HomeMy WebLinkAboutAPA4146GB
1227
.W5
E8
1981
v. 1
WILLOW AND DECEPTION CREEKS
INSTREAM FLOW DEMONSTRATION STUDY
By
Christopher Estes
Kelly Hepler
Andrew Hoffmann
Alaska Department of Fish and Game
Habitat Protection and Sport Fish Divisions
for the
USDA -Soil Conservation Service
Interagency Cooperative Susitna River
Basin Study (Agreement # 58 04368 1 e)
1981
Volume One
_J
WILLOW AND DECEPTION CREEKS
INSTRJ:AM FLOW DEMONSTRATION STUDY
By
Christopher Estes
Kelly Hepler
Andrew Hoffmann
Alaska Department of Fish and Game
Habitat Protection and Sport Fish Divisions
for the
USDA -Soil Conservation Service
Interagency Cooperative Susitna River
Basin Study (Agreement + 58 04368 16)
1981 ARLIS
;2?7
! VIS
l" ' 1 lr.;/1 1 / '"'/ :.J
Volume One
Alaska Resources
Library & Information Services
IUlchorage,AJaska
Permission to reproduce any of the information contained herein is withheld
pending approval of the authors
-.,
LIST OF FIGURES
VOLUME· ONE
TABLE OF CONTENTS
v
LIST OF TABLES ..•.•.••••••.•.•••••••....•..•.••....•••..••....... viii
INTRODUCTION .•..•..••.•..•••.••.•• -••....•..•.....•••.•..•........ 1
OBJECTIVES . • . . . . . • . • . . . . • • . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . • • . . . . . . . 5
Instream Flow Study . . • • • • • • • . • • . . • • . . . • • • • • • • • • • • • • . • • • • • • • • 5
Supplemental Biological, Water Quantity
and Qua 1 i ty Study • • • • • • • • • • . • • • • • • • • . ••....•...•.•.••..••• 6
DESCRIPTION OF STUDY AREA . • • • • . • • • • • • • • • • • . • • • • • • • . • . • . • • • • • . • . . . 7
In stream Flow Study Sites • • • • • • • • • • • . • • . • . • . . • • • • . • • • • • . . • . • 8
Supplemental Biological, Water Quantity
and Quality Study Sites •..•.....••..•.•...•.•.•••.••.•..•. 32
Peters/Purches Creeks • . . • • • . . • . . • . • • . . . . • . • • • • . . • . . . . • . 32
ADF &G/USGS Sites . • . • • • • • . • • • • . • • . . • . . • • . • • . • . • • • . • • • . . . 32
Fishery Resources • • • • • • • • • • • • • . • . • • • • • • • • • • • • • • . • • • • • . • . . • • • 32
MATERIALS . . • . . . • . . • . • . • . . . . . . .. • • . • . . . .... . • . . • . . . . .. . • . . • • . . • • .. . . • . . • 40
METHODS . • • • • • . • . • . . • • . • • . . . . • . . • • . • • . • • . • • . . • • . . . . • • . . . . . • . . . • • . . 41
Instream Flow Study . • . • . • • . • • . • • . • . • • • . . . . • • . . . . . . . . • . . . . . • . 41
Geographic Code Locations ...•..•...•...•.•.....•....... 41
Training • • . • • • • • • • • • . • • . • • . • • • • • • • • • . • . • • . • . . • . • . . . • . . . 42
Reach Selection ..•••••••.•••••••.•...•••••••••..••••••• 43
Di scha rge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Stage . . . • . . • • . . . . • • . • • . • • . . • . • • • . . . . • . . • . . . . • . . • . • . • . . • 44
5-t~-bstr-a-iie ••.•.. -..•.•• -•..•....••.•....... -. . • . . . . . . . . . . . . -44
Water Qua 1 i ty . • • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 45
Point Specific Spawning Habitat Data . . . . . . . . . . . . . . . . . . . 47
Benthic Invertebrates 48
-i-
-~
TABLE OF CONTENTS-continued
Page
Water Quantity . . . . . . • . . • . • . . . . . . • • . . . . . . . . . . . . . . . . 81
Substrate . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Water Qua 1 i ty . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADF&G/USGS Sites . . . • . . • . . • . . . • . . • . . . . . • . . • . . . . . . . . . . . . . . . . . . 83
Water Quantity and Qua 1 i ty • . . • . • • . . • . . . . . • . . . . • . . . . . . • . 82
----------------------------------------------------------------------------------------------------------------
J
_.
DISCUSSION . . • . . . . . . . . • . • . . . . . . . • . . • . . . . . . . . . . . . . • . . . • . . . • • . . . . . . . 84
In stream Flow Study . ..• . . . • . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . 84
Hydraulic Data Collection Limitations
and Recommendations . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 84
Point Specific Spawning Habitat Data Collection
L i mi ta ti ons and Recommendations . . • . . . . . . . . . . . . • . . • . • . 88
Computer Analysis . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 89
L imitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Recommendations . . . . . . . . . • . . . . . • . . . . . . . . . . . . . • . . . . . 91
Biological, Water Quantity and Quality Data •...•......• 92
WUA Calculations . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 93
Supplemental Biological, Water Quantity
and Quality Study .............•...•....................... 93
CONCLUSIONS . . . . • • . . • . • . . . . . . . • . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 95
REFERENCES . • . . . . . . . . . . . . . . . . . . • . . • . . . . . • . • . . • . . . • • . . . . . . . . . . . . . . . 97
ACKNOWLEDGEMENTS . . • • . . . • . . . . . . . . • . • . • . • . . • . . • . . . • . . . • . . . . . . . . . . . . 100
APPENDIXES ....................•..•..•......•...•.•............... 101
A. Peters/Purches Creeks Stream Survey Data ............... 101
B. ADF&G/USGS Water Quantity and Quality Data 108
c. Willow/Deception Creeks Instream Flow
Study Staff Gage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
-iii-
LIST OF FIGURES
Figure
1. Study area ..................................................
2. Willow/Deception Creeks Instream Flow Study
reaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. Lower Willow Creek water•s edge and head pin
stati ani ng map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4. Cross-sectional profile of Willow Creek lower reach,
_____ Tran_s_g_c_t_ __ No~ __ _]_ __ -~_!_-~_ ~-~--~--~--~ !___~--~-~ ~--~ ~-~-~ -~~-~--~-_!_ ~-~-~--~ -~-~ -·-~-~-~-~-!_ ~ ~-~ ~--~ ! __ It_~ ._ ~ 12_
5. Cross-secti ana 1 profile of Wi 11 ow Creek 1 ower reach,
Transect No. 2 ••....... ~.................................. 13
6. Cross-sectional profile of Willow Creek lower reach,
Transect No. 3-A . • . . . • . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7. Cross-sectional profile of Willow Creek lower reach,
Transect No. 3-B . . • . . . . . . . . . . . . . . . . . • . . . . . . • . . . . . . . . . . . . . . 15
8. Cross-sectional profile of Willow Creek lower reach,
Transect No. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9. Cross-sectional profile of Willow Creek lower reach,
T.ransect No. 5 . . . . . . . . . . . . . . . .. . . . . . • . . . . . . . . . . . . . . . . . . . . . . 17
10. Middle Willow Creek water•s edge and head pin
sta ti'cini ng map ..... ~· .....•......... ~ ... .-.. . . . . . . . . . . . . . . . . 18
11. Cross sectional profile of W~llow Creek middle reach,
Transect No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
12. Cross-sectional profile of Willow Creek middle reach,
Transect No. 2 . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . 20
13. Cross-sectional profile of Willow Creek middle reach,
Transect No. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
14. Cross-sectional profile of Willow Creek middle reach,
Transect No. 4 . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 22
15. Upper Wi 11 ow Creek water • s edge and head pin
stati ani ng map . . . . . . . . . . • . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 23
16. Cross-sectional profile of Willow Creek upper reach,
Transect No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
17. Cross-sectional profile of Willow Creek upper reach,
Transect No. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
-v-
LIST OF FIGURES-continued
Figure
36. Velocity suitability curve for spawning pink salmon
Wi 11 ow Creek, A 1 as ka. Summer 1978 . . . . . . . . . . . . . . . . . . . . . . . 69
37. Substrate suitability curve for spawning pink salmon
in Willow Creek, Alaska. Summer 1978 .................... 70
38. Comparison of three methods for calculating Weighted
Usable Area • . . . • . . . • . • . . . . • . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . 77
39. Effects -of-applying d-ifferent habita-t su-itability curves
to the same hydraulic model .............................. 80
-vii-
j
l
..;
~
'
_.
-,
_.
--"'
Table
1.
2.
3.
4.
5.
6.
7.
8.
LIST OF TABLES
Geographic locations of Willow/Deception Creeks
Ins tream Flow Study reaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Geographic locations for Peters/Purches Creeks
Supplemental Study sites .................................... 34
Geographic locations of ADF&G/USGS sampling sites 36
Equipment used in Instream Flow and Supplemental
Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Equivalence of Modified Wentworth and Willow/Deception
Creeks Study substrate scales . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 46
Flow (cfs) summary for Willow/Deception Creeks Instream
Flow Study reaches, 1979 . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Range of predominant substrate classes in Willow/Deception
· Creeks Ins tream Flow Study reaches, 1979 . . . . . . . . . . . . . . . . . . . . 53
Water quality summary for Willow/Deception Creeks Instream
Fl ow Study reaches , 19 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9. Redd measurements for chinook salmon in Willow Creek,
August 1979 .• . . . . . . • . . . . . . . . . • . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10. Redd measurements for chinook salmon in Willow Creek,
11.
12.
13.
14.
15.
16.
17.
August. 1 978· .......•. ·..•. . . . . . . . • . . .. . .. . . . . . . . . . . • . . . . . . . . . . . . . 57·
Redd measurements for pink salmon in Willow Creek,
August 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Benthic insects (no/ft2), classified to order,
collected from each of the Willow/Deception Creek
In stream Flow Study reaches, 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73
Discharge vs. predicted available spawning habitat area
( ft2) per 1000 feet of the Wi 11 ow Creek Ins tream Flow
Study middle reach . . . . . . . . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . 78
Discharge vs. predicted available spawning habitat area
(ft2) as a percentage of the Willow Creek
In stream Flow Study middle reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Fish trapping results, Peters and Purches Creeks, 1979 ........ 82
Discharge Measurement (Q) in cubic feet per second (cfs)
Peters and Purches Creeks, 1979 .....•....................... 82
Range of predominant substrate classes observed in Peters
and Purches Creeks, 1971 ........................ ~ ........... 83
-viii-
· INTRODUCTION
-'
_,
-------
....
INTRODUCTION
This study was undertaken by the Alaska Department of Fish and Game
(ADF&G), as part of the ongoing Susitna River Basin Study (Estes and
Lehner-Welch 1980), to:
1. evaluate the feasibility of applying the Incremental Method-
-________ 9log_y* procedu!'es of the U.S. fisryand Wildl_if~ Service (U?fWS)
Instream Flow Group (IFG) to collect and analyze instream
flow** data from Willow and Deception Creeks (Figure 1); and
2. augment baseline fishery studies conducted on Willow and
Deception Creeks by the ADF&G in 1978 (Watsjold and Engel
1978).
The 1978 studies provided preliminary information on fish species campo-
sition, areas of fish spawning and rearing, aquatic habitat characteris-
tics, and recreational angling. They did not, however, address instream
flow requirements of the fishery resources in these two systems.***
*11 The Incremental Methodology is based on the premise that the suita-
bility of a species• habitat can be described by measuring selected
physical variables in the stream, making it possible to quantify the
changes in habitat suitability by quantifying the changes in these
instream variables 11 (IFG 1980a).
**An instream flow is the quantity of flow occurring within a stream
--cnanner aur1hg a given perioa of ti!Tle wnether or-riot subject to-flow
regulation.
***A discussion of the importance of instream flows to fish and wild-
life resources is presented in the ADF&G publication:~ synthesis and
evaluation of fish and wildlife resources information for the Willow and
Talkeetna slib-baSTnSTEstes and Lehner-Welch 1980). --
-1-
J
J
l
,_j
]
J
J
J
]
J
J
J
]
J
]
J
J
J
,
co c:
""'t
Cl)
.....
CJl -c: a.
"<·
Q)
""'t
(I)
Q)
.... =
II
or
---~--
;=
m
0
.. ;
~
0
....
0
~
:····
... -:::-··· . . ... ... :··· ........ . . . .
···: . ...... .. . .
······· ... . ..
.... .. .
.. ... .
-z-
< m :u
-~
-'
The ADF&G, with the assistance of the U.S Department of Agriculture Soil
Conservation Service (SCS), U.S. Geological Survey (USGS), and Alaska
Department of Natural Resources (AONR), initiated both portions of this
study in the spring of 1979. The ADF&G, USGS, and ADNR continued col-
lecting supplemental data through the fall of 1980. Computer analysis
of the instream flow data collected from Willow Creek was completed in
December 1980. Additional analysis, comparing computer analysis tech-
niques and the e:rfects of integrating spawning habitat data collected by
other investigators (Watsjold and Engel 1978; AEIDC 1980) with the
Willow Creek hydraulic model, was completed in February 1981. Funding
for this study was provided by the SCS through the Interagency Cooperative
Susitna River Basin Study, the ADF&G, and a Title III grant from the
U.S. Water Resources Council administered by the Division of Land and
Water Management of the ADNR.
Willow Creek is one of the major recreational waters within the Upper
Cook Inlet Drainage. It is located within 2 hours driving distance from
Anchorage, the major population center of Alaska, and receives extensive
angling effort by sport fishermen. The high productivity and variety of
fish species, and the high angler success rate make Willow Creek one of
the most important sport fisheries in the lower Susitna Basin (Mills
1981). Wi 11 ow Creek a 1 so serves as an access corridor to other fishing
and hunting areas within the Susitna River drainage and is used exten-
sively by boaters for this purpose.
r~ajor land use activities (e.g., mining and residential development) are
-3-
occurring in the Willow Creek drainage. A portion of this area has been
selected as the future site for the new State Capital (Figure 1). This
report is an attempt to evaluate one of the tools for assessing the
ability of the fishery resources to withstand these varied impacts. It
is intended also to provide interested agencies, planners, managers,
developers, and individuals with baseline fishery, hydraulic, and water
quality information. These data, with subsequent investigations, can be
used to evaluate the potential impacts of future developments proposed
for thi.s area.
-4-
[
[
[
[
[
_[_
[
[
[
[
[
[
[
[
[
L -
r~
L
[
OBJECTIVES
~
"_.
-"'
OBJECTIVES
Instream Flow Study
Six study objectives were established:
1. train personnel to collect and analyze instream flow data
---------------------------
based on the IFG Incremental Methodology;
2. develop cross-sectional profiles in selected areas of Willow
and Deception Creeks and characterize the types and amounts of
salmon habitat available in terms of depth, velocity, and
substrate characteristics.
3. determine spawning habitat characteristics for pink (Oncorhynchus
gorbuscha), and chinook (~ tshawytscha) salmon in selected
areas of Willow and Deception Creeks;*
4. determine characteristics of chinook salmon rearing habitats;
5. compute the availability of salmon habitat at various
streamflows using the IFG computer programs; and
*The selection of these species was based on their relative abundance.
-5-
6. evaluate the feasibility of applying the Incremental
Methodology to Willow and Deception Creeks.
Supplemental Biological, Water Quantity and Qt.~ality Study
Objectives of these investigations were to:
l. identify fish populations in Peters and Purches Creeks (tribu-
taries to Willow Creek);
2. identify water quantity and quality characteristics associated
with fish populations observed in Peters and Purches Creeks;
and
3. collect miscellaneous water quantity and quality data in the
upper Willow Creek drainage.
[
r t __ _.J
r
[
[
[
[
[
c
[
c
[
r" L
[
[
-6-
-----------c--
L
[
[
DESCRIPTION OF . STUDY AREA
_j
_}
DESCRIPTION OF THE STUDY AREA
The study area is located within the 214-square-mile Willow Creek drain-
age (Figure 1) in the southwestern foothills of the Talkeetna Mountai.ns.
Elevations in this area range from approximately 5,500 feet mean sea
level (MSL) in the upper portion of the watershed to 100 feet MSL at the
confluence of Willow Creek with the Susitna River.
Approximately 25 percent of the study area is part of a. 100-square mile
site selected by Alaskan voters as the location for a new State Capital .
. The remainder of the study area adjoins Willow Creek both upstream and
downstream of its confluence with Deception Creek. The portion of the
study area that is contained within the proposed Capital site is owned
almost entirely by the State of Alaska and is vi:tually undeveloped.
Lands adjacent to Willow Creek, however, are in private or Borough
ownership and have been developed to a limited extent. In recent years,
the Willow Creek drainage has become a focal point for increasing recrea-
tional activities (e.g., fishing, hunting, boating, hiking, cross-
country skiing, and snowmobiling) primarily because of the area•s aesthetic
qualities and its proximity to Anchorage. This increased recreational
use, along with speculation on land in the Capital Site proximity, have
led to tremendous increases in the rate of development, especially of
recreational lots in the Willow Creek area.
=----:<'!-------------
-7-
..
Instream Flow Study Reaches
Four reaches were selected for the collection ·of instreamflow, water
quality, and supporting biological data (Figure 2; Table 1). Three of
these were located on Willow Creek and the fourth on Deception Creek.
Table 1. Geographic locations of Willow/Deception Creeks
Instream Flow· Study reaches (Figure 2).*
Reach
Lower WH 1 ow.
Middle Willow
Upper Willow
Deception
ADF&G Geographic Location
19N04W06ACD6
l9N04W02BBC4
19N04W02ADC3
19N04WllDAA4
*Refer to Methods section for a description of the ADF&G Geo-
_graphic Location System.
Descriptions of ·study reaches follow:
1. The lower Willow Creek reach was located at the Parks Highway
Bridge. Six transects were established within this reach which
*Refer to Methods section for a description of reach selection techniques.
-8-
c
[
[
c
[
c
[
c
[
b
c
[
[
[
[
[
[
[
I
1..0
I
l' J ' ~<J l 'j l, ' J \._, _,J \., J l. ~~ j 'I ~ ' ,J ~J
WILLOW I DECEPTION CREEKS INSTREAM FLOW STUDY REACHES
LOWER REACH/
(6 transects)
el!!!!l1 D!ii!~dl!!!1 /b2,1iiiiC:ile~' c:J91iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiill ,mi.
I .5 0 lkm
l!:!ot ::JiiWCJ!el!bwliit' :ee:ii' iiiiiiiiiiiiiiiiiiiiil'
Figure 2
DECEPTION CREEK REACH)
(4 tranlsects)
~J
was channelized in 1963 to permit construction of the Parks
Highway Bridge (Figures 3-9). Major pink salmon spawning areas
are located throughout this reach.
2. The middle reach was located 4.5 road miles upstream from the
Parks Highways Bridge. Four transects were established within
this reach (Figures 10-14). Both chinook and pink salmon use
-· thi-s a rea for-spawni-ng. ·
3. The upper Wi 11 ow Creek reach was 1 oca ted 5. 5 road mi 1 es
upstream from the Parks Highway bridge on a large bend of a
braided portion of Willow Creek. This reach was confined to
the southernmost channel adjacent to the left bank (looking
downstream) and thus represents only a portion of the flow for
this stretch of Willow Creek. Three transects were established
within this reach (Figures 15-18). A USGS gaging station (No.
152940.05) was located approximately 1 mile upstream of this
braided stretch of river. Chinook $almon are the predominant
species which utilize this reach for spawning.
4. The Deception Creek reach was located immediately downstream of
a USGS gaging st~tion (No. 152940.10). Four transects were
established within this reach (Figures 19-23). Coho (Oncorhynchus
kisutch), chinook, and pink salmon spawn in this area.
-10-
c
[
[
[
[
[
[
[
[
c
c
c
c
[
r
L
[
E
[
[
14'6" 10'7"
175'0~ .
173'0· .
177'4·
·-·-----·-+--+-~~-. ~· .PAR~.S HI.~~WA:· --·-· 261r:l'
2s'n•
Transect #2 1 + 73 • 99'0• 131 77 178'0~ -~ 86'0~\+
176'11· l M'd 18r
Transect #3A 3+49 13,....,.\_.,.,.
Transect #4
317'10
-o. - -~ - -Transect #5 _a.-r 99 ltJ-..... _
l't'o•
23·e·o•·
233'1o• 248'0.
187'o•
bank
'" A Transect #38 /85+20
I!J = head pin.,
(scale approximate)
LOWER WILLOW CREEK WATERJS EDGE & HEAD PIN STATIONING MAP
13 July, 1979
Average discharge 1163 cfs
Figure 3
-11-
I __,
N
I
Figure 4
n head pin
0 high ba!'lk
·'' Water't Edge A~ Of:
10 left bank e 1 o July, 1979; 1226 ct8
t::. a August, 1979; 074 cf~ rl~ht bank
t-
w
w
u..
z _,
5 :c
t-
tL
u.i
0
0
0
I
10
20
I
30
40
0 14 September, 1 t79; 20!1 eta
50 I
60'
I
70
I·
80
I
90
.. I . '
120 110
100
H 0 R I Z 0 N T A L D.] S T A N C E I N F E E T
GROSS-SECTIONAL PROFILE OF WILLOW CREEK l.OWER REACH, TRANSECT + 1.
(1 v~rtlcal fQot equals 4 horizontal feet) '
.• • . .. l
I .
130
l.
I ......
w
I
l. l .. J
Figure: 6
left blank
15
,.) \ .. J l .J l, J l .. J
~ head pin
0 high bank
Water's !=dge As Of:
.. J
e 10 July, 1979; 1216 ofs
6 8 August, 1979; 661 ofs
J l. l, J
0 14 September, 1979; 212 c,s
1-
w
w
LL.
z
:c
1-
c..
w
0
10
5
0
0
I
10 20 30 40
I
50 60
HORIZONTAL
I
70 80
I
90 I
100
I
110
DISTANCE
CROSS-SECTI:ONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSJ;CT +2.
( 1 vertical foot equals 4 horizontal feet)
120 130 140 160
N F E E T
right bank
160
I __,
-f.:>
I
Figure 6
10
1-
w
w
LL.
z 5
J:
1-
ll. w
0
0
10 30 0 20 40
I
50 60
I
70
n head pin
0 high bank
Water's Edge As Of:
e 10 July, 197Q; no flow data
6 8 August, 1979; no flow data
0 14 September, 1979; no flow data . I
~· .
80 90 100 110. 130 120· 1
HORIZONTAL DISTANCE N
CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT ft.3A.
( 1 vertical foot equals 4 horizontal feet)
140 150 160 170 180 190
F E E T
I __,
Ul
I
I
,)
1-
w
w
LL.
z
:r:
1-
a..
w
0
L i ,,
Figure, 7
10 left bar1k
5
0
I r
l. L ~J L , J
n head pin
0 high bank
Water's Edge As Of:
J .J
• 10 July, 1979; no flow data
6 8 August, 1979; no flow data
l. , I J
0 14 September, 1979; no flow data
)
0 10 20 30 40 50 60 70 80 90 100 110 120
HORIZONTAL DISTANCE IN
CROSS-SECiTJONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT +38.
( 1 vertical foot eq~Jals 4 horizontal feet)
l "--J
right bank
130 140 150 160
F E E T
I _,
en
I
Figure 8
10 .... w
w
u..
z
5
:c ....
a..
w
0
0
. I
0 110 20 30 40 50 60
f'] head pin
0 high bank
Water's Edge Aa.:.Of:
e 10 July, 1979,, no flow data
6 8 August, 197.:.8; no flow data
0 14 September;. 1979; no flow data
70 80 90 100
HORIZONTAL D S T A N C E IN
CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #4. . . I
( 1 vertical foot equals 4 h~rizontal feet)
I r-J
I
130 140 150 160 170 180
F E E T
L.
I __,
"'-J
I
l i }
Figure 9
10 ...
w
w u.
z
I ...
0. w
0
0
0 10
L.
j==F~
20 3(1 40 50
.J
60 70 80
. J
go 100 110
n head pin
0 high bank
l.
Watar'a Edge Ao Of:
j
e 10 July, 1&7&; 10&0 cia
D. 8 Auguet, 1117&; 822 cia
0 14 September, 1&711; 202 cia
120 130 140 150 160
)
170
H 0 R Z 0 N T A L D S T A N C E
CROSS-SECTIONAL PROFILE •OF WILLOW CREEK LOWER REACH, TRANSECT _,.5,
( 1 vertical loot equala 4 horizontal feet)
.[) l. .J
right bank
240
I \ I
280 190 . 200 210 230 250 260 270 180 220
N F E E T
right bank
,...;r
Transect #1 0+ ooif
'!1"!1~
155':0.
Transect #3
I [!)=head pin
bench mal'k
.~
.~
127'o·
ffd'
left bank
(scale approximate)
MIDDLE WILLOW CREEK WATER'S EDGE & HEAD PIN STATIONING MAP
11 July, 1979
Average discharge 990 cfs
Figure 10
-18-
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
E
[
[
I-w w u..
z
J:
I-
a..
I w
-' 0 <.0
I
Figure 111
lett bank
10 1h
5
0
I"' 10
0 20
J l ' J
I I
30 50
40 60
l ' J L
n head pin
0 high bank
l, j
Water's Edge As Of:
J
e 11 July, 1979; 987 cfs
D. 8 August, 1979; 622 cfs
I.!
0 14 September, 1979; 180 cfs
I
70
80
90 110
100
HORIZONTAL DISTANCE
I
L,
120
IN
J
CROSS-SEC:TIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT + 1.
(1 vertical foot equals 4 horizontal' feet)
I
130
. J
140
.J
150
F E E T
.J .. J
right bank
170
160
I
N
0
I
Figure 12
I
10 left bank t-w
n .h,ad pin I
0 high bank I
W ater'a Ed(le A a Of.: I
e H July, 18.18; 10~5 cfa
w
LL
6 Q August, 1~78; 5re cfs
0 14 September, 1S7Sj 158 cfs
I z
5
J:
t-a. w
c
0
10
0
30
20 40
50
60
I
70
HORIZONTAL
80
I
90 I
100
110
120
DISTANCE
CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT +2.
( 1 vertical foot equals 4 horizontal feet)
130
N
I
150
right bank·
I
170
140 160
F E E T
180
·L
1-
UJ
UJ
lL
z
J:
1-n.
UJ
I 0 N __,
i ) l .J .!
Figure ' 13
n head pin
0 high bank
Water's Edge .As Of:
lJ
e 11 July, 1979; 929 cis
6 8 August, 1979; 671 cis
10 0 14 September, 1979; 165 cis
5
0
20 30 40 50 60 70 I
80 90
(gravel bnr)
100
I
110 120
I
130
H 0 R Z 0 N T A L D S T A N C E
CROSS.,.SEICTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT 11'3.
(1 vertical foot equals 4 horizontal feet)
I
140 150
N
) L, J. .)
right bank
180 190
I
200 210 I
160 170
F E E T
I
N
N
I
10
It-w w
ILL
z
::r: 5
If-
ill. w
0
0
Figure 14
left bank
0
I
10 20
I
30 40
n head pin
0 hlgh bank
Water's Edge As Of:
8 11 Jut.y, 1979; 1021 cfs
6 8 August, 1979; 620 cfs
0 14 September, 1979; 20() cfs
I
50
60
I
70 80 eo
right bank
100
I
110
H 0 R I Z 0 NT A L DISTANCE IN FE E,T
CROSS-SECTIONAL P·ROFILE OF WILLOW CREEK MIDDLE REACH. TRANSECT #4.
( 1 vertical foot equals 4 horizontal feet)
1--:-1
_j
161'0.
125'0.
=--------------------------\--------
144'0. 16 1'0~
Transect #2
Transect #3
right
1 + 2513------/ ~·~
\
' aa•o•
\
' ' \
' \
'
left bank
f.!l = head pin I
(scale approximate)
UPPER WILLOW CREEK W A TEA'S EDGE & HEAD PIN STATIONING MAP
11 July 1979
Average discharge 476 cfs
Figure 15
-23-
I
N ..r;::.
