Loading...
HomeMy WebLinkAboutAPA4032Stage Fluctuations Resulting from Discharge Variations Due to Load Changes 1¥- IY~6 IS Pr~5 rID I 4D3:J Studies are being undertaken to determine the discharge and stage variations at significant locations resulting from various constraints on maximum change in powerhouse discharge and maximum rate of change of discharge.The values to be considered include: Maximum Rate of Release Change cfs/hr 500 1000 2000 Maximum Weekly Release Variation cfs (+) 1000 2000 3000 5000 1000 2000 3000 5000 1000 2000 3000 5000 Tae analysis will involve a dynamic routing of weekly powerhouse releases between Watana and Gold Creek for spring,summer,fall and winter periods. Dynamic routing will not be considered under an ice cover.Instead,a survey is underway to determine winter operating policies at other northern hydroelectric projects and downstream effects. ..... TK 1425 .S8 A23 no.4032 421461 a41206 ARLIS Alaska Resources Library &Infopnation Services Anchorage)Alaska - - - The purpose of the study is to provide information necessary to make a decision on allowable discharge variations from Wat~na operating alone or Devil Canyon when operating with Watana.Preliminary studies indicate that, for discharge fluctuations greater than shown in the table,downstream attenuation of the powerhouse release pattern is minimal.The difference between maximum and minimum discharges at a point near Sherman would be similar to the difference at the powerhouse.If this holds true for smaller release variations the stage fluctuations can be es timated on a worst case basis from steady state rating curves already developed. Exhibits 1 through 4 may be used to determine the maximum weekly stage variation resulting from fluctuations in discharge about a given weekly average flow.These curves are based on steady state rating curves at the noted locations.Daily flow fluctuations resulting from changing powerhouse ,loads might not result in as large stage fluctuations since channel storage and friction would result in some attenuation.The maximum rate of stage fluctuation can also be estimated using these curves at a given weekly average flow using a given time rate of flow change. For example,at RM 127.1 for a weekly average flow of 10,000 cfs the maX1mum weekly stage fluctuation for a 1000 +cfs or 10%+flow variation would be 0.44 ft (0.22 ft .!).The corresponding fluctuation at RM 136.68 would be 0.6 feet (0.30 ft +). ..... LO .q 00 N I""'-.q ooo LO LO I""'- M M ___.I' Exhibits 1 through 4 have been drawn for locations near the upstream ends of Sloughs 8A,9,11 and 21.Examination of water surface profiles in the report "Susitna Hydroelectric Project -Middle and Lower River Water Surface Profiles and Discharge Rating Curves"(HE,1984)indicates these are representative of the range in stage fluctuations in the Middle Reach of the Susitna River.The rating curve at the Slough 11 head appears to give near maximum stage fluctuations while those at Sloughs 8A 'and 21 give near minimum stage fluctuations. 421461 841206 2 I --j ..-..._--_.._. .---.--.,- -.--- . .t - _./ -'..._---;:_.__._..'~----,---- ..........___.-.---'"--_._.-._".-..,._._._-----~-._._--.,--:-----.---. ...•..---.-.--..._-_._------.-._-._..--:-.•...----~--.~-------.--- c·~-~'~.".·-Weei:.1.:·:/~(cwVarieit~/7 ~{;),;. ..--..~ :-._-,----._--_...._-.~._----,-_.._;-._<- _..:.._.._-,-.-,..~:_-------_.-._.~-._--'_.-.--' ). -..-_.---_.._..-...:.--._-_..~-'- ._........~.__...,.....__~...•._,__.__._w._·....:_.~..,...-..'"__._.~,_,'._..,~_...._--:-_'_". '_.~-_._--'--_.~- ~ ~... .,~. 'X~.·3.0 \~.. .J~ l~-'--._...-.·?,O '!'~.'..--..-~_... l . '~J .-:~-- ..~..~...' .._....'...••-._..:.__...----_.-,-".-'-'--"-----~-_._---;~--_.~--_......'.__.--_.-..-_.-----_._.:_--:.f!t1e~~E8ilS-Ce.·.~-;?Zl~27N1L~~12l.N72~1{~&i.ae£_~~...._.·-~__i ,..j .",-,." --_.--_.-~-.~_---!..._._----~- --'-r-' '''--T-'~-','---''-',.-_...:.~~yvee1:.-1.--.H~~:·.~rlc.,lfon (::.4.) --r-- ------._-'---- }...._.-". -",."._.-.,.,.~..--~ .._..-----;-- ~'-'~-.--'~-""'-~_.-...-_._._-'-.- /5·' EO-- 10 ,·as·· .- - - - - - .... ,- -_.~....j ._"-----~ ----~-'---_....._-----~:.._;-'--,._-_.."!""_.'------:------..._._--~.-..-~-.......'._---,-- ..--..;,. '-_--',_-i-._.__.---.".--.-._._. ..;._-~--_....-_. ,I/~,..'V\------'/~....;,..;.v-~~-------.--.,,~~ .-.~-~-----,.'---.~.;.-_._-~----_.__._--,.--"_.-"- ,,••..'_r ..•__.~...__•__•__~_~,_.__••••••"••__•__.-_._ :.Hf=lJ<Z9 Eaft..$C[.J.~:.~_11:~JFNR.~·~:J.QJl\lr~ENJ1J£~.' .._t.__,_~__., .~'---~..__..._..._.. _.---,---t-..~._..t.-.----.._______._._.-i.._..~_ _.'-,-------~--_...~..-_..._._.!._.._~.,_.__.-.. .----._-;--"-._..,-----'.....'~'-"~---'-"""'--' .Cro;~.5:..--c.-h;n'r:S!,RM /3~C 8 5~6 //~~/ "~"'.~-i-.----!- --..---..-.....--. -t- ..'-~-' ..-,,--------'--~----L..---.......L------J.-------L-......:.----.,;-...L----- ~":..:-x() ~,-",.. ...~.'.-.,- ,~ ~'.'~'.0.5- ,- ,-- ...,. - ;--~--,.._-_..- - .:::2/")/""1:/""1:"_..,.-..--'"....,. ~\...-'~.---- ..}-"":---- -----·-------1-------_. ,..-,--_..~-..,.."..- .--:::-:..~~~ ·f----- •__••__._•__••h ••__-' .',".;.----,---,-,~..--._.~.----"--------.--r ~.--.------,-.._..---._.---.._--- ._.-.._,'_.~_~~-.--•..,..-'__0 ••-_•• ,' ~-----~...---.--~----.--_:__-.-_..._-i----·" .-h.-;........;__~._:_-.••--i-'--.---_.__.'_4~·' .-'-~~-:~~~~~~~=:~.._W~~Ali~:RQW _varfiSrlc?~.~.,t;):c ----.--:-.--.....f..-....J..--_. -~-------_.·--···--t------·--:-_.--p- ,'----_.-._._.._._--~ -L~':.,.:-::.:.:.~__..'L,..,-. .-~---1-_...._--~- .~, .:.~....-., ',-3-,0· .... - -----------,--..:---.-.----.--_._-_.- "'... - - WATANA FILLING WITH E-IV and E-VI An analysis was made to determine the effects on filling of Watana Reservoir and Susitna River discharges at Gold Creek of the Case E-IV and E-VI Environmental Flow Constraints.The analysis was simi lar to that in the License Application (p E-2-79).Three year sequences of Susitna River flows representing high flow (10%exceedance)average flow (50%exceedance)and low flow (90%exceedance)were used.The Watana Dam was assumed to be constructed by the same schedule as ~n the License Application.The Case E- IV and E-VI flow constraints and reservoir rule curves used ~n the analysis are shown on Table 1.The results of the analysis are shown on the attached Exhibit. The computations indicate that with Case E-IV Environmental Flow Constraints the Watana Reservoir could be filled to its normal maximum water level (El. 2185)for wet and average sequences ~n a similar time frame to the filling using Case C.By August of the third summer of filling the reservoir would be full.In a dry sequence,using Case E-IV,the reservoir water level would only reach El.2155 at the end of the third summer of filling.This is 10 feet below a dry sequence filling with Case C and represents about 350,000 ac-ft of water or about 200,000 gwh of electrical energy. Case E-VI Filling Environmental Flow Constraints are keyed to reservoir water levels expected to be exceeded in all but the dryest 10%of 3-year flow sequences during filling.Using these flow constraints,which are 1000 cfs less than for Case E-IV at all times during the summer,the final reservo~r water level during the third summer of filling can be raised to El.2175,an increase of 20 feet over Case E-IV or 10 feet over Case C. This results in a benefit of approximately 400,000 gwh of electrical energy over Case E-IV. Susitna River discharges at Gold Creek are also shown on the attached Exhibit and Table 2.Reservoir filling would begin in the summer of 1991. The discharges shown for 1990 represent the natural conditions.During 421423 841203 1 - .... 1991 discharges at Gold Creek would exceed the Case E-IV flows at almost all times since the flows during this period would be controlled by the height of Watana Dam in order to provide an adequate volume to store the 250 year flood.During the second summer of filling discharges during a wet sequence would also be controlled by the height of the dam and would exceed the Case E-IV constraints.During dry and average sequences the flows would be controlled by the Case E-IV or E-VI flow constraints.For a dry sequence the E-VI constraints would control flows at 1000 cfs less than the E-IV constraints beginning in June of the second summer of filling.During 1993 a wet sequence of inflows would result in filling of the reservoir in early August and Gold Creek flows would then be constrained by Case E-VI and power generation requirements.An average sequence of flows would fill the reserV01r in September.Flows at Gold Creek for both average and dry sequences would be controlled by minimum flow requirements. -421423 841203 2 - - - Table 1 Filling with E-VI Rule Curve Watana Target Gold Creek Target Res.Elev.Flow Water Second Third If Target If Target Week Date Summer Summer Met Not Met 1.Oct 1-7 6000 5000 2 Oct 8-14 6000 5000 3 Oct 15-21 5000 4000 4 Oct 22-28 4000 3000 5 Oct 29-Nov 4 2055 .1./3000 2000 6 Nov 5 Natural Na tural thru 30 Apr 28 Natural Natural 31 Apr 29-May 5 2000 2000 32 May 6-May 12 4000 3000 3L~May 13-May 19 6000 5000 35 May 27-June 2 1908 1./2074 1./6000 5000 36 June 3-June 9 9000 8000 37 June la-June 16 9000 8000 38 June l7-June 23 9000 8000 39 June 24-June 30 1965 !±/2110 !±/9000 8000 40 July I-July 7 9000 8000 41 July 8-July 14 9000 8000 42 July IS-July 21 9000 8000 43 July 22-July 28 9000 8000 44 July 29-Aug 4 2006 2/2140 2./9000 8000 45 Aug 5-Aug 11 9000 8000 46 Aug l2-Aug 18 9000 8000 47 Aug 19-Aug 25 9000 8000 48 Aug 26-Sept 1 2037 ~/9000 8000 49 Sept 2-Sept 8 8000 7000 421423 841203 3 .... Table 2 Susitna River Discharges (cfs) Measured at Gold Creek Watana Filling Cases Wet Seq uence Avg.Seq uence Dry Seq uence 10%Exceedanc~50%Exceedance 90%Exceedance Year Month E-IV E-IV E-IV E-VI 1991 April 1544 1371 1214 1214 May 11414 9753 8231 8231 June 25680 22220 19650 19050 July 10312 9000 9000 9000 August 19506 15016 9701 9701 Sept 9446 7799 6800 6800 1992 Oct 6453 5732 5032 5032 Nov 2879 2557 2263 2263 Dec 2ei10 1785 1580 1580 Jan 1640 1457 1290 1290 Feb 1393 1238 1096 1096 Mar 1258 1118 990 990 Apr 1544 1371 1214 1214 May 4903 4903 4903 4903 June 8800 8800 8800 7800 July 12800 9000 9000 8000 Aug 13162 9000 9000 8000 Sept 6800 6800 6800 5800 Oct 5032 5032 5032 4032 1993 Nov 2879 2557 2263 2263 Dec 2010 1785.1580 1580 Jan 1640 1457 1290 1290 Feb 1393 1238 1096 1096 Mar 1258 1118 990 990 Apr 1544 1371 1214 1214 May 4903 4903 4903 3903 .June 14633 8800 8800 7800 July 9000 9000 9000 8000 Aug 17375 9000 9000 8000 Sept 11099 6800 5800 ....421423 841203 4 --. ~. --~--_. ~4: -----._----~---_..- \-----Y.~--~~-- ~~--------~-------~----~­ ~. --~-._------ Y\~ 17i~ ~ -----"'~--t t--------'---------~_~7_""''------~()Iv; i~ t----e-----'7''-~~t I ~~ I-~-----,------.,.----;~--i~ •-~Iq;---,---r1---~------;.~I,1L, o -----+---1.. () 'fI ..-----------~_"'t_"I.l-"'----II? o -------------1% .-._._._------- \- -~~--~•-+-"==----T--if--li--Y--t--+=-~==--==---~--- ---.-------~~-- -----!.--I--------,;li--~t't_1~_l -+;--1-'------------.-----------------------. I---- L---...--------.-... [ ~~- t ! ~ ~...•....--+---+----'1<-_ ~--~---­ ~---~------~-----~-. I ......~---~r l~i=~ f---------s--1_ ~C3 ---l----------------- ~-----~----\-----~--------- ----~t:~-- -----_._r.\a:r .·_,,::::~f---\\---\,-+-- r ~, .... I"'" - .... ..- WINTER STAGE FLUCTUATIONS Fluctuating water levels during winter periods when an ice cover 1S forming, melting out or breaking up may tend to destabilize the ice cover.This could result in consolidation of the ice cover,thicker ice covers,higher ..