Loading...
HomeMy WebLinkAboutAPA4146GB 1227 .W5 E8 1981 v. 1 WILLOW AND DECEPTION CREEKS INSTREAM FLOW DEMONSTRATION STUDY By Christopher Estes Kelly Hepler Andrew Hoffmann Alaska Department of Fish and Game Habitat Protection and Sport Fish Divisions for the USDA -Soil Conservation Service Interagency Cooperative Susitna River Basin Study (Agreement # 58 04368 1 e) 1981 Volume One _J WILLOW AND DECEPTION CREEKS INSTRJ:AM FLOW DEMONSTRATION STUDY By Christopher Estes Kelly Hepler Andrew Hoffmann Alaska Department of Fish and Game Habitat Protection and Sport Fish Divisions for the USDA -Soil Conservation Service Interagency Cooperative Susitna River Basin Study (Agreement + 58 04368 16) 1981 ARLIS ;2?7 ! VIS l" ' 1 lr.;/1 1 / '"'/ :.J Volume One Alaska Resources Library & Information Services IUlchorage,AJaska Permission to reproduce any of the information contained herein is withheld pending approval of the authors -., LIST OF FIGURES VOLUME· ONE TABLE OF CONTENTS v LIST OF TABLES ..•.•.••••••.•.•••••••....•..•.••....•••..••....... viii INTRODUCTION .•..•..••.•..•••.••.•• -••....•..•.....•••.•..•........ 1 OBJECTIVES . • . . . . . • . • . . . . • • . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . • • . . . . . . . 5 Instream Flow Study . . • • • • • • • . • • . . • • . . . • • • • • • • • • • • • • . • • • • • • • • 5 Supplemental Biological, Water Quantity and Qua 1 i ty Study • • • • • • • • • • . • • • • • • • • . ••....•...•.•.••..••• 6 DESCRIPTION OF STUDY AREA . • • • • . • • • • • • • • • • • . • • • • • • • . • . • . • • • • • . • . . . 7 In stream Flow Study Sites • • • • • • • • • • • . • • . • . • . . • • • • . • • • • • . . • . • 8 Supplemental Biological, Water Quantity and Quality Study Sites •..•.....••..•.•...•.•.•••.••.•..•. 32 Peters/Purches Creeks • . . • • • . . • . . • . • • . . . . • . • • • • . . • . . . . • . 32 ADF &G/USGS Sites . • . • • • • • . • • • • . • • . . • . . • • . • • . • . • • • . • • • . . . 32 Fishery Resources • • • • • • • • • • • • • . • . • • • • • • • • • • • • • • . • • • • • . • . . • • • 32 MATERIALS . . • . . . • . . • . • . • . . . . . . .. • • . • . . . .... . • . . • . . . . .. . • . . • • . . • • .. . . • . . • 40 METHODS . • • • • • . • . • . . • • . • • . . . . • . . • • . • • . • • . • • . . • • . . . . • • . . . . . • . . . • • . . 41 Instream Flow Study . • . • . • • . • • . • • . • . • • • . . . . • • . . . . . . . . • . . . . . • . 41 Geographic Code Locations ...•..•...•...•.•.....•....... 41 Training • • . • • • • • • • • • . • • . • • . • • • • • • • • • . • . • • . • . . • . • . . . • . . . 42 Reach Selection ..•••••••.•••••••.•...•••••••••..••••••• 43 Di scha rge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Stage . . . • . . • • . . . . • • . • • . • • . . • . • • • . . . . • . . • . . . . • . . • . • . • . . • 44 5-t~-bstr-a-iie ••.•.. -..•.•• -•..•....••.•....... -. . • . . . . . . . . . . . . -44 Water Qua 1 i ty . • • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 45 Point Specific Spawning Habitat Data . . . . . . . . . . . . . . . . . . . 47 Benthic Invertebrates 48 -i- -~ TABLE OF CONTENTS-continued Page Water Quantity . . . . . . • . . • . • . . . . . . • • . . . . . . . . . . . . . . . . 81 Substrate . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Water Qua 1 i ty . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ADF&G/USGS Sites . . . • . . • . . • . . . • . . • . . . . . • . . • . . . . . . . . . . . . . . . . . . 83 Water Quantity and Qua 1 i ty • . . • . • • . . • . . . . . • . . . . • . . . . . . • . 82 ---------------------------------------------------------------------------------------------------------------- J _. DISCUSSION . . • . . . . . . . . • . • . . . . . . . • . . • . . . . . . . . . . . . . • . . . • . . . • • . . . . . . . 84 In stream Flow Study . ..• . . . • . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . 84 Hydraulic Data Collection Limitations and Recommendations . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 84 Point Specific Spawning Habitat Data Collection L i mi ta ti ons and Recommendations . . • . . . . . . . . . . . . • . . • . • . 88 Computer Analysis . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 89 L imitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Recommendations . . . . . . . . . • . . . . . • . . . . . . . . . . . . . • . . . . . 91 Biological, Water Quantity and Quality Data •...•......• 92 WUA Calculations . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 93 Supplemental Biological, Water Quantity and Quality Study .............•...•....................... 93 CONCLUSIONS . . . . • • . . • . • . . . . . . . • . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 95 REFERENCES . • . . . . . . . . . . . . . . . . . . • . . • . . . . . • . • . . • . . . • • . . . . . . . . . . . . . . . 97 ACKNOWLEDGEMENTS . . • • . . . • . . . . . . . . • . • . • . • . . • . . • . . . • . . . • . . . . . . . . . . . . 100 APPENDIXES ....................•..•..•......•...•.•............... 101 A. Peters/Purches Creeks Stream Survey Data ............... 101 B. ADF&G/USGS Water Quantity and Quality Data 108 c. Willow/Deception Creeks Instream Flow Study Staff Gage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 -iii- LIST OF FIGURES Figure 1. Study area .................................................. 2. Willow/Deception Creeks Instream Flow Study reaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. Lower Willow Creek water•s edge and head pin stati ani ng map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4. Cross-sectional profile of Willow Creek lower reach, _____ Tran_s_g_c_t_ __ No~ __ _]_ __ -~_!_-~_ ~-~--~--~--~ !___~--~-~ ~--~ ~-~-~ -~~-~--~-_!_ ~-~-~--~ -~-~ -·-~-~-~-~-!_ ~ ~-~ ~--~ ! __ It_~ ._ ~ 12_ 5. Cross-secti ana 1 profile of Wi 11 ow Creek 1 ower reach, Transect No. 2 ••....... ~.................................. 13 6. Cross-sectional profile of Willow Creek lower reach, Transect No. 3-A . • . . . • . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7. Cross-sectional profile of Willow Creek lower reach, Transect No. 3-B . . • . . . . . . . . . . . . . . . . . • . . . . . . • . . . . . . . . . . . . . . 15 8. Cross-sectional profile of Willow Creek lower reach, Transect No. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 9. Cross-sectional profile of Willow Creek lower reach, T.ransect No. 5 . . . . . . . . . . . . . . . .. . . . . . • . . . . . . . . . . . . . . . . . . . . . . 17 10. Middle Willow Creek water•s edge and head pin sta ti'cini ng map ..... ~· .....•......... ~ ... .-.. . . . . . . . . . . . . . . . . 18 11. Cross sectional profile of W~llow Creek middle reach, Transect No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 12. Cross-sectional profile of Willow Creek middle reach, Transect No. 2 . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . 20 13. Cross-sectional profile of Willow Creek middle reach, Transect No. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 14. Cross-sectional profile of Willow Creek middle reach, Transect No. 4 . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 22 15. Upper Wi 11 ow Creek water • s edge and head pin stati ani ng map . . . . . . . . . . • . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 23 16. Cross-sectional profile of Willow Creek upper reach, Transect No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 17. Cross-sectional profile of Willow Creek upper reach, Transect No. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 -v- LIST OF FIGURES-continued Figure 36. Velocity suitability curve for spawning pink salmon Wi 11 ow Creek, A 1 as ka. Summer 1978 . . . . . . . . . . . . . . . . . . . . . . . 69 37. Substrate suitability curve for spawning pink salmon in Willow Creek, Alaska. Summer 1978 .................... 70 38. Comparison of three methods for calculating Weighted Usable Area • . . . • . . . • . • . . . . • . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . 77 39. Effects -of-applying d-ifferent habita-t su-itability curves to the same hydraulic model .............................. 80 -vii- j l ..; ~ ' _. -, _. --"' Table 1. 2. 3. 4. 5. 6. 7. 8. LIST OF TABLES Geographic locations of Willow/Deception Creeks Ins tream Flow Study reaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Geographic locations for Peters/Purches Creeks Supplemental Study sites .................................... 34 Geographic locations of ADF&G/USGS sampling sites 36 Equipment used in Instream Flow and Supplemental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Equivalence of Modified Wentworth and Willow/Deception Creeks Study substrate scales . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 46 Flow (cfs) summary for Willow/Deception Creeks Instream Flow Study reaches, 1979 . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Range of predominant substrate classes in Willow/Deception · Creeks Ins tream Flow Study reaches, 1979 . . . . . . . . . . . . . . . . . . . . 53 Water quality summary for Willow/Deception Creeks Instream Fl ow Study reaches , 19 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9. Redd measurements for chinook salmon in Willow Creek, August 1979 .• . . . . . . • . . . . . . . . . • . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10. Redd measurements for chinook salmon in Willow Creek, 11. 12. 13. 14. 15. 16. 17. August. 1 978· .......•. ·..•. . . . . . . . • . . .. . .. . . . . . . . . . . • . . . . . . . . . . . . . 57· Redd measurements for pink salmon in Willow Creek, August 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Benthic insects (no/ft2), classified to order, collected from each of the Willow/Deception Creek In stream Flow Study reaches, 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 Discharge vs. predicted available spawning habitat area ( ft2) per 1000 feet of the Wi 11 ow Creek Ins tream Flow Study middle reach . . . . . . . . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . 78 Discharge vs. predicted available spawning habitat area (ft2) as a percentage of the Willow Creek In stream Flow Study middle reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Fish trapping results, Peters and Purches Creeks, 1979 ........ 82 Discharge Measurement (Q) in cubic feet per second (cfs) Peters and Purches Creeks, 1979 .....•....................... 82 Range of predominant substrate classes observed in Peters and Purches Creeks, 1971 ........................ ~ ........... 83 -viii- · INTRODUCTION -' _, ------- .... INTRODUCTION This study was undertaken by the Alaska Department of Fish and Game (ADF&G), as part of the ongoing Susitna River Basin Study (Estes and Lehner-Welch 1980), to: 1. evaluate the feasibility of applying the Incremental Method- -________ 9log_y* procedu!'es of the U.S. fisryand Wildl_if~ Service (U?fWS) Instream Flow Group (IFG) to collect and analyze instream flow** data from Willow and Deception Creeks (Figure 1); and 2. augment baseline fishery studies conducted on Willow and Deception Creeks by the ADF&G in 1978 (Watsjold and Engel 1978). The 1978 studies provided preliminary information on fish species campo- sition, areas of fish spawning and rearing, aquatic habitat characteris- tics, and recreational angling. They did not, however, address instream flow requirements of the fishery resources in these two systems.*** *11 The Incremental Methodology is based on the premise that the suita- bility of a species• habitat can be described by measuring selected physical variables in the stream, making it possible to quantify the changes in habitat suitability by quantifying the changes in these instream variables 11 (IFG 1980a). **An instream flow is the quantity of flow occurring within a stream --cnanner aur1hg a given perioa of ti!Tle wnether or-riot subject to-flow regulation. ***A discussion of the importance of instream flows to fish and wild- life resources is presented in the ADF&G publication:~ synthesis and evaluation of fish and wildlife resources information for the Willow and Talkeetna slib-baSTnSTEstes and Lehner-Welch 1980). -- -1- J J l ,_j ] J J J ] J J J ] J ] J J J , co c: ""'t Cl) ..... CJl -c: a. "<· Q) ""'t (I) Q) .... = II or ---~-- ;= m 0 .. ; ~ 0 .... 0 ~ :···· ... -:::-··· . . ... ... :··· ........ . . . . ···: . ...... .. . . ······· ... . .. .... .. . .. ... . -z- < m :u -~ -' The ADF&G, with the assistance of the U.S Department of Agriculture Soil Conservation Service (SCS), U.S. Geological Survey (USGS), and Alaska Department of Natural Resources (AONR), initiated both portions of this study in the spring of 1979. The ADF&G, USGS, and ADNR continued col- lecting supplemental data through the fall of 1980. Computer analysis of the instream flow data collected from Willow Creek was completed in December 1980. Additional analysis, comparing computer analysis tech- niques and the e:rfects of integrating spawning habitat data collected by other investigators (Watsjold and Engel 1978; AEIDC 1980) with the Willow Creek hydraulic model, was completed in February 1981. Funding for this study was provided by the SCS through the Interagency Cooperative Susitna River Basin Study, the ADF&G, and a Title III grant from the U.S. Water Resources Council administered by the Division of Land and Water Management of the ADNR. Willow Creek is one of the major recreational waters within the Upper Cook Inlet Drainage. It is located within 2 hours driving distance from Anchorage, the major population center of Alaska, and receives extensive angling effort by sport fishermen. The high productivity and variety of fish species, and the high angler success rate make Willow Creek one of the most important sport fisheries in the lower Susitna Basin (Mills 1981). Wi 11 ow Creek a 1 so serves as an access corridor to other fishing and hunting areas within the Susitna River drainage and is used exten- sively by boaters for this purpose. r~ajor land use activities (e.g., mining and residential development) are -3- occurring in the Willow Creek drainage. A portion of this area has been selected as the future site for the new State Capital (Figure 1). This report is an attempt to evaluate one of the tools for assessing the ability of the fishery resources to withstand these varied impacts. It is intended also to provide interested agencies, planners, managers, developers, and individuals with baseline fishery, hydraulic, and water quality information. These data, with subsequent investigations, can be used to evaluate the potential impacts of future developments proposed for thi.s area. -4- [ [ [ [ [ _[_ [ [ [ [ [ [ [ [ [ L - r~ L [ OBJECTIVES ~ "_. -"' OBJECTIVES Instream Flow Study Six study objectives were established: 1. train personnel to collect and analyze instream flow data --------------------------- based on the IFG Incremental Methodology; 2. develop cross-sectional profiles in selected areas of Willow and Deception Creeks and characterize the types and amounts of salmon habitat available in terms of depth, velocity, and substrate characteristics. 