I
Figure 1 '6
n hea~ pin
0 high bank
Water's Edge A• :of:
e 11 July, 1979;. 466 cf-. 10
left bank
t-l::J. .8 August, 1979; 230 oft
0 14 September, 197P; GO cfs w
w
LL.
z
5 right bank
:r:
t-
a. w
0
0
10 50 70 110
. I
90 30
20 0 40
I
1:20 60 80 100
HORIZONTAL DISTANCE I N
CROSS-SECTiiONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT # 1.
( 1 vertical foot equals 4 horizontal feet)
130 150 170
140 160
F E E T
l.
I
N
Ul
I
l i ' ,,J l '
Figure 17
10
1-w w
u.
z
5
::r::
1-a. w
0
0
I
0 40 10 30 20
J L, . J L.: J l. . J
50 60
fi head pin
0 high bank
Water's Edge Aa Of:
e 11 July, 1979; 466 cfa
6 8 August, ·1979; 269 eta
0 14 September, 197t; ,.5 cfs
I
70 80
I
90
right bank
I I
100 110 120 130
L
150
140
H 0 R Z 0 N T A L DISTANCE; N F E E T
CROSS-SIECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT #2.
(1 vertical foot equals 4 horizontal feet)
I
N
0'\
I
._
w
w
IJ..
z
::c ._
0.. w
0
10
5
0
Figure 1 '8
left bank
10
0
H
I
30 50 20 40
0 R I z 0 N T A
60
L
n head pin
0 high bank
Water's Edge As Of:
e 11 July, 1979; ~93 cf-.
D. 8 August, 1979; 240 cfe
0 14 September, 1979; 42 cfe
I I
70 90 110
80 100
D I s T A N c E
120
I
I IN
I
I
CROSS-SECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANS~CT #3.
( 1 vertical foot equals 4. horizontal feet)
right bank
I
130 160
140 160
F E E T
~
-bench mark
\·
USGS · [lJ 0·
gage house
+152940.10 Dec.
Transect +1 0+ OO~a·a• -21'9!...---
Transect +2 0 +53 •
42'6.
42'0"
52'11.
,.;
,<?>
./
Transect #4 1 + 48 (!!/
II OO=head pin II
··~\
38'3·
\ -~10+38
left bank
(scale approximate)
DECEPTION CREEK WATER'S EDGE & HEAD PIN ST ATJONING MAP
12 July, 1979
Average discharge 57 cfs
Figure 1 9
-27-
I
N co
I
10
1-
w w
u.
z
5
::r:
1-a..
w
c
0
Figure 20
left bank
I
0 10
15 5 20
~ head pin
0 high bank
Water'& Edge ~' Qf: e 12 July·, ·197&i · :ta eta
6. 9 August, 1978;. 27 ofe
0 13 September, .1878i 17 cfe
right bank
25 I
30 40 45 36
HORIZONTAL DISTANCE IN FEET
50
CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT # 1.
( 1 vertical foot equals 2 horizontal feet)
·.·
I
N
1.0
I
I-
LU
w
U..,
z
:c
I-a.
w
0
l
!Figure 21
10:
left bank
5
0
0
I
5 10
J L. " J L. , J L, J . .J
n head pin
0 high bank
L -.. ~
Water's · EdQe AI Of:
e 12 Jufy, 1 979i 62 ofs
.J
6 9 August. 1979i 36 cfls
0 13 Se.ptember, 1979; 26 cfs
·.· . . I
I
I
I
I . I
I I 15 25 30 35 45
! 50 20 40
I
I
55
H 0 R I z 0 N T A L D I s T A N c E I N IF E E T
I
i
CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT +2.
( 1 vertical foot equals 2 horizontal feet)
j J L , .J L .. J L . J/
I
60 66
I w
G
I
10
t-w w
LL
z 5
J:
t-
0. w
c
0
Figure 22
n head pin
0 high bank
Water's Edge As Of:
• 12 July, 1979; no flow ctata
D. 9 August, 1979; nQ flow data
0 13 September, 1979,· n9 flow data
. . 1-
!
I
I
left bank riJht bank
0
I
5
20 49
I
25 35 15
10 30 40
!
I
I
HORIZONTAL DISTANCE IN FEET
, I
I
i
I
50
CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRA~SECT +3.
( 1 vertical foot equals 2 hojlzontal feet)
I w
--'
I
[ .. : ..J I
•• J l. . J L .. J L .. J Lt J ~. J
1-
UJ
UJ u..
z
:r:
1-a..
UJ
c
Figure 23
10
. n head pin:
0 high bank
Water'~ Edqe Ae Of:
e 12 July, 1.978; 67 cfa
t:J. 9 August, 1 ~79; 30 of a
0 13 Septem.ber, 1879; 19 'ofa
right bank
left bank
5
0
5
0 10
15 25 I I
35
20 30 40
I
45 ,I
50
I
55
H 0 R I Z 0 N T A L D I S T A :N C E I N F :E E T
CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH. TRANSECT +4.
(1 vertical foot equals 2 horizontal feet)
60 ' 65
. j
Supplemental Biological, Water Quantity and Quality Study Sites
Peters/Purches Creeks
Three index study areas were established to collect biological and physi-
ochemical data in the upper Willow Creek drainage on Purches Creek and
four on Peters Creek (Figure 24; Table 2).* Site descriptions were
recorded on stream survey forms (Appendix A). Within these index areas,
ten discharge sites (Q) and two water quality sites (W) were established
(Figure 24; Table 2).
ADF&G/USGS Sites
Miscellaneous water quantity and quality measurements were collected at
seven sites on Willow and Deception Creeks (Figure 25; Table 3).* Site
descriptions are summarized in the USGS (1980) publication: Water
resources data for Alaska, water year 1979.
Fishery Resources**
Four of the five species of Pacific salmon (chinook, pink, coho, and
chum, Oncorhynchus keta) are known to occur in Willow and Deception
*Refer to Methods section for a description of site selection techniques.
**Additional Willow Creek fishery data are presented in the ADF&G publica-
tion: New capital city environmental assessment program·-phase l (Watsjold
and Engel 1978).
-32-
[
[
[
[
[
[
C
[
[
c
[
[
[
[
[
E
[
I w w
I
l . ·.) j l ... J l . J l .J . l L. . I l
I
, I
. I
PETERS I PURCHES CREEKS INDEX STUDY AIREAS
0 A = Discharge Measurement
W e =Water Quality Measurement
-----=Fish Trapping Area
I ;; Index Area
~=Index Area Boundary
Figure 24
l . . '· .J
·hl!!cwD~tl2 wuedYiiiiiiiiiiiiiiiiiil'•l'fli
I .5 . P lkm
ls:M ~· .. llb•undi' iiiiiiiiiiii'
~ ... )
Table 2. Geographic locations for Peters/Purches Creeks Supplemental Study
sites (Figure 24).~
Site
Ql
Q2
Q3
Q4
Q5
Site
Wl
PURCHES CREEK INDEX AREA BOUNDARIES
Index Area _ADF&G Geographic Location
UPSTREAM DOWNSTREAM
I 20N01Wl1CBD to 20N01W17AAB
II 20N01Wl7AAB to 20N02W14BDD
III 20N02Wl4BDD to 20N02Wl6DCD*
PETERS CREEK INDEX AREA BOUNDARIES
Index Area ADF&G Geographic Location
UPSTREAM DOWNSTREAM
I 21N01W30ACC to 21N01W34CAC
II 21N01W34CAC to 20N01W05CBB
III 20NOlW05CBB to 20N02Wl6DCD**
IV 20N02Wl6DCD**to 20N03W36AAD***
PETERS/PURCHES 'GREEKS DISCHARGE MEASUREMENTS SITES
ADF&G Geogr·aphic Location Site ADF&G Geographic Location
21N01W36BDC Q6 20N01W09CCD
21N01W36BCA Q7 20N02Wl6DCD
20N02W11CBB QB 20N02W16DCA
20N02W02DAA Q9 20N02Wl3DBB
20N01W16BBA QlO 20N02W19DDD
PETERS/PURCHES CREEKS WATER QUALITY MEASUREMENT SITES
ADF&G Geographic Location
20N01W05ADD
Site ADF&G Geographic Location
W2 20N02Wl3ADA
* Refer to Methods section for a description of the ADF&G Geographic
Location system.
** Confluence of Peters Creek and Purches Creek.
*** Confluence of Peters Creek and Willow Creek.
[
[
[
[
[
[
[
[
[
c
[
[
[
[
[
[
E
L
[
[.
I w
U1
I
>
II> .,
~
II>
l : l.
USGS STA. NO.
A 152940.05
. 8 152940.12
c 152940.10
0 152940.07
E 152940.08
F misc. site
G misc. site
Figure 25
112 0
1 .5 0
. . J .J I
~· J J
ADF&G I USGS SAMPLING SITES
1 mi.
1 km.
J . .J
Table 3. Geographic locations of ADF&G/USGS sampling sites (Figure 25).*
Site
A
B
D
E
F
G
Deception Creek
near Willow USGS
#152940.10
Deception Creek
ab.trib.nr. Houston
USGS #152940.07
Deception Creek
Trib. nr. Houston
USGS #152940.08
Unnamed Decep •· Cr.
Trib. nr. Willow
USGS misc. site
Peters Cr. below
Purch. Cr. nr. Willow
USGS misc. site
USGS
Geographic
Location
NE 1/4 SW l/4
Sec 11 T 19N
R 04W
SE l/4 NW l/4
Sec 35 T 19N
R 03W
SE l/4 NW 1/4
Sec 35 T 19N
R 03W
NE 1/4 SW 1/4
Sec 12 T 19 N
R 04W
SE 1/4 SW l/4
Sec 16 T 20N
R 03W
ADF&G
Geographic
Location
19N04W11CA
19N03W35BDB
19N03W35BDC
19N04Wl2CAD
20N03Wl6DCB
* Refer to Methods section for a description of the ADF&G Geographic
Location system.
-36-
[
[
[
[
[
[
[
[
r~
l
L
[
[
. .,
. --]
--,
-"
_ _;
t
[
Creeks (Figure 26). In addition, adult sockeye salmon (Q.. nerka) are
known to mill at the mouth of Willow Creek. Resident fish species
include Dolly Varden (Salvelinus malma), rainbow trout (Salmo gairdneri),
Arctic grayling (Thymallus arcticus) (Figure 27), and burbot (Lata lata).
Pink salmon are the most abundant salmon found in Willow and Deception
Creeks, with the largest runs occurring during even years. In 1978,
Willow Creek had the highest pink salmon sport fishing harvest (19,000)
in Alaska (Mills 1980), and a pink salmon escapement estimated at 220,000
(Watsjold and Engel 1978). With the opening of a limited chinook sport
' fishery" in 1979 (chinook fishing had been prohibited since 1972), Willow
Creek now provides one of the four roadside fisheries for this species
in the Susitna Basin .
-37-
I
<..v
00
I
SPECIES PERIODICITY CHART FOR WILLQW I DECEPTION CREEKS
SPECIES BY LIFE STAGE JAN FEB MAR APR MAY J:UN JUL AUG SEP OCT NOV DEC
CHINOOK SALMON
,,
Adult Immigration ---~--Spawning •· -· ~---· Incubation* ~~------~ .. ·. -· ~---· ~---------· 11!11--· Juvenile Rearing ~~------~--· ~---· ·------~·-~----· ~---------· ~--·
PINK SALMON
~ ::
"
Adult lmmlgra,tion
,. -· ~----Spawning ' ,·;, • ~--· Incubation* ~------~--· •• ~---· ·------.. --· ~--· Juvenile Rear'ing ·--· ~---· •• ..
CHUM SALMON '
'• ..
Adult lmmlgra'tion : ~---Spawning •• ~--· Incubation* ~~------~--· ,. •• ~--· ·------~----· ~--· '•
Juvenile Rearing ·--· ---· ••
COHO SALMOIN
Adult Immigration
·';.
,. •• ~---· ·-Spawning -----Incubation* ~------~--------~----· ~--· ..
Juvenile Rearing ~---------· ---· ·----·-~----~---· "'------~----· ~---·
'*Includes per'lod from egg deposition to fry emergence
Figure 26. Anadromous fish species.
,J ~. ' j l. j l .. J J l. J d ' j j ,[ .J
!
I
SPECIES PERIODICITY CHART FOR WILLOW I DECEPT~ON CREEKS
!
SPECIES BY LIFE STAGE JAN FEB MAR APR MAY JUN JUL AUG
I
SEP OCT NOV DEC
. RAINBO.W TROUT
Spawning -----· ....
1ncubatlon * -----· ·--· ·---
DOLLY VARDEN
..
Spawning ~---------·
'
·Incubation* ~----· ~--· ·----~--------lmllll ---· ~
I ARCTIC GRAYLING
Spawning ---~--· ·--· .Incubation* ---~--· ---· ·--...
*Includes pe/rlod from egg deposition to fry emergence
Figure 2 t.. Resident fish species** '· I · uBurbot data unavailable
I
MATERIALS
_ _j
MATERIALS
Project equipment is listed below (Table 4).
Table 4. Equipment used in Instream Flow and Supplemental Studies.
Surveying Equipment
Leitz B2-A 1 evel Philadelphia rod
K&E AL-3 level rod level
100 ft fiberglass tape rebar
Price AA meter
Pygmy meter
Flow Metering Equipment
stopwatch
tagline
top setting wading rod
headphones
beeper box*
18 1 Monarch boat with 2S hp
motor and jet foot
cantilevered boom and rail
flow suspension system on
bridge.
Water Qua 1 ity Equipment
YSI** dissolved oxygen meter
YSI conductivity meter
Beckman RB-III conductivity
meter
thermometer
Ryan thermograph
Cole-Parmer pH meter
Biological Sampling Equipment
l/8-inch mesh minnow traps
dip nets
MS-222
*Substituted for flow meter headphones.
**Yellow Springs Instrument Company.
-40-
salmon roe
Surber sampler
METHODS
METHODS
Instream Flow Study*
Geographic Code Locations
In_this repor~, locations of f~atures such as reaches, sampling sites,
etc., were specified by a code containing up to fourteen characters
(Figure 28). The first three characters identify the Township of the
sampling point; the next three, the Range; and, the next two, the
section number within the Township. Following these eight characters,
one to four letters are used to indicate the location of the sampling
point within the 640-acre section. Each letter progressively subdivides
the section into fourths, designating them A, B, C, and D in a counter-
clockwise direction. The first letter following the section number
therefore represents the location of the site within the quarter section
(160-acre tract); the next, the quarter-quarter section (40-acre tract);
the next, the quarter-quarter-quarter section (1 0-acre tract); etc.
When more than one site is sampled within the same subsection, the number
of sites is added at the end of the code. For example, if two samples
were collected in Section 21, Township 9 North, Range 20 West, the geo-
graphic code would be 09N20W21DAA2. The letters DAA indicate that the
samples were collected in the 10-acre NE quarter-quarter-quarter section
of the 40-acre NE quarter-quarter section of the 160-acre SE quarter
*Analysis techniques are discussed in the Results section.
-41-
section of Section 21. The number 2 following the letters DAA indicates
there were two sampling locations in this 10-acre tract.
09N20W21 DAA2
Figure 28. ADF&G geographic location system.
Training
Personnel involved with the field data collection completed the 1-week
IFG course: Instream Flow Data Collection Techniques prior to initiating
this study. Personnel involved in the computer analysis attended the 1-
week IFG course: Instream FlownComguter Analysis Techniques in Augu_st
1980.
-42-
c
[
[
[
[
[
E
[
[
[
[
[
[
[
r
L
[
E
[
[
_)
"""'
I u
Reach Se 1 ecti on
Study reaches were selected with the assistance of Larry Engel and Dave
Watsjold, ADF&G Palmer Area Sport Fish Biologists. A number of factors
were considered in choosing these reaches, including: presence of
spawning activity, accessibility, permission from landowners, physical
difficulties that could be encountered when surveying and/or obtaining
acceptable flow measurements (based on the hydraulic characteristics at
the site), the proximity of USGS gaging stations, and the availability
of personnel, equipment, and time. As a result, reaches which were
selected during this study do not exactly match the IFG's definitions
(Bovee and Milhous 1978) for "critical or representative reaches". Thus,
they should not be used to represent other reaches within Willow and
Deception Creeks without additional investigation.
Transects were selected within each reach according to the procedures
outlined in the Montana Department of Fish, Wildlife, and Parks publica-
tion: Guidelines for using the Water Surface Profile program to deter-
mine instream flow needs for aquatic life (Spence 1975) and the IFG
publication: Hydraulic simulation in instream flow studies: theory and
techniques (Bovee and Milhous 1978).
Discharge
Three seasonal discharges were measured at transects within each study
reach by ADF&G Sport Fish Division Biologists with assistance from USGS,
-43-
ADF&G Habitat Division, and ADNR personnel. Measurements were timed to
correspond to seasonal high, medium, and low flow periods because measure-
ments of these discharges are required for analysis by the IFG-4 computer
model (Bovee and Milhous 1978; Bovee 1980a).
Proced1,.1res for discharge measurements outlined by Spence (1975), the IFG
(Bovee and Milhous 1978), and the USGS (Buchanan and Somer 1973; Smoot
and Novak 1977) were followed. When depths and velocities were too large
to a 11 ow study personne 1 to wade the stream, measurements were co 11 ected
from a boat.
Stage
Staff gages were installed at each study reach to monitor stage/discharge
relationships. Gages were placed to accomodate both low and high stream
flows. Stage readings were recorded on a daily basis unless other study
activities prevented an observation. Additional stage readings were re-
corded immediately before and after discharge measurements to determine
if and how much the discharge had fluctuated.
Substrate
Substrate data were collected along discharge measurement transects,
each time discharges vJere measured, to characterize hydraulic roughness.
Additional substrate data were collected at point velocity redd sites to
identify the physical characteristics of substrate types associated with
spawning sites (see Point Specific Spawning Habitat section below).
-44-
[
[
[
[
[
[
[
[
[
[
[
[
[
[
r
L
r
l
E
[
[
,)
Substrate was assessed by observing the stream bottom and recording the
percentages of predominant substrate groups. The sizes and types of
substrate recorded were adapted from the Modified Wentworth Scale and
grouped into seven classes (Table 5).
Water Quality
Each time discharges were measured, data on dissolved oxygen (DO},
specific conductance, pH, and temperature were collected to determine
whether water quality variations corresponded to changes in discharge.
Data were collected· from each reach with the instruments listed in Table
4 following the procedures established by the respective manufacturers
and the USGS (1979).
Surface water temperatures of each reach were continuously monitored by
thermographs which were enclosed within minnow traps to protect them
from damage. The traps were weighted with stones and attached to staff
gages with wire. The thermographs were inspected and calibrated on a
weekly basis. Calibration data (time, date, and temperature) were
recorded on thermograph charts.· Charts were changed every 30 days. New
charts were rewound prior to installation to prevent jamming. The "0"
ring seal of the thermograph casing was cleaned and greased with a thin
layer of silicone grease before resealing to prevent leakage.
-45-
Table 5. Equivalence of Modified Wentworth and Willow/Deception
Creeks Study substrate scales.
MODIFIED WENTWORTH SCALE WILLOW/DECEPTION CREEKS SCALE
Class Description* Class Description*
1 plant detritus not considered
2 0.0001 -0.0016 I mud
3 0.0016 -0.0024 II sand
4 0.0024 -0.079
III 0.25 -1.00
5 0.079 -2.5
IV 1.00 -3.00
v 3.00 -5.00
6 2.5 -9.8
VI 5.00 -10.00
7 greater than 9.8 VII greater than 10
*Description numbers represent inches.
-46-
[
,[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
E
L
L
Point Specific Spawning Habitat Data*
Water velocity, depth, and substrate characteristics, associated with
chinook salmon redds, were recorded to characterize spawning habitat
conditions in the study area. Visual observation of females actively
fanning redd sites proved to be the most reliable means of identifying
false redds, it was necessary to observe females fanning the same site a
number of times to verify active redd locations. Redds were located
also by noting the presence of Classes III and/or IV substrate, overturned
stones, and a characteristic mound deposited downstream of the redds
during their construction.
After redd sites were located, point specific data were collected in the
vertical plane at the upstream portion of the redds. When water was
less-than 3 feet deep, an average point velocity was measured at' the
data collection site by placing the velocit~ meter at 0.6 of the total
depth measured from the surface of the water. When water depth was 3
feet or greater, two velocity readings were obtained, at positions 0.2
and 0.8 of the total depth, and later averaged to calculate the mean
velocity. Substrate characteristics were classified and recorded,
according to substrate procedures outlined above.
*Point specific data characterize the range of streamflow-dependent
characteristics which appear to be influencing the suitability of
various habitat types for the species and life stages of interest.
-47-
Benthic Invertebrates
Aquatic larval insects were collected from the stream bottom substrate
using a Surber sampler to characterize the presence of benthic inverte-
brates. One square-foot of stream bottom was sampled at each study
reach on the first two discharge measurement dates. The insects were
preserved in isopropyl alcohol and returned to the laboratory where they
were enumerated and identified to taxonomic orders. ---------------------------------------------------------------------------
Supplemental Biological, Water Quantity and Quality Study
Peters/Purches Creeks
Site Se 1 ecti on
Streams were subdivided into reaches (index areas) according to gradient,
channel geometry, pool-riffle ratio, substrate, and surrounding terrain
characteristics (Watsjold and Engel 1978).
Biological Data
One-eighth-inch mesh minnow traps were baited with one inch diameter
pieces of salmon roe which had been autoclaved for 45 minutes at 12l°C
according to procedures outlined by Wadman (1979). Set traps were
checked after 24 !4 hours. Trap locations were noted, and number and
species of fish captured were recorded for each trap. Substrate charac-
teristics were also recorded at trap sites according to substrate proce-
dures discussed above.
-48-
[
[
[
[
[
[
[
[
[
[
[
[
[
[-,
-~
[
f'
l
[
[
L
--,
·Water Quantity and Qua-lity
Discharge, dissolved oxygen, pH, water and air temperature, and specific
conductance data were collected with the instruments listed in Table 4
according to procedures discussed above.
ADF&G/USGS Study
Site Selection
Sampling sites were established on major tributaries of Willow and
Deception Creeks. Site selections were based on availability of his-
torical data for particular sites (Scully 1978; McCoy 1978), accessi-
bility of sites by helicopter, and practicability of sampling all sites
in one day.
Water Quantity
Discharge data were collected with the instruments listed in Table 4
according to procedures discussed above. Flows were not measured when
the velocity of the water was too swift and/or the depth of the water
was too deep to permit wading. Measurements were timed to correspond
with seasonal high, medium, and low flow periods in an attempt to
monitor seasonal variability.
tva ter Qua 1 i ty
Water samples, dissolved oxygen, pH, temperature, and specific. conduc-
-49-
tance data were collected, each time flows were measured, with the
instruments listed in Table 4 following procedures discussed above.
Water samples were processed for shipping to the USGS laboratory in
Denver, Colorado for analysis. Procedures outlined by the USGS (1977)
were followed when collecting water samples. The parameters analyzed
are listed in Appendix B.
-50-
[
r
[
[
[
----[-
[
[
[
[
[
f ~
_,
[
L
r~
L
c
L
L
[
RESULTS·
.. ; -
__ ,1
RESULTS
Instream Flow Study
Discharge
W-illow Creek flows ranged from 1163 cubic feet per second (cfs) on July
10, 1979 to 205 cfs on September 14, 1979 in the lower reach, from 991
cfs on July 11, 1979 to 175 cfs on September 14, 1979 in the middle
reach, and from 917 cfs on July 11, 1979 to 174 cfs on September 14,
1979 in the. upper reach (Table 6). Flows were 5 percent higher in the
middle reach than in the upper reach and 10 percent higher in the lower·
reach than in the middle reach. The difference in flow between the
middle and lower Willow Creek reaches is higher than that between the
upper and middle reaches because of the flow contribution of Deception
Creek. Deception Creek flows ranged from 57 cfs on July 12, 1979 to 20
cfs on September 13, 1979. Discharge information recorded at nearby
USGS gaging stations is listed in Appendix B.
Stage
Daily stage data collected in Willow Creek indicate that the stage had
peaked at all Willow Creek sites in mid-July after which it gradually
declined until it increased abruptly in mid-September before falling
again (Appendix C, Figures 1-6). Deception Creek stage began to decline
in late July and peaked in mid-September before dropping again (Appendix
C, Figure 7).
-51-
[
Table 6. Flow ( cfs) summary for Wi 1low/Decepti on Creeks Instream [ . . Flow Study reaches, 1979 .
SITE FLOW #1 FLOW #2 FLOW #3 [
LOWER WILLOW (07/10/79) (08/08/79) (09/14/79) [
Transect No. 1 1225 674 201
Transect No. 2 1215 661 212 [
Transect No. 5 1050 662 202
AVERAGE FLOW 1163 652 205 [_
------------------
MIDDLE WILLOW (07/11/79) (08/08/79) (09/14/79) [
Transect No. 1 987 623 180
Transect No. 2 1025 620 155 [
Transect No. 3 929 571 165 [ Transect No. 4 1021 620 200
AVERAGE FLOW 991 598 175 [
UPPER WILLOW* (07/11/79) (08/08/79) (09/14/79) [ Transect No. 1 493 240 42
Transect No. 2 470 262 45 [
Transect No. 3 466 234 50
AVERAGE FLOW 476 245 46 f'
L
Above Forks 918 569 174'
[
DECEPTION CREEK (07/12/79) (08/09/79) (09/13/79)
Transect No. 53 27 16 r~
L
Transect No. 2 62 38 24
r~
Transect No. 3 57 30 19 l
AVERAGE FLOW 57 32 20 E
*Upper Willow reach flows represent the south fork of the mainstem of Willow Creek.-
Therefore, the total discharge for this portion of Willow Creek was measured on
r~ the mainstem upstream of the braided section of the creek (Above Forks). L
-52-L
. ..}
--~
r ,
L
I L
Substrate
Predominant substrate classes ranged from Classes II to VII in Willow
Creek and from Classes II to IV in Deception Creek (Table 7).
Table 7. Range of predominant substrate classes observed in the Willow/
--. Deception Creeks Study reaches, -1979. -
STUDY REACH
Lower Willow Creek
Middle Willow Creek
Upper Wi 11 ow Creek.
Deception Creek
Water Quality
SUBSTRATE CLASS RANGE
II -VI
III -VII
II -Vl
II -IV
Willow and Deception Creek water temperatures, measured on an instane-
ous basis, ranged from 9.0° to 12.0°C, DO from 8.3 parts per million
(ppm) to 11.5 ppm, pH from 7.0 to 7.6, and specific conductance from 30
to 90 )Jmhosjcm (Table 8). Continuously monitored water temperatures
ranged from 2.8° to l5.6°C in Willow Creek and from 3.3° to 14.8°C in
Deception Creek (Appendix D).
Point Specific Spawning Habitat Data
The most frequently measured water depth, at 33 chinook salmon redds,
-53-
. Table.a •. · Water Quality Summary for Willow/Oecept.ion Creeks Instream
Flow Study reaches, 1979.
Site
LOWER WILLOW
~HOOLE WILLOW
Date
07/10/79
08/08/79
09/14/79
07/11/79
Temp.l
09.0
11. 1
10.0
10.0
o.o.2
10.3
08.3
10.9
11.1
.P!!
7.4
7.1
7. 1
7.6
3 Con d.
37
31
70
[
[
[
[
[
30 [
·-----·--------------' -
UPPER WILLOW
DECEPTION
08/08/79
09/14/79
07/11/79
08/08/79 .