-water levels or 1ce jams.Permissible stage fluctuations (and corresponding flow fluctuations)J with an ice cover on the river to minimize these .j possibilities,depend on rate of flow change,amount of flow change,..... proximity of ice front to discharge point and strength of ice cover.The strength of the ice cover depends on air temperature and thickness of solid ice versus slush ice. ..... ..... Tests done by Acres Consulting Services Limited on the Peace River indicate that a daily flow change of the order of !50%,near the end of winter,with the front already melting out,will result in consolidation of the front located about 100 miles downstream of the power plant,with subsequent rise of the ice cover about 1.5 ft a distance of 100 miles further downstream. The open-water surface fluctuation was about 3 ft near the powerplant, attenuating to about 2 ft.60 miles downstream. Based on the limited data we have,only a judgement 1S possible for the middle reach of the Susitna River.Effects of project flow changes on the Lower River ice cover will be minimal because of tributary flows and vast overbank relief areas.It seems reasonable that a flow change of the order of 10-20%over a 4 hour period should be no problem in mid-winter (February) in the Middle Reach.In January,when the front is advancing in the Middle Reach,flow changes should be minimized since the cover has no strength at this time.Similarly,in March and April when the cover is melting,flow changes should be minimized because the weakened cover can break,resulting in consolidation jams. In summary,if freeboard is a problem anywhere on the Middle Reach,then flow fluctuations exceeding +10%in a day should not be permitted in the 421452 841206 1 .- ..... ..... - winte~.A survey of experience in operating hydroelectric projects in cold reg10ns 1S being made in order to better define the most acceptable manner of Susitna Project operation.Initial results of this study indicate that experience and tests during project operation are the normal manner of defining the allowable limits on discharge fluctuations in the winter • 421452 841206 2 .- LOW LEVEL OUTLET AT WATANA Studies are being made to determine effects of drawing winter power flows from an intake located near El.1800.This is approximately 200 feet below the bottom of the proposed multi-level intake.Use of this mid level intake in winter would allow water near 4°e to be discharged in many cases and would cause the 1ce cover to be as far downstream of the project as possible.Operation of the proposed multi-level intake in winter normally results in outflow temperatures between 2°e arid 3°e depending on prevailing weather conditions.Removal of 4°e water in winter will reduce the total heat content of the reservoir.This could cause somewhat later warming of river temperatures in the spring and slightly reduced summer river temperatures than if winter outflow temperatures were near 2°e to 3°e. Ongoing studies will address both winter and summer impacts Other considerations include possible reductions in water quality (deficient 02 levels and increased turbidity)near El.1800 as compared to the higher level intakes.Preliminary indications are that winter use of an intake at El.1800 would move the ice front downstream to the vicinity of Slough 11 in the coldest winters for Watana operating alone • 421433 84]l207 1 ..... Effect of Cone Valve Operation on River Temperatures The Susitna Hydroelectric Project is being designed to provide a reliable source of electrical energy to the Railbelt Area of Alaska.This means that the project will be operated to provide a firm amount of electricity even in years when river flows,the source of electrical energy,are low.The greatest need for energy in the Railbelt Area occurs 1n winter while the greatest river flows are in summer.Therefore,in order to provide the reliable energy during the winter the project will be operated to fill the reservoirs by e~t:'!y.QG.tober,even in dry years.The operating policy which is developed to meet this goal is conservative in that it ensures a firm amount of energy.It results in early filling of the reservoir in average and wet years.In these years water in excess of power requirements must be ,'-"-"""""..,-,""."._.,., released from the reservoirs in July and August to prevent overtopping of the dams. Additionally,1n the early years of project operation,summer electrical energy requirements may not be large enough to require powerhouse releases equal'to"the':;i~i~um environmental flow requirements.In this period powerhouse flows will be augmented by the additional release required to meet the environmental flow requirements. In both of these cases,reservoir releases wi 11 be made through the cone valves.These valves are expected to minimize the possibility that nitrogen saturation in excess of that allowed by state regulation or detrimental levels will occur.The intakes to these cone valves are located approximat..E!ly 180 feet,below the water surface at Watana and 450 feet below the water surface at Devil Canyon. levels: The intakes are located at these ,... .,.. 42Jl48l 84Jl206 1.To provide a means for evacuating the Watana Reservoir to El. 2065 if maintenance on a su2.I!!~t=,:_&.~~_._13~.!=,uf.~~E.e,",i§..r~qu.!Eec!,and ? 1 - 2.To provide for diversion of Susitna River flows during construction of Devil Canyon Dam,and to provide for evacuation of Devil Canyon reservoir in the case that maintenance on a submerged ~_,r_"._·,·"_~...·,,,..,,.,~,,,,.,_"·~,,"m,,,.~.,»·...,.,,•.•.,,_<v-"._,.~,-~"",,,_••__ structure 1S required. During the periods when these cone valves will operate,the water temperature at the level of the cone valve intakes will be lower than the temperature of the water being released through the powerhouse.This is ..- because the operating powerhouse intakes will be in the warm epilimnion water while the cone valve intakes will be in the thermoc.!.~!!~..(Watana)or .....-~.~-"--'~"~"~ the hypolimnion (DevilC.~~xon). It is anticipated that the cone valves would be opened gradually in accordance with the need to pass flood flows or to augment power flows • This would minimize any sudden temperature drops resulting from cone valve operation.However,there would still be a reduction 1n outflow temperatures which could be as high as SoC.This temperature reduction will ~."~~_,.,,_,_,"~..•.,."".~","",,,"'>~'''>'r'~'' be greatest in the early years of Devil Canyon operation for two reasons: "',-'--""",>, 1.The Devil Canyon cone valve intakes are located 1n the hypolimnion, 2.During the early years of Devil Canyon operation the energy demand on the project will be less than the project can supply requiring larger releases through the cone valves. ..... The attacned Exhibits 1 and 2 show the simulated outflow temperatures from: 1.Watana operating alone in a wet year with 1996 energy demands. 2.Devil Canyon with both Devil Canyon and Watana operating for a wet year with 2002 energy demands • -421481 841206 2 The simulations were prepared for Case C environmental flow constraints. Case E-VI constraints are not expected to result in a significant change in cone valve flows during wet years. operation will be similar. The temperature effects of cone valve -. Exhibits 3 and 4 show simulated weekly average temperatures at RM 130 correspo~ding to the reservoir temperature simulations in Exhibits 1 and 2 respectively.Note the effect of cone valve operation on temperature, especially in 2002 with Devil Canyon and Watana operating.Exhibits 5 and 6 show simulated weekly average temperatures at Sunshine,downstream of the Susitna-Chulitna-Talkeetna confluence.Note the reduction in temperature drop at this location.Exhibits 7 and 8 compare simulated river temperatures at RM 130 with fish temperature tolerance levels for the periods simulated. Further studies of river and reservoir temperatures are being undertaken: 1.To verify that Case E-VI temperatures are not significantly different than Case C• .-2.To determine the feasibility and impacts of having a high intake to the Devil Canyon cone valves. These studies will be reported when available. 421481 841206 3 I 1 J ]J J J ],--]I J ~l 1 J I ]J ~:]I I I I I I I I ::Q •24~lIr l I I L I L_l I ~UII.II.II.I.II.II.IIIII.""O.5 i-D·•,•,••.7 7E7 0.0 If r··m1-~i·1 EE E~I ~I as •iii i ,,i •,•,•15 o u~ID r .~T 7,'lT 2 >-'.•".•..T r <~a ....'I r •T ""'"• •./I:l .r r rll''-.....'It 7 ~.,I I 2~•.~•,l.n '1/,.-< >-."IT,''•••-...• " • ••"1\"~..,.."'-~ l!o .""'!l~.~ • °1 tIIW t ..1M I ~I .aG.,A:p"1 lV ee ';;;1 m:c r .....~'ri8 I _t filii ~o Illel I 198Z lUDIJ.o:a...NAlIIII'....-WAr~OPSRATlDN IN IBIIii •• ----PAmICfm OJIFLOI JDllPlAa. "--••-<,'IN:UlW JEtRAA..... tQTPih I.INI'AH(POA'T U\Q,1 AT Q..rIATION llil ~1 1~.1i "I I.INf~POAT Ll\Q.1 At Q.[VATION It 14 "'~4.iI HI J.INf'*E PORT LE'en a A1 Q,(VAlION 2071 FT 1&33.I "I 4.INfAMI JIOIIl L~..AT Q..tVAl'IDN 2OotO n IUI.II"I 5.(ON[VALVI:At iuvmlON IOCJ FY IClI.I"1 I.liPlUWAY CREST Af Q.IVAfllIf 114"1&5'.7 "I .............11I -till It, FLA5KA POWER AUltOU TY Nlnta......a I 1lilIIlft ..... WAT~R£5ERVO IR OUTFLOW TEtFERATUAE ~ICE ClKJ.4TH tIR~1RiOJ .JJINf VEHT~_.. ~~ ~.. "" 2 I I I -I I •••• I I I I I I I I I -•..1< o V I) \I --~'--~r\..,-..~ g lot I :I)-3tI1.l.t::I~3dt43!l'Cn~rc OUTFLOW TEMPERATURE -eel !lot 0 !! I ICE -(I'll ~q ~q -j'0 0 - I""" I, - ,..., ":1 ',:1 .;a;a;a ,;;a ";a ";)"~:;a "':;a ..~"iII ;;I....'.a.i"-. IctL)~DfMI\t-JO12 II - 10 9 - 8 7 /\ U 0 '-J "W (}l ~5 t- 1JJ4 0... ~j ~2.( LU lL ~ 0 30 WFATHEf?CONDITIOtJS: -----1982 -·-·-I~BI ----1'\74 -··-··-----1~1' MAY I JUN£I JULY 35 40 4-5" WATER WEEK 5"0 52...I 5 ALASKA POWER AUTHORITY 1··--- SUSITNA tlYDRQ~~~<::~RIC PROJECT I SUSlTNA RIVER TEMPERA TURES AT RIVER MILE 130 WATANA OPERATING :::.J,:;JIIS.l·:-.:QO-·-11·..·'-1-~ID~~::-DoIIII ~~.._........o I m ><:::t OJ... ~ ~.",..,.......,."IIp-P ..,......,_..,.,.,._.,.,.,..,.•....,.,..,.~.~ I 1 m )( :J: m -i ~. ALASKA POWER AUTHORITY ;;:u..u ...·:l....~;a ~~l_~:VW1O -._~_..• 1U'C:........(i.(.........s." ----. .~-=-.,.,..S=U:.:::Slc:.:.1N-:.:.'"IltDfiOHEClfilC PfiOJECT SUSITNA RIVEATEMPERA TURES - AT RIVER MILE 130 WATANA AND DEVIL CANYON .,----Qf£!l A TI "!9-_•5" /...................... 2002 DEMAND 'N~"""tH£'1:CONbI T IONJ : ------,QS2. --:...-.---.,qRI -----1'}74- -..-..--"1971 tJUL Y I AUG. 40 45 WATER WEEK. JLJN£ 35 MAY /2 II 10 q 8 ~7 0 ~ w "Ct :3 I-5 ~~ ~4~3 1 I ~<'2U) ~. f), 0 30 ;lA~~'~..~A~.~.~~.;;,-)'-"1 .~)--1 '-1 ;--)-'~~--......-~11 _I m ><:r -OJ -t e'\ ALASKA POWER AUTHORITY __A SUS~!IYU-'IOHECTllIC PROJeCT SUSITNA RIVER TEMPERATURES A T RIVER MILE 84 WATANA OPERATING -----~r---- >u~.LI >Wt ...l ...M ....~_.-".,.-,~~,•. ..--'--u .. "':~".""&~"& s- ,'1qfp DEMAWD 50 o~I.iM~\1,.J~Ni£'I,~U~Yi "',AiU~.~I,-,-·..'::r'.:-.--;.,I-- 30 35 40 4J5" WAI£~'NEEK \2 I, 10 r'\.9 (J .!!..J 8 lu t\l 7- ='I~~Ql I I l1J ..I l\. ~5 WEATHI:R COtJD'T"Of\JS: Lu ../'........:'982r/4 -'-'-,'fel ~,t ---~-,0,,4</w 3-_e._.._l~"I Ol.- I/)2 I i......, II II Ii lilll~••• '~ 2002.OEMflNO 12J II III Cf "\J 8•........ u,7~ I- ~ fjJ /,) (t C! UI NVITIOI\I,. \. n 5 '\\ ~ f~HHER co w y o· W ICf6l \",-' r / . -I'fS I. 4-I : --"--,q 1l!. / \ ct --- -,q l' UA J- - a: - t- V1 1- ALASKA POWER AUTHORITY ;;:t.~~··L ~loiG.....-f-~_ID -------<- ~'l r"-~~A.NCJtO&Il(,(••a!.fl& __.jUSiTNA t1vU]loELECmIC PI«.iJ£~!I SUSITNA RIVER TEMPERATURES AT RIVER MILE 84 WATANA AND DEVIL CANYON I ~ I i OPER!'T1NQ.______! OJ -:f i\ 5 OCT. 'tiOJ~40 ~S V\./Ai£"R WEfiK o4-l iM~Y ",JUN~',~UiL\l ,~U~""-,'.,I,' ,I I- 30 1 1 1 ·1 ]1 1 j I 1 1 CHINOOK SALMON • I I • • I !enangeIAdultInmigration ••.Spawning ~ei~l~:~:~:::I-.:.----.--·-------I--t-.--------------------, ...._._- .. 20 I I Tolerance Zone ~.,.,'"\.. '<\ \..~.,~....r ...••, .......l'••~P./}-'~01...."-,V"J'\•.-/i\I '...I \.J ,..I---.--....' 15 Devil Canyon ta 2002_..-N -10U-f Watana :I-1996 tc::a.--------E'Gol ~ Natural 0 -5 I I •I ,,,,•,,I I May Jun Jul Aug Sep (lct Nov Dec ~1981-1982 Uiv.er Mile 130 Jan Feb Mar Apr m:x ::J-.. IS"--,-,.. ...j ·frirrrrrrr.....'.11:.Ii .it••••· CHUM SALMON Ilange • • P~ak I I I Adult Inmil!ration I •I I •..I...-s~;~·~i~~I •I I. Incubation Juvenile Uearing I • • Ou'migration •I I. 20 i i " Tolerance Zone u ~\.,"\ " \\••~'r,.,,''-."\..~....r\• _",T-,., ,I..;~~••~"~I '...I '__,/\,,01 15 :I:l Devil Canyon ;:::!2002 ._~-..-10U-f Watana .ae1996~ Q.--------e ~ Natural 0 -5 I i I I ,I ,,i ,,I I May Jun Jul Aug Sep Oct Nov Ilce 1981-1982 River Mile 130 Jan Feb Mar Apr Iilx:,...