER V5.fXTERNAL NODE NUMBER (VS[O IN QUALITY PROGRAM AQUAL)
I I 2 2 ]'}/I Ii .'S 5 II tI 1 7 I)l)9 10 10 ,
II I I 12 12 \)lJ I G III 15 15 Itl ttl 11 11 18 18 19 19 lO lO
21 21 Z2 22 2)23 211 211 25 n 2t1 211 U 21 ze 2&Z~100 30 10&
~I 102 3Z )1 33 12 )11 10~35 lOll )11 IDS )1 )5 )6 311 )"31 110 1011
III 107 u2 106 II)5)1111 50l liS III lib ll~117 109 ,,/\110 "9 5S ~o 511
51 ill S(I tltI 5)115 Sll 1111 55 511 56 111 57 116 58 119 59 51 tiD 120
1.1 IZI liZ 122 bl 58 bll 123 115 IZII tlb 125 117 IZII b8 59 b"127 .10 tlO
71 IZ8 7i!III 7l lIu 7u 115 75 lib lb tiT 17 1111 78 49 79 SO
THE ~ID[ST TOTAL BAND WIOTH Is III ,THE HIGH SIDE MAXIMUM "10TH IS 1 ,AND 1HE LOW SIO[MAXIMUM ~I01H 15 7
-
Table B-2
Computational and Output Control Options
uPPE~COOK I~~ET,(NIK AR~AND TURNAGlIN AR~
$H1Pr.£PROe~E.!'I -
~ESULTS PRINTED 4T TME FOr.r.D~ING II JUNCTIONS
IiVHB E.R OF HYDR4.UL!C CC'.O IT I 0"'5
NU~BER OF TIOAr.CYCLES PER CO~OlTION
NUMBER OF MYDRlULIC TIME STEPS PER CYCLE
NUMBER OF QUA~ITT TI~E STE.PS pER CTCr.E
NUMBER 'OF TIOAr.iTAGE PLOTS
NUMBER OF TIDAL VEr.C:ITT PLOTS
OTlU ....lC HYDliAUr.1E OUTPUT UlIIIT
STE1DY 'TATE.HYDRAULICS OUTPUT UNIT
o
3
1
12.
2S
900
1175021>12
lND FOR TME FOLLOWING II CH1NNEL.S
72 127 '.1110 157
TIOAL STAGE FOR JUNCTIONS 1 117 49
TIDAL FLO"FOR CM1HNEr.S 72 f27 luO
1 j )J 1 .~--1 1 J 1 ]1 1
Table B-3
Invariant Channel Data
UPPER COO~INLET,KNIK ARM AND TURNAGAIN ARM
SAMPLE PR08lEII
INVARIANT CHANNEL DATA
CHA"IIlEl LENGTH,Ft WiDTH,fT HYO IUD,fT HJN ELEV,f'T HANNING:)N fNO JUNCTI ON'~IOE Ill-OPt HAll 1111[,4[1:
I '/0000:60000,1)0,0 110,0 ,022 I Z 0,ii!'l5,
2 90000~80000,I JO ,0 DO,O ,02Z I J 0,1295.
J B'HOO"60000,~oo.o 200,0 ,OZ2 2 J O.1051,
II 100000,700110.120.(1 120,0 ,(122 ~II u,11I6Y,
5 6000(1,111101)0.IlO,O 130,0 .oa 3 ~O.1151 •
b bllQllO,650(10,I Z0,(l 120,0 ,02l II !>O.951.
7 9?000~10000.I 30.°111 5,I .022 II b 100,I JZij.
6 77000,'li'000.10'i,O 105,0 ,OZi!5 '7 0,l,n Il,
9 bbOOO,71)000.so,O 50,0 ,ou b 7 0,I HII.
10 7'i000~IIOuOO.05.(1 '1J3,J ,025 0 6 300,Il'lO,
II b~OOO,uoOOO,10,0 I H,),02'i 6 9 30u.Illl j,
12 b7000,IloUOO,'10,0 90,0 .022 1 10 0,II Zb.
Il bSOOO,'1",000,'10,0 '10,0 ,022 10 II 0,Ill'll,
I II 37000.S')uoo,50,0 ':'0.0 ,022 'I I I o.17",
15 58000,110000.bO,O 'i 1.2 ,022 'I 12 300.1111 3,
I!>bI)OOO.55uOII,100,0 100,0 ,Oll II 12 o.9bS,
\7 1I/l~OO,2]'JOO.10,0 70,0 ,025 12 13 0,617,
III 11<;000,2"\000,100,0 100.0 ,02?12 III O.1l ol ,
1'1 Ill~OO,30000.130,0 130,0 ,022 Ii!15 O.b 19,
20 3 1000,311000,/lO,O 1l0,O .022 III IS o.10';),
1 I l5000~11;>000.1l0,O 60,0 ,022 13 14 °,II q I,
l2 QIIUOO~2')llOU,00,0 110,0 .O~'i IJ I II O.71~,
2J IIUOOU,2<l000.III 0,0 I II 0.0 .022 III 17 0,b I },
2~s~ono,3b(1)0.1]0,0 72,0 ,Ol'3 15 16 500,illS,
25 HOOO,"bOOO,10,0 70,0 ,022 10 11 0,ell 3,
210 }IOOO,SJClOO,110,0 110,0 .025 11 III 0,lOS,
27 50000.3"\0 0.).50,0 ~U.b ,Ol~10 19 100,I \IS l,
28 4 11 000.lIOOO.100.0 100,0 •0;>2 17 lO 0,712 •
2'1 5/1000.21\000.100,0 III ..,O~i!I ~21 so,'lB,
30 Ho 0 o.~nOOo,70,0 10,0 ,Oll 19 20 0,td l.
} I lOOOO.55000,100,0 100,0 ,aU lO 21 0,11511.
H uIlQOO.2100U,1l0,O 11O,",O'!')19 U.ZOU,100 I •
H 55\1(10.Hono,'JO,O 'Jo.o ,022 20 n O.'111l,
311 b/lOOO.30000.70,0 til .0 ,025 21 21l 100,12b},
:IS 370(10./l~oOu,bO,O bO,O ,O?i!l2 23 O.7l<J •
:III }9000.!J?OOU,100,0 100,0 ,Oli!2.1 lu O.bU,
H 32000,loooO,00,0 1>],II ,(1l~II l5 !oo,b }0,
16 }{\O(lO.llono,l\5,O ~~,O ,022 n 2b 0,bS Il ,
N }9 UbOOO.2')1)110,lO.O j'),7 ,O~5 24 21 701J.I III II •
I 110 35(100,300no,1l0,O 811,0 ,Ol2 25 ltJ 0,II I 7•
II I Jsu(lO.J/lUOO.10.0 70,0 ,022 ll>27 0,I>5U.
\.tJ u2 31000,2;>000,0'),0 b5.0 ,O<!2 lS 'l6 U,S?j.
V\
1111 J-COO.11\1100,7.0 1\'2 ,O~5 21 10i!120 U,120'1.
41 29000 •.1'1000.40,0 110,0 ,oa ltl 31 II ,bbO.
«116 J2 0 00.16000.50.0 SO,O ,O.~2 J,!100 O•bl U,
......
0 NOTE·••INOICATE~N[GATIV[~luT~I~PU~3J"L[~17H.ANTJCIPATEO TIDAL 5TA~[
Table B-3 -(Cant.)
1nvariant Channel Data
UPPER coo~INLfT,KNIK ARK AND TURNAGAIN ARM
'AMPLE flROBL[H
INVARIANT CMANNEL DATA
CHAICNfL LENGTf4,fT "lnTI4,fT I4YD IUD,n HIN [LEY,I'T HANNINGS N [NU JUNCTIUNS SIDE SLOP[HAl(TIHto,ItC
51 25000~l/lUOO,115,0 115.0 ,OZi!31 32 O.'5l1b,
51 lbOOO.2/1000,110,0 5b,O ,025 31 J5 !I00,~9l,
511 27000.22000.110,0 110,0 ,022 JZ 3b 0,b I q,
55 22000,220011,10,a 10.0 .025 Jl :H IJ ,7011,
5b 10000,2?,001l,11,0 7,2 .025 37 52 1000.10]1 ,
65 12500,1301)O.so,O 53,3 ,020 113 128 :hI,lId.
lJb 20000.1'i000.25,&21,",Ol')q3 1111 100,52':i,
b7 220~0~111000,20,0 Z 1,1 ,025 IlJ II!>1011 ,b1 J.
b8 23000,12000,20,0 22,1 ,025 11'5 1111 100,b q I,
bl)25000.IZOoo,2(1.0 22,1 ,025 1111 lib 1011 ,b Q 1,
10 23000,1/10 0 0,6,0 II , I ,025 lib 117 bOO,7bll,
7I e!1000 •.6000,3,0 II,!,O~s 111 1111 I UO 0,,lU,
1Z 2000U,QOOO,I •0 1.2 ,025 1I11 119 1000.H9,
73 111000,7.000,,,5 ,b ,025 119 50 1000.701 ,
75 2 11 000.2Z00ll,JO,O lO.O ,025 35 3b 0,~ge,
7b I'~OOO~lOOOO,10,0 10,0 ,025 3b S2 II ,!>79,
71 33000,lOOOO,30,0 III.'5 .029 J!I S3 11011,eu,
78 31000,1'10011,15.0 35,0 .025 lb 53 0,1]1,
79_211000.151100,b6.0 IS,O ,025 52 511 1000,'Ji!lI,
80 32000.l'iOOO,110,0 1I1,b ,025 53 S5 100,1211,
III 211000,25UOO,10,0 I I,3 ,025 511 S~'JOO.I)0 I,
82 1101)0.15000,35,0 !I'j.7 ,025 !IS 5b 200,731,
63 JOOOO,'1;>000,'25,0 110,0 ,02l 5b 57 30u,7611,
1111 lbOOO,1001111,ZO,O 25,0 ,022 57 5e 1100,7211,
65 i!lOOO,1/)000,15,0 ~O,O ,11~2 511 59 500,60~,
86*:J1000,I,OOU,15,0 I 7, I ,022 59 bO no,92 J,
89 ZUOOO,2O;1l00,15 ,0 IS,O ,025 5j 511 0,11 ~,
100 110000,1;>000,75,0 75,0 ,020 2b za o.72 J,
101 IIIU~O,\;'000,75,0 75,0 ,020 2b 100 0,7 UI •
102 <l1001J.111000,75,0 15,0 .020 2b 101 0,7 II \ ,
103 !lIOOO,IQOOO,bO,O bO,O ,020 26 100 0,15S,
IOu l1JOO.21000,UO,O 110,0 ,0<'0 IOu 101 0,)QII,
105 11I>1l0.:'\1\0011.13,0 I :.\,(l ,020 101 10l 0,~UII,
lOb Z3000.!tIOOO,bO.O bO,O ,020 100 10 J O.II 53,
lOT ~0500~1';000.bO,O bO,O ,020 101 IOU 0,1l0<l,
106 2\uoo,10000,7,0 I Z ,J .025 102 toll 100,71l,
10'l 1Il00,1'\000,bO,O bO,O ,020 103 1011 0,22 J,
I 10 1"0(10,17000.IU.O 1",0 ,O~S \04 10~0,~21,
I II Il~OO~9000.65,0 65.0 .020 103 lOb 0,2H,
liZ I U100,.TOOO,75,0 75,0 ,020 1011 lOb 0,lSS,
N III 1'5200./10011,25.0 25,0 ,022 1011 101 0,jqq,
(II II IUOOO.1000.7,0 I 11,0 ,025 10~1011 500,<J1~,
115 IISOO,12000,75,0 63,6 ,020 lOb Illq lO,2011,
W II b 'lUOO,11000,IU,O I 11,0 ,OZ5 107 106 0,2611,
'"117 111100.IJ!>OO,lO.O 10,0 •022 101 1\ 0
0,ii!8~•,NOTE ••-INDICATES NECATIVE WIDTH 18 POS91ULE HITH ANTICIPATED TIDAL 9TAGf......
()
~
I t.I I I i J J ~J J ,)
1 B 1 1 1 1 J J J j 1
Table B-3 -(Cont.)
Invariant Channel Data
UPPE~coo~INL~T,KNIK ARM AND TURNAGAIN ARM
SAMPLE PR06LEM
INVARIANT CHANNEL DATA
CHANNEL LENGTH,FT WIOTIf,'t IfYD RAD,'T MIN ELEV,FT rUNNINGS N tNO "UNCTIONS SiDE s\.opr;KAX TlI1£,lltC
116 13~00:/'000,0.0 II • I
,025 108 110 JOO,IIbO,
11 q I \~O a•5500,15,0 15,0 ,025 109 I I I o.JH.
120 115po.U800,bS.O b5,O ,020 10'1 11 3 O.Uo.
121 15200.1\70 ').50,0 50,0 ,OlO 109 115 0,HO,
122 15Z~0.1?71)0,l5,O "q,s ,022 110 II b 150.)b I •
12)1.'500~5')00,15,0 15.0 ,022 I I I III O.25 J,
12"bOOO.5800,15,0 15,0 ,025 112 II 3 0,17<;1 ,
125 7700,701)0,10.0 10,0 .n'i I I I I I i!II,2 U8,
12b 11000,7UOO,15,0 15.0 ,025 J1 I I I 0,ol2 u,
127 15000,~OI)O,5.0 b.J ,025 J7 112 250,~2'1,
1211 11000,HOO,IS,Il 18,I ,025 112 II II la,li!II •
12'1 'JHO,~200,00,0 110,0 ,oa 113 11/1 II,II I.
130 10)011.II~OO.35,0 l5,O ,020 11-5 lib O.ill':i,
131 e200,ll:lO\l,)5,0 1I0 i ",020 1111 II 7 is,1'15,
132 10~00,u500.55.0 .'i5,O ,020 115 111 0,220,
l.\l 12000,u60U,bO,O 1.0,0 ,020 115.1111 0,i!h,
IlQ IU500.uOO'l,00,0 40,0 ,020 lib 116 0,BO.
Il5 1"200,/,500.35,0 111.1 .022 lib 11'1 5u,H1.
I Jb aooo,10000.bO,O bO,O .020 111 1\8 O.l':Iu,
137 6000:10<)00,bO,O 60.0 ,020 116 I I 'I 0,1511,
IJII 7000,ul)Oll,lO.O 30,0 ,022 117 120 0,l1u.
IH 8000~)00 0,15,0 15,0 ,020 111 121 II,1/1'),
luO noo.~OOO,15.0 15,0 ,020 118 121 0,I li,
I u I 1.'2(10,JII 00,65,0 85,0 ,020 1111 122 O.1/11 •
1"2 Hoo,JIJOO,35,0 b 3,J .°2 2 119 122 60.113.
I ~}100PO,11000,bO,O bO,O ,ozo 120 121 O.1'17,
I ~II 10000.11000,btl.O bO,O ,020 III IU 0,1'11.
I ~5 beoO.03011.30,a l1.,5 .022 120 IB 20,Ib'l.
111 1.70P()~3100,~O,O /10,0 ,022 121 123 0,IS'l.
I u 7 12000,2)00,7S.°15,0 ,020 121 1211 o.ll1,
1116 10lPo,2100,60,0 80,0 ,020 121 125 O.118.
1~'1 '10no,2500,75,0 75,0 .ozo 122 125 II,Ib).
150 1."00,JIlPII,110,0 51,3 ,au 122 IZb qO,15'.>.
151 bono,~/\Oll.H,O 3/\.I ,022 123 12u ZOo Ib2.
~152 1l0ClO.10000.bO,O bO.O ,020 12u 125 0.158.
15 J "000,ItlOoO.bO.O bO,O ,020 125 12b 0,1511,
\1511 Il000.1 'j 0 a•60,0 60,0 ,020 1211 127 0,2 II •
W ISS 101(\0,35011,dO,O 60,0 ,020 IZ5 121 11,1711,
15b '1'100,.1000,50,0 t.J,~,020 12b J21 20.lO'l.
VI 1$1 11600,600O,15,0 90,3 .020 Ii!1 lie 3O.21l,
(
NOTE·••INOICATt3 NEGATiVE "10TH I~pa~3lijLt WITH ANTICIP~T£n TIOAl StAGE-()
W
Tabl e 13-4
Invariant Node Data
UPPER COO~fNL[T,KNIK ARM AND TURNAGAIN ARM
&LE PA08lE'1
INVARIANT JUNCTION DATA
JUNCTION AREA,HS'SLOPE,'1:I'IFT DEPTH,FT '1IN ElI::V,FT X-CURD V-CORD CHANNELS fNTfAING JUNCTION
I 'l'lqO.~O 150,0 I ~O,0 blo,O 1170,0 I Z 0 0 Q 0 0 0
Z 6500.,0 I:lO,O IJO,O bOO,O 527 ,0 I 1-II 0 0 0 0 0
3 1151)0,,0 111 0,0 1110,0 1>511,0 525,0 Z 1-5 0 0 0 0 0
Ij '1000,20,0 ISO,O 190,2 b21l,O 5tlll,O II b 7 0 0 0 0 0
5 1>'100,,0 130,0 130,0 bb5,O 57 a ,O 5 I>e 0 0 0 0 o.
b 5000.111,0 100,0 130,11 1>115,0 bJb,O 7-9 10-0 a 0 0 0
T ?b0 o.,0 100,0 100,0 b82,O bl'l,O 8-'I 12 0 0 0 0 0
&:no 0,3 0 ,0 110,0 123,1 b52,O btl I ,0 10'II-0 0 0 0 0 0
q 11200.Z1,0 50,0 !l8,b tllill , 0 101,0 II •III 15-0 0 0 0 0
10 1>900.IZ ,0 60,0 6b,I>70l,O b':l5,O 12-p-o 0 u 0 0 0
II lIbOO,Z,O 100,0 102,3 71 11,0 I>'IJ,O Il III I I>0 0 0 0 0
12 lIlOO.,0 I :10,0 1:10,0 711,0 72'1,0 15 Ib 17 16 1'1 0 0 0
I]1200,I;0 10,0 U,i!735,0 71111,0 17 ZI-2Z-0 \I 0 0 0
I Q 910,,0 100,0 100,0 7i!Il,O 7':1 11 ,0 Iii 20 21 2 J-0 0 0 0
15 2000.lS,O II 0,0 110,0 7(111,0 Hb,O 1'1'20 211 0 0 0 0 0
II>11100,2,0 51,0 55,2 759,0 7':1b,O 22-2S,27 0 0 0 0 0
17 1350.,0 65,0 1l5,O 7 11 b,O 770,0 23·o!5 Zb 28'0 0 0 0
III 1'170,18 ,0 70,0 IU'l,1I 7 lo.')HII,O 20l 2b 2'1'0 0 0 0 0
19 11100,7,0 111,0 511.1I 700,0 770,0 27':10.II 0 0 0 U 0
20 1I>10,,0 '15,0 '15.0 7"(2,0 711'),0 i!1l-lO 31 •11 0 0 0 0
21 lb&O,1,0 05,0 67,3 1h?,°1'1"1,0 29'.H'JIj 0 0 0 0 0
2?II bO,11,0 55.0 I>I,I>800,0 Ib~,1)32 35 37'0 0 0 0 0
21 IHO.,,0 tlO,O 110,0 7 Q b.0 80'/,0 3j·15 3D']A-0 0 0 0
211 11>50,25,0 bO,O bh,O 7/1/j,O 1I:1i!,O 14 -jt,.19 0 0 0 0 0
25 6~O,1,0 70,0 73,1 6U,O 7'1'1,0 31 00-IIi!0 0 0 0 0
Zb 120U,,0 60,0 IlO,O 61',\I 1120,0 3t\·110 ~I '0 I 10l 100 0 0
27 \l50,40.0 22,0 23,1 615,0 /lu 1,0 3''''~I-IIIj 0 0 0 0 0
28 1>10,,0 b'i,O b5,O b 39,0 t'OIl,O II.!117 100'10J I)0 0 0
31 700,J,O ~O,O 57,0 6511,0 1<,q,O a7 51 5J 0 0 0 0 0
n lJ 7 0,1,0 II J,0 ~l\,J Il hi.0 8111,0 uo·51 5"55 0 0 0 0
35 Q20.20,0 20,0 2 9 ,/1 1l1>~,O 706,0 5 j'15.71-0 0 0 0 0
3lJ 580,,0 Jb,O :!t>,O 6711,0 6U<1,O 5~.75 11>18 0 0 0 0
31"~~O,15,0 9,0 Ib,7 tlbQ,O tI~U,O 5~5b 1211 127 0 0 0 0
III ]90.",0 15.0 lI"i,6 "10 1,0 OeS,O 1>5-bb tt7 0 0 0 0 0
IIIj 2)0,J.O 25,0 ]1,5 '10 1,0 016,0 bll t>"I U 0 0 0 0 0
05 25ry.3~0 25,0 JO,7 "I 13,0 !l10,O b7 bll 0 0 0 0 0 0
III>'),O.15 ,0 15,I)22,"'115,0 111\11,0 bU 0"1 TU 0 \I 0 0 0
('oJ '11.-2bO.Ill,(.I 12,0 I a,U 92"1,0 1l111,O 70 71 0 0 0 0 0 0,utl._I H.22~0 b,O 5,9 'I'Il,O lI'1h,O 7I 12 0 0 0 0 0 0
\..J IIq.-50.115,0 2,0 I • I '150.0 U"I"I,O 72.11 n 0 0 U 0 0 0
50 <10,10,Q 1,0 2,0 95'1,0 9 U1,0 7J 0 0 0 0 0 0 0U-,52--Jb O.28,0 6,0 12.Q 1l132,V 610,0 51>7b 1'H 0 0 0 0 0
\~3 10lO.IV,O 30,0 lb,b /J87,O 7r1Il,O 77-78 60-0'1 0 0 0 0-'ill II Q o.23,0 10,0 I b,I 1l 9 5,O !lUO,O 19 III 89 0 0 0 0 0
()55"5"10.lO,O lO,O I q .7 QOI>,O 71n,O 80'&1 OZ-0 0 0 0 0
~NOTf •••I~OICATE3 THAT DEPTH OF CHAN~EL [NTlRING JU~CTION IS lARGlR TIIAN JUNCTlu N DlPTH
_6 INDiCATES NEGATIVE VOLUME OR AREA JS POSSIBLE HITH A~TICIPA1Eo TIOAL STAG~
,j I I f I I I I B ,~B I I
t"'....,~""\--1 1 1 J -1 1 }i 1 -~J."]]1 J 1 ,1 ]
...Table 6-4 -(Cant.)
Invariant Node Data
UPPER COOK INL[T,KNIK ARM AND TURNAGAIN ARM
3A HP U PROBLEM
INVARIANT JUNCTION DATA
JUNC TtoN AREA,"SF SLOPE,H$f/Ff DEPT~,,.,MIN ELEV,FT X"CORP V-CORD CMANNE~a [NT~RING JUNCTION
51>1>20,JO ~O 20,0 20,7 925,0 76/1.0 8Z·83·0 0 0 0 0 0
510 ..JOO "20,0 1'i,O 19,0 9u J,0 771,0 a:H 8110 0 0 0 0 0 O.
58 ;130,10,0 12,0 20,I 957,0 771.0 /lu.liS 0 0 0 0 0 0
5"HO.IS,O 12,0 i!I ,~'1711,0 771,0 liS 6b 0 0 0 0 0 0
b~."It'0,10,0 10,0 111,0 9/19.0 759,0 5b 0 0 0 0 0 0 0
100 ~~O.,0 60,0 60,0 6 UJ,ll 620,0 101 103 1011 /18 lOb 0 0 0
101 Sit••,0 75.0 75,0 639,0 629,0 10i!1011 lOS 107 0 0 0 0
102 Jll 0,IS \I)10,0 1/1 •q 63~.O /I J9,0 IIll 105 lOti 0 0 0 0 0
10 J .?2'i,I .0 bO,O 11 ,1 65 J,0 6lQ,O lOb lo'}Ill-0 0 0 0 0
lOll 2 3 1,,0 50,0 50.0 650.0 /I J'i,0 101.10'}·110 liZ·ll)0 0 0
lOS"1'>(,.'0 \0 10.0 I';.b 6 Ul.0 611 3,0 lOll 1 10 11 II 0 0 0 0 0
lOb 1/1 q,,0 60.0 80,0 6bO.O II JIl,0 III.11 i!115·0 0 0 0 0
107 106,,ll lO,O 30,0 651,0 6112,0 III II b II 7 0 0
0 0 0
106 ..90,b,O 6,0 1':>,0 6'j5,O 6~7,o 1111 II II 118 0 0 0 0 0
109 IbO.,0 10,0 70,0 8hl,O 8H,O 115 ,119 120 121 0 0 0 0
110 116,S,1l 30,0 .is,II lib l,ll 8115,0 1 I 7 118 In.0 0 0 0 Q
lA1 8 u•,0 15,0 15.0 1170,0 1130,0 12b 119 In 125 0 0 0 0112_./I !>,',5 15,0 16,/1 6n,O 6.S!,0 127 Il')1211 128 I)0 0 0
ID SU,.0 IIS,O 45.0 11711,0 8 J'i,0 120.113 Ilil Il"0 0 0 0
II q 52:I : 0
30,0 52,0 II1Q,U 8 Jb,0 1211 Il9 III 0 0 0 0 0
115 I"U:,0 55,0 ~'5,O 615,0 6110,0 PI IJO I!Z In-0 0 0 0
II b 1 11 9,/j.0 110,0 H.Z 871,ll 6<111,0 12l.110 ISU,llS·0 0 0 0
117 Ill.,0 45,0 ll5,O 8111,0 8UO,O III IU·llb.1J8 1396 0 0 0
116 SlI,,0 bO,O bO,O 681,0 au l,0 III j}1I Db iH 1110"1111.0 0
II q flO.1,0 j,),O bO,O lllli ,U 8/1b,O ll'i l.H Ill2'0 0 0 0 0
120 lQ.,0 30,0 .}O,O !lOb,O 8uO,O I 36 III.h lU~'0 0 0 0 0
121 II O.,0 90,0 '10,0 88b,O 8u 1,0 119 hO 1/1}Il1/1 IUb 1117 lU 0
122 32.,0 50,0 50,0 116b,O 811b,O 1111.IqZ.luh Il1'U ISO.0 0 0
12l J 5,1,0 jO,O H,O 6 9 0,0 6111,0 11I'j lub.lSI-0 0 0 0 0
1211 lJll:,0 55,0 55.0 6 Q ll,O 81lu,O 1111-I~I I~l'15u.0 0 0 0
Il5 ll,,0 70,0 70,0 6 9 1,0 /lub,a IUO·III'"ISl 153 155.0 0 0
I(,b H.1,0 110,0 H ,0 68'1,0 8116,0 ISu·I!do ISb'0 0 0 0 0
127 'Ib,,0 '15,0 95,0 6 9 5,0 651,0 154 155 15b 157 0 Q 0 0
rJ
128 I3b,1.0 SO,O bb,I 11 9 7.0 6:8,0 157.b5 0 0 0 0 0 0
\HOlE·...I~OICATlS THAT DEPTH UF CHANNEL ENTERING JUNCTION IS LARCER THA~JUNCTIUN DEPTH
...INDICATES NEGATIvE VOLUME OR AREA IS POSSI8LE WITH ANTICIPATED 11~4L STAGl
v)
VI
I ESTUARY STATISTIC'(AT MSL)-TOTAL VOLU~(,CU FT ~::~~::~()TOTAL ~UqrACF.AREA,so fr
lr,HE AN OfPTH,FT •'IQ511+02
Table 8-5 .
Tidal Time-Stage Data
N
\
V
VI
r
.......
(;)
~
UPPER COOK INLET,~NIK ~R~AND TU~HAGAIN ARM
HATER yEAR 197i AVERAGE TRIBUTARY iNflOWS
TIDAL COEFFICIENTS FOR JUNCTION I
-,13117 -,60fJ7 7,511 l8 -.lJU
TII-I[O/lSERVED cOhlPUrEl>DII'F
-2,9000 -1>,'5000 -I>,1I70S ,O~'IS
J,IIOOO 7,/1000 7,H96 -,0202
9,bOOO -'1,0000 ·9.01'10 ..,01'10
II>,OUOO T,bOOO 7,5'1'1b -,OOOli
2l,IOOO .10,5000 -/',11705 ,02'15
26,/lUOO 7,/1000 7.37'16 -,0202
-1,3250 -II,Ubl1 -a,S220 -,OSIlIi
,2500 ,/150O ,UjtJb -,O151l
1.625u '5,'b Jb 5,uH2 ,OTIl5
a,'1500 a,Q'171l 1I.'IULlO -,O'lJII
11,5000 -,11000 _,H25 ,027S
8,0500 _b,5Q11l -/"~I'll ,071l1
11,2000 ..b,5b81 "II,hHb -,0715
12,81100 ",7000 ",bllIO ,01'10
IIl,UOOO 5,Ib61 5.I'll},OS/l2
17,5250 '5,SJ/l~5.tJ 1l29 -,OSIIl
1'1,05 0 0 .';500 ,S2]Q .,02bl
20,5150 "u.1l3 1l /l -/l,3119 .01,25
21,b7'i0 ..lI,UbJ1 -11,522 I _,OS61l
25,2500 ,/lSOO ,U1IIS -,OIS,
210.8250 5,JI>III 5,IIj81 .07 1l 5
TOTAL ,899l
SUMMARY flY HOUR
I l,02 2 5.1\5 1 7~lO Il b.en 5 /l.7b I>
11 .7.1 9 12 ..l,91 Il ,III 111 3.91 15 b.I>S 1b
U ..5.32 22 ..10.115 23 ..5.85 211 .],1>1 25 _,aG 2&
,7 9 711
1.24 7
7.110 17
3.02
-1.01195
-2.80 8
b.b5 18
-,ObOb
-1>.37 9
GolO!19
..8.59 10
,70 20
.S.8 9
..2,7~
.1 I J ]j ;,I I J m §.~J ~I
J 1 J i ]1 J L D I 1 ]j J 1 }
Table 6-6
Summary of Boundary Conditions
UPPER COO~INLET,KNIK ARM AND TURNAGAI~ARM
HATER yEAR S97i AVERAGE TRIBUTARY INFLOH~
JUNCTION TO JUNCTION
110
EVAPORATION HATE,INCHES/HONTH
l.OO
HOURLY WI~O V[lotiTY (MPH)AND DJRECTIUN (DEGREES CLOCKWISE fRO~NORTH)
CHANNEL 10 CHANNEL
1/)0 I .0 O.Z .0 O~)• 0 O•
b .0 0,7 ,0 O.B • 0 O•I I .0 0,12 • 0 o•lJ ,0 0,Ib ,0 O.17 .0 O.III .0 0,
21 ,0 O.ZZ ,0 0,B • 0 O•
INFLOW AND OUTFLOW DATA
/I
9
III
19zq
.0
.0
,0
.0
.0
o.
O.
0,
O.
O.
5
10
I'ZO
2~
,0
,0
.0
.0
.0
0,
O.
O.
O.
0,
JUNCTlaN
II
27
uS
116
50
bO
108
117
IZIl
INFLOW,CPS
IIbOO:OO
HO~O:OO
1170'-00
120.00
101160.00
.1000.00
tlOO,OO
75.00
110.00
IIlTHORA Wl,CFS
,00
.00
,00
,00
.00
,00
,00
,00
,00
c-J
(
t....J
vI,
......
()
'\.l
JUNCTION TO JUNCTION
I lln
JUNCTION
CROUND WATER JNfLUW,CFS
.00
STORM HATEp INFLOH,HOUR AND fLOH,CFS
Table B-7
Computed ;l;,1me-Stage at Selected Nodes
UPPfR COOK INLET,KNIK ARM lN~TURNAGAIN ARM
~ATER ytAR 1972 AVERAGE TRI8UTARY INFLOwS
JUNC HIJII i JUNCTION Ii JUNCTION 2/1 JUNe TJON 119 JUNCTION 511 JUNe flOII III
HOIlR HEAO(J'EEf)HEAU(HET)H[lDlfE£T)HEA{)(f H T)HlAOlfHT)HlAU(f[lT)
1,00 3:02 -7,l8 -iO,'I:!10,78 ·z,ei!-'1,110
2.00 ~,6S -1,Z 1 .1 I ,20 '1,Il6 .1,III • I l ,117
l,OO 7 ~.so I.n .&,7'1 '1,0&-11,12 -11,'1'1
11,00 to,'1l 5,H .,III tI,l5 - I I ,0 I ·q.o.1
5,00 1I~1b 6,OT S,tJ 3 1,11 ·2,~l ),61
b,Il0 1,2 11 tI,1l8 10,15 7,15 5,I b 10,111
7.00 .Z,IIO 7,7U IZ,b8 7,n I I ,25 I II,I 1
8.\10 .b,l7 11,110 I I ,'I b '1,lIb 15,05 I q , 7'I
9.00 .iI,S'I ,7'1 8,115 12,1 b 15,01 12,lO
10,00 .e,lI?·2,b5 J,!>1 I j,bO 11,0'1 7,0'1
I I ,00 .1.1'1 .b,III .1,0'1 IZ,tJo 1,12 I,ll
I Z,00 .3,'11 ·'1,12 .b,t,z 11,111 l,lIb -II,'>i!
11.00 ,III ,,10,.n _10,81>\",7i!-2,l2 ·'1,38
\11,00 l,'11 -l.bl ·ll,C,}'1,tll ·b,72 -Il,lb
\5 ,00 b~b'.1,'1 \_12,n '1,02 ·11,1'1 -15,01
Ib,OO l~hO l,lll>.11,j9 tI,ll -\11,11>-10,711
11,'1/0 b,b5 b,'1 1 2,I.l2 l,be .7,Ib -,'1'1
\6,00 1.l,1i!'1,2]8,111}7,12 ,lI 1,01
1'1,00 ,10 '1,511 ,2,]2 b,b3 6,Il 12,y J
20,00 .2,7J 7,511 1],b5 l,Il6 IJ,811 15,50
21,00 .5.3<'II ,17 11,1)5 IO,Il0 Ib,lIB 15,1 5
22,00 -b,1.l5 •III 7,7b IJ,50 14 ,56 I I,11'1
n,oo -S,1l5 ·2,35 Z,7b I II ,22 '0.b J 5,'15
211,00 .3,b1 .1;,,1111 .2,1'1 Il,f)?b,II2 ,Ii!
25~00 .~II11 ·7,5].b,bb I I,'Ii!1,70 ·,,06
Zb~OO ],02 .7.2&.,0,0'1 10,81 -i!,1l5 .'1.j8
27.00 5 65 ·3,22 -I I ,16 '1,'111 -1,I b -Il,II II
26,00 7'30 1,311 .b,7ll '1,13 - I I ,11 -II,'1b,
29,00 b,'1l '5,31 .,I IJ 6,I.lI .-10,'16 "1.1,00
H,OO Q,1b 8,01 S,Bl 7,71 .2,52 3,BI
1 1,00 I ,2/1 8,'18 10,)';7,20 '),I b 10,III
H.OO .2,60 7,13 \2.b6 1,]I 11.25 I II,I }
H,oO .b,J7 11.110 I I ,~5 '1,!iO IS,O'!>111,7'1
]11.011 .11,5'1 ,7'1 ~,il5 I l,1'1 I~.OO I Z.1'1
H,OO .6,6'1 -2,bll 3,50 IJ,ob I 1,0'1 1,0'1
lb,OO -7.1'1 ·0,I II .1,b'l 1<:.61 7, I I I,ll
37,uO ..3.'1 I ·'1,12 .b,oi!11,75·2,IIb .11,':>2
}6,OO ,III .IO,]}.,0,tl7 10,73 ·l,U ..'I.j6
)Q,OO ],97 -7,bl -I l,1>]'1,Ili!.0,71 ·\j.H
1I0~00 •b,ob .1,'1 \_,2,11 '1,02 -II,1'1 • I ':l,b}
rJ 111.00 1~bO 2,67 .il.36 II.3!-I 11,1 b -10,711
Oil i!,00 b,bS b,9 J 2.IJ2 7,b6 .1,I".,'1'1,II},OO 11,12 'I •.?]6,11'1 7,12 .ll 7 101
1111,00 ,10 '1,50 Il,]2 b,b]B,I l 12,'I]
W /15,00 -2,73 7,56 ,.s,b'5 7,11'1 IJ,ou 15,5b
~IIb,OO .':l,32 II,11 I J.IlS 10,Il 0 10.II fI I ~,15
117,00 .",115 ,61 7,7b 1].50 111 ,':>11 I I ,uQ,116,00 .5,BS ·2,35 2,7b 1/j,22 \0,b]5,'15
~11'1.00 -],b7 ·S,/jo .2,1'1 Il,O'1 b,il.?, I l
50.00 -,qll -7,~3 .b,bb \l,n \ ,10 -S,Ob
~
:1 J I J ,J J J ..~it D I
J 1 1 1 -)i ,)~j)1 1 j 1 i I
Table B-8
Computed Flow and Velocity in Selected Channels
UPPER eOUK INLET,KNI~ARM AND TURNA~AIN AR~
WATER YEAR 1972 AVEPAGE TRIRUTARY INfLOwS
CI-jANII[l'1ll CHANNEL 72 CHANNEL 83 CHANNEL lZ7 CHANNEL 1110 CHANNrL In
HOUI!FLo'"VEL,FLOW VEL.nuw VEL.fL.OW VEL.flOW VEL.'LOW nL,
(CF S)eFP3)(Cf S)e F PS)e CF 5)[FrS)cetS)CI'PS)eCfS)(FPS)(CF S)UPS)
1:00 -551 6 131.'_2,56 -191101>,-2,12 -1111b006,-5,00 O•,00 ..7111Jbtl,-2,112 -1611jbl7,-j,IlQ
2.,Ot'1I0J?225,1 ,87 ·I'570~b,.2.01 ..IIJlb25._11.60 O..00 .501l1J7'1,·2.03 ..IVc>bb5.·2,lIb
3,00 1JO~511'?,5.b7 -130121,·1 .91 -61116b2...11,11'"0,.00 -b7Ylb.-.25 -2 11 "1'16,",ll7
11.00 Ib71052'),b,'lIJ -10'10;01.-I.III -IIY'HI~,-2.7I -b72.-.~q 'lblll1l.3.11 ,2c>'j JIIIlII,II •O'.i
5:00 16120813.b.1I 9 .92521,..1.1 11 101l31bll..II,Ol -b9893,-I .111 Ib21l'Jld.').III IIbO')'i2b,1,)11
b.OO 1176l1 11 O.lI.b7 -l'1'lbl3.-1.11'1 ICl,?IJ,?b3.5,5"-1711 11 113.-2.52 151701'1,IJ,Uj 1115111Y I.b,OS
7:00 1126H Q 8.l,b9 1<;11219,2.10 2509015.5.1b -2123Ql,-2.I b t1lJb U2.3.III 2q1')000.II.IZ
6,00 .5SbbI\Ol~-2.H 11273tlO.J.5 11 i!52i'Ofl7,5.00 ..'IIHI,".1l7 Illqll~,I.l.!91HIJ,I.n
'I.OO-i3Qllb12...5,5~U'I~21,),3,lll 133~IZ<l.2.55 b3110..15 ..lllluLIU,.1,111 -ll')u202,.l.~O
10,OO-I~:'':l'l111...b.'1b 751''10,,Il'l .13b?,YiO,.",95 71 5 53,1.31 "'llb311>5..J.';ll ..31007tll,-5.57
11.00,-151210 11 1...b.9 b -25 u 5JO."2.0 11 .2102~"I..5.11 38'101>.1.56 ..121l>HO..U.III ..Jblu2uCl,.",117
12.0(\.121>11915,.1:>,0<1 .2l 'l1U'l,-l,lij .ltlObjdll.•5.1'1 57"3 •,'1'1 -IO')I}I)bu ••l,l11 ..27110'1111,.a,'IO
11,00 -ljb2Zbf',9.•Il ,I tI ·1 (I II 3'n ,-l.IO -llIb'ljlj?•_5.0b 0•,00 .6Ib~b,)...1.10 ."01211"b,·1.8"
111,00 •80412b~-.l6 ·15~30ij,-2.00 ..IIIIlU'II,..Il.'ll ,.,0O -b05990..2,1l~-11I5Z211b..2,'12
15;00 1102 Ul l1 b.Il.'H .llll'll'1..1.'10 -'1.11111511,.11.15 O•.00 --lllYYu J..1,0 b -/jCl)511 0 •·1,17
I II ,.00 112IbG?8.7.JIl ·IOtl4411,•1.0 1 "b'HbU~..11,211 0,,00 501l'lB,2,01 II il~'III,Z.JI
11.00 Ifl 0 3P.i97.7,52 -'l2100,-I .1b UI!:/)16.2,I I ..2'1117."2,011 I /J 111 Z.!•5.02 36'10')'H,.b,10
16.00 15 13 I')7l37.b,lll -111192,-I,'(>8 119120b.1l.6C1 -1240QII...Z,1l3 1111/,'118.5.115 41/u'I001,7,5b
1'l.OO 'lb'jO'1bll.3.19 _')u:~I\...I .03 l151Y'IY •b.10 ·229'1jl.·l.!J'I·I 1II1'/.!5 I ,
ij.Z j Uol19J5.5,b9
'20.00 112100 I"•Uj 2 Q5>'l'1,1.12 260ijlJ1l1 •5./16 -1'1161111,·1.16 "''''JIlOl.Z,bl>Z45 11 119,J,B
21.00 .61>(>'1111,-::l.bl 51ll?,'15.3.'13 2112Ilb05.11.55 -ZYbbl....2b 2~U80..bJ 82'i j I ,.O?