3. determine spawning habitat characteristics for pink (Oncorhynchus gorbuscha), and chinook (~ tshawytscha) salmon in selected areas of Willow and Deception Creeks;* 4. determine characteristics of chinook salmon rearing habitats; 5. compute the availability of salmon habitat at various streamflows using the IFG computer programs; and *The selection of these species was based on their relative abundance. -5- 6. evaluate the feasibility of applying the Incremental Methodology to Willow and Deception Creeks. Supplemental Biological, Water Quantity and Qt.~ality Study Objectives of these investigations were to: l. identify fish populations in Peters and Purches Creeks (tribu- taries to Willow Creek); 2. identify water quantity and quality characteristics associated with fish populations observed in Peters and Purches Creeks; and 3. collect miscellaneous water quantity and quality data in the upper Willow Creek drainage. [ r t __ _.J r [ [ [ [ [ c [ c [ r" L [ [ -6- -----------c-- L [ [ DESCRIPTION OF . STUDY AREA _j _} DESCRIPTION OF THE STUDY AREA The study area is located within the 214-square-mile Willow Creek drain- age (Figure 1) in the southwestern foothills of the Talkeetna Mountai.ns. Elevations in this area range from approximately 5,500 feet mean sea level (MSL) in the upper portion of the watershed to 100 feet MSL at the confluence of Willow Creek with the Susitna River. Approximately 25 percent of the study area is part of a. 100-square mile site selected by Alaskan voters as the location for a new State Capital . . The remainder of the study area adjoins Willow Creek both upstream and downstream of its confluence with Deception Creek. The portion of the study area that is contained within the proposed Capital site is owned almost entirely by the State of Alaska and is vi:tually undeveloped. Lands adjacent to Willow Creek, however, are in private or Borough ownership and have been developed to a limited extent. In recent years, the Willow Creek drainage has become a focal point for increasing recrea- tional activities (e.g., fishing, hunting, boating, hiking, cross- country skiing, and snowmobiling) primarily because of the area•s aesthetic qualities and its proximity to Anchorage. This increased recreational use, along with speculation on land in the Capital Site proximity, have led to tremendous increases in the rate of development, especially of recreational lots in the Willow Creek area. =----:<'!------------- -7- .. Instream Flow Study Reaches Four reaches were selected for the collection ·of instreamflow, water quality, and supporting biological data (Figure 2; Table 1). Three of these were located on Willow Creek and the fourth on Deception Creek. Table 1. Geographic locations of Willow/Deception Creeks Instream Flow· Study reaches (Figure 2).* Reach Lower WH 1 ow. Middle Willow Upper Willow Deception ADF&G Geographic Location 19N04W06ACD6 l9N04W02BBC4 19N04W02ADC3 19N04WllDAA4 *Refer to Methods section for a description of the ADF&G Geo- _graphic Location System. Descriptions of ·study reaches follow: 1. The lower Willow Creek reach was located at the Parks Highway Bridge. Six transects were established within this reach which *Refer to Methods section for a description of reach selection techniques. -8- c [ [ c [ c [ c [ b c [ [ [ [ [ [ [ I 1..0 I l' J ' ~<J l 'j l, ' J \._, _,J \., J l. ~~ j 'I ~ ' ,J ~J WILLOW I DECEPTION CREEKS INSTREAM FLOW STUDY REACHES LOWER REACH/ (6 transects) el!!!!l1 D!ii!~dl!!!1 /b2,1iiiiC:ile~' c:J91iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiill ,mi. I .5 0 lkm l!:!ot ::JiiWCJ!el!bwliit' :ee:ii' iiiiiiiiiiiiiiiiiiiiil' Figure 2 DECEPTION CREEK REACH) (4 tranlsects) ~J was channelized in 1963 to permit construction of the Parks Highway Bridge (Figures 3-9). Major pink salmon spawning areas are located throughout this reach. 2. The middle reach was located 4.5 road miles upstream from the Parks Highways Bridge. Four transects were established within this reach (Figures 10-14). Both chinook and pink salmon use -· thi-s a rea for-spawni-ng. · 3. The upper Wi 11 ow Creek reach was 1 oca ted 5. 5 road mi 1 es upstream from the Parks Highway bridge on a large bend of a braided portion of Willow Creek. This reach was confined to the southernmost channel adjacent to the left bank (looking downstream) and thus represents only a portion of the flow for this stretch of Willow Creek. Three transects were established within this reach (Figures 15-18). A USGS gaging station (No. 152940.05) was located approximately 1 mile upstream of this braided stretch of river. Chinook $almon are the predominant species which utilize this reach for spawning. 4. The Deception Creek reach was located immediately downstream of a USGS gaging st~tion (No. 152940.10). Four transects were established within this reach (Figures 19-23). Coho (Oncorhynchus kisutch), chinook, and pink salmon spawn in this area. -10- c [ [ [ [ [ [ [ [ c c c c [ r L [ E [ [ 14'6" 10'7" 175'0~ . 173'0· . 177'4· ·-·-----·-+--+-~~-. ~· .PAR~.S HI.~~WA:· --·-· 261r:l' 2s'n• Transect #2 1 + 73 • 99'0• 131 77 178'0~ -~ 86'0~\+ 176'11· l M'd 18r Transect #3A 3+49 13,....,.\_.,.,. Transect #4 317'10 -o. - -~ - -Transect #5 _a.-r 99 ltJ-..... _ l't'o• 23·e·o•· 233'1o• 248'0. 187'o• bank '" A Transect #38 /85+20 I!J = head pin., (scale approximate) LOWER WILLOW CREEK WATERJS EDGE & HEAD PIN STATIONING MAP 13 July, 1979 Average discharge 1163 cfs Figure 3 -11- I __, N I Figure 4 n head pin 0 high ba!'lk ·'' Water't Edge A~ Of: 10 left bank e 1 o July, 1979; 1226 ct8 t::. a August, 1979; 074 cf~ rl~ht bank t- w w u.. z _, 5 :c t- tL u.i 0 0 0 I 10 20 I 30 40 0 14 September, 1 t79; 20!1 eta 50 I 60' I 70 I· 80 I 90 .. I . ' 120 110 100 H 0 R I Z 0 N T A L D.] S T A N C E I N F E E T GROSS-SECTIONAL PROFILE OF WILLOW CREEK l.OWER REACH, TRANSECT + 1. (1 v~rtlcal fQot equals 4 horizontal feet) ' .• • . .. l I . 130 l. I ...... w I l. l .. J Figure: 6 left blank 15 ,.) \ .. J l .J l, J l .. J ~ head pin 0 high bank Water's !=dge As Of: .. J e 10 July, 1979; 1216 ofs 6 8 August, 1979; 661 ofs J l. l, J 0 14 September, 1979; 212 c,s 1- w w LL. z :c 1- c.. w 0 10 5 0 0 I 10 20 30 40 I 50 60 HORIZONTAL I 70 80 I 90 I 100 I 110 DISTANCE CROSS-SECTI:ONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSJ;CT +2. ( 1 vertical foot equals 4 horizontal feet) 120 130 140 160 N F E E T right bank 160 I __, -f.:> I Figure 6 10 1- w w LL. z 5 J: 1- ll. w 0 0 10 30 0 20 40 I 50 60 I 70 n head pin 0 high bank Water's Edge As Of: e 10 July, 197Q; no flow data 6 8 August, 1979; no flow data 0 14 September, 1979; no flow data . I ~· . 80 90 100 110. 