-~ -I-- ~,w ic;=q - - - HABITAT SUBSTRATE STABILITY SUMMARY Under natural conditions the bed material size distribution in the Susitna River depends upon the magnitudes and durations of high flows occurring during a flood season.These flows tend to sort out the bed material and shclpe the channel configuration.Bed material samples taken during 1983 at five main channel study sites in the Middle Reach of the Susitna River are well graded having a maximum size (D90 -the equivalent diameter that 90%of t;hE~material,by.weight,is finer than)of approximately 3 inches,an aVE!rage size (DSO)of 1 inch and a minimum size (DlO)of about 0.05 inch. ThE!streambed at these sites appears to be in a stable regime over a long period.Material of less than approximately 3 inches is constantly being removed from the areas and replaced with similar size material from the bed load sediment transported by the river. ThE!mean annual or dominant discharge is generally considered as a measure of the ability of a stream to shape the channel configuration.This discharge,if allowed to flow continuously,would have the same overall channel shaping effect as the naturally fluctuating discharges would.With project,the dominant discharge in the river will be reduced,and bed load sediment transport movement will depend on the magnitude and duration of thla spiking flows which may be implemented.Bed load sediment from upstream of the project will be trapped in the reservoirs.Material finer than transportable sizes for the project flows will not be replaced once removed from the bed.Therefore,the streambed at these study sites will degrade. It is estimated that the degradation will be between one ft.and three ft. depending on the magnitude and length of the spiking flows.As the spiking flow increases toward 50,000 cfs,the material will become less well graded and will approach a uniform size of 3 inches.If spiking flows are not implemented the bed material at these sites will be more well graded. 421472 841210 1 The studies presented herein River mainstem study sites. are preliminary and pertain only to Middle Addit ional studies of substrate stability in ~~""'_.""""",,""_-,_.."'~~''''...,<,",C''''.''''''''"''!)lJ!y,l,;;i.!''l?·\";""""",,;-;,-,,,,",.'..,..-,',".....,~...;~"~.,;..~~_,",,.':':;;;,_'-~""'_,,'_"~,.,,:.,,~."...••-,...:;-::;<~.,~..",,;jl sloughs~~"~_!?~.i!lg,,,"'Wide.No generalization can be made from the studies ""'~~~'~-._c·.--.~ herein to the sloughs because of the different nature of the hydraulics and sediment transport characteristics. DISCUSSION Studies are being made to determine the stability of habitat substrate material under project conditions,including potential spiking flows.These studies should be completed in the near future and a report will be issued. Mainstem and side slough habitat areas are being considered. Preliminary analyses have been completed for the following areas: 1.Main channel near cross section 4,RM 99.0 to 100.0 (Exhibit 1). -2.Main channel between cross sections 12 and 13,RM 108.5 -110.0 (Exhibit 2). ..... 3. 4. Main channel upstream from Lane Creek,RM 113.6 -114.2 (Exhibit 3). Main channel upstream from 4th of July Creek,RM 131.2 -132.2 (Exhibit 4). .- r 5.Main channel between cross sections 46 and 48,RM 136.9 -137.3 (Exhibit 5). These areas are considered typical of Middle River main channel spawning areas because of the well graded suhstrate material. Exhibits 6 through 10 show the measured bed material size distributions at the respective study sites.Exhibits 11 through 15 show the transportable 421472 2 .- bed material sizes (armoring sizes)at the study sites for various flows. The theory of dominant discharge explained in the U.S.Bureau of Reclamation publication "Design of Small Dams"was used to determine stable material sizes at the given study sites. The dominant discharge under natural conditions is the mean annual flood of approximately 50,000 cfs.With project the dominant discharge has been estimated to be approximately 15,000 cfs due to regulation of flood events by the reservoir.Spiking flows were not considered in this determination. The following table shows the armoring size at natural and with project dominant discharges at the study sites • 421472 8l~1210 3 1 I J J 1 1 1 1 I I J J 1 i . Existing Substrate Material and Natural and With Project Armoring Sizes at Five Main Channel Study Sites Armoring Sizel/ Existing Subs rate Natural Materialsl/Conditions With Project Main Channel Near Qlil .!30.~(50000 cfs)1/(15000 cfs)1/(25000 cfs)1/(35000 cf s )1/(45000 cf s )1/ in in in in in in in in Cross Sect ion 4 0.02 0.8 2.6 1.8 1.1 1.4 1.6 1.7 Cross Sections O.O~1.3 3.0 2.8 1.5 1.9 2.2 2.5 12 and 13 Upstream from 0.06 1.3 3.0 2.7 1.5 1.9 2.2 2.5 Lane Creek Upstream from 4th 0.03 1.1 3.2 2.7 1.6 2.0 2.2 2.5 of Ju ly Creek Cross Sections 0.04 0.8 3.0 3.5 1.9 2.4 2.9 3.3 46 annd 48 1/From Exhibits 6 to 10 Z/From Exhibits 11 to 15 1/Corresponding discharge from which armoring size is estimated. 421472/TBL 4 841206 ..... Under natural conditions the armor·layer 1S 1n a state of dynamic equilibrium (stable regime over a long period),that is,material in the aI~or layer may be displaced by some flows and replaced by bed load sediment moving downstream.Large flood events tend to disturb the equilibrium and temd to degrade or aggrade the stream channel at various locations.Bed load sediment transported from upstream as a result of the flood or fQ1llowing the flood could depos it in areas degraded by the flood.This CQlunteracts degradation and depending on downstream hydraulic and sediment processes may increase bed elevations.In this case the armoring process will be renewed and the river bed will reach equilibrium at a new elevation when the armoring process has been completed. There is some evidence from an examination of photographs of the Susitna River between 1949 and the present that some areas of the Middle Reach of the river are currently in a state of long term degradation.(Draft report by AEIDC,"Geomorphic Change in the Devil Canyon to Talkeetna Reach of the Susitna River Since 1949"). The construction and operation of the Susitna Hydroelectric Project will substantially reduce the transport of bed load in the Middle Reach of the Susitna River.Most bed load sediment will be trapped in the reservoirs and will be eliminated as a replacement for fine material removed from the bed downstream of the dams.In time,the minimum size of material at these study sites will increase toward the armoring size.Additionally,the streambed will degrade until it is armored.The Harza-Ebasco Report "Reservoir and River Sedimentation"indicates that long-term average bed degradation in the Middle Reach,with project,will not exceed 0.3 feet and will average 0.1 to 0.2 feet.Localized degradation may be higher or lower depending on bed material composition as indicated in!the preliminary results contained herein. 421472 841210 5 The following table shows the expected armoring S1zes and amounts of degradation at the study sites for various discharges.If spiking flows of these magnitudes are implemented,the expected degradations will approach the values given in the table.These are conservative values because they are based on given discharges assuming currently available bed material size distribution.Spiking flows may change from year to year or may not be used annually.Higher spiking flows may only be used occasionally.Under such conditions,the magnitude of degradation for higher flows is likely to be less than shown in the table because lower spiking flows will make the bed material coarser than assumed. 421472 841210 6 -1 J ]J J I 1 ]j •I ]1 I 45,000 cfs Estimated Armoring Sizes and Degradation For Various Dominant Discharges 15,000 cfs 25,000 cfs 35,000 cfs Main Channel Armoring Armoring Armoring Near Size Degradation Size Degradation Size Degr~dation 1n in in in in 1n Cross Section 4 1.1 12 1.4 18 1.6 23 Cross Sections 12 1.5 7 1.9 11 2.3 16 and 13 Upstream from 1.5 7 1.9 11 2.2 17 Lane Creek Upstream of 4th 1.6 10 2.0 13 2.2 19 of July Creek Cross Sections 1.9 12 2.4 20 2.9 30 46 to 48 Armoring Size in 1.7 2.6 2.5 2.5 3.3 Degradation in 28 26 26 29 43 421472/TBL 841206 7 "'f\. '\'x,\;'"~... \I ~ ~~"~., "~... ~,IJ <. t.;'-\I... o ..,; "j \i,~ ~\. .\ •~.::. ~~ '\:~ \. ~ ,~"• -:>1 'I. ~~7.1 ~ \. "-i .'>.'> ~I ~'Ie ~ -J\.. (!"A -+-:!. r I 'r:'~..::..;.- '< \i " \ \ " ,,.,.,.....- I ! I I I I III~I'I~--)'--...- I ~I •~I~'\ I i i I I I ~i '..,..,.,..,-:;,...,,,,~;;-,-....- I-- I""" I .- '-, '-., ) ~. "~-,, "-"'"\..,I, "-~r:: ".L .l ~-'t ~....\ ~'.J c"". \...'-\.,,.. '<::;:::> ~- Eyj../I!!I:7 ?'- (I -.~ \. \;,.-J J c-'l<...-~ i,:.,i ~I " I..., ..J ';:..!i.:..C'....,."i""'- <;.-.,I "-...,I ...,!..~\. '-I < i "" I c:..\.!. I """)I<..--II I, r ~ : -,- I " I ~:""" ) ... -I IJ I ;:......... I .. I.:.... I '- I \:: I '"- 1 ...c, I '" I :l.. i ~--.;. t- '; i.i - .- ..... ~I I I_-I"'" ..... .' o ]~ -/-r ."iE~;Jt~. 1 I ~I\.... I~~~:::::'-":J ......';';I ~"- .;\. I)l:'~"-I~ ~I~ u ~"--<"-(~ I~'J I V :? I ~"-{'~J •w ~"':::t I <;)...,'-y "J ~.~";:-:) A ~"- ~;' ~ ::./"-:t "...;:s ~"'(. ... \.\i. ~) ~ I 1 "'-l>..<~~.:>~~'""~, .:) *"\r)~~l ~~j :sI~ I J I ","... I !' "-.~ f t f / >-......... :::> +-'l -:::'s-~ ~ ~ /" --- I I I I~. ~: ~' ~ ~:~, -j ~ ~.,: <::.')' .j "'1 I~~ ,'\:'::, i ~',- ~,<",. i ~I.-"-""I \J 'I I~q I"'-~ ~~ '" ~A '2~~~ ")v..... "-'"\J<';Q I ! i 1__- .... ..- ~k Ir~jlJ.e)r reS \; l.;." ~-.J \. ~~~C\\( "><;""IJ ~::t""~\j ""~~~~~~~~\:;:.;..\I~~?~~~";:.~-.....:~'oJ......~~~~~~ ~~~\J.~ ~~"~~::::;.....{lI)\J) --------_._--~----------------------- \-- .... ~!Yj f~/r'J,I I :.J I'T ') ...,"\J / ~.... \(~~~\u ~::: v Il:J ~, ~l.l '\~ I...:\:l \J ~"-~ 1.-) "-~~X:~~~ ~~"~ \] ~~~I;,j ~~"-It) '\I t5~~"- '\~ ~::-.~~, ~'I::\J....~...) ~l'\I ~t','....~~V)V) !~ ".~.. ..--~=-~--,"",:._. ___.___i____'_...;-,==1--,------ ----~ •~·~c __~'" .-...-=~ k -:.' F}t ~,J ~J JP 'd 1...1 \....., ~~~-.j ~\l".~ :oi(~'-~ I("'v.~~ ~ \..1 I("......~"- ~"< \I ,",' .....~~~\1 \jJ ~...1<.., ~ 4t ~"'~ ~~I{ ~~~V ~"'~"'IlJ ~"'~~ ~~/~"q ~'J ~l<.:~t': ~ ~I\J 'l:~......~ 1./)V)"- ~ .... -f"'I'PI \... ,:-",,',.., '.;;v ~ Il!.l'~ ~--.J ~~\! ~~).,. ~I<j ~ v tQ ~') ~~\J 1.0. ~\) ~~~~ \:'l ~~ -~t ~ ~~<~".... ~~"\I \( ~~~'"( ~'l ~~ ..... "'"~~ ~~i ~ ~Vj ~ :::s - - I...~E'X'1./l(j ,r.h <J 'J~ '"q ~~~\;,;{~.~~~~~~~") ~.\l V "'"~~~~ ~~ \;l ~~V ~".".~~~'~~q ~~~ .-.---- ~'J ~\.;"\J .- .~"'~. :~,~~~~.... ~;~\-J. ~l\l ,,~ ~ I<)i:).,... {~ .- --- ".,._. -; .--1 ,'"1 ::-:1 .---=-'--=-<.-.~-, .-_.....-I --:-:.t ~.~~.,. _:-:..:i::.::::-::t:- I -1":::: I j ..1i,i_~_:i~.~:_-t1_.---;--_-_:-!1__-_-_-_-.,.---i---- -,,,'-j ... z .,.,. :~- -, ~. > - I ·.....-'..,--·~··'···r -...Yr.,..r1~.·'.,,...T'~'""r"r''''"'1 '1'·I I'"~l'."..I I ,."T'.,r'r'n','1""".~...,rr ,.......r'.,TT".q"'"~~rr .~~_.'·n·n,,",~·r~r~·fT".,'.J -Ir-",.~..,....'.I".,I 'I I 'I ,I.!t I +,IT'I I I ,I I I,I \•I 'I I!'1 I I"t '1 I ,I ' I 'I I I (I !'j I ."1 !.I \I'j'\.I r ,,,I .I·.·1 I, ., . .I'.,I i ',..I"I " • I I I ~I,) \+'I I I ' I I ,,)\I I I \'!J'),I I tit j 1 I I • I I I 'j r I I I I,' I I j I I ,!+I I I I 1 I I .!'I "J""f,J t ~',':::I ,;~':;::::.,r ,'Ii ::',~l:;1'1 ::~:.1 lIt ::~I ';;,,I:~111 1 I !:;'II,I::l'I''.,;+~,II'",'I :;1,1 ':'I •,;';.I ""j ••....,'.,ot t-','it.jll-,'".J,.•.'ff"!••••iTt !.,j-f"4.-rtll-f"-Il1~"'"I"t ,....+..tr--+lj~.It'··,,1.'I'111,11 1 ,>t,''1 1 ",1.II'i Ill'jr,J l'l'......I"~''" _I I .•,."I"t'"I', , ,,'"II''I P 'I ,'I'I r 'I'11'1 ,"I'l 1 I lIlt ,.",1 I,III ,p,r"!'I'.,I'll l', I ,.,,-. I....I I",.,'.,'':j'II'I fl'l'II t"I""Iii I 11 I 111'I'I'"I,1'1 'Ill I"1'1 'II/I ,I,l'"I",1'1 '1'\1 ,I;I,,..,. j 1 :,.~;~,;~:.~!;'":1 :,;:~l:'II I;',I;.~I,I:"1'1 \;::'I :,!~;,1'';1,'I.;1'1::,',"I'::,,',::,1:II I:"'I:1 .,1 " '~ I.''".••••••'.".'".,.'•••••1 •.+.1\.1 ,.•'1"••••I"I.•'•••."1 1'lri·j 1.~111H '1.1",,,I r·,·Il ft 1•.W1 Lf·ti·j·'1"!·41".",..,...."+-0",1,1 'I".•,,1 ..\"I ,l.'""......'".,,,,.,...,,.".,I '\"'.'I ",.I''I'I I I II I " ",,1 '"I [.,''',I I'I" ".,." ,I ..",~.,~....\-'".I···""··'1'·'"·1"1""II"'I·I 'I """l'I'lt·'".'"1'1'1··1"·"."1.,,".",'·1·'..'::-11 I·,;;..,:;..:;:;;,;;;.;:,:".,"I'I ,i :,;::,,.1 .,''q::::;;t"f "It 1;+'\;',,.:I"ii':,')'~'.:'.;:..;:ii',;,\.l Illi~'I .,.:;.."-,..