22,OO-11l2U5'J01,-b.II 1111805,2.6 11 50171l'l,.'lJ 711 I 15.,'16 -10U050.-2,05 .lbbYS'IIl.".1,81
('3,00-15')1 106 3,-b,lIb -llnol."1.115 -1'1.1110'11.-11."1 7u BII.I •!J I ..121Ib35.-3."'Z ")'l025b5 •.5.95
2I1,OO ..IJ'lIj]ql/j.-h.1I0 -,,7.1 IH,·";1"-i!O'lIlIOb,-5,22 3320'1,.1,57 00122)]111,"U.Ob -llQll'llO,"S.bl
2S,00-1011j5531.•5,Ob -2~Slu9.-2,20 -1731tl5J.•')•III Jbbl.•II 1 -'111511'1..1.46 -25ub~"Il•..Il,';>Z
lb.OO .''J0~151..2.51 ·IQQl n Cl.-Z.ll -IUI/'I2I1q..1l.'l1l 0,,00 -}1l2121,-Z,1l2 ..11111/510,":i,~O
21.00 1I015~H•.I.Mil ..I'j'l'h J,-2.oZ ..lli!(,U'IIl..Cl,18 o,.00 -50"1115 •.Z,Ol.l2lllb l/II ,.2,"1>
ZII.OO IlOu5.,'1u.5.bb "I l.!~~':I.-I.'12 ·fl(1I.\2'1,_1l.1l8 0,,00 .b'/,)IlO,·,2"-~uq~IIl,",11&
2'1,00 Ibb'l Q 81",'b,qj -1\1217.-I,tlll •IIQ3QaO,.2,bl -b'l3 •-.')0 91>~'I61 ,l.<lb 2bQ~blS.1l,61
311.00 Iblllu u 5,!I.u'l -Qj Q 2b,-1,75 lOll ]IIZ J,11,02 ..b96.,'j."1,07 I b.!b j'/ll,5,11 <I"OU6jO.7,H
3 1.0 (I 1171I>IlZ'I.lI,bl •81101.>.-1.10 1'l.!1I'10U •5,55 -176 11 9'1,.Z,S2 1,lllj511.1l.1I!1ll<lllbH,b.OIl
32,00 1li!1llulll.I .6'l 157GIIJ.2.10 2506/j?Z,5.7b -212"~O.-2.I to IIUI311,J.III Z'I7~6,{I,11,11
B.OO ."571151.-(',lJ 11216~~.J.51 2521'lob,5.00 •'11610.",117 411115<.,I •32''1111 10 •I,i!1
311;00-1 lO.!212 I ,-5.56 11912511,3,21 I H1\21l2.2,55 bl""l..75 ..3'1}'1l1b,-1.15.11S)Q21.-2.~0
J5.0I)·I'i"6'12}~..",'Ib 125 11 0.,ub -111>10';9,.2.'15 715 lS.1 •.H ..llbB5'1,-J.!:>ij .}l(1o'l70,"5,57
3':I,OO.!'}12IU Il 'l,-".'11>·2')')II II.-Z.O".ZI023 1l 'l..5.II 3tl8711.\,58 -121111')11,"uoItl -.ibIOllll...5,117
H.on-l2t:>l b 2lll...b,UIl -2?\>15 11 •-Z.lu -1"ObIOb,.5.19 51Q J,,'lq -10,;>1I0q1,·).111 .ZlI110<J2,.11.'10
1'1.00 ..11112101'1._1l.18 -"I/lUI.-2.10 ·IU"'l151...S.Oo O..00 -Ill bHIl,-3,111 -l03'b5b,•J,eij
3'1,00 -'J ~I 'Ill I ,
••18 -15')'5b",.-",00 ..lltlj;>'lU,·1I.'l1 o.,00 .bl/I>OIl"..2,11')"\1I5lllllll.-'l,Yl
1l0.0/l II0ll>IZI>.1l,'ll -12'1162,-1.91 -938b"'5...1l.15 O.,00 ..1I1'1'lb 3,-1.llo -6<J.,1I57.·1,17
~Ill.00 112Ib'l}2~1.jU "IOtll.lO'l,"I.lll·-"Qll1t11,.1I.i!b O..1/0 501l'jIlO,2.01 '1Hb'lZ,i!•.I I,112.00 184.1 11 5 1 1,7.5f!..'li.?lQ.·1.111 11111100....II ..2'1131,"Z.O/l 111110'1 I.'),02 3!l91l5H •b.l0
41.00 IO,1110 u }]•b.,'11 .7n?QU..\•bll 1:\'11 jJb,1I,/lU -12ijOI.>5...Z,IIJ 11l1hll)ij,~.II~U'iUbbUb,1,"bW4u.DI''1b'jOII~,3,1'1 •~i Q'}1'l •..I •U 1 21~!l132.".10 -22'1'lbl.-l.~9 IUf:tIIOl/j.Il.l 1 Il a,?11l ~2,~.o8
""05,')0 IIZ'J15t>,,Il j Z'I51/1 Q,j,I?2'liju,:>71,5.~tl -I '1187~,-1.111 'loll~"'1,l,hb 2u'd~Dl\,l,j)
«U't,Or.-~I>HI21'1.-~.I>I ~'lu~"O,\.'Il i!Il ~".,5 1•Il.')')-Z'l/lJZ.-.eb ..I;>III c ,,b .1 8<'1<19.,OQ
.........47.on-\""ll~"")I.~b.II 0717';u,2.1111 511 III"'~.,1/1 70 I <!ij..'111 _ll/u l'>u,-l,O')-ltlh"'~'JO...J ,Ill
a Ub .0 (l _I ',"I 7 1'1 q •MhgRh _ll.\1119,-I .1I'i •I"jfl II OJ I •-11,21 10 JJII,1.':>\·1i!llhlv,-J.?t!-~~/O.!b~b..".~'>
uq,OU-l }'l(l 7'1~u,..o.OU .,!l.'~hl ,-'>.I U .,>11'111 II ~,-~,22 Hi!Ol,t.~1 ·llll1~tl,•II ,°b •\J'/Dq l)'>,"",bl
-t\~O.LII':Qll:l'j ~5u..00,Ob -23,,1 Yl.•...20 -11Hb 1d,.5.I q ll>bb.,Ill ..'l11'J'io.-),<1".l)~Q~dll.....'>1
Table B-9
Summary of Miscellaneous Computed Hydrodynamic Data
UPPf~coo~INLET,~NIK ~A~ANn TVRNAG~IN AHM
MATER T~~R 197Z AVERAGE TAI~UT~AY IN'LO~S
AVERAGE HEAOS 'OR A ~IDAl.cYeL[
I 2 1 II 5 b 7 6 9 10
I TO 10 .,III ·,nbb -,lIbS ,001 -,onl ,0311 ,115 ,181 ,110),ZSl
II TO 20 ,311 I ,'ib7 ,b72 ,b70 ,1>i!1I ,7U8 ,7011 ,bb2 ,71/2 ,7111/
21 TO 3D .71l/j ,'Ibb ,Q }'),lilt>1,0 '0 1,027 I,02/j I ,10 /j ,OOU .000
II TO 110 I,Ub7 1,110;11 ,OOU ,DUO 1,5RS 1.5"'3 1,1'57 ,DUO ,Oou ,OliO
/I I TO 50 ,000 ,nOD ,,118 a 1,11>5 2,1,,2 2./jJ]b.tlbll 1I,5/j5 10,051 10.077
51 TO 1.0 .000 2,521 1,6/j1l 2,HII Z,I'lb 2,/j\J5 3,Ob}3,SH l,7111 3,725
b I TO 70 ,·000 ,000 ,000 ,000 ,000 ,ODD ,DOD ,000 ,0(10 ,000
7I TO 110 •000 ,noo ,01)0 ,000 ,000 ,000 ,1/00 ,000 ,00 ~,000
III TO liD ,ODD .000 ,DOD ,aDo .000 ,000 ,000 ,000 ,ODD .0uO
'II TO 100 ,000 ,000 ,000 ,000 ,ODD ,OUO ,DOD .VUO .OOU 1,I1U
101 TO 110 I , I I I
I,Uqll I.170 I.11.1 1,32 11 1,II1b 1,2td I,II 13 I ,Z0 Il I ,30 2
I I I TO 120 1,71l0 1 ...26 1,21 i!I ,2111 I ,31 I I,H7 I,JIIIl I ,3~J I,J5 t!I ,)I.}
121 10 1)0 I,JI.ll 1,3bb I,j111 I,lllb l,lllS I,l8b I,/j 08 I ,Il III ,ODD ,000
AV[RAGE VELOCITlf8 FOR A TIDAL CycLE
I <»J /j 5 b 7 1;\II 10
I TO 10 ••IUII -,lOll -.038 -,0'15 "01/19 ".027 -.oul -,22b ".06 11 -,ZIl
II 10 20 ·.lOb ..,220 -,2l 11 ••01.11 ",II,".,J1l7 ·.11'1 -,215 .,I bb ••01)
21 10 30 _.OUII .11 I b -.0117 .,175 ,030 , I c2 ••01l5 .,II b -,lBI .0111
)1 TO 110 ,101 ·,2)11 .,20}.,1211 ,00'1 ,DUb -,I a 3 ••207 -,IZ>,O~5
II I TO 50 ",Olll ·.165 .000 ...211'1 ,000 ,ODD .,~bl ,1173 ,0011 ,000
51 TO bO ,071..000 ..,}/11 -,\S5 ...lO l -,Ob9 ,uoo ,0 u0 ,aDO ,000
bl 10 70 ,01)0 ,01)11 ,000 ,aDo ,23 0 ~,3711 ~,SU5 .,lb5 ",5.l3 -I,U5'.i
71 TO 60 .1.I'IZ .,!i 1J ",IllS ,ODD ",lOb ·,1110 ",~SO ",Z~6 ",001 ·.SZO
U TO '10 -,In 3 _,/1)11 .,bbO .,bll'j ••II 'II ",0911 .UOO ,ODD ".I R'i ,OliO
'1\10 100 ,000 ,000 .000 ,DOD .000 ,OuO ,000 ,000 ,00 U -,I lb
101 '0 110 .,Z2)_,I I II ..,U21 .132 ·,OSt>,051.-,I b)-,116 ,0 Q I .,022
III 10 120 ,0'l7 ,02'1 -,)0 I -,238 .0'I ,001 -.177 ~,1/;10 ..,III U ,2 ~1
121 TO IlO -.2 (1 )-01 /j 7 -,005 .,2 11 9 ·,2117 .,J~II ~,lOO .,.Ill ",11.11 ,IllS
I 31 10 I UO .,317 -,?05 -,Z'1I1 ,0..11'",0''3 .,Oll ·,IIZU -,I b2 .,I Z 1 .,a lZ
1111 fa 150 ",1)'1 ..,100 -,Ulli!...01 J ·,0,«1 , a II .,0'1'1 ",I7I -,II 7 -,252
lSI TO IbO -,022 ,n02 ,OJ)·,121 ·,21)/1 -.Ilb ·,1112 .000 ,000 ,000
AVEqAGf 'LOMS fOR A TIDAL cYClE
I 7-J /j ')I.7 B 9 10
I 10 10 ·2'.illlOO,.2 I /)/j 78.;'1I'.i'1)89.2071!JII •~2I1Q7)7,~221 bBII.IIl711tlO,..472U6'1,/lUbO'i,Ull'lll,
II TO 20 II S )A ,-SOli),..S06bQ,..2'1lal,29~)b;>,-3H1I2b,/;IZJ5,-u I b I I ,
....U I l,..JI5~22 •
2 I 10 30 ·)'Il665,20Z01HI.11111 J 7,•.llS021l,130;>'1 /1,21>1b5,71SlIll.IlIlbllO,.2'1111111 11 ,27lb'.iZ,
31 10 110 ll/)f19I1,..2021'16,fdl>lIb,'I/j~q'1..Z70lb',·17bObJ,bbOSII,-lOblb,-017\'1,101.1111,
III TO 50 ,,'i63I1b,.}AII15.0,·IOll QQ •n.°,·150615,)I S 7,O.0,
~51 TO bO -101.01,0,;'II1UH'I,125uOII,·1ll/Z2u,IIISu ....0,0,0,0,,b I 10 70 O.0, 0,o~111111,~2 7111,-II/IOl,-1991,.ZOO),_IOb55,
7I 10 80 ..IOIl9b,·10111 Z.-IOAb1.0,..IIOOIIS,..9 l J I ,.50)113.llaSlll,SibS,.bB'iOZ •
W III TO '10 b8170,-799,.1170,..9 III,·'111;>,~1I1tl,0,0,b.lObO,II ,
\rt 'II 10 100 0,0,0,0,n,u,0,0,0,50700,
f 101 TO 110 .ZlI u52,IOl b 02.Ib70118.-j'lOII,52 b11,IlIlllbl,IIBb 7,-51l'ib/j.1I1 11 b O,1St>'7,
.......II I 10 120 1)7 ;>111,9 09 56,~51Zb5,..)/Jqb~.i!JV2S,10b7b,-1>l9~l,"UTol,-b'>~',15 b llIJ,
.......121 10 DO 81 'HO,"811bb9,·7I1b)5,"511221>,-S;H17 ,-IZI8H,-)1'172,·BII611,27\Ju7,IllqUO,
~..
~.~____~I J !I I J J D J J I
Table B-9 -(Cont.)
Summary of Miscellaneous Computed Hydrodynamic Data
7J 118111:2870/1.711 U.o.75 3Jb!\I1.12J7711.70 3b8225.Hn'JiJ,
77 IIS01JJ.1200 117 11,16 QUII?q.927 9 02.7q Jo~5Ub.lO03tll.60 II'Ib216.li!b51Z0,
81 3161'17.250027.62 11111'110.1I 11 i/70'l.83 H1I702.7b~'.i7I,611 SZ8QS5,521;\9 b9,
65 3b'l315,lb'l2bl,.61t 11I077b.11I\75 u •87 0,0,Btl 0,0,
BCl )zaSZ9.i!1I1111t'l.ClO U.0,'11 o.0,92 0,0,
Cll 0,0,ClII 0,O.Cl5 U,0,9b 0,0,
97 0,f),Cl6 0,0,'1'1 0, 0,100 111115Y'lI.lal\Z'll,
101 IIl0ZBO,162h711l ,102 25Q91C111.,,"C155"I>,10)1552b5'1,1365%/,1011 1180IUIt,5 I 'II b2,
105 1'5958'-III H611,lOb BaI039,115«>272,107 IblOb'ill,11I11l7'11,108 352711,896H,
109 ISUlln.?,IOb9J~.~IO 1i!i!7Ql,107/1;\0.I 1I
IJlIII'IH,1111 7b';.B,112 /l9'1d511,1l0116'l1l,
III HI190,u U 2 U5 ';,11.11 1.1111100.6 73b5.115 ZI18';.2tt.l11llb)U I ,II b 177U"nOllb,
111 26!>QIJ6.3 11 11/1'/'1.118 z"",7ZIl,'31 112 5,11'1 11111 II 3,I 10 I>IJ b ,120 blH92,II 11119,
III 12Cl1l2511.1212325,122 Inb)5,21\2JOII.123 bb1l1l2.111 1017.1211 719n,12b 1'1 9 ,
125 117'19,b2';21.12b IllIb5b,i!Jbllllll.127 11111 1\7,IIbOS 9 ,126 170bb,Obo,"II,
12'1 H~19b,J102 11 9,IJO )11 11 91'1,21 2 '1./9.III 30'1007,3125';.11,Ilc!1I0?II5l,lillicH,
IH IlH1I75.51Hlb,IJII 11120211.15 111111,135 21 BII JII,207 11 37,13b 20lltlCi5,1'1'0 .IS ,
I J7 JO'l7 0,b31 QI,138 12113115,157b72,139 373729,HOUbB,1110 Utili 195,UU4b72,
\UI 3IJ'Ib06.3'l6727,\lIZ IIIIlb5 11 ,IbQU6J,\II 1 6215,JIl2t>O,11111 57TH,It'.>I.??,
IU5 10lluJ,1\0311Il,Illb InUbll,11271l5,1117 2750l5,2bl8JO,1116 177ult5,HobbS,
Iq9 11l~""S,lHA05.ISO 2Z'Hi!l,2b60bll,151 2~2'lbll,199?}),lSi!7bl05,nSl5,
IS}7lb09,1l051~,1511 50117111,1192590,155 577J17,59115119,151>258tl211,2bb61>8,
157 127150Co,126111>110,
HlhlHUH HEA!),HHIHIIH HEAO Pln TIDAL RANliE
I ~Q,02 7.bO Ib;Coi!2 ..9,211 6,011 17.32 J .9,27 6,111 17,II I II _9,b8 6,5 9 16,27
5 -9,51 6,Su 16;I I
b .10,\}9,07 19,20 7 ..9,b5 /1,90 111,511 8 -IO,lll ?,II 0 I q I SU
9 .10,I U ",U?1?,bZ 10 ·Q,/'9 q,03 1Il,72 II .9,'Ib 9,27 19,23 12 ..10,J5 '1,1>7 20,02
U.J1,06 10.11 1 21 ,SI)III ~II.OII 10,1I1l 21,116 IS ,,10,96 10,36 21,.II>I It .11,7T II.I b ~2,9u
17 ·11,75 I I ,11 22,92 III ·11,b7 I I ,ob 22,73 19 ..12,~5 II,Qb 211,50 20 ~12,SO 11,'111 2 11 ,113
2\.12,Ull 11,'10 211,lu 22 ·13,50 11,Oe 211,56 23 ,,13,35 12,')7 2b,J I 211 "11,25 12,67 i'b,12
25 "13,93 13,b5 27,511 21>-13,£'6 1).117 21,55 27 ,,13,011 13,hI>27,50 26 "1 11 ,311 IU,2i1 lB,511
29 ,00 ,00 ,00 30 ,OU .00 ,00 JI ,,111,28 15,7.2 2'1,';>\l2 "1 11 ,30 IS,C7 2 9 ,S1
lJ .00 ,00 ,00 JU ,00 ,00 ,00 J5 .11I.b2 IS,IO JO,J2 Jb "lu,b7 15,7b 30,QJ
:n·II,b2 15,57 27,l'l JIl ,00 .00 ,OU 19 ,0O ,00 ,00 Uo ,00 ,uO ,00
III ,00 .00 ,00 112 ,ou ,00 ,00 u3 ..lb,IIQ Ib.Bb 31,35 1111 "lb,Ol 17,08 H,ll
115 "IJ,6b 17.\}30,'1'1 lib .13.b2 17,jll lO,?b 117 ·,7b 17.n 17,"7 ull lI,b'l Ib,2u 11,55
U?b,bO I 11,35 7~7u 50 b,72 111,57 7,11"51 ,00 ,OU ,00 52 -11,17 15,'1'1 27,I b
53 -lu,l1 Ib,O?JO,llb SII -11,1l 16,2b 21,l'I 55 ..llI,79·I b,l?3 1,16 ~b "III,6~10,52 31,37
57 "11,'15 lb,lIZ 30,17 SII-ll.OII Ib,b'l 29,73 59.II,ub 17,75 2'1,21 bO -12,b8 Ib,06 J \ ,31t
b I ,00 •,00 .lJO b2 ,110 ,00 ,00 b3 ,00 ,0 0 , 0°bll ,all ,00 ,Oil
b5 .00 ,00 ,00 bl>,00 ,00 ,00 b7 ,00 ,0 0 ,00 b8 ,OlJ ,00 .0 U
b9 ,00 ,00 ,0O 70 ,00 ,00 ,00 71 ,0O ,00 ,00 72 ,00 ,00 ,00
7J .00 ,00 ,on 711 ,00 ,00 ,00 75 .00 ,ou ,0O 1b ,00 ,00 ,0lJ
77 .00 ,00 ,00 76 ,OU ,00 .00 79 ,00 .0.0 ,00 60 ,00 .00 ,00
81 ,0O ,00 .on 62 ,00 ,00 ,00 83 ,00 ,00 ,00 llu ,OlJ ,00 ,OU
85 ,00 ,00 ,00 6b ,ou ,110 ,00 87 ,00 ,00 ,00 66 .00 ,00 ,00
e9 ,00 ,00 ,1111 'II),(10 ,00 ,00 91 ,0O ,00 ,00 '12 ,au ,00 ,00
?J ,00 ,00 ,00 9U ,no ,00 ,00 95 ,00 ,00 ,00 9b ,ou ,00 ,00
('l 97 ,00 ,00 ,0O 'ill ,00 ,00 ,OU '1'1 ,00 ,00 ,00 100 "I II,Ull I u,'.>0 28,'18
I 101 "III,u~1ll,IIJ 26,'11 102 -11,09 \11,51 25,bO 10J .la,80 1 11 ,6l 29,bll loq -IU,7ll 1II,6l 2'1 I b I
W
l0S -12.78 I u,9 I 27.oil lOb ·111,96 15.05 30,03 107·15,31 IS,III 30,U9 Ivl.l -12,II?1'),1 8 26,0'
109 -1';,17 1'5,2'1 JO,Ub 110 -1'5,5~I OJ,UO 30,Q2 II I -11,1.12 15,'i2 21,lU 112 "I 'i,511 15,5'5 3 I,I u
V)II}-15~li!15,50 JO.II1 1111 _15,lIb IS,b2 31,OB lIS -1'i,1I5 15,'5/J 1,02 lib -15,'50 IS,'.>8 J \ ,I u
I 117 -,5,bU 15,7b J I,ll 0 116 -15,bll 15,71 31,'15 II?·15,b Q 15,77 3 I.II b 120 "15,76 15,67 J I.b '5
......121 -15,78 1'5,66 3 I,bb 122 -15,7'1 15,'10 31,b?123 _15,65 15,9'5 31,1.10 1211 -IS,'Ill lb.a b 31,'I?......125 -Is.n Ib.05 JI.96 lill>-15,9)ill.llb 31,96 127 ..lb,11 lb,29 J2.IIO 126 -lb,31 Ib,bO J2,91
rJ -.. .,~••I •.1 »I J
1 J )J 1
_..~"1)J 1 J J J J
Table 8-9 -(Cant.)
Summary of Miscellaneous Computed Hydrodynamic Data
TiHE 0'HINJMU~AND ~A~IMUH HfAD,HnUR
I q,b ll Ib,OO Z 10.I II It>.}'1 l 10.1'1 1t..1I 1l II 10.15 It..&l
5 10,75 16.61 6 II.O}17.II 7 11,31 17.l5 6 1\.75 lY.e.?'1 Il,u?111.00 10 11.'ll \7.611 I !Il,}?11.1,00 12 IZ.'1Z 16,69
D 1l,26 16.qq III 1l ,26 16,Qq 15 I J,11 16,'12 II>D.1l1 19,\11
I 7 I },II 7 1'1,1II 16 I J.39 1'1,17 1'1 \}.15 I'I.IJZ Zo IJ.7~IQ.Jb
21 !1,72 I q,)I 22 1'1,17 1'1,15 Zl III • I I 19 ,01 Zll I II.II 1q.6tJ
ZS Ill,B 1'1,6'1 2b Ill,:H IQ,,,,q 21 I U ,}I 1'l.8b 7.6 Ill,II 1 ZO,Ol
2'1 ,0O .00 )0 .00 ,00 31 15,Ob 20.l!!H IS,'H 20.h
3l ,00 ,0O 30 .00 ,00 l~15,lll 20,01 lb 15,51 ZO.50
17 16,00 20,nq 30 ,00 .00 )'1 ,00 .00 110 ,00 .'10
III ,0O ,00 112 ,00 ,°°II)IS.lI 20.5.1 1111 15.I>Y ~O.Sb
1I5 !b,013 20.56 lib 16,n 20.bl 117 17,'"20.'12 1I11 16.1111 21 •.l9
11'1 l'l,I <l Z2.7',)so I q,'i)22.7!!51 ,00 ,00 S2 1b.lY 20,Sb
53 \5,"11 20,5b SII Ib,lIi!20,56 55 15,69 20,75 56 I b ,I I il.lll
57 I b,II 7 i!I,'i6 511 Ib."'b 22,06 59 11,1111 22 t H bO 17.61 22,50
til ,0O .00 b2 ,0O ,00 b3 ,00 ,0O bll ,Oli .00
b~.00 .00 6b .00 .00 b7 .00 ,0O btl ,00 ,00
b'l ,0O ,00 70 .00 ,00 71 .00 ,00 7l .00 ,00
11 •00 .00 7u ,DO ,00 7'i ,00 ,00 1b ,00 ,OU
77 ,00 .00 76 .00 .00 79 ,00 .00 60 •no .00
&\.00 ,DO ~i!.00 ,00 II).00 .00
011 .00 .00
65 ,0 a .00 6b .00 ,00 61 .00 ,0O 611 ,00 ,00
69 ,00 .00 90 ,ou .00 91 .00 ,00 '12 .OU .00'l),00 ,DO q~.00 .00 95 .00 .00 QI>.00 ,DO
97 .~O ,00 qli ,00 .00 q'l .00 .OU 100 14,5b ZO',II
I °I I 11,51 20,I II 10~2.61 2 0.1'1 10j III.bll 20.1'1 I O~lu .....u 20,19
105 1'i,1I 2 20,1'1 lOb III,to?20,22 107 111 •9 2 :;>n.H 101i 1'i,7~20,)1>
109 Ill,75 20,28 I 10 15,00 20,1'l III 15.12 20.H 112 15,I II i O.ll>
III I ~•1\I 20.:\}IIIl III.QZ 20."\1>II ~15,00 20.3'1 11 I>15.0)20.IlZ
1\7 15,Ob 20.11 2 llli 15,011 20,~2 11'1 IS,Oll 20,IlZ 120 IS,I I 20.1I i!
121 IS,II 20.11 2 122 15.\I lO.lIl IlJ 15.II 20.11 2 1211 I')• I II lO.1l1l
12 5 15.III 20,1111 Ilb 15.I II 20./JQ 127 15.19 20.""1211 15.i!~ZO,50
TOlAl EVAPOPATla~RAlE,a9 .1 uno,os
A\'E.QACE SUkfACE AP[A,9Q fT .IIJHI2
AVERAGE VOLUl-tr,CU FT ,11?lItl li
AV[RAG['DEPTH,fT ,991 11 '02
r'
\
\;J
VI
•--W
."0 0 0 0
0 0 0 0 0
0 0 0 0 0.........,•.,•......,...--'.....,
"'".,...
0 z ...-<C...Il<Z-
_I.,
UJ
f-
<tz:
Q
c::
0
0
U
I
X
C/)
:::l ~
C/)
a::
UJ
:>
UJ ~
<!'z:
<t
0:::
....J
<t
Q-J-~
o
ooo
00
o
ooco
oo oo 0
00
c oocoo
<>o
ooc
00
ooo
o
<>oo
o
o
oo...o
coco
00-00
00000
o
oo
o
o oo
o c
o c
o
<:>
00co
o
oc
oo
oco
ooo
o
o
~oo
C cco<>0oo
o
o
'0'0,0,,
a••
•0....
&0
•01>,...••ta•10
.0·....o ...
I
o,
o
Io 0....
,0
,~,co•oa••a 0....
'0,~,co••••t
10....'"J 0....
'0 ...
•co <C.f :z·...
• 0
t r::r
f 0
00 0
uo0::.
,:>c
t•••10.....
f 0
IN
I~
1•I
1•.0....
•0.•co
•.b••,•1.0.....
f 0
.~
'.0
1••1•10
~~~~~~~~-~1~~~_~_~~_'~~_~__~~_'~_~~_~'_~~~_~··
o
co
0.0o.
-
0-·10
I CO
•0I••••10-.I 0
I 41
I ...
I••UJIl-I•0 <:-.
•0 Z
I '"......I ~•ClIc:::•I 0I0I<:>-·U•0 Ir<0
I C ><I
I
I ent:::J•1<>en-·
•0
c:::I ..UJ
•0•>-I•I c::I UJt0
'"l-10:>...<:10 0-
I""c :3=. I 7-r
I 0 ::::c,:r <!lI0
I 0 0u ::I:C>
41..-U-X
0
0 UJ
0 :£:
l'\I .......-f-
o
r c>
. I C>r 41•r
I
I
I.0
..-
co
o
o o
oo
o
o
.'
o
o
oo
<:>o
o
o
oo
o
oo 0
000 0o
o
o
oo
o
00
o
o
o
C>
o o
C>
o
o
00
o
oo
o
o
oo
o
o
oo
o
o
o o
<:>o
oo
oo
o
o
o
oo
<>o
<>
<>o
C>o
o
000
00
00
o ~~•
o •."
CO I"o .41oI
C>I
o •
C>I
I·'"~~-~~~--~~I----~-~-~'-~-~---~~I~--~--~--.~-~--~~~--~<::>o ."CO
o '"41
o '"
oo
o
C>0 0 0
<:>0 0 0
0 C 0 0..
~...C C>
'"........-..a:
~z :::>--0...:z::
-
-----~-----,--..,.-"""_._--------------------------------------------------
1&.000 •
1 II I I I
1 II II 2 I I I I Z
1 II 2 I 122 I I l I 122
1 I 12 2 I 2 2 I 12 2 I 12 2
1 I 2 2 I i!2 I 2 2 I 2 2
1 I 21 2 I 21 2 I 21 2 I 21
122 I 2 I 2 I 2 I 2 I i!1 2l I 21r22I2I22I2IZ2I2I2I2I
1 22 I il I az I l I 22 I 2 I Z2 I 2 I
8.000 •221 2 I 22 I 2 I 22 2 I 2UI 2 I
00 2Z2 I 0022 Z I 00 222 I 0022 i!Io0 I I o 0122 I 0 01 I 0 012 I
nAG!I 0 01 I 0 I I 0 01 I 0 01 I
1 0 I I 0 I I 0 I I 0 I IIN1 0 10 I 0 10 I 0 I I 0
10 I
10 10 I 0 10 I 0 10 I 0 10 IPEnr10I0101010I010I
1 I 0 I 0 10 I 0 I 0 I 0 I 0 I
1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I
.000 •I 0 I 0 I 0 I 0 I 0 I 0 I 0 IrI0 I 0 I 0 10 I 0 I 0
I 0 10rI0I 0 I 0 10 I 0 \0 I 0 I
1 I 0 10 I 0 I I 0 10 I 0 I
1 I 0 I I 0 01 I 0 I I 0 I
1 I 0 I I 0 01 I 0 I I 0 01
1 I 0 I I 0 o I I 0 I I 0 0 I
I I 0 01 I 0 o I I 0 I I o 0
1 I 0 01 I 0 I 1 0 o I I 0
1 I 0 o I I i I 0 o I I
-&.000 • I o 0 I I I I o 0 I I
I I 000 I I I I 00 I I
II I I I I I I I
1 1 I I I I I I I
1 I I I I I I I IrIIIIIIII
I I I I I I I
I II I I
1 II II
1 ,I I
~16.000 J·~··.·.··J·...··..11·.~····--I·~··._·_·I.··.~~.--'·.·.-~.··I-·..-.•.·I ••••--··.I ••-¥••••-r ••••-•••-I
.0 &.0 \b.O 211,0 32.0 110,0 1111.0 5b,O bll.O 72,0 110,0
UHf IN HOURS
PLOT LECEND JUNCTION I a 0 JUNCTION 117 •I JUNCTION 11'1 •2
~,
\.oJ
VI
\
;:::
~
I I J )
u.ooo
FIGURE B-3
t
STAGE VERSUS TIME AT SELECTED NODES
J I ]~],~)I
)J 1 }]1 -J '9)J -1 1 1 J
12.000 I
I
I
I
I
I
I
I
I
t
~.OOO ~
2 2
2 222 2 22
22 2 2 22 Z Z
i!2 2 2 2 2 2.2.
4.000 -2 2 2 2 0 Z i!2 2 0
2 2 0 i!2 00 i!20 2 200
2 200 2 2 0 Z 2000 2 2 0VELDtITY12202202200220
1 2 2 /l 2 2 0 2 2 II 2.02 0INr22020202oc!0 i!02 0
2 02 0 I 2 02 011 2 02 0 I 2 02 011
'TlSEe I 2 o 2 1)11 Z o 2 I I i!02 011 2 02 0 I I
I 2 o 210 1 2 o 2 1 1 2 02 10 i 2 o 21 1
I 2 o 21 0 I 2 o 210 I 2 0 2 0 1 2 0 20
.000 -11li!0 2 0 11121 0 20 112 0 2 0 lUi!0 2 0
I 21 o 12 0 21 o 120 21 0 2 0 2 I 0 2 0
1 2 I o I Z 0 i!I o Ii!0 21 o 12 0 2 I o 12 0
I C!I 0 12 0 2.I 01 2 0 2 I 0 I Z 0 2 I o 12 0
I 2.1001 2 0 2 100 I 2 0 2 1001 Z 0 i!100 I 20
1002001 I 2 00002001 I 2 0000200 I I 2 0000200 I 1 2 00r21122III2o2II2i1II2 0
12 2 2 I i!i!2 2 2
I 2.2 2.2 2 2 2
I 2 2 2 l 2 ?2 i!
-4,000 ..22 22 U H
81/,0H.Obll,O5b.0111:1.0110.032.0211,0I b .O .
CHANNEL VELOCITY VERSUS TIME IN SELECTED CHANNEL
TJ "IE I N HOURS
PLuT LEGEND C~AN~f.L 7Z.0 CHAN~EL 127 • I CHANNEL lUO •2
8.0
IN··-··~~~I~_·_··_~·l._.•~_.__I·_.·_·I_···.I_~_-•.••~I ••••••_••I-••--._••I--•••••••r••••-~•••I
.0
FIGURE B-4
-11,000~,
\,J
VI
I--..
"'"
APPENDIX C
-
-
I~
Table C-l
Tidally Averaged QuaJity Model Input Card Specifications
""'"UFPE~I~L!Tri1aCOOII;1<"111\.,4.RH ,4.~O TURN,4.G.:.IN AQM
1b SAI1PL:'Fl;<1'3LEM
2 1 1 JS 211 0 0 3 12
3 1 t
4 ..0 0 0 l)0 0 0 0 0 1
5 NH3-"I,"'G/L PRI~"'lO:S-'i,"'GIL PQIH
7a 1 0 0 0 13S
7b {5 1 10 11 12 14 17 20 21 20 101 107 115 117 121 127
44 '1&liB uq SO
8 {1 1 30 10
1 10 10 JOoo
9 {17 100
S_
10 1 1
11 AVERAGE RUNOFF CUNDITIONS -STEAOY STATE
r:.12 0 0 0 0 1 1 0 0 0 0iI""'"
\.13a 1 ,1
13b 1••;'1 10
~.25 ,01 0 0 0 -I 10
,25 ,01 0 0 0 -I 10
II II n .25 ,01 0 0 0 -I 1 tI
liB leO .25 .01 0 0 0 -I 10
1,~5010880 ,25 ,01 0 0 0 -I 10
bO 1(100 .2'5 ,01 0 0 0 -I 10
108 bon .25 .01 0 0 0 -I 10
1211 I 1O .25 ,01 0 0 0 -I 10
117 ,5S JO 335000 120 QO 2 1';)20 ,5
liS IS.5 2'5 510000 30 75 b 15 17 ,5....
1h 1 0 0 1 ,0 a 1,oa
17b 1 1 :So ,2 t 1 1 0
17c 0 (')0 0 0 0 10 , 1
.-n
lBa 1 135 -I 0 0 0
lBb 1 po bl 150 2
lBc {1 ,75 e z 3 1000
25 ,75 a 2 3 1000
--------,_.__.....---------~---------.~--------
APPENDIX D
-
-
""'"I
Tab1 e 0-1
computation and Output Control Options
SI~ULATION BEGINS ON DAY
TII'1E STEPS OF
PRINTOUT EI/E~Y
HYORAULIC INTERFACE UNIT
135
2Q HC1U~(5)
TIMF'STEPCS)
12
.....
OUALITY INTERF'ACr UNIT
NUMHER OF ADUNDA~Y CONDITIONS
Tl~E STE9S FOR CQNDITIQN
o
STEADY STATE
THE FOLLDNTNG CUNSTITUENTS ARE 8EIN~~QDELEO
-
-TOTAL N
TOT A\.P
TOTAL cnUF
CAR;:I.rJN ~OD
NIT~U tlClD
OXYGt:J..J
TEHP~RATUR€,
QPP CONST 1
opp CONST 2
Nf'3-N,MGI\.PRIlo!
NOJ-N,~G/L PRIM
-------,------------------
Z-35-J?.(
('J,
W
v\
I-
Table 0-2
Initial Conditions and Dispersion Parameters
UPPER COOK INLET,KNIK AR~AND TURNAGAIN ARM
SAMP~E PHnUL£M
I INITIAL QUALITY CONDITIONS
"UN 10 JUN TOT N TOT P T CUL F COL C 60/'1 "N aDD o 0 TE~P caNsT 1 CONST l CUN~T 1 CaN'T
I1G/L MGil NO/11l0ML NlJ/100HL.HG/l HGIL I1G/L c UNITS UNITS Ut-lITS UNl T.
130 ,00 ,DO ,DO ,'00 ;00 ,00 ,00 10,0 ,00 .00 ,~o .0(,
DIsPERSION COEFFICIENTS
CHAN TO CHI,N Cl C4
1 1&10"3000.
17 1&0 5.1500,
I J ~J J t.",1 ,J ,
1 1 J J --I I ~J 1 J J
Table 0-3
Summary of Boundary Conditions and System Coefficients
UPPER COOK INLET,KNIK ARI1 AND TURNAGAIN ARM
AVERAGE RUNOFF CONDITIUNS •STEAOY STATE
fil!!if.f CONDITIONS DUPING HYDRULOGIC CYCLE
JUIt EXCH £88 FLOOD .TnT N Tur P T COL F cOL C BoO N BUD OllY TEMP tUN 1 CU"Z eON ,CON •
RATIO tltFS MtFS "MG/L I1G/1,.N/I DOl'll N/lOOl1l 11(:/l I1G/1.MGIL C UNITS UNITS UNiTS UNITS
,10 31.0i!1I 30.96}•.1AW .00 .00 .00 .00 .00 .00 9.3 10.0 .00 .110 .00 .00
INFLO"CONDITIONS DURING ~YDRAULlc tYClE IJUNINflOwTOSTOTtJTnTP T COL f COL C ROO N 80l)Oxy TEMP CONST I CONsT i!CUNST 3 CONS T II
CfS tlG/l I'G/l ~G/L NO/IOOML NO/IDOl'll Hr,/L MG/L I1G/L C UNITS UNITS urHIS UN!T3
~u/JOO.OO o.:25 ,01 ,00 ,DO ~OO .00 II •]!°.0 .UO .00 .00 .00BooO,OO GJ :2<;,01 ,00 .00 ,00 .00 II.J 10.0 .00 ,DO ,DO .011u5u70,OO 0,.2'5 .01 ,00 .00 ,00 ,ou II •J 10.0 .00 .00 .00 .00ij(j 12u.oo 0,.25 ·°I ,00 .00 ,00 .00 II,J 10,0 ,DO ,DO ,DO .005010BulI,Oo °,,25 ·°I .00 ,00 ,DO ,DO II •3 10,°,aD .OU ,00 ,DO
1.0 10%,00 0,,2'5 ,01 ,DO .00 ,DO .00 II •J 10.0 .00 .00 .00 .06
106 bOO.OO O..25 ·°I ,00 .00 .00 ,DO II ,.]10,11 .00 ,DO .00 .0012ijII(),00 0,:25 ,III .00 ,00 ~oo .00 II ,]10,0 ,00 ,00 •0O .00II7IS<;"OO 0,lo.Oo 3,00 ,15'05 .UO 120,00 90,00 2.0 15,0 20,00 ,SO .00 ,00u515,50 0,25,00 "i,OO ,111'05 ,00 30.00 75.00 b.O 15.0 11.II 0 ,51>,DO .00
AGGREGATED QUALITY
II ijbOO,OO o.;25 ,01 ,Oil .00 ~OO ,DO 11 ,J 10.0 ,011 ,00 ,00 .00
27 HOOl1,oO 0;,2'\.01 .00 ,00 ,00 ,00 II •J 10,0 .00 ,DO ,00 ,DO
05 ij70,OO O.1.07 •11 ,Hi 0 l .00 ,911 2,1/1 II ,5 10.5 .~b .fJl .00 ,DO
"6 IZU.OO O.,'25 ,(II .00 ,DO ,00 ,ou 11 •]10,II ,00 .00 ,00 ,DO
50 IO{l80,OO °,,25 ,01 ,00 ,UO ~O .00 II •]10.0 .ou ,00 .00 .00
I bO 1000,00 0,.25 .01 ,DO .00 '00 .00 \1,3 10,0 ,UO .00 ,00 .O~
I
106 bOO,OO 0,.25 •(II ,DO .(1)'00 .ou II •]10,0 .00 ,00 .00 .00
111 7~,OO o.112.00 b,ZO ,711'05 .uo l1l8~00 1811,00 ij • I ]1.0 ai,H I,OJ .00 ,00
12"110,00 0,,25 ,01 .00 .00 .00 .ou 11.1 lu.o ,00 .00 .00 ,o~
I
SYSrEM CPlFflClfNTS
JUN TO JUN BOO DECAY COU"OltAy 8lNTHIC SINK HATES ALGAL UXYr.EN Rf...lRATION opp CO~ST OECAY opp CUN3T aETtLIN,
CARa NlTq TOTAL HCAl N P 0 PHOTO /lOP MIN HAl(I 2 1 a I I-]a
I/OAY .,OAY Hf /MVOAY 11r./tlUDAY I/OAY I/OAY H/OlY
(0 .\30 :ZO •10 1,'00 ,Oil O.0,O.o•o..0 10,0 .10 ,00 .00 .00 .00 .00 .00 ,00,STOICHIOMETRIC EQUIVAlE~tE RlTW[EN oPTIONAL CONSTITUlNTS
W CO~'T NO I DECAY 10 cnN3T NO ~.I •II 0
\.J\CJ~S1 ~a 2 ry[CAY 10 cn~~1 NO 1.,1)0,0 1151 '.u )nlOY 1U (O"sr Nil II,•r.u
"'N IUTC (UUFICH ..,H"P I'llA Illo/f AoJU!lT"I"'T (fl/l!lTMH 'UII
W liD:"I •r,1I 0
III
~
t=
C1)..-
u..-
~
4-
Q;l
0u
E
C1)
~
III
>...-Vl
~-0
t=t=
0 Itl
U.......III
t=
0..-
r")~
I ....
(:)-0
t=
Q.l 0....U
~
Itl >...
l-s..
Itl
"'0
t=
:::::I
0
CO
4-
0
>...s..
Itl
E
E
:::::I
V')
~~~~~~~OD~~~O~O~OOO~~~~~~
G~~~~O~O~~~~OOOOOOO~~~~~~
OOOOOO~O-~~~O~OOOOOJ~_O_O
N-~~~O~~D~ft~OOO~O~O~_~~~~
a~~~_o~O~~~~OOOOOOO~~~~~~
OOOOOO~O-~~~OOOOOQOO~-O-O·...... .......-.-.-......
3C-O~O~~~OO~O~~OOO~_~_'~~
_NNN~O~OCO~~OCOO~OC~~~~~~
OOO~JOOO-~_~~O?~O~OO~~~~O·...... ..................
A~~O~O~~~O~O~O~O~~~~~O~~~
--~N~~~~~~~~~~~~a~OO--~N------
4~~O-~OO:~~~OO~~O~OO~~~~~
~C~-~Ooo~~C~OOOOOC~OO~~~~
~-C-O~~~-~~~OO~~~~~~-~--O
~~~~-OO~~~ObO~~OOOO~~~~~~
~O~-~OOC~~C~~ooo~OOOO~~~~
o-O-O~OO-~~~O~~~~~~~_O__Q· ..... ... ....... ..--.....
N~~~-OOO~~~~?OO~O~O~~~~~
_~N~~OOC~~_~OOOOOOQO~4N~~
oooooOOC-~-N~O~Oo~~O~O_oO·.. ................... ...
~~~~~~~~~~~~~~~~~~~~~~~~~
--NN~~~~~~~~~~~~~~OO--N-----
~~~~~=~~O~4~O=O~O~~~~~~~~~~
~~~~~~¢OO~~D~COOOOOOC=~-~~O
oo=~~~~~~-~-~OOOO~OO~O~-~-...................................
·~~~~=~~=~~~~oo=e~o~~~~=~~~
~~~~~~~·OC~~~~ocOeOOoQ~N-¢~O
~~o~oooo~_~_~~ooooo~~~~-o_
,0 •••••••••••••••'•••••••••••
~
;Z
O~~~~~OO-~O~ooo~OOOO~~~__~
>'-~Nn~VCC~~~~ocecoccc~~C~~~
~OCOO~OOO-~_NCOQOOOOCO~_~OO·.........................
Q...
~~=~=~~~C~~~~~,~~=~~~~~=~~~=
~--NN~~~~~~~~~~C~~~OC--NN..
"'"......o
U~~~~D~-=o4~=~oc=o~~o~~~~~~
~~~~C~Nl~CN~~OOOCOOOQ~~~_O~
OOOOOO--~~~~~OOOCOOOO~-~--O
'2 ••••••••••••••••••••••••••
C
~N~N~~~-O~~~=OC~OOO~ON~~~~~
:=~~~a~N~C~~~COOCOOO~~~__C~
~OO~O~--~O~~~=O~O~O~O~-N--Q-".
U-~O~N~~N~ZO~~~OOO~OO~O~~~~~O
~-N~~~~~~C~~:COOOO~QO~~~~~~
~~=~OO~~~O~_~O~O~OOQO~-~OO~
C",."..,.."."..",.,.,.-,",".,",.,..',",••,,,,\IU•
Z~~N~~~~~N~N~N~N~~~N~N~N~N~o --NN~~~~~~~~~~~~~~OO __N~
~------~
C
II:
W
C
W~~~_=~~~ONO~OOOOOOOON~~~O~
tt~~~O~~O~G~O~OCOOOOOQ~~N-~-
OOO-~O--O~ONOOO~OOOOOO~-Oo •••••••••'•••••••••••••••••...
C>U
#J~~~_Oe~~ONO~oCOOOOOO~~~~o~o e~~~o~~o~OOC~OCC~COCO~~~_~_
•zooo_oo_-O~o~ooo~OOOOO~~_o_-_~.,..
-
-
~
ll<...
X-o
o
Z~~~_~~OOO~OOOOOOOOO~~~~~~~
_-~N~N~~_~~O~OOCCOOOC~~O~~~
~OOO~OOO_ONO_OOOOOOOOOO~~OO·.........-.... ...........
Q
%
~-~-~-~-~-~-4-~-~-~-4-~-~-4
--~N~~~~~~~4~~e~~~oo--~~.....
1 )j I B J 1 cc41 1 1 j 1 1 1 J I l
Table 0-4
Meteorological Conditions
UPPER COOK JNL~T.KNIK A~M AND TURNAGAIN ARH
AVERACt RUNOFF CO~OrTIONS •STEADY STATE
TA9LE OF ~£T£OROlOGJC DATA FOR ~EATHER ZONE I,JUNCTION I TO 130
LATITUDE.•"1 10
LUNGITUDE •1)0 1 0
"QltR HIND CLOUD DRY BULIl _..fl".ATMOSPHEHIC SHORT wAVE LONG wAH VAPOR
spEED CnVfH tt:"'PfH ATURE TEMPEUTUAt.PRE93UHE SOLAR SOlAH PR~S::lUH£
(M/SEC)f '"CTIUN (C)(t)(Mil)(KCAL/MZ!SI:C)(ICCAL/M2ISlC)(Hill
I 1,5 :75 7,0 1 ,0 100O,,0000 ,Obll?7 12J,'i :75 7,0 I ,0 100 Q,,DODO ,Obll'il 7,
l 1,5 ~7S 7,0 1,0 1000.,0000 .Obll'l 7.
II J,S \75 7.0 I.°1001),,0000 ,Obll~,,
S 3,'5 75 7,0 1.0 I q 0 °•,00 0 7 .Ooll?7 1
0 3,5 >S 7,0 I ,0 I q °0,,DIDO ,01>11'1 7,
1 J.5 \75 7,0 1.0 1000,,Oe!hJ 10bQ'il TI
6 3,5 \75 7,1)1,0 1000 1 ,0'1 'i~,Ob llll 7.