130 120· 1 HORIZONTAL DISTANCE N CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT ft.3A. ( 1 vertical foot equals 4 horizontal feet) 140 150 160 170 180 190 F E E T I __, Ul I I ,) 1- w w LL. z :r: 1- a.. w 0 L i ,, Figure, 7 10 left bar1k 5 0 I r l. L ~J L , J n head pin 0 high bank Water's Edge As Of: J .J • 10 July, 1979; no flow data 6 8 August, 1979; no flow data l. , I J 0 14 September, 1979; no flow data ) 0 10 20 30 40 50 60 70 80 90 100 110 120 HORIZONTAL DISTANCE IN CROSS-SECiTJONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT +38. ( 1 vertical foot eq~Jals 4 horizontal feet) l "--J right bank 130 140 150 160 F E E T I _, en I Figure 8 10 .... w w u.. z 5 :c .... a.. w 0 0 . I 0 110 20 30 40 50 60 f'] head pin 0 high bank Water's Edge Aa.:.Of: e 10 July, 1979,, no flow data 6 8 August, 197.:.8; no flow data 0 14 September;. 1979; no flow data 70 80 90 100 HORIZONTAL D S T A N C E IN CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #4. . . I ( 1 vertical foot equals 4 h~rizontal feet) I r-J I 130 140 150 160 170 180 F E E T L. I __, "'-J I l i } Figure 9 10 ... w w u. z I ... 0. w 0 0 0 10 L. j==F~ 20 3(1 40 50 .J 60 70 80 . J go 100 110 n head pin 0 high bank l. Watar'a Edge Ao Of: j e 10 July, 1&7&; 10&0 cia D. 8 Auguet, 1117&; 822 cia 0 14 September, 1&711; 202 cia 120 130 140 150 160 ) 170 H 0 R Z 0 N T A L D S T A N C E CROSS-SECTIONAL PROFILE •OF WILLOW CREEK LOWER REACH, TRANSECT _,.5, ( 1 vertical loot equala 4 horizontal feet) .[) l. .J right bank 240 I \ I 280 190 . 200 210 230 250 260 270 180 220 N F E E T right bank ,...;r Transect #1 0+ ooif '!1"!1~ 155':0. Transect #3 I [!)=head pin bench mal'k .~ .~ 127'o· ffd' left bank (scale approximate) MIDDLE WILLOW CREEK WATER'S EDGE & HEAD PIN STATIONING MAP 11 July, 1979 Average discharge 990 cfs Figure 10 -18- [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ E [ [ I-w w u.. z J: I- a.. I w -' 0 <.0 I Figure 111 lett bank 10 1h 5 0 I"' 10 0 20 J l ' J I I 30 50 40 60 l ' J L n head pin 0 high bank l, j Water's Edge As Of: J e 11 July, 1979; 987 cfs D. 8 August, 1979; 622 cfs I.! 0 14 September, 1979; 180 cfs I 70 80 90 110 100 HORIZONTAL DISTANCE I L, 120 IN J CROSS-SEC:TIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT + 1. (1 vertical foot equals 4 horizontal' feet) I 130 . J 140 .J 150 F E E T .J .. J right bank 170 160 I N 0 I Figure 12 I 10 left bank t-w n .h,ad pin I 0 high bank I W ater'a Ed(le A a Of.: I e H July, 18.18; 10~5 cfa w LL 6 Q August, 1~78; 5re cfs 0 14 September, 1S7Sj 158 cfs I z 5 J: t-a. w c 0 10 0 30 20 40 50 60 I 70 HORIZONTAL 80 I 90 I 100 110 120 DISTANCE CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT +2. ( 1 vertical foot equals 4 horizontal feet) 130 N I 150 right bank· I 170 140 160 F E E T 180 ·L 1- UJ UJ lL z J: 1-n. UJ I 0 N __, i ) l .J .! Figure ' 13 n head pin 0 high bank Water's Edge .As Of: lJ e 11 July, 1979; 929 cis 6 8 August, 1979; 671 cis 10 0 14 September, 1979; 165 cis 5 0 20 30 40 50 60 70 I 80 90 (gravel bnr) 100 I 110 120 I 130 H 0 R Z 0 N T A L D S T A N C E CROSS.,.SEICTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT 11'3. (1 vertical foot equals 4 horizontal feet) I 140 150 N ) L, J. .) right bank 180 190 I 200 210 I 160 170 F E E T I N N I 10 It-w w ILL z ::r: 5 If- ill. w 0 0 Figure 14 left bank 0 I 10 20 I 30 40 n head pin 0 hlgh bank Water's Edge As Of: 8 11 Jut.y, 1979; 1021 cfs 6 8 August, 1979; 620 cfs 0 14 September, 1979; 20() cfs I 50 60 I 70 80 eo right bank 100 I 110 H 0 R I Z 0 NT A L DISTANCE IN FE E,T CROSS-SECTIONAL P·ROFILE OF WILLOW CREEK MIDDLE REACH. TRANSECT #4. ( 1 vertical foot equals 4 horizontal feet) 1--:-1 _j 161'0. 125'0. =--------------------------\-------- 144'0. 16 1'0~ Transect #2 Transect #3 right 1 + 2513------/ ~·~ \ ' aa•o• \ ' ' \ ' \ ' left bank f.!l = head pin I (scale approximate) UPPER WILLOW CREEK W A TEA'S EDGE & HEAD PIN STATIONING MAP 11 July 1979 Average discharge 476 cfs Figure 15 -23- I N ..r;::. I Figure 1 '6 n hea~ pin 0 high bank Water's Edge A• :of: e 11 July, 1979;. 466 cf-. 10 left bank t-l::J. .8 August, 1979; 230 oft 0 14 September, 197P; GO cfs w w LL. z 5 right bank :r: t- a. w 0 0 10 50 70 110 . I 90 30 20 0 40 I 1:20 60 80 100 HORIZONTAL DISTANCE I N CROSS-SECTiiONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT # 1. ( 1 vertical foot equals 4 horizontal feet) 130 150 170 140 160 F E E T l. I N Ul I l i ' ,,J l ' Figure 17 10 1-w w u. z 5 ::r:: 1-a. w 0 0 I 0 40 10 30 20 J L, . J L.: J l. . J 50 60 fi head pin 0 high bank Water's Edge Aa Of: e 11 July, 1979; 466 cfa 6 8 August, ·1979; 269 eta 0 14 September, 197t; ,.5 cfs I 70 80 I 90 right bank I I 100 110 120 130 L 150 140 H 0 R Z 0 N T A L DISTANCE; N F E E T CROSS-SIECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT #2. (1 vertical foot equals 4 horizontal feet) I N 0'\ I ._ w w IJ.. z ::c ._ 0.. w 0 10 5 0 Figure 1 '8 left bank 10 0 H I 30 50 20 40 0 R I z 0 N T A 60 L n head pin 0 high bank Water's Edge As Of: e 11 July, 1979; ~93 cf-. D. 8 August, 1979; 240 cfe 0 14 September, 1979; 42 cfe I I 70 90 110 80 100 D I s T A N c E 120 I I IN I I CROSS-SECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANS~CT #3. ( 1 vertical foot equals 4. horizontal feet) right bank I 130 160 140 160 F E E T ~ -bench mark \· USGS · [lJ 0· gage house +152940.10 Dec. Transect +1 0+ OO~a·a• -21'9!...--- Transect +2 0 +53 • 42'6. 42'0" 52'11. ,.; ,<?> ./ Transect #4 1 + 48 (!!/ II OO=head pin II ··~\ 38'3· \ -~10+38 left bank (scale approximate) DECEPTION CREEK WATER'S EDGE & HEAD PIN ST ATJONING MAP 12 July, 1979 Average discharge 57 cfs Figure 1 9 -27- I N co I 10 1- w w u. z 5 ::r: 1-a.. w c 0 Figure 20 left bank I 0 10 15 5 20 ~ head pin 0 high bank Water'& Edge ~' Qf: e 12 July·, ·197&i · :ta eta 6. 9 August, 1978;. 27 ofe 0 13 September, .1878i 17 cfe right bank 25 I 30 40 45 36 HORIZONTAL DISTANCE IN FEET 50 CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT # 1. ( 1 vertical foot equals 2 horizontal feet) ·.· I N 1.0 I I- LU w U.., z :c I-a. w 0 l !Figure 21 10: left bank 5 0 0 I 5 10 J L. " J L. , J L, J . .J n head pin 0 high bank L -.. ~ Water's · EdQe AI Of: e 12 Jufy, 1 979i 62 ofs .J 6 9 August. 1979i 36 cfls 0 13 Se.ptember, 1979; 26 cfs ·.· . . I I I I I . I I I 15 25 30 35 45 ! 50 20 40 I I 55 H 0 R I z 0 N T A L D I s T A N c E I N IF E E T I i CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT +2. ( 1 vertical foot equals 2 horizontal feet) j J L , .J L .. J L . J/ I 60 66 I w G I 10 t-w w LL z 5 J: t- 0. w c 0 Figure 22 n head pin 0 high bank Water's Edge As Of: • 12 July, 1979; no flow ctata D. 9 August, 1979; nQ flow data 0 13 September, 1979,· n9 flow data . . 1- ! I I left bank riJht bank 0 I 5 20 49 I 25 35 15 10 30 40 ! I I HORIZONTAL DISTANCE IN FEET , I I i I 50 CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRA~SECT +3. ( 1 vertical foot equals 2 hojlzontal feet) I w --' I [ .. : ..J I •• J l. . J L .. J L .. J Lt J ~. J 1- UJ UJ u.. z :r: 1-a.. UJ c Figure 23 10 . n head pin: 0 high bank Water'~ Edqe Ae Of: e 12 July, 1.978; 67 cfa t:J. 9 August, 1 ~79; 30 of a 0 13 Septem.ber, 1879; 19 'ofa right bank left bank 5 0 5 0 10 15 25 I I 35 20 30 40 I 45 ,I 50 I 55 H 0 R I Z 0 N T A L D I S T A :N C E I N F :E E T CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH. TRANSECT +4. (1 vertical foot equals 2 horizontal feet) 60 ' 65 . j Supplemental Biological, Water Quantity and Quality Study Sites Peters/Purches Creeks Three index study areas were established to collect biological and physi- ochemical data in the upper Willow Creek drainage on Purches Creek and four on Peters Creek (Figure 24; Table 2).