·····1·'·'"·'1',"·''.'"1"1 ·f'·,1.1,.1.,'.fr"1 1 .'1"'1 ,IU'·"'I "'1',+'"i 'j 1[.1,.Ii,+LL,+It 1,1 <-tiro 1-,.,"","·'·0;~.,',.I·'."·"·1··'·....',.,.,.....,..."." " I I "I 'I'I 'I I''II \I'I'I "II I I ',.I I'II :II "I ' , , ,.,,I,'I rt I I''4'11'1 .",c"'-·-"...".,.....1·..,..,,,,.,,,,,.,.,'I'!",,"1'1'""1/,'""1 ·11'11''1'1 I I'I .,""",.\..".;,...""",!,.•'I"i,."•I Ij 11,1.\!,I '!tIt I I r I \ I I 'I,iiII.,""'h 'I I r 'I I I.,~...I";·".....,..,'I"".\"I,,j"II ,"'-t ' ,,,,."~l.Hft·li -+ill,.1"·,1·.,,1,L "'tl-W-ltlli 1ffi'Iii!J,Ij;I'Illi "~',.~.~~,.,....,I..1,_:..~H.!,~i,~:'-:..~I'~~·~-~~;-r:-·ri7~-~'T·:~~;111+r t~TP·~·1 TI"1 :lmrtTl'l I rT'-1 ~T;~rn~TT·...+1111 I Ii ~+'I,t I 1t1 Ilfl 71'-;-1'-:-r ++f+r~:-;-'\1 "l-II"'""'\'P ,f<"f':'~·'I'·:~~·T~:~'~.,. '-"..I .,.,'.,.••;,••,,."..,I 1'1'"I III I II'III II''11 I II 'I I I'I'II",II I",·1 I ,II',1'1 "II III I,II 11'I 'I",,,,","..N"'-';I .,..,.",..1.1::1"::'.;~";:;~~;~i;~i!l ,:1:I':11:'j,:Ii,tt;f:!j1 1,::!:~:I'Ittl :111 [~l:t :r;ll ,1'1 t;.'I I:'jj!l 11!1 ;1 :!I ;!;"i " , ",~,:1:;\:;. I···i··,1 ",,.."".'""..,.ll·r'"TJ ""I ""+"i "·1",.·t,"1~'",.,+r,f Ilr't~r:'r'"·il,·,·,t 'I'''''jn '4t..'I",·t'rn~d~1 i'r\'.l;t\'·m··'l'".."'.'"..··l,·,··:.;I ::.:..:'::.;::::!::1 I:':':I':;ii'::'"~j'II I::,.I!i I '11 1'II".!'I':I,I I :;,j I I j',::.Ii:'I':'I I ]"I ,:II 1 i,'I ';,I .j:'I ''I ~.,~,,,,I '~.,:'::;'I"::;::,;. I ..''.,.....t'.i·,.!.,'",.I·],,'I"I,I,,I,"1','i 'I'i i l 11'1 r jl ."'III ~*\1 .,"',I \ ,I,.1 1 ,I ,I 'i l .I"1 1t 'j I Ii I ,.,'\...,.."II I ...,:-~.:...~~:.....:.~-~"~~_,_~ill,..:..~~~~~'T""'~...t4..::-.'j~~t ll m'.'I·f t,_"II'+I~'~+.~w-+-,I \ 1 illl'l +-tIl",I,',...:...JVr-.......~.....~"+-..~~~:••_~J:....:."~-!-.).-,:...~,;...-, ,....'.".,..., .;r .,..,."rr:.",.,r-:,,I",t IJ'!,'!i j ,I,',,:." ,'"'"t ,,!"'t .",..,~,r·~..,.'....,.,...I····.".··i'1,,1 'II',."II".".'I"I,ll "1'1 11."1,:\1 iT"'I"'II'11'1 "11'·'"I''I'I IT]lit 1IIIi tl ,II I'"I"j 1"1 ....."'.'\51",,I 'II.,Gi ,..,~:';.:i ::::'111 ;'::II'~!ll;:1 '11:'Ill ,:1 I!I II I ~ll!ff 1 I 1'111 't!.:"1 :'~~,:I''1 1 lIt 1 'i l i:l:Il'I\:!:J'~"l~;',r:l l,l,t!',:;'.-t. I ,···."".',...1..1,.".,),•...."l'l-1 ,I"~II"L"I,ll I'I!Ij'!lrl At~'11 1'+i·jl!I.,.,.,·tlll,lj "1'-1'1 1 tlr ,.\j'rr 1W.1 11\,L,I ,','.,.1 1 1~'1,,,.1 1 •,.,....,..,••.',-'11"'."'~'.·\..,."II···'I"""".''"I 'I I I It)I I I"'"'I",.,I ,I I·I'"'11 1 I 'I "",""-t''.l"~.'.".I'·"...,'I '!";,/,'ill I'!tllill I"'I"\'.,I i!'!'!II,!!1'1 •\II I''II .11''''I'w 'I 'II ....'t ',till il·j",, I I"'"I \',,',I .",I 'I'11 l'!'!I ,I,f 11 1 I "f til'I)'1'!J'I--I 1 I 1 ,I;,I ., •,•..i .,...,.,I I~'II"11+'"I ,I I,I,·L'I I "I ~~ttitlll'I!:I I,I 1 I "I I,·Iii 'I ",'II"ItI I •i I I i If I!,I,l.LLlIJ t ffit I'~I I ,I:~.,L'I,,,'I,1Lt·"I..1 ··-··r-:;;··:-;~T~;r;·Ti,-;-nl-'·iT"'~rrrPt,'~T.1..t'·1 mrmi+l 1 t "I "I'~-H11 r;nl-rt:-r r ""!!I I:'rrttl',II-:-:'1,tpf'Trr;i!·rt-:f-+·I·.~""t1 t;i;::·T·t"i'·:'·~r...,."..',,."'1"I"I:.....1,",'",.",II 'I II I I II 'II''11 .,,,·;Ii ''I "i','."'"I'::J'".,,I;c'I.,,.,...,.,',,1.Nol,·:.:':;:':;::!,"I ;!;1:.";!~:,;:1;:~:I!I Ill!;;!;;'1 l!lf :::I i I I j 11\:;'1'I ~11 :1:l';i!:~;;~:Ii~::':'r: I··:T·'::-::.::.,'.:i!.+·rll!~h!~.;.;;'::-:.:;~!li~I!·rt ~~r'II!!+tr}rt ~+';tiH ~+"rrft·rf·!t~t 1 ~.H l~~"j~:~tTI't~~+jJt !.l~~!.,,~~IJj'~'j~if :::.::.;..;./.~!:tv.:..I ..........".,,,I·"!'.'I;."1\,.,".,,.",I II,1mI I mH ",I",I'"·1"'I'" I ,'I 1 I Ij I Ii I ,.'I'l'II III'r ~.,"I ,'\,II ''"''..1'.••..I.,.....'•..••"'1 ,.Ir II)',.I"~rRt..!-I "'1 ,,~I "I 1,1 I I"If'l 'I"'1'1 11 "I I,I it 'i'I I I •I l !1 '""j l11,'1 I'm""~I ',i '"I~~"·.',l"..,..'...'I,'t I ".'r I "t', ".1 I I,• ,;j,!,j I t 1 +'I"I 'I t"I I I •"f -Ii.,~, ,I ~::'••I ~'."1:--\1 ' •'-'"""C'1'"I .~.,'-'.l'~~;-7T:~-~'~··"-r-:~:-:-:1 !;t,I'r :77'.-~;-..;~~T :I •1,."I,,!,I,I 'I I't '1 n~~+-;+rrr;:t j t ;:-••-:-:."'(~·I,,+...t+-,--;~.".7t;"·,,,r':-~ r...:Ii:::,:;;:::'I:i:!I :i :i I:.,:''::,.:::iTIT III TI'I 'I:11 ,I !I J I )i ,I!:;;\,!!I I I,!iii!1 :!II I I I'IJl j II:!I!:[j!I!!!:II l IJ I :::,,~,.;;::,k:,I:,I::i :'..,l.: '.;:'1 ::..'.;::!;:'.;;'i I·.·~·I 11':I :.j j I ;;:;:;q~.;,:;;i 81"r'll'~i I 1111:j r'l'lit j':II m·fj·11'L~t!I;:f;:14j II".r'i tj J!\'l1'r'1'1 II :tr'\ill·t"I[§.~;.:"~I,:~~;I ~i ':::,i'.'.\::1:;I.":~1:::.:'::::I:::;i::,:III '''I "Ii:iii,::,:11''11'II i!"I it.I!I:II I 1 I1 11I 11 ,:)1"I :,::1"\1;I;""':;:::'::1':::::::.:,.,I '...I·'·",.,I II I'I III,I I,I.'I '",I I I I ""II I,," I I I'1-4+1 " 'I i I 1411 I I I\1 .:j :','"',.I I ~I'I ",I"I",'I"., ,"~.~.!':~_'+"'h'.~~~.'~4~'~u ':"H t~i'..-.t.4.!ojl r i"...t-lll..,.11 '11'1:1 I"l "~.L..Hi""!rt tt"t .1 .";+++--"-4-~'~I~--,....;,.~Tl~~~,~+.~~l-t~-I~.,. ,,1., . ,.,I !1 'I 1 I ,l't l J +11 'I';1,1 I'In j'!I'l.'I !I t I I I t 1 r , ,I r t !1 I,I'r I I ,I ".,I l'",I • I ' ·...,...,.,,,..,.II"I' I',,,,I I",.,I II J1*I'.,)I I III I i I I Ii·\I \1 III'"I I III·'I'-H#~III'I'I',III hiitl 11:'t I '~.~:s.,,v,.,.,'I·',':..,..I r:.,,.,.;"",1'1;"I"I r I"!I I"r''I I'\r,!j'I t I 'I t 1 1 ,1 1}I I I 'I I j !',.,4.1 1 :~I l~'I!I·"I I''\"~, :':;1:::;.;:::;i 1;1.l1.··1'·"!;-1ll ill:II':1'11 :I·~III~!!rl-Il 11,1".111'IHj LrF 114+1+1-1 jL~.~H i'~H +t'}'ti '-)+tit f-1.rJ l ~,'T~:i~':t,;·:Y.j'I'"'i;;;~ii.iHI:-:;,.:.:.';;:.:,:;.':;,,:il,:'"I I,il ',!,,11 l1"f;.j·Dii:t II I I,'11'1'1'/'1'11 "I II l i Ii'III IiI')1'llll",I.::..:~,;':.,I::i:1 :,:.~f:··'·1··...,..".1\".,1.1.I!',''''I'll ,11'I'·'m'1 I it I IIi I,,I"II'I 1';·1 I ,I·,!I_~I,IIQ,··~'·'I·1,1,..,...~~,.;. • • •••j ,.j'I'i'•r 'I I''"tIt·I'1 It'I ''I 1+1'" ',t 'r I 'Iff I 'I ("' • , ,+,\""' , •............~-.t-.--~--.................,...l";~'"'.....'-1-t r..,........,...,...."~"",,+.,.+1-....1-+-1 T -f ....."t-t.......-.......,.,~·t.......HTl.....:··.....~·-1'.,.~+.,.. ,...,..•.,.,.•""I'•.",,.I '.."'t i.l.'·"~t'.U I I 'J"9 ,I il:.·."1 ~..·..·1 i :.•."..i.,"."I ,\.,,I.''''''I"'I!I I'TI I"II !Il r >J I I II 'I .,!,ttii II I Ii 'I ;JI !II II!II fl II'I I!I'I II !II jlll II I I;;;·'~,:~i l·",.II '.I I,'..I·~.,,• . I ,.I'"I \'I !\tIl I !t I I)\!:!I ~j ,I 't \I f I !'I I I !I ~,I .v,j I ~':~'i!").!•l "I ' , ' , ';:..j.::":;;...:..:.'.;1·.I'lrl'~lt'~~.J~:~'II·'rl.;lf-l 'j!~il'·j;l'.J1+·~.l~I["fut:n~rr"f'r't t ;r1j+~T'~tr':.i·I-ltl tiT TTL +1fH1i'l n'l"l l 1;.,":;..ii",:1 1 ,j L1·;!i.;;;•.'.Lii.:.;,;;"iii·.....,....'I·".'II''.," ,1'1·'" I I'I .,.,i~"'!",I I I II t 'I'j ""I'·'I .,'1 'I""I'I'"· . "'"i • ,'I'1 I I I'I "!I j I I I ~"f I j I,,I I 1 'I , , I " ) ,",I,"I I . , . I I ,.:.,',1 I I " ,I,I,I ,I ' , ,, I ,' " 1 I ~I I I 'I '1'"l "r j I I ••'!I :'.:;;.l;;~•.:~•..;~;J.llW.H·1 '1"'..i-:i~tt."J.!,11,t~H.l :/-I..'w.L I ,I,"i ~..j.llli ,ii,Ii 1,lil,1 '~.,..~;..~lL;.:"Jw.:-!b.;'~l_~.;~ ·.,t......r .'.''11·t,1,n,'"Itl",.'1'I I I!I I ,r I '1'1"II!l'I.!,,",litl f 11:1 II'I t I jii II !'I"I III',,"".,,"."IT,,.".I ":",. ,·l·.l 'I"Ii)"I I '"'!t II t '"I I 1 It j 1 /.1.I'1!I,ll 1 t I!'Ii " I fl '"1'1 I"•I'+1,,II .'"..,"..I.,.,.i ',I!I'",I,·1,",'"I I'll'I I ' I I,!I "I t ''"I ,1,1 ,"I j I ,."t,II"",1 1"1.,,,.',.,.,'.'.'~",.,I,, , ,'I I I ,I,''I I ,I " I I \I ,,I l'I +I I I 1 'j!••"•I I I I l ' I t I ,II I j , " 1 I j,!(,I'", I 1 I,'I I "I :', ,.".j.".<"'.''.·1"1 '·I".·lt(,'..'.',I."",.L'I·'".'1 d.t.,ttl +~:l T~r~t~~rU >;-I!lr+t-",,,+t t-ti,'1"\Jl-m1:1 Lw.t-t UTtJ~-Lr.tilt-""i''1'1 .·T··..'.c.,.....,,,;,"I'I,,I I 1 I I 'I i ' , ,I 1 I r 'I 1 I ,,I'I'II t I Il~J.l t ","i ,".I ,,'I ,,., ",-I i t I f±f J \t ttl'I iI,It:I I l~",",I I I ' • ,t l'""III ' , ..::..;::.:~'::I'I':,:I":::::,:I I'i:"i,:'I'I:.,:'I l ' ,:11 :"t .:;I;iii 1\I;i I''::I .::I '1 'ifi;:ftl;:I i;I if'II :II i']:"I ill"I I I;;!I':I'I :II'1 i:'"..:::::::i;;::::;.c"\~;; " ""f"I,,I ,1t I ,,1\'I I~J'/1,1 ~11 II ,I 1-,I ,Ir~ljt II "1 II!It'It I II II ,rl 'II 'I ·H .,l.!..Ll.mr;-I!1 ,I I''lll 'I"'II''";'i,J ., -',:'~:T:-,,7""'.-:;."i";-t ,r-,;;:......:-:.;,,Tr,,.t~ii,"iT;1 ~ll 'ill'~~"'"I'-+t ...,ij'iH U ~,.i III ",7:-;-':-r:-;-:7'"'~.~-:~.~:-T'.~.·..',',..I ".I 'I'I,I,..II',..: .I I'T,,:'III '!'I .t 11 I I I i!I /I'i jll II'I ,.I,"<I I If)I \'j I I i II II II:!'III i j ,.""I ,.,,,f')1 .",,'..f'l)l\•..,"::::::1:::i:~I';:;t!';1)'1:1 :I:;:'\\1 t !':11 1\11 I I I tl '\I :111:ll':1 I l t I!:il q ::~I ,',~!~:';!;:i .!~'.:r;l~;·..·1·····'l1~.-.-..,'+.l..•t.1'.jL ..""'"'f"'CI'....tIl,I·H r ·'+t r'1 In,}.!L :-tt,LiL.,..··1'·))H-,.~/j T t,.\~It ~Jj 11"·'rT11 Jli '1'1 "..,.,.,.••,.•...,,1,.,'.'•.~:n.;•.: .:':':~;::I::;;;::,;,:t:l':~:,~I !I ,::::I I j :I d II it:I I 11 ;1 ,::f!h 'til:'f','1 1 !I :i ,1:I 1I I t I I tj I 'I;tl·\t ,;Ii \I I;~::I +I 11:::;:\.' " :::) :~I;"L'·: •.•....•••I ,.,.", "I,,,1 .,,"""J"I it+r'I "I TIt'I I,d I:1\",III I ,I ,I'·I,·'I'1\I'ii!I,'N'II 1 I:,,,I'"I'.,••,.,,...I I ,.....,. .•~~t';...-~..;..~~.~.:...;~.~~,~..:':.,~.-~··:·:·t ~T":~H4 ~~.4..t+-_I 'U ~I ~J II'!!!I '~r1+f-1..W":'·;i I'tj+..h-II ;f 1 ~t I I I'it I tIl I '~_~~;";'..1-.t~+-'_4 ;.:";,~~~~•••t"~.~,••.•,.;......,.1,..."I ,,,',,!,..,r,.,",,''I r II ' ;i .!!j II I"""."" ,I I I' I ,I TIl.I"I!!!,., ,'!I II II I"I''",,,I 'I'"..,..:,.,.,I '"".'"""!',."t I "!I • I I I'I '!'I )j I ' I I.I I I'• I •i!If!~, , ",.I,,I \ ' " , ,,I .",I::::'::,I:':::I:!:ii:':'.,.',::1'.I:!,.::::1":nil!1 '!'I!I :i:!:;1'"Ill:I!'!,til!I pfl 111/:"!I'!':11\'I!:I::,Ii':':::.:.::!',I:'., 1 --,.-,;"."n'..'"'.', .,.,1'",."'1,]1 ,.1-1 tn f 111til,.1+r1-,·r"'lltllf~tl"."t,trrrr JJ1il ttT mi ti }~m1iJT r,,1 f"!'I't """I.'•.,'tt'·'..i"I"""•. :;.I ,.::;'::::;Ii:::I :':!::I!.:.:"::,::I I ,:I !I,.',I,III :I :I:I II 'mr .I I I I !I I r 1 rIT I ~'.ll w',II::II,i,:::.::;I :II',I::!::!I ,:':hi . .,...,.,.,I·,."'.".II .,.,,.,I .,I',",'IIT I1 I',[,I;i "I'111,II'I''I 'III .,'lit I I'I'I +m'jt1''-414-1 1'·'..,...,I'".,"II '.'.''......'.· .'..""I I"I ",I L j , ,I I I !I I j I'"•II II!j I'.,.!\'lit I',l I I 1 I'll",,'I • I ,I I ''-'"'.--:-:-:<f':'~:t·:Tr;'T~·"7;'fi ~'i;-:'"t'T~Tt ~Tn j1"11 rn j I tti;-t1 h-M 11!~t~~:-r-r'r:-;:~r~;:'-r-"';111 ~';7 ';.rr-":.,,.·'·'1"",."1,,1 ",I ,."·1'1 .1,'I,r I,II I J },!II"II"11"f 11 '111 TTil1lj II f '11 I ,11'·1 I,r;, "'I"""I",N 'I'!':.\::;.~:~;:::J::::::I!~::;;l,l ~I:I ;lll :,11 iI,Ii I 1 I,~r I I II!j!i I t Ii::;1 1 ,~II 11:::,;::;11 1!';li;1 t~::.....;"...·,·-.-t-··'.····..'.'.,.,..."..'.'.,. "...H'r'"....,+",i J11H .!Lt l ,ILL ,.J.,f~fl !'/lf 1'1'l Wj't lln Ii t J 111t1t)'T1·11 ".j.t.),''''1"-11'·.,.,"'j.'"'·'1"'."I ·.I::·;;;:;::;I;:,:::;:::,:.:'i'j I'!:11'II':I II ~~'1'1";I'll :1 I " 1 II ~1!~.~'I I 1 I':III'Ili '.1 1 ;,'I·:,·1 11 11 I':·Ij:Ii,·,·1 ' ,,.I"·.,.,.",.I ,.,..,.,.I I I'I 'I'I ~I I ffil ,I"I I'/11 11,I i'i ,I ~I I .1 I II It'l J I ','I,'I I ,I II '"' ,',',II"""."....,..,".."'I'"".,"","I,·"I II "'I''"II'"I ~I L J"'"""'1 I,.:",.,~."•.._.,+~+~'.~'1-.''••.n-.,..-,.r"'-j-'t ........,.,..............,..r '1'""""'!'..J.-.~1 .....1 ..-.~~t,.h ..,...,.f·,.......f..•-INl!!,.",:,."""!!I I,,I!,If""1'1 1 ..I II '1'.\t I 'I I I'I"1 II ",'t I I,'""").::~;::,:,:::1;;1:!1 Iii il:!I:;··II!nil III :1::Irq I I I Ij,lW"T :iilll ilill I 111!!j1'1!!1i-,..~I I'll 'I!In I:!:II:,Iii'III:Ii/i r::~:::I :Ii:::':;.[i;.:i;iii 1.::.;.:.:>1 iii;jll'l !I.)I t'l[l q 1 rrfL 11 '11'~'t:i'rH :'I'flil['1 tj·[jl.JH 1111 L.)P111 HJ.lr 1)1 'I'll ,1111"llt tlL~'jjr'l dl'l ij'f il;.!..[!I.li I.i!:;!::..',,....,,1,"'1"'1.1 '.11,1 1,1 II.,!1 mll'III'"'1 1"1 ml!rlt,T I 'III Itil I I /1'1 11 ,,1"..1 1...1,.'.'!,•..,.,:,\.!";I:'", , 1 , I 'j I I r I I r ,I ,••1 1 I I I ,•I 1 I I.I!f , •!,I ,·,."'I;'"",."l'".,,,,I,L'-1-I ,,11'I"'.'),j .,,,'I·ill u.'4 1c.L I "."I,.,Ii,""."4 I,,,",.".,·c ,.,..-~.-'7'~+'t'~"'::....;-;";.1;T ~r trr:-,7i"f "~T1 ":-;1-+~..~l'I -t I I'•~,-1 r!,1 'I I :I tr~-'r 1 'I !\I I I T --'·1 ~;-;-;i ~1~'i ~:rr~·r .......-t-:'~. I·.,,",.,.J 1,II·','"I,, .,I 'I"1 ~~I TI I I :mil'"I !II 'III \I II I I i1 I,I It 11 11 ,I;'hJ :II'I II mm\I III ,/,I "I',./'~':..:',"',,. ....,,'•I I I I I I, ('I'I I +"I If'•,III t I If·It I I I ,It!J 1'1--I 1 1 '.I,I 11 I .,,., ,.:·1 ..:;:.:.,:;.:.:~;I.,..;Ir't.L;'I'HI:II'";,::,nt·11 IIi'Jl1 !\')1 1 111.:;J j\ll1·I.jLfl,jtJflllm '1 ITll ~r'1'lllt I~ttll III lHt~m'"'~m'J ~1:l1·,tl'1,,111::;I~·'1 1 ;jl;;·1.·:1I :..'••."".."I';::;:;,,':,",,II,,I i:I Mt~1,I::'I.:,'11 11:'I I':'I 11111''!'1'1 "III ....'.I ill i 'I II",.I ::Ii;,I I ,I::.,I' ,,...../....,,~.'.., I t1ill',.",,,,1 i i ill 'I~II 'I ;;1 .