09/14/79
07/12/79
08/09/79
09/13/79
1 Temp. = temperature in oc
__ 4
10.5
12.0
10.0
12.0
11.5
10.0
2 D.O. = dissolved oxygen in mg/1
J Cond. = specific conductance in ~mhos/em
4 = equipment malfunction
-54-
11.3
10.5
11.5
10.2
10.7
11.2
7.3
7.6
7. 1
7.5
7.0
7.2
60 r
31 [
60 [
68 [
78
r
95 c
[
[
[
r
L
r~
l;
L
[
[
'\
was 1 .. 6-feet~ with a range of 0. 95 to 3.00 feet; most frequently meas-
ured average water column velocity was 2.25 feet per second (ft/sec),
with a range from 0.28 to 4.75 ft/sec; and most frequently measured
substrate was Class III, with a range of II to IV (Table 9).
Because of insufficient resources to collect additional point specific
spawning habitat data, point specific chinook and pink salmon spawning
• >_ - ---- ------hab'i-ta-t-Eia-ta-ee~-lee-ted--in-W-i-1-lew~Greek--dur-in g-1-91-8-by-Wa'Cs-j~ld-an d-Engei---------------
(1978) are included in this report (Tables 10 and 11). The most fre-·
L
[
L
r ~
L
[ -
L
quently measured chinook salmon spawning depth measured in Willow Creek
in 1978 was 1.65 feet,, with a range_of 1.0 to 2.2 feet; most frequently
measured average water column velocity was 3.16 ft/sec, with a range of
1.51 to 4.75 ft/sec; and most frequently measured substrate was Class IV
with a range of III to VI. Pink salmon spawning depth most frequently
measured was 1.35 feet, with a range of 0.6 to 2.4 feet; average water
column velocity most frequently measured was 2.4 ft/sec, with a range of
1.01 to 4.01 ft/sec; and substrate most frequently measured was Class
III, with a range of II to IV.
Suitability Curves
Point specific spawning habitat data outlined above are presented as
suitability curves (Figures 29-37).* The curves were derived using
*Habitat suitability curves are developed to represent the ranges of
depth, velocity, and substrate types commonly occupied by a particular
species and life stage. The chinook and pink salmon curves presented
in this report are provided as illustrations and are not to be used to
develop specific flow regimes for Willow and Deception Creeks. The
curves were developed from a small number of observations, and ADF&G
biologists should be consulted for further interpretation of these
curves.
-55-
Table 9-. -'Redd measurements-for Chinook Salmon. in Willow. Creek, August 19-79: .
(Hot recommended for application·: to other watersheds).
Depth (ft.)
1.10
l. 70
0.95
1.30
2.00
Velocity (ft;/sec.)
1. 920
2.390
0.279
4.750
5.200
Substrate
Classification
IV
III-IV
II
III-IV
III-IV
c
~
[
[
[
1.50 3.210 III
1.60 1.290 _ III [
-----------~-1-.40------------2-.-J40----------------------.-I-V---------------------------------
3. 00 4. 280 II I
2.70 2.500 III-IV
2.10 2.800 III
2.20 0.993 III
1.60 0.993 III
1.10 0.837 III-IV
2.00 2.100 III
2.40 2.990 III
2.00 4.750 IV
1.50 2.440 IV
2.20 3.130 III
1. 70 3.060 III
1.40 3.280 III-IV
2.00 2.690 III
2.50 3.210 III
2.60 3.280 III
1.80 2.990 III
2.10 1.160 III-IV
2.00 2.200 III-IV
1.60 2.290 III
1.10 2.100 III
1.60 2.100 III
1.50 2.740 III-IV
1.50 1.880 III
1.70 3.800 III
-56-
[
[
[
[
l
[
[
[
r~
L
c
E
[
L
~
_j
n
L; Table 1'0 •. Redd measurements for Chinook Salmon in Willow Creek, August 1978.
(adapted from Watsjold and Engel 1978).*
" L Substrate
De2th {ft.} Velocitl {ft./sec.) Substrate (in.) Classification**
I' 1.7 3.72 2.0-6.0 IV-V
L 1.3 3.06 2.0-6.0 IV-V
1.0 2.39 1. 5-6.0 IV
1.3 3.28 2.0-7.0 IV-V
[ 1.9 1.54 2.0-6.0 IV-V
1.8 l. 76 l. 5-7.0 IV
[ 1 .• 5 l. 76 2.0-7.0 IV-V
1.7 2.44 1. 5-7.0 IV
].4 4._46 1.5-7.0 IV
1.3 3.57 1.5-7.0 IV .....,
2.2 3. 21 2.0-7.0 IV-V
1.8 2. 61 2.0-6.0 IV-V .
2.0 3.50 2.0-5.0 IV
1.4 3.80 2.0-6.0 IV-V
L) 2. 1 3.43 3.0-6.0 v
n 1.4 3.28 1.0-5.0 I II-IV
L 1.4 3.21 3.0-6.0 v
1.0 3.89 3.0-6.0 v
[ 1.3 2.92 2.0-5.0 IV
1.4 2.50 2.0-4.0 IV
1.2 1.51 1. 0-4.0 I II-IV
n 1.6 3.43 1.0-6.0 III-IV u 1.2 3.80 2.0-6.0 IV-V
2.0 3.37 3.0-7.0 v
[ 1.6 2.29 1. 5-4.0 III-IV
1.3 2.55 1.5-4.0 III-IV
1.8 2.99 2.0-5.0 IV
I' 1.8 3.80 1.5-4.0 III-IV L 1.8 3.28 2.0-6.0 IV-V
1.6 3.98 1. 5-6.0 IV
: 1.7 2.55 3.0-6.0 v i L.J 1.3 1.58 1. 5-3.0 III-IV
1.9 2.74 2.0-6.0 IV-V
I' 2. 1 . 2. 50
L 2.0 1.65 3.0-6.0 v
[ L9 3.43 3.0-5.0 v
1.7 3.50 2.0-6.0 IV-V
2. 1 4.75 2.0-6.0 IV-V
2.0 4.16
t 2.2 3.56
* 'Not recommended for application to other watersheds.
r ** Substrate data collected in 1978 and classified using the method
L described in this report.
r ,s?-
L
-·'.~ --·-,_. .:._,;.:..._ . .....: '.
..
Table. 10. ' Can:&imJ~ •.
Substrate
De2th (ft.~ Velocitl (ft./sec.) Substrate (in. ~ Classification*
2.2 3.28
1.8 4.37 1.5-4.0 III-IV
1.7 4.55 1. 5-4.0 IV
1.7 3.80 2.0-6.0 IV-V
1.5 2.29 l. 5-3.0 III-IV
1.9 2.92 l. 5-4.0 I II -IV
1..4 2.99 1. 5-3.0 III-IV
1.4 4.16 4.0-6.0 V-VI
1.7 4.07 3.0-5.0 v
1.5 3.89 2.0-5.0 v
* Substrate data collected in 1978 and classified using the method
described in this report.
-58-
c
[
[
[
[
[
[
[
[
[
t
[
[
[
r
L
c
B
[
c
-C)
-. Table ll.,. Redd. mea.Su.rements for Pink. Salmon in Willow Cree.k, August l978 •. (adapted
from Watsj o 1 d and Engel 19 78) . * · ·
Depth (ft.)
1.8
1 .8
2.1
1.4
2.1
Velocity (ft./sec.)
2.10
2.29
2.10
1.01
1.17
Substrate (in.)
1.0-1. 5
1. 0-2.0
1.0-2.0
1. 0-2.0
1. 0-2.0
Substrate
Classification**
III-IV
III-IV
III-IV
II I-IV
III-IV
~ 2.4 2.20 1. 0-2.0 II I -IV
III-IV 1.9 1.51
2.1 3. 28
' 2.0 2.55
~-----------0.9 ___ -----------1.92
1.7 3.28
1.8 3.50
1.4 1. 76
2.3 2.74
1.6 2.00
1.1 2.20
0.9 1.33
0.6 1.25
2.1 2.74
0.8 2.02
0.9 3.72
1.1 1.58 ·r.o 2.00 .
0.8 3.11
1.5 2.74
0.5 1.84
0.8 2.44
1.5 3.28
1.7 3.65
0.6 1.25
0.7 1.96
0.7 2.34
0.8 1.58
1.4 2.20
1.4 2.50
0.7 2.50
Li 1.7 2.50
1.5 2.38 u L
0.7 1. 96
1.5 2.55
1.0-1. 5
0.5-2.0
1.0-2.0
-------~2.0 --------------
2.0-3.0
2.0-5.0
1.0-1. 5
1.5-2.0
1.0-2.0
0. 5-1.5
1. 0-1.5
0. 5-1.0
0. 5-1.5
1. 0-1.5
1. 5-2.0
0. 5-1.5
0.5-1.5
0.5-1.0
0.5-1.5
1. 0-1.5
1. 0-1.5
1.5.;.3.0
1. 0-2.0
1. 0-1.5
0.5-1.5
1. 0-1.5
0.5-1.0
1.0-2.0
1. 0-2.0
1.0-2.0
1. 0-2.0
0.5-1.5
1. 0-1.5
*'· Not recommended for application to other watersheds.
III
III-IV
III-IV
IV
IV
III-IV
III-IV
III-IV
III
III-IV
III
III
III-IV
III -IV
III
III·
III
III
III-IV
III-IV
III-IV
III~IV
III-IV
III
III-IV
III
III-IV
III-IV
III-IV
III-IV
III
III-IV
I' ~ ** Substrate data collected_in 1978 and classified using the method
described in this report.
r~ -59-
L
·Table 11. Continued.~
Substrate
DeEth (ft.} Velocitx (ft./sec.) Substrate (in.) Classification*
1.5 2.10 o. 50-1.50 III
1.7 2.29 1. 00-1.50 III-IV
1.1 1.47 0.50-0.75 II-III
1.7 1.92 0.50-1.00 III
1.8 2.29 0.50-1.50 III
2.0 2.74 1.00-2.00 II I-IV
1.8 2.55 0.50-1.00 III
0.6 1.35 0.50-1.00 III
0.9 1.88 0.50-1.00 III
----------------------------------------------------------------------------------------1.5 2.20 1. 00-1.50 III-IV
0.7 1.63 f**-0.75 II
1.3 1. 96 ·1.00-2.00 III-IV
1.5 2.99 1. 00-2.00 III-IV
1.0 1.28 f**-2.00 II-III
1.2 2.20 1.00-2.00 III-IV
1.3 2.39 1. 00-2.00 III-IV
0.8 1.65 0.50-1.50 III
1.3 2.44 1.00-3.00 III-IV
1 . 1 3.50 1.00-2.00 III-IV
1.6 2.34 l. 00-1.50 III-IV
1.4 3.13 1.00-2.00 III-IV
1.2 2.44 0. 50-1.50 III
1.7 2.74 0.75-2.00 III . 1.5 2.55 · .. 0.50-1.50 III
1.3 2.74 1.50-2.00 III-IV
1.4 2.99 1. 50-2.00 III-IV
1.1 2. 61 0.50-1.50 III
1.1 2.29 1.00-2.00 III-IV
1.3 3.37 1. 00-1.50 III-IV
1.1 3.37 1.00-2.00 III;..IV
0.9 2.05 1.00-1.50 III-IV
1.7 2.10 f**-1.00 II-III
1.1 1.88 0.25-6.00 III
1.2 2.74 1.00-6.00 III-IV
1.6 2.50 0.50-5.00 III
1.0 2.55 0.50-5.00 III
1.1 2.74 0.50-5.00 III
1.6 2.99 1.00-6.00 III-IV
2.0 4.01 1.00-6.00 III-IV
1.2 2.20 0.50-4.00 III
* Substrate data collected in 1978 and classified using the method
described in this report.
f** = fines -60-
[
[
[
[
[
[ __
[
[
[
[
c
[
[
[
r
L
c
E
[
c
--,
ccj
-;
Table 11. Continued.
-~
1 Substrate
_C)
Depth {ft.} Velocit~ (ft./sec.) Substrate (in.) Classification*
1.9 2.74 0.50-5.0 III
' 1.6 3.80 1. 00-4.0 III-IV
2. 1 2.39 1. 00-4.0 III-IV
1.0 3.21 0.75-5.0 III
....., 1.2 2. 72 0.50-3.0 III
1.5 .2. 98 1.00-6.0 II I-IV
1.9 3.89 1. 00-6.0 III-IV ....., 0.9 2.05 f**-1.0 II-III
~----______ L_] _____________ 2.05 0.50-3.0 III
-~
-~
,.__~
1
1
_;,
=-;;
-'
-,
---
~
[
[
*
1.6 3.13 1.00-6.0
1.5 1.84 f**-3.0
1.3 2.29 0.50-5.0
1.5 3.07 1.00-5.0
1.6 1.65 0.50-3.0
2.4 2.00 0.50-4.0
1.7 3.80 0.75-4.0
0.9 2.50 0.50-2.5
1.5 2.55 0.50-4.0
2.3 2. 61 0.50-4.0
1.2 1.88 0.50-2.5
1.8 2.98 0.50-7.0
1.0 2.68 0.75-3.0
1.6 3.24 0.50-3.0
1.0 1.62 0.50-2.5
1.2 2.10 0.50-3.0
0.6 1.84 0.50-4.0
1.3 1.65 0.50-3.0
1.4 2.15 0.50-2.5
0.9 1. 92 0.50-3.0
1.5 2.44 0.75-4.0
1.7 2.61 1.00-5.0
1.5 3.65 0.75-5.0
1.0 3.43 0.75-4.0
1.0 2. 61 0.50-2.5
Substrate data collected in 1978 and classified using the method
described in this report.
f** = fines
-61-
III-IV
II-III
III
III-IV
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
rti
III-IV
III
III
III
1.0
.a
a:
0
1-
(.)
< u.. .6
w
(.)
z
w
a: .4 w u..
w a:
0.
.2
1.0 1.5 2.0
DEPTH (feet)
2.5
Figure 29. Depth suitability curve for spawning
3.0
c hi no o k s a I mo n in W iII ow C r e e k , A I as k a ,
Summer 1979 • _Not recommended for·
applica-tion to other watersheds. Consult
ADF&G for further interpreta~ion.
c
[
[
[
[
[
[
[
[
c
[
[
[
r
L
l
E
[
[
,. .. _. .... ..
_j
'
-'
-,
1
-,
~
'
0:
0
_)_ 1--u
-, < u..
w
·~ (.)
z w
0:
1 w u..
___; w
0:
' a.
___;
' '
I' L
.0
.8
.e
.4
.2
.25 1.0
Figure 30.
.. ....
2.0 3.0 4.0 5.0
VELOCITY (ft/sec)
Velocity suitability curv·e for spawning
chinook salmon in Willow Creek, Alaska,
Summer 1979,: Not recommended for
application to other watersheds. Consult
ADF&G for further intrepretation.
6.0
a:
0
1-
(.)
<C
1.0
.8
U. .8
w
(.)
:z
w
a: . 4 w·
LL w
a: a.
.2
1.0 2.0
Figure 31.
3.0 4.0 5.0 6.0
SUBSTRATE
Substrate suitability curve for spawning
chinook salmon in Willow Creek, Alaska,
Summer 1979. Not recommended for
application to other watersheds.
ADF&G for further interpretation.
-~: -:--
Consult
c
[
[
[
[
[
[
[
[
[
[
[
[
[
E
[
L
.,
1.0
.8
cc .. -e-
1-
0
< u.. .6
w
0 z w cc .4 w u.. w cc
a..
.2
r ·~
i
[
[
.5
Figure 32.
1.0
DEPTH
1.5
(feet)
2.0
Depth suitability curve for spawning
chino-ok salmon in Willow Creek ,. Alaska, ·
Summer 1978 (adapted from Watsjold
and Engel 1-9 7 SX Not. recommended for
application to other watersheds. Consult
ADF&G for further interpretation.
2.5
1.0
a: .8
0
---------"o-~-~-1 (.)
<C
LL
w (.) .6
z w a:· w
LL
' w a: .4 a.
.2
1.0
Figure 33 ..
2.0 3.0 4.0 5.0
VELOClTY (ft/sec)
Velocity suitability curve for spawning
chinook salmon in Willow Creek, Alaska,
Summer 1978 (adapted from Watsjol·d
and Eng e I 1 9 7 8) • Not r e commended f o.r
application to other watershe.ds. Consult
A-D-F-& G f-o-r -f-u-r-t-h-s-r !-n-t-r-e-f)-r e-t-a-t-i-o-n.
-60-
[
[
[
[
[
[_
[
[
[
[
B
[
[
[
r
L
c
E
[
_;
-,
_J
-..
_,)
--,
-1
-,
~
'
_ _;;
-,
:::.:..;
--,
,~
I L
[
L
1.0
.a
a:
0
1-
(.)
<C .6 LL.
w
(.)
z w a: w .4
LL. w a: a..
.2
1.0 2.0
Figure 34.
3.0 4.0
SUBSTRATE
5.0 6.0
Substrate suitability curve fo.r spawning
chinook salmon in Willow Creek. A I ask a.
Summer 1978 (adapted from Watsjold
and Engel 19 7 8). N_ot recommended for'
·application to other wastersheds. Consult
ADF&G for further intrepretation.
1.0
a: .8
0
----"'""------------------
(.)
< u.
w .6
(.)
z w a: w u.
~ .4
a..
.2
.5
Figure 35.
1.0 1.5
·DEPTH (feet)
2.0
Depth suitability curve for spawning
pink -sa I m on in W ill ow C r e e k , A I as k a,
Summer 1978 (adapted from Watsjold
and Engel 1 9 7 8). Not recommended for
application to other watersheds. Consult
ADF&G for further interpretation.
-68-
2.5
c
.r
[
r_
[
[
[
[
[
[
[
[
[
c
E
[
L
'
a:
0 .-
0
_ _, <C u.
--, w
0 z
w a:
w _ _; u.
w -, a:
0..
'
___j
'
1.0
.a
.6
.4
.2
1.0
·Figure 36.
2.0 3.0 4.0 5.0
VELOCITY (ftlsec)
Velocity suitability curve for spawning
pink salmon in Willow Creek, Alaska.,
Summer 1978 (adapted from Watsjoid
and Engel 1978l.. Not recommended for
application to other watersheds. Consult
ADF&G for further intrepretation.
1..0
a: .8 0
1-
0
<('
LL.
w .6 (.)
z w a:
W·
LL. w a: .4 a.
.2
1.0 2.0
Fi.gure 37 •.
3.0 4.0 5.0
SUBSTRATE
·substrate suitability curve for spawning
pink salmon in Willow Creek, Alaska,
Summer 1978 (adapted from Watsjold
and Engel 1978). Consult ADF&G for
further interpretation. Not recommended
for. application to other watersheds.
-70-
[
[
[
[
[
[
[
[
[
[
[
[
[
["
L
L .
E
[
[
_j
frequency analysis. This was accomplished by dividing the range of
values obtained for each parameter (i.e., depth, velocity, or substrate),
into appropriate equal increments, assigning each data point to the
proper increment, and clustering adjacent increments to reduce the
variance. The cluster pattern giving the least variance was plotted and
the increment containing the greatest number of observations was desig-
nated as the~ optimum condition, receiving a preference value of 1.0.
~----------------------------------------------------------------- -------------------
The remaining clustered increments were assigned preference factors by
dividing the frequency of each increment by the frequency of the optimum.
Detailed instructions for developing these curves are outlined by Bovee
and Cochnauer (1977).
Velocity and depth curves were developed without data modifications.
Development of substrate curves, however, required some data conversions.
Substrate data, were aggregated for use in developing suitability curves .
.. The data collection method .used resulted in potentially unlimited combi-. . -· . . . ~ .. . . . . -. . -. ~ -. . . . . -. . ·. ·. . . . .
nations of categories for substrate classification (i.e.~ categories
could be based on any percentage of any or all of the seven substrate
classes). As a result, one site might include 50 subtrate categories while
another might contain 10. By limiting substrate categories which could
be used at a particular site to three dominant particle size classes,
each of which had to comprise at least 10 percent of the substrate
particle sizes present, the number of categories was reduced to 275.
The 275 categories were then grouped into 10 categories according to
predominant substrate size. After data were organized according to this
system, frequency analysis of substrate categories was performed to
develop substrate curves. Substrate data, thus grouped, were easily
-71'-
converted to the modifiedWentworth classification (Table 5).
Benthic Invertebrates
One-hundred-six individual benthic invertebrates collected from the
Willow/Deception Creeks Study reaches were classified to taxonomic order
(Table 12). Eleven percent were identified as Trichoptera, 25 percent
c
[
[
[
[
---------------~~-~~~:_~t_~a'-~6 -~~~~_:_-~:_~ip~~~~~_!__P_e~cent_~-~~heme~~~-t~~a_'_~~~-2-_________ [_
percent as representative of other orders.
Computer Analysis
Financial and time limitations restricted computer analysis of hydraulic
data to one reach. The middle Willow Creek reach was selected because
it contained both pink and chinook salmon spawning habitat.
Discharge. and substrate.,data were coded and computer analyzed with the.
IFG-2 and IFG-4 programs* stored on the Boeing Computer Services System.
Using the IFG-2 model, encoded data were calibrated to the highest
*The IFG-2 program is a modified version of the Water Surface Profile
(WSP) computer program designed by the IFG which uses one set of observed
stream flow data (depth, velocity, and substrate) to predict hydraulic
parameters for a range of desired flow regimes. The hydraulic model is
calibrated to reproduce water surface elevations and velocity distributions
observed at selected stream flow conditions. Once properly calibrated,
the computer prog-ram -\"Jill predict the \"'ater surface elevations and
respective horizontal velocity distributions at each transect for a
range of desired discharges. The IFG-4 hydraulic model, unlike the IFG-
2 model, requires at least two and preferably three sets of observed
stream flows at each transect to correlate flow versus velocity and
stage versus flow. Once calibrated, depths and velocities for flows of
interest can be predicted from the established correlations (IFG 1980b).
-72-
[
[
[
[
[
[
[
[
[
r'
C
[
[
I
"-J w
I
'J l J l l .. J I" , j !l J I
I
Table 12. Benthic insects (no/ft.2), classified to order, collected from each iof the
Willow/Deception Creek Instream Flow Study reaches, 1979. ]
!
I I
SITE TRICHOPTERA PLECOPTERA DIPTERA EPH 1EMEROPTERA
I
Lower Will ow I
07/12 1 'l 02 01 0
08/08 1 : 01 25 0
Middle Willow
07/ll 0 01 01 0
08/08 1 00. 02 0
Middle Willow Sloug~
07/11 0 01 26 1
Upper Willow
07/11 0 06 03 0
08/08 2 00 00 2
Deception C1reek
07/12 2 13 02 4
08/09 5 02 00 0
L J L J ll L. .J
OTHER --
0
0
0
0
0
0
2
0
0
discharge {991 cfs) following the procedures outlined by the IFG (198Gb)
and Trihey (1980).* IFG-2 computer output data for the middle reach of
Willow Creek are presented in Appendix E. Unstable channel geometry and
inability to obtain assistance of a hydraulic engineer prevented analysis
by the IFG-4 program which would have required further hydraulic analysis
(Newcome 1980).
[
[
·L
[
[
[
---------------------------------------------------------------------------------------------------------------------------------------------
Once calibrated~ the hydraulic model was integrated with six different
sets of point specific habitat suitability criteria for chinook and pink
salmon to calculate predicted hypothetical Weighted Usable Area (WUA).**
WUA values were predicted at six different discharges by each of the
following IFG (l980b) methods:
1. Standard Calculation -"This is the calculation of the habitat
area with the Jo.int Preference Factor (JPF) equal to (a x b x c);
. . . .
where a, b·,. and a,; equal preference variables for velocity,
depth~ and substrate. This technique implies synergistic
action; optimum habitat only exists if all variables are
optimum".
a. Standard Calculation With Three Matrices -"This is the
Standard Calculation in which depth/velocity, velocity/
*This was based on the assumption that streambed elevations measured at
this discharge level would be static for all predicted flows.
**The WUA represents the square feet (ft2 ) or percentage (%) of wetted
surface habitat area predicted to be available per 1000 linear feet of
stream reach at a given flow.
-74-
[
[
[
[
[
[
[
[
r_
L
c
[
L
2.
n I
L
substrate, or depth/substrate relationships are displayed
in a matrix".
Geometric Mean -"This is the calculation of the habitat area
with the .JPF equal to (a x b x c)0.333. This technique implies
compensation effects; if two of the three variables are in the
optimum range, the value of the third variable has little [ ------------ ---- - --effect-unless--;-t-is zero"~----------
[
c
[
!
L
,~
1-
L
3. LowestLimiting Parameter-"This is the calculation of the
habitat area with the JPF equal to the variable having the
lowest preference factor at a given discharge. In other
words, the optimum habitat will be based on the most limiting
variable for a given discharge. This implies a limiting
factor concept, or that the habitat is no better than its
least ·suitable factor".
The six sources of habitat suitability criteria used in the demonstra-
tion WUA analysis are listed below:
A. 1980 depth, velocity, and substrate preliminary data on pink
salmon habitat from the Terror Lake Hydroelectric feasibility
study, Kodiak Island (AEIDC 1980);
B. 1978 depth, velocity, and substrate data on pink salmon habitat
in Willow Creek (Watsjqld and Engel 1978);
C. 1979 depth, velocity, and substrate data on chinook salmon
habitat in Willow Creek;
-75-
D. 1978 depth, velocity, and substrate data on chinook salmon
habitat in Willow Creek (Watsjold and Engel 1978);
E. 1978 depth and velocity data on chinook salmon habitat in
Willow Creek (Watsjold and Engel 1978), and 1979 substrate
data on chinook salmon habitat in Willow Creek; and
F. 1979 depth and velocity data on chinook salmon habitat in
Willow Creek; and 1978 substrate data, on chinook salmon
habitat in Willow Creek (Watsjold and Engel 1978).
Descriptions of the calculation methods above suggest that the Lowest
Limiting Parameter calculation method would generate the most tonserva-
tive* vJUA value for a given discharge. However, results obtained by
each of the three methods indicate that the Standard Calculation proce-
dure will generate the most conservative WUA values (Figure 38; Tables
13, 14). This occurs because the su.itability values used to compute WUA
must always range between 0 and 1.
Results of the·above demonstration calculations to predict WUA values
indicate that suitablility data collected from one stream system may not
necessarily apply to another (Figure 39; Tables 13, 14).** For example,
*Conservative WUA values, as defined in this report, represent the
lowest predicted WUA values for a given discharge when more than one
calculation method is applied.
**It should be noted that suitability data presented in this report were
derived from dissimilar samples in terms of the population size sampled
and location of the sampling. These factors may also have influenced
the results.
-76-
[
c
[
[
[
[
[
[
[
[
c
c
[
[
c
c
[.
L
< w a:
<
w
-1
ID
-~ <
15
- - - - - --(/J-- - - -
;::)
0 w
1-
::J:
(!J
w
3:· 10
(/J
1 <(
:I:
0
< ' w
L
a:
u.
0
< w a:
<(
(/J
(/J
0 a:
(!J
u.
0
1-z
.W
0 a: w a.
5
Figure 38.
Comparison of three methods for calculating weighted U$able area.
(Demonstration analysis -consult ADF&G for further interpretation.)
500
1979 Willow Creek chinook salmon spawning redd data.
1000
DISCHARGE
-77-
• • Geometric Mean
o-----o Lowest Limiting Parameter
o o Standard Calculation
1500 2000
(cfs)
Table 13. Discharge vs. predicted available spawning habitat area (ft2) per
1000 feet of the Wi 11 ow Creek Instream Flow Study middle reach
(Demonstration analysis-consult ADF&G for further interpretation).