'il 3.5 ,75 7,0 I ,Il 1000,,Otlll~,ObU'il 7 1
10 3.5 ,75 7,0 1.0 1000,.01llO ,Ot>U'il 7 ,
11 3,5 :75 7,0 I ,0 1000.,O'I~b ,O"U'il 7,
12 3.5 ~7'5 7,0 I ,0 1Il00,,10u'J 10bll~7,
I)3.5 ,7S 7,°1.0 1000,.107e!.(II.U'il 1.
14 3.'5 \75 7,0 I .0 1000,,IOU j 10bU'I 1,
IS 3,5 ,75 7,0 I .0 1000.,l)'1'ib ,ObU'il 7.
I b 3,5 ,75 7,0 I .0 1Il0l),,O~lO ,Ob U9 1,
17 3.5 ,,10;7.0 I ,0 10UO.,Oblll:l ,Obll'!1 1
16 3.'i ,75 7.0 I .u I Ou'O I ,OIl~5 ,/lbU'l ,,
19 J.S ,'5 7.0 I , 0 1 0 00,.Oe!bJ ,OoU'I 7,
20 3,5','0;7,0 1.0 100(1,.0100 ,O"u'/7.
21 3,5 .1';7,0 I .0 11)00.,oa07 ,UhU'il 7.
i'Z 3.5 :'')7,0 I ,°100O,,OOIlO ,ObU'I 7 1
('J i.'.l 1.5 ~75 7,0 I ,°10UO,,ooou ,l)bQ'/1.
ill J,'i ~75 7,0 I ,0 100O,.ouoo l(lbllQ 7,,
-,.,.,.DE"POINT\N
V't,
-..
N
lr\
Table D-5
Dispersion Coefficients and Steady-State Salinity
IHRATH1N5)
I
"II
Ib
21
ib
11
lb
~I
~t>
!II
H
bl
6t>
71
h
III
lib
'I I
'Ill
I °IlOt>
III
II b
III
Ilt>
IJI
Ilb
I ~I
I~"
151
156
CHAlIN[L
111110,
'o~,
S7H,
110 °2,
2 I 5,
50'1,
Su~,
IIb2,
2ftb,
0,
2u',
lll,
0,
116~,
!lZb,
022,
lU,
110],
0,
~,
HH,
21 t>',
1211,
I ~"J1l'I,
hl,
lll',
"i.II,
llll,
'IA~,
II '1~,
ll12,
OI5P[R910~
IIIj1U,
!l5'1.
'.>7107.
II °Ill,
11'1.
51~.
5'.>0,
6bl,
Hb,
II.
2~I\,
225.
0,
1201,.
56~,
"i'''.
12".
~H.
O.
O.
]S]",
lln b ,
3211,
1'18,
J 1U I.
7b1,
2"IIl,
51 Q •
11'.>i'.
100'.>,
122S.
20''1'',
COH F 1tIEN15,
l 8'11",
1 5'100,
U b'l'>o;,
11 l?,n,
2l 2f',-lb,
21 18112,
l<!!'IU,
J1 12 0 '1,
"2 HII5,
II 1 21l51,
52 0,
57 0,
102 0,
b1 11'12,
1l 11 b,
17 10bl,
82 l'l2l,
111 0,
92 0,
'11 0,
102 BOb,
101 2".1",
III.21\7/1.
111 lon,
122 1110,
I·V ?02,
III 2]tll,
137 12S,
1'12 11'12.
1"1 "1150,
152 t 'II,
IH ll'.11,
81l FTlSEt
S'Ij'l,
'.>'111 \,
bQh"i,
lU'I,
2/1]0,
1!lIII,
I I;\JZ ,
2Z'.>5,
2112,
211,>1,
0,
0,
0,
12 u O,
HI>,
lOb",
1'126,
0,
0,
0,
].1011 ,
C!"~2,
21118 ,
10l",
1112,
lOU,
2 0 0'1,
11.6,
\2l0,
21115,
1"'2,
H01,
(LA"1 101 0
1
8
I)
III
2]
16
II
JII
oj
lib
5J
511
"J
bll
1]
18
II]
611
'1j
'III
101
106
III
116
In
1C8_
IH
11b
Ill]
lUll
15)
I 3JA,
772 I,
73711,
!>"4b,
,>'1211,
a7b7,
lllln,
j'lllll,
0,
lU2'1,
Ibll>,
0,°,811,
Ill,
Il~II,
I b'l1,
0,
0,
0,
I A71 ,
I'll,
ISb",
117,
bll 1,
2'1Z,
i!bll,
I O~J,
b t,•
HilI,
152,
1)11 0,
7121,
I1tlll,
5 0 '.>5,
'.>'lH,
U71b,
II 6 J'l ,
]'l 'I 'I ,
0,
)4.1 0 ,
Ib)8,
0,
0,
11'.>1,
'10,
1)0'1,
1701,°,0,
0,
11171,
20 I,
ISb5,
17",
"~b,
J(15,
2tol>I,
10711,
11 ,
)110'1,
15b,
]
II
'I
I q
1'1
24
2'1
1"
l'I
00
4'1
!j"
51/
b"
1>'1
1"1'1
8"
/1'1
'I"
""10~
10'1
110
11'1
17"
12'1
1111
IH
loll
10'1
ISIl
7015,
1ft JO,
Q ..~.
b'.>1b,
"U2'1,
"j'lO,
l12b,
'1'/1 ,
7.17,
0,
111'.>7,
0,
0,
Illl •
0,
~b7,
145i!,
1l.11>,
0,
0,
111111,
241,
Jill,
1>54,
S 11,
21 JI ,
II H,
JO JO,
In,
HOl,
)U o!7,
70111,
I R.I'I,
QS I,
1.51:'>,
~o jb,
4H5,
27.111,
lon,
lu~,
0,
IA'.>l,
0,
0,
1112,
0,
"b6.
1 4 b7,
u.lb,°,0,
"I>A,
254,
)(lb,
"1>0,
SIlQ,
21'.>11,
1151,
JO')5,
i'.I6,
3.1 I.I ,
10~'1,
'.I
10
IS
20
25
10
l~
40as
50
55
bO
"5
10
75
60
6'>
'10
'15
00
05
I U
,'.>
20
7.S
10
)5
"0
45
SO
55
1l58'1,
"7~2,
S'.>o~.
702,
I °~,
121,
8'14,
I'.>0,
0,
0,
i'J I,
0,
2"15,
~12,
lI'I,.
20'1 I,
1121,
0,
C,
21111,
JOO,
.1IS,
H'>b,
211",
I II 4,
""'1,
'112,
lA08,
7 V I,
1762,
1I0.!5,
85'15,
"7"2,
'.>0110,
10],
10'1,
IH,
bilL,
1'.>'1,
0,
0,
2H,
0,
24"'1,
8.1'1,
tl",lOQ l,
114",
~,
0,
26.12,
] I j,
]J'5,
)'102,
2111,
1110,
"'15,
'155,
2Ub,
1 b I,
161 J,
1I0Sl,
('J
\
\.....I
V,
I-N
'"
'llf9~!'ir"';;'iiirGfjrtg 10,I"
"l'l,J~1 211,bl
II 26,17 12 2h,Ib
Ib 2",9'11 2 11 ,06
21 21,,0;n 21,<;H~~~~:~:~·12
lb 1'l,BU 11 1'I,O;d
UI ,0 I Ill,°I
"b 7,11>Ul J,?O
51 ,01 52 IY,ll
!>6 1',111 51 le,lb
bl ,00 hi!,OU
bit ,0 I I>1 ,0 I
11 .00 H ,no
7b ,01 71 ,01
III .01 82 ,01
bll ,01 81 ,00
'H ,00 '1l ,00
'6 .00 ''11 ,00
101 20,1"10l 1'I,1i!
leb 1','11,101 IQ,05
III 1'I,5~112 I~,ab
II"18,1'1 111 III,IU
III 17.1,~In 17.'0
Ilb Ib.10 III I~.O~
m
1
~
11
III
21
2/1
H
31\
Ul
~II
51
511
bl
b8
13
lA
III
111\
'IJ
'III
10 }
101\
III
111\
In
!lll
2'1,89
l!6,'41
l~,jS
2",0<'
2 I,to2
20,110
,0 I
,0 I
1),'1'1
,15
1"',7J
11,211
,\10
,0 I
,00
,~I
,III
,00
,00
,00
20,I"
18,b1
1'I,bl
11,'1'3
l7,n
I ~.~.o.
U
'I
III
1'1
24
2'1
:l~
l'l
UII
49
50
5'1
bV
f,Q
7"
7'1
84
1\'1
'l"
'1'1
10"
10'1
II q
11'1
I~"
2~,7q
21,06
7.S,Ii!
l2,711
21 ,O~
,0 I
,0 I
,0 I
11,4 }
.''1
1'1,14
15,S5
,00
.01
,O~
,0 I
,0 I
,0 I
,00
,00
1'1,"4
I ~,11
1'1,01>
11,61
Ib.711
'.>
10
15
20
,.~
.10
35
QO
115
'.>0
55,,0
I.'.>
70
1~
110
liS
I/O
'IS
100
105
110
11'5
1i!0
1~5
2Y,2J
n,lI
2'.>,02
2.1,''1
21,v}
,v I
IY,6b
,v I
10,41
,110
1'1,b I
Io!,oi!
,v I
,C I
,0 I
,v I
,II I
,00
,00
20,lO
III,I "
IlI,II 4
I II.'10
11,l>Q
I",e I
J 1 J ,
eft OQO'O~ocoooo¢~o~oo~~o~ooo~~o~~ooooooo~o~ooooooo~~o
~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOO~ooo~OOOooo
_",..••••••••••••ID ••••••••••••••••••••••••••••••..zz:)o...
~ft ooooooooooooooooooooooOOOOQoOOOOOOOOoDOO~ooooooooo
OQ~~~O~~~oo~ooooo~~~oa~o~oo~~~o~~ooo~~o~oo~o~ooooo
• • ••• • • • • •..0 ••e _d _ •n • • • • • • • • • • • • • • • • • ••••• • • • • •..• •
"'zZ;;)
;;)...
.....
......
-
.....
-
l.O:
I
'0
:a:....
z_w....."'.....-z ..
'":>~
...""..ow:::.......
:a:I......:z
",0
z ...
"'-<:>
.2
...0"'....J,....-...o
TZ
0::>o eo:......
a:u.,..
..0:.....:»..
"'..-...-"'z.z:;:I.e...
-..
""zZ:lo
U
....J.....
"'''':ce
~.J,....
f.:
~.;
.~:a:
a~jI:r
u<'
<'...-....oz
~~ex.
u<'
<>...-....
.:lz..-'......~oae...
z-'....
"'<,S
O~-
Z
J...
O~~OOO ~~~~~~~~~~~~~~~~~~~~~~~_?~O~~~3~'~~~
ooooooooooooooooooooooooooooaco~OOOOOCOOOOOOOO~OO~
• •..• • • • • • • • • •a • •••• • • • • • • • • • • •~• • • • • • • • • • • • • • • •~• •
ooooooooooooooooooo.oooooooooo-o ~ooo-~ooooooo
OOC~~OOOQ~O~O~Oo~~~oo~~~oo~o~~o~oo~o~o~~oo~oooo~~o
• • • • • • • •_• •e •••.•• • • • • • • • • • • • • • • • • • • • • • • • ••••• • • • • •
oo ~_-_-_-_---------_o--_---
••_ ••• • • • • •Q • ••••e _ • • • • • • • • • ••• • • • • • • • • • • • • ••• • •••
oOQOOO~O~OOOOOOOOOOOOOO~QOOOOCOOOOOQQO~~OQOOO~~~oo--------------------------------------------------
~~~~~~~~~~~~44~~~~C~~~C~~~N~~eeoe~~~~ONN~OOQO¢--~~·.................. . . . . . . . .~.... . . . .. ....... .. ... .
~~~~~~~~~~~~~~~~~~~~~~~~~vo~~cooooooc----coooooooo---------------------
~~~~~~~~~~~~4D~~~~~~~~~~~~N~~~~~O~~~OO~~~OO~O~--~~
•~• • • ••• • • ••• • •c ••_ • • ••• • • • • • • • • • • • • • • • • • • • • • • • •••
~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~OOQ~--__OO~OOQO~~
OOOOOOOOOOOO~OQOOOOOOOO--_~-~~~~~~~~~_OOO~~N-__OOO
o~oo~~~ooo~~oo~~ooooo~~~o=~o=~QOOOOOQ~~OOO~~~Oo~o~
• •e • • • • • • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • •.•• • • • • _ • • _
~OQOOO~OOO~OO~OOOOOOO~OOO_~__~~~ft~~~N_O~Q~-~__O~OQ
QOOOOOOoooo~ooooocoooe~ooooooooeoo~oeQCOOOO~oooooo
• • • • • • • • • _ • • • • • • • • • • • • • • • • • _ • • • •e _ • • • • • • • • ••• • • • ••
OOOOOOOOOOOO~OOO~OOO~OOOOOo~oe~~OOOOOOOOO~~~~OOOQ~
OQOOOOQOooooooeoooooooeoooooooeoQOOOOO~OQOOCOOOooo·...... ...... . . . . ..... .....-...-.. . ....-...-.. . . ..
O~~~~C~4~4~~~~~~~~N~N~N--_O_O_OO--O-O-N~~OOO--~~~~
_eooocoooocooeoooocooccooOooe~e~oco~coccoooooeoeoo
.,.'•••••·1 7 '.1 ,'1 •••
c--~~c~~~~-~~~~~~¢~~-~~~-~-_~_~~~~O~_~~~O=-c~~~~O~
~__D~~4--~~-~Q~~~~-_-~~--~~~_--fl~-~~~~N~~~--~-~~-.,,,,,~.,,,.,,,,,,~,,,-,-~~,,~,~~-,,-,-,~~,,,,,,,,.
ocooooocoooocoeo N _
OOOOOOOOOCoo~OOOOOOOOOOOoo~~o~oo~ooeocoo~ooooooooo
•~~,r ,•,,~,,•,,,~~,,••~r ,,~••~_,,~~,,,~~•~~,,~,,~••
__~~~N~~~~~~~e~e~~_OONNN~~~~~~4~~~~~~~~~~4~~~~~Q~O
OOO~OCOOOOOOOOOOOO---------------NN~~N~~N--~•• ••••• • • • • • •••••_ • • • • • • _ •e _ • _ • _ • • ••• _ _ • • ••••• ••• •
·........-..,"". ...".."~.D~~~~~~~~~_~4-?~~_O~~~_~~~~~~~~~~_~~~N_~~_~~~~~~~
~~C~~c~c._~r~~~~<~~O~<~~~~·~~~~-~-_~~__c -~~O~~~~~
~-~-~~~~O~~_-_~~~O_~~~~cO~...-~~~~fl~~~~~Q-~~_4_~~~O
OO~~~~«,~~_~~~~~~~~~~~~~~~~~~~-O_~~~~O~~~~~
~_~~~~NNNNNNN~__N~NNNN~~_N t-----------------
_~~~~4~O~O-~~~~~_e~o-N~~~~~-~~~~~~~~~~~ON~~~~~~~O_.I"oIII"'I"\,I~NI"\,IN,·"'................"'""',....~f::ta.,.~~~~.,...r"r'\W""V"\.......w'\...~
z..-iS-rZ7-
r-J
\w
lr,
(
Table 0-6 -(Cant.)
Standard Printout Format for Computed Water Qual ity
UPPtQ too~I~L!T,KNrK -~~~ND TURN~G~JN ARM TETRA nCH,IhC.
AV!RAG[RUNOFF CONDrTIONS •STl~nv STAlE LAFAnTTf,CALI'.
nU~LITv l!£SVLT!I,DAY Ilb
JUN TOil TO T Ii TOT P T CllL F COL C 6011 N 800 OXY o :lAT Tt~p CUNH 1 CON:ll l tU"IlT )tONH II
"GIL "~/L "roiL NO/lnO~L NO/I~OML ~G/L MG/l'HG/L HelL C IJN II :I UNJ"v"Il!V'iJT.
100 lO)O},, I a :01 ~Utno ,00 ,0 I .01 '1.9 '1,'1 0.1 ,~O ,OJ ,00 .00
101 ~O}H •,I a ,01 ,lltOIl ,00 ,01 ,II 1 '1,'1 'l,'1 0,1 .00 .0 J ,00 ,00
1~2 10 111,, 1'.I ,II I ,II .011 .00 ,OJ .11)10,u 10,0 0,I ,II 1 ,0),00 ,00
10J i!OISU,• I ~.01 ~~~:~~,00 ,02 ,02 9,9 '1,'l 0,1 ,00 .0 J ,~0 ,00
IOU I Q9)1,.15 ,0 I .00 .02 .02 '1,'1 'l,'I 0,I .01 .0 J .00 .00
le5 10 1l5.•11 ,0 I ,111'01 ,Oil .os ·°u I II,v 10,°V,I ,V I .0".00 .00
lOb 10Q~1',• I ')• Q I ,I I.II I ,00 .02 .V'?'1,'1 'l,CI Q,J ,0 I ,0 J ,00 .00
11)7 10 0')1.• I ,·°I ,~~:~:,00 .Oll .1/5 10,°10,0 0,1 .01 ,ou .60 ,00
106 lP.bli!..1&~Ol ,00 .Oll .Ob 10.1/I ~,O 0,1 ,II I .ou ,00 ,00
10'1 I 'l t 73,, I b ,01 :a./JI ,nu .03 ,Ill '1,'1 10,°O.I ,01 ,0 J .00 ,DO
110 1'~''1.•1(\,01 ,uuoOI ,00 ,01 ,0"10.0 I ~,0 0,1 ,V I .Ou .00 ,00
III 17 '>".'•.Ib ,01 \a1.0 I ,00 .05 ·°U
0,'1 I (J,0 0,I ,0 I ,0 J ,00 ,DO
112 l'I u b2..11 .0\,"ItO I ,0(1 .Ol>.05 10.0 10,0 v,I ,0 I ,0 l ,00 ,00
II J 1'I~b",• I b ,01 ,J"t 0I .011 .Ou ,I/u 'I,Y 10,°0,I ,v I ,OJ ,00 ,00
1\u l'IOb).,I S •vI ,I hOi!,00 ,O?,Oll 10,0 10,0 0,J •02 ,oa ,110 ,00
115 1~'1fJ2,• I II \0I ,~, t ()I .00 ,06 ,1/1 10,0 10,0 10.\.02 ,Qq ,~a ,O~
\1 b IH.o.9., I II ,0',1>1'01 .OU ,Oll .~1 \~,0 10,0 \U,I ,O~.Ou ,~O ,00
II 7 I~\H,.21 ,02 \JO,02 ,00 , I1
, Iu \0.0 \'J,I \ U• I
,01 .Ou ,00 .00
I 10 t1'lq..20 ,01 ,I I.°i ,00 ,10 ,oq \o.a 10.I \u,I •I,Z ,Oq ,DO',DO
11'1 17 H7r-,,lO •q I ,h~.OI .00 ,Otl .01}10,V I U,\\/),1 ,02 ,Oq ,00 ,01/
\20 I h~O,,21 ;0I 1~,o2 ,00 • I i!• I I 10.°10,1 \0,I ,Ui!,Oq ,U0 ,00
12 I \lb O b,,20 .01 ~IJ'~2 ,00 .11 ,10 10.0 If)•I \0,\,02 ,O~,00 ,00
IZl P201,,20 ,U I ~1l~tUI .00 .O?,VIl \11 •I 10.1 10,1 ,112 ,Ou •II 0 ,DO
In I7.?P \ •,2 I •0 I \1~''12 ,OU ,10 ,oq 10,I 10,I 10,I ,02 ,ou ,00 ,00
12q I b 1O~,.21 ;UI HtO\,01/,oq ,06 \V,I 10.I \ 0,I ,02-,Oq .00 .00
In 1';llllO,.21 •°I :~~:~:,DO ,0'1 ,UIl 10,\\ 0 ,\\0,I ,02 .Oq ,00 ,00
12l>H 1~',,21 .01 .00 ,I)II ,V'J I v.J 10,l \°,I .v2 ,Ou ,00 .00
127 H~~1,,2 I ,01 ~U~tOI ,00 ,01 .01 I II,I 10,2 I u,l ,02 ,uu .00 ,00
us 1521b,.22 .01 .0 0 01 .00 .Ob ,U1 IU,2 10 ,l I ~,I ,u I ,Oq ,00 .00
-...
(\l
~
I J t )J B ~~I
J )]J ]J 1 l
_.,f_':"","~1\J }J 1 )B ]i i
rJ
\
W
"",-N
4)
Table D-7
Alternative Printout Format for Computed Water Quality
(This printout was not generated by the sample problem)
I Y[AR OYN'HIC 'J~ULATI0~0'"LINJTY AND STP JNrLU[NC[
UPPER COOK INLCT,KNIK Ap~AND TURNAGAIN ARH
JUNE.SEPT RUNO,F CO~OJTIONS •DYNAMIC
IUU auUlt ewwN,r'''W
I 10551l~Z )010 6 ,)2'1711.II 2'1b1>2,,Z1J9Z5 ~~2'120).1 ZIlIi ~~II nll7 I,,i!5ue,10 h800.
II Z51l01l,U 2 11 501.I:)2lll>8,I II Z2'11>0.15 UllOa,Ib 221111,IT __21 '131,I D 21B9,19 19 101.20 I99H.
ZI 199 h,22 Ira )0,2)170<;2,211 II>11 O.25 II>157,2l>15)17,~#~JMr 20 15 11 11>,29 0,)0 O.
11 1"91>11,l2 Illl99.H O.311 O.lS 111 11,),3b IIIU9'5,)8 0,)9 0,110 0,
III 0,112 O.0)55~I,011 12 Q 7.liS ,i'15~,01>11'10,117 21 II.116 Ill,11'1 I •
50 0,
51 0,5Z 1II H2.53 1117 I I •
511 I 1I!ollll ,55 I UI>U 3,9b IIli!III,57 13005,56 IIZoB,59 81H,flO eroo.
1>1 0,bi!0,b:)O.611 O.1>5 0,I>b 0,tIT O.1>6 °,1>9 O.10 o.
7I a,12 0,7)0,70 O.75 0,11>O.17 0,76 0,r9 0,eo 0,
6 I 0,~.°.81 o.ell O.65 a,lib 0,III 0,116 0,D'I O.90 0,
91 0,9Z o.'11 O.'Ill 0,95 a,9l>O.97 0,'16 O.'19 0,100 "IH.
I0I 150 II,102 IJlJS},101 111 8';'1.1011 I U JIl 0,105 128 b'l,lab 11111115.101 IHlll,108 12010,10 9 1"006,I i a IIHu,
III 11731,III 1)11 71,I!1 llen,11/1 127 II,115 12 1l 'l},lib IZZ'li!,117 111l>},118 10~jQ,119 lour,120 10)lIl.
121 1025S,III 917tJ •121 '1755,IlII 900~,125 1:'031,12C1 11617 •127 19116,126 ClIl19,
opp CUNST I ,uNrrs fOR DAY 31>0
I ,au 2 .011 1 ~IO II ,12 S oil>b .15 7 .20 I],22 9 ,31 10 ,11
II ,33 12 ,l8 11 113 I II .115 15 .US Ib ,lib 17 .119 18 ,51 19 ,bO 20 •'HI
21 ,55 Z2 ,bb 2l 'b)211 ,58 i!5 ,7l>2b ,11 27 ,';7 28 ,05 29 ,00 )0 ,00
)1 ,'17 Ja I,~2 3l '00 }II ,00 3S I ,0 I lb I,°2 ]1 I ,II ]6 ,00 l~,00 ~O .00
III .00 aa ,00 III '70 1111 ,112 q5 035 lib •15 III ,01 118 ,00 a'l ,00 50 ,00
51 ,00 52 1,06 51 1'02 5q I ,0)55 I ,0 i 5b .'11.51 ,81.'36 ,7]5~,51>CIa ,'a
bl ,0O 62 ,00 tol '00 /Ill .00 b'5 .00 61..00 l>7 .00 b8 ,00 flq ,00 70 .00•71 ,00 12 ,00 11 ,00 711 ,00 75 .on 7b ,00 77 ,00 76 ,0O 7'1 .00 eo ,0O
61 .00 ez ,0O III ,00 811 ,00 65 .00 8b .00 87 •aa 66 .00 6~,00 90 ,00
91 ,~o 4Z ,00 '13 00 'Ill ,00 '15 ,00 'II>,00 '11 .00 'Iii ,00 '1~,00 100 ,e.
101 .81 10l .CJu Jll)'''I lOll ,'IS 105 l.0'1 lOb ,911 107 1018 100 I , I 7 lot 1,02 110 I ,ill
III 101o III I.I II III 1'07 1111 I,lJ 115 1,25 III>I,l!l .a7 I ,11'1 11 11 I.li!119 1.211 IU I ,II Z
121 1,]4 12l I,ZI 12 )I ~29 IZII I,P 125 1.15 12b I,ll IV I,Ol 126 ,60
oz
'"o-
..,
~......
;:)
IX
~
Zo...-~rr-z.......
Zou
0 ...
001\
o
o
o0"02o
o •
01o_Cl
00 t:::r
00 •<:>,
00 ,o ,...
o I ..o ,
o I
CO I
o "'2oT~o ,
00 ,
o •o •"-o ,....
o .-o I
o 1
COo 'N
CO ,-o ,o ,
o ,"-
o ,-
<>.-o 1o,
o _Ll""IlAJ
o .-0
0-.-0.,., Z
o I
<>I ...o 10
o I-e ,
~1
COco 10
o 1-
o 1
o IoI ...
o IN
o I
CO I
CO I
o -~C I~
o Io•o ,
Do 10 0
o INo• •
o •o I ~
C -......,
o .-o •
co I
...•CI:
00 I ~oC.
CO •....
o •~
CO •o I ...
a -....,1
o 1-~
C •
CO t ....
o .-•0o1_
o 1->-o t ~
co •Q
o tco_0
co .-o •o 1o,
o ....
o •
o •
<:>I
CO •---~------I--~--_---I---------'---------'----~--~--~a a 'OJ ...
0 0 0 "'"•.Z •..,.0 ...0 0.....:s:...0........N -'.........
U II:r 0
~q......,
H
~
U
d
-I
Jo.~
I
CI]j
~cr:
~.~~H
<tj
~.~
Q"~
.~.J..,
,
:..J
,]
i.·...•..~.;j.'.:
~':'.'
,cd
:.~~~
~,
"'""':E:
UJen--l
UJ a:l
Ci 0
0 a:::z CL
0 UJ
w --l
I-a...
u :E:w e::t
--l (,/)
w
(,/)lJ.J:c
l-I-
c:x::>-
lJ.J !Xl
:E:-0
f-lJ.J
l-
(,/)c:x::
:::::>a:::en LUa:::Z
LU W
>-<!j
N.-Z l-
on 0 0
AI -Z
I-
<t:<ha:::<t:•I-3=...ZNW I-
U :::::>
<>z 0..0 l-
N U Z-0 a:::
llJ CL..I-'"IaJ ::J (,/)...
:II:CL -:::l :E::::I:z
IaJ 0 I-
<>U ---0:z
C"-J
I
Q
llJa:::
:::::>
l!)-U-
o-.10
10,~,,,,•10-.'0·..,,",
•••,•10
10·...,I'"•••1
t
'''''-.10
let
I ....•1
1
I
1
•0
10·'"....••1·~·..•c>Q-.'0
'0
IN-,•1
I,·.,.-.
•<>1-41·-I••••10·..'N,-
I•J••·......
•0.,..••I•••.0-.,0
.~
t•I•I
I
•<>1--------_...·.
---
no
III---
----
......--0 ""0 ""•z •••0 ...""0 ""0 '"......0.......j ...-...u CI:
:II:0
...
N
III
III
'"no .......
no
'"N_N
.-~--~----.----~~---
-.---
---
--
--
--
----
1 _
...,..
'"no...
'"....
N......
'"'"'"'"...."'.....
'".........."'".....",no ...
'"""...NNI'U-N
rwNt"JiN""..-'"- N-'"-..........
'"-...--........
1\1..............
N....
'"...
,ftl ...
no
'"...-
N
III
1\1 no....
'"N
'"""'"no
'",..,
"""'no
N
'".....
'"III
N
IV.............
-----
..
o•o......
o
o
o<>oo..
o..
oo
""""o
""oo
""""o
<>o..
o<>
<>
""o
o
""o
"""".,.
"""".,.
COo o...
o....,..,..,..,..,.
o
<>.,....,..,.
o
oo.,..,.
""o .,.
o.,.
o.,.
<>o
""C>
<>.,.
"".,..,.
o.,.
o o
C>o.,.
oo
""C>o
o.,..,..,...o•o...
'"
.o:z
f-a
..
Q...
~
IX
0........u_-z :z:...,
:::l ...
j X
~...
z ...-
tL-•
0z..
~...-z--~....
IL
Q
Z
0-.....
...J
:::l:c-..
U-:II:..
Z
~
0
CI:.....
~
--
--
z..-~5-/31
APPENDIX E
-
1 1 1 1 1 )1
......,""'1'.1 1 J 1 .']1
c .c....IITLE ''''II'''''TIO~
pLAD Is,lunl TIILE,IIIL
100 IU~~4T (?J4~1
110 fOG"l'(l"I,20lij,IO~,ITllHA T(C~IHC.',/ll,l04q,IO~,'LAfA'(TTf.CA
ILIJUa~IAI,/,I"~OK,ITIDAL IlYDIIOO.N,"ICS P~OGRA~I/)
cc....G(~£AAl CU'IIAUl fOR ~IM~LHIOPj ~NO pRINT
",.~(~,12~1 h~l~0,/,q~rRT,NupPjT,~1~l,N3Il~E,NTflOH,NOYNA~,N3T[AD,N
I ~
~OY"''''''cO
nu')I~,llill (f\OAYIll,I.I,"3l~IIN)
aI''''-;~H)'¥~.'"
IJ J 'I :I .,~1 ,t "[)
110 t!Ju'''1 (lbDl
Qu£slI,,,,S RlG&quP,G litE COHI'UIEH (nOE OR IHl IIUOEL API'L1CUJON
~H"ULi)<l~IJIALClfO II)OLJNAIU J,3'1J1H,T[lRA HCH,INC.,
3100 HT.Ol&"ll)~lVO.,LAfAYETll,CALIf,.Qu5AQ (ijl'-~8l-)T71)
[UMHO~11101 ~Jlx,J(((IOl.AX(7,IOj~w.TTISU),YYI50),I'EHIUO,JGH(lOO)
I.~'NGrll~0,11,TLAGI20o,21
CO~HON/GEOHI JUNI200l,NCH'~(200,nl,NJUNCI'OO,ZI,NDIN(100)
I,~SINIRI.2b),~LI~llOOI,O~UI20~1,~IN(lOO),l()OOI,AC~(J~U)
2,.bl!~Ul,F.~,uI2~01,A~IJ~01,A312~OI,AS'12UO),ATIJ~O),"(Jou)
3,r"'"I J ~Dl ,or 1'1 >i I 2~Ul ,.«l U0 I,L f'H J DOl,III JU 0),VI JII UI ,Xl 1.00)
R,VUL(l~ql,YI2nul,qIJJO),~CAVf IjOUI.i~AYlI2UOI,lS~lloul
S,A.VLI!001,nLplvl(lOOI,DLPI""'lOOI,r.I~~IJOO).HlV~12UO)
b,..'"2~II I ...TI 2 DOl,Q AV LI J 0 U ) ,r...I J 0 0 I ,I}P I JIt 0I, RAV l ('0 Ul ,~(J1l (200)
1,II 51 '0 u I,II 5 r.IJU0I,~f UJ.12.1 UI,u aIt ~I '001 ,VA ytl '00 I,Il'.('0 u)
e,yUL Hl (20 U, ,VOL III lou I ,VS(JO 0\ , yS'](100 I, yII J uo I,Ylell IU0)
CO'4HON i"I sr.1 "J,'.e ,~.:l , ,Ilt LI fJ ,N"S 1 •P ,''0 S([P •T,12.on 11.lOA Y
I;Il'll~,Ill,~HUlAlj,I 1'_,'.TL,w/1l1 ,'llllullnl ,~fLO"()IIO)
~0"'10~I I n I PIP .."~~~I ,I.';U ij T,.....~'l I , I r.Jl ( I 0 , ,J ~II I ( J 0 I •L I'"I (j U)
I,pijIHI5~,J~l,PIIIV(~n,101,1'411)/50,IOI,>illll"I'.iO)",.II·LUII~,})
2 ,"e ~L rlll S ,j I ,11 11.f (]C I, 1I TL(Z0 I, LTI"L'J 'III un I,..T51.
~I"[N',O~"~1~1(S,2),~I~OIS,2~1"DIIlI~,l~),OYOllluOI,1~llS)
ol'llPlSION '4IJAY(~~)
OI"E~~I~'~'.'19l
~I "t -,~1'1'·£v ,~(J (l ~I,4.I NO (~~I,fY Ap p 12 U,o!'i I,..~01'12 u,i!) ,SUIIE V IlOO J
nl-'l"S"",£v~P"lt'O,25)."'l HPI20,21.$U'I[VI~Oul
l'''tGLp CpAI
PL.L L'-'
fOYIVALl"C£('1~(II,DVOTIIII
OlTl STA~O/lll I,STAQl/lllol
c " ,
C....CAlL UINI"~II£qltIG Il(JUTlNE H·SIOOY SUU:QUALITY 'VI:II e'l.Cl'HO
IF ("~llAO.GI.O)CALL NU~UEH INN)
150 CONTJ:-<IIE
IF IN":LD,~Q~1 "Exlll'
HRITE /b,IIO)l11Lf,TllL
WNI TE Ib,IbOI ~~f ~n ..,(HOlYIIl,1~1,IjSrsON)
WHilE Ib,110l NI1SI£P,,,nSTlP,NSTAGt;HTFLOw,NZO,H30,PC_IOD
IbO F~~~ll (IO~U"rllH OF HYORlUllC CO"OTTIUNSI,T50,15/,'ONUPj~tR 0''IDA
Il (YCUS pru Cu:"OI TIU"',no,Ibl~/,"50,IblSIl
170 fOAl'1lJ (.lnNIJtt/ll~Of IIYOI/AIILIC IIHr SILl'S r£Q CHL['''5~..~/.'0ItVH
IR£~Of QUALIIY IIHE 51~P~plQ CYCLr',T'iu,I~/,'ONU~~lR ur 'lUlL ",
i!GE PLUIS 1,I,q,/~/.'ONUH"lR Of tlOlL YElOC{TY PL~13
)I,T<;01/5/,'OOYNAHIC HYO'UIIl.IC ouTPuT u",IT 1,I'iO,JS/,'oa
ijTlAOY ~TA IE IIT0HAVLICS UII/PUT Urlff I "~I1"'.i/,'OIlUlL "tHruD,HOU
5~5',T!lo,1 ~.Ull
wRIIE (6,I~OI ~lIf'kT IJPHTIT),I"'~IIPQTI
180 fUR,.,l[(,~lSUL1S PHIN'lO II ..'~fOLLIl"ING',JJ,'JUNCIlUllSl/ltClOJl
1,lIdl>l\
w"lll (b,I~O\t1'JjlIlT,ICP~"II.I'I'"I1PQTI
19~lun~AT 11115t,'A~O fUH Till fOLLOhlll~II)I'CIlANNlLS'/I(IOM.lb'.»
..,,[If 11>,2001
200 IOR~iT l'UrullO-lhG PLQls A~E HAOE'//I
00 llu I~I,~SIAG[
~1I"l Ib.ilUI INJPLUTlI,'l)."DI,J)
210 fOw""IISK,'TlD'L sl~Gr ftlll JU"ClIO:,S',lIS)
220 [11'<'1 ~lIt
00 lij~1.I,NTflUW
w~ll£Ib,lIO)"(NCI'I.UT(I"'),"'I,ll
2)~'lIw~q liS.,'11l1.L 'LtlH filII CHAN"ElS ',lU)
2AO rll'"r:~ll
"
UNarM."
lNO JUIlC!IO
R[AO AND PROCESS SYSI(M GEOMETRY D4TA
N£xIT.~
CALL GIO"[T (NEXll)
IF CNLxIT,.I.O)CO TO 150
M ,0 II 0
~EAD ("llO)(JP~~III,I.1,N~PRT)
READ (5.llO)(CP~TII).I.l,N~~T)
TF (NSTAr.~.GT.O)READ (S.13U)((NJPLOr(I,Nt.H.l,3).X"I,HSTAO!)
IF (NlrLUH.~T.OI READ 1~,110)I(NCPL01Cl,N),H.I,3J,I-I,HT'LUW)
FUqt1AT DISI
JIRIZJo,O
Tf (~T~L.GT.U)HEAD 15,1201 (JI~III,J.l,H1SLJ
RlAD (~,Iq~)DELI,DELTQ,p~AIOo,O'1IN
OHIN>D~INIl.
I'[JRl1ll Ilb,.,.OI
NU~I£I'.!600.'Pf~rUq/OlLTO.O,1
~1l5'J~.j60n••PfNTUO/DELT.O:l
NIIPLAU='Ht~Ill'/~US IEP
NI'RT=~..l'fUII
UO
.lao
e
c , .
C••••
C
C...:..AI It TrlVAI/If.Nl t;l')Hf"I"Y DilA
2')0 1I1"~1l ('IQ','IIIvAIoTA',1 t"A~"'L Dil&'I/,'CltANHfL
I "lUI ..,f I "YO IIAO,f I kl"lLEv,fr kaNt/IHOS H
~",.~IOJ 'lll~l.IU.11"l,511:'/)
'laO
II .,0 "0
~YD~O I'A ~lT~£HATICA~"OOEL DEVE~OP[O TO ,IHULAT!
THE HYOqODY~AHICS OF AN fSTUA~".
OEVELOp~(NT Of THE HOOEL Hl'DONE UNP~R T~[sPONSOq,HIP
Or THE C~LIFQ~~IA OEPAqT~E~r OF ~AT£A A~3UURC£3,CALIfORNJ4
ST.I£~AT(q RfSOUACE3 CU~TRUL 8UAR~AND THE NASSAU-SUFfULK
~fGID~~L fLANNI~G 8UA~O.NfH ru~~.
ADOITln~'L H'lOIFlcalIU~'-[H[HADE UNDER CONT~ACT NO.
O.r.~~S~1~·C·OOUq.OfP.qT~fNT Of IM'-ARHY,ALASKA OISTRICT,
.~C~~4.Ll.ALASKA.
c
,c ••••c
C
C
C
C
C
C
C
C
C
C
C
C
C
t ..•c ••••
w
w
-
('J
\
\,oJ
VI
I
"...0 II U
'.
H Y 0 R 0STIRl~\.'''~O
Ir lTC.LT.RSINII STA~I"'.ST'AI
lao eu~I I NI.IE
~~IIE ,~,uooi J,9tlRI'JI,STAR(91,A8IJ),ASIIIJI,OEPTHIJI,TC,KIJ),YtJI
I ,(lIC HA.'I J,"I ,9"n I KI.II.I ,UI
I~lHUnlll,uS).Ea.OI R~ITE 16,4101
Ho (I)'HINIIE
000 FU"~AI Il7,l'I,.6~Flo.o,r'l,l,oP'I,.I"I'.I"IJ,I,rll.I,J7,&1,'tl.
I,AI )I
IF 1~~nlll,a"jI.N[,OI ~RIIE lh,QIOI
alO FUII"lI l'O'lllll •~•l'IOI(AIlS IHAT OEPIH 0,C/4I'JN[l ENIERI"G JU'IC
IT III"I~lAIlGfH "'A'j JU'ICTIII'l O~~TI""H,'"I~OIC&T!S "EIUTlV[VOL
211"E UN ,P[A IS pnS~lulr.wITH ANlIC1PAlfD \lOll HA'll)
I"IO/Tt:
I'~"!Ib,alol IP,If.,Tl
120 Fo"~.1 lllllftH 191V.Ai 91.TISIICS liT HSll",X,laH TUlll VOlUHI,C
Iv f',lIJ.U,/'i ••Z6H IOlAl ~UR"Ct AREA.)U 'I,Ell.Q,,5x,2bH H
UAN Dip""fT ,E1J.Y)
If l'llr.lf.OI CU TO alO
PE~lhO NlO
w411E IlllOI "J,"C,IINCHANIJ,II,I-I:BI,J.I,NJ),IINJUNCIN,II,I_I,ZI,
IlENINI."-"NCI
IIll/rtl"II~II(
If IN]r,ll.OI CO 10 qQO
Qlwl"U 'J\O
~klIE INIUI NJ.NC,IIQ .
wRIIE ,"101 (JVNlJI,INCH'NCJ,II,r_i,BI,J_l.NJI.INJUhCIN,II,"JUNCIN
1.2 I .lU,I"1 ,'J:I,I,e I
aaO CII'.II""t
C
c
C
C...:HYOIlAlIllC CllwIlIuNS LOOP
00 Illn 15=1,"'[SUN
R[IU 1~,lool Illl
RUO l'i,,..q)I.TtHP
~"II[Ib.IIU)IIIlE,TITl
IF lNlf~Plll.[n.11 co 10 860
C ••C•••••I,,"vr IIOll cn~PltiONS
II[AU (~,llOI NJlX
w=l"l:lul~q/PrRIOD
on ~So Ii ......nX
GrAD 1'..1·201 J'.('d,llI,H'XIT,NCHTlD
GLAD l~oIYrl Illlll,Hlllolal,Nl)
Cli L "OU Pll ,111xl T,'JCHTlD,NI
1150 (11 ..11 ",IF..
w~"l Itt,lIUI 1I1~[,T1Tl
860 If I~IFMPlll:lQ.11 GO TO 510
C
C.o,.~V.PIIIIA I IU"
'=I./ll~,·IIl.~.nhqOu.1
"Ria Itt,u1vI
q1~,1l'l,'.l,'oJ""CrloN IU JV"CIIO'J fV4~OIl'TION IIITE.INCHfS,"OIlTMI/I
C al0 "I"""l'OI"JII~LY LVAPOIlATInN 4"0 IIAI'IrAll RATE',.,JUNCIIlJ"to JU'f
C ICIIU"IlvIPOIlAJION,I"CHE3/~O'fT~I RAlN'ALL,I'IC~lS'I1~UII')
00 uau J"I,NJ .
SI,.AREA./4sr
Y·tOHD
'.
00 )00 J'I ,~C
I"\NJ,,~ClJ.lI.tll.OI GO TO 300
If I~O~III,Y~I.Nt.O)CO TO Z~O
williE 1·~"IUI TIYL[,TlTl.
I'AllE Ill,l501
160 11 0 11'1
,TlIlIll'~TA"O
TC,klJ!
I~lIC~IJI.lE.O.OI CO TU Z~O
TU·U,.'J
I'll)00 l'I.lOUOO
"J-I'I'~"TA'~IJ\'.'JI.I8'IO(JI'181JI·T~0'CMIJIII"'0
IF lTA.lI.O.OI GU 'U 280
lTo CO'"II'I,l
ileo yt='llJIOC·,JI
TC•I"I 'I I I IC, Ttil
IF IA1~llb·ICI.~T.O,ol.AND.TC.L1.0MINJ STARCll."'1l1
190 CII"I I""l
a~IJl·TC
wUllE Ib,llul J,STIKll',LlHlJI,~IJi,RCJI.1C,tHHCJ),CMJUNCCJ,KI,K-l
l;ll,Al.lJJ,VTlJI
,F \~U~(II,U~I.[~,OI ~RllE (6,IZOI
)00 CII';T lilliE
)10 FUU~IT \17,ll,FI),0,Flu,0,'IQ.I,Pla.I,"IZ.l,19,IO,'ll.0,"IU.0I
If I~Ulllll,u"jI.IIE.OI "RITE 16,Hul
ll0 'U~·ll 110~U'E •••I~UICIIE'NEGATiVE WlU1H IS POSSIBLE ~I'H AHI
IICIP"fO IIOll STI~['1
))0 ,qudl I~P.,'l"~IAIANI JU~ClIUN OAt,'II'JUNCTION
InPf,"~F/'T OEPIH,"HIN llEV,,.,~·COAO
2 CWl~~[lS "NIE"l~G JUNCTIO""I
II"°TO .'J.
1(:\1 •
llfJ HII J ..,N.I
If 1"C ..l"IJ,II.fa.O)GO 10 190
IF I"Jnlll,'I'iI.Nf.OI C;O 10 luO
wUII~Ib,lllIl 'llLE,TITL
w"l IE Ib,Hul
lao TI·II"
TU=III'\llIllJI
Tl-I£,.HJI
lC"~tPT"IJI
"A"('J\"S"~O
IF lA~~IJI.lE.O.OI CO TO 170
th:l'J.U
Ill)J";U 1-1010000
TUt ',lop,I
I"'Ul,JI.ru'IA'IJltCA'IJI-TOoA,K(jll,ll.O
'F cr<U .0.01 GO TO 360
)50 CO'<lI"'"l
]~O T(·.51JI/I~~IJI
TC"~I"'llC,TOI
I'lAtI,ITU.ICI.GT.O.OI,ANO:IC.lT.OMIHI ST AR I91-STAIlI
]70 CO"i I '''/It:
nil )"0 Kol,a
.....CHI ..lJ,1I1
N,
'W
VI,-"'"-.t...