~~/I \"II i II i l <!ii,I 11 i I I I f\I 'I 1 I I"1UL I'Jill III ,,',.•'.""I'.1·l_...,,_..~~_._,:,.._._,_,,~.~~~,;.~~__"'~.~~l~,.j~.;..t-w-~~~H4~"t-H+t il _~_It I 1 1 [j Ii't I j~r+-+-t.",~~~~+-+"'~'~~-~~";-1p: I'...",,'.",•!'•I 'I '"!!""I,,t I,"t j !.i ;J I I I t I I'j 11'"1 \I ,7t,1/",T,I ··1·.····1·....p ..".,.'""'I "I ·'I I ,f:l III I I I,1,,11 lit Ilill!Ill,Iii J1I ~11J.U~tl'i ~lll I:!'Ijllil Illittlll :!I'':~I'~~11'1 '.,.,:'1 ::,:::::.:.,:.:;:~;::~:"j,:;~"(i ;"1 ",1!I!I II I Ii,"Jlj II!!I 'II '1 II I il,l ~:!Il!l!,);1'1 "i,;l.::1;:"I··'1"'·....1·..·1···1·,··,..,"11 "'!,..,,I •.•t".jl!t'~!'j'~I,i1~1:1Tj··~~~lL~~·lLIjl rrr~:l~;~~!II'<-.•,1.,to'ILl.}]..,"l~1·,,1(,"..""".,I"I'".", .•..•I·...'..,.".,,,, , ,'l~"'·'1 I·'"',U".U ~III j I I ;1*11"I,I,.""I":r.:.,,I'j ,~I.,,"I C"I"I i~""""......I ..,..,',..'"·"1""""'1·""1 "I I I ''I II I'"I '!!'II'.""II I·.,.,'"I I",!,II· I 'r ,'!'.'::.:.'::::.":;'I:".,I"l;:!:;1 t I +,I 11'1 I!I:'I:,11 :'Illl""!I:"::I ,;:'!~'~'II'~~,,,~~II :.l;',,._......I _L _._,,::i.•.:..L.-,~.•l_~._.•J._ulgil..Lll.L_J..U.L~,-"1__LL ULLj~.:.J..LL ..llM_Ll!_<_.•..L.-..••".•__~~..'S_..,__.D . {i .I a .~·""fi)I"i'i;;'''~'') .N It .'II..n~_._'l"~I.~)l.~-".'....JdllV J.".'.r-,.',•\.h',Ic,..""",,1 r~Id.l ..-~-l,.,-I 1"~~"'f(~I"IL]~ftr,t""~'~O"1 ·'tIJN-r'H'i'.J !,,.,.Ji.;;;rATtfeJ()(f(i -)l __c [...._,L '0'.1 tJ ].lv,1 !Nlt"JiJ'V J"1") r ~~-r::-'-:-;:-::-I:;;:-~-;-:-l~n;-:-:-;-r~:-:-r:T ,~IT:""i"':~-;-~:-n:-;:Tl ,-ITT 1 fIT mil ,il!I!'III!I II/I!I ".,'nTlmr::~-:T:l li!1 IIi"7ill l"I!Ii !!",I I "-'-;r::-r;-J,·':1"-:---'.,I.,.,.,'",.",,",."·,1,.1 11 I,,,!l",.,".,"11 ",I 11.1 il ''II'I'II'1'1''1 1"\II 'l'lj","1II,II"i),III ,\.II"','",,',,I,j""I'".':'.',:I:":::;:;f;~::;;:':';:.;~':,':,:I~;I :'I:!11 11 I I:"1 :;:1 I~,1;,1 l,t;:::1,:I 1!1~1 II I ill ~f,;ft.,iill,;lt j:,'j Ill'";';.:1,:::.VJI"-"''''--'.•""._"...,'.+.'...."-,.'-,.,"","1.1,-.+1-+I rL1 t-I·tr ,,-.,..-.+..,L "f-'.--rJ-;....t-J,+l--t[r ~I~'r-.'''I +~.,'j.".-..,,,,1 ,f.1 ....J ".""..,,.,It.,I ..,.,,..1 •.'.,.",.,.,-I ....I'",,".,,,,,"'"."'""I'",I r 'I I '",I,1"''''''If',I'.II I I ','I"I 'I I .I . ""I''"I "I',,," " " , ".,-..'""J ••t . .....,."".I!"';•'t I,I j ,..I ,.I I ,t I I II f I I t I 1 I't ' ,!I I!t,I,'t t I I j"I I!I I I I I I .I /I I I I t I ,"",',.'",!''" · ,:.;:;:":j :!:';i :1 :;,::;j!I I I ,!'I:I:•Ii:I 1 I 1 I 11 I j:,!;J ' •I ;;;;'I I •;I:I !j I I •i :.:,I:,';I ;I : :j ~Ii'1;"::"I ;;::;, •,::j::::<• I..··I ..~,·'''-f·-''·",'".-.-.."',,...,,",.,,~,1-"1'1"'1+1-ll-tlJ.Lrl.lr,.,·~tj1"'+11_~.t-'t1 rt1-l-I~j-·I",lfllltl~.-!ljt j·JH n"1 '.j'"'..-H..'11'-t~;.L.;1"1 .•.,-...,..t~..'.,-."..'-',._,,,,...1,.''''".....""""" ,.,,,II 'I I j '\,T I ,"'I HI'.11'111'1'1 11 ,~ll I I I''I"I I III,","'",,."'1 I . \0-..I'I '.""'I ""I'"~'I,"I',""II 'I'If I I !,.'I'I''II'I'I I III'I "I '1'1"111"1'"',"I .,".",",;.....'..;;.:::;:::,l;;i l';!i:,''!,:;:I:';I : 'I'!I I j r 1 I;It;.:;':,;!I It,:I I I I 'I ',j i I I t I :'t':'i 'I ~;1 I 1 1;,::.;:" ,':;::~.;:';I .:'.1,---1.,.-...·-····f ..··,''''.-'.'",.1,."','1-1""J41 ,·!'I,+·nf'tmlrn·t~111-l-"~I++-d-~'t!l jt w-..)1(1 -III ]+It ,+t!1.l r --·I-U j tWo,'r 1\Itm t-'.on .J",,-.",.••••••...''-".-1'">.:,'.:·,:1::,;,,:.1'1':':1 :1,1 il':'I';:,':I'"~'ill Ij il II I''I'll 1'1'il I j'III'.~'1'111'I II''II 'I'I',II 1;:"'1,;:;'.;1 ',',,'I:,":,'.-\!..J ".'."",,;I ,I tI ,'I,''''' I I ,I",I I'I'I i II'II I lilllJ i I II I,,,iii,I I ','I i I I 1 I j d 1I I 1:",II i<"~','I I,,',,,...""., " . , .."I "I j I':t iii 1 I I I 'I l I'l'I,"l'j "I!I!11 II t I I I,t I 1.I'I ..,..i!I +'t _':.-LI 1 j I I'"1'1'l'>'~I'".•._+-~..'.....-.,.,-,.t--'.'+'1'.1-.-+-1-+-"--~-~-+-i •~+.......1 -"t"•rrl-+1i~~+-ITt-t-rtf"t-t"'-r +·.,-~~l.-l t-'....."1.,I t1"'-1 I,:,::,:!::I;::ill::111 Illi :11;iili ;IIT rl:,II!I I II 1111111'illll"Illllil I 11II II III)II t I III j jll 'tln Iii I'"JJ".Ii:~'I,I'tl!;,11 :il"ii"~,t.:;::I:':~".:':':,::;.':;:::::1::111::I 1:,1 'I:,II I:!11:11 It If l '1 I ;Ij;t '1 p-j !]1 I If Ir I,!l~!l:j'I':~Jt'l 1:11 :'il ::;!::;1 '.,'f.~I:::·:~,;I·::;:i.:;~r;.~.i.,n.·td:':)1 '-1\1 1:\1 til:::11 Jltj tj-tt ~+;;:1'-:'1 1:ITH l!j-f 1 ~-1L.:y-l 1!j I n)1'T~'11 n,~fid!lt "N'r~""1'lli';f:-j~'+~d-I ;';'.:;:::;:::::!":-I ,..•..,...".:1'"1"'1 '.1".'I"'1 1 1"+11,1 11 '1'1 1 fu'l #',If'l '11'1 11 11 Illl'I I III I I)I I m'I",!IIII"11~;:sI~f'11'II''I'"1,11'1 '·1'.1:-".1"I, ,,"..,...-'''''I '",'I',.I'II ''I I~, I I I I 1 '".'I I'". "1(1 ',I '""""1 ,...,..-",'"•1""",·t t .,--,-,-'",'..l.l..l ',j.:"W-l 'I'i ':"I , , ,tttt I ,","",~"",:,.:.l-ii,.,.,,'"C···.-·:·-t-t-..o--~~·;~:~~·?'r·ir~T>:tr;TTil-T1 r,h"~---:-t1 -"rfir;:-r1~tJ.1m IrtT~~~r-r 1 I ....I j it1:,~"I ,.1l'-\.'n ~.,-~tll~tT"1~tT,"'i-:-G~·;-;~r: ".",,,""""I',,,"I .1"1'1'I ,I.,I,ll tI ,,1 1,II ",',II "",.,I,Ii",I,.II,, . ,",'"".q," '1 '...".-.".'I·'·'",I.'."1 I'll "II ,II,'/1'"'II~~II f 'r'~I.IJ /1'1'""'11111Il~j I irHiiTII..I II liM'1 "~I 1'/',;1 1 jl'lll'I'\O-I'~"l~II',"Ii '''\'•.".''·."lli·'\",.""..,""I"~'I"II''I II '''I'''+m'1 j -1'II t'"'",~I ''"I''',iI,'I r£..,.'I,I',I",."",,,-,-,.•,.1""..,,',:1'-'I·'-··F'•I'll I"'If"'\,-It·,-rl''I".,,~4/----,;''''1 <t'l 1'"'1 T +""11~Ht\~I'".,.,j'"I \·r~·:".... : ::...::I:!;:II I :I I I I I I 'I':I::I :i I I '",I i I ill ill'I,,',1;'I::111 "I I J 1"I I 1'I:I I ,;:'I I :IK I'11,'1':i I ::',II:Ii,::I:I: , ...,',,'II ,I."."'I~,.",'"I"I'll ",II I I'I",.II"1 t I,I'I II~"II"~I'I I"tl~"_~"1,1,'/'1'1'".,." .-,.,'II'Ill,'I',I llit \11\1\III f"I I \-1 11 ,I,J l'I I,,I,'\R I I (!I ,I.I"•I""."--1·'·····,-..,..."H-'-.-,4.,·,-·fr't t'4 ·H-Ti-~-~t ~...t-I--+j-r !-t-t h f--'ffi .,T ..,.,.11 r-~-1 H-.•--t-·;·rI·...+--·1"""'H 4-j·'·'.,.j ,....,I"r !~!j •"!.I I 1 I i j I I 1 'f t 'I !I I I I"t I I !,f 1 I I ,j I 'I t I 'I., , 'I,.'I ' "I,, 1 ' , ,.,'I'-",.,.,".,.II ,;'II'/1","I ,f,I I ,.1"1 I I r ITt I I I I'11 I~"',,,,''1 1,r#j [[I I I!11'1 '1",I'.,I l'~I-,"~I'~,,1'\',.."'"I,I"~.,...,"",":'.\ I I 'I I I ","I"' "I Ii!I " ,'I I '",II r I ,\""",l~".,',~'"'.,I'"'I",',~,. _I:'~::::~;'!I ~I:I I I;!1'~'I:1'1:'::1 ':i l 't;;:•,I I III I ::1 1 "ll 1:11 !I 'j'l 'III I I ':I "I If;:j 11 'I:~'I;::~,I ;1;1 I:::.~:~;~;.~,,~,I"'.1-,.i "..,,I"I"'..,I",',I I",'"I , "ntl I''"I:1Ii'I'",I , " I 'I'I I,I q Iii •I ii""1 I""",I II iij 1'1:" ,'I'" """I'"t-..I -.. ....t-...."~....__1 'r"-~;-t".~:..:..:..'.'!"_~~~!.....;.~,~'I'.,..;.~'.....~-'++-;',.,,'II..-h--H-t't W~"";~-<t-..u..t-,._l.!..J';""1\'I i .11 ~j ,II \,t •11";"';",I,.,II,I I~"'\I I'~..M~'....:~"t---...;.~.;..'-J,.~._~.;, I.'!.,1:t I I r f1I I'i'"!f,.I I ,n f j i I !!j I n Ttl r I.TT'l ,·-;;rl I.I ,!:!I ,I I I I t j ill I '••!•1,I'" ,,::;:I ,11 ,,I."',"""'.""f,"11'""I",liT ",I f,II I I·I I r...'I I IT II",I 'I I'I'"III,I,II ,I r j !I!t I!1111 "1 I,"I''I n,!, I "'loI~I'~",."'""'II ,I,V)..,~Ri ',."\'"'.\', ,-,_"'",, "'I I'I 1"!I I 1'"I I,.""i"I I ' "I I j ~I',I ,\•I ,I •I , , I , ,"I ,',, ' ,:," ' ,""""!I'1111 I·'I "'!",I '11 I I I !I I'",,\II lit I'II I .!.,r\jj !1 •'r ,I 1 ,.J ,"""I'.,···1·'·_',.","'1'-H.I'ph I ..,.t"l 't~'I,,,11•11 IllfiT+Itl-+j)Jj i~~tjh i11 '1-+"1 tTh hl''P.l.·~t·H I r-r!rr1-Hi It+1-1-rl'"li li~'1~"~t".",""""j".1.'"·'1 ",;:,.:';:I::II 'I "I :I!I r''I'i II'i l ';II ,I 'I I't II ~1 f ill "II'III,III '-ill I+I !!,I:II 'I'I I:1 ,:! ,l';I J";:..,;'I 'I,::,:i :'i';::,I .."'"!,."I~,++-1 ,I I 'III 'I,,,,I I ,I I,II N.',I i ;Ii I II,I"I I I ,:Ii III ,III Hi ':!:'"" ",,,I ,","""tI!I .: +i ......~r-..l-.o-;,~o-~--t~~....l.:~-.;..:_....I _1 +-~"t •,+.+-W-;....;J '~I I I -t-+=t II f •I II!I 'T -f-I'I 'I j '"j I •f -t"';I +-4..~:'t-i-~~+-~~~~...:~~~~.....~.t.;~~.~_~I 'J"I··,·...I";'!'"'1 1 1 ,f 11"j t!,,1 ,I f I,,1 f!i'lit.I'"+I j I j I II r I!l j ,"l ,,.,!'t·!11 '.,·.,,--..I ""1'1'til ,,TIl '"I '1'1 III.I 'I I"I :I III '111-L:!III'I I'"II II !Ij II tt ~I 1'1 I,I,II J I'111 I ~tt ~I 'I"'I".",.",'"I,.,,~" ::..:':.::'".::,;I;I:I I ;I I !::I ~:It!I;l :,I t r 1 ::,1 :,;I :1t ~I I 1'1 {I't I !f 11 I!;,'~!;(~,,:I ~:::I::~"\~i;:;:~".:.--_,..!.._,'-"'."1"--1 1'1'1 1',1'-1 :r,-t 'Ir'"i-I Ifl l1lt [I"'r;~,1ft f~rr nh j~Ji tThlliJ-tort tit 'irr 1~ll·H LI.~J.J .,]",'"1",,,/1[,,1,11/', "::1:.::::1:::'::;1 :I;,II''I II ';1,;,','I;I I ' ,l'l II N,'!!II ,1'1'1'1 I 11 'I .:1,"II Ii'::'l,iJ';'i':',::r::,:;11,1"I'..,.,'",." ,.,,I.I II '"."",II,I II i I I I I I iii l '11/I \I'1 I 1 tnt III "'i \I,:-.:.J ,II J,"I 'I,I,II """t...II "I..~":'.j'.~~.~~!.,;,-;,,:-;-,~,~411.!1~..w...w....w.~';'~";'4 ~.;.."foi.t'll-LJ II'I I of 'II L l~~"~l ..r-:.J'~.~+t"..-~';'~_'+.t_'_'·..I.".,''''..,,11 i !;!"",',',i''I !'t ! 'I',,"t!:I '!,!I,1 I ,Ii;"~I :", T "",..T·.'·1 ':,'",1J l.r I.'"I.'I'I,II rill :iI'I II I I'I 1I !I !,'11 I mt I I'I '!I I.,I !IT II J /I Irt-1!1 I I II,I I!,~I."1\11"....I 'I:1111'"II tt il ~I L·:,~::":':':::!!,;t I •I ,II!I ,I I I I;,I tI,~I.I I ;;t I ~;1 I,I!I I !I t I III rot t I I!,t 1 I 1 ~t :::1 ~,,~:";:!'I ::I • I :::,;::;1 I"·'·'1"".,...L'I"'F'.'.i-l-IT-'-I_rl'I"-,lp-"T[j+j-l 1---+nit Ii fill '1 1-'r,;[hU t~'T ttl..-H-ti--t l t -11 iI'tlilrf --+-rr-r1 .';.t~~,-,lJj Ii'"'I")',0,,-1'-'-11 ""rul'.:::::._.,I;:,:;'::WII);Ii;,1'1:'i,l )"1 ,101 I I'I ~-~'H:*I:;,:1 ';1:~I I"Ii!II 1 I!I 'j II'J~~",I',.:1,I';'',:;:1 ';i!;,',;·"." .".,,,"'!I'I'II '.II .u.+1',I,II 'i 'I II I I j ,II ,.,,I ,'II I I'll i I iI,II,I I I ""'"I "":/1'."I '~,'1\'I"",'~.~t-~~:+~,_~-~-"~"'.-l~~'~.~-+l.'t-';":'1 t-~!1 to"'-f I I t l~/t -~';"'r++4 '~r fIt f ;II I t .l-J...LL 1~...;...~~~..;..+'_L~.~.~ol_1 ~,~~~-'t !-i-l- \ ' ".".\''.,I ;:,\I I,rr T,,I ,j I !:I ,t 1 'II t I,I 1 j!It,j t t i'rr "I ,I It',"I I '!I 't I ; ,""\';",;I,·1.'/1 ;"1 'I".",".I tiii Ii Ii,i!I I III "II ""1'\'J!,"llli I I 1\11,1,1\,I 1.1,''',,..,'Ilf j'I'',""'1'111 I-·:':':~!":::::I ;I,t '!:,!i:;;I:d 1 :';I I I I 1 f:I "f!:;:I;i;:I 1 ;J I !I !1 't ~j I I I I I :i ',1:I 1,t ! :,!j [::I,;I :i .::.....j._"...."_.,~'_,o-o ,.-r.';.-~1-"1t.".",)"1 r+I'trl-!lit 1~-III t 1111 ·ii·j,,,,1+,J-rl'ti&rmrt-l-ln -.j.l1Jl~~~I i-hI tl~,I-I)tt~+Ij-II-"I'",-,-,,,)..of ._,j.,."Ii~"~., .-, "-'""I I "I'" ,,""I''I ',t I'I I 'I ,,', :','I ' "I"I II \' ,,'I I I r ,II r ,,'"I '\',,",,I'".,,,.,'""."..",--.,.,'Ii'j 1 I "I "!t j 1 "'I I t 'ffl I I I j.'1'1 I'1'1',1'1 ,I I , 1 I I j"I'I t it I I'"'I t .,)I I .,I \I'"'-,I \"I'""!,I ',t ,f I','I I I', I I"!I''I ,I 'I ,j I , 1 I ~, I ''"I I I I'I 'I'". I I ,_';'~~~;_L~.t...:';";':+u.:.'l.'J.;.~~;-W-H.H~JJ I _,I i 111111"J.j.l ',IU:/1,1111,,III ill!ilill lUi 11 11 I 1l+U.jUl~.,.J.J-\..:-Li-:~:I:~td~-:-~-i~ .,.,.",.,.:i II "T,.""",,.,I j IW-",,1m i[!I ,'J '"lit@ J I I '""/',,'"""...!:!::,'.:;.::;::I ;'TIt;:.:I:,I:;;';i !,I:!rtf I I,I 1II I:!I :11 :~;;I'III J rill !1!II I I!d I!ill!I I;IT 'Ill I I ffi+11 '!r!~I I.:Ii:!:::,:':!::f:l:~, "....,···.',;1'IiI ",I!I'11 11,1 I f ,I !!11,1'1,~1 11,1f f ·tt ,t :11 'I"tll If'I'"I",,[,tI,,,,,,,'.-·~I-·'··'."'.'"."'-,.-,.J.l'T .".1_-·1'0 \,..-([1;""1-14 1_1 t 1 -~,.II'j,,..;.,.1_\:-,..'1 1,'Tj~rr ll ~-irnU-t-lL 1~1!+rr'i 'T:t .,...U r,j,l~j,~JI'rj"1"-',····t-::".l0.J ";,:..;:';::,:';:;::;.~'!!:: )iI,:!:::!;:;I t j I II I:ti ;I !!:;;;.iii:I!;I r;,I:t t-111 I t I i'!'!:f 1 ;I ;,;t :1 jr I 1 I 1t I ~1;f;'\:1 : \ ;:;::,;:~::I:':::::" ",..,,"''''""I",",I'I I I"I 11,1,!:II I!ii-I'I tI,''''II"'I I'I'I I I,;,,I',I"i j I j I .IIi!'I'I''"ii'"i 'I I'"1'•I .,I',I",'_.,",. ".',..1;'1 II~'"I'/'!'.u-.:''1 ,1-t4 ·:1 I fill H"'I/!'+~m'l~I 11',1 I I'I It I ,~.11,1,ltl I II"t I '4..-·,f If II!'",'<II~::::'::::::Ti ilT:iThTlTrI:;-·r;rl qnlIITII:!II!I!!I :lllllnTfn-~'li;'II r III1 It!1 It,)!lljll III illll:11 jl!III!llj'ITft·ltl:~lITs:n;.-;-;';'l.T,-:::::':.:::;'::::!1I::t ~~i ~;!:'!I :,J ::!:~f 1 !f :;t 1 1Ii)I r ;I ;I I I I !j I ,ttl !:;I ,I -!I I !I ;:I:::11 ''I"I I,:;I!'T":::';I ;1 ):I 1 :::' :':'\'::1 1'.:1.'1.'.:.:.!'.'::.I~.1:1:.1 ~.'1'1 ·1:'lit'rjH Ijll~..~lttn~1 ilL '1:'tt:!"1i 1w,!lr-rtUI-l .l·~t 'k'T .•)Ill'!TI"'1!lt11tf~f1J n··j frio 'tl';\·~t '1~::t::i-il;'.r:.:I·.,.I",I";II,,..""'"I ,I ,I'I ,'I'I 1 I II 1 ,I I"I,I I'i'I I I II !l'I ,I"r I 'I II '~t 11 I''+,1'1 ''''"""",," ..."..""II .",,',',,,'~,,I~I', ""'1 1~II II mi''II!""j I I l-I I I';ii''I H'I ~'n I ~'+'tt nI",,'I ,,",."";'I .",...,,."""",'",,'""'It '"",,,,II 'I"i I "t't "".....'"--....··n.__~-"-'-1_>+·H-··t +.,.j-",-,,t-'1H-,f I -Ttrr t-n;'M H-r 4-1---r . -t +1-+.j '1 1 ..,.,.