* Site descriptions were recorded on stream survey forms (Appendix A). Within these index areas, ten discharge sites (Q) and two water quality sites (W) were established (Figure 24; Table 2). ADF&G/USGS Sites Miscellaneous water quantity and quality measurements were collected at seven sites on Willow and Deception Creeks (Figure 25; Table 3).* Site descriptions are summarized in the USGS (1980) publication: Water resources data for Alaska, water year 1979. Fishery Resources** Four of the five species of Pacific salmon (chinook, pink, coho, and chum, Oncorhynchus keta) are known to occur in Willow and Deception *Refer to Methods section for a description of site selection techniques. **Additional Willow Creek fishery data are presented in the ADF&G publica- tion: New capital city environmental assessment program·-phase l (Watsjold and Engel 1978). -32- [ [ [ [ [ [ C [ [ c [ [ [ [ [ E [ I w w I l . ·.) j l ... J l . J l .J . l L. . I l I , I . I PETERS I PURCHES CREEKS INDEX STUDY AIREAS 0 A = Discharge Measurement W e =Water Quality Measurement -----=Fish Trapping Area I ;; Index Area ~=Index Area Boundary Figure 24 l . . '· .J ·hl!!cwD~tl2 wuedYiiiiiiiiiiiiiiiiiil'•l'fli I .5 . P lkm ls:M ~· .. llb•undi' iiiiiiiiiiii' ~ ... ) Table 2. Geographic locations for Peters/Purches Creeks Supplemental Study sites (Figure 24).~ Site Ql Q2 Q3 Q4 Q5 Site Wl PURCHES CREEK INDEX AREA BOUNDARIES Index Area _ADF&G Geographic Location UPSTREAM DOWNSTREAM I 20N01Wl1CBD to 20N01W17AAB II 20N01Wl7AAB to 20N02W14BDD III 20N02Wl4BDD to 20N02Wl6DCD* PETERS CREEK INDEX AREA BOUNDARIES Index Area ADF&G Geographic Location UPSTREAM DOWNSTREAM I 21N01W30ACC to 21N01W34CAC II 21N01W34CAC to 20N01W05CBB III 20NOlW05CBB to 20N02Wl6DCD** IV 20N02Wl6DCD**to 20N03W36AAD*** PETERS/PURCHES 'GREEKS DISCHARGE MEASUREMENTS SITES ADF&G Geogr·aphic Location Site ADF&G Geographic Location 21N01W36BDC Q6 20N01W09CCD 21N01W36BCA Q7 20N02Wl6DCD 20N02W11CBB QB 20N02W16DCA 20N02W02DAA Q9 20N02Wl3DBB 20N01W16BBA QlO 20N02W19DDD PETERS/PURCHES CREEKS WATER QUALITY MEASUREMENT SITES ADF&G Geographic Location 20N01W05ADD Site ADF&G Geographic Location W2 20N02Wl3ADA * Refer to Methods section for a description of the ADF&G Geographic Location system. ** Confluence of Peters Creek and Purches Creek. *** Confluence of Peters Creek and Willow Creek. [ [ [ [ [ [ [ [ [ c [ [ [ [ [ [ E L [ [. I w U1 I > II> ., ~ II> l : l. USGS STA. NO. A 152940.05 . 8 152940.12 c 152940.10 0 152940.07 E 152940.08 F misc. site G misc. site Figure 25 112 0 1 .5 0 . . J .J I ~· J J ADF&G I USGS SAMPLING SITES 1 mi. 1 km. J . .J Table 3. Geographic locations of ADF&G/USGS sampling sites (Figure 25).* Site A B D E F G Deception Creek near Willow USGS #152940.10 Deception Creek ab.trib.nr. Houston USGS #152940.07 Deception Creek Trib. nr. Houston USGS #152940.08 Unnamed Decep •· Cr. Trib. nr. Willow USGS misc. site Peters Cr. below Purch. Cr. nr. Willow USGS misc. site USGS Geographic Location NE 1/4 SW l/4 Sec 11 T 19N R 04W SE l/4 NW l/4 Sec 35 T 19N R 03W SE l/4 NW 1/4 Sec 35 T 19N R 03W NE 1/4 SW 1/4 Sec 12 T 19 N R 04W SE 1/4 SW l/4 Sec 16 T 20N R 03W ADF&G Geographic Location 19N04W11CA 19N03W35BDB 19N03W35BDC 19N04Wl2CAD 20N03Wl6DCB * Refer to Methods section for a description of the ADF&G Geographic Location system. -36- [ [ [ [ [ [ [ [ r~ l L [ [ . ., . --] --, -" _ _; t [ Creeks (Figure 26). In addition, adult sockeye salmon (Q.. nerka) are known to mill at the mouth of Willow Creek. Resident fish species include Dolly Varden (Salvelinus malma), rainbow trout (Salmo gairdneri), Arctic grayling (Thymallus arcticus) (Figure 27), and burbot (Lata lata). Pink salmon are the most abundant salmon found in Willow and Deception Creeks, with the largest runs occurring during even years. In 1978, Willow Creek had the highest pink salmon sport fishing harvest (19,000) in Alaska (Mills 1980), and a pink salmon escapement estimated at 220,000 (Watsjold and Engel 1978). With the opening of a limited chinook sport ' fishery" in 1979 (chinook fishing had been prohibited since 1972), Willow Creek now provides one of the four roadside fisheries for this species in the Susitna Basin . -37- I <..v 00 I SPECIES PERIODICITY CHART FOR WILLQW I DECEPTION CREEKS SPECIES BY LIFE STAGE JAN FEB MAR APR MAY J:UN JUL AUG SEP OCT NOV DEC CHINOOK SALMON ,, Adult Immigration ---~--Spawning •· -· ~---· Incubation* ~~------~ .. ·. -· ~---· ~---------· 11!11--· Juvenile Rearing ~~------~--· ~---· ·------~·-~----· ~---------· ~--· PINK SALMON ~ :: " Adult lmmlgra,tion ,. -· ~----Spawning ' ,·;, • ~--· Incubation* ~------~--· •• ~---· ·------.. --· ~--· Juvenile Rear'ing ·--· ~---· •• .. CHUM SALMON ' '• .. Adult lmmlgra'tion : ~---Spawning •• ~--· Incubation* ~~------~--· ,. •• ~--· ·------~----· ~--· '• Juvenile Rearing ·--· ---· •• COHO SALMOIN Adult Immigration ·';. ,. •• ~---· ·-Spawning -----Incubation* ~------~--------~----· ~--· .. Juvenile Rearing ~---------· ---· ·----·-~----~---· "'------~----· ~---· '*Includes per'lod from egg deposition to fry emergence Figure 26. Anadromous fish species. ,J ~. ' j l. j l .. J J l. J d ' j j ,[ .J ! I SPECIES PERIODICITY CHART FOR WILLOW I DECEPT~ON CREEKS ! SPECIES BY LIFE STAGE JAN FEB MAR APR MAY JUN JUL AUG I SEP OCT NOV DEC . RAINBO.W TROUT Spawning -----· .... 1ncubatlon * -----· ·--· ·--- DOLLY VARDEN .. Spawning ~---------· ' ·Incubation* ~----· ~--· ·----~--------lmllll ---· ~ I ARCTIC GRAYLING Spawning ---~--· ·--· .Incubation* ---~--· ---· ·--... *Includes pe/rlod from egg deposition to fry emergence Figure 2 t.. Resident fish species** '· I · uBurbot data unavailable I MATERIALS _ _j MATERIALS Project equipment is listed below (Table 4). Table 4. Equipment used in Instream Flow and Supplemental Studies. Surveying Equipment Leitz B2-A 1 evel Philadelphia rod K&E AL-3 level rod level 100 ft fiberglass tape rebar Price AA meter Pygmy meter Flow Metering Equipment stopwatch tagline top setting wading rod headphones beeper box* 18 1 Monarch boat with 2S hp motor and jet foot cantilevered boom and rail flow suspension system on bridge. Water Qua 1 ity Equipment YSI** dissolved oxygen meter YSI conductivity meter Beckman RB-III conductivity meter thermometer Ryan thermograph Cole-Parmer pH meter Biological Sampling Equipment l/8-inch mesh minnow traps dip nets MS-222 *Substituted for flow meter headphones. **Yellow Springs Instrument Company. -40- salmon roe Surber sampler METHODS METHODS Instream Flow Study* Geographic Code Locations In_this repor~, locations of f~atures such as reaches, sampling sites, etc., were specified by a code containing up to fourteen characters (Figure 28). The first three characters identify the Township of the sampling point; the next three, the Range; and, the next two, the section number within the Township. Following these eight characters, one to four letters are used to indicate the location of the sampling point within the 640-acre section. Each letter progressively subdivides the section into fourths, designating them A, B, C, and D in a counter- clockwise direction. The first letter following the section number therefore represents the location of the site within the quarter section (160-acre tract); the next, the quarter-quarter section (40-acre tract); the next, the quarter-quarter-quarter section (1 0-acre tract); etc. When more than one site is sampled within the same subsection, the number of sites is added at the end of the code. For example, if two samples were collected in Section 21, Township 9 North, Range 20 West, the geo- graphic code would be 09N20W21DAA2. The letters DAA indicate that the samples were collected in the 10-acre NE quarter-quarter-quarter section of the 40-acre NE quarter-quarter section of the 160-acre SE quarter *Analysis techniques are discussed in the Results section. -41- section of Section 21. The number 2 following the letters DAA indicates there were two sampling locations in this 10-acre tract. 