I .~,J J J ~J ,,
-)J -]1 I l)»1 )~1 J 1 l
c•••~"'~o V~LPC'IY AND DIRECTION
•~Ile 1~,~uOI
Sao Id'"A1 110><IlIJIILT HIND VElOCIH (MPH)AND DIRECTION (DfGRfU CLOCKII
liSE F~nM NnRTH)'/,'CHA~NEL TU CHA~NEL'/)
(II)~1U I =l •r.J
R[AO 15,110)JI,JZ
If IJI:fO,OI GO 'U 5~0
"AIt,rllr.1 PH
..,"1 ',0 II ,Z I •J l
RlAO (~.~~nJ IWINDII,J),"D1N(I,J),J-I,25)
550 luQ~A'(lb F 5.0)
,lU'"I
"4111 Ib.5bO)JI.JZ,IJ."'NOll,J),HOI~II,J),J-I,25)
5bO tIJQ~IT 11~,11115119,'b,I,'bI0)/,lI9~,5(19,Fb~I,'b.O))
510 (WllI'IIIL
5~?crl"'I"'1~
If IN"Hrlult"I[HPISltNl[HPlbl,LT.11 ~Alff (b,5901
59Q ,~Q~~I (II.'I.'LU~AND nUlfLO"DA1~1)
.00 IF IN1/HP(~),lO.I)~n fo 670
C
C•••;l~FLn.A~D OU'~LO~
no blo J=I,NJ
'lllllJl=O.O
'l'lll()J.o.o
.10 CUl/lIt'lIl
w~"E ,b.~lO)
bZO nW'Al l'oJIJ',CqoN INflUH,C:fll
Il'l b~O J=I,~J
RlAO ('.~}~I ",OOIIl,OOOU
6}o flJ~""I h.l'10.Q I
II 1".1 t.~I 1;"II)I>bO
....'Il ,~.hU,n ",U"IN,UllOa
bUO F'lw~AJ llR,f 1~.l,fIU.ZI
11"(""11111"
1','JI"I:'H,;,I!
h'lO r J 1'1'l'llll
"....a r II·'f •'ollL
C
1;11.0
IHI I.!'f)~lll.!,0
"=",li 'Ol \bOO ••PEIlIODI
lll"l=n
nil ,,10 '=I,~O
n')II'uJ=I.JO
~..'"l I : "J •n •0
rlll·JI I ,J I •n.0
"
G~OUNO MATfR 1~'LO".crs'.
H Y D II 0
~"")OXI''NOONA"Ttll~IHAll0N Out 10ao'UIY )J
C~OU.D HATER INflOW
OO'b~O J*I,NJ
QGIN(J\·O
IjRlll rb,b'lO)
'Oq><'T l'oJUNCTJON TO JUNCTJON
/)0 110 Iq,NJ
RLAD 1~,luOI JI.Jl,C~OUND
'UUMAI 121~"5.01
Ir IJI.\,r ,01 Go 10 110
williE Ibo1lo)JI.J2.GIIOU~IO
rUlf"o (IQ.1I2.f I".l)
nO no J,I=J I,J).
ll"r"CJ.lI=fo"U'JNO
ru'"I "Ill
If (NlfH~lbl.lO.I)GO TO Oao
710
600
690
10(1
710
7)0
hO
670 Tr (NTtH,(".[a.l)GO TO '40
t ,
C••IO
c
C.~.~S10~~wATtH INFLOW
/'10 1S0 J=j ,2 ..
750 IlSI"lu,.JI'O •
on lbo .I=I,NJ
71>0 ~lJ JI.I J i =UI
"'II H ,b,710)
770 fUR~"l'OJUNCTJONI,Tll,13TORH WAT!1l IN'~Ow.NOUIl AND ,~Ow,cr"l
nil flO J<I,uO
R[AU C~.1601 N,ITN(I),r-I,12)
1lI 0 t lIill1'1 II ~..US.0)
If IN,,'J,OI GO TO IIlO
~['O (~,7ROI 11N(I),lcll,lSI
190 rllll"q Ill'5.0)
TA .0
(II)(lUll l=ld5
1l31NIJ~lldN1I1
1100 fA=r"I"lIl
1l~INIJ.lbl"A/25,
w~II£,b,6lul N,~I,Q'INIJ,II,I.I'2')
elO FOQ~~I (lq,/lllII','h.I1»
»lJINI"i'J
eZQ CO'IlI"lIl
Olo rll'.'IN"t:.
$UO CllOj I IN"t
If 1"[~lf.L[.OI GO TO ebO
w~1 H ,b,6';01
e~D 'U~"'l 1111,10lI0~"OP
I PI'r:v 1,),,3 lllf/nH 1,11,1 0 CI Olf
,'1)"
ebO rU"I '''1)[
"I'HD~lWL,""1)
H Y D R 0
nlP(J\-o
no 510 I-,.ll
R(lD (~.10~1 J,.JZ.[VAP4
I'IJI.L(,OI CO TO 520
PEAD 15.~501 l[v.pnIJI.~AI~UlJ).J_i,~')
ww'I(I~.a911 JI.Jl,EvAPA
f ,)Q ~A I 119 • I 12,,lO.21
wAlle ".aRO)JI.Jl.EVAPO.~AINO
FJ~~AI (19.lll./15x,l~F5.1»
t..I!.\'::I
",[VA'!(,II&Jl
~~vA;>I,.ZPJZ
,A.[YAPA.'
1)0 5?O Jq.~5
fVIPwl"JI'"
['A~"II.J):fVAPUIJ).F.RAINOIJ)/a)lnO.
ClJ&J r )lillt
CU'In ~'J~
IF l"'lf"~(,).[n.l)GO TO .00
'490
c
allO
c
C HO
500
C 500
510
520
5}O
,
rJ
I
W
VI
--..
vl
V"\
.,
H .,D R 0
H .,D R 0
C
930 vOI"I'n,O
If IN~O.ll.U'roo 10 105U
hu I~Qn I-I,HJ
M••IIIl',!I I
10qO nlll·IJ~IIJI",11J1
~411[rNlO)IV,(OlPTHuIJI,VUlIJ),.I,OIJI,OINIJI,aIJI,aC,NIJI,QUU(J)
l,JDI,N./I,IIlUINI,AIlINI,VUIN1,Nol,Nc\
c
C rV.lPO".IIUN
IlU Yllu Jel,IIEv
,11:lll VAptl,I I
,I ~:-,l ~."I I ,i?)nil '1'1V J:JI,Ji!.ao fV#PIJ\:fvAPRll,IUI
WINO 'nllr.E
Oil '150 "'.I,NC
,"1'101'11-0.0
nO HOI.I,IlUN
Tf 1~I'Inll,llll.l[,O.O)GO TO '70
JI="·'"llll,1 L
H ......'"n(1,.!1
OU YI>U "':JI,J~
If "'JIIII(P',II.lll.O)GO TO HO
"l:NJU',CI'I,11
'l't:"Jw.,I 'I,~I
~O='I"'."-~(I·L)
vO:Y(II"I-rrrlll
If (A~'I~OI,AdSIYOI,lE,u.oj 00 TO ,~O
FWIIIUlyl ••wINotl,IOlooZ-CUSIWOJ Hll:IO)/5f.-ATANZCXD,YD))"1.![-.
[n'll ""lle""I I HIll
CAll lIyNfllJ
If 1I0:lI,IOJYj co TO 1050
f=~'lfJ'T 1'1.11'[111')
011 1'1U J:I,HJ
OEPAVlIJ'-~[PA~lIJI+OEPIH8IJI
ll!P '''urJ)'''ll'IHIIIJI/"
VOlll I J \"V III UlJ IIF
J3IllJl:~SU'JI/F
'90 (O'lf Illlit
OlJ 10110 '..I,IIe
1)1\I"I oMl 1"I/F
H'~l ('''=HAvlINI.l6IN)
'II I ~I"•~I ,n IF
1000 V~'NI'V"(NI/F
IllJ 10jn J:I,IIJ
If INCtl.lNlJ,lI.l 0 .0)cO TO 10JO
f.l=~.U
nu 1~ln ".I,n
If I'IC"AIJI.'_~).lD.OI co TO 1010
Jol ="'C ~t,'"(,I,'<)
10 IOTA'I A , •U S IIII N )I
IOlO 3IluwI./'.0.~.rA.0(l'0/VOlIJI
1010 ClI"'lllllt
C
'hO
'1'0
C.,,e.,•••qao
'150
C ,'C••••ru.~llv 'I"l 3T(P lOor
n~IO~n l~al.NQ$llP
fill'I"
If IIO:lT,IOAYI CO TO '.0
MPHI·-H,I(T
oil q I 0 J <I ,NJ
O[",Hllr JI •O,
VU\IIIJl'n,
•SI'(./1 .0.°
'1 0 r.IJ~'I"..t::
DU 1'U '>I,"'(V
JI°.,lV&Pllrll
.r ~="[~AI'II ,l'
OIJ 'IlO JDJI,Jl'Zo 3UM[V(./leSUM[YIJltEVAPRCI,IQloASCJ\
00 '1l0 Ha l,"IC
nlllNlon,
.I8104l o n.
.70 PRfvII;Jloq.O
M ~~u JOI,NJ
SU"lVUI-O.
JliwlJloO
AS IV [1.1)-0•0
RIJ~IJ,"O.O
oYnlIJ\<O,O
yIll.AH I J I =0•0
n[PAVf IJI:O.O
IlHlIJ\=n,
Ql"r.~1.1'11.·1000
_"hE 1.1,1I=1000
nLl ~A~I-I,l
100 flJGIJ;lI=O.O
Of.'~1U "=l,NC
YSI"I=n,O
aHul'n.O
V.l1I31"1=/l,
J(Hf.I"I-O .0
II S nI "):U.V
VSlll"I.O,O
AlV tl t,i .~.0
nlVll'I\=O.
DAVlIHi-o
Ol',,":n
1),,110'0 n"0 yAvI.I'Ij.O,
Oil 9/)0 ,,,,,PlJEIl
J>./lll."
JG~IJI=II
nfLU'lOtHlaO,O
I)tHII(I,\.n,O
lIOO tiJ'"l'lI,t
C •.C••••OJIlY ll"E ~TtP LOOP
,uU=wnAVlISI
O~10~n II.I,IOAY
IU:II
vJ
~
-
('J
\
W
VI
J I I I I 1 I .>c,1 .~.]J ~J J J ]1
~
-..
.........
""r--...
(
\l.,,,
oz...
u
JI:
0
J...
%
C>C>
'"N""...%Z...-...'".......J
Z --,.... .......
r 00
:::Z...,..'"....
co ..
C>...
-::>-...Co.~c.:.
--.II ••==c.C"OZ~"'"-z%..........--a......Z C
....OI4~~Uc..l''--."
u
~
N
Z
...--
• z
"-......
>--....,..
--"';1--"'..,,..-..~--2;...->wc,..
J'"0",",....,-~%-...-...-..%...z ,
>-..-•nz .....-..
'...-->........--0 ......,>>-c..z &.&.-......'"C0>..
'..
'"-u ::!..,.....'"-...,0-0-'"C>>.,-;:)oz...
-o.o...
'"-%-...
-CI..,.-->..,...->:z
::>-.,...
~c-.
o.
::>-,
;:),
J-.....,
.....:11-
C!'~"a:
WoI_::1:_a:
c::a:-u J:.......--,w ...z
--'C:IC C'-...a..-....._-,_':II-e2.--'JIt 2"e __q
>-11-...->':)~z
~oX'.z.,'-'c '"":::,..L,)u ....._::n..lol:'=_.JJ_
--c %2 =._=_..::::=f:
-"'=3U~..,.,:---z."\I---4':::=-2'--YJ-'tJ"':_ZI:lo.---u -.:=__
cQ 7-cr--..z
»=~">=.%»o~
WOQ-z--Cc..l'.Z'....u-
-N
C>
4>
-...->-.x
~...•0 -...
'"'-::>
0 0a,..I-::4
N
-
uu
--
......
~..a
%-.....
Q
J......
o...
o...
"....
o...--00 0
0_N--
.
'"...--""...-...
>
Cz:•--..,-
"
c
~
7o..
:z:...c-,...z:,
.....
Z...-U-.........o...
..
>...::-•.~
N ..
.....o~_0 u 0
-Z-u ~•
"'.......s:""'%-&W:::I -0
--U%lZ."'"7r:c~'C c
%;~~;:-~a
~-~X.~Z ~~
_~Lo.l':',.,.ClI
~.-~-u ~"~_>C ~---~.2>•-%c-~-w...--""Z'---.0 ..._J:-y-....-.uU":%,.--.;:li
~U II ...02 ~-...&_"".%:I:»O J:~"-2 ••-~_-,.c ....-.·-_>.:.c2 _..,J.----c..~Z-.
c •••-.w u~-=:1'>~...~~....•-'?..,,_~~__c:eo CI c:.7 _;.==.Q.v._4/'.==I.=C e - -C".-c:%_~="'"n ..Q ~.:J ~n II It II .1 :;:-.;:,-"'"":::"'"_.....u .z._
~_~c..l'_=7~~U:~==__~_~__M :_~
..,J.-~~-~-7~4C~~~------~--~--~~~%~~:11~~:]-%~=7:==-__~X
u=~~=~~-~~u~u;:li~:~=~C~-->~~.;:li
C~~~Z--'~4%~>~Y~au~C.c>~,_~~
o...
.....
o-
........
C>o
C>-
..oo-
.......
o...
......-...-...~
>---e ,-_o X ONf\tOO
U ...1.,3 ••••
II..-....•..--......,""-J'-t,
0-o=%~~......-,x'-J -____"z
c-~~-e~~',~~~~~--....-
~~,....~~»-_,"',z ~O,~_>_.>·...:~7::"l.W=:-•
~~_~~_4 u->:--~~zz:~,~~~..z_....I_-,a..Z_t'Ig')C"'lI __....__>:=!'.,.J-...I
.........0 ....-........--'>:r.w....J~.w~_.....':t'.
~_~»~~-~~~--~>e»u _~:c
~~_~~~~'1 C~~44C ""_~
Z~%-~II_~uca~~~o»~y ~-C2-c..,~--,w ~1~~=~I'III'~I'_~ZI'.
~e =---....=.C =::0 Q.l".v.__~_.._._•=c _~_C'
~_u~~_~~:~"MIIII==~==-7>OZ~OoZ>-~>_c:~_o=_~
~--~W>4---~=~r~~~~~~--~~-~~>4~7 __~_»:~>4~~_
.O'~4"~OC~~~~~4444~UO~_~'
.C->:4Cvc->~>a~O»~4~COC-
~~zz----7.7:
00
U ...
00"'..00--u
o
OIl:
co..
0z:
.-I
-
_____.,~~~~,~G,........------------_
c
C
C
C
C
t
C
C
C
C
100
105
C
t
C
C U "y [
sUaqOUTI~[CURVE (.,y,NPT,NCy,NP~OTI
OI~tNSlO~'(~PT,NCVI,YINPl,NCVI WHlRt
~prD~U~Ueq OF INPUI POiNTS ON (ACH cURVE
Ntv.~Uwurp U'CuRVES UN EA(H GRAPH'
..PlUl ••ql~lEll 1(0,•
I'I~PlOl1 D -I,Nn PACt EJECT UR rilLE IS PRINTED.
.CU~Vl.00£3 "OT HAVE VAR/AHlf.OIH,rITJUNS.CHANCE NEXT CARD
IlI U ["SIUIi .1101,11.HIO),I),NPTlil,DOHXlql,00/1'11 11 1
CU~H~~IlAUI XlI8111I,YLAij(bl,TITlt(I~),HURIIII)I,V[h'lb),IUNITO
~(T UP •AND Y SCAll.
XH'~'-\,~[JO
.'11'''I.UI jQ
yH&t.~\.Ol )0
YH/>j·t.OllO
I)U I~U lIol,NC'/
/I'',P T I"/
OU 100 J <I,N
T'ItIJ,III.Gr.XHAX)XHAXDXIJ,K)
"PI,"~I,Lf,.'1l1ll XH/NdIJ,K)
l'IYll.KI,GI,YIIAX'YHAX.I,J,K)
IF ,IIJ,-I.LT,YHIN)YHIN.YIJ,K)
CO"T!'l,t[
nU"_11 jnH'N
OoJ u "/iUI1'X
CALL ~rIL[,PUH.,IO.o,i,l)
OU'"II i ",,,It.
llu"'lli'l'1H
C"ll ~r.ll['~UHy,S.O,l,l)
0'.1 In.,I\'I,"C,/
H.'W reO(I
,("'1,,,1-0"".'J)
•pal,0(J-UlI/n (II I
'II'''1,v I 0 DIIM Y(]I
'I1~.l,O(J.U\lI1YIII)
cU"IINlIl
;O,,"'X lA8fl'AND 'ACTORS
C
C
ccc
C
C
C
120
125
1)0
C
C
C
..
'ICD~IOO
CALL PpLOI IO,O,NCD,NPlOT)
~·I
00 DO ~cl.tIC'/
IF IUPTILI.E~,OI GO TO 12'
.U·K~CIL·'X'I,ll·XHINJ
'Q.V3CAl·(Vl1,LI-YHIIlI
"I'U/NI.NPT\l I
OU 120 N=l,NPUIIl'
XI"SC'l'IX'N,ll-KHl~1
YI·"CAL·IY'N'll·Y~llll
CAll PIN!(KO,YO,XT,y,,~,NPLOII
.J'KT
10'"(Ull rI NilE
K oK.I
CIJ'H /NUE
/lCAq'!
C~Ll PPLOT (O,O,HC,NPLOTI
RETUIIN
(NO
CUll V r:
INITIALll[''lOT OUTLI~r:
nRA~IN fACH CUAVr:
JOININC XO YO AND XT YT
oUTrUT fiNAL PLOI
lllllt,cO"MK I))
fllllK'nUHnul
.lIUII\·...IN
nu I I 0 I'I •10
110 JlAUII,III-LAijll)tOe~T'
.Sr.ALD,uO,/IKLA81111-XHIN)
rJ,
w
~,-w
~
c
C
C
115
c
IHTNtO'I'IT(}J
IIH tyoOUt'VIII)
Yllijlbjol'llll
OU II S 1-1,5
Yl·HI~_IJ.YlA817-I)tD[LTY
Y3CllD~O,/(YlAijlll-Y"I~1
;ORI1 Y LABELS AND 'ACTORS
1 )J J .~J J I I .~..~J I )J J
J ]J )"J 5 i
,.........T)I J J 1 )1
tJ "~,L 0 II "!!,!.!!
IN H~)
lHl IU~""l.I,e
IF IIJu"C IN,I);LE,O)IOn TO Iqs
NL.NJIl.,CIN ,I)"'I.·..JlIIICe'II~)O£lll=P;5·I"II"~)-~IIt~I·~T(NLI.HCNL')
rA'"I~l·Ac~eNI·OELH
ATI"I·.t~l.u.~.e81~I·TA)'O[LH
111,1:A I ,1/)/"
HEAOS .r T'OElT eTfHPOIIAIIILY ~IUAED
00 11~J'I,~J
Tf e~CHAHIJ,').L(.O)GO TO t7S
If (Jc"eJ).EQ.O)CO TU 15S
/f CNC~AItIJ.II.L[.OI GO TO I)'
IF IJCwIJI.fQ,OJ GO 10 115
II •.IC"I.I)
TA~~'I;»
HI IJ)••XlI IN'
110 II U·1=i!I q
111.1-1
HIIJI·"IIJl.A((I,N).SIN(f ••TU)t'X(lt),N).COSC"ATI)
roll I III j~
co",r (t'"[
l.·.."1;,J)
,U"I):~nUIJI-Q1NCJI·QGINIJ)-O'lNCL,IIQ)t[VA'(J).AS(J)
00 IZS ~"I.U
If e~CH~~eJ,~I~LE.O)co 10 110
II=..t'1AIl(J,~)
If 1-J.'II::.NJU'ICIN,1l1 Oil TO IlO
5')"'}.51/'HI.1}I II)
roll t Ij •ZS
SU'ia=51I lt D-l}eN)
CU'l I I'U/E'
HrIJI=HeJ)·OELTZ'SUHO/AS(J'
CU'lll"l/~
CHUH'll .HEAS AT r+OELTlZ
VI::l0CITIES A'1 fOllY
ILO-'AI r.otlT/Z
1110
C
t~•••••••(HFC-fUR OilY CA.LT.~.5 'T)CHlHNlL·
/f (~Nl,GI,O,50)G~TU IqO
v 1'1)•0 ~0
Dlll)OU.
r,ll II)IU5
CU'IlltllJE
IIELV?2~,'VTINI'II,.AIN)/ArCHII+OELi.(~YT(N)••2/RHr)·]l.I"'I.'"'IH
IHI-~rl~L))/lENIHI
VI.=vl"'\'O£Lvz
TEMP=vrLr.A~IN)/I!NT··I.)J'J'J]
QElvl=n.~,eel,/rEHP.z,·A~SIVZ)I·50RT((II/lfNP.J••ADSCVJII ••l ••••yl
II'Z II
OELVI ••5IGNllIlLVI ,Vl)
VIN)'V,N'.oELV,.OtLV2'O[Lr'f~INDIN'/AHf
~1~I=O:~'lij(N)'VIN)'ATINI)
ell"1/NilE
110
us
I.,
C
C••••
120
125
1)0
1]5
Cc.·.·
C....C.·••
C00lTO1~'I,NHPfRQ
TZ·I.OrLlZ
,.I.l'Il!.T
~URAOUTINE OYN'LOCO~~O~ITI?I NJr~,J(~IIOI.A.Ll,101:~,TTeSOI,YYe501.PE~IOO,JG~1200)
It IIh'vr(ZOp,21"LAOe>'O~.ll
eOH~ONlv~D~I JU~I~OOI,NC~~~IZOO,ftj;NJU~eelOO,ZllNQINe~OUI
••n31~(Ull2bll~GI~llOOII?UUeZOnlluINIZnOllAe]OOllACK(]nOI
.'A"I'OOI,EVAPllOOI"_ljOOI,A"znOI,A~~IZUOI.AII'UOI.81]o~)
••rM~I]001.O[P'~'ZOOI,~IZUOI'lrNI]001.RI]UOI,VI'Oul,)12001
.,v0ll,uol.'1200I,~I}Uol.ACIVl,]nul.ASAVfI200IlA5UllOOI
.,PAv[!jO~I,OrDAvEllnOI,OlPI"eIZOOI,FRINne}OOI,~lvEeZonl
..,,"POOl IHI UOO I,OIV[1 Joul lOill }oOI ,IlPI JOUl,llAVll }OOI IIIu"UoOI
, ;pSI I QUI I II 5 QI I Q 0I,H L0 ~f 2 00 I I VAll a I }n 0 I,VAVl(J 0 0 1 I 0"I JQ 0I
• •vUl AVE 12 PuI I VoJl 0 Il POI,vS I Jo 0 i I V~)I IO 0 I I VI I lo II I•vtI e ]u 0I
CO~~O~/113CI NJ,NC,UELr,ntllll,N"Srrp,N1Srt P,l,1Z,OELll,IOAY
••o~"',I'l"",Ptl'·J.ll","'HMP'1II,DLJll11101,1.I.lIII/OIIOI
CU~HON/101 "P~I,.PAr.~oP"I,N"'''I'I[UlIIUI,JP~II'Ol,LPNIC]OI
.,P~IM'~Ol\OliPAIVISP,]OI,PijID,~Ol)ol,~UUHI~0IlNJPLllIC5,1)
"NCPLUrl~,jl,IIIL(IZOl,IIILe201,LT1"l,JTNeq8),NT~L
"HUll!CPAr
ilEAL Lpl
OArA I~I(lP IQI
OATA II'If/I),Ol
01 'OEL T I h.OO.
,,,-I/1,,uO,
IU
C
C••••~E4D'IT I.OELT/Z
00 In J-I,ItJ
100
no I0 ~ti:I I Ne
If I"JII"lrc",I),LE ,01 GO TO 105
c
t ••••••••CMrC-fUq DAY (A~LT.O.''T)eH,NN~L
'I',T.A ('I )fill H)
Ir IQ~r.&T.0.51 GO 10 100
VlI"I'~'O
DI ...)a~,O
r,/1 IJ I O~
CO'"l~"l
IIL'·lIu.,C (N,II
"'H,"hJ"C ''l,l)OELVl.vl~)'II,.AI('l)/AIN,).OELT2.crYrN)••Z/RNf).)Z.17)'I·(H(NHI·HC
I~U I/L,"'''l
vz=vl"i,r,ElVZ
lE~~:~fLI2.A~IN)/H~r'·I.)1»»]
rElvl'Q'~'III./I[HP'Z,.A8SIY21).~QRTICl./T["PtABSCZ••YZJI ••Z·q.·VZ
I ••21 I
O[lv.:.3IG NIQELVI,vll
vII~):vl~),uELVI'OELY2.oELTZ.fH1NOINI/Ahf
QI"laVYl")'A(tll
CO"IINlll
C
C••••VEl~C1Tlf3 AT T.OfLT/~
C••••'l~·S AI T.DELT/q
C
t
c
r-J
\
\.oJV,,
......
\J->
...{)
'.(HEeM P'O~A8NOA~AL YELDeJlJ!!S
DV"'LO
IP'(1'Tnp.Ol.50)O~.TO lllZ
CONTINuE ..
~I J I "".(J 1
rrllo.~E.I?AY)GO TO i'00
IrltlIJI.ll.'u~GE.IJ,II)1;0 TO lOZ
uA~r.fl,r,Ilol1(J)
TL&r.IJ;lloIIME
GU I'J ;>00
,FIH(J\,Gr.R'~G!IJ,lll GO TO lOO
q A"G[I ,I'?I.ti I JI
TL'GlJ:lIulI"[
CU'If I "I,E
SUH FIIR LAI[H AVERAGI"G
SII"'I U"S III [.tr.1l C'CANNEI.
I'(IIn,[Q.IDAV.II.A~O,\IH.E,O.'lI1PEROIIGO TO ""
IF (IO:LT.IOAVI &U 10 l70
00 ZIS J'I./l.1
OfPI"UrJI=OlPltlHIJI'O£PlIiIJ)
VlIlll CJ j <VOlIlC J I HilL IJ I
A5~IJI.A5"IJI'A9IJI
VO~AV[IJI=vULAVLIJI,vOLIJ)
I1 ..Vl(J\'''.VEIJI"I(JI
CU"II 'Jill
I)lJ ~lv ":I,N(
00 1.IQ N0I,Ilr.
T'CIIJU'IC(N,IJ.Lf.OI no In ZIO
Ir C'",CVCNII.LE.ZO.OI GO TU liD
I S I UI'=I Sf II"• I
~HIIE (b,lOS'IH.N,QCNI.RI~I,VINI
rll"""l/'O"V(I"',"Y>lA",e ,uLulln .."A'U""AftLE AT liOU"'",.!
..•1"(,•.t"lltL',!••','Lilli ",['1.1.'C'S,O[I'IH ."',.l
II ''Ftl,HVICIIV .',~,.p,''I"rtl)
IfI191~~,GT.'O'GO Tn 2bl
eUN I I "liE
In
I'Dl
lOOee
C
l05
llOe
n&VE(Nj"UAVECP/"9(NI
V""l:r'41 Ko vAvf Ctll."I(")
U ~:PJ ,",t:....:,.,("I)•If (N )...2
V'j!)('":V~,'J('11 'VI")"i!
RlVU"i=c&VI (11/.111"1
0"('~'rOll«q 1 II'(I,.
"11«q):l II«'~1 •A (")
h "f ( "\="&q I"1 "1('I)
V ~It H ..i =Vl 'I ~('II ,All ~I V I OJ)l
ec
C
Zl5
C
C
C
I r I lU I N J I ,I;T .0.11)GO Til U 0
n"INI=nN(~I~nINI
r:n III ;>l,)
lZO nPI"I'~PI"I.nINI
125 r.fl N II"'IIE
C
o y ~,L 0
"VOAAU,IC A,oluS AT POELT
CI1&'I"E,'~['S 'T r-UELT
'loJGl((J)
T"·"'·Y~~(J)OAXII.Il)
no 150 I"l,.
TAol~1
~N(JI·~~(J)·4KII,NI·'J'l(T4.l8)'AXli·,,~)·CO'CTA'TB'
G~T'J 175
CO~T I "liE
'5'J=·5(J)·ASK(J)'(HT(J)~H(J)
l •...,'},,'r J I
~uw~=U"U(J)~QINIJ)~QGIN(J).051'l(L,'JO)'lYAP(J)'AS(J)
I)'J I""~ol,6
IF (~C~A~IJ,M).L(.O)GU TO 110
'l"jC~&':IJ,K)
IF IJ,~!,~JU~CI~,11J GO TU I~O
~u":;·s,,..a'''I''I
G!/PI l~~
~U",J·S""'l.nl")
CU',r I ~I'£
~~(JI·~IJI·O[LT"U"Q/A3AJ
CO'II I ""~
Oil 160 "'I,NC
I'("JIl"C I",I ),'U.O)GO TO 1110
"'L.:lJU'.C I".II
"","JU"C I",II
(ltL"'O:'"(I'"I NI11 -H INIi)Hl'l ('ll.)-11 ('11.')
P('I)'h/""r)ELI1
T"~(N;"C~(~)'O~LI1
'(1I1='rNI'O.5·IH(Nl.rA)·O~LH
~('I I'I •
CO"I I '''Il
CllwPlJlr ~["SURFACE AAEA',VOLUH!,O(,lH
S111,1 I1E'OS AI T'I TO H AARAY
rFllo,rn.lo.vI TIHE'T1HE'OT
nil l.'v J'I,NJ
IF (IIC"'"IJ,II.t'l.OI GU TO loo
O[LH·....(JI~"lJl
nt.PIHln·ofPIIIlJ"r)[Ltt
'SAJ=A~(JI·ASKIJI·OELIi
V~LIJI.vUL(J)tO••'IASAJt'S(J)·~!1.1i
'S(JI=ASlJ
I~(VYL(JI.GI.U.OI GO 10 IHI
1511I"=151:1I"1
~~Iltl,,"HI P,.J,tllJ),vnLlJ)
IlIl 'Utlf1AII'r".[GAllvE VUl'J'l[E'ltOlJ'lHFI~O Al HOUR',p'r.Z,'AT NOOE,'
II I.,',"lAO ","1.1,'~f.lT,VnLUMf .',r:~.i','CU 'T'l
I el CU'"I'",l
T/'lI'C.II,GI,O,Ol GIJ III I~S
....IHI,.oIvO)P',J,"IJld1(JI
1'10 '"J~'·AI/'('·;'f.AII.l 'uo,ltE A~(A f.PJcnU'llEFlCl)'T HUUlI','7,Z
II 'AT '11"""~.I,"L&lI ""'01,'FEET,AREA ".lV.i','SO 'T')
15 T'J"'I;1("'"
150
155
1&0
C••••
C••••
C
1110
B5
170
175
CC.·••
CA ".It
C
-..t:..
()
('J
\
VI
'",
1 ~J J J ~.~I ..;..:;}I J J J J J •
]J 1 J }..)J ./'''''~\
]i 1 -J !B i~.1JI
o r If ,L 0
rJ,
\..oJ
VI,
.t:.-
2)0
C
C
C
Zl5
ZqO
lq5
Ho
C
C
C
iiS5
Cc••••
ZIIO
Cc.......
Zb5
170
lHZ
Z6)
ZIlG
zn
lOb
VUIN)'V8INltYIN)
SV~TIDlL (un AND 'LOUD
OU 250 J'I,NJE~
leJ(Xl,1J .
Dll Zqg ul,1l
N:~C"'A"I'.~)
IF 1",FU,OI GO TO 2q,
'.1,
IF I"Ju"C("4,21,(Q,1l '._1,
I'IF'(J("),Lr,O,1 GO TO ZU
Qf LUI)()I J):IJF LUllp (J )H 113 I n(H))
roo f(I ?ij~
C1f~u(Ji:O[ijU(J)+AH3(n(N)~
CIJ"4 I I"IJ(
CUrUllllIE
CUf>/T1NlJf
STOAE QUPUT DAIA 'OR SU83EgU~NT PRINTOUT
If llt<f>/E,MPAT)GO 10 no
MPIII:~pHT.'II'RI
l T1"£=1.T'"Etl
SIOH(~lAD9 TU BE PRINTED
OU lbu I:I,NHPIIT
J.1 J I'III :.J I'II I(1)
P"TI-f(LTI~(,I)'H(HJPRT)
eU"T I""l
,TUHL FLOwS AND VELOCITIES TO BE '~JNT£D
rll ~h~1<1,"OI'AI
MC PIf I:r I'll II J)
PIIJI)(LTI~f,II:Q("'CPIIT)
p~,vllTI"'£,ll:vl~tPIIT)
CI)'rll'lllE
CUNT)""L
If IISI/1P.£O.O)ROWIN
~RiJtl".l6i)
F11""ATI'OCl-flm'fL DEPTH AIfD YELOCIJY'I)
wRIIEI",Zij~1 (1,lIlI1,VII),lol,NC)
FIJII"AII~(lb.UIO,I))
wlIJ!f (",Z(\51
FIJRMAII'O"PDAL DfPTH'/)
~lIllfl",l6b)(I,HII),I'I,NJ)
fU~"AIIIOllb,fl,ll)
,WP
[NO
G I:n ..(T G ED"E T
cc••••JUhCllnN DAI'e
llC"O
OU 1)0 I·,,~CHAH
nU UO J'"l
NJUNCII,J)'O
COMPA'i~'lITY CHECK
CO'lIINlJ[
DU 150 '"I,"CHAN ...
a~~OI5;']51 '1,ILlN,HIOTH,fljO,COE',IHTE"'(KI,K_I,Z),OLO'[
rURH~TrI5,.fIO,0,ll"FIOoO)
IF (1I,(l,Ol GO 10 ISS
IF 1",lE,"CHANI Go TO 14S
"flilt ,~,J40)N
rU~Hlr I'U 000 lflHOH •••CHANNEL NUHijEHI,••,'II LAR'ER TNAN 'RDG
IRAH OI~f.ll3IUNSI)
~(TIP
CI"~.II "/ll
IF \II,"',NCI HC.II
C'I'Il'lI,COfF
II tq II).'Il'l
6I N I,.,UII1
RINI""W
~~II~1 :cufF
VINP~:U
~C~l'll=5l0PE
"J 1I1.r.1'1,1I •M I NO I 'I TE HI>(I ),N TE HP (2))
OJJ,,·,t I 'I,ll'H'~O (NT[HP (II.NnHP (2»)
r.O'IlI·/lll
DER1VEn [HAfiNEL O~T4
('IU lqS'j:I.'/C
If I'U,,'jC[N,I',lE,OI GO TO 195
AK(NI.l'117~QOA~(N)••2/2.20&19~
'INI.~I~.qlNI
(10 170 ".I,NC
no 11 0 1<\,2
I fiN J II"C(N,I)•I.E,0I GO TO 170
Jo.IJII·,r.(II,'I
00 lbO ~=I,ll
If 1".rll.'ICHINCJ,K\)1'{1 TO 170
CO'H 1"'J~
Nt XIT"Il XlIII
will If lb,Ib~l N,J
FC)Rt<n I'Or.HANN[L CARll COHPATlBlllTY CHECK,CHANNEL'',n,'ANa JUH
Ir.IJ:J~',Ill
CON'I-'lIl
OU 1"0 J<I,"J
nil ,0"~.1.6
IF IIlCNANIJ,~I.LE,O)CO TV IQo
N'NC"A'dJ,~1
no I7~I =I,i!
IF (J.'Y.NJU~CC~,I»GO TO 1&5
COIl rI "Ill
"lQr",lX/T>I
willIE rb,lAol J,N
FOIIH~'l'uJUNCTION CARll CUHPATIUllJTY CHECK,JUNCTIO~1,1),'ANO t
IHU"jf~I ,Ill
Co'<'1 tlI'E
ell"11 'llll
1)0
JqO
1)5
'45
ISO
155
C
C.·A.
C
160
IU
170
175
leo
165
190
C
C.--'jl.
C
"
JU~CTIO~NUH8[M',I~,'IS LARGER THAN PR
CHAN/Ill.llUA
II
5U~AOUTIN[GEa~lT(NEXITI
CUH'IO",(;[O'4'JUN(200 I,llCHAOI(2g0,8 i ';IlJUIIC ()OO,ZI,NO IN(lOO I
n31~(al,2~I,QGI~(lOU),~~~120~I,OIN(lOO),~IJOOI.ACK(JOO)
j8()OVI,[VAPll~011~~()Oul'~SllOgl,jSK(?001,jTllOO),bll001
CMNllOOI,OrPIH(200),HIZOO)'Lrlll'OU),RllOUJ,VI)OOI~XIlO0)
vOlI2001,YIZOgl,allonl,At~VfrlOO),A5~V£llOOJ,~3"12QO)
~AV£(~n~J,Ol~AVlI~QUI,UtPIHarlnUJ,~·INn()VOI,H~vlllOOI
~~(20UI,HI(lngIIQ~vLIJOOI,08rJOOI,nr(lnOIIRAvlllnOI,~uR(lUO)
p'IJOOJ,a5QIJOQII'FLn·l~uOl,V~"SIJ"~),VAVlIJOOIIUhIJOOI
"VVl~VLI~nUI,vVl~1200J,VSIJO~i,V5"IJOO),VII}00),VHllUOI
CO"HON~MI~CI NJ,NC,DlLI,QllIO,N~9IFP,NUSTLP,T,T2,O(LI~,IOAY
.'nl1!II ,ID,IlHPERII,Illl,Nlll'PIII),11I::llt11101 ,"'lOLJO(III)
a(jL LrN
l)1"Pj9IU~~'G(I)
,'lUi VAl E~C[CJuNII ),~IGlI»)
•I·,..
·,·,, I
NJIO
OU 100 101 ,HJUN
HIll'O:
('\U IOU J=I,8
"C'U~II,JI'O
co"r 1','It
0\1 IZn l'I,'1JUII
al~J (~,IOSI J,~aEA,SLOPE,oEP,Xa'YI,(NT[HP(K),K-a,8)
ro~"~1 11~,2Flo,0,lr5,O,81~1
IF (J,ll,OI Gil 10 125
If IJ,ll,~JU~1 GO To II'
wRllE 1~r1IU)J
'U~H11 1'0 000 LRROR .,.
an,,~jH ~1~E~~ION9')
,Tnp
(lJ'lIltl/lE
If IJ,r-I,NJI ~J.J
~5IJI"~~A
I ~~tJ I .~LUPl
fll P '''ll l 'O£P
_IJ'--I
vIJ,-q
00 120 ~"Ill
NC"~NIJlkIIN'[HPI~)
(0"I P'uL
CU'I'IN"f.
"CHAN'lOO
..JIJ·"ZnO
ll.12·~JUN'2~II'CHAH"I·l~
all 10 J I I,Ij
10 1I1l;IJ)pO,O
lOS
au
c
110
In
Cc.·••
C
I"
100
('l,
w
VI,
......
"{"
I I J I )J I .J I m ]I J J ),ft
1 1 1 1 -1 1 J J
·0 c 0 H t t
1 -J j
rJ,
vJ
VI
\
J:...
\....I
'T1NI"'CN)
I"CONTIN"e:
C .
c ••••oERIVED JUNCTION OAT A
C
flO 205 J"I,NJ
If (~("AuCJ,II.EO,O)GO TO l05
V~L(J):'SIJI·O(PTHIJI
tf 10Ipl~IJI.Gt.0.)GO TO lO'
VUL (JI:O.
Tf IA~(Jl.L(.O.Ol GU TO l05
AHIA-O:
VlJl.u·11 :~,
0')lOo ~'I,1l
N",t"",(.I,")
If 1",1 E.O)GU to 200
A~~"'pIA.~(HI·L[NINl
vUl~MI=vrLU~['~(N)·LENIHI·RJN)
ZOO (IlNIIt'"1
fllP'~I.lI·vnLuHf/.H(A
V'll I J I =01 P '>i I J I•A51 J I
l05 (U'III"lIl
C:5"~II12.21
tP:u
I'lIJ 22')":"NC
If l"UI"'C(NoIl.[f).O)GO TO U5
OG=S~HT(HI~).O~IN)'G
Tl·Lf.,jrNI/lll;
VII'f):,1
liS (IJ"II'I,,1
Ifl"rx,I.GT.1'l1 ~HIT[I&,2Z71
ZZ7 f(,q",A I,'OI'IlI)GHAH (ll[(UIION loIH.\.Tr:~"IHATE un,.out to CHANNI:L."H
.nflf lr.rO"PAlIlltLITYIJ
ALIU H"
C
(NO
/I V "II E R If U "II !"
N,
W
Vi
(hO-~
laS
-"
DO 155 KII_I,e
N~_NCHAHIJorp,~K)
I'INN:LE,O)GO TO I~O
JJOPP·IA~S(NJVNC(NN,II)
If IJJ"PP,En;JQPPI GO TO 150
NJI/..e I H'j,Z I"I 4hS INJUNC (NN.2»
roo 10 155
NJUNCI>J N ,lla-IA6S(HJUNC(NN,II)
ell N 11."lIl
e(J'lTllUll
CliN II'jlll
NJUNCI~,II-·14~5IHJUNCIH,ljl
'111/"e 1'"i'1"1411S INJUNC (H,2))cut.I I "liE
CO"I I Nlll
eUN II IIIIE
OU 1~5 1=\,200
JHQLIl(I.II·JHU\,O(I.21
J H'lL 0( I,i'l <0
If IJHn~:(I,II,[Q,OI GU 10 1'5
[ND OF HAIN LOOP
ellN I "lIlE
(liN I ""IE
OJP=-
1"l!HI~,20QI
20u FU~/1A t (,I CPOSS R[HA[NCf·"..IHnANAl NODr;NVH8U YS.UT["ItA~HQll(
IE NUM»rR (USED IN DUALITY PROGAA"AQUAl"/)
OU ~oo H=I ,NC
OU cou <~.',l
IIJI)HC (N,~K)a I A611(NJUNC (h,KK»
~nlll (1.>,2051 (J,JUN(JI,JII,NP)
205 rO RtH IIIOIl1,15))
III I <!I0 ~.I,NP
J=.IU"(~)
.lP'(J,""
nu 2Ju ~=I,"P
J'.!V~I<1
1)0 au Mal.6
N....c>UNIJ.·q
IF 11I,1.Clll roo TO US
.TOPI··~.lUI,CIII,II
IF IJ.,,~,JnppI GO to lU
JIIP,,·...lu··eIH,ll
ell"I \tOIlE
lllnn~I~''''I'JIH(JOPPI
([)'I TPIllE
efl"11 tHll
(II"I /tllll
nu 25u Jq,IIP
,"""'1
p ......:::IJ
011 "u"K,I •U
IF Il"nIlK(J,KI.LE·.OI GO TO lao
p'I ',•..,TIl 0(lllllO <I J ,~I, IHI '/1
I.H J(:I\A J(0( I Hnu.I J,<I ,pH XI
lOS
110
115lao
c
c
C
190
1~5
llO
215
lOB
220
Zz5
230
150
.155
I~O
165
00 I~o MAIN_I,NJ
".1
00 115 I-I,ZOO
J>J"OLII(',II
I'(J,\,l.O)GU 10 100
K.~d
JU'I(KIoJ
1)0 110 \,-,.a
N.IIC"A~IJ,lI
IF (1I,ll,OI Gil TO 170
JODP'IAUSI"JUNC(N,II)
IF IJ.r\l,J'lPPI GO TO IGO
JOPP"'l,I';(IN,II'F IJJPP,\,~,0)GO TO 165
GO HI I~"
J·.lP~'''.IIJ··(IN,ll
IF (1I1PI',LLOI GO TO Ib5
Jh'lL[llu,ll=JOPP.......,
3V8P.OUTI~E .HUMOtRI~HICOHHO~/GEOHI JVN(lOOI,NCHA~(lnO,~),HJUNe(300,Z),3PACE(11150)
.,I~QU~(lO~,~I.J~OLO(IOU,~I,JI~(2VO).N3TA~T(IO),fILl(bOO)
cO~Mo~iMI3el uJ,~C,DELT,DELTO,N~STrp,~~~T(~,T,TZ,orLTZ,10AY
.'OHIN,IO,N~~lRU,IIU,Hll~P(8),OlOU(10),~fLUUO(10)
1310P-~
13U~"-O
IS\JHL=O
NHA;r'>J~
.TV~(11.'jSTA~
PI
r>O 1)0 L<\,8
.....(..".('IS I All,\,)
1F (OJd LOI GO TO 135
JIJPP "/IV'((N,II
I'(~STlR,EO,JO~PI GO TO 10'
CO "-I 110
10'Jo·paNJUOJ(IOJ,ZI
110 JHIjLllll ollaJnP P
pl.'
n:1 I?u ~.=I ,1\
Nh=~(Hl'jIJ~PP,~KI
IF 1'.....U .01 CO TI)125
JJIjPP~ll~SINJUNt(NN,II)
I'(JJnPP.[l.JOPPI CO TU 115
NJIj'j((~N,21··IA03(NJUHC(NN,Z))
roo 10 ,lO
115 NJuNe(~~,lla.IAU3(NJUHC(NN,I))
HO CO',II'llll
1Z5 CO'.TI''',l
...III'.e ('J,I I-~I A ~~(rlJ U'It (N,I I )
NJu~C(u,ZI··IARS~NJUNC(N,ZI)
110 C'j'III"ul
1)5 CONTf~lIlE
1111
C
C II A IN LUOP
C
I I J J,~_.],•J J J I I J,J I
J )1 j »1 1 1 :~
N U M 8 [A
J -B I )
rJ,
vJ
\Jj
(
.....