DISCHARGE (cfs)
2000
1500
0991
0598
0175
0050
2000
1500
0991
0598
0175
0050
2000
1500
0991
0598
0175
0050
PINK SALMON
A B c
Standard Calculations
00463
00538
00897
CHINOOK SALMON
D E
00416
01371
02500
16051
18273
16132
19586
0000
0041
0026
0995 01941 04423
0042
0117
0234
1411
~25.361
14315
45640
48735
39540
42264
44018
29093
0329 01552
0005 00255
Geometric Mean
0000 02933
0435 04999
0508
2210
1401
0127
08916
11093
09726
02315
Lowest Limiting Parameter
21451
23819
21557
0000
0064
0096
25112 1060
28956 0709
18719 . 0025
1128
1735
3610
4678
3326
0905
05930
01203
03853
06501
09633
14997
19015
05750
01070
02775
05513
08492
10095
02814
0751
0112
1072
1633
3447
7612
6923
2013
0477
0551
1005
3074
2058
0620
F
02876
03839
05674
07677
09284
01811
08044
13534
19737
23430
20612
04792
04631
07741
10916
13376
12521
03223
A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980).
B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold
and Engel 1978).
C Chinook salmon 1979 Willow Creek depth, velocity, and substrate data.
D Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold
and Engel 1978).
[
c
[
[
[
[
[
c
[
r
L
c
[
[
[
[
c
[
E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjold and Engel
1979 substrate data.
F Chinook salmon Will ow Creek 1979 depth and velocity data; 1978 substrate
(Watsjo1d and Engel 1978).
1978); [
-78-L
'
J Table 14. Discharge vs. predicted available spawning habitat area (ft2) as a
..., 0ercentage of the Willow Creek Instream Flow Study middle reach
Demonstration analysis-consult ADF&G for further interpretation) .
' DISCHARGE {cfs) PINK SALMON CHINOOK SALMON
A B c D E F
Standard Calculations
2000 10.73 0.00 00.31 00.28 00.03 01.92
1500 13.13 0.03 00.39 00.99 00.08 02.76
0991 16.18 0.03 00.90 02.51 00.23 05.69
0598 24.27 1.23 02.41 05.48 01.75 09.51
~ 0175 39.52 0. 51 02.42 09.24 01.17 14.47
_) 0050 29.01 0. 01 00.52 02.44 00.23 03.67
' Geometric Mean
_ _)
-2000 30.50 0.00 01.96 02.57 00.72 05.38
' 1500 35.01 0. 31 03.59 04.67 01 .17 09.72
_)
0991 39.66 0. 51 08.94 09.66 03.46 19.80
~-
_j 0598 52.37 2.74 13.75 18.58 09.43 29.03
~, 0175 68.59 2.18 15 .. 15 29.63 10.79 32.11
0050 58.96 0.26 04.69 11.65 04.08 09.71
' _Lowest limiting Parameter -
2000 14.33 0.00 00.75 00.71 00.32 03.09
_; 1500 17.11 0.05 01.25 01.99 00.40 05.56
0991 21.62 0.10 03.62 05.53 01.01 10.95
_;; 0598 31.12 1. 31 05.80 10.52 03.81 16.57
' 0175 45.12 1.10 05.18 15.73 03.21 19.51
_j
0050 37.94 0.05 01.83 05.70 01 .26 06.53
' A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980).
~ B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and
Engel 1978). c Chinook salmon 1979 Willow Creek depth, velocity, and substrate data.
0 Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold
and Engel 1978).
E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjo1d and Engel
1978}; 1979 substrate data.
:::J F Chinook salmon Willow Creek 1979 depth and velocity data; 1978 substrate data
(Watsjo1d and Engel 1978).
~79-
_.;
40
35 < w a:
<
w
..J m < 30 en
[
. Effec1s of applying ·differ~nt habitat suitability curves to the same hydraulic model; c·
(Demonstration analysis.-consult ADF&G for furth.er interpretation.),. •
••--...... • Pink salmon 1980 Terror Lake depth, velocity
and substrate data (AEIDC, 1980) ..
... --•· Pink salmon 1978 Willow Creek depth, velocity
and substrate data (Watsjold and Engel, 1978)
o---~ Chinook salmon 1979 Willow Creek depth, velocity
and s:ubs·trate .data.
... --... Chinook salmon 1978 Willow Creek depth, velocity
and substrate data (Watsjold and Engel, 1978)
[
[
[
---------------____ ----:l ______ -----------------------------______ [ __
Q w
t-
J:
~
w
~
en
<
.::I:
0 < w a:
u.
0
< w a:
<
en
en·
0 a:
~
20
15
u. 10
0
t-z w
0 a:
~ 5
,.., I .......... ,
I ........_,
I -............._
I ......... ......._
I ......... ......._
' .P--------o-' .............. __
/ -----
/ ------~ ~-~---
500
Figure 39.
1000
DISCHARGE (cfs)
-80-
1500
[
[
c
[
[
[
[
[
[
r
L
2000
E
[
L
I L~
i
L
[
r
L
using the Stcu1dardCalculation, predicted WUA at a discharge of 175 cfs
{based on suitability criteria for pink salmon collected from different
stream systems) ranged from 329 ft2 (0.51%) per lOOO feet to 25,361 ft2
(39.53%) per 1000 feet (Tables 13, 14).
Supplemental Biological, Water Quantity and Quality Study
Peters/Purches Creeks
Biological Data
One hundred twenty four Dolly Varden and 10 slimy sculpin (Cottus
cognatus) were captured in Peters Creek. Eighty Dolly Varden and 15
slimy sculpin were captured in Purches Creek (Table 15).
water Quantity
Flows ranged from 1 to 76 cfs on Peters Creek and 8 to 97 cfs on Purches
Creek (Table 16).
Substrate
Substrate classes ranged from II to VII in Peters Creek and from I II to
VII in Purches Creek (Table 17).
-81-
Table 15. Fish trapping results, Peters and Purches Creeks, 1979.
No. of Fish Catch/Trae
Date Index Area No. of Traes DV* SS* DV* SS*
08/23 Peters II ,20 33 5 1.65 0.25
08/24 Peters III 20 30 4 1.50 0.20
08/26 Purches II 20 35 9 1.75 0.45
08/27 Purches II 20 45 6 2.25 0.30
--Peters --ly--- - -
--------------------------------------------------------0-97U9--20 43 0 2.15 0.00
09/10 Peters IV 20 18 1 0.90 0.50
Tab 1 e 16. Discharge measurements ( Q) in cubic feet per second (cfs)
Peters and Purches Creeks, 1979.
Date Index Area Mae Location No. Discharge (cfs)
08/23 Peters I Q1 01
08/23 Peters I Q2 43
. · . .. .
08/24 Peters III Q3 73
08/24 Peters III Q4 13
08/26· Purches I Q5 08
08/26 Purches I Q6 32
08/27 Purches III Q7 61
08/27 Peters III Q8 76
08/27 Purches II Q9 10
09/10 Purches IV Q10 97
*DV~Dolly Varden, SS~Slimy Sculpin.
~82~
[
[
[
[
[
[_
[
[
[
c
.C
[
[
[
r
L
[
c
[
[
-.
t
L
Table 17. Range of predominant substrate classes observed in Peters
and Purches Creeks, 1979.
PETERS CREEK
INDEX AREA
SUBSTRATE
CLASS RANGE
PURCHES. CREEK
INDEX AREA
SUBSTRATE
CLASS RANGE
I v VII I v VII
II
III
IV -VII -
II I -VI
II
III
II I -VI
III -VI
Water Quality
Water quality data were not collected because of instrument malfunction.
ADF&G/USGS Sites
. . Water. Quantity. and Quality
Water quantity and quality data collected in the spring, summer, and
' fall of 1979 are presented in Appendix B. Additional water quality data
collected in the winter of 1979-80 and spring, summer, and fall 1980
will be included in the USGS publication: Water resources data for
Alaska, water year 1980.
-83-
DISCUSSION
~'
I L_;
L
[
c L
. DISCUSSION .
Instream Flow Study
The Willow/Deception Creeks Instream Flow Study constituted an initial
"hands-on" experience at collecting and analyzing Alaskan_instream flow
data for the ADF&G and cooperating agencies, following Incremental
Methodology procedures established by the IFG (1980a, b; Bovee l980a;
Bovee and Milhous 1978; Bovee and Gochnauer 1977; Trihey 1980). This
demonstration project enabled the participants to develop the capability
to perform this type of instream flow field data collection and analysis,
identify the limitations of the methodology, develop suggestions for its
improvement, and recommend a plan of study for determining instream flow
values in Willow and Deception Creeks.*
Hydraulic Data Collection Limitations and Recommendations
Of· the six individuals required to collect hydraulic data for this
project, only two were actually employed by the ADF&G to perform the
study. To compensate, volunteers were recruited from other ADF&G proj-
ects and from cooperating agencies. Scheduling necessary to accommodate
changes in weather and to insure that one set of data was collected
during each period of seasonal high, medium, and low flows often prevented
*Additional recommendations and strategies for determining instream flow
values are presented in the publications: fl synthesis and evaluation of
ADF&G fish and wildlife resources information for the Willow and Talkeetna
~aSTnSTEStes and Lehner-Welch 1980) and Opportunities to-protect
instream flows~ Alaska (White 1981).
-84-
the same volunteers from returning to the project. As a result, substi-
tutes had to be recruited, and trained in the field, while collecting
data. This proved to be time consuming, and hampered efforts to insure
quality control and minimize data gaps and/or errors. Another disadvantage
was that a hydraulic engineer, familiar with instream flow investigations,
was not assigned to the project. Without this technical input, it was
difficult to determine whether site selection and related· activities
--- - --------------------------------------------------- ---
associated with hydraulic data collection were· properly executed. These
problems can be minimized in future studies if sufficient funding is
secured to employ adequate numbers of full-time experienced personnel,
including at least one biologistand hydraulic engineer.
As would be expected in a first-time study, problems and complications
arose in the data reduction and computer analysis portions of the project.
The following check list of procedures for field coll~ction of hydraulic
data is recommended to insure that future data will be suitable for
analysis (Newcome 1980):
1. All initial cross-section data for each transect should be
collected with a rod and level;
2. Sufficient elevation data should be collected between the
water•s edges and headpins to document the shape of the entire
streambed;
3. Headpin elevations should be measured both on the top of each
headpin and on the ground beside each headpin to document its-
-85-
[
[
[
[
[
[
[
[
[
[
[
[
L
[
[
[
L
[
I
~
[
t
vertical positioning and permit reinstallation in the event it
is removed or disturbed at a later date;
4. Magnetic bearings should be recorded, and/or diagonal distances
/
5.
should be measured, between transects to facilitate scale
drawings of the study sites;
-----
Stationing should begin downstream (i.e. the downstream-most
transect should be 0+00) to facilitate data reduction and
coding in preparation for computer analysis with the IFG
models;
6. Streambed elevations should be recorded from left bank to
7.
8.
right bank looking upstream to facilitate data reduction and
coding in preparation for computer analysis with the IFG
models;
Water surface elevation should be recorded before and after
discharge is measured at a transect;
Distance from left bank headpin (LBHP) to right bank headpin
(RBHP) should be measured at each transect each time velocities
are measured. This measurement should be equal to (LBHP to
left edge of water) + (top width of stream) + (RBHP to right
edge of water) and should not change at different flows;
-86-
9. Transects over islands or gravel bars should be 11 dog-legged 11
to insure water surface elevations are equal on each side of
the island;
10. Level loops should be clearly documented with station, backsight,
height of instrument, foresight, and elevations in separate
columns. There should be no question as to how each reading
or calculation was obtained and the error of closure should be
no greater than (0.1 ft) x ('.Jsquare mile-s);
11. Crew members should read Appendixes A and B of the IFG field
data collection procedures publication No. 5 (Bovee and
Milhous 1978) as part of their pre-field training;
12. When unusual measurements or readings are recorded, they
should be footnoted with an explanation of the circumstances
to insure the data will not be mistaken as being in error;
13. At least one member of the field crew (preferably the leader)
should perform all the exercises in the manual: Field data
reduction and coding procedures for use with the IFG-2
and IFG-4 hydraulic simulation models (Trihey 1980);
14. Field data should be reconciled and reduced in the field
to identify and co.rrect data gaps and/or errors;
15. Half-inch margins should be left on all borders of field forms
-87-
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
t
[
~--~
f-
L
to permit photocopying without loss of data resulting from
distortion.
Point Specific Habitat Data Collection Limitations and Recommendations
Presently, limited information exists concerning the specific spawning,
rearing, incubation, and passage streamflow requirements of culturally
and economically important fish. These data are essential for wise
land-use planning and development (Estes and Lehner-Welch 1980). Bell
( 1980) , Bovee ( 1980 b) , and Estes and Lehner-We lch ( 1980) recommend that
habitat requirements for a particular life phase of a fish species
should be determined by collecting and analyzing comprehensive stream-
specific data in addition to reviewing all pertinent literature. Liter-
ature review alone is not usually adequate because data and findings
cited for one area are not likely to fully or accurately represent an-
other specific location. As a result, it is recommended that point
:_. •. . ·· ..
specific data collected for a particular life phase of a particular fish
species in a specific geographic location not be applied to another
location unless careful analysis is completed to determine if such an
application is valid.
Point specific data collection for this study was limited to the spawning
phase of chinook salmon.* Developing an understanding of other chinook
life phases and the life phases of other fish species in Willow and
*Funding, personnel, and time constraints prevented the execution of the
pink salmon spawning habitat portion of Objective 3 of the Instream Flow
Study and Objective 4, an evaluation of chinook salmon rearing habitat.
-88-
Deception Creeks will require a considerable amount of work over all
seasons of the year (Watsjold and Engel 1978). It is recommended that
future instream flow studies assign at least two individuals to collect
point specific field data for species and life phases of interest. It is
also suggested that research be performed by a hydraulic engineer and
fishery biologist to evaluate the various techniques for collecting
point specific data. For example, the topic of whether to measure point
specific water velocity at the mean depth of the water column as opposed
to the actual depth of the fish should be addressed.
Computer Analysis
Five man-months were expended in familiarizing personnel with methods of
IFG computer analysis and in analyzing the hydraulic data. Limitations
of and recommendations for improving computer analysis_ are discussed
below:·
Limitations
Because of their familiarity with and day to day use of their programs,
the IFG has inadvertently underestimated the limitations of user groups
who are inexperienced or use the mode 1 s i nfrequen_tly. As a resu 1 t,
1. The IFG computer programs on the Boeing system require more
experience than is provided by the IFG computer analysis
-89-
[
r
[
[
L
[
[
[
[
[
[
[
r'
[
r
L
[
E
l
l
-··'
course, or require that users have access to a computer
programmer familiar with the IFG programs on the Boeing system
(Newcome 1980);
2. IFG computer analysis often requires the supplemental input of
a hydraulic engineer to insure hydraulic output is valid.
When field data are collected incorrectly or from complex
field situations and cannot be readily analyzed, a hydraulic
engineer is required to modify the data to develop stage,
velocity, and depth relationships, calibrate the model, and
interpret the output (Newcome 1980);
3. Some.of the recommended IFG procedures, as documented in the
draft version of the IFG computer manual (IFG 1980b), do not
work on the Boeing system. These errors are being corrected as
users notify the IFG, but the errors are very frustrating for
both novice and experienced users (Newcome 1980; Amos 1981);
4. Although there are less expensive methods for performing some
of the analytical computer operations on an interactive* basis,
the IFG has not incorporated these procedures into their
manuals (e.g. running the programs in the batch** mode at a
*Interactive refers to computer programs which request immediate responses
from· the user resulting in a 11 dialogue 11 between the user and the program.
**Batch refers to computer programs which contain all of the instructions
for performing a job and are submitted to the computer to be run at a
1 ater time.
-90-
lower priority or entering data with the 11 Editor 11 (Newcome
1980); and
5. Examples presented in the sections of the IFG computer manual
(IFG 1980b), illustrating how to weigh the advantages and
disadvantages of various procedures, lack adequate documentation
(Newcome 1980).
Recommendations
To minimize these problems,
1. IFG publications should be revised to provide more detailed
background information on the resources and training required
to collect and analyze data;
2. The IFG computer manual should be revised to include a variety
of sample problems with an explanation of the iterative process
for solving them •. Examples of outputs, interpretations of
results, and sample computing sessions should also be provided
(Newcome 1980);
3. The IFG should thoroughly test its computer programs and
procedures on all computer systems having the IFG software
(Newcome 1980);
4. IFG computer courses should be oriented towards use of all
-91-
[
[
[
[
[
[
[~
[
[
[
[
[
[
[
r
L
L
E
[_
[
L
L
L' I
l
r.
L
computer systems capable of using the IFG software (Newcome
1980); and
5. The IFG should develop procedures for improving its capability
to communicate procedural changes to user groups (Newcome
1980; Amos 1981).
· - B i ologica-1, Water Quantity -ancl Q(ral'ity Data
Instream flow related data on water chemistry, stage, and supplemental
biological conditions do not indicate the presence of any unusual con-
ditions in the study area. Additional analysis of these data are beyond
the scope of this study. Therefore, if additional funding can be secured
to evaluate the biological, physical, and chemical relationships which
are influenced by changes in disharge, it is recommended that:
1. hydrographs illustrating average daily flows as a function of
time be developed for the Willow and Deception Creeks study
reaches;
2. water temperature and quality data as a function of time be
graphically illustrated;
3. graphics developed for (1) and (2) above be combined for the
same locations to illustrate the relationships between discharge,
water quality, stage, and temperature as a function of time;
4. fish species periodicity charts be combined with data from (3)
-92-
above to illustrate the relationships between the time of
occurrence of each life history phase of each fish species
present, and discharge, water quality, stage, and temperature;
and
5. air temperature data be graphed and compared with water quality
data from (2) above.
WUA Calculations
The hypothetical WUA calculations for the middle Willow Creek reach
presented in this report demonstrate the variability which can result
from_applying habitat suitability data collected for different stocks of
the same fish species at different locations and times to the same sets
of hydraulic data. They demonstrate also that the use of a particular
calculation procedure will influence the WUA output. This variability
illustrates the complexity of data acquisition, analysis, and interpre-
tation, and emphasizes the importance of both understanding how to
select and interpret a particular calculation, as well as insuring that
habitat suitability data external· to the project apply to the system
under question.
Supplemental Biological, Water Quantity and Quality Study
Biological, water quantity and quality data collected from the Peters/Purches
Creeks and ADF&G/USGS sites do not indicate the presence of any unusual
-93-
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
L
E
L
L
I
L
·conditions in the study area. Analysis of these data is beyond the
scope of this study.
-94-
· CONCLUSIONS
n
,....,
I .
L
lr:
_)
[
[
l_;
CONCLUSIONS
Criticisms in this report are intended to be constructive. Overall, the
authors believe the Incremental Methodology is the be?t approach available
for determining instream flow requirements when sufficient resources to
collect and analyze the required information are on hand. The IFG has
done a commendable job in developing this methodology, in light of their
present budgetary constraints and the large number of user groups requesting
their assistance. Alaska and other states will continue to benefit from
the perpetuation of the IFG as a national clearinghouse for state-of-
the-art instream flow techniques and as a central informatio.n source
for all instream flow related studies.
To insure that land-use activities are planned and implemented with
minimal degradation to the fish and wildlife resources within the study
area, the authors recommend that:
1. a follow-up comprehensive IFG Incremental Methodology instream
flow study be.conducted over a 2-year period to:
a) better define and/or identify seasonal life history
habitat requirements of selected fish species in
Willow and Deception Creeks; and
b) recommend and file for an instream flow reservation
to maintain the existing fishery values; and
2. alternative instream flow data collection and analysis techniques
-95-
described by Ott and Tarbox 1977; Fraser 1975; Orsborn and
Allman 1976; Stalnaker and Arnette 1976; Smith 1979; Tennant
1975; Orsborn and Watts 1980; and Orsborn 1981 be tested on
Willow and Deception Creeks to evaluate their advantages and
disadvantages as alternative approach~s to the IFG Incremental
Methodology approach for determining instream flows.
-96-
n
r
[
[
[
L
[
[
[
[
[
[
[
[
REFERENCES
REFERENCES
AEIDC. 1980. Pink salmon spawning habitat suitability data. (Draft).
Terror Lake Hydroelectric Facility. Instream Flow Studies File.
Arctic Environment Information Data Center. Anchorage, Alaska.
Amos, D. 1981. Personal communication. USFWS. Anchorage, Alaska.
Bell, M. 1980. Personal communication. Fishery consultant. Seattle,
Washington.
Bovee, K.D. l980a. A user's guide to the IFG incremental method.
(-Draft).-USFWS. IFG. Ft. Call ins, Colorado.
1980b. Personal communication. IFG. Ft. Collins, Colorado.
~---' and T. Gochnauer. 1977. Development and evaluation of weighted
criteria, probability-of-use curves for instream flow assessments:
fisheries. Instream Flow Information Paper No. 3. USFWS. Ft.
Collins, Colorado.
, and R. Mil hous. 1978. Hydraulic simulation in instream
--flow studies: Theory and Techniques. Instream Flow information
paper No. 5. Cooperative Instream Flow Service Group. FWS/OBS-
78/33. Ft. Collins, Colorado.
Buchanan, T.J., and W.P. Somers.
gaging stations. Techniques
the United States Geo 1 og i ca 1
Arlington, Virginia.
1973. Discharge measurements at
of Water Resources Investigations of
Survey. Book 3. Chapter A 8.
Estes, C., and D. Lehner-Welch. 1980. A synthesis and evaluation of
ADF&G fish and wildlife resources information for the Willow and
Talkeetna sub-basins. ADF&G. Habitat Protection Division. Anchorage,
Alaska.
Fraser, J.C. 1975. Determining discharges of fluvial resources.
FAO. Fisheries Technical Paper No. 143. Rome.
Instream Flow Group (IFG). 1980a. The incremental approach to the
study of instream flows. USFWS. W/IFG-80W31. Ft. Collins, Colorado.
. 1980b. Users guide to the Physical Habitat Simulation Model
--. (PHABSIM). (Draft). USFWS. IFG. Ft. Collins, Colorado.
McCoy, G. A. 1978. ~~a ter reseurces of the new capita 1 site = a phase I
progress report prepared for the Capital Site Planning Commission.
USGS. Anchorage, Alaska.
Mills, M.J. 1980. Statewide harvest study: July 1, 1980 -June 30,
1980. ADF&G. Sport Fish Division. Vol. 21. Anchorage.
-97-
REFERENCES-continued
. 1981. Personal communication. ADF&G. Sport Fish Division.
--Anchorage, Alaska.
Newcome, N. 1980. Personal communication. ADF&G. Sport Fish Division.
Anchorage, Alaska.
Orsborn, J.F. 1980. Personal communication. Washington State University.
Department of Civil and Environmental Engineering. Pullman, Washington.
-~· 1981 Personal corrmunication. Washington State University.
_ _ _________________ Dega rtment o_f_C_j viJ_a_nd_Eo_vj_r_o_nmeo_taJ_Eng_i_oeef".i_ng_. _ _l::l.uJJman_,_Washi_n_g_ton.
, and C.H. Allman. 1976. Instream flow needs. Volumes I and II.
--American Fisheries Society. Bethesda, Maryland.
-,-----'and F.J. Watts. 1980. Hydraulics and hydrology for fisheries
biologists. USFWS Fisheries Academy. Kearneysville, Virginia.
Ott, A., and K. Tarbox. 1977. Instream flow, applicability or existing
methodologies for Alaska waters. Prepared for· the ADF&G and ADNR.
Woodward and Clyde Consultants. Anchorage, Alaska.
Scully, D., L.S. Leveen, and R.S. George. 1978. Surface water records
of Cook Inlet Basin, Alaska through September 1975. USGS. Anchorage,
Alaska.
Smith, G.L. 1979. Proceedings: Workshop in instream flow habitat
criteria and modeling. Colorado Water Resources Research Institute
Information Series 40. Colorado State University. Ft. Collins,
Colorado.
Smoot, G.F., and C.E. Novak. 1977. Calibration and maintenance of
vertical-axis type current meters. Techniques of Water Resources
Investigations of the United States GeO'logical Survey. Book 8.
Chapter 82. Instrumentation. Arlington, Virginia.
Spence, L.E. 1975. Guidelines for ustng the Water Surface Profile
program to determine instream flow needs for aquatic life. Montana
De.pt. of Fish, Wildlife, and Parks. Helena, Montana.
Stalnaker, G.B., and J.L. Arnette .. 1976. Methodologies for· the
determination of stream resource flow requirements: an assessment.
USFWS/OBS. and Utah State University. Logan, Utah.
Tennant, D.L. 1975. Instream flow regimes for fish, wildlife, recreation,
and related environmental resources. USFWS. Billings, Montana.
Trihey, E.W. 1980. Field data reduction andcoding procedures for
use with the IFG-2 and IFG-4 hydraulic simulation models. USFWS.
IFG. Ft. Collins, Colorado.
-98-
[
[
[
[
[
[
[
[
[
[
[
[
r~
L
[
E
[
n
n
l.:
,.,
l:
I L,
L--
[
REFERENCES-continued
USGS. 1977. National handbook of recommended methods for water-data
acquisition. USGS Office of Water Data Coordination. Reston,
Virginia.
1979. Cooperative USGS and ADF&G agreement. Anchorage, Alaska.
--.· 1980. Water resources data for Alaska. USGS -Data Report
AK-79-1. Anchorage, Alaska.
--------.--1-98"1-. ---Wa-ter-resourees--for-A-1-ask-a-; ----(-Elra-f-t-h -(;JSGS-----Ela-ta-- -
·Report AK-80-1. Anchorage, Alaska.
Wadman, R. 1979. Memorandum: Autoclaving salmon roe. ADF&G. Sport
Fish Division. Anchorage, Alaska.
Watsjold, D., and L. Engel. 1978. New capital city environmental
assessment program-phase I. Source Document 2. Fish and Wildlife
Studies. ADF&G. Sport Fish Division. Palmer, Alaska.
White, M.R. 1981. Opportunities to protect instream flows in Alaska.
(Draft). USFWS. ·Office of Biological Services. Washington, D.C.
-99-
ACKNOWLEDGEMENTS
]
l
l
l
-l
J
-l
J
]
-1
)
-J
-1
1
J
)
I __ j
J
J
1
J
1
J
> /
~
/
ACKNOWLEDGEMENTS
Many individuals representing several state and federal agencies pro-
vided support to this project. The authors wish to especially thank
T.W. Trent, L.J. Heckart, R. Redick, D.A. Watsjold, L. Engel, M.J.
Mills, R. Logan, R. Andrews, J. Clark, C. Yanagawa, D. Lehner-Welch, E.
Huttenen,_ R. Cannon, T.A. Arminski, C. Reidner, A. Bingham (ADF&G); M.L. ·
Harle, S. Mack, and D. Brown (ADNR); R. George, R. Brown, and G. Solin .
(USGS); D. Amos (USFWS); B. Petrie, APA (former Chief of the ADNR Water
Management Section); W. Trihey and J. Baldridge (AEIDC); and J.F. Orsborn
(Washington State University, Department of Civil and Environmental
Engineering).
Special acknowlegement and appreciation are extended to N. Newcome
(ADF&G) who dedicated many hours performing the computer analysis, the
USDA Soil Conservation Service, most notably S. Powell, for proyiding
the assistance which made this study possible, and the ADNR for funding
a portion of the computer analysis.
-100-
APPENDIXES
9 Appendix A.
I
--:;
u
STREAM SURVEY FOBM
Stream . @+er-s -_ Cree-k Index. AreaPeters (r. I.. Data ~/?J.d. /77
AveTaga Stream: Wi.dth:-.........,;J;;::..;::0;..,_
1
_____ ~Average Stream. Depth~_.i-_· ---------
Tributaries Present Gllc.c.> Cn.s:1 pi~~ Sc:.\rc:.~l is ma /1 :SG!"'fd ( 7:1.c!s) c\r-&4.•Y'\ ()"\At".Sr~.s
Dams· and Obstructions L C\vv..e. bov.\devs wr .,.~ tpr--o:::.cy...+> w I (\O b"C!Ct.y~\1'" du 'I'Y...) -
Immediate Shore ·vc~r±q:ho'O"• o..;e-r~'i\')IOC \...) dlo\u <:i·hvu..b .. ntoas.s.... Edt/·
G.{. v..,qtev-Ma.rked . ~>f . abrup-t dr-op -A--o'IV\ ~'no~-
Surround:tng Count~ 0 ~ e h ~ lu ( i ct \ v cd J'(.y . w I h L\ V"'f\ moc-k. s a + ~ 0 .5_5
Q~d ;., ha'f't ' al' iS ·"'r\1:, 'as. .