+j\i"-'r.n" ·:.;:::;;,;';:I ,:;:t j :!;':;'II!::I :!I :II!:I I!I /.I II I .t:tit I 1 I l I I I;l i ;:,~:11j , " ,'""-,"""",,",I"I,I 'II ,II'II I II I'I,I,I I'1 "1 I I r'!--.!I"II,,,", ,I,I I I I I"I"I,,'"I'"'1'"I',l'1\'I'",t I'I, I,I \I't I (,,Ii I 11 'I ,j :f t 'N'I t I!•~I I 'I !'I .I I I t I.~,:::I:::::.!~:.;-:r::::ll~!rtf :t.,1 I:::~-:.L 'I:.~[.:;Itl:"II 1;11-11\1 )!ijlfl11 -1-.IlL r.":';i"-d1i 1.1 1 h l"'~1 ltd 'tl I-.L .w,,'.",1,,-,J ".,".,.,I,",'",',,'I ,.,,,1/.'I 'III 11'1 I I 11111 HII ,I ~I I-U I,,,11 1I ~_~,I I 'i iii II I III i j!',1ik11 ~'I 1,1 I II"..".'.",""I""""",, I I I I :'1II '4tH-'I ii',I' "I I..,,,.,,.,,.,,,,",,'"I'',II,'"I'"I"j '"1-.-.,..,..,~+------~-_.,.....-.......-.,~,-,h-.....·~-"r--H '--rrr j--r-t mr+r . ,,.,.. I -:..."""..., ,,."I I!:II ii''1"I'.I"I',"I'l l !III I!I'II'1:*''I,.,.".,.',.•",.",I'I • ,I I I ,tl t f ',IIi:::..•::;...,,',:;'I:;:I:,til I'I,,!i I",I 'I!II!.,"I ,I:!",I:,I:':111 II ,I'll 111 1 '1::, 1::"1:.::.:::.:.:.1::::.:i.•:..;r.i.i.:.::1.:il:"111 'nll)-,T11 +++r Ii!I,-[,jl.-Ittl Ht~lrl"1'11+lor J .l~I lIJ I 'ilt ::I'~Illt li!1 Htl IT~fd1111'fit>I.'I'.::11.'.:'I -:::'.•.I:::••::;i 1::::!::~::::II:;,I d 'd ill .I,!II Ill!,:III r !'II I.,I r !I ,I!::!I,!:11-:r-Ki!III,III;!:'I!III!!.'!uJ I bI ,;'r:~~l·:·:"j1ill:-:::~::':.fTTT ;rrr'i",-,TITI'H1,+:T l-r l1 I'111I II 11'1 ii-Jill I J'I ['It'~I IIIiij I t illl If';I:;I IljIi I.11'1 fmit I It lllllt:trt.jrr,tntjI I!iT 1',:::'_.i ::,::,::::::~;~:;;,Pi;:~;I !~\i ,Itt 1 t l\!;;I '~t i 111 1 f rll~lilt 1 I :11.It,:;::r,:-:~:.-::-:,..::~.-:.~r:r+h:rr:n'l 'In·:1f :f'tt"IT ~f '.H11~llr:.t 1+11"1 I'_.~l I I'r1-f-1-l lt 'f -w"-t ~-,~L f 'I i·1 rr tJ lill :.'1.1 I::I··--..,"".-,'"""I,"I'"I,1'1 ,1/1 II I II1I 11111 lit I ij II/I I"/'111111 !lm"I~j,,I ,I",,III ,,',-J •.-•.•"""'"" " 'I'""j I ''i 'l'i l+t+I I ttt''tH ,I II .,....,,I 'I I I ",'---+-•....:I'-:.....':--i-i-'-~","'I '-I,;.;..,..:."~·I"i I H-J'""+1''I -1+1'+'I -t I :'~J 'I LLLL'+"-t-W~.:J.: ,I . •.•,'"i I"",.I 1 I !'""t't I I I f-,.I ,J ,r t !I,til •j ,I I ,!if"/I I H _I I I I Ir..,,,1-,,'.",,.I,.....,,,"I'"I 'III!I;:I'If,I tl l:1t1 'n,!'III 1111,I I 'Ii I",J1++1 j II I III I 111I!",I 'I 'I 'I '1o.iJ I '"I 11'1 "," :I'·;.::'.:.;:;;::::;;:;1 ;::I :::;~,':1~1 i!I t I ~I''!1~;:I I,II I I,I :;!Ii:I III !;1:"'!~;1 ::,;:: 1.--'-1--".'.'."'''--.t,•...--'-,'''If .;,..'~!~"it I,.,~1-tl,ji~L 1-1-H',lr'r ·tj~t~if-J!~~fi !~nI .....~~Fr~~'~tif,:V,L '..,I d 111\11'-',f',.,,-f,.j (I"I'"...""I.'.'.1'I ,-,'"-".\""I·"I'"',,,.,,"""11 ,!R:'II I'I,'N''I"~rnfll 'I",,'I'1"11 ",'I'!\ll r '1.',I"I~'"'I 'l~'I''"'I'"·--,"."",'", 1 "'"I·"I''I'I I'I I I I 'I II I I I .'I'I''''''""II ""\I II ', " ' "J'I I -.'I I""'I"""".,.'4'It • "•,I I',I!,1 •I III I I!f ' I II II 'I',,',-:_~':"'I:"""".:..:..!"",,,',I,'",_.:.:.;', ",I"i 'Ij I :I.l;l..:!I,I I ,i ~.Lui I ,'_II i •.Ll.1....:.1 ,I,JJ.I~_:1.i 'c.:.~L!Jf..c":':llli~.w.:J.I .:_~J ~L .:.:..:.~'-._Cc ". 11_."H -ldt_Irltl )I ,ttl'".II ,';'1; ij·.V~B)~·"iV.l" !NIUdl_.._,l.__"._._l_.,~,~,-~illt,l(1 diiiiil 'Hlh'':>-;;'/.i biN(ll::n,"ii"-"i-!O~)(ii--fl't:':',(J-i-~j'j-;i"v".1 J t"'~'Lj-~-~CC_j"J [.(1"l il 'dl,I'"I J ,.411 'If ~I ,.f i;-;.-~U)~'~~I.."V'-i' _._.lNltJ,..I___.I.L....~,-,-"'ll\la l~;......----d'l H',i;".;'".:.ij..'SN ...I"';;"""l.i'-Ol'X H"\:;--.)Il-rC,f{'.:-I-V,1 LNJn-.dT,,--<j',j I.. ,' !) - "on wi Zr- i. .~------,'--.-_._..,....-_..~--'-----.----------,--- l;~--,-~~$::-+~~,-+-'+'1-c:-t-'c~~----~--~-+--+_:;--------: J I ·.-f'·-·-_~4 i-~__.0-41"·t-~-"---i--~-t 1I.-·_·i-··_-~_·:-:~t~::~:::~-l '::"1"_:~:J:_··t::~-:··:=1 :.-:·-t ~:~l::_-·!"~:~=;: :,,,'.l:;~:;:;·f~;~:;;;':::1::,-::~::L ::':+i~::::T~~1::~~'.'~::~j~:-T7r\~~~:':"1':,~-~-~-~._--,..-,-,~: ~.i .!::--:-:~ --~ Ifi~~;~Jj:3~~;ji;:~~s~~~~:i:i;~=i~__~t1--;i<~;--2 l .-,:--+--4 ".:L.-l''1-__'"r:/::.:1::'·::::''--",;,-=--"=t::-.:.--:l ..-::·:"1t-+::E~~-+-~-r -t -'.--.:=17'=-'::f="±::=.:f.'9"--~~'~"'4'_c __',.~:i,-i-__~-i--~-:::t==f-~~±~-A:"!-t ==1:--=+==--+:::_~'::-=~:t-~~~:.+..~---+--.;,.~p ....I~.:~--+---~r=-=i=J"=t:-t -±:-"1.:~...-::t-::+:-::::l.':-r::.E 1.~.:.:.::=~J ~-4 --+---:::''==t I=~~-,~.:,-+-,,:±,::=t"':'~'_':"~-~:-1':-'-1:'±-.-::!'-j r-.--..<,''-+.--:::.1.:-~-..........---+----t~--::::f.-.:~--.---.-'-:.:,',::'..--.~-::J E ~'.t=~-~~3'=::_:T...:r:~=t=....-__.:--==t=-~-=t=:-'-~:-=-...;-:...::!::.::.~$.::'.':"'H",1;G$.~--,---.+.----+'--~---I--..'v-==-+---~-f...;.:::=~..:r---=:;:==;-n --.4.-_.,---.., - - - ~~.~:~_"""",.~",,'i,-~_~_ , """ ..... []:{J&OO~&c §IM&@@@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION Anchorage DATE December 7,1984 TO FROM L.Gilbertson J.Bizer NUMBER 4.3.16/4.3.1.1 Page 1 SUBJECT Interpretation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions - Sautner et a1 (1984)presents results of a study to define mainstem and local slough discharge requirements to allow passage of adult chum and sockeye salmon to spawning areas in sloughs and side channels.Estimates of mainstem discharge were calculated assuming a negligible slough discharge andl,conversely,estimates of slough discharges were calculated assuming negligible influence of mainstem discharges.For passage reaches near the mouths of the sloughs and side channels,the estimated mainstem flow requirements are·extremely conservative since they neglect local flow contribution.In fact,both mainstem discharge and local slough discharge interact to provide water depth in those passage reaches.The analysis presented by Sautner et al (1984)makes no attempt- to integrate the two sources of water which present passage condi tions. The purpose of this memorandum is to present a first approximation of how • local slough discharge and mainstem discharge may interact to provide adequate passiage conditions at mainstem discharges considerably less than the independent estimates of mainstem discharge backwater effects. In the evaluation of the effects of the proposed Susitna Project on aquatic resources downstream of the dams,a principle question centers on the maintenance of salmon populations which utilize habitats which are directly affected by mainstem discharge.The maintenance of these populations depends upon the effects of mainstem discharge on the inmigration of adult salmon through the main channel of the Susitna River,the mlovement of adult salmon into spawning areas,and the use of various habitat types of salmon for spawning,incubation and rearing. The evaluation of conditions necessary for salmon to gain access to spawning areas is a key step in the overall evaluation of the effects of the proposed project on existing salmon populations and their habitats. Approximately 15-25 percent of the chum salmon (approximately 5000 fish), which enter the Devil Canyon to Talkeetna reach of the Susitna River to spawn,utilize side slough and side channel habitats (Barrett,et'a1. 1984).Nearly 100 percent of the sockeye salmon (approximately 1500 fish)which enter the Devil Canyon to Talkeetna reach to spawn utilize side slough llOd side channel for spawning. Side sloughs are overflow channels of the mainstem which convey turbid mainstem water when mainstem discharge is relatively high.This occurs during the summer open water months.When mainstem discharge is lower, th~upstream ends of the sloughs are not overtopped and are similar to small tributaries which convey clear,local surface runoff and ground- water upwelling.These sources of water together are termed local flow or local discharge.During low mainstem discharge conditions,side 420972/12 Q:D&OO~&c §OO&®©@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION TO FROM Anchornge L.Gilbertson J.Bizer DATE December 7,1984 NUMBER 4.3.16/4.3.1.1 Page 2 SUBJECT Interpr.etation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions slough discharges upon whether or upstream ends of upward of sE!veral range from about 1-2 cfs to more than 10 cfs depending not small tributaries enter the sloughs.When the the sloughs are overtopped,slough discharges range hundred cubic feet of water per second. Side channels are similar to side sloughs in structure and hydrologic relationships with the mainstem.The principle distinction between these two habitat~1 is that the proportion of time which a side channel conveys mainstem water is considerably greater than that for side sloughs. Klinger and Trihey (1984)distinguish between side sloughs and side channels based on whether the channel is conveying mainstem water. A given channel is considered a side channel when it is conveying m~linstem water and is considered a side slough when it is not.For· purposes of this discussion,channels will be referred to as sloughs in this sense. The ability of salmon to gain access to spawning areas within sloughs is dependent upon the depth of water within a given reach of the slough.In general,the shallower.the water,the more difficult the passage conditions are for movement of salmon through the reach.The degree of di.fficulty i.s dependent not only upon the absolute depth of the water but also upon the length of the reach which must be traversed.Thus,salmon are able to negotiate very shallow water if the reach is short.However, somewhat greater depths are required if the reaches are longer.Reaches of the slough channels in which the water depths are sufficiently shallow to restrict movement of fish are termed passage reaches.Generally, passage reaches are located in riffle areas within the sloughs.For most sloughs,th.~depth of water through most passage reaches is dependent upon the slough discharge.Slough discharge,in turn,is provided by local surfa,ce runoff and groundwater upwelling.(This disregards the influence of mainstem d"ischarge sufficiently great to overtop the upstream endl of the channel).. For passage rea~hes located near the downstream ends of the sloughs, water depth is influenced not only by discharge from the slough,but also by backwater effects of the mainstem.The backwater effect on the depth of water in a given passage reach is evident when the water surface elevation of the mainstem at that passage reach is greater than that which can be solely attributed to local slough discharge. Studies conducted by ADF&G SuHydro during 1982 (ADF&G 1983a,b)resulted in estimates of the access conditions corresponding to various mainstem discharges amd water surface elevations at a limited number of sloughs. 420972/12 Iifl&OO~&c §OO&@@@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION Anchorage DATE December 7,1984 TO FROM L.Gilbertson J.Bizer NUMBER 4.3.16/4.3.1.1 Page 3 SUBJECT Interpretation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions .-. Results presented for the 1983 studies (Sautner et ale 1984)expand the number of sloughs and side channels studied and provide ind~pendent estimates elf local flow and mainstem discharges corresponding to threshold ~alues for successful and unsuccessful passage conditions. These resullts have raised several questions regarding the local and mainstem di!lcharges necessary to provide successful passage conditions for chum and sockeye salmon. The results presented by ADF&G SuHydro (Sautner et ale 1984)are the first attempts to show the relationship between mainstem and local flows in providing adequate access conditions to the sloughs and side channel~ for chum and sockeye salmon.Previous reports (ADF&G 1983a,band Trihey 1982)evaluated passage conditions only on the basis of mainstem flow.