-.t::..lr,
200 CO'lTl'lI)t-:
IOIF~I"H_IHIIl
IOll'laIHAt-J
IDlfl>.,-P'lll
IF 115U HH .LT.IOIFI)TSUHH-IOI"
IF lIS I I"L.LT .10IF2)l3IJIIL-,D,Fl
""AXO(I~IFI,10IF21
1f(~.LF.IOI Gu TO 250
,,1/,VQ9
"'~IH Ih,Z~51 t<,J,JIIIlU)
Zq,'U~HlT(IO'Hl HAlf U4'10 ~IOTH 0'1,10,1 'OR EOUATION NUHB[R',I'
••"~OO(',14,1 EXCEEDS THE OIHEIl~ION LIHIT3 iN PROGRAH AOUALI
.,/'PRUCHAH [x[CUTION ~ILL T[RMINATE LATERI)
~50 COfltl,,"E
IS,,"1=15lJI1H'ISUHL
wRllt (b,2551 ISUHT,ISUMH,ISUNL
l55 FOAH l l(16TH(~IDE9T TOTAL RAND ~IOTH 13'15,1 ,THE HIGH 31D~MAXIM
IUH .IO,H 13'15,1 ,AND TH[LO"SID~HAMIHUM HIOTH 18 1 15,1/1)
C
2'0 CD'"1'Illl
,IO="AxO(i3UHH,ISUHLI
REtuRN
E~O
o V T P V T o V ,POT
wq"rl~tlO)lITL
on I)v '01"0
IJO Ic"Lln-,
I'IH III I ~,I .\',)lIeVLlI"101 •101
Ill)fU~~~l I'OJV£H&GE ~E4D9 fUR A TIO&L CY~LL'llll.,I.,tlll)
nu IU')1~1,~JoIO
L olt q
w"lll IbolUu)I,Ld"AV(IJ),J-I,L)
1110 f.l1~"&1 II~,I 10 IOolvFIl,)
14')ell"Tl'II'1:.c
WillIE ,btlqOI lICOLII)oI.IoIO)
"0 FUUH&I ('OI'l.Tln OlL4NCE ~I l4CII JUNCTIOH (C,')'111III,I"'III)
flO lOU 10l,N,'0I0
L:1•'I
w,,'IE (bol'l'))I,L,(HHIJ),J.I,L)
Iq5 FOq,UI lI~,'10 'oIl"O..I.O)
l 00 C1'1'1 Tl "Ill
C
WIlliE Ibtl';O)('CUI.II )0101 "0)
150 FORII'T I'O~YEH&G(YlLO[ITIES fOH A TIPAL CYCLE'IIIIW,I','.'I)
l)1)IbO 101,HC,10
L 0 I'q
~II'IE (~,15~)I,L,IV&VEIJ),Jol,L)
ISS fUllti'I II~,'TO '13t10fll,)
IU CUHIINIIE
C
C
WilliE lbtlhS)IICULlI)"el,IO)
165 m41\q l'OAVEN&G!:.F1.0,,9 FUR 4 'Io&~C;YCLt'lIl1J1d,,'IIU
Dll 115 lel,lI[,10
L:I t q
"1111£Iboll0)I,LdYlvllJ),J-I,I.)
110 fl)~'141 lIu,'TO IlltlOHI.O)
17 I)({I""'4111:.
C
DO 120 Lot,LT1~!
I~O "RilE Ib,I~51 ~UUAII.),p~Tall.,l),P~TVI~,l),'ATarL,ltl),'RlvrL,ltl',
IPR1DIL;l t ll,PijTVIL,lt2),PijTUII.,lt)I,PHTV(L,lt),I'ATQIL,I",,'RlvIL
1,lt"),DRIUll,ltS),PIIIYII.,I.S)
115 '0~"41 IIIM.FU,2,rIO:o,rf,2,rlO,o,;ft~,fI0.O,fl.Z,'10.0,r7.1,'10.0
l,f1,2,rlO,O,f',I)
WillIE Ib,2nS)lICOLIO".loIO)
lOS 'OUM&'110'v[A&G[Nunll.VULUME ICo ,,)I,IIIIW,19,'II')
n(l 215 I'I,NJ,IU
L'~I'q
"Hilt.Ib.lIO)I,L,IVUL&V(lJI,J-I,lI
210 rnnti&1 114,'10 ',IU,IOE1I,,,)
II S [u'n I HIIE
[
C
T"I'Elf"Jbvo"PEHIUO)
ou aI,1/'1,NC
nJ'(N):nPINI-T4
220 ONllllonNINI_TA
wIIIT[Ib.2J~)IlH&,QPlHll,ON(HA»),H&.I,NC)
i25 '011"4!l'Ol'U5ITIV(&HO II[C4TIV['LOW''O~[,c"CHANH[I.',I,I.IIIO
I
tlOU
'LO"Vl
It(5)raS
CH&NNLL II~.'
"
"O&IA
pAI"T FLnk~&110 YlLUCI1,[S
no Ilu Iq,NOPATib
""IlEI~"O)TIlL
~Alr[Ib,IIS)CPAIII),CP~IIJ'I),CP~'II.~),CPA1(1.]),CPA111.q).CPRI
11l'~1
'OQ"41 ('0'211,'CH4,."£L'IS,'CH&N~EL 'IS,1
I CH&~"flIIS,1 C"'l"lilL'IS,,CH.OJN[L'15,/'
2.ttu"VEL.FLO"VLL.ILUtl VEL.
lI.,nu~vn.fLO"VEl ,'/ZSX,'lCFS)IFPS)
"lf P 5)ICtS)('I'S)ICH)I'Ps)ICfS)1'1'5)
51 1/1',\1)
SU~~OUTI~E OUTPUT lNPUINT,~Sl&Cl,NtFLU~)
CO"HUN 11101 hJE.,JEXlIO),&I·',IOi.H,!TISO),YYI~O),PEHIOO,JGHIZUO)
.,R&hG(1200,l),TLIClZOO,Z)
CU~HONI&[O·'JUhlZOOI,NCMI~12UO,6),NJUNCr300,2),NQINllOO)
.,n3INI41,lb),OGINI20U),OnUI20~),UINI~Oo),&IJOO),ACKIJOO)
.,1~IJ~0),EvlPllOO),&KlJ9U)'&SI20u),&SKI200),ATlJUO),"IJ00)
,;fM';1 Jon),OfP1H(200),Io(~OO)'I.~~l JOI,l,fll J?O),vi JOO).WllOO)
"VUlllunl,.llOOI,nl,on),IC'V(IJOO),I~&VlIZUO),ISOI2nv)
,.plHlJoul,nll'lvl liOO).nll""lIll0U),f.I',D(JUn),t.&vl 1100)
,...."llnO),,,I llnO).IUvll JOOI,'lnl Jnu),IWI )')I/),IIAVlI JOU),1Il)1I1l00)
,;1131 JI'OI,II~nllun),~rLIl"li"u),vln:'(JOU),VAYlI )1)0),n"l JOU)
• ,vlll &V[I 2?°),vVI./I I l 0 0),St'll.£I ~1'n ,l r.I 10 1,J),•[II V J,1),liP ,IJ)
cO~HOHi"'T5C1 '1J,1l[,lifll ,llll,II),""~lrfl,NII:'HfI,T,Tl,lHL Il,lOll
"I1HI",In,""l'l.I""Ilu,t"I.'·I""IJ~nlll10),Ill LlllIIIIIU)
CUM"ONtJOI "P ..,••1'''1",1'''111,''''''''''1r..'L IIOI,J'''''IJ''),l"~II lU)
.,p"IHl~o,)o),I'lIlYl'iO,,v),P',T'lIS?,)v),I'I,IIJIII')n),"Jlll\JTI~,J)
..',C"Vlll'"Jl ,11lLlU(I),L 'IHI ,JINlu~),~I:ll.
CUHHQN IL'/Il .1.1~(11),YLIOlb),IITL'112),~Ullllllll,Ylkllb),JUNI'0
INfEClA CPAI
Al4L LrN
OI""NSfOIl V[ATllb,l),Y[RTllb,I),~nqlllll).2)
114T&tlnillJl/b'UH ,ijllflMr,A.'IOJ ;UII"UVR,ij,,~,),,,,1
..b'UH ,UII_~,u"r.VlIlI;"f.IIII1&,UHTES ,}.u"
DATA VlIIII/UIlVlLV,uIICIH,'IH I,A"",UH 'f/,ultSlC
.UII Sf',u"&€,U"I,U"",111.,",qHtT I
HAIUllt1 f/U,UH&L ,UH !I'N,UIIG/:,ij'HIN f,'IIIELT
U~II,u~,,",ijlt I,UHN ,UH HU,UHVRS I
00 10~I.,.N"PR1,b
"llllll ...aO)TilL
10 'U~,uT 11'11 .20&U,IOC,ll£Tk&f[CH INC,''''_,20lU,IO_,'LA/AVErt!:,
IC'L"OA~lll,I,11I qn_,'TIDIL IIyOttOOyN''''ICS p"nGIIIM')
,,~II£(b,IOO)J";IIII),JP~Tlltl),JPATII'l),JPRfll'),JPATll.u),JpAf
IIlt~)
,01l'1AII'OII,U,'JUNC1ION'!'.;,'JUNCTIOII'15,'JUNCflOI'f'IS,'
I JU~CTI')I/'I'5,'JUNCTlUN'I';,'JUII[11ON'15,/'
2 H1UA HlIVlff.lT)HE&OlfElT)HEAl/I/lEl)
]"['UlfEET)~[I~lfElT)IIEIl/CfEEf)'/)
T·n.O
ou lOS L:I,UP'[
TaT,O[1 T'fLU&l",PRf)
HUII~IL \.TnbnO,
~AIIE lb,llv)~UU~ILt,PR't11L,I),pATHlL,1'1),pATH(L,I'l),pH1H(~,I')
II'~"THIL,I··).PRTHIL,I'~),oq·",1I11,fO,2,HU.2,Sfl6,l)
IU
c:
100
110
CC.·...
'05
rv
I
\;oJ
VI,
.c..
~
,1 ,..i I ;.~~,J I J J I t I I I
-1 ("'''-.....
1)--J J J J 1 1 )j 1 1 i ]I 1 1
OUT P y T OUT ,U ,
CHAI/NU,I
"UNCTlON,l
~ORllll'"HORllllr.IJ
ou 25b 101,~_
vERtll\-VERrllr,l,
~U l5S ~cl,N'flGE
liD 2115 "1'1,)
00 ll':i L'I,)O
IF I~JDLOII~,N).EQ:J'RTlL')50 TD I"
CU'lrl"lIl
DO l.~M:I,NrUINT
~C(~,~\~r~Tt1IM,L)
CO"II "',}l
'-ALL C,,'I'IE PC,YC,"PT,NCV,1l1
"~"l Ib,l~OI INJPLOT(lI,NI,Hol.)J
fOU'lAI IIl1n,]ID,?'IIlI'LOT LEGENO JUNCHOIf,I',.H.O,'OH
••,UIl •1.10rt JUNCTlONdll,lItj.l)
[IJlllllIIll
TIO'l rLO ..PLur
Illl ~~I I.I ,b
~(QT(li=v(IlIIII,I'
DO 2~O ~:I,NlflOw
00 11 0 'l'I,j
(Ill 2 b a L:I ,H
IF ("[PLI}T(~.N),EQ.CPRfILII CO TO !.5
C,)1I11 "ilL
(\II l10 H:".,PUINT
YCIII,lli:p~IVIH.LI
CU'JII Nlll
CUL.C,i>(VE (XC,VC,NPT,HCY,M)
~HI'(tb,lrSI INCPlUfIM,NI,H"',3'
FO~lIll 11l1o,lo~,llllPLOf LEGE"'O CHANNfL,I',4H.O,.OH
.u,u'j Q IdOlt C"UNHELoIII,lItl"U '
[1I1t1 """E
RlTU~N
rllo
IIU
z,..
llli
l!)5
ZIIO
2115
250
lSS
C
C··.lt!
lbO
lb'l
ZTO
Z1S
lllO
·//EN
"NEil
·"'E ..
ONI::I/
°N[1f
oNEw
.NE"
·"'E"
0"[11
··~5
,Ell.II
,(12.11
,EI<!.II
,£li!.4
lVAPIII,AT01AL,tl,lO
TOtll [VAPU9lTIO'l AlTr,C"
AvlRlGE 3UP'lCE APEl,50 'T
AV(4.r.E VOLUME,CU 'T
lvlRA~l DEPTH.fl
IOT'l £VAPQ~ATIUN RAIL
TA:O,
AlQI'l:u,
110 ]19 J ..,NJ
TA :,,,utiL AVlIJ I
AT~IAL=ATJI'l"'A1l(JI
TU'P I.IOIAL
w41lElh11l21
ruP·'1·'llIl9'i
IZ~H
1l9t1
Il911
TlD'l D"il;(PLOT
Ir(JTRI~I,fU.OI GO TO GIO
Oll vil 1:I,b
VlRI(lj=vl4Illl,11
ollu2ol:loIl
>,u q I Z III ='ill;/(lill ,<!I
Oil qlU I1Q,,,,nl
.I'JI~I~)
~C('1,Ij:SPAClIJI
~C(t1,11:~IJI
",1I10h f4
PI
C'l.l (.,Rvt IXc,vC,NPTol,U
IlIJ "12 I =I ,b
Vlollli=VEqilll,l,
DI)uju Hcl,Ilr3L
.I :.1 r 4 ('1)
YC (11,1 )'llA(;(J,I)
pI
CAlL C"RV[(.e,ve,NPT",!)
[0"11',,,(
"
.;Ull.oll)
00 zqs 1 0 1,N"
T,(NCHANCI,lj,OT,O,00 TO 295
q."GEll,lPO,
q ••;(;~CI ,2 I • 0 ,
29'~PACl(II:~'NG[(J,I)~RlNG(1,21
wRI'E(~,lqO)II,Pl~G(1,2j,RlNGE(I;.,,3P'CE(I',I"I,NJ'
190 FJP'1ll,'O"II<l f4 U"H(l!l,/lAXII1UM ttE:lD 'flD TIDAL RAN,.f l
...i(~(I10']f1,l))1 .
..4 I r[I ~I H II (I,Il A(;(I,2 I, TlAG (I, I ),1"1 ,'1J)
rOR"A'c'OII'1[I}f IiINII,UH lNO IIlXlHUII HEAO,HOURI,/11I1110,UO.Z)J1III
-'II
aH
lIZ
420
1112
1110
414
)10
C .•
C••I •
c
C •
C••••
rJ,
W
VI
\
....t...
~
C
'.e v c I
n,l ll'I'I."[V
••~IIII:~PU1"'1
nu 210 J:II~PUINT
,t (J I 1\:"11''Ill J I
2'0 y[IJ,li.n.o
C
C••••IlqAL ,'AC[~LOf
O,)~21 1"1011
w
z
o•·......~:
·......-III
~-'"·'"~"'-~.%
--Ocr
-.....::t
~..c
~)(O"".i:--c.:.::w
'"0....--
o
_0'--
_.o.........-..
tv-
-c.:>-•
c
o
tv-
o
",,0
._P'I-o
0-::»..o
<>0::>
C>_OC>_
-"''''•->......",
~"'z-.-..~r,.>->---",_ •u
"'.,.-::::t::::l-c."
••••')C •
00..,"'0
•...I •
~~~U'\~~__~c
~~..._JIll,•
....•+....::.....J ....
=~:...a-.~=c_~~.._.
~>_~_~=.~>~=.>_?~.c_...»~~_......__-.__z¥___~"~"-"MI1.1 ~_U •
:~40C~4~~~:~~4n.4
C~».~~_·~~~~_-~>c~.
y_4~4C~--__~_--~-~_Z
....,
'"o
~..
~...........
c
a:
~...
%
Q-..
u....
:r:-o
....-UUu-
....o-..
'"c
I
'".....-
..--'"CO-o
CO
oo
o-
C
0-0..o
~O
C-0_
00_-"'r·.~
0-..."Ct'CZ·.-...-cr
...:>---«Ii "·-..-1Z':r _ -
0':)-...II'!2:1
• •••,...X
ooc:co ...·.'"....",l.f\II'.U'!'......._Q""'''''
~~..->~~..:
:...I+.....~-......J ....._':7
~=_~.~~.c>~c_•
w~_~_~_~~>z_~_~~·~•
.~~»-........---I--~C--~_WII"'I_"U".I .I_"._~..=_=:.~C=~~=C11"=~_~~>~~.>~~~~-O~·>II~~_cc.c~~__..u-._2_~
-c..
c....
.."
o..
zo-..
U...
'"'-CO
X
'"o....
'".........
:t...-
l>
~........
'"
uu ...
-0
0 I/O...--J Q..oJ--..
%....
u .0
%-OS.-L %0 ->---.....z-~....c
N_t
~c....·.~N·_C
XJ\.....-""..
-~r ...
>0 -~.-. .---..
X'"r oJ
-U -.
4-.-W~.....,O c2.,-r X-:E.-c0..,,.,,•:t ..""..~'"..
:....z>-4
-':':"::J"
~.......-.,
:>~.,-"\I-"'W '"O'::'Z '"'">->-~
u:rW4 ..".."C-,7 .....c:~::-::t:=;i-oe-.,..>->....
r)U,o.g-e ~.....:-
oo
--o-..
----0 0-..--..............-..........----.. ..--....- -
o-..
•"'--CO
..-....-..-.....
~r ~~-u_~~_
2.......4 N #
~.~----"X _.............
..en ~.....lZ cz:a:::
~-~,-~~~.----.......o..n>0>1J"l:>..,.-.-oil oC
"0 _:-0 _=-",...t\I......c_----~---~-_~~~00 ~
..~W -~:::::2 -:J -~-..-.I - - - _..U m%O =~_~__c--..~~~
-<_~__c =%Z ~~4~~~~
O~~~.~e =~O~O~~O---~...
j~_.0 ~~~>~>~>x=o ....._~---__
~%%~~~-~-~cce_~o~o~~-
tL ......>-.....- _- _- _..........l"\,I ..,.--~.- - - -..=-:r C"')tr <II -e _ -Q ~-CC ~~..,...r::",,",,I.f'\l'"'='>C',...e e ....._ _...~..Z --
....'::)c .....::1>a_tl J'l _n t'\I4:J I\.l'~""\l..Q ~..,...a~_t'\I.."..__=%_~_~_%
7.:"'Z~""'O*N%--1:-'--c __c:..-0---_...............'11',..)110o 1.V:a:V)""
-0.:>'::t ......::"•..~...,\IJ ..."".J ........w ....,........L6J.-I ...._ - - -:"..._-"~:")-J -,II -II -....,W......"'"__)0'"oD _ooC 4 •:-<:_.....::_~.c._.c.===~..c _II u::.__#"Ift-=
~2~7n~--~--=-_._-~=~-----__O~__:~-,~_ft_~%
0020 l.L.:......,-....-..._-~C'-......:=-...J=W---""""....·..............:::::'''''''~--:!::...~.~--.:c~T~1 ...~-r-.~--.----------~----~~=~T __..J
~X%r~-C-~___ _ _ _~~~~--~=~~2 __~~~-Z_o
~~-~4~n%O~I'~~~I.~~~~%~~~=~~~C~%OC~~~~~__~~_~_~_C~%
~uQUC--~~~-~-O__%C_~~_~~~~uu~3~~~~~Ce~4~C·C~G~u~~
0
~-z:>-..-•-0-
C...>-....--...
0 -0 a:...:;l-•~~..
~-0 -.....
~..--..,
IL ~
0 ...
L -~
.-
."•0 '"0 V"'OU'!'D """C'~C-C''"..It'l 0 .....-'"t\I~"".:r I.....t/"l.~-...'"..~~...--:-
-
('J
(
w
VI,
......v,
()
ece
100
c
C
105
110
115
Izo
C
C
C
cc
C
C
C
C
US
1)0
C
C
C
C
\]5
C
(
C
C
t
C
:I C A ..r:
$U8~OUTI~($C~..r:(AA~Ay,Ax~tN,NPTS;INC'
DI~lNSIUN Ak~lY(NPT$),INI(5'
OA'A I~T Il,q,5,O,I~1
'NC'·I'!lSlt~C)
SCAN 'OR MAX'AND "1M
'''"~'lORAY(11
'~fI~o'RIlAy(1l
00 100 N0I,NPI"INCT
TF C'~,••LT.INqAY(~"A~AXoARqAY(N~
I'('''I~.~T,AARAY(~)1 AH'N.AAHAYCN~
CO'";"1'£
"(A~•••A~IN'120,105,120
IF Cl>1\N)II~,I~O,IIO
''1I'''Q 0'~I_:l'O'AHAJI
(;~10 \~O
''''-'0 0,"P..:i :OIA>1JN
CO"1I NI)l
tOM,UTE UNITS/IHCH
RA'l·(lHAX.AHIN)/AX~[N
SCA,,[INTERVAL TO
LEU THAN 10
ldLOlilO(AAtfJ
...A
"(A.I T.0)N'''O.''"
~ATE:",lf/(lo••oN'
l'lllTE~I.00
,INO NEXT HIGH[R IHT[AV,..
/)0 Ilo 1 0 1.5
11 (~·INTII)IJ5,IJ5,1,0
CU'ltl'<IJl
l IS N[XT HIGHER INtERVAl.
~ANCE I'SCALED B~CK to 'UL ..·StT
l°I'JT ( , )
RA~C£·'LOIT(L)OIO.·ON
I'(INC.LT,O'GO TO 1~5
5[T UP POSiTIVE 'TEP5
KO'HI'I/R~NGE
IF (AHIN ...',O,)N.~~I
CHEC~FOR HAX VALUE IN RANGE
I'C'-,.,CT.IKtAXLEN)oRANCE)GO TO 1~0
c
C
t
IU
cc
C
I.,
150
155
I e A L (.
tONPT$~JNCT·1
AARlYllloKoRANCr:
to'-'NCT
~AAlY lJ)0AANGF.
~[TU"~
t'OUTsiDe:RANC[.Re:lr:T I"AND N
L°I,OI
IF 1~.I,T.II''0 TO 125
I,.l
~.N_I
GO 10 \25
SET UP N[GATIV[ITtPI
Ke '~I.ifuNGE
IF (A"lX,GT.O.)~.K+I'F ('"IN,LT.(K.AX~[NloRANG[)GO TO 1-0
",,<CI.NP,,"
lRIlIY(')=~."ANC[
,el_'"rl
,RIlIVII»·QUIGE
REIUNN
"'''Ill rb""~)
FOD"ll (IIIOX,'NANGE AND SCALE ARe:ZERO ON PLOT ATTEHPT"RlIVIl'l
E,<0
.~I..~1 ~I i J 1 -..J )I J I I ~~J
J 1 1 ])]~J 1 j 1
..,
('J
150(
\A U,
vt t
\
---U\
c
lou
105
110
lIS
!ZO
125
lJD
115
..0
T lOt ,
~U~~QUTINE TIDcr 'NI,"AX",NC~1ID NHICO~MOU ITIOI UJE.,JEXIIO)'A.~,101:~,tT(50).YYC501,P[RIUO,JGW(lOO)
.,QANC[IZU~,Z),TlAGI2UO,2)
nIMt~'IO~lA(IO),X.IIO).,.X(IO,IO).OXY(IO),MNC2.)
DATA 0fLIA,N11.N.IU.OU~,l••'
IF I'll >.(.~)GO 10 10~
00 100 lal,5
J.r•I
"1''<''\TII~I)=ll,'1TIII·rTIJI)/U.
TTI~II.0.6~j50YYIII'0.lq.5.YYCJI
~I=..I.j
11l tl ll,IIIllltTTlJlllZ.
YTlNII.\YY\II+,YIJII/Z.
"'Is'll.j
'II~I).IITIII+l.·'T(JII/O,
TYIIIII.O.IQo'·'YIII.O.aSlS.YYIJI
CO"I I ~.IIE
Cv'"r !"IIl
I"u liS J-,,>lI'
I"u 110 .'I,NlT
,liIK,.I)OO.
PIJl:/I.
30(.1),0,
.1)Z"I I"l.I
DU lJ~Iq,'l1
Ill]Ii~J"I.Nrr
fJIOILnA/(J-11
FJ)"lfl"lJ-"JZI
I'IJ.ll,NUI GU 10 120
xilJlarUSlIJl.""1111))
roLl IU liS
JiIJl'~IUIFJ1·~.TTII))
1 F I J •r 'I,I)l X1J).I•
,lTIJl.SIYIJ)'.XIJ).YYIJI
nu 1.10 J'I ,'<TT
nU 11J .'"Ill1
3.il~'.IJ·3ll(~,J)tXX(K)·XXCJI
CUIlllul)l .,
,,'0
11'11'1
Oll'UiaU.
no I~O K'I,NTT
:\U"'a'l.
I'll .as J'I,14H
IF IJ"fl,.'CU 10 IqS
~u~03~~-AAIJ)·SXX(~,J)
CUIIII Illlf
~uHoI5"M.51fl1"'II"XXII(,to
nlL"u~ISU~-AAI"'))
Ir l~ll.r.I,O£L"AX)DfL"A.·OfL
UI~I·.W"
n I I I :.Gt .M All T)1;1)till'S '5
"IO(IIU ••G1.DElIAI CiO 10 1-0
CU"II"1I1;.
,IDe ,
DO ITo J a l,1
1'0 lXIJ,,.,,,)cAAIJ!
Ir I~CHIIDa"~")GO 10 ZIO
w~IT£rb,11S)JfXINNI,IAx(!,NHI,I_j,71
17'fOQMlT 1 1 0 TIDAL COEFfICIENTS fU~jU~CTIONI.I',/7'IJ."
will If I~",11I0)
1.0 ruRM&II~tHO TI~E OBSERVED COMPUTED 01")
II(SoO,
IlU 19'>I"I,N'
~".·=O.
1)0 1'10 J=2,I<"
FJlo'LnAIIJ-I)
FJl.FLn A1IJ-NJZ)
I F I J •II ,11./Z )GO 10 I n
~U>i=l.'~'AA1.1 I-COSlF Jl ...."(I)
rou If)1'/0
las SUII.3YM'&&IJI.SIHl'JlOW.1TCI'1
I"ClllIlI'",l
~UIl.SU""&r I)
OIFl ,s'j"·nl')
AE"~Lf"lhSllllrfl
/95 I<ul If.1"'0.2(;0)TT(I),VY(Il,SUH,OJ".
loo '(JRMAl l~llo!.~)
Will II ,'<6,?05)liEs
Z05 'U~...IT l~hOl~IAL,lOX,'I~••1
DU 102 Jea.Zb
TA:/lU,IlJl'"
"N (J I •AA l I ,"'j)
OIl 70Z "2.11
TIl'I-1
10Z MIlIJl.~NlJ).A_(I,NN).OIHI1A.1~I.AKCJ.S.NN)'coaC'4.TI)
~il1 TE (610'11
."FUR.UTI/,20X,'5U"/14RY Oy HOUAI)
~qlTf.lb,7U71 (I,HH(II,I-I,••)
101 FU~/1AIIIOIIJ,fa.l)1
~10 CO-IT 1Nuf·
C
A(TURN
(NO
APPENDIX F
'2..-35-1':)2-
-
j ---~1 ]j ]J )J jl\-]j ]]I 1 )
c
C no 7~O ~CYClol,~HYO
"CYCH ...CTCt
,ATOXYI(.t)'lq.S5J~.Q.]8lI7.Xt,.g2~d£.).KAK_O.'~5.Y.CI.b~'E ••·s.a.
Ib[·.·A.~.lq~l·d'X'()
CAll I"PlIl 101
IPe~OZ?t1~lLI
If 'l~fHr..ll.l)II'£MOol
In£L'lolll UU
IF (IOfL.LI.11 10Eloi
A II U A l.
tALL ""PUT I I)
c
CALL Sf!lIP
C , •
c ••••3fT UP fINAL ALPHA "ATAI~
C
c • •e••••DISPEH,ION coEr,
IF IIEr.LI.ul GO TO I'D
"OY"·I
ijO 100 N'I,I.C
IF INJU"CCN,IJ.LE.OJ GO TO 100
IINI·Cr.IINI·CVA~SC"I.VSCH))·CRAvt(N).R'(NJ)
£E p.I;1 I "I
nlfl'll.t£IN).ACIN)/KLLNCN)
100 CIl'AT I NilE
nil I I 0 J:I,NI'
K :JV"1 II
SAL II-\.TOI'(KI
AAIJI<n.O
110 "'ICJI=n.(I
nu 110 Il".loIEE
r.ALL SF Il'P
CALL fn~"I~ALT,~ALTIN,~.LTEK)
CAI.L SnLVl1 (SALT)
1111 I~U 'jEI.',e
,1I.'oJ1IJ./C (",II
IF (J1:lll.~I 00 TO 120
J7.=!dl'··C (II,21
,1I=JII''lJII
J7.=JIINIJZI
~X;A"5(5AL'IJII.SAlTIJZII
lll"I>11~I.cr~I'I)·S./IL£NINJ
£t..~A Y[I'll.H I'll
U I '.I •,f(I III •11 I Iq ) •0•5
nlF (''l.u 1"I.lCI,nIlLENIN)
IZO ClI"''''I,l
If 1"N:"f.HEI CO TU 170
wllllE (b.1 lUI "~
Ilo Foq~AI II~I.,OX,I CHANNEL olSPERSION C:Ot"ICI1NTI,'0 ,T/I(C (LA"
I I ~(I III ~AII0"Sl')
wHI rE I""QU)(II,EESlVEIN),UI~),Nol.~l:1
luO FuR'HI 1'>(!ln,2HI.Oll
wH/I~10,,',0)
150 fOR ...,A!1".Inx,'STEAOY SUU:SALlttin,PpJlJ
WHilE (b,InO)IJ,$ALTIJ),Jol.NJ)
11>0 'u~H·1 ISIIIJ,-JPfd.Z))
170 rO lll l""Ec...;£5Tl'lAl~C"LIIIIICI"
no I ~~J J.,,"1'
"=JI,,,(,J I
I;;H"P I J ) •''I.'J
TfIJJ,II'uHIIIZI"1
If I J J I ?I UI H "CI I ..I
lao OSAIIJ1=SAIIJXYCTEMPCJ),SALTCJ))
I 90 COli I I "Ill
'lOY,,'IOTNI'ICYCti)
A 0 U A L
ADUAL I'A ~ATHEHATICAL HUD~L DlVE~OP[D TO 51HULATE
THE MATl~QUALITY OF AN r'TUA~Y.
O[VElU~H[~T nr THl HnOEl MA3 UOHE uNOEq THE SPONSORSHIP 0'
THE CAlIFOR"IA 3TATE ~AIEH HESOURCES CONTHUl dOAAO ANO THE
NA3SAU.~Uf'Ol~RlGIOIIAL PlANNlllij BOARO,Nl~YORK.
6001Tln~6L H~0IFICAfTUll3 ~EHr HADE O"OIH CO~TAACT NU.
DAc~aS~7~.c·O~bq,DEPAAIMENT uF THE ARHY.ALA3~A aISTHICT,.
A"CH~~.Gf,ALASKA.
~ufslln~S RlCAROI~G fHf CO~PU'[H enOE OH tHE HODEL APPLICATION
3Hn~LD ijE DIRICleD TO OO~ALO J.SHt'H,tEIAA TrCH,INC"
3100 ~T.alARLO ULYD.,LA'AY~TTE,tALI'.,9u~q9 luIS·Z6).l77IJ
CUH>tO~I'lluG,ll.nuC IZuO)
CO~HU~/~IGI "C~L"I~o~lnl,~JU"CIJUO:ZI,JU"llOOI,XLlN(jOQ)
I,ALrHlzoul.ALPHIIZvol,AAIZUQI;fi~12uOI.O[IA(200)
ZI A3.VE II 0",2 II ,A(l ~r.Z I I,HP"lI2 0 0,Z II ,H I Jo 0 I,AS I ZOO I
1.nIFll'lOI.(l(H61 ,V~I.lOOI ,CUl/12 0 UI,1I1 JO\l1 ,Yul (2001,lOOOJ
u,r.CII l~nl,eC~ljQOI,ijlPI2001,UAvlIJUOI,HSllOOI,VAbSI1UOI
COHHO"'/'Il"ll JIII.I"!loH •.lU'II;I"lo!ooi ,."I'lAIIOu I ,Q1'1I2001 ,UI:INliOO)
I,'OSI"I I~QI,1'11"11·1 I~~I,10'1'1.,1 l'>OI.ClJL TI"II~OI ,CI.ILfINII~OJ
l,10:)C I"(I '>0I d'W'1I "I 1'>0 II IjX YI "1150 I, I EIt"II",I OJ 0 I
l.T1 P l I ~I ISo,~I •~II ,1'1(1"'11
~,lIJ3Il0QII"II'.I?IJUI.ln"'(2110).eOLII~oOI.(;IlLfllOOI,unOCliliOI
5.A'ln'lI l r n ),'11 Y(,1001 ,r r 9 I 211 n 1• I YI'l I ~u 0,III ,I Y1'[DKII.0 ".U)
6,n Al G I Z 0 II I .111 [II(l 00I ,n~r.l'1 I ~0 0 i ,P'IIIlC OK I l 0 \I I,'1111)',II~I Z0 \I I
7.r Jl I fl ~Il n u )I [IIlf (h I ~/I 0 I •u:,AT,'0".I ,III '114 (lO 0 I ,nt.Np I ZOO )
COHH~~/AC~/I'Plt~lql.lt5(ILIZUO,ij).UII~121
CQ~~nll/~'C~1 l'IA.fI2n,5),FACI~HIln,'>1
COHt10·1/1115C/',J."C.',~,'H1f",·/'I·'!J.I1II ..,l>lL l,IPAGE,""iYll,ID'Y,lOll r
I...J~.'lt ••PlUI,1~'IP(lb).Allr701.IUY~I,>ZI,11'LIII.O),IlllClol
l."CPllhlf,>n,IPC,(;.LI)IY,'1cye lt •p.1u AL
C004'10"i~1et ',UI)'J"O •.I il lJlI 'H)I'UI,!lUI'II'0),UFLr)UD I'0 I,xu (10),10~EK 1101
I, TUIt,f x I I01I Ii1 I P/1 I I U)dill (I XI I0) Ie OL r I XII 0I,tlUII t Lx I 10)
1.'l1)[,"fA(IOI.IJHftIIOI,lll1l·(XI,ul.IYrl[XIIOIUII~ALnXII01
COIl ..lJtl/l'l.II r I I P LnI 1111 , CP I I 0 I,b,II 1 I flAY I 101 ),NP UI ...I,J"L0 I lid
I.IPI""p~.I"nA1IJl.~lJI)I.PIZI,2\,PHOfAI21,),ul,NCIlllpCU)
2.pMrfijlll,J,lI1 '
r.OHIIO"i ~r II ~A iO,I.•.1';llJ"ll b.Z I•f 0"£110 UI•f T"O I ZoO I
I,FVIlOUI.~h~llq.bl,hl~OA(lOnl
DIH£~3io~(E~AYl 1II,lllll,IE ..Pllli.3ALIIII,CONIZUO,I)
[OU I VA,l ~U II:ES.~fill,YA0 3 I I II,I £F.I I )•~S (III
I.11F.~PIIII,MAVl(III,(3~LIIII,R~CII),ICIJII(J,II.IOs(II)
.,.
C••,.
C
c:
Cec
Cc
C
C
C
Ccc
c:".c....
rJ
\
W
\J'j
\-v,
l.J
A 0 U "L
c
C.:.:DUALITy ~OOP,CO~STA~r HYDRAW\ICe
C
cC.~.:10'IF IISNIPII',EO./'GO TO ilO
I)/j ZOO J'I,~P
H lJI'o,O
I\BI Jltn,O
iOo CO ..IINIIl
I'All 'n~~ITns,TOS/N,TOSlXI
CALL SnLV,'1'0$'
llO CU"II"I'!'
TUIAl r.lll.l'UH'1 II AC1[111'
IF '1~~lrl.',fQ,11 GO TO 4&0
H'INUVII,'_'I,1 I CO 10 QlO
nu qlU J ..,NP
.IJo.I''''I.J I
I A I J ) :r 1)1 T n~I J J I 0 VUl I J J I 0'LP H I I J'."lJ,I )
1\,11.1 I:.cnl Hili (iJ I'VOl IJJ I ulPt1(J I.COl'I JJ)'"(J,,)
cUI<11"I,l
TOT'l 'dlHflGfN
I'(1~~IPI2I,I.O,I)GO TO )'0
011 1''0 J o l,IIP
JJ'JU"IJ I
uIJl:l\.
~II 1 J I :• VIII r JJ I •6E N 'l I J J )
r.All fn4 N rIOIN,TOTNIN,TOTNEXI
CAll ~nlVIT IrOINI
Cl)"II "11£
TLIT AL rlt(l~D'lII"U'·
If 113~II'O"I:D,\)Co TO G'O
nu qOU J ..,'jP
.JJ"·1Il'If J I
'A(JI.",
~"rJI·.vnl(JJI·"ENDIJJI
CALL ,,,II"IIIIIr,TU'I'II<,TOlpl!XI
CAI.l ~lIlV(T flOIPI
(II"1 l'I"t
llZO
410
190
100
1I0tl
A g U A L
c .,.
C••••
19t1 COI/T1 NuE
C ...C••••~PTIO~Al CON'TITUENT,
DO J7 0 1-\.'
IF IIS~IPII.ql,EQ,11 ~O TO 170
IF INI1Y",'E/),11 00 10 )10
00 JoQ J=I,"P
JJ'JIINIJI
'lIJl'rTYPfIJNIJJ,/I.TY'ETLIJJ,/»'VO~IJJ).A~P"I(JI·T'(J.l'
100 ~~IJI:.IlyPlO~IJJ,ll.'VSE'LtJJ,I)oVOLIJJ)'ALPHIJ)"YP[IJJ,I,-T'IJ
I , II, CI nC I J ,
roll ."J ,JO
110 0"H 0 J ..,NP
.JJ'JI,..IJ i
••(JI:rly~rUKIJJ,II.1Y'ETLIJJ,III.VOLIJJIAT'IJ,I'
'20 I\HIJ1'r.lnCIJI
3H CO'lII"II[
CALL 'n""llYI'EII,fI,rYPr:IN(J,J),TyI'EEKII,Il)
Clll ~nlVIT ITYI'EII,II)
IF (TYrl[')(I I,U,O,OI OU 10 no
nO .lllU Jol,,,I'
.1 J 'JIJ'l{J I
)40 crUCIJ\.rYP[OKIJJ,lloTfIJ,\I"VP[IJJ,II'TYP[[OII).VOLIJJJ1:1'/I','0
151\.II'(I,fll,ql GU If'HO
00 JbO J'I,I<P
lbO (l'le 1.1 \'0,
Htl l'u N II""E
c
C••••
c .c ••••
"
~Qwo~QPl~HINC1CH'
00 750 ~C1COol,HOH
wPLOT'wPlflTtI
~OHoLn'Yt 10[10
DO b70 ~CYCO'I,IPlRO
cC.;.:"""EH'TUllE
If II~~IPI~I.[O,II CO TO i90
IF It'OvN,E'',''CO TO Z)O
CAll HET~Ar II,TE~P'
ou UO J:I,NP
.IJ·JU'IrJI
AAIJI.n,no)l8"'3IJJ'·'THOIJJ'·A~PMI(JJ
nlll J lon,00 Ilft IUS I JJ I'IfOII[(JJ ''''TwOIJJ)-U:HP IJJ J "ALPH(J')
oUt CO"I I'IIIE
CALL f"Ii'1 IIE'1P,ntlPIN,J[IIPEll)
C'lL SnLVl1 II[HP,
·nu IU ?l0
1)0 I'U'lr'''I'!'
ll."blJ pLP(j,f ILL:U,'.'Uol
00 l~O l'I,lL
CAll H[IO,T 11,1[HP,
OU l"O Jol,NP
JJ.JIJ'lIJI
,AIJI:n,OO)lAI·ASIJJ)·FTHOIJJ,
~"IJI.n,ooll~I·"SIJJI·fUlilIJJI
lllO CU'lll'o"L
CalL /'11'1'1 IIE.1 P,HHPIN,lEHPEX,
CAll "llVlr IIEHP"
rr Il,~~,lll &0 TO lbO
01''-'u J'I,~J
lSO I[U~IJ\'lllHPIJI'l,OorEHPrIJ')')~O
2/00 I'U'"I'u,f.
Z70 (1)"11'<1,1.
0",HO JJo.,NP
.rdU"I.lJI
pIlH"(J)'I9,~
T'IJJ"I'I,Ol"lIf'Jl,lloql(q(llool
IIIJJ,'l oallN(II·.1
r.TOclJ ",o,U
leo nS"JlJ\O:lAWXYlHIlPIJI,tOHJ))
c
v,
~
rJ,
\,J\/,
f
J J !I I J ,~1 J .~I .~;J I
.....------/
---1 J 1 J J J J 1 1 )t j 1
A 0 U A I.A D U A ..
c
C
IF I"'JI'I"PI,IlT,/PtyCI,[O,O)CALI.OUTPUT (L04y)
II I~OY".l~.O.At/O.IPUAY(IPPI.N[.LniY)GO TO 7iO
,,,OAYIII'I'I<l,/lAY
cc.:.:~IIIHI p'l!l1 Ilf.PUll 0 ...
If III'p,I.D.ul GU TO HO
no 11 U II =I,U
IF ("t(l~P(III,EQ.61 GO TO 710
p"l'p'PIIII
nil 100 K=••II PP
nil 1>'10 Ll.1.1I
1 011'In III I I L •K I
If llor'I.OI ro'l 10 110
It (·.f II.>!I foil IlJ 66ft
D'IIlt A (,l •1"1'.111 =C Uli 1\"11
r,'l 111 1,'10
6110 Pllnttl(1 L.lI'p,Jll:cn"IL,O
1I0l0 CO'"I ',"l
Ton r,','d"'"l
110 (IJ"II:",'.
11'1'=II'I't I
720 C'J'/II'.lll
'.
00 TO 600 .
CONTINUE •
no ~qo J.I,~"
JJoJ\"1C J I
lA(JI:nUONOKIJJ)'YOLIJJ)*T,IJ;I)
IllllJI=n.O
CO".PIllE
CALL InH~IUOO",BOONr~,UOON[XI
CALL SnlVIT (HOO~I
Cll'"It/liE
590
bOO
"10
,ao
c
C.~.;DI3S0lvlO O~VGlN
IF 113.1"/111.[0,11 GO TO 6"0
IF (NO'''.(Q,I)GO TO ,,)0
1)1)b'U J=I."P
JJ'JUN/Jl
U 1J I <vlll (JJI-OROH I JJ I-.LP".IJI
Jjll 1J I ·vOl (J J I'I ~!lOOC I JJ)-0'10CO'<(JJ ~.11"IJ .llt (-aOON CJJlonOOllOI(IU)-
Inllf"IJJI'~iLGIJJII-IFIJ,I)+O~OR(JJI-(O'AT(JJI-'L"H(JJ'O~'IJJ)'I
1120 [1,/;1.""l
GIl I'l ~'iP
6)0 CIJ,,"t'l.l
no b"O J'I.t;P
JJ=JU'IcJI
AAfJI·vl'l IJJ)'OIlORIJJI
IIR 1.1 I =vIIL IJJI'I ·I!UOC (JJ I-UODCOK (JJ \.HI J;2)tl-1l00N(JJ)'1I0DNOK lUl-
I (lll~II(J I )+Oll.G(JJ I)-IF IJ;I )tUROR CJJI-0,4T (JJ H
lIug CO',T\NI,Il
650 r.II'III"lIl
(AI.l Ir'~~IIlH,(J.nN.oxT£~1
CALL SnLVIT (O~Y)
11"0 Col'HIp/lll
470 C,J'II,N,,[
"I THUG,"nu,'11110
IF ('~.I~("~l~.11 GO 10 1110
If (~lJv".lfl.11 GO TO 580
t')ll ~'O •••"t,p
JJ-J\"',JI
A A1 J I •"'In'.n~IJ J I -YOl (J J I-il P 111 (J)-T rc J,II
AijIJ):.~~u~u~(JJI-vaLIJJ)-4LPH(JI-nOONIJJ)*"(J,I)
r;U'III"lll
CAR,JII".(fIjU3 ~oo
IF 113'IO(~I.[Q.I)GO TO ~1I0
IF (,.')v'I.Ul.')cO TO 5'0
00 'icu J'I.".