Discharge 'f 3 c..C~ Map Location A~ c 'a() rr. ~ Q-7 0. I lV a I w ~ 0 B G P¢
Pools and Shelter
b. Type rYlo sf-Qo<Jl> -Cr<f'l"\t"(( I ·r-..
•
0 'n ~ +r~,.,._ ( -L\ '"' '" +\¥\~.--C) 0 '-.!) 4
J
c:.. Frequency rae\ I Ct..C~( e tfq+ro ",
5ta dre'{'\t
tj I 0
Bottom Type _ L orr:ce-tfawlder~d: w,L ravb
Shade . · \ c
I -
-Chemical,. Analysi.s-fV/'Pr
. pa;......---------------~----
Dissolved Oxygen~ ........ ____ __.....,__ ........ __ _
Temperature~------------:----...___
/
Conductivity ______________ _
-101-
i '
t\:J L.. 1,.--1 .a [ .: .
. . . . . . ~ ·. . ..... ··.
S!REAM SURVEY FORM
st~~~ Pnrc, Cn:rk _ Index; Area~-kc Cr.JI. Date: rba-~3/71
-3o' J.o' ~"!~rlilge· S_tr~Jiidth_ .... · .,.· --.· _. --------__ Average· Stream Depth:.-----------
Tributaries-Preseut.~~~~~~~~~~~c~~--~~---~£)~/~4~~~S~e~v~~~r.~I~0~M~-~~J~/~~~e~~+.~~~~~~~n~w~:~~~,~~~~--~~~~
N I , I
Dams. and Obstructions '"' \'N\rr,'l""i It;..,:. ... c. reek ~~~~~~~~~~~--~~~~~~~~~~~~~~~=-~~-
Immediate Shore . ....;;S .... tt,.;::.:....T"-l'"-=-"'~-~....._.:..;;._~..;;.;....;.=...;..;,.;~,.....::.:~-=---:."-f..l.~~~.f..:,l,........,~~~~---
. .. v
s_urroundmg eountry t..u. t<1\~ o ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fV 1.1 rn ~"' ·rn1. ~ \:,("'r,, t ,p r 1/"; r-,</"1) ~, .
l -
Spawning Area~---L,_C~t-r~~~~~---5~u~-.... b~.~-+ ... r_n_~_~ __ (_)._l6--.H_\,_~---·~--• .l_~l-n,_',_·-~.~-~ ... r_.y ___ ,_, __ h_"_'j'--L,_\,_ri_~_r_s __________ __
\ _, .
Discharge~-~0.V~/~9:.----------------~Map Location:.--------------------~--------
Pools and Shelter
..., ' lo .:.. I ri'" . J • ~ l '"", J , -3 I I I • a.. Size~· _...:;.)....._-1..;...;;. __ ......;;;:'---,_'"'T:...· ;...;'·-,_''-;;..· '.;..;f"~;..;.'---"-;;..1 _1 r_·l ... +-_'1'1...;'~-·-·-5.._.,;.;;1.,;;;..;:..C ..... ___ ..;.___.;. __ ;v--._,.,_.A:....! .-r-_,.'f"'.:..t't'...;h-,.. __
n 1 ri' , Jjr_
c. Frequency--~y~!c~o~·~~~ ~~~r-~~~~-~-~~~~r~o~~~-~~~~2~!~~-=~~--------------------------
Bottom Type Lt-1 y--: . ..,e. r (l ( ~ '-( II 0 I I ) .
Shade ~ )h ~ 't\0e... <:::f.-rroa l('f\. w cc;;. 6 hq;lt"d
Chemical Analysis
pH 7. 7s=
Dissolved O:Jcygen._~J.;;..o_ .. .:_7.;;.5"--:...r_fl~"',_· ._I l.;.:;.J.:...J --------
QO!
Temperature. __ -._./--<..,.....---------------------
-102-
, . C.
.. -[-
[
D
[
[
[
c
r L
[
c
[
[
[
[
[
c
l
__ ) .
Appendix A.
'·. :· ......... . . ' ·. . ... ~ . . ·.' . . . . : . . :· .. ;~ . . .. . . . : . ~ . . ·,
L
I
'---'
' w
[
[
[
STREAM· SURVEY FOBM
. Index Area ct-tery. ( r · If[_ Date 8 J d3)79
Average. Stream· Width Lf G ft. . Average stream. Depth:-.....~.1_~ s_:ct_· -· ------
Tributaries Present -.Scvt.V\ '(n de. Creek. o-0C\Jc:rc.d .:jm_a.IJ jr rt ('\ ''~-"> <T6c~r::, r(()'f'rl 1"1'\c.. i5ho::;5
Dams and Obstructions 1\1-tevideVtfq<A. Pe+-er_s Creek':> cr\nc:v: t-'h 14 "' a_-f.e~ 'oo~ld-ev~
Immediate Shore L1V\CQ b; v\1/61..(.) &brvtb~ ~uu.nott~ -~~d~~s .::-~russcs <....:>( ,spttce_.5fqadx
G'la.ud. Juq._r::,_ \...J..£'re. e\JI.dr·l"ld wi low Wu_+-er.
Sunounding Country Oror:> Old o...L"" c::; \qc.l_o,_{ CJcdlt.y l'r\+o q_ 'oroC!d :'\p<.Jc~
CCt\{ t'-1 lJ.J( (\ l-.Y'I\C 'fO\.L~ b~u_uer da 'M"'> Q'Off '(\(l(l f'6Ylt".?.
~ . . . . .
Spawning Area Ctey DY.lJy 'olr COr w04~p'DIY\"' '-0 J C( '-.J..>tde.. [Ctf'lo!C,.. c/ ..
• ~ 0
(t 4!-e_ . 0 1r~o"
Discharge l (p t Cs
Pools and Shelter
a. Size woe!'? . 00
b~ Type-· Fo'(I(Y\rA k be.~-i.,..., +Inc.. s+r~OW' snd I an:.",. tee/c. s ,. '-'
st Ae·c rc r) '"~" ~ c,\ ra d 1e;(\ -4--~.
v
c. Frequency pool. /r t-4\ e.. crp{t 0 s-o I m
. I
BottomType ~ ]Q7o CQhhlr) ( )-7 11 ) C..oir; f;?Cl'f',c(<::::--)Q1o .7 1 '+-
Shade d.,o7{) G-f-Sfreo_'f',.,_ o'no.cfdf by Ouer\-:uY19t"Ac. spruce_ o-0hn-ubbery
I -/
Chemical Analysis
pH~~N~r~A------~----------------------------
·Dissolved Oxygen. _________ ~---
Temperature:_ _____________ _
;
Conductivity ______________ _
-103-
•: .. ···
[
Appendix A.
........ ,.. . :. .. . ~ . . ...
Stream PETEIC_)
. : .. -. . ...
STREAM SURVEY FORM
_ .. c-
c
Index Area~. _...i-l.\,.\{=-------.:Date ___ i:...,..~~Jt:;;;..~r--b"""7-· __ _
' I
Average· s·eream: Wid.~---_?f..;....;?;;..·__;::k::..;;;;;;;;.;.f-___ ___.Average' s·tream. Depth-· _,_,;;2;;._-~=-t--_____ _
'rri.butaries Present A tew \J~('::f $' rvt~t\ ( L I c~~) .5e::oa.s
\ . l ,
Dams and Obstructions /J~ ~ I'L-<-...._;"' ~ ~
I poc.S
(j
. j I}
Surrounding Count:ry __ _.S-.:P~C'-v,.;;c.e_;;;;;.._.~evx~J;..._,.,..;~;;..;..J_. ~-=..;;:v..J;... . ..;.b.;:;c,:;;:cA;.;;.· .....;q¥v..;:o:.;:w~, "'-;.;.-~f>-.::;~:......;-· _.M._;...o;;..::;.~..;...: ... ~--l ..... t_,..'-f __
' I! J I
I '\\ . f).\ ~ -\-e ,.,...c._:~,'-" .
l . J I j
Discharge Cj 7.0 cf_s Map Location. __ ..;;;2;...;o;;;...;..;:,J..;;o;...2~W:;.;:;...·;..I Cf...:....;;;;.D""'D'"'D;;;:;,_'--------
Pools and Shelter
a. Size ,2 u -"2 s-k+ W\c;l.t._
b. TyPe ,Po~/~ b-r~·J. .· ~ f b.v".._t_ ;·o·t ( Z~. ~ ~ !\ . , bo b.1 ~d\
Coc_\( <5 1 ar o. ~ ~...__d'S .
c. Frequency d f) -~ D '7:~ r.:J ,!) p I$
I
Bottom Type . levu::..~ coct·s 7-!o'/ o---rJ. bo...,fk-rs). -S\l~Smo..\\e.f' <Suh.:;.tr..._tc_ .tj,
V ~ lo,~er c:tNt._c ~ol ptlo/-s, _
Shade v e r'-\ I t u~
Chemical Analysis N/ A
pH~·---------------------------------------
Dissolved Oxygen __ ~--------------------------
Temperature ______________________ ~----------
Con~uctivity ____________ ~--------------------
-104-
[.
[
[
[
[
[
[
[
[
[
[
u
[
l
__ )
-,
Ap-pendix ·A.
.. .·: ':. . .. ·-· . • . . .• • . ··-=·,~ .. . . ~-J~.. :· . . . . . . ;.
STREAM SURVEY FOBM ·
Stream 9 4 y-c., Yl"~:J C Y"-c-e. k... Index Area (J\.c.. 'fG ~c~ C h:e k I Date._-..:o'-'/..;::;d;..;:~::..,j}-.:.7...~.1_·-·_.....__
Average· Stream Width. __ -_d._,~_~_.+_. -----~Average Stream Depth:__l_-• ...;.3_-'4....,.:.:•:..._ ____ _
Tributaries Present {) I.A.(. \)(!.'('('f C~r-e..~\. f'l~~cvov.. :<:c. r-_ o .S
Dams and Obstructions.--:L=O~Y"<.l~f)~e...:.......p,.;o~u.:.;;,jl~-~.d .... r.:...r'J...,. ---~---------------------
Surrounding Country l01 n r.-C:: \etC\ o \ UC<!I'{y w( U~t-.,. ~'-U <. p ~""tcc:e.-f3ozD-.:1 I.J.J/ b 1<,.1" b-err(
. o,~\-c'fl .... ., a-'r\cllJ,....., ~ c,r(L::>.)~~-
SpawningArea. ~os,.ld n_o+ ~e....s\J~t:r dead )~4-UJ\)I<V"\C; qcra \oeca~ rt;.J
4-re.-k 'tG'\e< S ~los-koJe.-<"v/2:u gvtd o~+n"' ch V"\<0 bt-t IJ-e ts ..
0 . ~
Discharge L1 0 c.fs. Map Location 9'f\ehor-o~~ Q-7 d.(JNe>/lv1&Y3l3f:t~
Pools and Shelter
a.
. c. Frequency poe(/ n4le. ·ro4...t.o
Bottom Type . J'Y\as+k.t lo \"c;,.._ \Ock'? . w/6of'h..-'b'Nla_//e'("" Cobb(c.(/-s-1t), n?OG5 ,o-~~Sv:'fl_c{
Shade d,o ?o b'",, ou-e~ \v, ~""~ 0\! "'""· ~ hlu .. ~br-h" '
¥' __./ ~·
Chemical Analysis
pH~-/~V~/~~-----------------
Dissolved Oxygen. _______________ __
Temperature. ________________ _
Conductivity_-------------------
-105-
Appendix A.
STREAM SURVEY FORM
StreaiU,-~ ?~<Z.c.~~S C..Q.eeK Index Area ~· Date;_: _ ..... -~"""{=_· _1_./.,.;7_9.._...__
Average S t:ream W:idth 4o ·. Ccg,~ ·Average Stream Depth:.__,_I_ • ..;;S""_f...;...._+.;,.._ ___ _
Dams and Obstructions N~~ -----~-=---------------------------~-------------
Immediate Shore .5'~ A~~/> c_,Jf-k>~lc-5 (~-~ t'.t.) ~~ ;5~ 'i vNH\ h~a $
a.l-.\.M. Wt<J?& t;..._.·c I:;, ab.ru p! slor+ bsmks w·J~. ;slor+-o~k~ i""J bv-~sl....
surrounding Country · Sp"';P woocJ.s 94J ~cc~. ~··• . .1 "?j •'='AA¥, f,Q.(of. tfl... ..
b\~tH.-.:~'('C-1 Q A.+s:_kt.A 14 N_a.._ :\RY),.\~ f\ ~.1
Pools and Shelter
c.. Frequency ____ ~~Sk;::;.D_'D.._Y..::.o::;.._ ____________________________ _
pH:._ __ ...._ _____ ...._ ___________ _
Dissolved Oxygen-:.......--------------
Temperature. ________ ...;__.... ___ ~_.... ___ _
Conductivity _____ __. ________ _
-106-
D!
;
·b
.[
[
[
[
[
[
[
[
[
[
[
[
[
c
L
_ _j
r"': I -
l
r
L
Appendix A.
STREAM-SURVEY FOBM
Stream C(?.Erf: K Index Area;..__:J_C_:.....,.-__ ..-Date __ . _<&....;;.-+,!_2-_&+/_7"""9__.. __
Average Stream-Width:_·_...__?.=· .:D;...--~~...;;.+.;...__...__.__,;Average Stream Depth __ .. _--:../..;..;' O;.._...,t~~--------
Tributaries Present M~"~ SYV\"-lt +·r•.~v~te.S . I r~a,l-(tocb5) inhu~v;
Dams and Obstructions N ~e. qo ~s, ll'l ;:r tf\Q. &J~ax : ~ o ......... 5t. ~. { .:::( -rc... .1-'r! b\1~~ v \A
~ c
Immediate Shore tutl{61...A..) 6 hr1..1.. b'), OCCO.>to'l"\p) ~l'iS 1 Vel~+ ~l /ht..O~ ~Y'\cJ
I
v v
Surrounding. Country G!~C.:t~\ \r::l\ t\e.l
\1 \
Spawning Area O.rey \1\C.L> blA.t~cl\J \e dept'~/ 61..\,M--1-raJe ~ tri"-(e'-. ~r-
\ _I i
Discharge N/1\ . Map Location~--------------------------------
Pools and Shelter
c.
-...l J
Frequency ____ 4~p~0~/o'---~O~o~9~1 __ -____ .0~D'-~~-~~~'~~-·f~[~Je~------------------------
\
Bottom Type M.OL?fk_, ( o.bbl-e, J-/ II 6ome lurqcr r<::t1~ d 't:<J<,J.Jr/~,s Qr~n+ ~~l.su·r,d
I \
Shade @ t)/o 010e. V\-~ o VY\.L ~ he, oLt_
~
.\roVV\ 60-tJ\.. \o_.,.,.,o.cb ;"'"' 5ofuc~ ~ Ol-e..l::>.r•S
J J
Chemical Analysis r\J{A pH~------------~-------------------------
Dissolved Oxygen:_· ------------------------------
"T"emperature._... ___________________ -:---------
Conductivity ______________________________ ___
-107-
Appendix B. ·AOfT&~/I:ISGS Site A
L64 SOUTH-CENTRAL ALASKA
. 152940,05 WILLOW CREEK' :-lEAR WILLOW
LOCATlo;..;.--!.at 61°41)'4~'.', long 14.9°52'44", in NE\iSE~ sec.3l, T.2o· N., R.3 W., Ha.t:muska-Susitna Borough, Hyd·rologic
UP.lt 19050002, on left bank 0.7 mi (l.l km) do~o.'ltstream from unnamed t:ributary, 5.7 mi (9.2 km) northeast of Wille~<,
and 6. ~ mi (11.1 km) upstream from. Deception Creek.
-, DRAINA:JE AREA. --166 mi 2 (430 km 2 ).
WATER-DIScHARGE· RECORDS
PERIOD OF RECORD.--June 197€. t•J current year.
GAGE. --Wo.ter-stage re-corder. Altitude of gage is· 350 ft (107 m), from topographic rnap_.
REMARKS •. --i\ater-discharge records good except those for Nov. 9 to Apr. 21, <<hich are poor.
EXTRE~:ES F0R PERIOD OF RECORD.··Maximum discharge, 3,720 ft 3 /s (105 m3 /s) ~lay 28., 19i9; gage height, 7.82 ft (2.384 m);
minirr.um daUy, about 50 ft 1 Is (1. 4 m3 Is) Nov. 22-25, 1978.
E.XTRE~!ES FOR CURRENT YEAR.··Maximum discharge, 3,720 ft 3 /s (lOS m3 /s) Nay 28, gage height, 7.82 ft (2.384 m);
minimum daily, about SO ft 3 /s (1.4 m3 /s) Nov. ZZ·ZS.
1
?
3
4.
6
1
I'
9
In
II
1~
13
14
l<;
OCT
214
26r.
;>3'5
211.1
?.26
?13
224
:?:ll
22F.
2111
?.4.:.
1.91
27?
?.4Ft
211\
16 ?!I'
17 ?.3'5
!A 374
i.<~·. ·' 2M
20 2'5"
TOTAL
!lEAN
>;AX
H!N
CF~M
IN.
AC-FT
239
?31
IA5
?.39
?.20
~i.:?
2C<
1-'19
?01
19() ..
179
7?.03
23;>
~•74
li'"-
1.4(1
1. ">I
.l'-290
Ot'5CHARGF.o IN· CIJBIC FeO::T PF.Q 'iECO"lO. lofATEP YEi\R OCTORS:P t97A TO <;EPTE'If!FP 1979
,.E 11•1 v 'lllJF.'i
•JOV
187
!~J
159
l$!2
1'~0
f,qo
11\R
1111
11)0
1'5
.75
70
65
60
5'1
• 5"
54
5<.
52•
52
52 so·
SIJ
sn
c;o
':>4
,;~
70
74
74
2726
90.9
!90 so
.55
.... 1
5410
DEC
7<;
7&
M
<;(I
100
110
120
130
13'5
130
130
130
1311
130
130
120
PO
1?0
120
t?n.
11'5
11(1
110
100
100
1CO
100
95
95
'75
9'5
3411
110
!J5
75
.61\
.76
6770
90 oo
90
90
Ql)
90
911.
91}
85
.'IS
1!5
85
AS
AS
80
M
811
1'0.
80.
RO
All
RO
RO
80
AO
AO
110
~0
80
78
78
2'5.'16
81.4
90
7!!
.so
.51!
5130
71f
7P,
11\
71\
76
76
76
76
71\
76
76
7(o,
7Ft
74
74
74
74
74
·.7~"
74·
7'Z
72
1?
7'?
72
70
70
70
2080
74.1
7'1
70
.4<;
.47
4130
70
7~
M
61!
6'1
7<;
90
too
100
lOll
7'1?4
75.0
100
6"
.4'5
.c;:>
4610
APR
70
66
66
65
64
64
64
.;4.
64
64
64
64
f,6
66
h6
110
113
116
129
142
!57
1M
1110
211
294
29115
99.5
294
64
.60
.67
5920
MAy·
382
4)4
474
484
540
'5.<15
. 626.
676
59'5
506
515
560
642
7?.4
786
fi48
1!3?.
856
·Ril8
920
10:>0
1110
1140
124(1
1390
!8'>0
?.310
:>700
2700
211!0
?11\0
32693
10'55
2700
3R?
.FJ •. 16
7.13
64RSO
JU"'
?530
?s.;o
?0?.0
1760 .
.!liM
2040
1540
1470
1590.
1740
!6AO
141!0
13211
11'50
1100
IOAO
1000
960
92A
1000.
10?0
9114
1040
1070
1510
19AO
1410
1160
1010
81!0
42'!9:>
1410
25<'>0
I!'Ril
!'1.61
9.61
i!SOI!O
JilL
8"4
920
1020
!ORO
1920
?140
1710
13?0
1170
uon
11}?0
1250
1170
non
17()1)
t53n
1210
12A<l
11-61) .<
9R4
1070
9<J;>
I!BO
840
1240.·
!090
A<;6
751!
710
61!'!
9·2o
3577?.
!1<;4
2140
6AA
.... 95
B.O?.
7o9c;o
AUG
'100
779
Ft82
610
57n
620
<;1)0
'561)
4AII
448
421
393
JM
174
371!
141
137
3?7
300
:?94
?94
":>67
255
244
?Jq
1?.348
191!
1!00
22?
2;40
?..77
244QO
'lAX ?700 .,rN so CFSM ?..61 AC-"T 313500
NOTE. --~4o gage-height reco:-d ~ov. ·10 to Apr. 3.
-108-
222
?10
197
196
190
!8<;
180
179
176
171
172
170
1n
173
167
166
203
484
.SU
912'
11.00
758
676
. 700
570
502
461
456
409
378
11047
3f>R
l!OO
166
2.22 z.:.a
2!'110
Appendix B. ADF&G/USGS Site A (cont.)
SOUTHcCE~T~~L ALASKA .
15294005 WILLOW Cl',EEK NEAR WILLCW~-Cont.i~ued
WATER-QUALITY RECORDS
PERIOD OF RECORD.--~Iater year 19-79. ·
PERIOD OF DAILY RECORD.--
l~ATER TEMPERATUREs·: October 1978, Apr-il ta September 1979.
INSTRUJ-IENTATION.--Temperature recorder since Oct. 5, 1978
RE~IARKS.--No record Oct. 10 to Apr. 4 and June 14·21 due to recorder or clock malfunction.
EXTREMES FOR CURRENT YEAR.··
11ATER TENPERATURES: Maximum, 15.5 •c July 3; minimum., 0. o•c most day.s during ~<inter period.
WATER CU4LITY DATA. WATER YEAR OCT08ER 197~ TO SEPTE~~ER 1979
SPE-COLI-COLI-STREO-
CIFIC FOR"', FORM• TOCOCCI ~ARO-
STREAM-COlli-TOTAL• FECAL• FF:C"L• HARD-•JE<;c;,
FLOiolt OUCT-o•.vr.E"'. IMMEO. 0.7 '<:F AGAC> NE<;S Nl)'ICA-'1-
INST4111-ANCE PH TE""FR-ors--ICOLS. IJ>1-'4F ICOLS. 114GIL I>ONATE
TIME TANEOUS I14ICRO-ATIJQf. <;OLVEO PF.R ICOLS.I """ 45 1'-IGIL
DATE I.CFSI MHOS I IUNTT<;) liJEG C I IMGILI 1 on MLJ too "!LI 100 "''-' CACOJI CACO:ll
OCT
os ••• 1700 238 75 6.7 s~o 1?. .... 1(6 I<' I'> <I ;>J 3
50LIO<;,
MAGNE-POT4S-C!-iLO-F"LIJO-SILICA, SliM OF
CALCIUM STUM. SODiuM·, <;IU>1' '!I CAR-SIJLFATf. RIOF:. oroe:. 015-CO"'STI-
DIS-DIS-DIS-DIS-An>! ATE CAR-DIS-OI<;-'liS-<;OLVED TUF.t.IT<;.
S6LVEi)· SOLVED SOLVED SOL \lED (MGIL qQ!IIATF SOLVED SOLVED SOLVEI'l C"'GIL ore;-
IMGIL (MGIL IMGIL I"'GIL A<; (M/;IL ("'GIL C>1G/L (MGIL AS SOLVED
DATE AS CAl AS 14GI 4S NAI AC: I() HC011 AS C011 AS 5041 AS CLI A5 Fl SI02l <"'GILl
OCT
os ••• 7.0 1.4 4.4 .7 25 n z.a "·q .n 7.8 44
NITRO-NITRO-'HTRO-NITRO-NTTRO-'HTi~O-
NIT PO• GEt.~. N!TPO-GCN. NITRO-c;EN. GE'l·AH-GE"'oNH4 GF.'-1.4..;-
GPio NO?.+NOJ GE'N• AMMONIA t;f"l· rt~GANIC "0.NIA . • ORG. MONU . ~IITRO-
NO?.••t03 DIS-AM ... ONI~ DIS-OPt;ANTC I)!S-ORGANIC SUSP. QPGAt.ITC GEN,
·ToT•L SOLVED TOTAL SOLVEO TOTAL <;oLVEO TOTAL TOTAL OI<;. TOTAL
IMGIL IHGIL CHGIL C14GIL 1"1GIL 1!-!GIL (MGIL IMGIL (MGIL !!o!GIL
DUE AS •H AS "'I AS •H ~.S Nl A~ !Ill 45 Nl AS N) AS !Ill AS 'll AS N!
OCT ; •. oo~-. os ••• .• -o7 · -.IH· ·· •. on .;>9· .• za. •. 29 • o.i. .• r.A· •36
CHRO-TRI)"'.
NITRO-PI-lOS• ~ARIU"'• CAI) ... !U"' 14TU"'• COPPER, IRON •. c;us-
GE.,, PHOS-PHORIJS• TOTAL TOTAL TOTAL TUTAL TOTAL "EN!'lED IPON.
DIS• P,.O<!US• ors-RECOV-~<~Ecov~ RECOV-RECOV-RECOV-RECCV-OIS-
C:OLVED TOTAL SOLVED ERARLE ER4RLF. ECAALE EPABLE F.:PA8LE ERA~LE <;QLVE'l
(MGIL IMGIL (MG/L !UGIL <l!GII. (tiG/L WGIL IUGIL IUGIL <UGIL
DATE AS Nl AS PI AS PI 4S 8Al A5 Cl'l .A<; CRJ 45 CUI AS F'El AS FF:l AS FEI
or.T
os ••• .JS .oo .oo 0 0 n 3 141) 4() 1 nil
"'lNGA-"'ANGA-<;F:DT-
LF.41'lo !IlESE, NF.:SE• !otANGA-MERCURY SILVER, ZINC. ME "'T
TOTAL TOTAL sus-fiFSE, TOTAL SELE-tOT4L TOTAL SEOI-ors-
REC0\1:.. RECOv-CF.NDE!J DIS-.PECOV-"lTUMo RECOV-RECD\1-"F.t.IT. CHI\RGF..