• In some cases,this led to a relatively low mainstem discharge require- ment since it did not account for local flow contribution to passage depths for salmon access into the sloughs.In other cases,the analyses resulted in high estimates of mainstem discharges required to provide adequate passage conditions for adult salmon~The latest report presents results of independent calculations of flows,either mainstem or local, which provide successful or unsuccessful passage conditions. In understanding these values,it must be kept clearly in mind that mainstem "flows and local flows required to provide successful passage conditions were calculated independently of each other ~In the report (Sautner et ale 1984),the mainstem flow determined to provide successful passage conditions was calculated under the assumption of negligible local flow,likewise,the local flow required to provide the same passage conditions was calculated assuming no direct mainstem backwater infl uence.A similar ra,tionale was used to calculate mainstem and local flows to meet the unsuccessful/successful-with-difficulty threshold criterion.By integrating the mainstem and local flow calculations,a somewhat better appraisal of -passage conditions relative to mainstem -flow becomes apparent. To provide a basis for comparing conditions for a passage reach at various mahlstem discharges,ADFiiG (Sautner et ale 1984)established three passage conditions:unsuccessful,successful with difficulty,'and successful.These correspond to the terms acute,restricted and unre- stricted,respectively,as previously used by ADF&G 0983a,b).The three passage conditions are distinguished by threshold depths within the passage reac:hes.The specific threshold passage depths for the three passage conditions are also dependent upon the length of the passage reach;that is,the threshold depths are greater for long passage reaches 420972/12 OO&OO~&C1 §OOM@@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION TO FROM Anchorage L.Gilbertson J.Bizer December 7,1984 DATE _ 4.3.16/4.3.1.1 NUMBER Page 4 SUBJECT Interpretation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions than for short passage reaches.Two sets of criteria curves were developed by ADF&G and are presented in the latest report as Figures 6-4 and 6-5 (Saul:ner,et ale 1984).Two curves were developed to account for two differenlt types of passage reaches:uniform channel and non-uniform channel. An explanatil)n of the results obtained for Passage Reaches (PR)I and II at Slough 11 is provided below to demonstrate how these results can be integrated into an analysis of access conditions. In the 1983 ADF&G Reports (1983 a,b),it is estimated that a mainstem- discharge of 6,700 cfs is sufficient to provide successful (unrestricted) access conditions into Slough 11.Results of the 1984 analysis indicate • that mainstem discharges of 16,200 cfs and 33,200 cfs are required to provide suc~::essful passage conditions at Passage Reaches I and II respectively.These results were obtained by determining the streambed elevations lit the highest points of the thalweg profile JJ in the passage reaches,determining the water depths and water surface elevations required to meet the passage criteria,and then determining what mainstem discharge is necessary to provide those water surface ~evations (depths).This portion of the analysis was based upon the assumption of a negligible local flow from the slough itself. For PR I,the critical point in the passage reach (that is,the highest point along the thalweg)is at an elevation of 667.75 ft,mean sea level, (MSL).This is shown on Figure 6-E-7 of the ADF&G report (reprinted here as Figure 1)at approximately Station 3+50.By adding the passage depths which distinguish unsuccessful from successful-with-difficulty and successful-with-difficulty from successful,(0.32 and 0.41'ft,respect- ively)the water surface elevations for unsuccessful and successful conditions are less than El.668.09 and greater than El.668.16, respectively'.(The passage depth requirements are from Curve I,Figure 6-4 and assume a passage reach length of 250 ft).The water surface elevations ~lnd thalweg elevation are depicted in Figure 2 as constants over the range of mainstem discharges. ~I The thalweg elevation is defined as the lowest elevation or the deepest point of a cross-section through a water channel.A thalweg profile is constructed by connecting the deepest points of several cross- sections alemg the length of the channel. 420972/12 IJ:{J£OOl6£CI §OO£®©@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION Anchorcllge TO 1..Gi Ibertson DATE December 7.1984 NUMBER 4.3.16/4.3.1.1 FROM Page 5 SUBJECT Tnterpretati on of ADF&G SIlHydro Ma jns tem and Local Flow Values for Successful Passage Conditions "...,, By superimposing the stage-discharge relationship from the data obtained from a staff gage located at the mouth of Slough II (ADF&G Gage 135.3W1) (Quane,.et.al 1984),it is possible to determine the mainstem discharges corresponding to unsuccessful and successful passage threshold conditions.The staff gage data are plotted on Figure 2.Based upon this curve along,and assuming no influence of local flow,mainstem discharges less than 15,200 cfs result in unsuccessful (acute)access conditions at PR I and mainstem discharges greater than 16,200 cfs result in.successful (unrestricted)passage conditions. A seco~d superimposition of local flow vs water surface elevation within- PR I onto Figure 2 requires the definition of the relationship between local flow and mainstem flow for values of mainstem discharge less than .. that which will overtop of the upstream berm.This relationship is highly vari.able since the local slough flow is a composite of local surface runoff and groundwater upwelling. A relationship between mainstem discharge and groundwater upwelling has ~ been defined for Slough 11 (Beaver 1984).The relationship is based on discharge data recorded at the R&M recording station in Slough 11 near PR III (Figure 1).Since there is little local runoff into Slough 11 (i,t has a small drainage basin),it was assumed that all local flow was due to groundwal:er upwelling.The relationship between slough groundwater flow (S)and mainstem discharge measured at Gold Creek (G)is: S =1.51+0.000102G (1) ~. For various mainstem dischrges,this equation defines the corresponc;ling groundwater discharge at "the recordig station in Slough 11.At p<?ints further downstream from the recording stat~on,e.g.within PR I,addi- tional loca,l flow is acquired from further groun-dwater upwelling. Woodward-Clyde (1984)estimated that the local flow at PR I is approx- imately 145 percent of the flow calculated at the Recording Stat i,1Q. (This assuml~S a linear increase in slough reach and also assumes the discharge at the'recording station is 100 percent).Therefore,local slo~gh flow at PR I can b~scaled to mainstem discharge by the following equation: 420972/12 S(PR I)=1.45 (1.51 +0.000102G)(2) .- IJ:{]&OO~&CI §[ID&@@@ SUSITNA JOINT VENTUR E INTRA-OFFICE MEMORANDUM LOCATION TO FROM Anchorage L.Gil bert son J.Bizer DATE NUMBER December 7.1984 4.3.16/4.3.1.1 Page 6 SUBJECT Interpretation of ADF&G SuHydro Mainstem and Local Flow values for Successful Passage Conditions Use of Equation 2 mainstem discharge. bottom x-axis scale allows scaling of slough The scaling for PR I in in Figure 2. flow to the corresponding Slough 11 is shown as the .... - J&!l\'!!i'l Based upon field observations and estimates (Sautner et al.1984).the local flows which present unsuccessful and successful passage conditions at PR I in Slough 11 (assuming no mainstem backwater effects)are less than 3 cfs and greater than 4 cfs.respectively.By converting these to mainstem discharges using equation 2.3 cfs corresponds to a mainstem discnarge of 5.480 cfs and 4 cfs corresponds to a mainstem discharge of 12.240 cfs. By plotting these values on Figure 2.where 3 cfs is the unsuccessful threshold criterion (at WSEL 668.07)and 4 cfs is the successful thres- hold criterion (at WSEL 668.16).a relationship between local £lows and mainstem discharges which provide various access conditions is described. Successful access conditions are provided through the groundwater mecnanism when mainstem discharge is greater than 12,200 cfs.In contrast mainstem discnarge provides successful passage conditions through backwater effects alone at PR I only wnen mainstem discharge exceeds 16,000 cfs. A similar analysis for PR II within Slough 11 is presented in Figure 3. In this case the thalweg reference elevation is at EI.670.0 ft MSL and the passage depths corresponding to the unsuccessful and successful threshold criteria are 0.32 and 0.41 from Figure 6-4 (ADF&G 1984)for a passage reach length of 745 ft.The .corresponding water surface eleva- tions are 670.32ft.MSL and 670.41 ft MSL.respectively.The mainstem stage discharge relationship used in Figure 3 is the same as for Figure 2.at Staff Gage 135.3wl.A staff gage is located within PR II. However.the:stage-discharge relationship at the gage is highly influ- enced by slough discnarge and does not define a representative relation- ship between mainstem discnarge and water surface elevation assuming negligible slough flow.For this reason.the stage discharge relation- ship for staff gage 135.3Wl is used.. As derived in the ADF&G Report (Sautner et al.1984)mainstem discharges of 31,900 and 33.200 cfs are required to meet the WSELs corresponding to the unsuccessful and successful passage criteria thresholds.assuming no influence of local flow. The mainstellll discharges required for the respective passage depths via the groundw~lter mechanism are less than those which are required to 420972/12 G{]&OO~&CI ~!ID&®@@ SUSITNA JOINT VENTURE I"'TR.A-OFFICE MEMORANDUM LOCATION Anchorage DATE _D_e_c_e_m_b_e_r_7--<,_1....;.9_8_4 _ TO FROM L.Gilbertson J.Bizel" NUMBER 4.3.16/4.3.1.1 Page 7 SUBJECT Interprl~tation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions provide passage depth via the backwater mechanism.Scaling of slough discharge to mainstem discharge assumes that slough discharge at PR II is 127 percent of the discharge at the recording station (Woodward-Clyde 1984).Therefore,the following equation was used to scale slough discharge (S)to mainstem discharge (G): S (PR II)=1.27 (1.51 ~0.000102G)(3) poII!liIU, Local flows at the unsuccessful and successful passage condition thres-- holds are elitimated to be 3 and 4 cfs J respectively (Sautner et al. 1984).Thes:e local groundwater flows correspond to mainstem discharges • of 8,350 and 16,075 cfs,respectively. A somewhat different relationship between groundwater upwelling in slough discharge and mainstem discharge is presented by Woodward Clyde (1984). The equation presented by Woodward-Clyde for Slough 11 is more conser- vative and includes data collected during the summer of 1984.The equations us.~d by Woodward-Clyde forPR I and PR 11 in Slough II are: S =1.45 (1.43 +.000087G) S =1.27 (1.43 +.000087G) for PR I for PR II (4) (5 ) The corresponding mainstem flows for 3 and 4 cfs flows through PR I and PR II ar~: Passage Conditions Unsuccesful Successful PR I PR II LOI::al Discharge Mainstem Discharge LOI::al Discharge Mainstem Disc):large <3 cfs <7340 cfs <3 cfs <10715 cfs· >4 cfs >15270 cfs >4 cfs >19765 The above allalyses and comparisons for PRs I and II in Slough 11 are summarized in Table 1.It is evident that passage conditions are dependent on mainstem discharge in one of two ways:directly as a function of the backwater effect and indirectly as a function of mainstem discharge influence on the rate of groundwater upwelling.From the information presented in Table 1,it is concluded that successful passage conditions are present at PR I when mainstem discharge is 12,240 cfs or greater.Similarly,it is concl uded that successful passage conditions 420972/12 ""'", [}{]£OO~£C1~[ID£~©@ SUSITNA JOINT VENTURE INTRA-OFFIICE MEMORANDUM LOCATION TO FROM Anchorage L.Gilbertson Jo Bizer DATE _D_e_c_e_m_b_e_r_7---<...,_1_9_8_4-'--_ NUMBER _4_0_3~0_1_6,;.../4_._3_0_1_0_1 _ Page 8 SUBJECT Interpretation of ADF&G SuHydro Mainstem and Local Flow Values for Successful Passage Conditions ..... - are present at PR II when mainstem discharge is 16,075 cfs 0 In both cases presen,ted above,the influence of mainstem discharge in providing successful conditions is via the groundwater mechanism.In other passage reaches in other sloughs,the influence of the mainstem via the backwater mechanism may be predominant 0 This determination of mainstem discharges required for each passage reach would provide a more comprehensive evaluation of effects of the project on adult salmon passage'into spawning areas. hg cc:E.Marchegiani,APA J 0 Thrall,HE 420972/12 • ..... - -- References Cited Alaska Department of Fish and Game.1983a.Susitna Hydro Aquatic Studies Phase II Basic Data Report Volume 4:Aquatic habitat and instream flow studies,1982.Prepared for Alaska Power Authori ty,Anchorage I Alaska" Alaska Department of Fish and Game.1983b.Susitna Hydro Aquatic Studies Phase II Report:synopsis of the 1982 aquatic studies and analysis of fish and habitat relationships Appendix B:Timing and passage of adult sialmon in the mainstem Susitna River and access into selected sioughsi upstream of the Chulitna River confluence.Prepared for Alaska Power Authori ty,Anchorage,Alaska. Barrett,B.