J I-J'P"Jl
;;(JI=.untO~IJJ)·Y~lIJJ)'AlPHI(JI.i'(J,ll
11'11 J I '·'I(IlI(OK I JJI,VOL UJ)-iLPtHJ I./IOOC (JJ)'TI"IJ,l)
(0"rr '",E
Gu It)~)O
(l,'I1I'",l
f)')'.JIll}J;.I,t'lIP
IJ:J"'"Jl
Ai lJ I ,"un (OK ( J J ) -vOl.lJ J)•TF I J,l)
AIIIJI=n,O
r 11'111111,£
CoLL 11I~/4 IUOUC.1l00CIIl,bOU(lXI
CAll SnlV/T (OOOCI
Cwill ""[
GO TO 1150
tONT lilliE
1)0 ~uo Jol,N,.
JJ'J\J~IJI
iA(Jlcr\JLlo~IJJI·YOl(JJI·T'IJ;I)
/I~(JI'~.O
(U'"/'Id
(ALL '~H~(COLT,COLTrN,CnlT~XI
[All SnlV/T (COLTI
[U"I J "Ill
'tCAl [Ull'U~~5ACT~RIA
I~(1~"IPI5I,l~,11 CO 10 510
'f (,,~yH.fn,l)co '0 Q80
01)uTO Jel."p
J J =J'J"tJ 1AAII)=ruLrO~IJJI'VOLIJJ).ALPHIIJ).i'IJ,11
II~I J )••((Il'l)~I JJ I'val.(JJ )OAlPHIJloeOLf (JJ).TI'(J;I)
cu~r I'."t
rofl 1'1 ~U1
C0'111 "'Il
n~l"~'l J<!,NP
JJ'J'I't(JI
;.IJl c r0LfnK(JJ)'VOL(JJI·TF(J,11
A~I 1 J I =0 • 0
cO\l'I"lIl
[ALL Fn~~ICULr,COLFIN,COL,exI
(ALL ~nLVIT (COl."
r,o'.rll;lIl:
UO
U50
allO
'10
510
5110
Ho
5lQ
a80
010
aqo
500
.'0
Sao
,~O
c . ,c .•..
c ••••
c
c .c.,..
\.J\
V,
-
('l
\
wv,
(
c
('.l
\wV,
f
........
Vi
"
A 0 U A l.
t~;.:,rOR(TI~(~r3rO~Y PLOT D~TA
JF I~PllH.GT.IOOI CO '0750
1l~Y1~PlU'I·LOAY
(10 '.U Kol ••
l'(IPIU l IKI.EQ,O)GO TU 1.0
,.JPlUlIKI
nu 1 lO II_I,NJP
JaJPlOTlIl1
CP(KPLnl,II,K)aCONIJ,I)
73n elll<l 1NIiE
7u 0 (1}~11I "11£
750 (O"llNlIl
IF (INIlUIL.GT,OI llAlTf lINDUAL)«CO NIJ,II),Ka"U),J"I,HJ)
hO C0'<'"<Ill
,PPoIP,,-,
IF (NPP,GT;O,ANO,IPP:GT,OI CALL OUTPuT 1.1)
NPlJI11T.I\PlOT
.I'INP~INT,GT,IOO)NPQINT-IOO
IF (NJP.CT.O)CALL OUTPUT (0)
[NO
I J t 1 "I ,•~J .1 I ~I
J 1 I ]]]1 .~4)1 1 .~..]
X~Jt.·OU"'X()l
'l[l p.OIlHqU)
tl'U(I\'~"I"
O'l 2/00 1-1.10
260 YLA1(1.II.tl£UIIl.O[LTX
t X~CAL IS J~L "UY~~~Or SPACES PER UNIT ALUNG THE X-AlliS (5 ru~PNO'ILESl
t~r.~L·luD./(tLAUIII'.X"'I~)
IF(~IPIS,lQ,2Il .SCALOS.O
C
C CU~v(fl~DS T~(MAX AND MIN X AND Y VALUES,AS N[LL AS X AND Y lAB[L8
C IT ClLL'SCAL(,PPLOT,AND PJNE
C
C ~1~lN'IU~XCNPT.NCY),VINPT.NCY)H~£RE
C NPT'~Uy~rR U~INPUT PUINTS ON (ACM CUHV~
C ~cv.NU~~!R or CuPvE,UN EACH GRAPH:
C NPlOT,pAINTLD KLY,
C
XMAX •llIJ,~)
XHI"•X(J,Il)
YHAX •VIJ,II1
THIN •V(J,II)
nU'pU'"NAL 'LO'
INI'IA~llf 'LO'OU'LI~r
DRAw IN EAe"CURV(
"
c u "¥I
..
DO ~50 Lal,NCII
If(NPTIL),EO.O>GO TO all'
CALL PPLOTIO,O.IOO,~PLOT)
1/•I
'tIlIH-puron))
DELIV.OUI1Y1Ql
VLAtlI6\.Yf4IN
DO Z1 0 J"I,S
210 VLAU(b.I)'YLAUl1-ll.OELTY
'tSC AL'SO,/IYLA8(1)-YHIN>
CALL PPLOT(O,U,q"HP~OTl
IILIUNN
[hO
JOINING XO YO AND .,"
'OR pquFll(S T"£OklCTN IS '"E 'IRS'DATA paiNT
IflNXPTS,EQ,ll1 XMIN'I.O
xO.xSCAL·CX(I,l)-x""IN)
vU:T3CALl(Y(I,ll·TH1N,
..POI'll'NDTlLl
OU QOU N a l.NPOINT
XT •~t.tALl('(N.LI •XHIN)
VI •Y~CAl'(1(N.L)•yHIN)
CALL I'I"LI~o,rn,H,YT.K,~PLaT)
xn •(T
yO •TT
GOO (0'11 lilliE
auo ~•«•I
lI50 CONII'l/I"
Co·
ec
t
ccc
C
C
C
C
t
Ce
"
,OqH Y L.~EL3 AND 'ACTORS
'ET UP X AND Y StA~fS
;ORH X LADELS AND 'ACTORS
XMAX a -1,000
'Hlri.I,OE10
y.U(•-I,Otl0
YYI"~I,OEJO
00 ISO ~•I.'it V
N •HPTIM)
I)tJ I~O J •I.N
Irl 'IJ,M',CT.rMA.
Ifl X!.I.K),1.1,XHIN
I~I T(J,k),GT,YMAX
IFI T1.I.W),LT,THIN
CO~I II.I/t
1~("'PT~,(O,ZI)XMINal.O
If (N<PIS,En,21)XIUX.ZI.o
OV"H Ii •'~Iri
DUr'cl2\-XHA(
plL S~llfl(IIIHX.lO.o,z'\l
I)u"rll \•Y~IN
nU'iTUi •"'AX
CAll SC£lE(UU~T,5,O,Z,I)
0:1 IbO ~•I."CY
N •'·I't(",
Xu"I.Ml •O\l~X(])
rl'..2,~,•lllJ'lK(Ul
VI'"I,.,•OllHy(l)
T(,,,Z.M)•oll~y(q)
CUIIT 1'",L
CUR Y [
'UeROUT1~[CURVEIX,V,~PT.Nty,NP~OT\
oIHfN)IO~XII03.ll.TII01,1),NPTII>
,,ouycC~l,DU~Ylul
COY~UNiLA9/ClAqlll),VLA8Ib"T1TLElil),HOAllll",YlRTI6),IUNITO
CO·~O~~XAXE/N(PTS
cc
150
hO
t·
t
t
c
Ce
('J
I
\"J
~
I-lr,
'\J
, 0 R H
3U8R~UTI~E 'ORMICON,CIN,C~XI
CO~HONi~ISC/NJ,NC,~P,NOYN,NB~O,MlIH,OElT,IPAG[INHYO,!OAY,IDElT
tl NJP,ltE,~PlOT,ISMI~(I~I,ALlI201,IOYNI52),TITlE(20),T!Tl(20)
•:~U~EDH(52),IPtYt,LOAy,NCYCH,lNaUAl
CO~~O~iBAC(1 IN1Af.EI20,51,'ACTU~12ft,51
CO~~ON,EtC'NUau~D,JnOU~PIIOI,Ql~~rIOI,UFLOOOIIOI,XRIIOI"lll(IQDJ
CO~HU~,~IG'~C~ANI20?,81,~JUNCfJ?0,ZI,JU~12001,XLlNI]OO)
.,AlPHllOUI,AlPHIIZOOI,AAI2o n l:UA\2001,n£IA\2uO)
~~AS1V[1200,211,1(200,?II,ILPHA\200,211,ACIJOOI,ASllOOI
.''JIF I \001 ,uIHUI,v~I.l~ul ,UllurZOOI,llf 30uI ,Vlll\2001,Z1300)
.,eC'IJOOI,CCUIJ10I,Q~P\200I,OIVEIJ001,~5IJOOI,VAOS\300)
COI1'1n'I,U II AL'JIl"I'H 20U I,JU"G I"I ZOO i,JIJNA I ZOO I,Q I N 1200).DC 1 N1200)
• 'r.P1Cf.ll~nu I
OI~ENSIO~eO~III,tl"lll,e~~lll
, 0 " H
eETA(JI·eETAIJ)"CO~(K)+CINIIOO'KKI)oOOU(K)_'AeTOftCKK,I)
CONTlNI,E
CONTI NilE
ROUNO'"y ExCHANGE
IFINQYN.[O.11 00 TO 400
no u 00 LEI./lIlO"N!)
J=Jhl)v'jOIL)
JJ=JU"rJi
TA ,'lFLrtUO IL 1'11,O.XIlIL I)·noll f~J
AlP'"I."'"'I -'lPI<A I J,OII ~H'AlPHIIJI
~lTAIJi=HlIAIJ).tAoA~~H(J)oCO~(JJi.c!KIl).O'~OOD(~I_K"(~J
CU'/Il NI,E •
(;1)l:l 1118
ellN I "lIll
~u ulo L=I,I/RUIlND
_Efl=,JtlrtU'I()fl..I
CU"~=."lll·fOL~~ILlt~FlUO~ILI)/IZ ••XRI~I)
CTwll=l.'iI-e EX IL I-I D'LlIUD Ill-II,O-XRIL I pO£8e (~lll U o..U (~J)
ALr"II.~t,MI·'lPHAIK[U,MI·CUNE
II E q ,~F0 I.'IE t.A I KEU I tC TwQ
J.,IIlUl)t,lill"I
TA=~'Ln~Olll'II,O-XqILII.D[1l8ILI
AlPHAIJ,"I·AlPHAIJ,HI·IA
RF.TAIJ\=eETAIJ)tCEKILloUFlOUOILI-KIl(lJ
CU'I TI NilE
CU'II !"IIE
q[Iuqlj
[I'I)
QOO
400
Q20
°111
i!i!0
200
C •c••••
C
C
C
C
C
I"'LI)W,!
'J'J ZOo JEI,H"
JJdJU"IJl
JI=JI'''T''IJJI
H=J'u,~I~I 'Jl
AlTAIJj.r[TAIJI+CINIJlloOINIJJI'C!N(JZ)OQC!H(JJ)
IFlJIII·S I.JJI.£O,OI CO TO ZOO
~~=J'I'.A fJJI
00 au 1<1,5_-I ;H.£l~'''l
If 100,E'l.~1 lOr]TO UO
C
C•••:'O~H 'INAL eUlFFICllNI I1ATRJM AhD CONSTANT vECTUR
.,,=N!I"O,I
I)')QZ .,'1,"p
ROAIJi=o.o
00 q2 ~=I,'IL /11
'2 ALPHAlj,KI.ASAV(IJ,K)
IFI"01".£U.11 CO to 150
niH
1')0 la .J'I.I~p
11>11.,
1(1(tJ-'.p""O
llllJ'r.B1'.D
1'1"...Ll.OI MM.I
HIII,II.OI 11=0
IFflL.r.T.N~)LL.NP
I"I
I)U 110 K=KK,ll
t =I"
/J=JIJ"/K I
AEIAIJ10RETAfJI+CONIJJI-4IJ,!)
BlIAIJj.RlI4IJl.BUIJI
ILP~'IJ,~I·ALPH4IJ."I.AA(J)
CU'"I "'"lronTIl1(0
CU"I'~IIl
nQ I~O J=I,t.P
ILP'14(1,~I.AU'HAIJ,H).A~IJ)
q[TA1J\=RlTAIJI.BUIJl
CU'l TI ~lIl
CO':1 I"I/l
110
100
ISO
160
-.J
IZo
C
\
C:;••
.N
'"«-'\
~
t 'I I !~I !I .~.~J ;1 J I j
zz
a t."'~19_1\1
....,,~--·M::....~===~:'=OQ='':l';:'e:t __.:
f1'V,,"~-,_~uu_"'\If\I-__""",z=_
Z =~z:'=....lL=:=~j..=J,c-c-_vezzu
....••••--.......
-....-•......o
~
.II.
~
c--:
oJ,
0 ......-
•'"'"..~-
"''''
...
...-..."".....
-:r-....
•
z
~
C>
-o
~z:z
-:.
-<;>
~;r
C>
Z
.....
~.,.
Z
.----C _...1_
-----="011':1'_····u -e_t::c._00'::11~- -...;."-.::I _.=l .:.::.ot .::D
-""'~"'U---:'-I"\6-_···:;,:,.·=.._.....-Cc ..
_.c:L~C-C_#"c:J''''_:.~
~'Q.=II-_---_--...,--:::=-:.."-......':2,2'
----=.~-C::.:IiO't'--::.
_.......:4)ooo .....:rr ..
......"""":........=:.-.1.--::-=_0:.1"'...._----y._C'::l.2'II::r:::.....__g:
.."-oCt'y",
...III .z_a....
...I~o.._
-::ZO
..-",
-...
Z%
uu
55.....,
zz.,.,
==-u .....:--
........
..
ZZ
uuzz
~~......
ZZ----
uu
ZZ
::>~......z:::
!tuec:o
:::.....,a
.....co
...
o
Ca-'"
c...
C>..
~..
OW
u
Z
::t
~
Z..-..
Z-u
Z
~.,
Z-..
•-..--·.,
•....-..
C>.,-
~..=-a
Z-.....
J-~
Z........-......
Z....
~
Z...
U-u...-....
J
"-..-......
0-.;;....
0-
o 0 C>
"..'"...
00
...
::t..
Z
I~
u u
.'
'"'"0........'"....
c...
..
!'II
J\
c..,'"'"'"____~,...o,~..,.
-oo:t -'II .......-....O~_e:t_:.
Q'__..._tl_....,.""w.
loW.t ...-,.--,.-------..----"":----"'_~O-,:»-e:t--':'-~_
~--.:Iou-2 .....Q,-__;l_
-'z.z-.;:-"-~=-"'_=''"""_=r ':!.J C .J...__O-,.:>u:=v",C.=a...
_C'C'O:ZC.c..z_C_c,-;
·>-·'"'"'"
'"•..·""c...
I....='"'"~
.........•~•............
.....
X Z
.....0
U u
-J::'X:
.%:.::I'~~""'"
~-.-
-_CO
CO <:>_
0.00 0 ,..,
~oW""0'.l(._N-Pel ..J.-'wN_____w-~_o
_.02%u~--c-00-0_0 __0-00 ---__
oo""'U...ceoo'..-x..o.:::r
_~~-~j ~O~~~--~~__o -N~'~..~-_~e:t e:t~__~
o ~-~_~--~~O~-u~~~
1"\"IIC.-J"CO ..-oxoz _'=>oC~=...~::a....
-_.~>O_O o~:.."w ~~~~~~-z~Zo_>..~e:t~N~O~o~~~..~:c-,~o-uoo.--.....--.:I..:='_..._..._...-~.r..::=
..J.NO 0%--~~~-x---~_-X=~a~
K-""'"o--z -,_.:::11 z-Oe:t ..Z~0'::1'........-e-_......ez_C ._0 --0_-0 -04.:1'n
-~ue:t-.._~u-o~~----~~~u~-z
o,..........o~-_::..~c:._t.>f'\I ex-c...-)C C
OG.~«O~"__~z 4~C~~~-0 -,O-u
~..O=_co-z ~-C~..-~~XX~:
-__N_~U_~~~.._-~~~~--==~~~
ZOft/e:t_.._ruNc::"",,,.>-1..,.0:--.lL z-;z ..--.
::»0 O"C -0 --v ...--~-J'::JV>-~""-~..."""
.,NCIt_.......ZOs,n -wO-2'-0-4 ..---::::".u Z'c..•-OC"-,:)~-~:".=J':::II"-'~..'=t ::r e:t .:::lo'2z .....':J~
_~NOw~__C~~o-~~-c~~-~~0 ~CuO"":)-....>..-2:v __"'I.l':J __C1..:,__':)....""-'...I-J=r::=
........4 -.....-2'- ----..~'1 .......- - - -C·--~-,.t.=~Q .:Io_X;;'a::Q_~--.;)--""--..:::l.-..~....-~_4~..._._
OOA.O"O~lIC.OOC'.~_-,_==....)C_.=~'-".z.=
~o-,c-~_~~~N~..%~~V~-...I~-~~--u .._=~~
-ftol.c.O-O.-l'\,,~-=O:::"""~=.JCA."f'\I ....""'.J-~u-.OZ--O--1:'-,:,,-~..u _=r c-:-=~::;)::;)-.z ..__""_.e::tV"'~~::'_~vZ_.=_u~..:...-...----e:t-=::.r.%'
,=,C-.::J-U_"""'__1:'%O_"'~;Q_~.__~,~ooo-u-,=,:,~~~..
.,-rtJ 0 a..=.0 - -"=...:-=<0 ,oJ....=-)0-0 - - -c C ..2.",-,0 - --:::..._.._ _'2 __P""i.....,'j;,r'l_Z'__..f'V_......_...._0 __:':)'O--f"\:-....Q._":"::..,.,.
..00-0-'-7'-_---l.o.J-Z~CO-c-~-:r----1.u-""""z f'\I
~~~~~~;Z:~~~6~~~;~~;=~~~~~~==~~;;5 ~
....-__O':>_'::l~,:".::J"'._~..:VlV,:,.u.>C..~'::DUw"-:::t.:::
o-oc_ocz=....,l"'\,/rv_.J_~.._~:-:::-..~·....-:-)C'-r::;"~':3a 0
:II:0:.0 ......."'_:1 ..__2::::__0...u~-:Ioo=_r.:::!l--...-....J.-~._....._
11::'"'CL-O--~...-~~.....:u~...,=-:.....':'''oC_.._.....,f'\I-_.......,-.4 "'w
_ --J -"""':3 .;:- _:I _"'il ::J _-....=-0 -~:J -.:Ii a - - -~-.0 -""'"_4 ~..%"'''''-u-..o ..=~;::!-c.....u~.=-..c:~_1"""iW")Oe:t __...-OOaa...r_
....._.c ••OU~-loI'\-O_.._O~_~~_'='-_,oJ_.......:.=o~%-""-C-o:::::ft ...
joX-o _":::O-W"\I ..._-e:t.....,.;:....."'=·ooc...-::'=:tru-O-_..".3:==:::.......c-e
~OUO~--~~---~~~~-~-~~---~-----~-w~~~~~~~.e:t
ZN70rtJoo -z_co~_~=~-~--~~r-..:C-....l_.._.._e:t-w=__~-e:t~......__Z~~~~_............_=~.""":-Z~~>-....:~~f"\:U~4
Z .......-'""I""'l-"'l-'=:'U_~-_O ....Y"U-~......_.-J-"'~""<:UC"-':-';:'~:I"\o!:......-C'C'
~~UX>--~_C~_Z~_~u~-~u2~O~._~U_.......~~~~_,
ZC-Q.-.....-=:"""uQ"."..O_~~...-..J"c.....-~_C.'-·_-::2~'...,Z~0--'"_.....
~xa-'~-uO~~~OD~~~~~~~~~c~-~~>n~~U.=J=xr~:r.~.
-to-.......~...C v ,_~_cr C ................,.2 =:....._et......a."......w.- -~---e ~~:::~-:_-...-
~ZZ Z ~~Z Z ~=nn ..nz ~~"oC~
OO~0 000 0 0 0 7':>z _.-
~rY r rrT X ~~~~-~oc ~O~~fC/rr %r'l:'T X'1.7'Y::r:>.:t~__1_
::»00 0 O~O 0 .=J,C --~-~,,~~4
.,U U·.."..-"..~...-..'..' -....U U I.J'.....v .....U .......r -C.C ........CO ..(,)n ~.cz.
-ftol~~_N~~~~~-f'\I -~_~__~~.
...
::0..
Z
""'"I
..-,
u
N ,.U T IN"UT
CUEr'lel[NTS'",x,'e~AN TO CHAN
C
C
00'Cl 30.1"',U
CI1 N IJ,tl-UI;,IIJ
4]0 (O~I l'IIJl
aaO CONll""E
050 CONIINUE
SZO CONII""E
Nov~'IQYNINCYCH)
IPeYC·.HpJ'
IF INOVN,lo.l)IPCYC-I
pEAD 1~,170)IIIl
AE'Oli,1801 (NI[HPIIJ.r-l,loJTOO'
[\U ~)O J e l,9
5)0 1.1.~lr~P(J)
IF II,.'.8)KHIfE III,ZOO)flTU,TnL
1[£=-.,~Slllf)
IF IN'rMPll).~Q.11 GO TO ~90
'.
C
c.,•.nl'PEH~ION eoef'ICIENtS
WHIlE ,Il,.I>O)
01>0 rOIlMAI 1111,IOx,'OISPlRSIO~
I cl cal)
Clln IU"~"111,IO,2fI2,O)
'>0 u8~"'=I,NC
RE'U 15,uoOI JI,J2,CI,CCI
If lJI:EQ,OI GO TO UYO
wlllll Ib,u701 JI,J2,CI,C'
00 ul)u J'JI,U
CellJhCI
aon (C'IUbC.
a9n eO"'INI,IE
C •C.,••~E"'HI)hOUh/),qy
•PlAO 1~,IOQ'NfiUUND,IJ8oUNDCJJ,JII:lO)
DU 510 l=I,~HUU~O
nfJ 'jOU K=I,~P
T'(JlInU·'OII.).NE.JUNII\))00 TO SOo
Jl:Iflll"U CI.I CI(
1;0 1"~I °
'SOO CI)'1IIIlIlE
.,I0 (1)"III'I"l
qEIUIlN
c ,
C,•••HVDRnOyh_HICS
IF 1~lf~P(IOI)SaO,~80,51>0
5Qo t ••I'Il"PIIOI
DO ~'iu ~=I,I
,>SO f\AC~~J'.C~"'ll.e
GU 10 <,00
5110 1=IIIU1P(\0)
OU ',7.,~=I,1
510 A(AU (~Fll[1
560 rUOIII""t
nll.j)t',f lI.fl rHlltl,CFLOUO,InVDIIJI,t)~PIJ),A'CJ),YOLCJ),IJINIJ"OOr"C
I ,I ) ,'JdU I J I,All""I J I,J.I•IIJ),I A CIII)•a t II I,R,I NI,A A 'It (N I,v Sf NI, VA II SI H),
'.
1511 CONTI Nut
I'I~DP.Ea;O)GQ TO l70
~tAD 1~,IOO)INCONPI~),~.I,O),IIPOAYIIJ,I.I,,)
I):)7.110 I=I,IIPP
z~O '1['0 1~,IOO)INOO~PIJ,I),J.I,ll)
270 CO~1I'IljE
~~II[Ib,l'O)TITL[,IITl
zeo 'OIl.'T (IHI,IOt,ZOAa,'IETRA TrCH,I~C.",IIX,ZOA4,.LA'AY
Inn,C'll','/]
~~IIF.1~.l~OI IDAY,IQ[LT,IPCye,N'ILE,INQUAL.NHYD
Z'I~rClII~q 1III,l~t,'3IHUI.AIIO'l OElil'l3 0'1 DIIY 'rl4,f"ZOK,'
I'I~(S,lP3 u,',Ia,'~OURIS)',II,ZOX.'PHINTQ
211T lVE"Y ',Ia;'1111£STlPIS)',II,ZVX,'HYOHAUt.
)Ie 1~lrHF'C[U~IT"T~I,la,II,ZOt"~UALIIYINTlRfACE UNIII,TS7,lq"
ul,lOK,I',\Iulj[:t or flOll'jOAHy CUNDITfU~!3 I,lUI)•
,,~Bo 1'1."...,0
IF IIDrlT.OI,za)NQ~ERHIII=NQPlHHIT)~lq/IDELT
IF l~ypf~~III.Ll.O)NQP£RHII)"1
IF IIOy"III.~U.OI iii)10 1I0
~RIIf.11l,)00)NOPlIlHI""
300 rOR~'1 12JI,ll,'TI"'[SIEPS fUH e~NDI)ION ',15,'SIEADY STATl
P)
liO III ))0
311)w~JlE /11"201 Ilep(R"I""
JZll rU~kAI (2).,IJ,'TIHE STlPS FUR CONDITION l,l~,'DTNAHIC')
J)O ru'''I''lOl
wIIIH IbIlUO)
)qO 'U~·'I 1111.ZOX,ITl'Il fOLLOwiNG CoN311TUENTS ARt DEING "OOlllO'"
OJ )~O K<\,9
T'IISKIPI~).lD.O)~RITE Ib,)bO)I~A~fIJ,K),J-II])
BI)en'"Ir,,)£
)~O IV~kAI I?Sx,JAO)
1=0
/)(1 Ho "CIO,\l
I·ltl
IF II'~IPI~).EQ.O)K~ITE 110,)80)I~A~lIJ,K),JII,),(CNA~EIJ,t),J.l
I•II ,
170 Cfl"I\NIIE
)40 ~uq~~1 '2sx,)~a.lx,aAo)
C •
C,•••I~IIIAL ~V'LIIY tO~OllIONS
h~I'[,b,ZhU)TITLE,TlTL
w~lI~tb,)QU)
)'10 ~OD~'T 111,JOt.'l"ITIAL OV~LITY Co~OITIONS'I,I JVN TO JVN TOS
I TUf I.TOT P T COL f enl C BUD N 8UO 0 0
2 Tl·~CO~ST I C~~3T ~CUN,t)CaN'T a'I,llx,]I~X,'MG/l'),ZI'
)':OJlOO"L'),H~x,'HG/L'),7t,'C ',ul'U'li fSl)I)
1),\•U U J.I.I,NJ
"l'U (·...001 JI,J~,('LLIIl"Cltl))
000 'uQ~.l (71~.1.'~.01
IF l,lI~l':.O'1.'1 Tu u,;O
IF 'JI.~T .J2.·I~,JZ,r,T ."JHAXI ~III T[(1),0101
.I~1'l"~~1 ,.~.r ..uJu •THE FULLO~lhG ~ODE LIMITS ~H[IN lPHOH')
I~I'Ll (~I.LI.u,nl ALlI61=~AlLI"I·,~TU~YIAlLly),4Lllll)
1~llf Ib.L~'1 JI.J2,J AllIJ\,J=I,11\
a2~c1~~'1 I'L.17,IY.O,l'Q,l,lr Y.Z,JFY:l,'Y.I,aF'I.2)
Il')~Jo JtJI,Jl
J
,
I
I
'i
~I ,,I ~),I "-51 J ,D ,.~,,J I ~
1 1 1
".~~~1 ]]j -1)J J ]J ]'I J
~"
J !
Cc•••:TIDAL CO~OITION~
IF INI~~P(21.E~.11 GO TO ~SO
Q[AO l~.bl~)(XAIJI.J-I,N80UNDI
IP'GE=IPnr_1
_kllf.I~.b~OI ~CYCII
600 Fuq~.,111,)o.,'[(CHANGE cn~DITION~DURING HYDROLOGIC CYCL[',IQ,,'
I J~~r.CH l~U FLO~O TO~TOT N TOT P T COL f CO
II C ~rjO N nuo OH TEMP CU"1 CON l CON)CON ".
31,S.,'QAtln HCFS HCf5 1,)(OX:'HU/L'l,ZII H/IOOML'I,)('"0
~/L'I,~t,'C',?~,Q(I UN1T31)/I
flll b)O •=I."HlJu',O
Ql'O 1~,b10I (ClX(KoIloI.'oI~1
610 FQIl~ll IS.,lU~~.OI
J.H')lJ.;CI~I
J=.IU'I(.II
If (SA,l[xIQ.Il.0.0)SALTEH.,.TO:\EX(KI
IF IUt,lXC M l.LI.9,OI UXYfX(KI.·OKYEXI.I'3ATUXY(TEHPEX(KI.I03[X(KII
_411l Ib,blOI J,XRIKI,OEOUIKI,U'LonD(KI,(CE~(K,II,I'I,,»)
6Z0 IQ~~'T Ilu,.S.Z,·~PZF9,),UPFO.0"a:z,'I.l,lE9.l,'7.2,fO.l,l~0,I,.,
I~,n
I>lO CO'jtl'lll[
/luO FO~"H 11l1,)ux,""fLO"eU',01T1U"5 DURING HyDRAULIC (HUlda,/1 J
IU"I",Fl/)"IDS TOT N I'll P r CUl f CUL C DOD
l :<U'1lJ OH aHP eLJ"SI I CIINSI Z CONST)(U"31 o'/QX
l.'US 'o)(5x,"1I,/L'l,ZI'"OIlUOHL'l,)(~X,I"'G/L'),l.,'e ',ore UN
4113')/i
i'II'I,NC \
HER-1Ff
5'10 CO'lTl~I)E
Cc.....
"0
HO
/lT0
I>~O
/lQO
rJ,
oJ
\rj
100,
...........
"710-
IN,.U T
r~FLn.~A'(R UVALlly
IF 1·J1fHPlll.E,n.11 Gil TO 1110
"~IIE ,o,buOI NcyeH
''II).by J=I,NJ
.JU'i I"(.r I'I ~o
fll).10 J'loIOO
OU b 1 V K=I , I U
CI ••(.I ,•I •°.0
l')
IlU 1)0 1I <I ,~°0
pE'O r~,~1~)JJ,nD.(ALL(KI,~.I,la)
"JUliA I ('0'[I,quR •R(tURN HAlER IS AllUWED AI lO NODElI HA~IHU"IJ
104 '\1'(I~.15/~,Ol
IF UJ:lO,O)\;11 Tl)7ao
If I'Llllul.ll.u.UI 'LL(lUI.ALL(11
If I·Ll(~I.lT.O,OI ~LLlijl.~All(III"A7UWY(ALL('IJ,ALL(111
~"IIE ,,,,h~OI JJ,~~,(ALLC~),K:I,I)i
I fill:I r.,II J "'.1 N (J J I 1\
IIU /0 V K'I ,L
J ••
,f IJl'''.'''UJI,EU,KI r.1I III 110
([J'"I""l
l'l • I
J <l
/',"·1 '1l.1 J \oj
['J"I I ,,"l
".
N ,.U T
TAR.4~aOOO.·)5.31.,(~el>"t.~·Ug,
DO 710 tl R I,I4
F.t.
I'(All(~I.L7.0.0)'-fA
Tlo C'~(J,~)aCINCJ,~).All(~I.UQ"
flo CU~II""l
TaO eU'lIII'Iif.
IF IJ.GI.IOO,~Hlr((1).150,
T50 FuqH~1 (tO~A~N1NG ••THE HAMI"U"0'100 lNrLON ~OCAIIONS "AS It!"
I tKLHoLO •-I)
TF l'~II .OJ'( • ):E 'I,I)Gn I U III 0
IIq'll I".HOI •
h"n 'u""41 (/,IOK,IAr.GqlGAHD QUALITY"•
OU I~O J=I,lolJ
,1,1=Jll'II"CJ)
IF (JJ:ln.15~I GO TO T80
IF Iq\qIJ).LE.O)UIN(JI=I,O
OU I"'J .=1"4
710 CI"(JJ,KI,CI'lIJJ,KI/QIPIJ)
IF P~I I l"CJ.lI.LE.O.1 3ALi"HJJ)~TllaIH(JJl
700 II Cqlu(JI,lr,~,O)Gn TU ,qO
~411f ,,,,dOOI J,QIN(JJ,(CINIJJ,tI"~R,,I]J
790 eWIIII,"l "
1101)FUq"'1 IJu,F'I,Z,F9,O,Zf9.Z,Z['I.2,lF'.l,U'.I,"'.U
C
C ...:r;"OU"D ~"..,"'FlU"
810 IF (.,'Ua 'I',),EQ,1I GO JlI qoo
"'''"1.Ib,"lOI
IIl0 FI)Ol"AI (/.IUK,'Ii"UU~Q "AHR INFLOw QUALity'",JUII 10 JUIf')
flll HIO J=I,II.I
IIjn JU"LI~IJI"~O
011 MO JJ~I,lO
QlAO (~,noql JI,Jl,(All(I),I-I.I"
IF (,/I :t",/)I Gil IU U'IO
If PL'(ILI),ll,O,UI ALLlIUI.ALLlI,
IF (ALI ("I.LI.O.O)ILll"I'-AlLCU)'~ATUlYCALL('l"LL(I)t
"II II t ,~.~lIrJ)JI.JZ""LLllJoI;loIl{
1140 FUII ..AI 11,,,1 "'·'.0.l~9.l,l''1.l,lrq.l,il''1.I,I'9.lJ
H IJJ:lO,loI)"~ITI 11,,11',0)
1150 FIJ~"AJ ('0'(.""(111 •A....I'1lJt\II/h 'ROUND NAlllI Ty'[S U[A~~ONtO'
II .
01)u"o Iq,lu
IIbo,rl"lllo'JJ,II=ALLII)
Ill)U'01 I'J I •U
IIln ,IUNI;I."lIo,IJ.12u
000 r ',1'111 "'1[
11'1/1 r.ll'lllllqE
c
C ...:nfTlIk""qru
1100 I'('11'-"'(''':£'11.11 Gil III 1010
~"IIt,11>.1111)
9111 "11",,41 11I',I~),t,,(T""t~..AH"'I,'wlTHORAIoAL JUNCTIOll ANI)'/UC'IOIt
I Ill.'''''"lO',I'DI:lCHlRlif JV',CTIO,.ANU COlletNTIlATlON IN(RLHl.NII/t
1"1 "/.0 J"I."'J
'tZII J""A (J ,='1
I'll "I"J~I,IO
n"'1111 1\.I.~
Irt"UT Z N ~U T
AIiD CO[I'I'o
'.
HEIE"J,UGICll CUNoIIIIl"5
IF I'IIPH'(A),NI,II'CALl pOE'U1T C-I:T(HPl'f 1>llr"~ll).lQ,\,A"O,NlfH~I~l.EO,I)GO TO 1170
If I'Hr llP (7),llf.l)GO 10 1110
00 Illn J=I,>lJ
llIJ):o,O
IllO nbIJ)=,OOQO.
1110 tll"r'~IlE
0,)11"0 J;I,NJ
nU"-IJ\~O,
(l~'J"IJi'(I,'F ("C"M,!,I"LEO,0)GO TU II aO
~O"~IJ!ao,~tl,o,Oq7'~I~OAIJI"Z
R~"~IJI:nn""IJI'ISCJ)",l81/VUlCJ)
'll"HlJj:A"UllolJ~.IJI,1l0qHlJI)
""""I J I :III I X I C1m 01.I J I ,A'I J I )
n"";ll ./\=I '11 r,I I nlllllll J I,lilt CJ )I
Ilao (I)"TIIIII'
w~lrL Ib,11501 CJ,R(lRltlJI,QIj~"lJl,ORORrJI,J.I,HJ)
1150 rU Q'1"1'0 'lU~l~O wl~O INOO(EO RfAfRATIU~CU('fICl[~T
I U1l0 ~Y NnO(3,I/O~yI/ISllu"rCl,)\)
T'=I.
fll,linn J'I,'U
If ClIl""'lJ,l),I 'J.OI I.n TO IlbO
0"""I J \;'a Tt (I l'lI111l111 J I )
II 60 C 11'/'I'",t
IF ("II'rll'IQ).~L.Il (ALL HEll)O 10,/EIlPl
liTo rIJ'III""l
Ql.'U"'I
(NO
"OflND~IJ)'llll})
cOL/O~IJ'a'lL(O)
CUlfO~IJl·1LL(5)
DO lObO 1_I,a
K=\Ztl
10110 TYPEU~/J,II'ILl(H)
'C=~.U~Jlel·lSIJl/VOl(JJ/e~Qooa
~EN~IJi:Tl·'e'lLlll>l
"l HP IJj=ll.IC.ALLll)
nl LGlJI=Il"C'llLlI81-ALLl'lll
~~f"IJ\=T"TC'lllll~'
TC.le'IOOO,
I'lll I Q 10 I aI,a
~.lb'1
107n 'OE ILIJ,')'AlLI~l'TC
ulJI=ILlIIII
nHIJI"ALlllll
10nO Cll"JI'!\lL
10'10 (IIU'It",l
wNIIE 16,1100)ITYPlfOlll,lol,l),I'lT(NCII,f.\,t)
1100 PUQ~II 1'03TlIIC"IUHETRIC EOUIVAlE~CE U(TwEEN O~TIUNAL cON$TfTUfNT'
1'101'rllt'5T ,"}I nEClY To CU>lST NO l,','e,Z,/'CONH NO Z OECAY TO
l CII"11,m J,',fa.Z,I'CU'IH NU'orCAY 10 CuNH NO 4.'"e,l,//'Ita
lIE edOflcll>lT Tll1 0lR1Tuol AOJUST",NT tU"~lAIH rOR',1I1 HUD
b',rlO,l,I'III U/lilR",HO.'ll
1110 CU"IINIIE
C ,
C••••
"
C
t ••,:srSTE'I CIlEFf 'CtLNT~
1010 IF (~Tr~Plll,Eo,l)GO To 1110
~QlIE IbdoZO)
10ZO ,(JQ~"(111,30X,'3YSTEH COE'FICIENT"'/'JU~TO JU~DOD DECAY
leOLI'OttlY eE~THIC SINK HlT[~ALGAL OXYGEN REAlRATION 0
z~p CO"~I OEC1Y opp (UN~T SETTLING',I'l~i'CA~~NITH TOTAL rEC
III N P 0 !'MOTU RE3P HIN HAX I a
u 1 u 1 Z l a I ,/I CllC,"IDA Y 1/0 AY HF
S/liV[l'Y Hli/liZ/OAY I/OAY I/OAY
CI 'lion'll
0E10 (~,'1bOI (TyPEEOIlI"'I,lldflT£NIIlII-I,Zl
'F IOT£~lll,LE,O,OI flT£NII':1.05
IF IOT~~IZI.LE.O,Ol QilNIZj a l,03
Tr P H 1 1U l a O,O
/)0 10~0 JJ",NJ
oE10 (~,UOO)JI,JZ,llllCII,laZ,"
TF IJI :l'l,Q)Gil 10 10'10
oElll 1';.10101 ULLIII,I<t.,Zv)
10lO 'O~HA'llb r 5,Ol
,f lJI:Gl.J'.UR,JZ.~T,~JH1Xl ~RIT[lb,OIO)
~~11E 1~,lo.n)JI,Jl.Illllll,l=l'7\,~LL(IO),ALLIDI,ALL(",(ALLrl),
I r=Il,lOI
lObO rO~H~T l,o,17,ZFb.Z,'U.l.F6,Z.lFT,~,'O,O,F7,o,fll,l,f7.1,'CI.~,lrS.l
I •f 7 •l,l'';•1.I
Ilal.
T~I:I.
llLll)=~'lrll"'ALLllll
'Ll(1);"'llllA'ALLI1)1
ILL("';""tll',AlLl")l
ILLl~).N·'fl'A··LLI~I)
011 III~O I =1 j,l~
,050 'l~III=.Alr(IA·'llllll
Of)I'J"O "oJI,)?
"1"C ..'·IU,II,tll,O)GU TO 1000
'(I1'C1I./J 1cA lI11.l
P·UKf/JlK)·O
'30 r~crO~/J,K)ao.O
OJ 'IlIO J,.,ZI
~E10 /~,'IbO)JI,INTEHPll),ALLII',Z_I,')
"0 'O~~~T 115,5115,'5.01)
IF lJI :Ul,O)GO TU 1000
IF lJ,FlJ,Zl1 WRITE 11l,lleO)
JU'·AlJI)"J
00 '1';0 1"1,5
T~I"lIJ,llaN/EMPll)
'150 pC1U~IJ"'.lllll)
o~lD (~,q~o)C1Lllll,la',la)
IF I'llll'bl,LE,O,O)lLLCla)-ALLU)
91>0 rO Q '"r lib's.~)
nl)no I:I""
'170 CI~IIVO'J,I).lLLIII
~""E l6,q~vl IINTAKrlJ,I),'ACTORc~,I),1-1'5',JI,IALLI1),J~I,13)
'leo '~~M"15I'5,f5,ZI"lu,FIB,O,~F'I.z,Z['I,Z,~r",Z,2r'l.I,a'''.2'
'1'10 C(J'n T'I',E
lono (n'l'''''It
I"l~~:lPlli£'I
,
w
VI
........
6"'\
~
rJ
l I .i J )J I B I ]I ,1 ,
-J ]J )'I 1 '9))1 J J ----1 J ...]1
c
J 1'1
DO lu~J~I,25
C
C READ CLUUD COVEN fRACIIONIPCT),DRY PULUICI,WlT UULB(C),ATMO~PHEAIC PA
t eH~I,AhD .Iho ,olEOIM/~[Cl
C
c
C RElU "U~OfAS OF JUNCTI(IN3 DELIMITING THE HEATH[~lONE,THE LATITUDt
C ANQ LONGIII'Df,ANU AlMnSPH[RIC IU~6IDI'Y e2 'O~CLEAR,UP TO ,fOR 'HO
Rt1~1~,1201 (JwZUNlIL,Jl,J a l,2I,KLATILJ,KLONtLJ,TUR OtLI
120 fuqMAI 121~,lo'5.UI
SHVRTWAYt 'OLAR RADIATION
NADIATIO~AT OIV[H JHT~RVALI THROUGKOUT ,•
CQMPUTt LO~G~AV[AIKOS'Ht~.R'OIATIOM
DO 180 N"=I,Zb
TA.I.Zl£·lb·II,O+O.IJ·CLOUDINN,l)A.Z)
n~AINN;L).TA'(OUTI~N.L)+2J].0)"~
"!T D A T
1'0 WINDIJ~,~).~INO(JZ,L)ATA.MINDIJI.~'.TB
IF IJ2.~~.251 GO TO 150
lao JI"jZ
150 CV~T I NilE
t I'.,0
t
t
c .
C.4 ••
C
C
'1'0,
011 l'lu JJ>I,2b
fAIJJlll'2.IJldfe'E~p(-bI57.0/(~OT(JJ,L)'l)';O'»)
IF 10£w,ro'.O,OI)lAIJJ,LI'fA/JJ,L)_A~RIJJ.l).(08T(JJ'~).~'T(JI.LIJ
c
c .,
C.....
e ..
C••••
C
llNS!'1'l,L)-O.O
TIH(cNf/-1
IF Ill~E.LE.9UHUP.OR.TIM[.GE.'UN'[T)GO TO 170
cLn.CLOUO (tIN,LI
NA'PI'(II~f·ll,O-OEL")/ll.O
SI'U =1I >,z.ellS(HA)
RAO=~IIOl'SI'IA
'I=O,I'B·u,O~q.ALOGIOtl.O/AU3(SI~AJ)
TA=IUPq(LI·AI/SIHA
nAQ:QAll/ltl'!IAI
Rln;qAn·II,O·.hSACLO·'Z)
NC=l,u.ICLO.I,O)
IF ICLO.r,T,O.0~,ANO,CLO.L'.O.95)GP TD 160
IIC =I
IF ICLn.GI~u,95)NC.qC.·.·.
IbO ALHlOU3AI~CI'(51.J'ASI~ISINA)).'8(~C)
C.~•••
OMSlhll;LI:PA0111.-'LnrOU)
IF (O~~I~N,LI,l'.O.)UNSINN,L).U •
170 (IJNIINllt.