09N20W21 DAA2 Figure 28. ADF&G geographic location system. Training Personnel involved with the field data collection completed the 1-week IFG course: Instream Flow Data Collection Techniques prior to initiating this study. Personnel involved in the computer analysis attended the 1- week IFG course: Instream FlownComguter Analysis Techniques in Augu_st 1980. -42- c [ [ [ [ [ E [ [ [ [ [ [ [ r L [ E [ [ _) """' I u Reach Se 1 ecti on Study reaches were selected with the assistance of Larry Engel and Dave Watsjold, ADF&G Palmer Area Sport Fish Biologists. A number of factors were considered in choosing these reaches, including: presence of spawning activity, accessibility, permission from landowners, physical difficulties that could be encountered when surveying and/or obtaining acceptable flow measurements (based on the hydraulic characteristics at the site), the proximity of USGS gaging stations, and the availability of personnel, equipment, and time. As a result, reaches which were selected during this study do not exactly match the IFG's definitions (Bovee and Milhous 1978) for "critical or representative reaches". Thus, they should not be used to represent other reaches within Willow and Deception Creeks without additional investigation. Transects were selected within each reach according to the procedures outlined in the Montana Department of Fish, Wildlife, and Parks publica- tion: Guidelines for using the Water Surface Profile program to deter- mine instream flow needs for aquatic life (Spence 1975) and the IFG publication: Hydraulic simulation in instream flow studies: theory and techniques (Bovee and Milhous 1978). Discharge Three seasonal discharges were measured at transects within each study reach by ADF&G Sport Fish Division Biologists with assistance from USGS, -43- ADF&G Habitat Division, and ADNR personnel. Measurements were timed to correspond to seasonal high, medium, and low flow periods because measure- ments of these discharges are required for analysis by the IFG-4 computer model (Bovee and Milhous 1978; Bovee 1980a). Proced1,.1res for discharge measurements outlined by Spence (1975), the IFG (Bovee and Milhous 1978), and the USGS (Buchanan and Somer 1973; Smoot and Novak 1977) were followed. When depths and velocities were too large to a 11 ow study personne 1 to wade the stream, measurements were co 11 ected from a boat. Stage Staff gages were installed at each study reach to monitor stage/discharge relationships. Gages were placed to accomodate both low and high stream flows. Stage readings were recorded on a daily basis unless other study activities prevented an observation. Additional stage readings were re- corded immediately before and after discharge measurements to determine if and how much the discharge had fluctuated. Substrate Substrate data were collected along discharge measurement transects, each time discharges vJere measured, to characterize hydraulic roughness. Additional substrate data were collected at point velocity redd sites to identify the physical characteristics of substrate types associated with spawning sites (see Point Specific Spawning Habitat section below). -44- [ [ [ [ [ [ [ [ [ [ [ [ [ [ r L r l E [ [ ,) Substrate was assessed by observing the stream bottom and recording the percentages of predominant substrate groups. The sizes and types of substrate recorded were adapted from the Modified Wentworth Scale and grouped into seven classes (Table 5). Water Quality Each time discharges were measured, data on dissolved oxygen (DO}, specific conductance, pH, and temperature were collected to determine whether water quality variations corresponded to changes in discharge. Data were collected· from each reach with the instruments listed in Table 4 following the procedures established by the respective manufacturers and the USGS (1979). Surface water temperatures of each reach were continuously monitored by thermographs which were enclosed within minnow traps to protect them from damage. The traps were weighted with stones and attached to staff gages with wire. The thermographs were inspected and calibrated on a weekly basis. Calibration data (time, date, and temperature) were recorded on thermograph charts.· Charts were changed every 30 days. New charts were rewound prior to installation to prevent jamming. The "0" ring seal of the thermograph casing was cleaned and greased with a thin layer of silicone grease before resealing to prevent leakage. -45- Table 5. Equivalence of Modified Wentworth and Willow/Deception Creeks Study substrate scales. MODIFIED WENTWORTH SCALE WILLOW/DECEPTION CREEKS SCALE Class Description* Class Description* 1 plant detritus not considered 2 0.0001 -0.0016 I mud 3 0.0016 -0.0024 II sand 4 0.0024 -0.079 III 0.25 -1.00 5 0.079 -2.5 IV 1.00 -3.00 v 3.00 -5.00 6 2.5 -9.8 VI 5.00 -10.00 7 greater than 9.8 VII greater than 10 *Description numbers represent inches. -46- [ ,[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ E L L Point Specific Spawning Habitat Data* Water velocity, depth, and substrate characteristics, associated with chinook salmon redds, were recorded to characterize spawning habitat conditions in the study area. Visual observation of females actively fanning redd sites proved to be the most reliable means of identifying false redds, it was necessary to observe females fanning the same site a number of times to verify active redd locations. Redds were located also by noting the presence of Classes III and/or IV substrate, overturned stones, and a characteristic mound deposited downstream of the redds during their construction. After redd sites were located, point specific data were collected in the vertical plane at the upstream portion of the redds. When water was less-than 3 feet deep, an average point velocity was measured at' the data collection site by placing the velocit~ meter at 0.6 of the total depth measured from the surface of the water. When water depth was 3 feet or greater, two velocity readings were obtained, at positions 0.2 and 0.8 of the total depth, and later averaged to calculate the mean velocity. Substrate characteristics were classified and recorded, according to substrate procedures outlined above. *Point specific data characterize the range of streamflow-dependent characteristics which appear to be influencing the suitability of various habitat types for the species and life stages of interest. -47- Benthic Invertebrates Aquatic larval insects were collected from the stream bottom substrate using a Surber sampler to characterize the presence of benthic inverte- brates. One square-foot of stream bottom was sampled at each study reach on the first two discharge measurement dates. The insects were preserved in isopropyl alcohol and returned to the laboratory where they were