ERAI-!LE I"RAPLE RECOV. SOLVEn E'H"!U:: TflTAL ERA8LE EPAF;LE -;us-sus-
(IJGIL <UGIL (IJG/L WGIL iUGit IUGIL !UGIL <UG/L PENOED "E'lOEO
o.nE AS PPI AS '1'11 AS MNI AS "'"'' AS l-4!';) AS SEI AS AGI A5 Z!lll I"'GILJ <TID~ VI
OCT os ••• 2 0 ~ ~ .Q 0 0 1Q =! 1.3
K ':O?-:-IDEAL COL~~;y cou~:r
-109.~
c
HiS b
[
,-
[
[
[
[
[
[
[
c
[
[
[
[
[
L
[
[
"1
Appendix: B. ADF&G/USGS Site A (cont.).
lb6 SOUTH-CENTRAL ALASKA
-,
15294005 WILLOW CREEK NEAR WILLOW--Continued
TE~IPER,\TURE (DEG. C) OF WATER, OCTOBER 1978
frAY MA~. mN DAY ~lAX MIN
1
6-5.0 4.5 8 s.o 4.5
t': ·4. 5 .. 4.0· 9 5.0 4.0
...,
TEHPERATURE (DEG. C) OF WATER, APRIL TO SEPTE~!BER 1979
f'h\Y "'~~ MIN Mil~ '-I!N ... u MIN '44X M!N lolA X Mt"' M4~ '4!111
APQ!L MAY JIJNO:: JIJLY aur,u-;r <;E:r:>TE'-I'l~Q
_) I 1.5 .o 1'1.5 4,1) )J.<; 7.0 13.<; 9.5 10.5 7.0
; 1.5 .s 7.11 ..-•. n 14.'5 A,O 14.5 to.n 10.5 1.n
1 I.e; .5 7.5 J.l) 15.'5 A.S 15.11 10.0 10.1) '1.0
4 3 •. 0 1.0 ,. .·n 4_.n 15.0 9.0 15 .• 0 9.<; to.o 7.0
<; 1.0 .o 2.5 1.0 9.0 4,0 11.5 8.0 13.5 to.o; 10.~ 7.5
6 ·" .o 1.0 1.il 7.0 s.o !1;,0 7.0 1?.0 10.'5 1n.n 7,0
7 loll· .o 4.'5 I .·3 7.'5 4,5 l0.5 7,0 11 ... 10,0 10.'5 7,'5
" 1.'5 • !I 4 .• 5 1.5 '1.'5 5,n !0.5 7.0 13.0 10.0 }1).5 '1.0
' 9 1.5. .'5 1.5 !.5 II .n 4.c; 11.5 'l.n 12.'5 10.1) u.n 7.5
tn t.o .5 5.n 1.0 q.c; <;,1) 13.5 7.0 12.0 10.0 }l.O 11l.Q
_j 11 1.5 .o 4.; 2.5 q,<; .;.o !1.5 9,0 1?..'5 10.0 111.5 a·.o
}:' !.<;. .o 5·.o . 2.0 9.5 4.5 12.5 9.0 13.5 10.5 111.5 9.1)
13 1.0 .o 1\,S ?..0 7.5 5.5 n.e; a.5 12.<; 10.0 10.5 9.0 .., 14 1.0 .o 6.0 ?.,0 u •. 5. a.5 1?.0 1o.e; 10,5 9.5
15 1.0 .o T.o ?.·,/) q·.5 l!,lt n.o to.n 1n,o !1,5
16 ?..-o .o 1,,1): ?.,0 10.0 '1.6 n.n 9.'5 9,<; 7.5
17 2.1) .s. 1.n 2.0 14.(1 a.n 1?.5 10,11 9,5 '1.5
18 1.5 1.0 ..,,5 2.n !:!.5 'l.O !2.5 10 •. o A,S 7,<;
19 z.n .s 6.0 2.5 !2.5 'l,O !2.c; 11.0 .9.0 7.0
?0 J.S .s 7,0 :o.o 13.0 R.5 !2.'5 10.5 1'1~0 7.0
21 1.5 .5 7.5 2.5 13.0 10~0 13.o a.c; 7.5 6.5
?;> ;o~o .5 7.0 ?.5 13.5 6.0 11.5 9.0 .14.n 'l.5 7.0 6.5 ..., 23 z.n .o .... o 3.0 11.5 1\.5 11.5 11.5 1'i.O 11.0 7.5 6.0
?.4 1.5 .o 7.'5 J.n 11.n 6.5 u.o 9.5 15.0 Jl.O 7.5 6.0
?.5 .5 .o· A.S 3.0 'l.S 6.<; ll.f) 9.<; 14.5 11.0 ;,.s s.o
"" ?.F> 1.n .o 9.0 .3.0 7,0 5;.<; 12.0 . 7.5 14.1) I I. n. 6.0 4.'5
?.7; . ~~-C!.o· .• n. 9.(!-' 2~5-7;~'5. .. s'.s • .. _ tJ<·o:· : 1'1·,5· n.5 11 •. 0 .,-.a· s.n
?ll z.o .o 9.(1 J;o ,.-.c; 6.1) 13.0 'l.O 13.5 11.0 7.0 5.0
?.'1 !.'5 .o .... 5 J.n }0.0 6.0 13.0 9,'5 Jt.<; 9.·n "·5 :1.5
_) 10 ?.0 .o 6.5 3.5 p.c; 6.0 TJ.o 1.0.5 10.'5 7.5 l;.c; 3.5
31 1'1.0 . 3.0 11.'5 9.5 1"·" 8.0
"'O~ITH 2.0 .o Q,O .o 11.5 3.1) 1-i .5 7.0 15.0 7.5 11.n i.5
YE~P. 15.'5 .o
-1110-
Appendix B. AD~&G/USGS Site B
3GZ. AUALYSllS OF SAMPLllS COLLllCTED AT WATER-QUALITY PARTIAL-RECORD STATIONS
SOUTH-CENTRAL AUSICA--Continued
•15294012 • lHI.I.O .... C AT PAAI(~ HVY "'" lilLI.OII 4K'
'IIATf:P QUAt.IT¥ DATA• 'IIATE" YEAR· OCTn!IF'" 19711 · TO SFPTE'48EA t979
SPE-COLI• STAEP~
CIF'tC F'OAMo TOCOCCt HARD-
STAEA-CON• F'ECAI.o-F'ECAt.• HAAO-NESS•
F'LOIIo DUCT-TF.14PJ;~-~.7 KF' 4GAA IIIESS NONCAA-
INSTAN•· ANCE PH &:l'tJAe:~ TFNPEA-UH-HF' ICOLS. IHG/1. F.IONIIT,O:
Tt"£ TANEOUS I MICRO-AlA ATURE ICOL.So/ PEA AS IMG.IL
DATE !CF'SI >!HOSt CUfofiTSI IDEG C) !nEG Cl 100 Mt.l 100· Mt.l C4C0'31 CACOJJ
JUt.
1 ..... 11'150 104~ 54 6olo 15.0 u.s 53 1<16 20· 4
ltAGNE-POT AS-CHI..o-F'l;.Un-!Ul.ICAo
CALC lUI+' S·IU14o SCOIUMo SIUIIfo RICA"• Sut.F'AT£ A toe: •. 'I IDEo "ts-ors-ots-ors-ors-80111-U£ C!R• DIS• ots-OI'!-SOLVED snt.ve:o !IOLVED SOLVED SOLVE'-' lNG A III~ATE SOI.VEO SOLVED SOLVE-D INGIL
IMG/1. IMG/L I !olGA 1'!611. AS I"'GIL I !olGA IMGI1. lloiG/L AS
DATE AS CAl as >!61 AS NAI AS lCI HCO:ll AS COli-~ S041 AS CLI AS Fl St02J
JUt.
24···· 6.1 1ol 2o3· .... 19 I) lo9 •• o oD 6.9
SOLI"S• SOLIDS• I'll TAO-NITRO-
'lEStUU£ SU'" OP' NITRO-GENo llltTPn-llltTRO-GENoAM• PHOS-
AT ldO COIIISrt• r.ENo 110?.-oft!Ol li!No li!No 140NIA • NtTRO• DHO<;-PH(IRIISo
nF.G. c TUENTSo N02•NOJ ors-AMHONlA llPGANtC ()RGANlC GENo PHOAIJc;o ors-on-Ots• TDTAL SOLVED TOf4L T(ITAL TOTAl.. TOTAL TOTAL c;oLve:o
SOLVED SOl .. v£0 IMGII. CHG.IL CNG.IL I '!GIL IMG/1,; CHG/L (HCi/1. IMG/1..
DATE .INGit,.l 114G/1.1 AS Ill AS Nt AS Nt A~ NJ. AS Nl AS IIIJ AS P) . A._ P)
JUl.. , ..... 38 33 .11 .13 .01 ol2 .13 .24 .nt .n1
CHAO-IIIONo MANOA-
!!AAlUHo CAOIHU" l'ltiJHo COPl'EPo fRONo sus-LEAn. Nf'SEo
TOTAL TDTAL. TOTAl.. TOTAL TOTAL PENOED IAONo TOUL TOTAL
aA~E'IIC RECOV• Pf"COV• AECOV-PECOV• OF.COV-AECOV-ots-oe:cnv-Pf"COV•
TOT'-L £PARLE ED ABLE EP&BLE EPAFILE !';DA8LE ERABI.E SOLVED F.:o4ALE ;::PABLF
IUGIL CUGIL IUGIL CUG/L CUGit. !UG.IL !UG/L (IJG.Il. IUGIL CUGit.
DATE ac; A"il ·IS· BA.~: A.S COl-.. AS CRt 4'5 CUI A'S FEJ AS FEI as F'E> 4'i_Pl'll •. AS >4•11
Jut. ,,. ... 2 0 0 E-2 260 160 100 llo 20
t4AN6A• ~F.ni-
NESEo >4AIIIGA• HEPCUPV SILVER· ZINC• >IF. 'IT
sus-NESE• TOTAL SEI.E• TOTAl.. TOTAL. SEIJt• (1£<;-
PENOED. ors-R!"COV• NIU14o A.ECOV-RECOV• CYAN tOE MENTo CHAAGEo
RECOVo SOI..V£0 E'l.t.BLE TOTAl.. 'AABLF. EPARLE TOTAl.. sus-StJ"i-
IUGIL IUG/t. IUGIL IIJGIL tur./1. lUG/I. IMG.IL PENQEI) PE~OEQ
:I&TE AS IONt AS Nlllt AS HGI-AS SEl A'S AGI AS Z'll AS CNI I '!Gil.. I ITIDAVt
JUl.
z~c. ••• I) 30
611946151372600
DATE
llCT
.1
-CAPPS
TtME
16. • • !:lOft
K NON-1DEAL COLONY COUNT
• L0\-1-FLOW PARTIAL-RECORD STAT!O)I
c
0 0 60 .oo ·6 17
'lA TYONEI< AIC .,
SEOI-
MENT
STOEIM• ·For-DIS•·
FI.Oih "~"NT"o CHARGE.
[NSTAN-<;liS-sus-
TANEOU<; PENOEO PENOEO
ICF"il I,.G.ILI IT.ICAYl
31 16 t.]
-111-.
--c-
c
[
c
c
c
0
c
c
c
D
...J
L
I'
I'
L
Appendix B. ADF&G/USGS.SiteG
SOUTH-CENTRAL ALASKA 1oi
15294010 DECEPTION CREEK NEAR WILLOW
LOCATION.--Lat 61°44'·52", long 149°55'59", in !'<E'iSE'~ sec.ll, T.l9 N., R.4 W., ~latsnuska-Susitna Borough, Hydrolbg1c
Unit 19050002, on right bank 0.~ mi (0.8 km) do..,'Ilstream from unnamed tributary, 3.~ m~ (5.5 km) east of Nili.ow,
and 5.0· mi (8.0 km) upstream from mouth.
DRAI:-<AGE AREA.· -48.0 mi 1 (124. 3 km.1 ).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--May 1978 to current year.
GAGE. --Wa:ter-stage recorder. Al1:itude of gage is ZSO ft. (76 m}, from topographic map.
RENARKS. --Records good except those for period of no gage-height record, Feb. 9 to ~lar. 2S, which are poor.
EXTREI·:ES FOR PERIOD OF RECORD.--~Iaximum discharge, 553 ft 3 /s (15. i m3 /s} May 9, 19i9, gage height, 6.22 ft (1.896 r.>);
minimum, 14 ft 3 /s (0.40 m3 /s) Sept. 10, 1979, gage height, 3.52 ft. (1.073 m).
EXTRHlES FOR CURRENT' YEAR.--Haximum discharge, 55; ft.3 /s (15.7 m3 /s) May 9, gage height, 6.22 ft (1.89J) m); minimum,
14 £t 3 /s (0.40 m3/s) Sept. 10, gage height, 3.52 ft (1.073 m).
[)AY
F,
7
ll
q
111
11
J;?
i3
. 14
j<;
1fl
17
lll
19
:!II
21.
?.?
23
::04
25
?fl
27
2q
;>q
11)
31
TOTAL
NEAN
N4X
"'IN
CFS~
Till.
AC-FT
OCT
27
fl?
5?
40
3R
37
3'5
40
40
37
'5"'
161':>
127
'107
7\
5?.
'54
ll<;
84
64
53 .
sn
4il
4R
46
44
411
36.
39
39
33
1780·
57.4
1M
?7
1.20
1.311
3530
DISCMARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1978 TO SEPTE~RER 1979
~F.AN VA.LUES
NOV
34
.35
35
33
32
31
30
211
26
24
22 zn ·
1q
17
17
1t'>
16
1"'
15
15
15.·
·1s
·15
IS
15
17
19
20
20
?.1
653
21.8
35
15
.45
.51
1300
DEC
22
24
27
29
30
31
31
30
30
30
30
29 zq
29
21'1
27
27
26
26 zo;
24
22
22
21
21.
21
21)
20
20
2o
19
790
25.'5
Jl
19
.53
.61
1570
19
19
lq.
18
18
1R
1R
18
1R
18
18
18
18
17
17
17
17
l7
17
17
17
'17
17
17
17
17
17
17
17
17
17
541
17.5
1'1
17
.37
.42
1080
F'ER
17
17
17
17
17
lfl
lf>
16·
16
16
16
1ft
16
lfl
16
16
1F,
If>
16
1(,
16
16
16
16
16
16
16
16
4"i3
16.2
17
1"'
.34
• :v;
RQQ
16'
16
IF>
IF,
16
1"i
1'5
15
]';
IS
IS
IS
1'5
1'>
17
41'1
46
43
41
40
40
7'!1
25.2
'5?
I<;
.<;1
.t'>l
1550
APR
40
41
42
42
42
43
43
44
44
46
48
48
47
. 47
47'
47
48
52
54
58
64
70
1'1:1
88
100
120
150
180
230
300
2303
76.8
300
40
1.60
.!. 78
4570
"'"Y
360
410
430
450
440
440
450
4q4.
501
359
347
3sq
361
368
385
354
326
2q2
274
268
. 228
215
219
242
203
193
176
167
150
130
110
9701
313
SOl
110
1,.52
7.52
19240
JUIII
lOO·
95
90
8'>
84
RO
7'5
70
6'!
64
61)
58
55
71
<;6
511
'51"1
46
44
60
67
51
42
36
6<;
33R
2RS
209
1M
lOR
2733
91.1
• 338
36
1.90
2~12
5420
JUL
1'>
62 so
4Sl
129
155
145
qs
76
64
53
55
R4
78
310
21'18
199
290
234
145
106
11.6
1.12 aq
217
191
114
86
70
62
64
3853
124
310
48 2.sa
2 .• 99
7640
4UG
76
69
55
48
60
7D
55
58
54
48
45
42
40
42 so
45
J<;
35
32
22
19
26·
24
22
20
20
19
19
21
29
26
1230
39.7
76
19
.83
.~5
2440
WTR YA 1979 TOT~L 26471 MAX 5111 ,.fN 14 CF'SN 1.'51 IN 20.'51 ~e-FT 5251 o
-112-
SEP
22
20
19
19
17
16
16
16
15
14
15
15
16
19
!9
'22
34
63
7!)
138
244
146
92
!1'>
114
.76
62
73
BO
63
1651 ss.o
244
14
1.15
1.28
n1o
Appendix B. ADF&G/USGS Site C (cont.)
i6S SOUTH-CENTRAL ALASKA ·
15294010 DECEPTION CREEK NEAR WILLOI1--Continued
WATER-QUALITY RECORDS
PERIOD OF RECDRD.--October 1978 to September 1979.
PERIOi/ OF DAILY RECORD .• --. . .
1~ . .\TtR TE~!PERATUR:ES: October 1'978, Hay to. September 1979.
INSTRUME.Hc\T.ION.--Tempe-rature recorde:r·Since October 1, 1978 .•
RHL".RKS.--~;o record October 23 to Nay 6 and August 1-8, due to recorder malfunction.
tem.persture at s.ensor "'·ithin 0.5°C.
Records represent ~tater
E :rr;;..C1·!ES FOR CiJRRE~lT YEAR.--
'!lATER TE:-!P!:RATURES: ~taximum, 17 .o•c July 3; minimum, o.o•c on many days during winter period.
OHE
OCT os ....
.Jl!L
24 •••
OCT
os •••
.JUL
OCT
n'i ....
Jlll
?.4 •••
OCT
Tt'4E
.1751)
08)5
C4LCtul'4
ors-
soLvEr>
IMG/L
A<; CAl
11
>HTC!O··
GENt
NO?.+N03
TOTAL
·ti-'GiL
AS .!Ill .
.os
.os
WATER QU.AltTY O.AT4. WATF:D YE4P OCTO"ll;l> 19711 TO SEPTE>4i3~R 1'179
STREAM-
F"LOw.
HlSTAN-
UNEOUS
ICF"<;J
4(1
Al
'44G"'F.-
'5l1J>4•
orc;-
soLvEo
C>4G/L
AS MGI
1.5
N!ikO-
t;E"l•
N0?•11103
!liS·
SOLVED
. (l.fi;/L
' 4'5 ,,, .
.o1
SPE•
C IF'tC
CO•l-
OUCT-
.AIIICE
.1'-'lCRO-
MHOSl
125
AS
SflQIUH•
DIS-
SOLVED
!MG/L
A5 NAl
~~
6.5
NITRO-·
r;r.IIJ.
AM'"'ONlll
TOTAL
.CMG/l
AS Nl
.• oo
.OJ
"ARHJH.
PH
!UNITS I
6.R.
7.2
POT4S-
S-TUM·
t)J<;-
SOL~EO
I>4G/L
"S I<')
t.~
.7
NtTRO-
C.F."l•
AMMI)Nf ~
!)!5-
SOLVEO
IMG/L.
AS >II·
.01
TI':"'PER-
HURF.o
A[R
!OEG Cl
14.o
~!CAR"'
BONiiTE
IMG/L
AS.
liCOJl
41)
3?
"'lTI~O
GE"No
OR(,ANII:
TOTAL
IMG/L
AS NJ·
.27
.28
T~"PE<>
ATURF.
IOI'"G Cl
4.5
11.0
CAR-
RQNATF"
(MG/L
AS C01l
0
n
NfTRO-
(';-Ef\le
ORGAN!C
ors-
<;OLvEn
!MG/L ·
AS IIH
.?.1
OXYGEN. ors-
o;nLVEil
!MG/Ll
12.1
Ill.?.
<;lJLF4TE
ors-
c;nLVEo
I·"'G/L
4'5 '>041
2.3
5.1
llltT"'0-
(';~~.4M
UIJ>J!A •
ljPGA"'!C
TflHL
·("'G/l:
A<; Nl-
·31
COt:.I-
F"ORM,
TOTAL•
IMMEO.
!COLS.
PER
100 '4Ll
K.lo
CHt.O-
RfOE.
O!S•
SOLVED
('!G/L
4S CL!
111
III!TRO-
GE"'•AM-
1-'QNfA •
ORGANIC
ors.·
!MG/L
AS. t>il
.30
!RON.
COLI-
FORM,
F"ECAL•
0.7
UM-HF"
ICIILSo/
100 Ml.l
120
rLUO-
RlOE.
Dl'l-
50LVEn
!MG/L
A<; F"l
ol
.o
NITRO-
GEN.
. TIIT4L
!"'G/L
.\.c;· Nl
.32
. I<>oN.
<;TRF.I>-
TOCOCCt
F"f.C4L•
Ki'" AGAP
!COLS.
PEQ
liJO 'ILl
<; IL! CA •
0!5-.
SOLv~n
!"GIL
AS
<;[O~l
11
10
PHi)<;-
I>HOQU'5o
TOTAL
IJotG/L
4'5 I>)
.ot
.nl
HARD-
NESS
(HG/L
AS
CACOJI
)6
c;oL ms.
RE"SIDuE
AT 11!()
DeG. C:
nr<>-
SOLVEI")
11-16/U
1!0
(,J
1>>!05-
PHORVS·
llTS·
SOLVC.O
!MG/L
AS P)
.01
HAI>f'l-
NESSo
NONCA~-
80NATE
IMG/L
CACI\31
3
0
c;ounc;,
Sll'-~ nF"
CO"''iTI-
TUENT'>•
orc;-
soLvEo
C'-'G/LI
76
55
4LU"~
l"lU'"'•
TOThL
RECOV•
EQA!'!LE
!UG/L
AS All
l.fA~!t';l
"l~SF'•
.&RSENIC
TOT4L
(IJG/L
AS A.Sl
TOT.AL
RECOV-
F,:QIIP.LE
WG/L
liS AAI
CA0'4fUM
TOTAL
Qf.COV-
E"RARLE"
IUG/L
AS COl
C~-'RO
MTUl-1,
TOTAL
<~F:COV•
EPAALE
(IIG/L
A~ CPl
COI>I>FQ,
TOT4L
RECnv-
E<>ARLE
(IJG/l.
A<; 1:111
!RO"lo
TOUL
PECOV•
ERA'3!_E
(IJI';/L
45 F"Fl
sus-
?E11111F.O
R~cov
E~<Ai'IL£
IIJG/L
A<; FEI
DIS-'
<;OLVl"l:'
IUG/L
45 FEl
LJ;:An.
TOTAL
RECOV-
El'IA!!LI'"
(IJG/L
~~ PF)).
.Lf4Ni,A-
NF.:'>Et
TOTAL
RFr.ov-
.ERA'lLE
IIJI';/L
A5 '4Nl
sue;-·
PF:IIIf)F"O
QF.Cnv.
lllG/L
A'i "'IIII
0'5 ••• 0 0 340 210 () ;_, 0 __ .,.
JUL
24· •••
O'i • •.
~ANG.:a
Nf.S~.
O!S-
SOLVf.O
(UG/L
A'> '1Nl
10
n
uc:-QCURY
TOTAL
l>fCOV-
ERAS!_'O
.I!JG/L
,\S HG1
.o
•. 1
III!Cl<E:L•
TOTAL
Rf.COV-
F.ClARU'
!Ut>/L
AS N!l
0
SFLF:-
NFUN,
T'1TAL
IUGIL
AS <;£)
0
0
13
StLVF.I>,
TOTAL
R~:cov
F:'~~RLE
IIJfi/L
AS AG)
0
7TNCo
TO'!"hl
QF:COV•
i;QAAt.t=:
(J)!;/L
AS ?•ll
n Jn
-113-
1'10
CAR'31liJ,
ORGA'IIIC
D!S-
SOLV!'D
C"4GLL
A'5 Cl
<..7
190
CAR'lO~I,
ORGMiiC
su~-
POJOf.'n
TOTAL
(l.tr;/!_
Ac; CJ
l.(l
1'5
CYA•l!OF.:
TOTAL
I,_,G/1.
A<; Clll
,no
?0
<;JOI)!-
MFJ~JT,
<;IJS-
PF.'lOED
{•At';/L)
J
<;fOT-
Mf:NT
1)[5-
0
r: .. t~RG~ •
SII<;-
PFIIIOF:O
CT /OAYl
.3?.
1. 1
[
[
[
[
[
c
[
[
[
[
[
L
[
L
~
~j
-)
Appendix B. AOF&G/USGS Site c (cont.)
SOUTH-CENTRAL ALAS~~ l~S
; 15294010 DECEPT!ON CREEK ~lEAR \'/JLLO\~·-Cont:inued
TEMPERATURE. (DEG. C) OF WATER, OCTOBER 1978
DAY· . MAX. . ~UN. DAY MAX MIN DAY. MAX I-liN
""~
1 4 .5. 4.0 9 5.(} 5.0 16 2. 5 . 1.5
2 5.0 4:5 10 5. d. 4.0 17 3.0 ' -··" 3 5.0 4.0 11 4.5 4·. 0 18 s.s 3.1}
4 4.0 3.5 12 4.0 3.5 19 3 .. 5 3.5
5 4.5 4.0 13 3.5 3.5 20 3.5 2.0 -., 6 5.0 4.0 14 3.5 3.0 21 z.o 2.0
7 5. 0. 4.5 15· '3.0 1.5 22 2.0 1.5
8 5.0 5.0
TE~IPERATURE (DEG. C) OF l~ATER, ~lAY TO SEPTEMBER 1979
DAY "'U MIN "fj\X. "'IIII !-lAX "!TN "'AJC MIN MAlC' MIN "'AX "I"'·
APRJ!,. MAY JIJI>If' JULY AUGIJST SEF'TEMBEq
_, 1 10.5 9.5 15.0 10.5 10.5 e.o
?. 11l.5· 9·..s 16.0 11.0 10.0 7.5
3 In.o s.o 17.0 12.0 9.5 e.o · __ ;'
4. 11.0 9.5 16.0' 13.0 10.0 7.0
c; .. 12.0 9.5 14.0 12.5 10.0 7.0
~. ~ ---12.0 10.5 12.5 12.0 'h5 7.0
7 3.0 !.5 tn.5 9.<; 13.5 11.0 9.5 7.0
~" 8 2~0 1.0 11.0 9.5 14.0 .11.5 1o.o 7.c:;
9 2.5 !.5 1?.0 9.0 14.5 11.5 14.0 12.0 10.0 7.0
10 . 3 .• n 1.5 1:>·~0 10.0 1<;.5 11.5 . 13.0 12.0 10.5 .~.o ..., n 3.5 . 2.0 1·!.5 10.0 16.0 13.5 13.0 u.s 10.0 ~-:J.
1? 3.5 2.0 11.5 9.0 15.5 13.0 14.0 12.0 9.5 !1.0
__.: 13 4.5 2.0 1!.5 9.5 13.5 12.0 13.0 u.s 9.5 a.s
1'-s.o 2.0 li. 0 A.c; 13.5 12.0 13.0 12.0 10.0 9.0
!"i 6.0 3.0 11.0 9.0 12.0 11.5 12.0 u.s 1n.o 9.0 -,
16 s.s 3.0 10.0 9.c;. 12.0 n.c; 12.0 u.o 9.5 e.o
17 s.o 3.0 10.0 9.5 14.0 11.0 !3.0' 11o0 9.5 9.0
....) !A s.s 3.5 l! .5 'l.n 12.5 11.5 12.5 11.0 9.5 9.0
19 6.0 4.0 l! .s 10.0 14.0 12.0 12.5 11.0 9.5 e.s
20 6.0 3.5 1n.c; 10.0 15.0 11.5 12.5 11.0 9.5 q.o
21 7.0 4.0 13.0 9.5 14.0 12.5 12.5 9.5 9.() 8.5
2?. 7.0 s.o 14.5 10.0 12.5 11.5 12.5 9.5 'l.O 8.()
-~ 21 7.0-s.s 14.5 ll.IJ 12.5 12.0 13.5 10.0 9.0 a.o
?4 7.5 .5.5: n.s !l.o 12.5-n.o· 13.5 10.0 a.s '!.0
2'5 . 9.0-·5.s· 11.5 to.c; 12.0 ll.S 13 .• 0 10.0 1\oS 7.0
?.6 9.5 6.5 10.5 10.0 12.5 10.5 13.0 10.0 7.5 6.'5
?7 10.5 7.0 10.0 9.0 13.o. 10.5 1?.5 10 •. 0 7.0 7.0
?.A !1.5 a.n 10.0 9.0 13.5 10.0 !2.5 10.5 7.5 7.0 zq 11.0 A.S 11.5 9.5 13.0 10.5 u.s 10.0 7•5 5.5
-.~., 30 10.5 a.5 !1.5 9.5 13.0 u.o u.o a.s 6.5 5.0
31 1o.s A.O 12.5 11.0 11.0 9.0
'10"1TH u.s 1.0 14.5 8.1) 17.0 10.0 1"4.0 .a.5 10.5 5.0
Yf4F! 17.0
=-il
[ -114-
f:
L
Appendix B. ADF&G/USGS Site D
Discharge measurements made at low:-flow-partial-record stations during water year 1979· ·Continued 277
Station No.
15241570
15241590
15242080
#15242100
*15285000
115290200
#15294002
#152940_07
Station name
Ninilchik River
tributary 3 near
Ninilchik
Ninilchik River
tributary 3 at
mouth near
Ninilchik
Crooked Creek
near Clam Gulch
Crooked Creek
near Kasilof
Wasilla Creek
near Palmer
Nancy Lake
tributary near
Willow
Willow Creek at
Hatcher Pass
Road near Willow
Deception Creek
above tributary
near Houston
Location
South-central Alaska--Continued
Drainage
area
(mil)
Period
of
record
Lat 60°05'27", long 151°19'44", in SW~
NW!~ sec.lS, T.l S., R.l-2· W., Kenai
Peninsula Borough, 100 ft downstream
from unnamed right bank tributary,
and 12 mi east of Ninilchik.