III 0 'c liN I I/illl
~HEHD·IS·IFIXIXLONILJ/15.oi
OEL1S.[pa·(S~~RO-XLOH(L»/I'.0
CO'1PUH OtClINATlOH,aUOfUI',lIUI/Sn,AND
CON3TAN'3 U,EO IN RADIATION to"PVTATIO~
OlCL'U:b092'CUJID,OITZI'111Z,O-OAy\)
TA'IAN(~LA'tl)'DTUR)'IA~(OECl)C.·..·~'R.IZ:O.ACO~I-IA)/PI
C.A'"
~UNUP·ll,O·H9A·DEL"
'UNS~I=IZ.O'H9~>DELTS
'I·SINIU~CllA3rNI~LATIL).D'UR)
T2'C03IDECL)·C03(~LAT(L)·O'UR)
"
H [T 0 A T
OA'A ALPHlh,OS,5.IO,2.bS,·2,OQ,-9,9b,.ZZ.29,-uO,b),-bb.901
nArA ~FIA/O.S2~,o,710,O.qSu,I,2bS",bSq,2.151,2.Tbl,3.SIII
OA"A~I.1A,2.l~,O.qS,O.JSI
QAlA Ui-O,77,·0.9J,-0.J),-O,U~1
OA'A Pr/l,lulS9/.~U~/O,ljjllj)/,oIOR/O.OITuSI
qOI~IOI000,-lllt-l.9ftl·'2·1~'2B);,J/150J.5T.I~'bT.2b)))
IF I}S<IP)100,ZIO,Z90
100 CO/ll r/,"t
ql'O 1~,IIOI N_IO~E,OAY,EPS,AA,b8,OEW
110 FUOM1'IIS,IOFS,O)
IF (~~:Ll,o,O)~~'1.5[-9
DU ZOO L.I,~~IDNE
oEiD t~,IIO)JZ,IALLtl',l o l,5)
(L~UO(J2,LI'ALlll)
oIlT (J ~;U :iLL (2)
,,'IT (Jl;L)>,Ll I H
i/,PCH;Ll:iLlt'll
HINCIJ?,Ll:~lLlul
,f IH:lD,1 l Gil TO luO
~'<=J2·.JI·1
'F l'.....d ,n)GI)TU lijO
011 Ij'l "'1,"'1
.JJ:J I",
'i"l'll I ("l/FL()A'INtU I)
lU=l.".I&
(l1l'ln I.lJ,LI :CL~UDI n,L)>'A'CLVUDeJ I,L)ATB
O"'(JJ,LI:nilIJ2,L)·TA'D~TIJI,l)·Tn
."I(JJ,L».~lIJ2,LI·IA·~~'IJI,L)·I~
1pHIJJ.LI.1/'HIJ2,L)·'A'APH(JI,LI"~
~UBROUTI~["ETDAT IJ3~IP,TW)c.§•••
C T~I~R~VTI~E USE3 ARC 'I~A~D ANC CO~LI6NARY rUNCTION~.
C TkESE rU~CTJONS ARE SPELL£O Asl~A~O ACVS IN THi'COOt.
C*···~cOH~oNi~ISC/~J,NO,~P,NDYN,~"NU,MLI~,OlLT,JPACE,NHYD,IOAY,IOCLT
I;~JP,llE,MPlOT,ISKIPllb),AlLI~01,IDYN(52).IITLEI201,TITLlzo)
2,N~Dfq~15l),IPCYC,LOAy,NCYC~,INOUAL .
CO~~0~iA'/~LAIlbl,~L~Nlb),IUqhlbl,cLOVOI2~,bl,O~1125'b),HUT(l~,~1
I,,poll5,bl,HINOI2S,bl,uNAI~S,~I,lAI2S,bl
CUHMJ~~HEI/'.lnhE,J.lu~tlh,2),JU~t,200I"IHVI200)
I,,vI~~01,O~3Izu,bl,·I'UA(lUO)
OI~EN3IVN ALo~lel,bf'AI~),Albl,nlbl ,T"120UI
C
C
c
r-J
\
W
vI
I
........
'i'>
vJ
C
14 E T 0 A T
1*1&.6!~a·7.5~!·T*WDT(JJ,~)~,
TA.rh"'INOCJJ,~1
1'10.cON11 Nlll ,
,A.'A/;J4.
JII:J wll'lI[IL,11
J2 =J ~Zn~~II.,~I
no 20U J=JI,H
200 "I":;IIJI'IA
AE 'U~II
llO C(P,TI'Illl
no l~U L=I,NwlONE'
TPAGl·IP'G~·1
",RII~Ib.27UI TITL!,TIT~
lZO Fuq~'1 lIHI,lo~,ZoAa,1 TlTRA Tr.CH,INC.",llX,20AQ,'~AfAY
IElll,(AI.IF.l/l
wNIIE Ib,2~ul L,IJ"'ION[(~,JI,J'I'2"X~AT(LI,X~ONI~1
llo FUQ~AI 1111,ZU.,uqwTAULE or ~EIlOq~LOGIC OAT A 'UR N[ATHER lUNl ,12
I,IO~,JU'CII~~,la,}~TO,14/,T9~,12~LATITUO['"5.I/,T9~,12~LON~1
lTlIl)!:c ,'~.III";>o~H"UII wI'll!CLUUO OilY 1:j1)LIl
S ••••AIMUSPHERIC SHual "AvE LONG "AVE VAPOR
4 112n~SPUD covER a .....EHAlUHE ,H'Pl
Sql TUlll pDEHUIIE :lnLAI'SOLAH PPt5:1UH[
6/120"IOl/SEC)'aACTlON ICI leI
1 (I'll I (l\eAL/Hl/SrCJ (IICAI/04USECI IHIlI /)
no 240 '=1.2 4
wqllf.IlI,27uI 1."IIIDll,LI,CLO'UDII,LI,OtJIII,L),NI:lTII,LI,APHII,LI.ON
13 (1 .1.1 :U'.'1I ,L 1,fA II .l )
laO ca"II"ul
I'IDl~.l~.,oll ~RII(lb.lSOI
250 ,uq~AI ('0 ••••Dl.~OINl'l
If IO~~.GI.,OII ~Hllf (b.l~O)
Zbn F~hMAI 1 1 0 •••••fl ~uL~'1
21 Q ,tJll'H T ( I I 0,'I },I"10.2"I o.I"13.I',11••0,F 12.11,FI &.II,'Ii!.0I
26Q CU'"l'IIIE
qtlVolN
tOHPUTt H£AT TRANSfER PARAHEIERS •••
'.
C
"[tOAT
tVIJI-IWINOII,~)*t8.AA)*([!.[ACI'l')·[YCJ)
300 tONII~Ul •
'10 CONTlNIJE
no )20 J-I,.NJ
rO~EIJ\·~U~EIJI/2a.
Fl"111 J\",I"UIJ 1/2~.
I'I~VIJI,L T:0.01 [YCJ1*0.O
'20 rVIJI=,VIJI/2Q.
AlluRN
[liD
'.
rJ,
~
U\,...........
...t::..
I
290 CU'"1"11£
no Jlo LI:I.Il-Z0IlE
J 1=,/·!11~[(L ,II
Jl.J~ll1~'E (1..2)'
nil jl~JIJI,Jl
fV(JI=~.('
'O',llJ\=O,O
f ,w,1l J \=(I.n
If ('~IJ1.L[.U.OI 00 TO 110
OQ JOO I ...lu
p'ob,lr-6.APlllr,~1
,,".I·C.ll/~,~.I.O
I'("~:IoI,~1 "NO"
I"1/l'';L I ,II 101'1='
C
CI.I.n~~w'ut "AC~1I,01Al10N
Rill ,'I.)II•tJ )I•I']q, •0-~•5T .,"1J II.II A.Ill)."1110 1I,L)I
,=o,Q~~"l.~rn ·1~LP~IN~I-[All,LI·PF.Dn'II.LII
f ,j"t ( )\0 'JO.:;(I•t.I "PH (I .LI-I'.'u"ll J \
f 1~.JlJ\OIl(JI.'(,Jf IA ("'I),I").o.OOIQll.nwOlJ)
,&.ALP"lhhl·~tTAI~~I·lw(JI
i I I B I I !.~.~.J .~,."
J 1 )j J
OUT PUT
J J 1
OUT ,.U T
]i
N
\wV,
I
.........
6"
V\
e
c
SU8ROUTJ Nf OUTPUT CJSKIPI
CO~~O~iL~9/Y,lA~IIII,YLAB(b)"lTl!liZI,HO~IZllll,VER'(b1,IV~lTO
CO~HO~/PLOTI IPLOTI41,CPII01,b,UI,OAYII01I,~POTNT,JP~OT(bl
I,IPP,NP~.IPOAYIJI,NOOt'(ZI,l\,p~OFA(21.},AI.~CON'(U)
2,pR(IF~(2J.I,A)
CO~~ONIMI~C/~J,~C,~P.NDI~,N~~O,MLI~.D£lT.IPAGE,N~YO,IUA',IOElT
Ii ~JP,llr,~PloT.is~IPllbl,~~L(lOI.IO'N(SZI,TITLI(201,TITL(20)
2.N(.PlRll(~ll .IPCYC.LI)AY,NCVC ll ,JNIlUAL
CUI'~Oll I tll GI !.C,IA·,I 200,Ij I •f II LI I nil 00 I
CU~"'UI'/U\'''LI JI)';("Il~u I,JU"!,IN Iluo ,JV"'~1200 I,III NIZOU I.UC;jN (lOOI
I,TD~1''1 ,~~I,!(II q II (1 ~~I.1 111 PI"II ~ij I.COL T IIH 150 I.cnu I N(I ~O)
2;!lrD~I'd Isnl,h":J~I"(I ~ol d.llVlNIISO),H'II'I:'d ISul
I,T ,P ll:!\I"0,A I •~Al I (1'1 I 5 (II
A,Ill~(200),11"1''1 lUO).ffll P Ilu~I,CdL TIlllO I.COU 12uO).unllc (21101
~,q Ur.'i Ii!0 u I ,I).I (l 00 I ,It liP Ii!'J UI , I Il'f 1200," I •"I'[ilK 12 u 0,U)
b,nA!GIl~01.nul~llOU1,IlNI)HIlOo\.HJDCO~120UI."UD~0.(lOOI
7.(ULID.llOUI.CUL.D'(lou),OSAII20ul,~l"~I~OUI,ljlNP(lOul
COH ...~../.·'f/\.~I5
/'11 "f"SI Uf.• (I U,.U ,VI 10 I,Ii,NP TI I),CON II 0 u,II
OOU~Ll ~.lC 11111"v'lll S
nlutl/~IU""~I I.q(I}I
nlul~S/(J'1 TIIl~II~.ZI,HUqllIIII,21;VEIlII(1I1
OIJIHll"Cl 1(!l',II.lI,TOSlIII
q[!L '''''l (ld Jl
OAU NAME/u,OIlS .ZO~1i ,uHIUTA,u'IL N ,uti .utqOTA,uHl P
I.Ali ,.4!~IA,uIiL CO.UhLIF ••"FlCA,~HL CO,UHLI'.qHCARD
2..,<1"1:1 II,~".JO ,U,jNIIR.u",O lin ...../),AHOXIG,.Jf['l .UM
I,11"1["P."'IIR'T,.lilJ~f ,""IjPP ,.flCU'IS ••'11 I .u"OI'P ••IiCON'
U.uhl 1 .....U.~••HCUll3,4"1 J .u>tOPP .UHCUNS.UHT u I
/)ATA V,;II S
I IIoeN~~/L .1'lJ"Na/IOoflL,Io"HH~/L .8HDE~t ,u'8HUN1TS ,
DATA TllllI/1,UN ,u"II~E,"n HI3:"NIORy,uAUH ,uHCO~C
I,u"~N'~••IlHllI,ulltl P4,u"U'IL,lItt E ,lout.I
Z.H~~llI/1'.1i ,UN O.Y.12'~1i .UHNUDE'~'UH I
3.vlPlI/A ..MG/L ......HPN ••nUH e.}.U"I
I'IJSKIPI 410.JbO,IOO
100 CO'<IINII£
110 FO~'1'"IlH'0I0K,ZOU,'lfl~A TfCH,INC,'/,II_,ZOAU,I LAP'A'\'
If TTL.r~llf.11I
IZO fUQ~AI I~OX.'IllllLlH IIESULTS,QAY':Iu,/'JUN T03 TOT Ii
I lOT P T COL f CllL C IlOO N 600 OXY 0 "T
IT[UP [~~3r I C~N3T Z CUNST 1 C~NST u'/,~.,l(5.,IHG/~II,ZII NOI
I 10U"'L ' \••I 'i K • I MG Il 'I,1 W,'C I,U(u x,•UN lIS I III
I'(1~~IPllbl·11 110.IIII.'z1>I1
130 II-u
Of!1110 J-I.'';
Tf ('Ie"H,lJ,II : E1).0)GO TO I 110
IF l"U"llI.'~I."r.ol GIJ TU 1411
.PIH /.0110\'ITLI,TIIl
••/If '.01201 J5"1'
140 T1:1I'l
uPIIE III.ISo)J,(CflHIJ,II,I:I.61.0~AT(JI,ICOl/lJ,II,I-9,13)
I~o FU4~AJ IJII"9,O.Z~9.;>,2[q,2,ZF'I,2,}''1,I,lIf'l,ll
I bO [!I"II "liE
Ullv"H
c,.
C••••
110
180
190
ZOO
210
ZZo
ZlO
zqo
250
t
ho
270
lao
zqn
}OO
lID
3zo
))0
}qO
)50
lbOc
C••••e
lIo
lllO
I'IO
bon
_L'[RN~TJV~~KJNTOUT
CO"T!Nu[
wPITE (b.IIOI llTLl,TIlL
flO 4!50 1"1,1)
IF IISKIPIII,[Q,11 GO TO l50
wllIT[Ib,1601 INAHr.(J,II.J-l.)I,V~JrSll),JS~I"
fll~I1AT 1I.50~,]AU,','.AII.''O~OAV ',Ill)
GU III (Iqo,llo,llo,no,llll.lIO,lIO;UO,ZIO.llO,UO,.UO,UU,I
wW1Il (b,lOOI (J,CIJ~IJ.II.J'I,NJI
,u~...AI Iloll\.FJ.OII
roO 10 .,~~
w~I H I h.no)IJ ,CON I J.II , J al ,~J I
FU~I1AI II0115.fb,lll
roll III ;>~O
",Rill',b.2"01 IJ,CIl"IJd"J-I,NJI
,1)41'll IluIl5;(8,21)
C(1'4TI "lJf
AlTU~H
CLI'<II'llll
IC -0
on }~O 1-1;1)
,F (lbKIPIII,lO,I)GO TO 350
IC:IC ..
IF I~Ul)llc.ll,EO,11 wllIT[(b,l70)
HIIl.HI IIHII
wRIIl 1°,211111 (NlI1E(J.I).J_I.).VN,TSII),JS~I"
ffJRHAT IqOK,}~b,I,f,AlI.'fU~Dly ',IJI
G')10 I~q~,HO,Jlo.HO.llO,IIO,310;]IO,]IO,]IO,UO.JlO,]II),I
wtllll (b.}OOI fJ,ClIN(Jtl),J-I,NJI
r I)R ~AI I ~I I 7.f q , 0 I I
rolJ TO ,~o
w~11f (".HII)IJ.CON(J.II,Jal.NJI
fOIlHA,ISI11,fq,III
GO If)\50
wI/I If (b.111111 IJ.CII~(Jdi.J",NJI
fO~Hll 15('7.~'1,ZI)
rll~1 ""Il
PI.Tull~.
ell'"I I NlIl
'lilt HI31UllY PLOTS
01'H~J<I.J
01;HOI"I 01 0 J
wll.Jj:O,O
III.JI:O,O
II·-,POl'II/IOlIll
til =-II
1)'1 I~O I:I.I ,
"II"I ,(I J:dOH III II ,I)
1)/1 }'IU I:I.b
TIILll)I;JlILEIII,1)
1)11 III)U I:I •b
vI"I (Ii:VI 'IJ I II I
(III IIbU P I.q
..J
\
..J
"i,
....
:"
"
J
OUt " U T
"II.lOTll).tQ.O~,;~TO .~O
t "'1 "\,n1l t)
TIT\'(IIOI.~lYEll,t·)
TITI.E(II)·~.~E(~,IP)
TIT\'E(llI.~A~E(J,JP)
J=o ,
~u alO JJ.I,NPOINT,II
J.J·I
0')a 10K =1 ,J
r (J,~hOl'IJJ)
AU eU'''I~\lLc
1<I'u("J,,-II/)'1
\'1.'1
ClO .~u tl~I,HN
,H._hi
\'=U'l
IF (~J".CI.L)\,.NJI'
.'0
DU oJO 1II"'\,l,l
wo.d
J'~
Ill)0~0 K~."NPDINT,II
J.J .1
Y(J,·).CP(KK,III1,I)
oZO ~I)'"Ir"ll
"PT (.!oJ
QH CO"'I"\ll
C OEI ",pis TO 0 30 X-ArI3 JNCREMENT3 WILL BE PRJNT[~IN !'PlUT
"''''''0C_LL C~~vE (x,Y,NPT,K,NTj
w~IIE f~,aqO)lJPLOTI\,I),\,/-lL,L)
GaO 'u~l'q lIHO,}OX,'tlOOE HU'10E:H3'oI5,Q'1 "O,lS,O'1 "1,IS,OH "U
lL·L.1
05~tWIII""E
11110 ('I'.II"IIE
liE h/P~
c
c ••,:Cu~eE~I~lTIU~PROFILE:3
C
a70 ell"T IIlI/E
u'.=o
!)'J .60 1'1,21
IlU a,o J'I,IPP
060 xlI,JI.1
01)Q90 I-I,I)
0'0 "nl>lllll ..·nRIlIII,Z)
f)Q ~OU 1'1,9
500 TI'LF.I"',ITLLIII,Z)
....\1 .,I U I:I,b
510 vI ~I r I j'\'lO"(I)
('II .,;u II:'.II
IF ('·CI,,·t(III,f.U,U)!';O TO "0
I ,I.e 'I'",I I 11
11I\.fltul:"'''lll,lJ
T 111l(lll:':Ao'[Il,I)
t I I l [ I ,/1 .',."l I ),II
J 'I )g I .~j I
o u ,Pl U T
DO 560 I-I,N""NH_HN.j
1'10 550 J-I,lpp
NI'l (Jh~1
IF (I.EQ.~)roo TO '30
01)520 K=I,21
520 y(~,J):PRa'AIK,J,II)
GO IIJ '1~0'Jo 01)~Utl ""1,21
5QO YI~.Jl.~porOIK.J,lr)
550 cWIll'lill
C SET "~~T3 10 21 30 PAINTING 0',M-4Kls INC~t"t~Ta IN "'LOT ~ILL Bt 8U'
","r3'?1
r.ALL CII~vl (X,Y'~"TrlP",H"'~
~'!,,£Ib.~f,Q1 (NOOEt'IJd),J-I,21)
5bO FUq·,q 111C;,2115./r7,)X.,'IO~f.')
""'Ill fb,51u)Il"OlYIJ),J'I,I"P)
510 F(IR'1l1 (30~,'1I4Y ur THE nlR',15,..,"0,1'.0"II l,n.OH "t)
!i8n Cll,-II Nlll
590 Cll\,,'Nllt
REh./ll r,
C
[NO
J J ,!!!,!
1 1 1 J 1 J 1 )
".....:--,
J J J j j I J )
ccc
c
C
c
215
250
1Il0
~,N t
!UftRUVr!N[PIN(XI.Y\.XZ.Yl.N!Y".~tf)
CO~"ON/UIGI 3PAttI15laQI.A(5\,1011
01"['1310 N SY~(l1
nAIA SvH/IHO,IHI,IHll
AXAcn
Axll;X.!
AyAan
H'I;VZ
N;'
If(.~~IAXU·AXAI.LT.AB'IAYb.AYA)1GO TO ZQo
SET P&RAHEfE~3 FOR X DIR£CflO~
TF(&X~:GT ••XA)GO To aa$
A";X~
••~;q
A'ia.1Z
AVII;VI
(fJ'JII""E
,,"A·,+.S
1"\;""'.5
IVA;'""S
IVII;'',,'.5
('J'I'i ",ll
IF(i":LT.~,OR.IXA.GT,tOD)GO TO Z60
IrIIJ':LI.O.~R.IYA.GT.$OI GO TO 26D
,(~I·iJ·,IXAtl)·!YH('1'YH)
(IJIII I ,JIlt
,.hl ...1
vA'(~'('VH.AYA)I/(A'B.AXAI
IO~l(.'YA'O~$
'I;-,.I
Ir(lx':L~.lx~1 uO TO 2$0
r;iJ I,l a 00
5ET P'gA~ETER'FOR Y DIR(CTION
t'IJYA~JYB)300,,~0,.00
]i!O TXA •Txll
GO TO ,00
aoo RETURN
£~D
..
,,N r;
Z'JO
a?$
r-l )00
\
\,rl liD
V\
(....
""'tJ
((l'III-jllE
IFI">:GI,AjA)GO TO Z15
l1~'Y1
AYlor.!
A x ,\;•I
AJA,:lA'1,
(WIIII,"E
IKAdX&+,S
P~;'XI\'.S
P"&14'.5
JY~"JPI,S
CfJ~I (-"'l
IF(IXA~ll.o,nR.lxA.GT.IOO)GO TO )10
I'111A.LI.O,OR.IYA,GT.501 GO TO 'ID
,(~1'lv',I'A'I'=3Y~I~5'HI
(,I"11""l
110=11,01
·':(~'I·JII.'.AI)/IAYI\.AYA)
IJ"':l·"t·J"U.~
~'''4.I
"
..It \,0 T
~U~AOV+INt PP~OT1IX,I"K,NCT)
OI~I~310~~Y~lq)
CU~H~~ibIGI SPACtI152 UQ ),AISI,IO\)
Co~-n~iX1X~/~XDTS
CO~~0~/~A~/xLAalll),YLA81.I,TITL[lia),HoRltCI,),V(RTC~),IUNITu
OATA 3yH/7.IH ,IHl,IH-/
c
IF1K,IQ,100)G~TU Z30
IV'jllo.t>
1'0
If I~CT ,E'l,-I)GO Til 700
w~1 IEllv~ITU,IO})lTITLEIIN),IN.I,t»,CTITLEIIN),IN'\O,la),NCT
700 cU';TI"I'l
C THE FClLtl~INr.~f:tTION (TtiRllUGH CARli 225)PAINTS All.BUT THt:X UU Ahl)LABU.S
00 U',110',.
I-r tI
wOllE Ilu~ITO,IOI)'LA81111,CA11,JI,Jal,IOI)
IFIII"U ••)GU 10 Zl~
D(I lZu JJel,q
r=I-I
If(I,~f,l~1 Gil TO 211
~qlrlll\l"ITU,IO.)VIIlTI5),V~RTC6),IA11,J),Jal,lOl)
rou 10 ?l"
UI If II,'"I (0)Gil TO llZ
C Pili ~T ,.A ~13 1)'1[13
~qlII11V~ITU,10~)VEIlT11),VfRI1Z),IA11,J),Jal,101)
G~In 2l U '
HZ pII.~r,(~1 Gil 10 ZlJ
wqllfIIV'ITU,I061 VlllJll),YERJI41,IA11,J),Jcl,101)
r.J II);ol.a
ZlJ w"lltIIU~ITO,IOOI lAII,J),J"I,IOI)
22u CU'lfl/,",E
2ZS CtJ~II"I)E
00 270 l~I,IOI,IO
270 lI51,1\"YH1&)
DO zqo I-II,GI,IO
Alld JoSYHlq)
UO CONT IN')l
'JE T VAN
[NO
"
..It \,0 T
.00
I U I
101
lo}
105
1010
12"
N,
~
V\
(
........
"~
c
c
C
c
C
22'cu~II'11I1
N~PT~I'A fLAG fOR CONCINTnATION PRO,lLf PLOTS,SET TO 21 IN OUTPUT
I'~API'I~~I,DO NOT PRINT x-lXIS INCRlHlNIS OR ONITS
1l('.(Pt3.I'l,211 nu 10 U9
PAJ~T IHI A-AKI'UNITS FUR TI~l HI3TOR'PLOTS
~~I IE,"J"JTU.lO~1 XLAII
"'"liE ,IV~[fn.lOSI "O~U
ru""AT,I~',I01All
'U~~AI'IPEll,~.IK,IUIAI)
"OQ~ATlflO,l,lnflu,ll
fIJ Q"A1 1I lt l,QlK,'IA4,'Plf}l 1<0,1,1),,1
'O~Mq laOl,I )4U)
rlJ":Ulln,2A~,!l,IOPI)
C,J"II".,t
DE fl).4 l •
lI,q,~tlllll~PH,flU'f.3 p~ur r)VTLIN!
lJ~1".'l~u 1=1,50
O~I l"~J-.oIU\
14~AII,JI.Jv-111
Allol "~YNlIlJ
ZSO CO',II',",!.
I"JIJ e'fll Jc I •\f)I
1~0 AI'I,Ji'~'~I~1
J J.J 1 ]J ~J !....~]I J I J ~I J ~
J J 1 1 J J\J )1 J j ~J -"]
CC RE3ET "AX A~O "IN 'DR ZERO RANG'
C
aCAN fOR "AX AND HIN
a CAL E
,ueqOUTINE aC~LE .~ARRAy,AXLE~,NPTa:INC)
CO~~O~iK~K(/~KPlS
Ol~l~a,O~AqqAy(q),l~T(~)
DATA I~T 12,0,1.&,101
I';CT o IA6SIIt<CI
Tr(AHA~.GT~(K',xLfN)'RANGE~GO TO 1]0
l"~PTa.INCT+1
ARRAY(I)oKANANG£
10'.I'1CT
ARPAy(1 )"RANG£
RlIUR'l
"
I'OUT.IOt MA"Of Rt.t!~A"D N
ft[T u,"fOATIV(ITt'.
I e A ..!
KOAhUiRAljG~
IFIAHAX.GI,O,)"OK'I
I'IA"I",LT,(M+AXUlj)'RANr;t:~GO ID in
1:I~CI,"Pla',
ARqAY/I)OKoRAljGE
Tol'\"r:1
AkRAY(Ilc-PA~G£
RlTUll'l
wllllEll,.IUO)
FIJ~''''lr 1/IU,tRANGf ANO 'CAlf uf UIlO ON '~OT Alit"'"
qf lUll'"
ENO
tottl
IFIL,LT.II'GO 10 llO
Lol
'j:N.1
GU IU 1110
e
cc
C
]]0
]qo
C
C
C
350
"
QOO
too
SCALE INTERVAL TO
LESS THAN to
~ET UP POSlllVE STl~S
t la N(xT HIG~(R INTERVAL
RANGE IS SCALED OACK TO fUL~aEl
r.HECK rUR MAX VALUE IN RA~GE
COMPUTE UNI,a,INCH
;INO NExT HIOHER INTlRYA~
AATEO(AHAX_AHIN)/AXLEN
lZo LolHTlIl
QANG(orlOATILloIO,"N
'fl1liC:LT,O)GO TO )SO
pALO(;IOlRAIEl
NnA
IFll,lT,O)NoA_O,"'9
AilEoNAll/llO,ooN)
LoRAll.I.OO
~o'MlliiHANr.E
If/AHIN,l',O,)KOK-I
zao Oil )00 10 1,5
IFIL·I~T/II)3Zu,3Z0,)00
]00 CllNTINuE
A"Al'AQHIYII)
A"IN:AoRAY(I)
00 l5u N'I,~oTS,lNC'
If/'''AY.lT,A~RAYlNI)A~AxoARRAYlNl
IFIA"IN,tl.ARRAYlN»AMl~PAqRAY(NI
ZSO (U"II',,)(
Ifl AHAX -AHIN )ll5,2~5.Z15
2'5 If/AH1"I lbS,qOO,lbO
2~~A"IN °0.0
,"Al •l,O °AHAX
rou TO ~75
l~5 A"Al °0,0
,"I~•l,O •'~I~
US tuN TI NuE
C
C
c
c
C
C
C
C
C
c
C
C
C
C
C
C
C
C
c
C
C
.....
~
N
\
vJ
VI,
-e
..".,
,[T U ,.
~ueRO\lT l~~SETUP
CO~~O~/QUALI 13P ACf(600),OIN(ZOO)"ILL(1TOO)
CO~~ON/M'3C/NJ,HC,NP,NOT~.N~NU,MLlu,OELT,IP&~E,N~YO.1~AY.IOl~T
.,NJP,'E£,~PLUr,IS~IP(I~I,AlLI7Q),IOTNI5Z),TITLlI20).tITL(~O)
"N~PlRH(~7),'PCTC,LD&T,"CTC~,INOUAL
CO~~ON/~IGI ~C~AN(200,&),hJuNC(J~0;Z),JUNIZOO),~L[N(3UO)
, ,ALP '11 ,,00 I ,ALP''1 I 200 ),AA I 7 v 0);I,n Il v 0), Uf.1 A(700 ) ,
jbjvf(7Un,21),A(2ijn,71),ALP"AI7uU,21),~CI3nUI,A~llOO)
nl'I lUO),'II JDU),vSI JDU),,)(IIII'OU),il(3DU),VUUlOOI,ZllOO)
r.Clllun),CCqIJOU),OlPI1.UO',HaV[llOO),~SI)UOI,VA"SI300)
C
C •••:INIII.,llt C~lFrICI[NI MAIRI.10 lrHO
~.h~fjO.1
nO thO JOI,HP
nU I~u ~=J ,uLlH
160 ASAYEIJ,~)'O.OcouInUDJ.I,NP
JJ'JU~IJ)
l'I~O'fj,ru,l)GO 10 laa
&lPHIJj<0.5
C
C,••:[l)u"E'.,'!!If)'l HIG'1 TRIIlUUIlY IN'LO'"
TA,vf)L,JJ)/D[Lr.OIN(JJ)
IF (IA,I r ,U,Vl AlPt<(JI.VOLl,IJ)/U.O~OELT.ll'N(JJ))
&l P,"(.I)"I ,0.ALPH I J)
laa CO'I["'"L
a3 j VEIJ,u).QOUIJJ)
'.
•~,U ,
AIJ,HI.&fJ,H)'VO~:JJ)/DfLT
A3Avt(J,~).A'AY~(J.H)'YUL(JJ~D[LT
1000 CU'I,(N\ll
A(TUIIN
['Ill
"
N
\
\AI
vI,-aI
I
C
C•••:AnO AUvLCIIUN &NO D,ffUSIUN TU COEfrlCIENT HITR,.
no "S\'."1,"
1>:01u:u
.....~...'"I JJ,KI
lfIN,!~.r)G1 TO ~~O
IflJ,l'l,NJIJ"CIN"I)1 GO To 200
JU~P'~.Ju"C (II,II
If (rll'JI.LE ,0.0)"Olq.1
ror)1',1 120
lOO rU''\.''lIl
.I111J~'·1 '''''CIN,2)
IF IOI"I,GT.O.OI NOl~'1
Uo cr,~.II'·"[
JUI''J.JrjPP
104'1:!1H-Jr'lf"
Ifl l ,rJln,to,lI r.o IrJ no
A3",f 1.I''')H~AVEIJ''1J+OII'(N)
.3'~ll r,"'1I:a3&VElJ,'1I1l~A03(CI(N».I)I'(N)
r;'J PI l~O
210 A\"~I J,~I'A3&VfIJ,MI'&U3IQ(N)ltDlr(~)
.,.~rl.l,·~I=&3'vrIJ,~MJ·olfIN)
l50 CV".Jt,\,L
t ,,c••"anQ vWU"l f~frCT5 A~n ,PPLY ALPw AND ALPHI fACTORS 'O~DYN&~IC
If I',:),,,,,?,,)r.0 II)IQOU
DO lh'I !>I,"liH
A(.I.IJ.-A~.vrIJ,I)OAlPHIJI
200 &,Av[IJ,II'A5 AvlIJ,lloALP'1IIJ)
J..I J ~m 1 t 1 ,J.J J J I I •J J
J -1 j I I ]1 1 -£"'i')1
,0 l:Y I r
)
a 0 l v I ,
J J
8Y EKllHN4~NOD!HUMDENS
.::0
N
I
W
VI
I
.......
~--.
'U~ROUTI~E 'O~YJTICONl
cO~~ONi~13C/~JINC,NlD,NDV~,N8NDI~~tH.DE~TIJPAGt,NHYDIIOAY,JDt~T
"NJr,Jlf,~PLOT,13Y.IPI\~),ALLC201,IDVNI~2),TJILlC20),rr,LllO)
.,N~PE~HI~21,JPCVC.LDAy,NCYCH"N~OAL
CO~HON/~IGI NCHANI~OO.~I,NJUNCI)~O~ll,JU~IZOOltXLENI]OO)
I.ILP~(lO~I,ILPHI12001"'120Pl;~UI2uOl,BfIA(200)
O'A3 I vfllUO,21I,lllOO,211,ILP"AI2uO,211,ACC}OUI,A3ClOOI
01 pltl]O~I,~(]~UI.VSCjnOI .Q~Utl001,llljoul ,YOLIlUU),lC)OO)
e.cCIIJunl,CC~I]OOI,DlP(lOOIIR.VEI)OOI,H'()OOI,VI~31)OO)
alMENllu N CU~lllcc••••,QP.AUo IlIH'N'IIU~
JH\N •"~"O • I
JHAC •JMJ~t NUND
NlD="l')-1
IIU l~O J ..,NEU
c
Coo "UN~'lrl£CIJHfICIENT3
,.=AL·..·IJ.JHI"1
DO 200 J'J·I~IJH.~
'lPH·("JI:AlPHA(I,JI/IA
100 ClI"ll~'IE
AlTA(I;:AllA(II/TA
c
C..3lT-UP AO-3 fuR [LIMINATION
~.I',•I • I
~.I ••I •/jRI,O
If ("Hll,CT.NED)~~A~aNED
Jte;E.1dJI,(\t I
DlI i~O ~=~HIN.~HI~
J1=Jo ••
T/I.LP",CII,JK»l10,2bO,21O
ZI0 CONTI"I,lcC..fll.IN.lf VAqJA~L[I fRO~EQUATIOH K
J''<,1 "0.I
JJ.I·'.J~el
JJ-"•JK t NH~O
O~Z.~JJIJJ~IN,JJ~A~
.I'J'I
jl·"lto,JJI2IlP~~C~,JJI-ALPHACJ,Jl.ALPHAlK'JK)
Hn C~I"rl'llll
~EI'(';'6E1A(III·BlTAlll.ALP~A(K,JKI
ZbO Cu';I U"lJl
lsn C')"'rt'lIlE
c
C•••••H,9(1tl5TlTlltJO~
.j ,~=V I
~("I'IIU).~lT'IN[QI/AlPHA(NEO,JMIN\
D'J "~O II=Z,II(11
1=",'»,-11
'J'~=,\".I
If(~".tl.N8'1DI NN2Nt!NU.',J.'HJ""J.'
(\I)"~U J J •I ,I."
J r ,.I
"
AbO
aBO
e .•
C••••
510
1(11(+'
PETAIJI°ft[TA(J)-ALPHAIJ,J).8lTACI()'
CONT!Nul
CONTI NuE
AS'ICN CONCE~I~ATJON3
Ill)510 Jol,NEli
JJ=JUIlIJI
C(JN(JJ\.9ETAIJI
CO'"."'lJl
D('UIl"
[Nil ..
.-
r;...
"....
EXHIBIT E
Water Use and Quality
~:olJllll!nt 36 Cp.E-2-112,para.2)
Estimate the probability and magnitude of supersaturated water passing
through Watana and Devi 1 Canyon reservoirs.Include specific estimates for
water entering Watana reservoir,the likel"ihood of supersaturated conditions
pers i sti ng through the reservoi rs to the intake str~ctures,any differences
between saturation values of water entering outlet facilities and the tur-
bine intakes,potential for air entrainment at both outlet facilities and
the turbine intakes,and a description of the processes affecting supersat-
uration at the turbine outlet facilities.
£lesponse
~~t present,no information is available on the level of gas saturation
levels in waters entering the upstream end of the proposed Watana Reservoir.
Therefore,no definitive statement about the probability and magnitude of
such an occurrence can be made.It is assumed,however,that no supersat-
uration problem wi 11 exist in Watana Reservoir because of 1)the low poten-
ti a1 for any sources of saturati on above the proposed Watana Reservoir due
to the low gradient of the river and lack of major turbulent areas,2)the
<long residence time of water passing through the reservoir,3)wind-induced
mixing,and;4)contributions of additional water from tributaries.
2-36-1
Intake faci lities at both dams wi 11 be designed to prevent entrainment of
ai r because such entrai nment can lower the effi ci ency of the turbi ne and
cause structural problems.The outlet facilities will have a subsurface
discharge that will not entrain air and therefore will not increase
saturati on.
Cone valves will be provided in both dams to pass any discharges up to the 1
in 50 year flood.These structures are specifically designed to prevent
supersaturation.Any discharges above the 1 in 50 flood will be passed over
the spi llway at each dam.These spi llways wi 11 be designed to avoi d or
minimize any supersaturation problems.The final design of the spillways
will follow the testing of a physical model before final design of the pro-
ject is completed.
Water leaving Devi 1 Canyon cou ld be supersaturated even if no supersatura-
tion were added by either dam.This is because supersaturation naturally
occurs due to turbulent mixing at the rapids in Devil Canyon below the Devil
Canyon damsite.This naturally occurring supersaturation would be generally
lessened under the operation of either dam.The reason for this is that,
under natural conditions,there is a positive correlation between increases
in flows and increases in supersaturation values (see attached Figure
41-3-45 from ADF&G 1983).This is probably related to the increase in tur-
bu lence and entrainment of air associ ated with increased flows.Under
operation,the incidence of these higher flows will be diminished as would
the corresponding supersaturation levels.
References
~,
....
Alaska Dept.of Fish and Game.1983.
II basic data report.Vol.4.
studies,1982.
Susitna hydro aquatic studies phase
Aquatic Habitat and instream flow
,~
2-36-2
j )J t I 1 j J j 1"'1 -)J j )j J »1 ]
14I~
-
12
------
I Total gas saturation ---and·."I
Nitrogen soturalion _.-'-.I
Oxygen saturation .
•Hashmarks indicate areas of rapids
-----.-.-.-.-.-.-.-.-.-.-.-.--.',--",......--"""-'-'-........
.....
45 6 7 8 9 10 "
MILES ABOVE MOUTH OF PORTAGE CREEK
.-<{
Gold Cieek Dischofij e ;;32.3
32
.,
".....,../
/"\
\\
\'
\'.\..
\\
\'.........
\./
\
.....\,.'\
,/
,;"
115
5 -1 (III III/Ill TIl If II I {1{III fI I ( {
9 I I I I I I I I I I
o
110
120 1
I
105
f-
Z
w 100
u
0:
w
a...
(f)
w
(f)
c:(
~
0
w
>
..J
0
(/)
(/)
0
I..L.
0
V,z
W 0-f-
c:(
a:
::J
f-
c:(
(J)
Figure 41-3-45.Concentration of dissolved gases in the Devil Canyon rapids complex.
N,
\.N
(f'",
0J
F~)
;;.-.'
EXHIBIT E
2.Water Use and Qua 1ity
:COI1IIIent 38 (p •.E-2-117,para.2)
Describe the uncertainties associated with data collected during this
period.
!~esponse
Differences in the measured and simulated temperatures in the Eklutna Lake
study (Acres American 1983,R&M 1982)may have resulted from uncertainties
associated with the data collection and lake temperature measurements.
Breakdowns of the instruments at the Eklutna Lake stati on resu lted in data
9aps in July and August.The missing data which occurred in periods of July
!5-14,16-21,24-31,and August 1-11,13-27,1982,had to be estimated from
the nearby stations (Figure 1)located at Palmer (Matanuska Valley Agricu 1-
tural Experiment Station),Anchorage International Airport,and Chugach
State Park Eagle River Visitor Center (Paradise Haven Lodge).Estimation of
these missing data are the major sources of the data uncertainties.
The uncertainties associated with the estimation of the missing data are
described below:
--
,-
1.Air Temperature:
The missing air temperatures at the Eklutna Lake station were estimated
from the nearby stations,Chugach State Park Eagle River Visitor Center
(11.4 miles southwest of lake,630 ft.above mean sea level)and
Eklutna River Hydro Power Station (10.8 miles north-norhtwest of lake,
38 ft.above mean sea level).
2-38-1
2.Wind Speed and Direction:
The missing wind speed and direction at Eklutna lake were estimated
from the station at Palmer.
3.Vapor Pressure:
The vapor pressures were converted from the relative humidity data.
This was done by utilizing an empirical function of temperature to com-
pute saturati on vapor pressure at the average dai ly ai r temperature,
which in turn was multiplied by average daily relative humidity.The
missing relative humidity data for the periods were estimated from wind
direction at the Eklutna Lake station.
4.Sol ar Radi ati on:
The missing data at the Eklutna lake station for these periods were
estimated from the Palmer and the Anchorage stations.
5.Cloud Cover and Long-Wave Radiation:
Due to various problems with power and connections to the instruments
at the Eklutna Lake station,the cloud cover data obtained from the
Anchorage station were used to estimate the long wave radiations.
6.Precipitation:
During the aforementioned periods,the precipitation at the Eklutna
Lake station were estimated from the Chugach State Park Eagle River
Visitor Center Station.From October through December the rain gauge
experienced icing problems,therefore,the data from the Eagle River
Visitor Center station were used.
2-38-2
~I
-
l.Measured Temperature Profiles:
Error in measuring temperature profiles could occur from instrument's
calibration being disturbed during relocation or operator error in
reading the analog readout or instability in the temperature digital
readout.In some cases during active convection,the instability in
temperature would occur longer duration.
f.
References
Acres Ameri can Incorporated,"Sus itna Hydroe lectri c Project,Feas i bi 1ity
Study -Supplement,Chapter 8:Reservoir and River Temperature Studies,"
prepared for Alaska Power Authority,1983.
R&M Consultants Incorporated,"Susitna Hydroelectric Project,Glacial Lake
Studies,"prepared for Acres and Alaska Power Authority,1982.
2-38-3
.'
/
LEGEND
.•WEATHER STATION
~I
Figure 1 Approximate Location of Weather Station
@j?-,
....
-
-I
EXHIB IT E
2.Water Use and Quality
Conment 45 (p.£-2-133,para.3)
Provide data for each fracti on of nitrogen and phosphorus used in the calcu-
lation of the N:P ratio in Susitna River water .
Rlesponse
The mass ratio for N:P of 28:1 listed in the FERC License Application on
page E-2-133 was derived from data on concentrations of inorganic nitrogen
fl~acti ons and inorgani c so 1ub le ortho-phosphorus found June 1980 and 1981
in Susitna River water samples (see attached excerpts from R &M 1981 Water
Quality Report,Tables 3.1 and 4.1).
2-45-1
---_~~-_;:;;;:l,-_-----------..,...r__"---------------------
r-------------------------..j
~
I
-I
~
i
J
-'. I
J
J
J
~
J
-\
PREPARED FOR:
DECEMBER 1981
\V A TER QUALITY
ANNUAL REPORT
1981
.PROPERTY OF:
';AJaska:Power AuthorIty
334.W.5th Ave.
...·~.~C::horaga,Alaska 99501
••iJ •';'.,-....~..:;'.';••••_••'".
..
;
,.
.....
SUSiTf-JA t-~YDROELECTRIC PROJECT
R&M CONSULTANTS.INC.
PREPARED BY:
~-ALASKA POWER AUTHORITY-----'-j
~r-"~'----';2--J../.5 -"2-
l 2:109
t:
.~,
j..
NOTE:Dash indicates data not available.
r,-
t
J
10/17/80
13.8
104
7.6
142
-0.1
5.5
88
«0.1
<51 000
9/17/80
9.7
84
7.6
124
5.9
4.5
63
<0.1
14,200
9/5/80
7.8
171
5.3
3.6
81
<0.1
5,040
Date Sampled
8/8/80
7.9
144
9.3
1.7
54
<0.1
17,300
5.7
2.0
47
0.1
24,800
12.4
98
7.8
Dissolved Oxygen
PE~rcent Sc3turation
pH,pH Uliits
Conductivi'ty,umhos/cm @ 25°C
Temperature,°C
Fr'ee Carbl:ln Dioxide (2)
Alkalinity,as CaC0 3
Settleable Solids,mill
Discharge c.f.s.