enumerated and identified to taxonomic orders. --------------------------------------------------------------------------- Supplemental Biological, Water Quantity and Quality Study Peters/Purches Creeks Site Se 1 ecti on Streams were subdivided into reaches (index areas) according to gradient, channel geometry, pool-riffle ratio, substrate, and surrounding terrain characteristics (Watsjold and Engel 1978). Biological Data One-eighth-inch mesh minnow traps were baited with one inch diameter pieces of salmon roe which had been autoclaved for 45 minutes at 12l°C according to procedures outlined by Wadman (1979). Set traps were checked after 24 !4 hours. Trap locations were noted, and number and species of fish captured were recorded for each trap. Substrate charac- teristics were also recorded at trap sites according to substrate proce- dures discussed above. -48- [ [ [ [ [ [ [ [ [ [ [ [ [ [-, -~ [ f' l [ [ L --, ·Water Quantity and Qua-lity Discharge, dissolved oxygen, pH, water and air temperature, and specific conductance data were collected with the instruments listed in Table 4 according to procedures discussed above. ADF&G/USGS Study Site Selection Sampling sites were established on major tributaries of Willow and Deception Creeks. Site selections were based on availability of his- torical data for particular sites (Scully 1978; McCoy 1978), accessi- bility of sites by helicopter, and practicability of sampling all sites in one day. Water Quantity Discharge data were collected with the instruments listed in Table 4 according to procedures discussed above. Flows were not measured when the velocity of the water was too swift and/or the depth of the water was too deep to permit wading. Measurements were timed to correspond with seasonal high, medium, and low flow periods in an attempt to monitor seasonal variability. tva ter Qua 1 i ty Water samples, dissolved oxygen, pH, temperature, and specific. conduc- -49- tance data were collected, each time flows were measured, with the instruments listed in Table 4 following procedures discussed above. Water samples were processed for shipping to the USGS laboratory in Denver, Colorado for analysis. Procedures outlined by the USGS (1977) were followed when collecting water samples. The parameters analyzed are listed in Appendix B. -50- [ r [ [ [ ----[- [ [ [ [ [ f ~ _, [ L r~ L c L L [ RESULTS· .. ; - __ ,1 RESULTS Instream Flow Study Discharge W-illow Creek flows ranged from 1163 cubic feet per second (cfs) on July 10, 1979 to 205 cfs on September 14, 1979 in the lower reach, from 991 cfs on July 11, 1979 to 175 cfs on September 14, 1979 in the middle reach, and from 917 cfs on July 11, 1979 to 174 cfs on September 14, 1979 in the. upper reach (Table 6). Flows were 5 percent higher in the middle reach than in the upper reach and 10 percent higher in the lower· reach than in the middle reach. The difference in flow between the middle and lower Willow Creek reaches is higher than that between the upper and middle reaches because of the flow contribution of Deception Creek. Deception Creek flows ranged from 57 cfs on July 12, 1979 to 20 cfs on September 13, 1979. Discharge information recorded at nearby USGS gaging stations is listed in Appendix B. Stage Daily stage data collected in Willow Creek indicate that the stage had peaked at all Willow Creek sites in mid-July after which it gradually declined until it increased abruptly in mid-September before falling again (Appendix C, Figures 1-6). Deception Creek stage began to decline in late July and peaked in mid-September before dropping again (Appendix C, Figure 7). -51- [ Table 6. Flow ( cfs) summary for Wi 1low/Decepti on Creeks Instream [ . . Flow Study reaches, 1979 . SITE FLOW #1 FLOW #2 FLOW #3 [ LOWER WILLOW (07/10/79) (08/08/79) (09/14/79) [ Transect No. 1 1225 674 201 Transect No. 2 1215 661 212 [ Transect No. 5 1050 662 202 AVERAGE FLOW 1163 652 205 [_ ------------------ MIDDLE WILLOW (07/11/79) (08/08/79) (09/14/79) [ Transect No. 1 987 623 180 Transect No. 2 1025 620 155 [ Transect No. 3 929 571 165 [ Transect No. 4 1021 620 200 AVERAGE FLOW 991 598 175 [ UPPER WILLOW* (07/11/79) (08/08/79) (09/14/79) [ Transect No. 1 493 240 42 Transect No. 2 470 262 45 [ Transect No. 3 466 234 50 AVERAGE FLOW 476 245 46 f' L Above Forks 918 569 174' [ DECEPTION CREEK (07/12/79) (08/09/79) (09/13/79) Transect No. 53 27 16 r~ L Transect No. 2 62 38 24 r~ Transect No. 3 57 30 19 l AVERAGE FLOW 57 32 20 E *Upper Willow reach flows represent the south fork of the mainstem of Willow Creek.- Therefore, the total discharge for this portion of Willow Creek was measured on r~ the mainstem upstream of the braided section of the creek (Above Forks). L -52-L . ..} --~ r , L I L Substrate Predominant substrate classes ranged from Classes II to VII in Willow Creek and from Classes II to IV in Deception Creek (Table 7). Table 7. Range of predominant substrate classes observed in the Willow/ --. Deception Creeks Study reaches, -1979. - STUDY REACH Lower Willow Creek Middle Willow Creek Upper Wi 11 ow Creek. Deception Creek Water Quality SUBSTRATE CLASS RANGE II -VI III -VII II -Vl II -IV Willow and Deception Creek water temperatures, measured on an instane- ous basis, ranged from 9.0° to 12.0°C, DO from 8.3 parts per million (ppm) to 11.5 ppm, pH from 7.0 to 7.6, and specific conductance from 30 to 90 )Jmhosjcm (Table 8). Continuously monitored water temperatures ranged from 2.8° to l5.6°C in Willow Creek and from 3.3° to 14.8°C in Deception Creek (Appendix D). Point Specific Spawning Habitat Data The most frequently measured water depth, at 33 chinook salmon redds, -53- . Table.a •. · Water Quality Summary for Willow/Oecept.ion Creeks Instream Flow Study reaches, 1979. Site LOWER WILLOW ~HOOLE WILLOW Date 07/10/79 08/08/79 09/14/79 07/11/79 Temp.l 09.0 11. 1 10.0 10.0 o.o.2 10.3 08.3 10.9 11.1 .P!! 7.4 7.1 7. 1 7.6 3 Con d. 37 31 70 [ [ [ [ [ 30 [ ·-----·--------------' - UPPER WILLOW DECEPTION 08/08/79 09/14/79 07/11/79 08/08/79 . 09/14/79 07/12/79 08/09/79 09/13/79 1 Temp. = temperature in oc __ 4 10.5 12.0 10.0 12.0 11.5 10.0 2 D.O. = dissolved oxygen in mg/1 J Cond. = specific conductance in ~mhos/em 4 = equipment malfunction -54- 11.3 10.5 11.5 10.2 10.7 11.2 7.3 7.6 7. 1 7.5 7.0 7.2 60 r 31 [ 60 [ 68 [ 78 r 95 c [ [ [ r L r~ l; L [ [ '\ was 1 .. 6-feet~ with a range of 0. 95 to 3.00 feet; most frequently meas- ured average water column velocity was 2.25 feet per second (ft/sec), with a range from 0.28 to 4.75 ft/sec; and most frequently measured substrate was Class III, with a range of II to IV (Table 9). Because of insufficient resources to collect additional point specific spawning habitat data, point specific chinook and pink salmon spawning • >_ - ---- ------hab'i-ta-t-Eia-ta-ee~-lee-ted--in-W-i-1-lew~Greek--dur-in g-1-91-8-by-Wa'Cs-j~ld-an d-Engei--------------- (1978) are included in this report (Tables 10 and 11). The most fre-· L [ L r ~ L [ - L quently measured chinook salmon spawning depth measured in Willow Creek in 1978 was 1.65 feet,, with a range_of 1.0 to 2.2 feet; most frequently measured average water column velocity was 3.16 ft/sec, with a range of 1.51 to 4.75 ft/sec; and most frequently measured substrate was Class IV with a range of III to VI. Pink salmon spawning depth most frequently measured was 1.35 feet, with a range of 0.6 to 2.4 feet; average water column velocity most frequently measured was 2.4 ft/sec, with a range of 1.01 to 4.01 ft/sec; and substrate most frequently measured was Class III, with a range of II to IV. Suitability Curves Point specific spawning habitat data outlined above are presented as suitability curves (Figures 29-37).