Lat 60°03'26", long 151°32'48", in SW~
SEk sec.29, T.l S., R.l3 ,. , Kenai
Peninsula Borough, 300-ft upstream
from mouth, and 4.0 mi east of·
Ninilchik.
Lat 60°08'16", long 151°10'30", in SE~
NW~ sec.34, T·l N., R.11 W., Kenai
Peninsula Borough·, 500 ft downstream
from unnamed left bank tributary, and
9.8 mi southeast of Clam Gulch.
Lat 60°17'50", long 151°16'20", in NE~
sec.l, T.Z N., .R.lZ w., Kenai Penin·
sula Borough, SO ft downstream from
culvert at Old Sterling Highway, 1.8
mi upstream from mouth, and 6.5 mi
southeast of Kasilof.
Lat 61"38'47", long !49°11'45", in SW~
sec.l3, T.l8 N., R.l E., Matanuska·
Susitna Borough, 60 ft upstream from
culvert entrance on Wasilla Fishhook
Road and 4.1 mi northeast of Palmer.
Lat 61°41'17", long 149°57'58", in SE~SE~
sec.34, T.l9 N., R.4 w., Matanuska·
Susitna Borough, 10 ft upstream from
culvert at Parks Highway, 0.3 mi up·
stream from mouth, and 4.5 mi southeast
of Willow.
Lat 61"45'49", long 149°40'54", in NE~
SW~ sec.S, T.19 N., R.2 W., Matanuska·
Susitna Borough, 0.2 mi downstream
from old bridge crossing, 2.5 mi up·
stream from Peters Creek, and 12 mi
east of Willow.
22.7
56.8
21.9
53.8
1978-79
1978-79
1978-79
a1951·52,
al973·77,
t978-79
16.6 al954·55,
1971
a1976·77
1978·79
8.00 1978-79
50.1 1978· 79
Lat 61"41'48", long 149°46'19", in SE~ 17.9 1978· 79
NW~ sec.35, T.19 N., R.3 W., Matanuska·
Susitna Borough, 0.2 mi upstream from
unnamed left bank tributary and 4.8 mi
northeast of Houston.
# See analyses. of samples collected at miscellaneous sites.
Also crest-stage par-tial--record station.
a Published in miscellaneous measurements table.
b Base flow.
c Water going into ice and channel storage; measurement does not represent basin yield.
-115-
Measurements
Discharge
Date (ft 3 /s)
10·11·78
11· 8-78
1·10·79
3·13·79
4·18-79
5-z -79
5·16·79
5·31·79
6-14·79
7·19·79
8·15·79
10·11·78.
11· 8-78
1·11-79
3·14-79
4·18·79
5· 2-79
5·16·79
5·31·79
6·14-79
7·19·79
8·15-79
10·11·78
11-8·78
1·10·79
3·13-79
4·18-79 s-2·79
5·16·79
5·31·79
6·14-79
7·19-79
8·15·79
10· 9·78
11· 7-78
1· 2-79
3-12·79
4-16-79
4·30·79
5·14·79
5·29·79
.. :. 6-13-79
7-18-79
8-14-79
5-7. 79
5-24-79
5-31·79
7-16-79
10-17-78
10· 5·78
10-5·78
1· 3·79
7·24·79
7.7
5.3
5.6
b2.1
9.4
40
26
9.4
b5.2
7.8 s.z
33
c9.0
l6
b20
47
164
74
41
b24
28
26
zs
c7.2
21
bZ1
l3
45
26
23
b19
22
19
80
40
33
b30
96
155
81
51 .
b40
51
36
96
49
50
72
7.6
7Z
16
28
31
[
[
[
n
[
-[
c
c
c
D
u
,.
•• J
• ..J
r:
Appendix B. ADf&GJ,USGS Sites E and B
278 Discharge measurements made at low-flow partial-record stations during water year 1979--Continued·:
Station No.
£ -. *15294008
B-... 1115294012
*15294025
*'!15296554
15511100
15511500
15512500
15514005
15514010
.Station name
Deception Creek
tributary near
Hous-ton··
Willow Creek at
Parks· Highway.
near Willow
Moose Creek near
Talkeetna·
Thumb River near
Larsen Bay
Hopper Creek near
Fairbanks
Steele Creek near
Fairbanks
Columbia Creek near
Fairbanks
Isabella Creek near
Fairbanks
Jusilla Creek dear
Fairbanks
brai~~ge. Period
area of
·Location (mi 1 ) record
South-central Alaska--Continued
-~at 61"41'40", long 149"46'21", in SE~ 8.89 1978-79
NW~ sec.35, r·~l9 N., R •. 3 w., Matanuska-
Susitna· Borough, 0.1 mi upstream from
mouth and 4. 7 m·i northeast .of Houston.
Lat 61"46'03", long 150°03'48", in SW~ 233
NE% sec·.6, T.l9 N., R.4 w., Matanilska-
Susitna Borough, at bridg.e· at Parks
Highway, 0.9 mi downstream from Decep-
1978-79
tion Creek, and 1.7 mi northwest of
Willow.
Lat 62"19'00", long 15.0"26'30", in NE~
sec. 30, T. 26 N. ·, R·. 7 W. , Matanuska·
Susitna Borough, at b.ridge on Peters·
vi Ile Road and· 10. S mi west of
Talkeetna.
Lat 57"il'26", long 153"59'41", in NW~
SEl• sec.31, T.32 s., R.29 w., on
Kodiak Island,. 600 ft upstream from
inlet to Karluk Lake and lZ. 5 mi south
of Larsen Bay· •.
'(ukon.Alaska
Lat 64"53'33'', long 147"24'42", Fairbanks
North-Star Borough, in NE~NE% sec.30,
T~l N., R.2 E., at downstream end of
culvert on Chena Hot Springs Road, 2.5
mi upstream from mouth, and 9.5 mi
no.rtheast of Fairbanks.
Lat 64·"53'36", long 147"29'12", in SE%
sec.23, T.l N., R.l E., Fairbanks
North-S.tar Borough, 8 ft upstream from
culvert at mi 4.5 on the Chena Hot
Springs Highway, and }.5 mi northeast
of Fairbanks.
Lat 64"53'29", long 147"32'39", in SW%
NE~NE~E~ sec.28,. T.l N., R.l E., Fair·
banks· North-Star Borough., at d_own··
stream· end of culvert at mi 2.6 o·n
Chena Hot Springs Road, 1.0 mi up-
stream from Wigwam Creek and 6.1 mi
northeast, of Fairbanks .
Lat 64453'10", long 147"40'30", in NE~.
NE~SE~ sec.26, T.l N., R.l W., Fair-
banks North-Star Borough, at down-
stream end of culvert at mi 1.0 on
Farmers Loop Road, 2.8 mi upstream
from.mouth and 3.1 mi north of
Fairbanks.
Lat 64~53'59", long 147"42'59~, in NE~
NW~SE~ sec.22, T.l N., R.l W., Fair-
banks North-Star Boroug·h, at down-
stream end of culvert at mi 3.4 on
Farmers Loop Road; 0.5 mi upstream
from Creamers Field and 3.9 mi nor·th
of Fairbanks.
52.3
25.3
2.25
al972·75 ,.
1978-79
1979
1978-79
10.7 adl967·74,
1976-79
£3.0 1976-79
£4.3 1976-79
fl.6 1976-79
Measuremeri t'S
Discharge
Date (ftl/s)
1!1-5-78
7-3-79
7-24-79
11-14-78
12-Zl-78
1-22-79
3-29-79
7-10-79
7-24-79
8-8-79
9-14-79
5-9-79
8-1-79
i0-18-78
11-17-78
1-23-79
3-28-79
5-19·79
6-27-79
8-6-79
9-19·79
8-13-79
8-13-79
8-13-79
8-10-79
8-14-79
8·10-79
8-14-79
8.9
10
16
cl03
bl61
bl39
164
1,180
1,040
652
b205
596
34
327
60
63
85
151
118
31
24
b0.0002
bl.l
bO .10
bO. 11
b0.12
bO.Ol
b0.008
15514015 Grenac Creek near
Fairbanks
Lat 64"53'53", long 147"45'13", in SE~
NW~SE~ sec.Zl, T.l N., R.l W., Fair-
ba~ks North-Star Borough, at down-
stream end of culvert at mi 4.6 on
Farmers Loop Road, 1.0 mi upstream
from Creamers Field and 3.9 mi north
of Fairbanks.
fl. 3 al967-68, 8-10-79
1976-79 8-14-79
bO.OS
b0.06
# See analyses of samples collected at misc.ellaneous sites. ** Also a continuous·record 'station for ~water temp.erilture.
a
b
c
d
f
Also crest-stage partial-record station.
Published in miscellaneous measurements table.
Base flow.
Water going into ice and channel storage; measurement does not represent basin yield.
Operated as a crest-stage partial-record station.
Approximately.
-116-
Appendix B. ADF&G/USGS Site D
3oo
PHOS-
Pfi6RUS.
ANALYSES OF $ANPLES COLI;ECTED AT WATER-QUALITY .PARTIAL~RECORD STATJ.ONS
SOUTH-CENTRAL ALASKA--Continued
15294002 -I~ILLOI~ C AT HATCHER PASS ROAD NR. WILLOW AK--Com:inued
WATER QUALITY DATA, \'lATER YEAR OCTOBER 1978 TO SEPTE~IBER 1979
BARJUI'Io
TOTAL
C'iRO-
"'lUM.
TOTAL IRON.
OATF.
D't.s-
set.vEo
11-lG/L
A5 P)
~LUM
lllUMt
TOTAl.
RECOv-·
ERABLE
IUG/L
AS AU
ARSENIC
TOTAL
IUG/L
AS AS!
... RE:Cov-
ERAI'!LE
IUG/L
AS BAI
CADMIUM
TOTAL
RECOV-
ER'ARLE
IIJG/L
AS COl
. RE:Cov-
ER.ARLE
IIIG/L
Ac; CR!
GOPPERo
TOTAL
RECOV.-
ERABLE
IUG/L
AS CUI
IRON •.
TOTAL
RECOV-
ERABLE
IUG/L
A<; FE)
DIS•
SOI.V.ED
tUG II.
AS FE!
LE~D.
TOTAl
RECOV-
F.R~BLE
CUG/L
AS PRJ
"1o\NGA-
NF.SEw
TOTAL
RECOV-
ERAEltE
tliG/L
AS "'Nl
OCT os ••• .on 50 3 0 0 0 3 llO 110 0
OATE
OCT
os •••
JUL.
24 •••
DATE
OCT
os •••
JUL
24 •••
DATE
OCT
os •••
JUL
24 •••
O.ATE
OCT
O"S •. ~·.
0940
1345
CALCIUM
tHS-
sot.:v£o·
fMG/L
AS CAl
10
7.5
IIIITRO-
GEN•
N02+N01
TOTAL
IJIOG/L
AS Nl
.37
"'ANGA-
NESE•
orc;-
sot.vED
IUG/L
AS "'1111
D
STREA"'-
~"LOW.
!NSTAN-
T.&.NEfJUS
ICFSI
16
31
14AGNE-
SIUM•
. OI5-
SOLVE[I
(MG/L
4'5 MGI
?.1
1.4
NIT'lO-
Gf'lll,
N02+>103
OIS-
SOt.VED'
I"'G/L
AS 'II
.06
.10
MF.RCURY
TOTAL
RECOV-
ERABlE
IUGIL
AS HGI
.o
SPE-
CIFIC
CON-
DUCT-
ANCE
!MICRO-
. "1H0Sl
120
811
SODIUM•
DIS-.
SOLVED
tMG/L
AS NAl
12
7.0
NITRO-
GEN•
~MMONIA
TOTAL
. IMG/1.
AS Nl
,01}
.o1
NICKEL•
TOTAL
RECOV-
ERABLE
IUG/L
AS Nil
1
SEt.f:-
NIUi'h
TOTAL.
IUG/L
AS SEl
SILVEP,
TOTAL
RECOV-
ERARLE
IIIG/1. '
liS AGl
7INCo
TOTAL
C!ECOV-
ERABLE
(IJGIL
A'i ZNI
CARBON.
ORGANIC
DIS-
SOLVED
CMG/L
AS Cl
CARBON.
ORGANIC
sus-
PENDED
TOTAl
CMG/L
AS Cl
*15294007 • OECE~TION C ~B TR NR HOUSTON AK
PH
!UNITS!
7.4
POT AS•
SIUM,
015-
SOLvEn·
1"4G/L
AS K)
1o1
,7
NtTC!O-
GfN,
A>l'lONI A
. DIS-
SOLVE!'
IMG/L
AS ~Jl
.oo
T!;;MPER-
ATURE.
AIR
tOE:G Cl
16.5
BICAR-
BONATE
. IMG/L
AS
HC031
37
28
NITRO-
GF.I'.Jo
ORGANIC
TOTAL
ti'IG/L
AS Nl
.20
.zn
TEI'IPEC!-
~TURE
IDEG Cl
3.5
12.0
CAR-
BONATE:
(MG/L
AS C03l
0
,(I
NITRO-
GEN.
OP\,ANIC
DI5-
50LVF.O
IMG/L
AS Nl
.?o
COPP€R.
OliYGEN.
DIS-
<;OLVEO
IMG/Ll
13.()
10.3
5Ulf'ATE
ors-
c;oLVED
IMGIL
Ac; S04)
2.3
6.2
III!TRO-
GO::N.AM·
"'fJIIIlA +
O>IGANiC
TOTAL
IMG/L
A<; NJ
.20
.21
COLI-
FORiolo
TOTAL,
I!4MED.
CCOLS.
PER
loO MLl
K36
CHLO•
RIDE,
DIS-
SOLVED
tMG/L
AS CLl
22
8.6
NITRO-
GENoAi.t•
'40NU •
ORGANIC
Dts.
tMG/L
AS Nl
.zo
COLI-
FORM.
FECALo
0.7
U"4-MF'
ICOLSo/
100 MI.!
1(22
FLUO-
RIOEo
DIS-
SOLVED
ti'IG/L A.S -F'l
.o
.o
NITRD-
GE"'o
TOTAL.
tMG/L
AS Nl
.24
.sa
IRON.
IRON•
SEDI-
MENT•
sus-
PENDED
IMG/LI
STREP-
TOCOC.CI
FECAL•
t<F AGAR
I COL '5o
PER
too ~~
K2
)(4
SILICA,
ors-
•>ot.ve:o
CMG/L
AS
SIO?.l
11
PHOS-
PiiORUSo
TOTAL
CMG/1_
A<; PI
.no
SEOI-
.. E:IIIT
DIS-
CI-!4RGE, sus-
PE:NDED
IT/DAY!
l-IARD-
NESS
II'IGIL
~s
CAC01l
34
25
souos.
RESIDUE
AT lBO
OcG. C
OIS-
SOLVE:D
CMG/U
PHOS-
PiiO~lUS •
DI~
SOLVEO
II'IGIL
AS P!
.oo
.o1
HARO-'
NEss.
IIIONC~R
BONATE
IMG/L
CAC03l
3
2
souos.
SUI-t OF
CON<;Tl-
TIJi;NTSo
OI<;-
SOLVEO'
IMG/LI
79
56
AUJ!o!-
INIJM•
TOTAL
RECOV-
ERA~LE
IUGIL
AS ALl
60
'!ANGA-
NESE•·
TOTAL
P.E:COV-
."A"'GA-
NE:'iE• suc;-
PF:Mne:n
-QE-COV• --
ll!G/L
OATE
ARSE>J!C
TOTAL
IUG/L
AS ASl
ilARIUM•
TOTAL
REcov-
ERABLE
IUG/L
AS SAl
C~OfltlJM
TOTAL
RECOV-
€P.JI6lE
IUG/L
AS CO!
CH>IO.-
"'TU"',
TOTAL
RF.:COIJ•
E'~ABLE
!UG/L
~c; CRl
TOUL
RO::CCIV-
E11AAt:E
II.JG/L
AC: CUI
I 'ION,
TOTAL
RF.COIJ-
EI'lABLE
IUG/L
AS F'EI
sus-
PENDED
PECOIJ-
E"A8LE
(UG/L.
AS F'EI
DtS-
SOLVEO
(UG/L
AS F'El
LE"-0•
TOTAl
RECOV-
ERABLE
IUG/L
AS PAl
-ERABLF:--
IUG/l.
A<; H"ll ~c; ""~'
OCT
as ... 0 0 0 9 190 n 0
JtJL
24 ••• 0 0 0 10 2R 120 170 14 10 5
K
*
~;o:-o-IDEAL COE.ONY COUNT
LOW-FLC\'1 PARTIAL-RECORD STATION -11;7-
n
n
L~
r
L
[
[
[
[
[
[
[
[
[
[
[
L
__ )
c.J
" I
..__;
r '
!
L
I
L
[
[
[
Appendix B.
DATE
OCT
o~S •••
JUL.
Z4···•···
MANGA-
NESE,
ais-
_s6t.VEO
CUG/L
AS MNl
0
o;
F
ADF&G/USGS SiteD (cont.);._SiteF
ANALYSES OF SA.\IPj:.ES COLLECTED AT WA'FER~QUALITy PARTIAL~RECORD STATIONS
SOUTH-CENTRAL.ALASKA--Continued
15294007 -DECEPTION C AB TR NR HOUSTON• AK--Continued
I~ATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
'~ERCI)RY
TOTAL
RECOV-
ERABLE·
!UG/L
AS HGI
.o
.I
N.lCKEt..o
TOTAL
RECIJV'-
EPARt.E
!UG/L
AS Nil
3
SFLE-
IIIIUMt
TOT4L
IUG/L
4<; SEi
o·
0
SlLVFRo.
TOTAL .
RFCOV-
ERABLE.
!UG/L
A<; AG!
0
0
ZINC.
TOTAL
RECOV-
ERABLE
WG/L
45 Zllll
0
CAPBOih
ORGANIC
ois-sotvF.:o
!MG/L
AS Cl
4.2.
CARBONe·
ORGANIC
sus-
PEIIIOEO
TOTAL
IMG/L
AS C!
.3
~15294008 -DECEPTION C TR NR HOUSTON AK.
COLI-
F'ORHt
CYANIDE
TOTAL
!MG/L
AS OH
c;e:oi-
MENT·
·sus-
PENDED
!MG/LI
J
3
sFor-
'4ENT
ots-
CHARGE.
sus-
PE"'DED
!T/OAYI
.13
.25
3tH
S~E
Cif'IC
CON-
DUCT-
A~JCE PH
TOTAL,
IMMEO,
I.COLS.
COLI-
F'ORM,
FECAL•
0.7
UI-I-MF
<;TREP-
TOCOCCI
~f:C~L•
KF' AGAR
!COLS.
HARO-
"'F.:SS
tHG/L
HARIJ-
NESS•
NONCAR-
!!OIIIATE
!!o4G/L .
DATE
STREAM-
FLOW,
PlSTAN-
T4NcOUS
!CF'H
!MICRO-
MHOS! !UNITS I
TEMPER-
IHURE,
'AIR
!DEG Cl
TEI'PER-
HURE
tOEG Cl
OlCYGENo
IHS-
SOLVEO
!t.IG/Ll
PER.
100 MLI
!COLS./
100 ""-)
PER
100 '4Ll
AS
Ct.C031 CAC03t
OCT
os •••
JUL
24 •••
Oo\TE
OCT
os ....
JUL
24 .....
DATE
OCT
os •••
JUL
24 •••
1115
1430
C~LCIUH
nrs-
soLvEa
!MG/L
AS CAl
11
8.4
NITRO"'
GENt
N02+N03
TOTe.L
!MG/L
AS Nl
.1'3
.26
8,9 ISO
16
M.fiGNE-
SIUM,
DIS-
SOLVED
!MG/L
AS MG)
2.2
1.6
NITRO-
GE'Io
N02+N03
DIS-
SOLVED
!MG/L
. AS Nl
.15
.22
9o
SODIUM,
DIS-
SOLVED
!MG/L
AS NAI
14
e.o
NfTRO-
GEIII•
AMMONIA.
TOT4t.
!MG/L
·Ac: Nl
.oo
.01
POTAS-
SIUM•
DIS-
SOLVED
!MGIL
A5 Kl
lo1
.2
NITRO-
GEN•
AMMONIA
DIS-
SOLVED·
!MG/L
A5 Ill)
.01
15.0
8TCAR-
80NATE
!MG/L
AS
HC03l
41
NITRO-
GEN•
ORGANIC
T'lTAL
!MG/L
AS Ill!
.2.9
,04
CHRO-
MIUI'h
3.0
11.0·
CAR-
80111ATE
!!o!G/L
~s co3!
0
0
"'ITPO-
GENo
ORGANIC
DIS-
SOLVED
!MG/L
AS N!
.56
SULFATE ors-
soLvEo
(MG/L
·Ac; S04)
2.0
"'tTRO-
GENoAiol-
lo!OIIIIA +
OR~ANIC
TOT ~L
!MG/L
~c; m
.29
.os
K22
CHLO-
RIDE,
DIS-
SOLVED
!!4G/L
AS CL!
24
NITRO-
GEN,A11-
MONIA •
ORGANIC . J:s.
!MG/L
AS Nl
IRO!Il.
IRON,
TOTAL IRONo
1<76
FLUO-·
RIDE,
DIS-
SOLVED
!MG/L
AS F'l
.o
.o
NITRO-
GEN.
TOT.\L
{loiG/L
AS N!
.39
.31
1(4
KS
SILICA.
nrs-soLvF.:o
!~GIL
AS
SIO:>J
11
11
PHOS-
PHORUS •
lOTAL
!MG/L
AS PI
.oo
.01
17
28
snuos.
RESIDUE
AT lBO
I)EG. C
nrs-
soLVEO
(MG/U
92
67
PHOS-
PHORUS•
DIS-
SOLVED
!MG/L
4S P)
.oo
·01
J
3
souos.
SUM OF'
CONSTI-
·ruF.hiTS•
orc;-
SOLVED
(MG/U
86
59
ALUioi-
INU14o
TOTAL
RECDV-
EPAF!LE
!UG/L
AS ALl
60
'4ANG4-
NESE•
DATE
ARSENIC
TOTAL
IUG/L
AS ASI
F.IARlUMo
TOTAL
RECOV-
ERABLE
!UG/L
AS BAI
CADMIUM
TOTAL
RECOV-
ER~BLE
!UG/L
AS CO!
. TOTAL
RECOV-,.
ERA8LE
IUG/L
AS CRJ
COPPER,
TOTAL
::!ECOV-
ERARLE
!IIG/L
A<; CUI
.RECOV-
F.R~BLE
IUG/L
AS F'El
sus-
PENDED
RECOV-
ERASLE
IUG/L
AS FE>
DIS-
SOLVED
IIJG/L
AS FEl
LEAD•
TOTAL
RECOV-
ER&.BLE
!UG/L
AS· PB!
M4111GA-
NESE•
TOT At.
RECOV-
EPABLE
(Ut;IL
At; MNI
sus-PENo::o
RECOV,
!IJG/L
AS Mil)
OCT
QS •••
JUt
24 •••
DHE
f\CT
~s •.•
JUt
0
MANGA-NESE,
DIS-
SGL'tED
!II GIL
AS "'Nl
40
30
0
0
Mt:RCUR'Y
TOTAL
RECOV-
ERABLE
!UG/L
AS HGJ
.o
.o
0
0
NICKEL,
iOTAL
i<ECOV-
ER~BLE
<UG/L
~5 'li J
:; NON-IDEAL CO LOW CCU!'iT
0
10
SFLE-
NIUK•
T<lTAL
lliG/L
AS SEI
0
0
LOii-FLOW PA:<TIAL-RECORD STATION
)
3
S!LVER,
T'lHL
~:<'CI1V
E'H'lLE
!I.!G/L
~c; kGJ
0
300
360
ZINC,
TOTAL
RECOV-
E:!aBLE
ClJGIL
b.S Z"'l
10
0 ?0
-118,...
120
C.&.J;BQN,
ORGANIC
ors-
soLve:o
!HG/L
AS Cl
230
240
CARBON,
O~GIINIC
sus-
PE"'OED
TOTAL
I"'GIL
AS Cl
.7
11
CY4Nl0E
rOTAL
!,_,GIL
A<; CNI
.oo
40
SEDI-
"'iE~T.
suc;-
Pf.NDED •
!"'G/U
3
7
10
SEOT-
11E"'T ors-
CKARGE.
sus-
PF.W)EO-
(T/DAYl
.38
·Appendix B.
DATE
JUL
?4 •••
DATE
JUl.,
2"4 ....
DATE
JIJL
24 •••
POTAS•
SIU"•
DIS-
SOLVED
IMGIL
AS Kl
.5
NITIIO•
GEN•
ORGANIC
TOTAL
IMGIL
AS fill
.J4
IRON• ors-
'iOLVED
(IJGIL
AS FEI
J9Q
ADF&G/USGS Site F
ANALYSES OF'· SA~IPLES COLLE6TED AT HISCELLANEOUS SITES
SOUTH-CENTRAL AtAS!CA--Continued
614446H9551000 -U:-INAI·lED TRIB TO DECEPTIO~ C NR WILLOW AK--Continued
\1ATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTENBER 1979
BICAP•
BONATE
!lo!GIL
AS
HC011
30
NITPO•
GEN.AN-
MONill +
OIIGANIC
TOTAL
IMG/L
AS "')
.37
LEAO,
TOT•\l
RECOV-
ERA~LE
IUGIL
AS <>91
CAR-
BONATE
IMGIL
AS C03l
0
NITRO-
GE"'o
TOTAL
OofG/L
AS Nl
.42
MANGA•
NESE,
TOTAL
REcov-
EPARLE
IUGIL
AS MNI
30
'51JLF'ATF.
ors-
soLvEo
IMGIL
AS S04J
PHOS-
PHORUS.
TOHL
IMGIL
AS PI
.02
MANGA-
NESE• c;us-
PENOEo
RECOV.
IUGIL
AS loiN!
CHLO-
RIDE,
OIS-
SO.LV£0
IMGIL
AS CLJ
PHOS-
PHORUS.
ors-
soLvEn
IMGIL
AS Pl
.02
MANGA-
NESE·•
DIS-
SOLVED
IUGIL
AS MNI
20
FLUO-
RIDE,
. nis-sm. •JEll
IMGIL
AS F'l
.o
A<?SENIC
TOTAL
IUGIL
A'5 A<;)
MEPCUPY
TOTAL
RECOV-
EIIARLE
IUGIL
AS HGJ
.n
'HLICA,
,Is-
c:;oLVEO
IMGI'L·
AS. c;yo?.J
11
AAPlUM•
TI)TAL
l>£COV-
EC!A8LE
IUGIL
AS BAI
o·
5~tE
NTU"-•
TI'ITAL
IUGIL
AS SEI
0
souos.
RESIDUE
AT tao.
DEG, C
DIS-
SOLVED
(MG/Ll
70
CAD~IUM
TOTAL
RECOV-
ERABLE
IUGIL
AS CO-l
SILVER.
TOTAL
RECOV-
ERABLE
CUGIL
AS AGI
0
SOUDS·
SUM OF'
CONSTI-
TUENTS.
OIS-·
SOLVED
tHGILl
54
CHRO-
MIUM•
TOTAL
RECOV-
ERABLE
IUGIL
A<; CRl
10
71NC•
TOTAL
. PECOV-
ERABLE
IIJGIL
AS lNI
0
N!Tl>O•·
GE"'•
N02•N03
·TOTaL
I'IGIL
AS m
.as
COPPER•
TOTAL
.RECOV-
ERA!lLE
IUGIL
AS CUI
17
CYAIIIIOE
TOT.\L
IMG/L
AS CNI
.oo
614251149585100 -LILLY C AB HONLING DOG FAP.M NR NILLOW AK
<;FE-
C!F'!C
CON•
DUCT-
ANCE
COLI-
FORM,
TOT~L•
IMMf':O.