~l.,F.M.Thompson,and S.N.Wick.1984.Report No.1:Adult AnadrOOlous Fish Investigations (May-October 1983).Alaska Department of Fish and Game Susitna Hydroelectric Project Aquatic Studies Team. PreparE!d for Alaska Power Authority,Anchorage,Alaska. Beaver,D.1984.Slough discharge regression equations.Memorandum to E.J.GE~perline,Harza-Ebasco Susitna Joint Venture.Dated October 12,1984. Klinger,S.and E.W.Trihey.1984.Response to aquatic habitat surface areas 1:0 mainstem discharges in the Talkeetna to Devil Canyon reach of the Susitna River,Alaska.E.W.Trihey and Associates.Prepared under contract to Harza-Ebasco Susitna Joint Venture.Prepared for Alaska Power Authority,Anchorage,Alaska. Quane,T.,P.Morrow and T.Withrow.1984.Chapter 1:Stage and discharge investigations.In:Report No.3:Aquatic Habitat and Instream Flow Investigations (May-October 1983),C.C.Esten and D.S.Vincent-Lang, eds.Alaska Department of Fish and Game Susitna Hydroelectric Project Aquatic Studies Team.Prepared for Alaskas Power Authority, Anchorilge,Alaska. Sautner,J.8.,L.J.Vining and L.A.Rundquist.1984.Chapter 6:An evaluation of passage conditions for adult salmon in sloughs and side channelS of the middle Susitna River.In Report No.3:Aquatic Habitat and Instream Flow Investigations (May-October 1983),C.C. Esten lind D.S.Vincent-Larry,eds.Prepared by Alaska Department of Fish and Game Susitna Hydroelectric Project Aquatic Studies Team. Preparli!d for Alaska Power Authority,Anchorage,Alaska. Trihey,E.W.1982~Preliminary assessment of access by spawning salmon to side slough·habitat above Talkeetna.Prepared for Acres American, Inc.,Anchorage,Alaska. Woodward-Clyde Consultants.1984.Susitna Hydroelectric Project:Fish mitigaltion plan.Submitted to Harza-Ebasco Susitna Joint Venture. Preparli!d for Alaska Power Authority,Anchorage,Alaska. 420972/REF 1 ~.-j J 1 ~I 1 J ] Table 1 I i j ]I 1 J 11~ Susitna Hydroelectric Project Summary of Mainstem Discharge Relationships to Slough 11 Passage Conditions Threshold Threshold Threshold Threshold Passage Water Mainstem Discharge Local Flow Mainstem Discharge Passage Depth Thalweg Surface Corresponding to Corresponding Corresponding to Reach Threshold Criteria Elevation Elevation WSEL via Backwater to WSEL WSEL via Local flow (Equations 2 and 3) (ft )(ft MSL)(ft MSL)(cfs)(cfs)(cfs) I Unsuccessful 0.32 667.75 668.07 15,200 3 5,480 I Successful 0.41 667.75 668.16 16,200 4 12,240 II Unsuccessful 0.32 670.00 670.32 31,900 3 8,350 II Successful 0.41 670.00 670.41 33,200 4 16,075 • 420972/12 • --- l""'- I ~ I I,Q a.ls.. ~ C'l.... ~ -•=8 _..:z2 ~c ~8 .. i =: 2c 161 8 =..lit !! 8 Q... 8 i III fl-----'n J:I•.. ~.... 0• 0 .. Ci .... ~§ fu ~ I ~"......2...- o~0 ..e'•'"e 0 .. '" ••..••'"•• I ~•••,NOU,YA]'J in,,~ •.. c..: III•C = I -- 6-E-8 I 'I ]I 1 I 1 I J 1 I J --)E 'I 1 ] FI$UlJ J Dl1a~e;~n~~a~s~g~qO~i~iO~S laIIP~*~eIR'afhJl In ~1+U~h 111 .-._---- _____7_lLO ,__•~.__7QIO ,ktf 1-IM.lnsJ~nj a IVS wse ----j---- -.--,--f- -.~~---t---I -- ---1---+---I ----+--+- ._~.-1----·-...~._. f---- >~;S~~~E~.,~-=i--+'-------+--.+_----+. ..,,rt~-~t-----------t---t--~-+------+----t- i i I i I I !I Iii I I IIIlL+_I---_ 111 I 1/3 11~11~1 119 J 2i 1 ~5 I 217 I 219 I 311 I 3PLII.!J'AaJrst~ml Difc~arqe qx 1 ~OO cfhl_ 315 317 3 I _11 3 -i 1 I r J I f:TH)qtt III ~f'IIr}I~1 :'IUi.~1'lH~:;I"~;:I\lCJI~:~;-Jr~.l~~~:-~f ]I J 1 I J ]i 1 J I J )] t 'W o ~iQ .---....--...~-.._-~~--.,'"1"'-'....-.--.--...-...r~~-_.---_.-.---.--- _.._. f I(UI ~E 3 Dil ct ar ge a:ld P ~s a e C ~nc iti on~t Pa ss :1g ~.~e ~c ~I i)~10 ~g~1 , j .. / _0••_......_..".-----.'._..--_.._..-~.-.-~_.-~-.------.....'-.~-"-- Lo r;al Q vs.W EL Su DCE ss ul I>a~sa ~e po dl ions ~f.-", .:................'~ ..---._.,-0·'...e------.--~!':"":l""f---'-..I .._,._.I-. 11 ..-_._.-_.f-..-..---..--1--0 [-.. ~n uC cef sil I Fas ag a (on ~iti on V A .- "..~-'/"-:>i" i"-,Th dweg EI va ior ~'",£•;vr·'v,;A", ,~. •~r...,...,.........-....,-._.';-Vk::·. ........_.,..'.-....,-I - 'V '-M~io ten (v.~SIL //'. V' ...-...I····,..-........, - -..-;·V,V --.---....-"-......_.._.-_._---._..f----.--.-----~.•-----f------,----f--- I' I v./ .--_.- - _...- - ...-. ...--'..~.........--.--..-~-_..-----.._.-".-_.__.....•..---------_.-..-~-._.- /1 /.. '/I I I _.. --,I ._..-._.-f---~--.-.-_._-.-._.-1·- t 11 13 lp 17 19 ,~r i 2 3 2 5 I 2 7 2 9 31 33 :35 37 Ma os et1 D SC ~ar ~e lex 10 00 cf 1. 3 I r I LoJal I Disc ~a~ge (of~LI'6 I i I I I I I ,.I - E II,()911 III ~r;'I<l,::l ~'l\-~'l.~~)'~IY~;~;,'I?r\I/~;"'~1~~1t),1 .- - l}:(]&00 !%&c ~[ID&®@@ SUSITNA JOINT VENTURE INTRA-OFFICE MEMORANDUM LOCATION Anchorage DATE December 12,1984 TO FROM File W.M.Dyok 4.3.41NUMBER _ SUBJECT Susitna Hydroelectric Project Cost to Prov~de Spiking F'lows to Flush Sloughs - Detailed costs of spiking flows will be obtained by use of a combination of the weekly reservoir operations computer program,the hourly opera- tions computer program and the Multi-Area Production Simulation computer program.Since this information is not expected to be available for several months,the cost of the spiking flows for the period when Watana operates alone (1996-2002)was estimated for the Case EI June spike by the following procedure. (1)From 1983 historical hourly load data,the average daily minimum summer demand was determined (200 MW)along with the average daily maximum summer demand (340 MW). (2)These summer demands were factored up to 1996 and 2002 by multiply- .ing by t:he ratio of the annual peaks to the 1983 annual peak demand "(1.64 and 1.84 respectively).Since the resul ting average maximum and minimum daily demands were reasonably similar for 1996 and 2002, (minimum 328 and 368 MW respectively),the averaged values for 1996 and 2002 were assumed to apply to all years between 1996 and 2002. (3)A conversion factor of ~"~J-l:!t::.,!9.~_.~of power at Watana was develope~d to relate flow to power production (this factor assumes an average reservoir level of 2140 feet).In early June the reservoir would be lower than this resulting in approximately 5 percent greater flow per 100 MW (i.e.,2100 cfs per 100 MW)whereas in late summer these would be about 5 percent less flow per 100 MW (i.e., 1900 cfs per MW). It was assumed that energy which could have been stored in summer would be~generated at a uniform rate throughout.(This would yield an average flow of 2000 cfs per 100 MW during winter.) (4)Intervening flows between Watana and Gold Creek during the June spike we~re determined to be 2000 cfs,5000 cfs and 9000 cfs for dry, average,and wet hydrological conditions. (5)The inte~rvening flows were subtracted from the Case EI flow require- ments at Gold Creek to yield flow requirements at Watana. M1l60 ......+ lXl&OO~&c ~OO&@©©SUSITNA JOINT VENTURE !NTRA-OFFICE MEMORANDUM ,..., LOCATION TO FROM Anchorage File w.M.Dyok DATE NUMBER December 12,1984 4.3.41 Page 2 Susitna Hydroelectric Project SUBJECT ----...-,...,........-...,..,.::-1.....=~.,.--""(!";::"l-1;~_=_~,...,....._....'="".."....r._;_;Cost tD Provide Spiking Flows to Flush Sloughs (6)The volume of flow to be discharged at Watana during the spiking period was calculated (135,000 cfs days). - - - - (7)The flow volume which would be used to generate usable energy was calculated for each day of the spike,summed and subtracted from the total volume contained in the spike. (8)The resultant flow volume release was assumed available for winter generation.(This implies the Watana reservoir would not be filled to elevation 2105 feet by the end of summer,thereby allowing stor- age of the volume released.)The equivalent energy contained in the spike was determined. (9)Assuming a value of 6 cents/kWh (1982 dollars),the cost of each spike was calculated.This was determined to be $6,900,000, $5,700,000,and $4,500,000 for high,average,and low intervening flows respectively,during the time of the spike. (10)The present worth of the annual spikes in 1982 for the period 1996 to 2002 was calculated.This was determined to be $21,500,000 for average intervening flow conditions. In this analysis,no account was taken of the potential benefit of fuel savings by generating part of the usable energy in the June spike at another time~of the year when less efficient generation units would be operating. A similar an.alysis could be undertaken for the period that both Watana and Devil Canyon are operating.The spiking flow volume would be expected to come from Devil Canyon during Watana/Devil Canyon operation.During Watana/Devil Canyon operation,the probability of flow releases is·high in the early years of operation because of the energy production capability of the project relative to the railbelt load.Because of this high probability,the cost of spiking in the early years of Watana would be reduced and would need to be considered in the cost analysis.As the railbelt load increases,the probability of filling the Watana and Devil Canyon reservoirs and then having to release water decreases,resulting in higher costs to provide the spiking flows. Ml160 - [}{]&[ffi~&C §®&®@@ SUSITNA JOINT VENTURE INT.RA-OFFICE MEMORANDUM .... LOCATION TO FROM SUBJECT Anchorage File W.M.Dyok Susitna Hydroelectric Project Max~mum Hourly Flow Variat~on and Minimum Flow Requirements DATE NUMBER December 12,1984 42.2.1 ""'"I ! """' ..... r In a Septembl:!r 4,1984 memorandum from W.M.Dyok to W.E.Larson~it was proposed that during the period when Watana is operating alone,discharge variations of plus or minus 10 percent of the mean weekly di scharge as measured at Gold Creek would be allowed.In varying the discharge between the allowable maximum and minimum flows for a given week~it was also proposed that the maximum hourly rate of change of discharge would be 10 percent of the weekly .average discharge when discharge is being increased and 500 cfs per hour when discharge is being reduced.(The more string,ent requirement during flow reductions minimizes the possiblity of stranding fish). If the weekly average discharge is changed at the beginning of the week, the above rcltes of change of discharge would govern.Therefore,in changing flo~'from one week to the next,flow could be increased from 10 percent less than the past weekly average to 10 percent greater than the present weekly average at a maximum rate of 10 percent per hour of the weekly average flow.Conversely,the flow could be decreased from 10 percent greater than the past weekly average to 10 percent less than the present weekly average at a maximum rate of 500 cfs per hour. It is anticipated that future studies will refine the allowable hourly flow variations on both a seasonal and daily basis.The change in wetted channel geoml:!try with changing discharge may also lead to a series of allowable hourly flow changes for given discharge ranges.However,until such studies are completed,the above maximum hourly flow variations will be assumed il1lreservoir and energy studies. In reservoir operation studies,it has been assumed that the m~n~mum flow requirements relate to the mean weekly flow.Therefore ~if the mean weekly flow is equal to or slightly greater than the minimum flow requirement for a given week,it is possible to have flows up to 10 percent less than the minimum flow requirement for a part of the week. If further studies indicate that the minimum requirements should not be violated at any time during the week,reservoir operation will be modified to ensure that the weekly minimum flow requirements are not violated. pb 400361/12