(1)(3)Laboratory Parameters
Field ParamE~ters (1)
-~
I
i
J
1
1
I"'"
i .-
i_
I_
Ir;.:,
\i
,
t_
tl"'"
~_·-....-'..~_.l~''."0 ""'"_~~}!!1oni a,'~~~s~g e';j
Organic Nitrogen
I ""'"Kjeldahl Nitrogen
N\!~1;·~r?~~.~I~?7
_~~iil~"i~~~l
Total Nitrogen
_rOrth~-:pti~~:p~t~"1~'_.""~~"""lliJC'..r"-,~"""",,,":..,.,,.,~.__~~J
Total Phosphorus
AII<aJinity f as CaC0 3
Chemical Oxygen Demand
~~:26)
<0 .1
0.26
,~~
0.45
:3.~Oi]
0.05
28
0.15
0.03
0.03
13
0.10
0.22
0.32
0.15
<0.01
0.47
0.05
0.09
<0.05
0.62
0.62
0.09
<0.01
0.71
<0.05
0.10
0.26
0.28
0.54
<0.10
<0.01
0.54
<0.01
<0.01
66
6
susi4/u 3-3
___________,_~_-W(""----------~.-.,...,-------------------j
TABLE 3.1 -CONTINUED
Date Sampled
6/19/80 8/8/80 9/5/80 9/17/80 10/17/80
Laboratory Parameters (1 )(3)
(continued)
Ch Loride
Conductivity,umhos/cm @ 25°C
True Color,Color Units
Hardness,as CaC03 (4)
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity,NTU
Uranium
Radioactivity,Gross Alpha,pCi!1
Total Organic Carbon
Total I norganic Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2,4-0
2,4,5-TP Silvex
ICAP Scan
Ag,Silver
AI,Aluminum
As,Arsenic
Au,Gold
B,Boron
3
150
51
4
70
242
94
<0.05
1.6
<0.05
<0.as
<0.05
9
40
76
9
90
310
97
<0.05
11.6±0.6
<0.0001
<0.001
<0.05
<0.001
<0.05
<0.005
<0.05
<0.1
<0.1
<0.05
<0.05
11
10
69
9
114
25
10
<0.05
0.28
<0.1
<0.05
<0.05
8
45
55
7
38
132
33
<0.05
2.2
<0.1
<0.05
<0.05
18
190
10
90
13
115
8.3
1.8
21
<0.05
0.18
<0.1
<0.05
<0.05
susi4/u 3-4
TABLE 3.1 -CONTI NUED
Date Sampled
6/19/80 8/8/80 9/5/80 9/17/80 10/17/80....
LaboratoC:L£arameters (1)(3)
"""(continued)
-Ba,Bar'ium <0.1 0.11 <0.05 0.07 <0.05
Bi,Bismuth <0.05 <0.05 <0.05 <0.05 <0.as
r-Ca,Calcium 13 16 22 18 28
I
Cd,Cadmium <0.01 <0.01 <0.01 <0.01 <0.01
Co,Cobalt <0.05 <0.05 <0.05 <0.05 <0.as
er,Chl~omium <0.05 <0.05 <0.05 <0.05 <0.05
f-Cu,Copper <0.05 <0.05 <0.05 <0.05 <0.05
Fe,Iron 2.1 4.0 0.46 2.7 0.37
Hg,Mel~cury <0.05 <0 .1 <0.1 <0.1 <0.1
K,Potassium <1.0 2.3 2.1 5.0 <1.a
Mg,Ma!~nesium 1.4 3.4 3.1 1.2 4.5
r-Mn,Manganese <0.05 0.10 <0.05 0.07 <0.as
!
Mo,Molybdenum <0.as <0.05 <0.05 <0.05 <0.as
Na,Sodium 2.6 2.4 5.1 3.5 7.2
Ni,Nic:kel <0.as <o.as <0.05 <0.05 <0.05
Pb,Le':ld <0.05 <0.as <0.05 <0.05
<0.05
Pt,Platinum '<0.05 <0.05 <0.05 <0.05 <0.05
Sb,Antimony <0.1 <O.1 <0.OS <0.1 <0.1
~
Se,Sell:nium <0.05 <0.1 <0.1 <0.1 <0.1
Si,Silicon 4.8 5.3 3.6 6.9 4.1
Sn,Tin <0.1 <0.1 <0.1 <0.1 <0 .1
SrI Strontium 0.05 0.06 0.07 0.07 0.10
Ti,Titanium 0.13 0.24 <0.05 0.17 <0.05
-
--z.-LiS-S
-~susi4/u 3-5
_~~~tt-=P"'-"""'f\_""'1
TABLE 3.1 -CONTINUED
-}
-I
l,
~4
t
Date SamDled
6/19/80 8/8/80 9/S/80 9/17/80 10/17/80
(1)(3)1
Laboratory Parameters !
i
(continued)..
~J
!
W,Tungsten <1.0 <1.0 <1.0 <1.0
V,Vanadium <0.05 <0.05 <0.05 <0.05 <0.05
"l
I
In,linc <0.05 <0.05 <0.05 <0.05 <0.05 i
Zr,Zirconium <0.05 <0.05 <0.05 <0.05 <0.05 "I
j•
(1)Table values are mgjl unless noted otherwise.
(2)All values for free CO 2 determined from nomograph on p.297 of
Standard Method,14th edition.
(3)Samples for all parameters except chemical oxygen demand,dissolved
and suspended solids,and turbidity were filtered.
(4)Hardness calculated by R&M personnel.
-,I
l
~·1
:1
'\
.'
£4.
susi4/u 3-6
-
1,
"";1 ~.JI'~-
NOTE:Dash indicates data not available
Date
-,
'j
f
Jl
Field Parameters (1)
Dissolved Oxygen
Percent Saturation'
pH,pH Units
Conductivity,umhos/cm @ 25°C
Temperature,°C
Free Carbon Dioxide (2)
AI kaliinity,as CaC03
Settleable SoHds,mill
Discharge c.f.s.
1/13/81
10.7
84
7.2
242
0.1
20.0
99
«0.1
1,800
5/20/81
10.4
83
6.6
100
6.5
~O.1
9,810
7.8
120
11 .9
3.2
79
~O.1
11,600
11.6
99
7.7
124
7.9
2.2
41
<0.1
13,700
~P........(-""-~..""'Il"~-,~,,,,,,~,,.,,,....~.-.'1
0.12 <0.051
__._.......r"-._v~..""_,........;..'........:.0=----"....-..
0.63 0.39
0.75 0.39
~.....~*~-,,......."".~......,......q~..."~...:....--...-~".,
,;<0._10"..<0.10';-""....'---....-.-......-:-1
.<~::!!:!~...5.g-.Ql :1
0.75 0.39
-.-_.,_.w~",4 .D'"''k_~~.]
<0.01 .O'.4g,_.~...--.-~"'~.~.....--;.:"".~.._..,,",,~....
<o.os 0.49
1I"'"'Laboratory Parameters (1)(3)
-.Am~;;ia]!;~~~~....J
-~"""""'~.....,Iil:'""_....~~..--~..-
Organic Nitrogen
Kjeldahl Nitrogen"'-,-_,:..Nlt~fi·~IU:oge":~~~·
.Nitrite:.Nitrogen;:P
--.......-'i'.._(c.·>c·'...~.l
Total Nitrogen
~..o~B~§h-~t~-~]
Total Phosphorus
Alkalinity,as CaC0 3
Chemical Oxygen Demand
susi9/j
____,w--.-,--
<0.05
0.85
0.85
<0.1
<0.01
0.85
<0.01
0.07
12
4 - 5
0.13
0.34
0.47
<0.1
<0.01
0.47
<O.01
<0.05
8 8 16
TABLE 4.1 -CONTINUED
1/13/81
Laboratory Parameters (1)(3)(Cont1d)
Chloride
Conductivity,umhos/cm @ 25°C
True Color I Color Units
Hardness,CiS CaC0 3 (4)
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity I NTU
Uranium
RCidioactivity,Gross Alpha,pCi/1
Total Organic Carbon
Total I norganic Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2,4-D
2,4,5-TP Silvex
ICAP Scan
Ag,Silver
AI,Aluminum
As I Arsenic
AU,Gold
B,Boron
18
10
121
16
149
0.6
0.35
<0.05
10.3±O.6
23
106
<0.0002
<0.004
<0.1
<0.005
<0.1
<0.01
<0.05
<0.05
<0.10
<0.05
<0.05
5/20/81
4.5
15
40
4
100
93
25
40
46
<0.05
<0.05
<0.10
<0.05
<0.05
Date
6/18/81
5.0
5
49
8
170
340
66
11
46
<O.05
<0.05
<0.10
<0.05
<0.05
6/30/81
5.0
20
59
7
91
130
29
23
59
<0.0002
<0.004
<0.1
<0.005
<0.1
<0.01
<0.05
<0.05
<0.10
<0.05
<0.05
susi9/j 4 - 6
'Z.-4S-~
1..-TABLE 4.1 -CONTINUED
L_
1~Date
1/13/81 5/20/81 6/18/81 6/30/81
J_LaboratlJry Parameters (1)(3)(Cont1d)
j-Ba,Barium <0.05 <0.05 0.07 0.11
Bi /'Bismuth <0.05 <0.05 <0.05 0.19
j,..Ca,Calcium 36 13 16 19
Cd,Cadmium <0.01 <0.01 <0.01 <0.01
j~Co,Cobalt <0.05 <0.05 <0.05 <0.05
Cr,Chromium <0.05 <0.05 <0.05 <0.05
Cu,Copper <0.05 <0.05 <0.05 <0.05
1;;.·Fe,r Iron <0.05 0.08 0.05 0.07
'-r Hg,Mercury <0.10 <0.10 <0.10 <0.10
1-K,Potassium 2 1.6 2.0 2.1
.~.Mg,Magnesium 7.6 1.7 2.0 2.8
-1-Mn,Manganese <0.05 <0.05 <0.05 <0.05
Mo,Molybdenum <0.05 <0.05 <0.05 <0.05
i-
Na,Sodium 6.S 2.0 3.3 4.6
Ni I Nickel <0.05 <0.05 <0.05 <0.05'''-,'
Pb,Lead <0.05 <0.05 <0.05 <0.05
1-Pt J Platinum <0.05 <0.05 <0.05 <0.05
...-J,
Sb,Antimony <0.10 <0.10 <0.10 <0.10
.i..Se"Selenium <0.10 <0.10 <0.10 <0.10
Si J Silicon 5.0 1.7 2.0 2.6
i.Sn,Tin <0.10 <0.10 <0.10 <0.10
SrI'Strontium 0.13 <0.05 0.06 0.07
,.~Ti,Titanium <0.05 <0.05 <0.05 <0.05
susi9/j 4 - 7
TABLE 4.1 -CONTINUED
Date
-
Laboratory Parameters (1)(3)(Cant1d)
1/13/81 5/20/81 6/18/81 6/30/81
WI Tungsten 0.4 <1.0 <1.0 <1.0 ".,
VI Vanadium <0.05 <0.05 <0.05 <0.05
Zn,Zinc <0.05 <0.05 0.07 <0.05
Zr I Zirconium <0.05 <0.05 <0.05 <0.05
...,
(1)Table values are mg/l unless noted otherwise.
(2)All values for free CO 2 determined from nomograph on p.297 of
Standard Method,14th edition.
(3)Samples for all parameters except chemical oxygen demand t dissolved
and suspended solids,'and turbidity were filtered.
(4)Hardness calculated by R&M personnel.
-
-
susi9/j 4 - 8
-
EXHIBIT E
2.Water Use and Quality
Conment 46 (p.E-2-136,para.4)
Provide data on water quality,including nutrients,dissolved oxygen,and
tr'ace metal concentrations in Alaskan reservoirs of simi lar depths and in
similar climatological regimes during and after filling.
Re:sponse
To our knowledge there are no Alaskan reservoirs of simi lar depths and
similar climatological regimes from which to derive the data requested.
2-46-1
....
.-,
-
EXHIBIT E
REVIEW STAGE 3
2.Water Use and Quality
iConment 47 Cp.E-2-165,para.4)
Provide a list of differences and simi 1arities among Lake Eklutna,Watana,
and Devil Canyon,including physiographic characteristics (e.g.,depth,
area,aspect,shoreline development)known to affect responses of reservoirs
to meteorological changes and thermal characteristics.
£tesponse
Table 1 provides a list of differences and similarities among Lake Ek1utna,
~Iatana,and Devi 1 Canyon.Watana wi 11 have a much larger drainage area and
Cl substantially greater inflow than Ek1utna.However,the most notable
difference between Lake Ek1utna and Watana will be the size difference.
Watana will be longer,deeper,wider,and have a much greater surface area
atnd storage capacity.The shoreline length and shoreline development wi 11
al1so be greater.Maximum drawdown at Watana wi 11 be two times the drawdown
alt Ek1utna.The length to width ratio at Watana wi 11 be approximately four
times that at Ek1utna.Ek1utna is approximately 5 miles from the glacier,
wrhereas Watana reservoir wi 11 be approximate 1y 85 mi 1es from its g1aci a1
source.This has a significant impact on the inflow water temperature dur-
ing summer.
The similarities between the two reservoirs are also noteworthy.The per-
cent of the drainage areas covered by glaciers are 5.9 and 5.2 percent for
Watana and Ek1utna respectively.Both reservoirs are glacially fed and have
high a sediment input.Suspended sediment size distributions for both
reservoirs indicate that a large fraction of the inflowing suspended sedi-
.ment is finer than 2 microns.The ratios of live storage to total storage
and the mean residence times wi 11 also be simi lar.
2-47-1
._--"'-~-_............--f---·-------------.,....--------------------
A comparison of Eklutna and Devil Canyon reservoir yields similar findings.
Devil Canyon will be four times longer.It will also be much deeper and
have more than twi ce the surf ace area and storage capacity.Discharge and
distance downstream from the glaciers are greater significantly for Devil
Canyon.Mean residence ti me for Devi 1 Canyon wi 11 be much less than for ffl!!"1
Eklutna.
The percent of the drainage basins occupied by glaciers is virtually the
s arne for both Ek 1utna and Devil Canyon •Although sed i ment input wi 11 be
reduced because of the presence of Watana reservoir,Devil Canyon is expect-
ed to be turbid because of the fine suspended sediment particles passing
through Watana.Maximum drawdown at both Eklutna and Devi 1 Canyon wi 11 be
simi 1ar.
2-47-2
-
TABLE 1
COMPARISON OF BASIN CHARACTERISTICS
DEVIL
BASIN CHARACTERISTICS EKLUTNA WATANA CANYON
Drainage Area (mi 2)119 5,180 5,810
Glacier Areas (mi 2)6.2 290 290
%,of Drai nage Area 5.2 5.9 5.0
Gil ad ally Fed Yes Yes Yes
,,,,",A,n nu a1 I nf 1ow (ac.ft.)234,300 5,750,000 6,610,000
RESERVOIR/LAKE CHARACTERISTICS
Length (miles)7 46.3 28.4
Maximum Depth (feet)200 735 565
Mean Depth (feet)121 250 140
Maximum Breadth (miles)1.0 5 1.5
Mean Breadth (miles)0.76 1.28 0.4
F~Surf ace Area (acres)3,420 37,800 7,800
C,9.pacity,Total (ac.ft.)414,000 9,470,000 1,090,000.
Live 213,271 3,920,000 351,000-Shoreline Length (mi les)16 183 76
Shoreline Development 1.95 6.7 6.1
Normal Maximum Elevation of
Water Surface (feet)868 2,185 1,455
Maximum Drawdown (feet)60 120 50
Live Storage/Total Storage 0.52 0.41 0.32
Total Storage/Surface Area (fe~t)121 250 140
Length/Average Depth 305 978 1,071
Drawdown/Average Depth 0.50 0.48 0.36
Length/Average Width 9.2 36 71
Mean Water Residence Time (days)646 603 60
~Water Qual i ty Turbid Turbid Turbid
2-47-3
r
EXHIB IT E
;~.Water Use and Quality
Goonent 49 (Fig.E.2.63 and E.2.64)
Provide clarification of the term Uwater depth ll used in these figures (i .e.,
maximum depth,mean depth,or hydraulic radius).
!~esponse
""'"
f"'"
I
F
!
The term "water depth ll used in these figures (attached in
2-49-3)refers to maximum water depth in the cross-sections.
distance from the water surface to the thalweg.
2-49-1
pp.2-49-2 to
That is,the
15.00
.14.00
13.00
12.00
~
W
ILl
I.L.11 ..00
::I:
~
0-
ILl 10.000
ll::
ILl
!i 9.00;:
8.00·
7.00
6.00
(~-
5.00
~=--
4.00
3.00
••0
•
n
•
A
a
~•
A
~0
•
A
•
0•~o·•A
1II 0
~•AO
h A •n -••A ~A
,A 0 0~I:>
u -~!a •A .0 •A 0
~0 •,A
6
~A
~A •0 •
•0 ....0
6
~0 A
A A
1\
0 ~a
~
A
.
6
,
128 130 132 134 136
LEGEND:
GOLD CREEK FLOW:
•23,400 CFS
o 17,000 CFS
....13,400 CFS
~9,700 CFS
z
<{
:!Ea::w
::I:
VI
NOTE:
WATER DEPTHS COMPUTED
BY U.S.ARMY CORPS OF
ENGINEERS H EC n COMPUTER
PROGRAM
MAINSTE
DEVIL C,
r
4152150
~z
UJ 0W>-a::z
(.)«
(.)
w
C)...J«:>l-
CC UJ
0 '0
a.
148146144142'140
~ffi RIVER MILE
">1_
:0::
•WATER DEPTIiS AT RIVE R
MILE 150.2 :-•24.13 FEET
0 22.88 FEET
0 21.95 FEET...
l:J.20.68 FEET0
--...
...I
l:J.
•••l:J.-
0
0 0--u ...
.........--••
0 •.0
l:J.0 l:J.l:J.t>......•...0 0l:J.••...l:J....u •
0 0•'I~
l:J.!...l:J....
!
0I...I
!
Do ....U .
i ...
l:J....;
l:J.l:J..
';,,
"
15
WATER:DEPTHS
(ON TO i RM 126
,I ~II 18.00
(
17.00
,.'-~16.00
15.00
14.00
13.00
12.00
.-
l&.I
l&.I
IL 1100
r.-a..
l&.I
0 10.00
a:
~
(~9.00~
8.00
7.00
6.00
5.00
4.00
3.00
2.00
I I I I I I I-
•
I
-0
a ...
.
...
t:..•t:..
-
a •a......
•a
t:..t:..
•a ...
••
••t:..
n A ~
a ...a.~
•...-
A
6.
A
"
NOTE:
WATER DEPTHS COMPUTED BY
U.S.ARMY CORPS OF ENGINEERS
HEc-n COMPUTER PROGRAM.MAINSTEM
RM 126 1
98 100
LEGEND:
GOLD CREEK FLOW:
•23,400 CFS
a 17,000 CFS
...13,400 CFS
6.9,700 CFS
102 104 106 108
l&.Ien<tru
110
6124'22
>-a:a:
::Ju
'201181/61141/2
~IVER Mlt..£
----~-~-
to-
-
•
0
..-
I
•
6-
0
".....
~•(
•i
:-
D-o
•
'"~".•aa
•!
~A .r•'"
•..•A -
6--00-0 '"~0 C1
'"'"•6.'"a-.......'A
A 6.•-
0
0
A.A.0
'"6.6.
"n.
,
IZ
~ATER DEPTHS
I TALKEETNA 2-49-3
,~
""'"
-
EXHIB IT E
2.Water Use and Quality
Comment 50 (Figure E.2.65)
Provide a description of the modeling procedures used to generate the water
surface elevations in this figure.Provide the appropriate reference to
Trihey's work (Trihey 1982 is ambiguous)and other ADF&G or R&M reports con-
taining data used in this analysis.
E~esponse
As stated in the response to Comment 4~(Exhibit E~Chapter 2)the water
surface elevations (shown as solid lines in Figure E.2.65 p.2-50-3)for
mainstem flows of 12~500 cfs and 22~500 cfs are based on water surface
measurements taken on August 2~1982 and August 24~1982.The water surface
l~levations at ADF&G gages #129.2 WIA and WIB (station -4 +50)for the
'intermedi ate mainstem flows of 16,000 cfs and 10,000 cfs (shown as dashed
lines in Figure E.2.65)were obtained from the water surface elevation -
mainstem discharge relationship shown on Figure E.2.66 in the Exhibit,which
was based on observed data.The water surface elevati on was assumed to be
the same at ADF&G gage #129.2 WI as it was at the upstream riffle,since
pools existed at flows of 12,500 and 22,500 cfs.Also,since Slough 9 is
not overtopped at mainstem discharges up to 18,000 cfs,outflow from the
slough is quite small and it has no appreciable effect on the water surface
profile downstream of the riffle at passage reach B.Slough flow was set at
3 cfs to represent a plausible worst case entrance condition during the
inmigration period for spawning chum salmon.The depth of flow through the
riffle at passage re'ach B for a flow of 3 cfs was estimated from water
depths recorded by ADF&G while surveying the bed profile of Slough 9 on
August 24~1982.Slough flow was measured as 3.4 cfs on August 25~1982.
2-50-1
-------------------------'"'1""'""------------------,-
The reference to Trihey's work is given below:
Trihey,E.Woody.1982.Preliminary Assessment of Access by Spawning
Salmon to Side Slough Habitat Above Talkeetna.Prepared for Acres American
Inc.Buffalo,New York.26 pp.
Additional information is contained in the following references:
Alaska Department of Fish and Game (AOF&G),
Stud;es Phase II Bas ic Data Report Vol ume 4.
Flow Studies.1982.
1983.Susitna Hydro-Aquatic
Aquatic Habitat and Instream -
4,.4
R&M Consu ltants Inc.1982.Sus itna Hydroe lectric Project 1982 Hydrographi c
Surveys Report,Prepared for Acres American Inc.
2-50-2
~I
-
-
~\f\~ti\stluLr1rLflrLfiftri.riJiJt~ir11
I
WSEL=592.1
SLOUGH FLOW"3 CFS
PASSAGE
REACH B
WSEL=592.15
MAINSTEM"22,500 CFS
4.0
3.0
WSEL =594.1
1MAINSTEM"32,500 CFS
WSEL=591.25
2.0 II MAINSTEM"18,000 CFS
-\0-------CWS"E:C590:B;---------------~.~.:.::;!(~.-:.
-.MAINSTEM"16,000 CFS •,:::.';....
_-1--"-:------y------------------'<-~..'.'...
WSEL AUG 24,1982=590.00 .I\':-'~/.:'/
MAINSTEM::;12,500 CFS .';.';'.'.
SLOUGH::;3CFS 't'::~:"~c:.....
"•,0
.<:.~:;\li:i§~{i{)~:;h~j,~:,::::;.;::..
(MOUTH OF SLOUGH 9)
-------
ADF 8 G
STAFF GAGES'
iLl1..c/low/II
12 '1.2 f.,JIIJ
..Jl"·o"'~~:"·J·'
;:;',;:/,.:::;::0
.PASSAGE I.....1
REACH A
~94
593
592
~
I-
I1J
I1J 59/
lJ...-
Ze 590
I-;;
Lj 589
w
588
587
-5tOO 0+00
(MOUTH)
N
\V,
o
~
NOTES:DISTANCE (FEET)
I.MOUTH OF SLOUGH AT STATION 0+00.
2.SELECT MAINSTEM DISCHARGES
MEASURED AT GOLD CREEK.
BACKWATER PROFILES AT THE
MOUTH OF SLOUGH 9
r·:...:;~.,::.,·_,·.'.~':''--;',.,/1 ''1'"~;("FIGURE E,E6'5:
.
-(_..,
'.
-
-
.-
EXHIB IT E
2.Water Use and Quality
Comment 51 (Table E.2.2?Table E.2.4)
Provi de tab les of month ly average f low data at Gold Creek,Chu 1itna River,
Talkeetna River,and Susitna Station for water years 1950 through 1981.
Provide corresponding monthly average temperature data at these four
stations for every month during water years 1950 through 1981 for which this
is possible.
Response
Tables 1 through 4 of this response provide monthly average flow data at
Gold Creek,Chulitna River,Talkeetna River,and Susitna Station for water
years 1950 through 1981.The flow data is supplemented with filled in data
obtained from a correlation analysis where flow records do not exist.The
periods of estimated or filled-in data are noted in each table.
Available monthly average temperature data for water years 1950 through 1981
are presented in Tables 5 and 6 for Gold Creek and Susitna Station,respect-
ively.For the Chulitna River,there are no continuous records from which
monthly average temperature can be computed.For the Talkeetna River,the
only monthly average temperature data available is for water year 1954 and
is as follows:May 7~2°C,June 11.1°C,July 11.7°C,August 1O.6°C,and
September 7.2°C.
2-51-1
-r A \3>L~\
&OLl)CRE.~K MOt.JTH Ll''FLOW (CFS)
VS&~bAbf.1'5 Z't 2000
W4T£fl
YEAR OCT NOV (lEe JAN FEll MAR APR MAY JUN JUL AUG SEP
..
./'tru 6335.2583.1439.1027.7 BB ••726.870.11510.19600.22600.19880.830 1'.
/'(J-I 3848.1300.11 00.960.820.740.1617.14090.20790.22570.19670.21240.
·CfH 5571.2744."1900.1600..1000.880.920.541'7.32370.26390.20920.14480.
/f()--;8202.3497.1700.1100.820.820.1615.19270.27320.20200.20610.15270.
('I f 4-5604.2100.1500.1300.1000.780.1235.17280.25250.20360.26100.12920.
('tf:i'5370.2760.2045.1794.1400.1100.1200.9319 •.29860.27560.25750.14290.
trrc.4951.1900.1300.980.970.940.950.17660.33340.31090.24530.18330.
11 f t 5806.3050.2142.1700.1500.1200.1200.13750.30160.23310.20540.19800.
,(t~8212.3954.3264.1965.1307.'1148.1533.12900.25700.22880.22540.7550.
/'IN 4811.2150.1513.1448.1307.980.1250.15990.23320.25000.31180.16920.
tro()6558.2850..2200.1845.1452.1197.1300.15780.15530.22980. 23590.20510.
1%1 7794.3000.2694.2452.1754.1810.2650.17360.29450.24570.22100.13370.
t'iG2...5916.2700.2100.1900.1500.1400.1700.12590.43270.'25850.23550.15890.
/'(6)6723 •2800.2000.1600.1500. 1000.830.19030.26000.34400.23670.12320.
f(G4 6449 •.2250.1494.1048.966.713.745.4307.50580.22950.16440.9571.
l16r 6291.2799.1211.960.860,900,1360.12990.25720.27840.21120.19350.
,IlfM"7205.2098.1631.1400.1300.1300.1775.9645.32950.19860.21830.11750.
tVIPf 4163.1600.1500.1500.1400.1200.1167.15480.29510.26800.32620,16870.
l?b6 4900.j}1'~1981.~?li1:,{.Ug:ltiJj ..Wii ~.1WI'f»}:....
/'(6'(.~.a.~~.I ,r .I 0 h'•...•_.
(f(r-o 3124.1215.866.924.768.776.1080.11380.18630.22660 •19980.9121.
{(I'll 5288.3407.2290.1442.1036.950.1082.3745.32930.23950.31910,14440.
{"t)...~a47.3093.2510.2239.2028.1823.1710.21890.34430.22770.19290.12400.
17M 4826.2253.1465.1200..1200.1000.1027.8235.27800.18250.20290.9074.
((01-3733.1523.1034.874.777.724.992.16180.17870.18800.16220.12250.
Itt.,S'3739.1700.1603.1516.,,1471.1400. 1593.15350.32310.27720.18090.16310.
N /71'7739.1993.1081.974.950.900.1373.12620.24380.18940.19800.6881 •,(/"3874.2650. 2403.1829.16HI.1500.1680.12680.37970.22870.19240,12640,
U\/Cf15 7571.3525.2589.2029.1668.1605.1702.11950.19050.21020.16390.8607.-/711 4907.2535.1681.1397.1286.1200.1450.13870.24690.28880.20460.10770,,
N f't 04 (IJ 7311 •4192.241b.1748.1466.1400.1670.12060.29080.32660.20960.13280.
/'101 7725.3-9"80'.'l-hZ-J •~1-2-:t6 •.1--H.-4.1-J.bB..I-J-3-l-1.1-~..J~-G •3U'::;J-D I 1-:J±T1,
;'>S'fo(1 t (/IS';L0I J ,<I rS-/j'Elj ~O..<j.O Ni:J'5'O /C"f'jQO 3:J'N0 -:;:.rtl+o I J '(-9'0
Y IJ (.(,(_I I "('/,,:t VI (~I \)I III (,1>/')(I I I '/'I '.f '1/h'((, I I f ;.r,I !,~l r /l¥.,.!
'-...../
J I I I J i .1 'I
r
i )D -1
I
I
I
L-JA lE~
YEAR
)j I 1 )1 -J J i ]
().~
,
TABLE 2
FUlW (Cr:S)UCH\J Lt TN A R\\I t:R Mo tJTH l.'1
llSbS GAbl%.15 Z 't2J-1 00
OCT NOV (IEC JAN FEEl MAR Af'R HAY JUN JUL AUO SEf'
N
l
V\
I
W
7'n'u 9314.327~.~214-=?'-rr~:--rr7.l~-1<\1071 -1-1:jJ~BBO:-f-rr2:?1--;-r-j.lbb7":'~:'6~,:-~:rr:--
NJ"/3U,O.1236.891.geO.91')...84~;.128;[.6101.\1976".'2416'1.20?6'.HHJ'
/Vl 652fp.2401.,1774.l 1305.116{'D'107~'i:~~.11664,2lH[l9.!265q~196.2.-1.11001.
195''1 6aJ...204'1.'149 ....,.'1597.I 1 14 1.'95f1 1261.957~~'l H':'j71ol 22840,~'711.107.J.19}-zJ.~"43a~.1680 •.128.?,1221.1043..83.105~.1661.~'H.2528'\'2~B27.2706'1.1180 •.J~46lo8.~~1!.'._I~l:.._1~~_.89~L _~~~__1_0~1~_7'!.?1~,2~~~~J41~b!_-.l..l!J~j.~~~04.!.
~bOO.2005.1476,1323.1296-'-'1104.·1030.;l002.J.3.324.31196.233:'9.23260.
11(';)1 I 6iT 301.q...17"1.1 1673.1298.123'el"11 130(,.8447,1/2 '\9Il.286::;;'265H.1401".]:
I Y.ra'~71 El • ''275'2.(1"I 9 •13 0 ~1044.,9 '10.~1220.1 0460.1 '231 70 •2::;0 I 0 ,;'I)761)•800 b .I .
irS"j "11.,./.~nnr:r.l l.!b2.10'1'/.10<1'/,7JB,,-a?O;"",-nTJ-;-,I~'J6b(j-;-~~,!;65U;<:-'~TOC)-;-r-n--~-:
1ft..0 4723 •2283 • 1 700 • 1 448 •11 03 •9:13 • 1 000 • 1 38 ..0 •I I 7390 •~J6 5 0 • 1 9J ~0 • \ I 24;'0 •
1'161 ::i'135 ,1950.1745.14S2.1100.1079.(!bOO.10100.20490.~7420.24500.16030.
7VbJ..57 n.2400.-Isoo:-iIJbo-:--1000;---93<)';"-1-1'70';-'-774 :r:-'-'~0620;'--272~6·.-:'1980':'134'70;---
J'I(,,1 3506.1500.1552.1600.1300.846.700.11060.17750,'28'150.(18HO.11330.
/CfC:l/l B062.2300.1000.1007.020.770.1133.2;\55.40330.24430.,'20250.9235.
lib}",.564",...!900.:.l100.1600.:--r400.1300.1400.'7152.20070,2:1230.225JO.22260.
('f(.,~1 6071.1620.1350.1200.1100.1100.1300.3771.21740.23750.27720.12200.
1'1&1 '16EJ2.16~~!..~OO.1458,12~~~._!..9~~.:..~_9,~t~-!?.~_Q.2_~'_~~~~~!...~?~2.l..~H70~~~!~_It"I:'J ~..3 ·1 03 • 1 66 0 • 1 J 9 7., 1 '235 • 1 '2 00 • 11 4 fl •13 4 i'•10 9 4 0 •2 ..000 •3 0 I 4 0 •20 7 I 0 •7 3 7 5 •f .Ir(,,'1 :29 'jiG •I 490 •11 39 •974 •900 • 9 ~4 • I3 J3 ,600 I •I 0560 •:2 OB 2 0 • I I ]0 0 •(670 4.'
_tirO'~S?I1.~007.1316.1200.(II~j~.11?0.~~~3~'~~~!-~~~~~(~JJ30•...:nil,,HI.!6 •..!2 I 0 •I 1 "03 •11 13 ,9,)0 • 9 :I 4 •982 •4 46 B •.!::!1 a 0 •I 27 200 ,J .J Il I 0 • 1 1 000 •.
Nf1...:1 5439.2157.1'\32.1174 •.1041.939'1 on.976::;.'17900.42::;770.20970.12120 ••
11'1'1 :i.46I.:2171:1,,00.116~O'103;;,1 88q.I10b,4096.20005.2276t la67b.7112.~..[--"':;'~f--1-rrn-I--,·3.......,----"73.,.~'J'\l:'..-·-"'"..,-'·--,-,0;1---rl"'..---I-,,-;;'·_·'--;;-_·-----.,-'--0----""'::;T'"If{f .,'1 'I I (J.,..I "7..I.,, •.I ~'7.J.7 V"j •.I':8,,,~J 0 •.0 ,4 I 'J"6 8 I •~...7 '\1 .,I -.J ~,."
1'I'1J .I 4841.17aj.1371.1287.105().'1061.'1345.6'i'28.2:';2'14.3397.2230'7,12r~o.I
Ilf${,5525.1525 ••1091.1129..107~'__8_?q~_~8'·.-lQ~%'~'2:!6'12'2537~'_~'12';1.l..1031;':':7rf.T.6.'.rH/·2537,',,09'1'149l:).99..962.1'14'(:/816a 33629.2~8o:l..1 ;'018,.Ina!],\'
/'f1I3'54;!....2113.~1b'lf.1458.1123.'1fll.1052,4702.15387.'2·1633.1532','10351.',
I'ln b 4~o.21(J".~1651.1406.llt'I.·93~.127~.113'i'6.!'i'61£'.I 2774(J.22897.112vl.JI'
'{60 Co{2.0 3/eo /':'40 1')2..0 IJ 7'-1 I,,>O'~,':It..=f r IIO~?-24 '10 'J4 'ISO M'ffjO f.:AO~r81 5''711 '32../'J ,--0/(,./c.,.J.JI4/4 II ~I 1440 Cl(/'7-2.A.2..4.:.tc ?-?f:lloO '33/'7-0 IIrG.O
.I ..·_.1-1 L w;Ji...(..~1~/tt S-O ~1'1,)7 ~ic:l...)"\
(I)/)~~r"r .'I ~~I ?J~6 /rO~r n~)~p.~~~O-~l'~}~.,~ft.,
._-A.lA~19 r'J ...u'~.L../991.".-'"Ii _,0',~.I , ,--f-J"=r.;0 ~.(,.i-..~1--1---'-r:-l L,~....d .-1-'_L.~,....,.(,,~~r (~7.'-.c AVl
~~-rv;,rr-CA..~""~7j-L ,~._•..fj."..t.cAC......u.-k ~reJluzt::....-~~O~1 ~v--:--Il(;O-:~~r""'y.--.~-J fia-U(~t.L~r.JkJ:::....~~~~,-~~~~~?~~xL 'A~;t!J.~,,d.J...<A-~'
\1\\3L~3
T ~\..\<.E.t=IN A )<lV~R MD NJ)-H.H l=L-oW
US~SGAb£ISzQZ700
(c.~S)~
WIt1"EJL
YE.Ar'OCT NOV [IEC JAN FEf!HAR Af·f.\HAY JUN JUL AUG 5EF'
N
~
I
.J:..
i'lfb J09W.lsit.,10:Z6,~'61 (.,'46El,',39t 384.431q.89IB.~1l7J~lObO!}.5;)lrL~
FIn ;~:I~9.,77'1L 51.(,536,4~,__3_?9.!.,607.31~~,~~,1012.".93~~..!.-_846 ~_
Ill'."J 231J"c).'109[).7eo.5B~.,46'(:'.4iJ.1 4[l~.:nJ8.11]6(.9'176.B;,/O.704'~
I'Il'1 3IDEI,15Scf.931.63".470,453.:65;1.,4946.,9B6~.9499,·80'2</.561.
,qU','2024.1134.693.6411,472.386.:429,.356~,9:Jsr.1 100~G:18033.692.
1't r r.2426 •'.n 6 •632 •594 •5:2:!•4"'I -:~::;0 I 2 sgcr.10'20.1 234 r:14 206 I,630'2,
I'I'.J"'"n91.':t033.789.'68@'62B'502'497'641&:Halt"117_
W
'(1293;1..'8179'
1751 3017,1766.1031.L 707..60~~!?kl 524.4~.:...u..u...!..~~-:...--1..llZh~?LI~3662.16B~101"'.,822.609.515.705.:446:4.1603~136<'•i I~O.451+1
/'(plt ;)42.4.'"82'/.61 $'.'57f.52i';436.'5f-fl.,417ft.I ~019.10'509.,~13065.1 7053,
{%O,2940'.93,h"B03./,23.47.'II"'.49!.:lfl2~',--dl ,1 __9!JlJ-!-,!_LVlfL 7648.
I({&!J '264 •14 as.12:1 9 •1001,.1 a 0 {J 621 •741...410 f.1 51 6 1.j .1 251 (j,-;14 030 •7879 • :
/'(62..I 3095.,15Sf,10340.81"',7H1.569.648 3'2t:t\16992.9fob;;92 f/O.'5663,
/tC:,?·35 7b •13 7 B.:11 07.-{!J;.'700 ,'5 ~7.!...__"~~fL::__9 ~~;...!..lQ~'-!..Q.2.Q2.!...3778.:
"1&'1..!U,~91l>.'693,.5..,'440,:387/-.371.1694.:17080.(9020.8396.3815.
IY(d'3115.1569.1100.72.620.(540.5BO.3474.11090.1:'180.11150.1 10610.
~~4430.1460,1 £176.711,526.3,95,422,2410',12970.10100."10730.''5370.
('(H 2J1JS7(-1f~r;;1,,0.6:J7.546.4'l'T;'"'In.4112.'9286.12600.H160.6911.
1 yb'rJ :2 0:2 9 • 1 :2 '5:S •9 B7 •B~1 •777 , (7"3 ,(9 B:I •Be"0 , 1 4 100 , 11 :2 J 0 •I 75 H •4 1 :2 0 •
fYb?,!l 1637,0:0.::iS6.0459.401.(3Bo,::i19.3069,5:'07,7080.3787'1~2070.
"fITFfr i4~0.765;-5U7.(5o;r;··~D;(--4407-s45.<-'jY50.7979.1032O:-'--07S~'599r:-"-
l«':fl J 2817.1.647.1103.679.459.("02.'563.2145.19040.11760.16770.\5990.
II(7J.::!63'2.1310.04::;.(727.628,4RI.519.__f it6 •12700 ••12030.9576'1 0709.
1'f1'J ·3630.1373.B89.748.654,'574.577.3R60.12210,7676,9927.3861.
(,(1"~.1807..960.745,645.559,482.5J5.5679.8030,(7755. 7704.I 4763.
Jtr.:/t.-!i 6 /!..1003~!--..22~~694'.~£!.~I_''5~!...I~?~!..__..i 08 1.!.._!l.!.Q~,-12 070 ,~~z......'-.l..J..!!.Q!,.._Ttf'i(;"":~u8 ~•(77 J • ('5 '5 9 •'5:2"•4 B 0 •4 70 •6 1 J •3 4J 9 •1 0'500 •'70:2 6 • '8088 •320'5 •l
I lfl1 :III '5 7.•.1 105.(1069 •700.'549 •'506 • '548 •4'244 ."1 R2 B 0 •"344 •0 0 0 '5 •~'::;A2W'n
(f(7a',3268.1121.860.746.~,7{"405,534,'2950.\1 ~429,'10790.700\,_J~67.~
Nt'f,1660.llJ(j,'~:r7:"762,~:!.'-:;;~716.7;nro;-~L,oIo.144407 B2J·\.'\0:1.
tr8fJ \}:J-i'7 I=?'-l8 ~H.,13 €oi:J f41 rUO /oJ8 4P;i."J /1':>0,'IJ'iCtl T.Q..Lf ~~()2.
frejj 7-1000./144 1/1 (,t;l...,'JJ._.....:j:!§~'f1 _1~.2..11 65~/PlI.u /4l.otJO 1.l~_L
(I)/)~~,J..c;:k..A ~(.~195-0 ~19~4~~~W1At~~.~.~~cI-J-~-?~~/~~'1.
I •,~I I J J J )
J 1 j 1 )J 1 ]»1 -~J J J ]I-',,.....•
IA61,~()J
I SV~ii"rJA ~Jr ATlO,J ',",,0 N ,.....L.y 1=="W}W (C.~5)
Wn1'l3P-U Se:,S 6A&G '5"2'14-f3~O IIYEAROCTNOV[lEe JAN FEll MAR APR MAY JUN JUL AUG SEP I1
I IClJIJ 26869,11367.·,6197,6072.5256.5377 •5657.66294.101616. 124890.106432.39331.
If(J'I 18026,6933,5981,7074,7295,6382,7354,59273,82255.123164,100947.73471.
Irfl.31053.16364.6989,8274.7036.5853.5985.45294.132547.13732i.116186.82076.
(f(r?44952.16289.9746.8069,6775.6350,7993.88040.130561, 125949.97610.Jl4160.
/'ffl1 20169,11829.,5272 •"7202.4993.4980.6306.58516.108881.116732.128587.66275.
tC(\'-23896,9168,6183.7255.5845.5316,6412,58164.169045.148877,120120.53504,
I~j~19923.10522.7295.6179,6831,6324.7182.82486.161346.168815.131620.104218.
/9rl 41822,21548.14146.10600,8356,7353,7705.63204.176219,140318.124813.87825.
/'f}-'d 52636.19887.10635,7553,.6387.6679.8099.70321.112897.122280,99609.53053.
tO~30543,9528.4763,7795,6564,5666.6468,56601,110602,146217.138334.67904.
Jq(~)25754.10165.7005.6716,6310.5651.5830.50062.84134.129403.113972.81565.
1%1 33782.12914,13768.12669,10034.9193 ~'9803,85457,151715,138969,116697.62504.
/'((,2 29029.13043,8977 •9050,'6183,5951"6635.54554.163049.143441.121221.74806.
,rb3 27716.10755,8865.8671,7854,,'.6058.,'5565,53903.85648,146420, 106707.70782.
/'Wl·37846.11702.·5626.6351.5762.4910.5531.35536.153126.124806.92280.46110.
I'l(S 28747.10458,,6127"6952,6196~6170.'7120.49485.110075,138407, 111846.89944.
I C((,C,365~3.12313.9159.8031.7489.7091,'8048.52311.125183.117607.118729.·63887.
Irl(,~26396,12963,8322;.8029.7726.6683,'7281,::iBl07.134801.136306,137318.89527.
1'((/0 ~~~.~.150811,1~11532,'M)};'e763.~i'~.130514.~.lf~r~.Q .L·.,:,1fJei ii;U;gm..I'>~.'{.&:.JJB,'((/f ~- •
'I •.
• . 'I -..... ..'rNo 22683.6799.:'5016.6074.5581.5732:",5769.53036.94612.132985.117728.80585.
I 'ITt 32817.16607.8633.6509,6254.5883'-~788.29809.122258,139183.133310.69021.
l'(fl 32763,14922.;8791.9380.13458.6646. 6895.74062.176024.142787.107597.60220.
I1'f1 26782,14853.,8147i 7609,.7477 •6313.'7608,64534.122797.123362.107261 •45227.
(<(74 20976.10113.'6081,7402.6747,'6294,6963.61458.67838.102184.80252.56124.
(ITf 19520,10400.9419,8597.7804.7048.6867.47540,128800.135700,91360.77740.
tv 1'f7~31550.9933,6000.6529.5614.5368,7253.70460.107000 •.115200.99650.48910.
rlr"30140,18270,13100,10100,8911,6774.6233.56180,165900,143900.125500.83810.
\
U\Ir"fl?38230.12630.,'.7529.6974.'6771.6590.7033.48670.90930.117600.102100.55S00.-('179'36810,'15000.9306,8823,7946.7Q32.8683.81260,119900.142500.128200,~I
V)(9f30 58640,31590.'14690.10120.9017.8906,12030.66580.142900, 181400.126400.
1'181 •34970.16200.·8516.7774.7589.6177 ,10350.83580.108700.152800.159600.67170.
0)b~d-.:J:<,A·~I'~-o 5"111 q ~~~~J"\.'"~;
C~,,~~<:'~OJ~/974.
~.........
t2-)f.J;w,u (76 J l:eviJ I i),.,~us 6-J"
",_.
.--------------.-_...---_..------------------~
-,(;S 11iv~--:-.--;;;7-10 ';:j~~~:~~&7iv~~e~C~-,;~:-a~/i-.;fliiR£r ,(~c:J
J~Qg w.Ai.TeR YEA ~5 .j:~:qR.wltjC~._!,-~:rA _t\K.E~.A..V.A U..A_S-t,.€_..
-LvAT"E-k Ytl11<6'cT-/l/Jv Df.C JJ1N fl/J InP;<.I1PR,mlJt ]f.J/V J1JL I7 Ct rr SLPt-.~."-- --_.
___,_~If-__.Ivo _.J_~__ov!tl~!~k1~.~_J~!t_!-'JJ~~Q-~L1-.tJ .____ ___~..;_