I COLe:;.
S'I'REP-
TOCOCCI
FF:CAL•
KF AGAR
ICOLS.
HARD-
NESS
IMGIL
HARD-
NESS.
"'!TRO-
GEN. NITRO-
"'O?+NI)1 GF.:No
DIS• AMMONU
SOL VEO · · TOTAL
tMGIL IMGIL
AS NJ AS !Ill
IRONo
TOTAL
P!'COV-
.ERA!lLE
IUGIL
AS F'EI
sEOI-
'-E'NT. sus-
PE'NOED
!MGIU
10
.03
IRON,
sus-
PENnED
RECI'IV•
ERARLE
IUGIL
AS F'EI
300
SEDI-
MENT ate-
CHARGE. sus-
.PENoe:o
IT IDAYl
.32
'l'lME I MICRO•
MMOSJ
TEMPER'-
HURE
IDEG Cl
OXYGEN.
nrs-
SnLvEo
I,.GILJ
PER
100 MLJ
COLI-
F'O'IM+
FEr.AL,
0.7
UM•MF'
ICOLS.I PER
100 MLI
AS
CACOJI
NONCAR-
80NATE
IMGIL
CAC03l
CALCIUM
OI'i-
SOLVED
IMG/L
A<; CAl
'IAGNE-
Sill"'•
OIS-
50LVED
!"'GIL
AS ""Gl DATE
OCT
17 ••• ·. 1'100
DATE
OCT
17 •••
DATE
OCT
'l7 •••
SODIUM•
'DIS-
SOLVED
IMGIL
>\S lilA)
1.8
NITRO•
GEN•
N02+NOJ
TOTAL
IMGIL
AS Nl
.07
POTAS-
SIUM•
DIS-
SOLVED
IMGIL
liS 10
NITRO-
GEN.
NEJ2•N03
DIS-
SOLVED
IMGIL
AS Nl
..07
2.0
BICAR•
BONATE
IMG/L
AS
HC03l
27
NITRO-
GEN•
AMMONIA
TOTAL
IMG/L
AS Nl
.02
12.4
CAR-
FIONATE
IMGIL
AS C03l
0
NITRO-
GEN•
AMMONIA
ors-
SOLVED
IHGIL
AS Nl
.ot
1nn "'LI
1Jq"
SULFATE
DIS-
SOLVE'I)
I"'GIL
AS SD4l
NITRO-
GEN•
ORGANIC
T.OTAL
IMGIL
AS Nl
~51
A3·
CHLO-
RIDE,
DIS-
SOLVED
llofGIL
AS CLl
1.9
NtTRO-
GEN •.
ORGANIC
DIS-
SOL YEO
lloiGIL
AS NJ
.43
-119-
71
FLUO-
RIDE•
DIS•
SOLVED
IMG/L
AS F'l
·1
NITRO-
GEN•AM-
lofONIA +
OPGANIC
TOTAL
IMGIL
AS Nl
.55
28
SILICA.
DIS-
SOLVED
tMGIL
AS
Sl02l
9.0
~I!Tl'!O
GENoAM-
MONIA •
ORG4.NIC
PIS.
IMGI'L
AS Nl
.44
c:nLI'ls.
RESlf'JUE
H 180
OEG, C
DIS-
c:;OLVEO.
{lofGILJ
56
N1Til0-
GE"',
TOTAL
IMG/l
AS Nl
.62
souoc;.
SU!o! OF'
CO"'STI-
TUE"lTS,
DIS-
SOLVED
11-<GILI
41
PHOS-
PHI)IlUS.
TOTAL
CM.GIL
AS Pl
.o!
1.8
[
[
[
[
I
L
[
[
[
[
[
[
[
[
[
[
t
~ Appendix B. . ADF&G/USGS Site G
1
ANALYSES OF SAJ.IPLES COLL~CTED-AT. ~llSCELLANEOUS SITES ~
1 .. SOUTH-CENTRAL ALASKA--Continued ',i -, 614906149385000 -PETERS C BL FURCHES C NR WILLOW AK
W'A'fER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
SPE-COLI-
' ClF'TC FOR"'• HIIRO-
STREAM-CON-FECAL• HARD-"'ESS.
FLOW• nucr-TE~<PEC!-OXY6EN, 0.7 "'F.c;o; "'ONC~I>-
. INST.AN-· At-ICE. PH A.TURE .• TEMPER-DIS-UM-Iolf CMGIL RONATE
TI~IF. TANEOUS CI<JCRO'-. AlR' ATURE SOL VEl}' ICOLSw.f. .. s tMGIL
DATE !CFSl MHOS! !UNIT<;>· IDEG Cl cnF.G Cl CMGILl 100 MLl CAC011 C,!.C031
JIJL
:;!4 ••• 1230 465 33 6.7 ts.o a.o 11.5 <1 13 2
_j
!otAGNE-POT AS• _CI-4LO-F'LUO-SILICA,
CALCIIIH SlUM,. SODiuM, SIUM• BY CAR-SULFATE' RIDEo RIOt::, DIS-
DIS-DIS-OIS-ors-RON ATE r.aR-DIS-DIS-DIS-SOLVED
SOL VEil SOLVED SOLVED SOLVEO IMG/L RON ATE SOLVED SOLVED SOLVED IMGIL
' IMG/L CloiG/L IMG/L IMG/L AS (MGIL !"'GIL (MG/L !"'G/L AS
DiTE AS CAl AS MGl AS NAl AS Kl HC031 Ac; C03l AS 5041 AS CLl AS F"l SI02l
~ .JUL
.?.4 ...... 4,6 .,4-t.n ,4 13 0 4.3. ,R .o. 5.?.
;
SOLI OS. souos. NITRO-NITRO-
_j RESIDUE SUM OF' NITRO-GENo NITRO-NITRO-GENoAM-PHOS-
. AT 180 CONSTI-GENo "102•N01 GEN. GEN. "ONIA + NITRO-PI-lOS-PHORUS,
OEG. C TUENTS_, IIIO?.•N03 DIS-A~""'CNIA OR<;A"'IC ORGANIC GEN, PHORIJS• ors--, Dis-·ors-TOUL SOL YEll TOT"-L TOTAL TQT<\L TOTAL TOTAL SOLVEr>
SOLVED SOLVED (lo4r;/L !"'GIL !"GIL (MG/L CMG/L !'"'GIL IMG/L (~GIL
DATE ___; !14GILl !14G/Ll ~s Nl AS N) AS Nl A<; Nl AS Nl AS Nl ~S PI AS PI
JUL
-., 24 .... 19 23 .oc; .os .01 .27 .28 .33 .no .no
CH~O-IPONo 14ANGA-
!UR!UM. CAQI-IIU'I M!UMo COPPF.t:!, It:! ON, sus-LEAD, IIIESE,
" TOTAL Tr>TAL TOTAL TOTAL TOTAL PENOEO IRONo TOT4L TOTAL
ARSENIC RECOV-RF:COV-t:!ECOV-t:!ECOV-Q"'Cnv-RECOV-DIS-RECOV-i'1ECOV-
TOTAL ERARLE ERA8LE ERA8LE ERABLE ERA6LE ER"<BLE SOLVED fRARLE ERABLE
CUG/L IUG/L IUG/L IUG/L IIIG/L CllG/L IUG/L IUG/L lUG/L CUG/L
DATE AS AS! AS S_Al AS COl AS CRl AS CUI A<; F'El AS-F'EI AS FEI AS PF!l AS "'"'l
~ .
IUL
24 ••• 0 0 10 3· so 40 10 ~q 0
lo4ANGA.., SEDI-
NESEo HANG A-MEPCURY SILVEC!, ZI'ICo "lENT
sus-NESE, TI'ITAL SELE-TOHL TOTAL SEOI-CllS-
PEND ED DIS-RE:COV-"'IU"~• RECOV-RF.CQV-CYANIDE MENTo CHARGE,
RECOV. SOLVED E<>ARLE TOTAL El'lASLE ERABLE TOTAL sus-sus-
IUG/L CUG/L IUG/L IUG/L cur.tL IUG/L I!"G/L PENOEO PE'IOEO
OATE AS MNI AS MN) AS 1-1Gl AS Stl AS AGl Ac; Zt<ll AS CNl IMG/LI <T./DAYl
JYL
24 ••• 0 .1 .n 0 20 .oo 4 s.o
614446149551000 -UNNANED TRIB TO DECEPTION c NR WILLOW.AK
SPE-r.nLI-
CIF'IC FORM, HARD-,.AGNE-
STREAM-CON-FECAL, HARD-NESSo CALCIU'-4 siu.-., <;O{l!lJI4•
F't.OIIo DUCT-TE1o4PEtl-o.7 NESS NO"'CAR-OIS-ore:-Dis-r-INSTAN-ANCE PH ATtJREo TEio!PER-UH-MF' CMG/L BONATE SOLVED SOUlED SOL'!FO
TIME T~NEOUS t~ICRO-AIR ATURE ICOLS,/ AS <14G/L 11-15/L CMG/L !~GIL
DATE. !CF'5l "lHOSl !UNITS! !OEG Cl IDEG Cl too ML> CAC03l C~CD3l t.S CAl AS MGl t.<; "'AI
JilL
24 ••• 1550 12 76 ... 7 16.1) 13.Q 94 27 2 8.0 1.7 ... 9
[
L -120-
~ 9J06!.:1
~380.L~O ~38~3.Ld3S .Lsn~n\f A1nr
oc: 0~ oc: oc: 0~
G')
->
G')
m
'--" c
m .--
"0 L
-1
:L r-
'---' .,
m ;_
: m ~
-1 -L.
L
·61.6~
SE>NIO\f31:i 3E>VE> .:1.:1\fl.S M0111M tf3M01
·::> x~pu~dd'g'
Appendix C.
3
-....
·w
·w
u.. -2
:t:
....
a.
w
0
w
(!)
1 <
(!)
MIDD·LE WILLOW STAFF GAGE READINGS
1979
10 20
JULY
,, .-
10 20
AUGUST
Figure . 2
-122-
10 20
SEPTEMBER
10 20
OCTOBER
[
n
n
u
[
[
[
[
[
[
[
[
[
[
[
c
E
[
[
-£Zl-
~380J.OO ~38W3J.d3S J.sne>nv A1nr
0~ 0~ 0~ 0~ 0~ 0~ 0~ 0!
• 4 ._. .-. .• ! .~ .. . .. .
6.l6~
SDNIOV3l::f 3E>VE> =I.:IV l.-S 13NNVHO 301S M0111M 31001W
Ci)
>
a. Ci)
m
m
m
.. r
-f L -
App~ndi x C-:.
-.....
w
w
u.
3
-2
l:
.....
a.
w
0
w
CJ 1
<(
CJ
MIODLE WILLOW SLOUGH #1· STAFF. G'AGEREADINGS
1979
10 20
JULY
10 20
AUGUST
Figure 4
-124-
10 20
SEPTEMBER
10 20
OCTOBER
[
.[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
E
[
C
-szt-
s aJn6!.::1
l:f380l.OO l:f38W3l.d3S l.Sne>nv A1nr
0~ 01. 0~ 01. 0~ 01. 0~ 01.
L..
r
G)
)>
G)
m
.--
c L
m r
"'0
'--r
:I: r
L
-.., L
m
m
'-
-r ,--
L.
6L61. ·e
S~NI0\'3!:1 3e>Ve> .:1.:1\fJ.S G# He>n01S M0111M 31001W
L
":l x~puadd\f
·.Appendix C. ·.
.. :
3
-....
w
w
u.. -· 2
:r: ....
a.
w
0
w
(!'
1
<C
(!J
• ..
UPPER WILLOW STAFF GAGE READINGS
.. .·. 1979
10 20
JULY
10 20
AUGUST
Figure 6
-126-
10 20 10 20
SEPTEMBER OCTOBER
C.
·[ .
[
[
c
[;
[
L
Q
[
[
u
[
[
[
c
D
c
D
~380J.OO ~38W3J.d3S J.snenv A1nr
0~ 0~ 0~ 0~ 0~ 0~ 0~ 0~
L..
. ~~~
G)
>
~ G)
'-m
' c
'-m
"tJ
-f L
~
,-
.·~ L -, ,-
m
L
m
-f -'-
,-
\..._~~
·.6L6J. .£
Se>NIOV3t:l 3E>VE> .:1.:1\fl.S >t33t:IO NOil..d3030 L
,-·
'-
·"3 x~puadd't(
.I-
"" ... · .... " .. .;·. •.'. . · .. ·. L ··.:
....,
_ _;,
'
i
_J
'
_ _j
'
___) .
i
-..
_ _}
'
___)
....,
_j
_J
-,
'
_;
cd
-,
_:;
Appendix D.
Table 1. Thermograph data summary for Willow Creek lower reach, 1979.
Date High Mean* Low Date High Mean* Low
08/03 15.0 14.0 13.0 08/22 13.8 13.0 12.2
08/04 13.4 13.2 13.0 08/23 14.9 14.2 13.5
08/05 13.0 12.8 12.5 08/24 15.4 15.1 14.8
08/06 12.5 12.3 12.0 08/25 15. 1 15.0 15.0
08/07 12.2 12. 1 12.0 08/26-09/10 equipment malfunction
08/08 12.2 -12.2 12.2 09/11 14.4 13.3 12.2
08/09 12.2 12. 1 12.0 09/12 12.8 12.5 12.2
08/10 12.0 12.0 12.0 09/13 12.5 12.5 12.5
08/11 12.5 12.3 12.0 09/14 12.8 12.7 12.5
08/12 12.5 12.5 12.5 09/15 12.8 12.8 12.8
08/13 12.5 12.5 12.5 09/16 12.8 12.3 11.7
08/14 12.5 12.3 12.2 09/17 12.2 12.1 11.9
08/15 12.0 11.9 11.8 09/18 12.2 12.2 12.2
08/16 11.8 11.7 11.5 09/19 12.2 12.0 11.7
08/17 12.3 12. 1 11.8 09/20 11.7 11.4 11.1
08/18 12.4 12.2 12.0 09/21 11. 1 11.0 10.8
08/19 12.5 11.8 11.0 09/22 11.1 10.9 10.6
08/20 11.5 11.4 11.4 09/23 10.6 10.6 10.6
08/21 12.5 11.8 12.5 09/24** 10.6 10.6 10.6
*Mean temperature (°C} is the average of the daily high and low over a 24 hour
_period from midnight to midnight.
**Equipment malfunction -09/25 to 10/12.
-128-
n
Appendix D. c
Table 2. Thermograph data summary for Wi 11 ow Creek middle reach, 1979.
Date High Mean* Low Date High Mean* Low c
07/03 10.5 09.0 07.5 07/28 11.7 11 .2 10.7 n 07/04 08.5 07.8 07.0 07/29 11.7 11.6 11.5
07/05 10.5 09.4 08.3 07/30 11.7 10.7 09.7 c
07/06 10.5 09.0 07.5 07/31 11.5 11.0 10.5
07/07 11.5 09.8 08.0 08/03 13.5 11.8 10.0 [
07/08 12.0 10.1 08.3 08/04 12.6 11.6 10.6
[ 07/09 12.0 10.5. 09.0 08/05 12.2 11.6 11.0
07/10 12.0 10.7 09.3 08/06 11.0 10.9 10.8 [
07/11 1 o. 5 09.7 08.8 08/07 10.8 10.4 10.0
07/12 1 o. 5 09.8 09.0 08/08 . 12.0 11.0 10.0 c
07/13 09.5 09.0 08.5 08/09 11.6 11.2 10.8
07/14 10.0 08.8 07.5 08/10 11.0 10.9 10.8 c
07/15 13.5 11.0 08.5 08/ll 11.0 10.8 10.5 c 07/16 12.5 11.0 09.5 08/12 12.0 11.5 11.0
07/17 12.3 10.9 09.5 08/13 12.0 11.5 11.0 c
07/18 12.5 11.0 09.5 08/14 11.2 11.0 10.8
07/19 12.5 . 11.0 10.5 08/15 10.8 10.5 10.2 c
07/20 1 o. 5 10.0 09.5 08/16 10.2 10. 1 10.0
07/21 10.6 10.1 09.5 08/17 n.o 10.5 10.0 [
07/22 10.6 10.5 10.3 08/18 11.0 10.5 10.0 [
07/23 1 o. 5 10.0 09.5 08/19 11.2 11.1 11.0
07/24 12.3 09.9 07.5 08/20 11.2 11 .1 11.0 c
07/25 12.0 10.8 09.5 08/21 11.0 10.3 09.5
07/26 12.3 11.4 10.5 08/22 11.8 10.9 10.0 L
*Mean temperature (°C) is the average of the daily high and low over a 24 hour period
E from midnight to midnight.
-129-
[j
.,
__ J
Appendix 0.
Table 2. (continued)
Date High Mean* Low Date High Mean* Low
-~
, 08/23 12.5 11.9 11.2 09/23 8.5 7.8 7.0
_ _)
08/24 12.8 12.6 12.4 09/24 8.9 7.7 6.5
-,
08/25 12.8 12.4 12.0 09/25 6.9 6.3 5.7
_ __J
08/26 12.8 12.4 12.0 09/26 5.7 4.9 4.1 -,
08/27 12.2 11.9 11.6 09/27 5.5 5.4 5.3
--, 08/28 12.2 12.1 12.0 09/28 6.0 5.8 5.5
J 08/29 14. 1 14.0 13.9 09/29 6.0 5.1 4.2
, 08/30 14.0 12.0 10.0 09/30 5.0 4.6 4.1
_}
08/31 10.0 09.3 08.5 10/01 5.3 5. 1 5.0
' 09/01 09.5 09.3 09.0 10/02 5. 1 5.1 5.1
_)
09/02 09.5 08.8 08.1 10/03 5.3 5.3 5.2 -,
_; 09/03 09.0 08.6 08.1 10/04 5.5 5.3 5.1
09/11 10.5 09.8 09.0 10/05 5.8 5.7 5.5
09/12 09.5 09.5 09.5 10/06 5.8 5.5 5.2
' 09/13 09.8 09.7 09.5 10/07 5.5 5. 1 4.8
.__)
09/14 09. 9' 09.9 09.8 10/08 5.0 5.0 5.0
09/15 09.9 09.2 08.5
~-i
10/09 6.0 5.6 5.0
09(16 08.8 08.4 08.0 10/10 6.0 5.6 5.2
=-, 09/17 09.0 08.9 08.8 10/11 5.8 5.7 5.5
09/18 08.8 08.2 07.5 10/12 5.5 5.0 4.5
~ 09/19 08.3 07.9 07.4
,-,
! ~ 09/20 08.4 07.4 06.5 u
09/21 07.0 06.5 06.0
[ 09/22 09.0 08.9 08.8
[ *Mean temperature (°C) is the average of the daily high and low over a 24 hour
period from midnight to midnight.
.-' -130-
L
D
Appendix D. [
Table 3. Thermograph data summary for Willow Creek upper reach, 1979.
n " Date High Mean* Low Date High Mean* Low
07/08 09.5 09.4 09.3 08/02 15.6 13.1 10.5 c
07/09 09.3 08.9 08.5 08/03 14.3 12.2 10.0
07/10 11.5 09.6 07.7 08/04 12.7 11.7 10.6 c
07/11 12.7 10.9 09.0 08/05 12.0 11.5 11.0 u 07/12 09.5 09.0 08.5 08/06 11.0 10.9 10.8
07/13 09.0 08.5 08.0 08/07 11.8 11.2 10.5 c
07/14 09.7 09.1 08.5 08/08 11.5 11.0 10.5
07/15 08.5 08.0 07.5 08/09 11.5 11.0 10.5 c
07/16 09.5 08.6 07.7 08/10 11.3 10.9 10.5 Q 07/17 11.5 10.0 08.5 08/11 10.7 10.5 10.3
07/18 11.0 10. 1 09.3 08/12 12.5 11.5 10.5 c 07/19 n.7 11.0 10.3 08/13 11.0 10.8 10.5
07/20 11.7 11.3 11.0 08/14 11.5 10.5 10.0 r L
07/21 12.5 10.6 08.7 08/15 10.0 09.9 09.7
07/22 11.5 11.0 10.5 08/16 10.5 10.3 10.0 [J
07/23 09.5 09.3 09.0· 08/17 11.0 10.5 10.0 [ 07/24 10.0 09.5 09.0 08/18 11.5 11.0 10.5
07/25 10.5 09.5 08.5 08/19 11.5 11.1 10.7 [
07/26 11.0 09.5 08.0 08/20 11.5 11.0 10.5
07/27 11.0 09.8 08.5 08/21 10.7 10.6 10.5 D
07/28 11.5 10.0 08.5 08/22 11.5 10.8 10.0
07/29 11.5 10.2 08.8 08/23 12.7 12. 1 11.5 [
07/30 11.5 11.0 10.5 08/24 12.7 12.4 12.0 c
*Mean temperature (°C) is the average of the daily high and low over a 24 hour period
D from midnight to midnight.
-131-
lJ
__ _)
.....,
Appendix D.
-, Table 3. (continued)
Date High Mean* Low Date High Mean* Low
-..
08/25 12.7 12.2 11.7 09/25 6.1 5.0 3.9
08/26 13.0 12.8 11.5 09/26 4.4 4.2 3.9
08/27 11.6 11.3 11.0 09/27 4.4 4.3 4.2
~ 08/28 11.8 11.7 11.6 09/28 5.0 4.7 4.4
08/29 11.6 10.6 09.8 09/29 5.0 4.2 3.3
~ 08/30 09.8 09.2 08.5 09/30 3.9 3.6 3.3
08/31 09.0 08.8. 08.5 10/01 4.4 4.2 3.9
-.,
_) 09/01 09.3 08.8 08.3 10/02 4.4 4.3 4.2
.., 09/02 08.5 08.5 08.5 10/03 4.7 4.5 4.2
_) 09/03-09/10 equipment malfunction 10/04 5.0 4.5 3.9
"""\ 09/11 l0.5 09.4 08.3 10/05 4.4 4.2 3.9
._)
09/12 08.9 08.8 08.6 10/06 4.4 4. 1 3.6
.....,
09/13 09.3 09.1 08.9 10/07. 4.2 4.1 3.9
09/14 09.3 09.1 08.9 10/08 3.9 3.9 3.9 ...,
~..J 09/15 . . oa. 9 08.4 07.8 10/{)9 5.0 4.5 3.9
~--, 09/16 08.3 08.1 07.8 10/10 5.0 4.2 3.3
09/17 08.3 07.8 07.2 10/11 4.7 4.3 3.9
09/18 07.8 07.5 07.2 10/12 4.4 3.9 3.3
~
09/19 07.8 07.5 07.2 10/13 4.7 3.7 2.8
~
09/20 06.7 06.2 05.6
'-'
09/21 06.1 05.9 05.6
l_; 09/22 06.7 06.2 05.6
G--09/23 06.7 06.2 05.6
09/24 06.7 05.9 05.0
c *Mean temperature (°C) is the average of the daily high and low over a 24 hour period
L
from midnight to midnight;
-132-
n Appendix D.
Table 4. Thermograph data summary for Deception Creek· reach, 1979. r
Date High Mean* Low Date High Mean* Low lt
l '
07/08 11.0 10.5 10.0 08/03 14.8 12.9 11.0
07/09 12.0 11.0 10.0 08/04 13.5 12.0 11.5 n '
07/10 13.1 11.5 10.0 08/05 13.0 12.4 11.8
07/11 14.0 13.2 12.5 08/06 11.8 11.7 11.5 [
07/12 13.5 12.5 11.5 08/07 11.8 11.5 11.2 [
07/13 12.0 11.4 10.8 08/08 12.0 11.5 . 11.0
07/14 12.0 11.5 11.0 . 08/09 12. 1 11.6 11.2 [
07/15 11.0 10.1 09.2 08/10 12.0 . 11.6 11.2
07/16 10.5 09.9 -09.2 08/11 11.4 11.2 11.0 [
07/17 14.0 12.2 . 09.5 08/12 12.4 11.8 11.1 ~ 07/18 13.0 11.5 10.0 08/13 12.2 11.6 11.0
07/19 11. 5 10.8 10.0 08/14 12.0 11.5 11.1 [
07/20 12.2 11. 1 11.0 08/15 11.1 11.0 11.0
07/21 12.2 12.0 11.8 08/16 11.0 11.0 11.0 [
07/22 12.0 11. 1 11.2 08/17 11.5 10.9 10.4
07/23 11.5 11.2 10.8 08/18 11.4 11.1 10.8 [
07/24 11.0 10.9 10.8 08/19 11.4 11.2 11.0 [ 07/25 11.2 10.9 10.5 08/20 11.5 11.3 11.0
07/26 11.0 10.2 09.5 08/21 11.5 10.7 09.8 [
07/27 10.0 10. 1 10.2 08/22 11.6 10.6 09.5
07/28 11.5 10.9 10.2 08/23 12.0 11.0 10.0 [
07/29 12.0 11.5 11.0 08/24 12.0 11.0 10.0
07/30 12.0 . 11.8 11.5 08/25 12.0 11.0 10.0 [
07/31 12.2 11.9 11.5 08/26 11.6 10.8 10.0 L 08/01 11.2 11. 1 11.0 08/27 11.8 10.9 10.0
08/02 12.0 11.5 11.0 08/28 12.2 11.1 10.0 b
*Mean temperature (°C) is the average of the daily high and low over a 24 hour period
from midnight to midnight. [ -133-
~
i
--"
Appendix D.
Table 4. (continued)
Date High Mean* Low. Date High Mean* Low
08/29 11.0 10.2 09.4 . 09/24 06.7 06.6 06.4
.-, 08/30 09.4 08.9 08.5 09/25 06.7 06. l 05.6
! !
~)
08/3l 09.2 08.8 08.4 09/26 05.6 05.3 05.0
.-, I . 09/01 09.5 08.5 L_j 07.5 09/27 05.0 05.0 05.0
09/02 08.8 07.9 07.0 09/28 05.6 05.4 05.3
[ 09/03 08.8 07.9 07.0 09/29 05.6 03.7 03.9
; 09/04-09/10 equipment malfunction 09/30 03.9 03.6 03.3
__; 09/11 08.9 07.8 06.7 10/01 03.9 03.8 03.6
09/12 07.8 06.2 04.7 10/02 04.2 04.1 03.9
~I
09/13 07.8 07.5 07.2 l0/03 04.4 04.3 04.2
r 09/14 08.3 08".0 07.8 10/04 04.7 04.6 04.4 L,
[ 09/15 08.3 08.3 08.3 10/05 05.0 04.9 04.7
09/16 08.3 07.5 06.7 10/06 05.3 04.6 03.9
[ 09/17 07.8 07.5 07.2 10/07 05.3 04.8 04.2
09/18 07.8 07.8 07.8 10/08 04.2 04.2 04.2
[ 09/19 07.8 07.6 07.5 10/09 04.2 04.1 03.9
09/20 07.8 07.2 06.7 10/10 05.3 04.1 03.9
[ 09/21 07.2 06.7 . 06.1 10/11 05.0 04.7 04.4
[ 09/22 06.]. 06.4 06.1 10/12 05.0 04.1 04.3
09/23 06.7 06.4 06.1
[
*Mean temperature (°C) is the average of the dqily high and low over a 24 hour period
[ from midnight to midnight.
E-------
E -134-
c
-,
' ~
=>
_c)
-,
~
--.
_j
u
[
L
1: u
[
VOLUME TWO
Appendix E*
Instream Flow Computer Analysis Data
Willow Creek Middle Reach
*Copies of Volume Two are on file at the ADF&G Region II Headquarters of
the Habitat and Sport Fish Divisions in Anchorage.
-135-