* The curves were derived using *Habitat suitability curves are developed to represent the ranges of depth, velocity, and substrate types commonly occupied by a particular species and life stage. The chinook and pink salmon curves presented in this report are provided as illustrations and are not to be used to develop specific flow regimes for Willow and Deception Creeks. The curves were developed from a small number of observations, and ADF&G biologists should be consulted for further interpretation of these curves. -55- Table 9-. -'Redd measurements-for Chinook Salmon. in Willow. Creek, August 19-79: . (Hot recommended for application·: to other watersheds). Depth (ft.) 1.10 l. 70 0.95 1.30 2.00 Velocity (ft;/sec.) 1. 920 2.390 0.279 4.750 5.200 Substrate Classification IV III-IV II III-IV III-IV c ~ [ [ [ 1.50 3.210 III 1.60 1.290 _ III [ -----------~-1-.40------------2-.-J40----------------------.-I-V--------------------------------- 3. 00 4. 280 II I 2.70 2.500 III-IV 2.10 2.800 III 2.20 0.993 III 1.60 0.993 III 1.10 0.837 III-IV 2.00 2.100 III 2.40 2.990 III 2.00 4.750 IV 1.50 2.440 IV 2.20 3.130 III 1. 70 3.060 III 1.40 3.280 III-IV 2.00 2.690 III 2.50 3.210 III 2.60 3.280 III 1.80 2.990 III 2.10 1.160 III-IV 2.00 2.200 III-IV 1.60 2.290 III 1.10 2.100 III 1.60 2.100 III 1.50 2.740 III-IV 1.50 1.880 III 1.70 3.800 III -56- [ [ [ [ l [ [ [ r~ L c E [ L ~ _j n L; Table 1'0 •. Redd measurements for Chinook Salmon in Willow Creek, August 1978. (adapted from Watsjold and Engel 1978).* " L Substrate De2th {ft.} Velocitl {ft./sec.) Substrate (in.) Classification** I' 1.7 3.72 2.0-6.0 IV-V L 1.3 3.06 2.0-6.0 IV-V 1.0 2.39 1. 5-6.0 IV 1.3 3.28 2.0-7.0 IV-V [ 1.9 1.54 2.0-6.0 IV-V 1.8 l. 76 l. 5-7.0 IV [ 1 .• 5 l. 76 2.0-7.0 IV-V 1.7 2.44 1. 5-7.0 IV ].4 4._46 1.5-7.0 IV 1.3 3.57 1.5-7.0 IV ....., 2.2 3. 21 2.0-7.0 IV-V 1.8 2. 61 2.0-6.0 IV-V . 2.0 3.50 2.0-5.0 IV 1.4 3.80 2.0-6.0 IV-V L) 2. 1 3.43 3.0-6.0 v n 1.4 3.28 1.0-5.0 I II-IV L 1.4 3.21 3.0-6.0 v 1.0 3.89 3.0-6.0 v [ 1.3 2.92 2.0-5.0 IV 1.4 2.50 2.0-4.0 IV 1.2 1.51 1. 0-4.0 I II-IV n 1.6 3.43 1.0-6.0 III-IV u 1.2 3.80 2.0-6.0 IV-V 2.0 3.37 3.0-7.0 v [ 1.6 2.29 1. 5-4.0 III-IV 1.3 2.55 1.5-4.0 III-IV 1.8 2.99 2.0-5.0 IV I' 1.8 3.80 1.5-4.0 III-IV L 1.8 3.28 2.0-6.0 IV-V 1.6 3.98 1. 5-6.0 IV : 1.7 2.55 3.0-6.0 v i L.J 1.3 1.58 1. 5-3.0 III-IV 1.9 2.74 2.0-6.0 IV-V I' 2. 1 . 2. 50 L 2.0 1.65 3.0-6.0 v [ L9 3.43 3.0-5.0 v 1.7 3.50 2.0-6.0 IV-V 2. 1 4.75 2.0-6.0 IV-V 2.0 4.16 t 2.2 3.56 * 'Not recommended for application to other watersheds. r ** Substrate data collected in 1978 and classified using the method L described in this report. r ,s?- L -·'.~ --·-,_. .:._,;.:..._ . .....: '. .. Table. 10. ' Can:&imJ~ •. Substrate De2th (ft.~ Velocitl (ft./sec.) Substrate (in. ~ Classification* 2.2 3.28 1.8 4.37 1.5-4.0 III-IV 1.7 4.55 1. 5-4.0 IV 1.7 3.80 2.0-6.0 IV-V 1.5 2.29 l. 5-3.0 III-IV 1.9 2.92 l. 5-4.0 I II -IV 1..4 2.99 1. 5-3.0 III-IV 1.4 4.16 4.0-6.0 V-VI 1.7 4.07 3.0-5.0 v 1.5 3.89 2.0-5.0 v * Substrate data collected in 1978 and classified using the method described in this report. -58- c [ [ [ [ [ [ [ [ [ t [ [ [ r L c B [ c -C) -. Table ll.,. Redd. mea.Su.rements for Pink. Salmon in Willow Cree.k, August l978 •. (adapted from Watsj o 1 d and Engel 19 78) . * · · Depth (ft.) 1.8 1 .8 2.1 1.4 2.1 Velocity (ft./sec.) 2.10 2.29 2.10 1.01 1.17 Substrate (in.) 1.0-1. 5 1. 0-2.0 1.0-2.0 1. 0-2.0 1. 0-2.0 Substrate Classification** III-IV III-IV III-IV II I-IV III-IV ~ 2.4 2.20 1. 0-2.0 II I -IV III-IV 1.9 1.51 2.1 3. 28 ' 2.0 2.55 ~-----------0.9 ___ -----------1.92 1.7 3.28 1.8 3.50 1.4 1. 76 2.3 2.74 1.6 2.00 1.1 2.20 0.9 1.33 0.6 1.25 2.1 2.74 0.8 2.02 0.9 3.72 1.1 1.58 ·r.o 2.00 . 0.8 3.11 1.5 2.74 0.5 1.84 0.8 2.44 1.5 3.28 1.7 3.65 0.6 1.25 0.7 1.96 0.7 2.34 0.8 1.58 1.4 2.20 1.4 2.50 0.7 2.50 Li 1.7 2.50 1.5 2.38 u L 0.7 1. 96 1.5 2.55 1.0-1. 5 0.5-2.0 1.0-2.0 -------~2.0 -------------- 2.0-3.0 2.0-5.0 1.0-1. 5 1.5-2.0 1.0-2.0 0. 5-1.5 1. 0-1.5 0. 5-1.0 0. 5-1.5 1. 0-1.5 1. 5-2.0 0. 5-1.5 0.5-1.5 0.5-1.0 0.5-1.5 1. 0-1.5 1. 0-1.5 1.5.;.3.0 1. 0-2.0 1. 0-1.5 0.5-1.5 1. 0-1.5 0.5-1.0 1.0-2.0 1. 0-2.0 1.0-2.0 1. 0-2.0 0.5-1.5 1. 0-1.5 *'· Not recommended for application to other watersheds. III III-IV III-IV IV IV III-IV III-IV III-IV III III-IV III III III-IV III -IV III III· III III III-IV III-IV III-IV III~IV III-IV III III-IV III III-IV III-IV III-IV III-IV III III-IV I' ~ ** Substrate data collected_in 1978 and classified using the method described in this report. r~ -59- L ·Table 11. Continued.~ Substrate DeEth (ft.} Velocitx (ft./sec.) Substrate (in.) Classification* 1.5 2.10 o. 50-1.50 III 1.7 2.29 1. 00-1.50 III-IV 1.1 1.47 0.50-0.75 II-III 1.7 1.92 0.50-1.00 III 1.8 2.29 0.50-1.50 III 2.0 2.74 1.00-2.00 II I-IV 1.8 2.55 0.50-1.00 III 0.6 1.35 0.50-1.00 III 0.9 1.88 0.50-1.00 III ----------------------------------------------------------------------------------------1.5 2.20 1. 00-1.50 III-IV 0.7 1.63 f**-0.75 II 1.3 1. 96 ·1.00-2.00 III-IV 1.5 2.99 1. 00-2.00 III-IV 1.0 1.28 f**-2.00 II-III 1.2 2.20 1.00-2.00 III-IV 1.3 2.39 1. 00-2.00 III-IV 0.8 1.65 0.50-1.50 III 1.3 2.44 1.00-3.00 III-IV 1 . 1 3.50 1.00-2.00 III-IV 1.6 2.34 l. 00-1.50 III-IV 1.4 3.13 1.00-2.00 III-IV 1.2 2.44 0. 50-1.50 III 1.7 2.74 0.75-2.00 III . 1.5 2.55 · .. 0.50-1.50 III 1.3 2.74 1.50-2.00 III-IV 1.4 2.99 1. 50-2.00 III-IV 1.1 2. 61 0.50-1.50 III 1.1 2.29 1.00-2.00 III-IV 1.3 3.37 1. 00-1.50 III-IV 1.1 3.37 1.00-2.00 III;..IV 0.9 2.05 1.00-1.50 III-IV 1.7 2.10 f**-1.00 II-III 1.1 1.88 0.25-6.00 III 1.2 2.74 1.00-6.00 III-IV 1.6 2.50 0.50-5.00 III 1.0 2.55 0.50-5.00 III 1.1 2.74 0.50-5.00 III 1.6 2.99 1.00-6.00 III-IV 2.0 4.01 1.00-6.00 III-IV 1.2 2.20 0.50-4.00 III * Substrate data collected in 1978 and classified using the method described in this report. f** = fines -60- [ [ [ [ [ [ __ [ [ [ [ c [ [ [ r L c E [ c --, ccj -; Table 11. Continued. -~ 1 Substrate _C) Depth {ft.} Velocit~ (ft./sec.) Substrate (in.) Classification* 1.9 2.74 0.50-5.0 III ' 1.6 3.80 1. 00-4.0 III-IV 2. 1 2.39 1. 00-4.0 III-IV 1.0 3.21 0.75-5.0 III ....., 1.2 2. 72 0.50-3.0 III 1.5 .2. 98 1.00-6.0 II I-IV 1.9 3.89 1. 00-6.0 III-IV ....., 0.9 2.05 f**-1.0 II-III ~----______ L_] _____________ 2.05 0.50-3.0 III -~ -~ ,.__~ 1 1 _;, =-;; -' -, --- ~ [ [ * 1.6 3.13 1.00-6.0 1.5 1.84 f**-3.0 1.3 2.29 0.50-5.0 1.5 3.07 1.00-5.0 1.6 1.65 0.50-3.0 2.4 2.00 0.50-4.0 1.7 3.80 0.75-4.0 0.9 2.50 0.50-2.5 1.5 2.55 0.50-4.0 2.3 2. 61 0.50-4.0 1.2 1.88 0.50-2.5 1.8 2.98 0.50-7.0 1.0 2.68 0.75-3.0 1.6 3.24 0.50-3.0 1.0 1.62 0.50-2.5 1.2 2.10 0.50-3.0 0.6 1.84 0.50-4.0 1.3 1.65 0.50-3.0 1.4 2.15 0.50-2.5 0.9 1. 92 0.50-3.0 1.5 2.44 0.75-4.0 1.7 2.61 1.00-5.0 1.5 3.65 0.75-5.0 1.0 3.43 0.75-4.0 1.0 2. 61 0.50-2.5 Substrate data collected in 1978 and classified using the method described in this report. f** = fines -61- III-IV II-III III III-IV III III III III III III III III III III III III III III III III rti III-IV III III III 1.0 .a a: 0 1- (.) < u.. .6 w (.) z w a: .4 w u.. w a: 0. .2 1.0 1.5 2.0 DEPTH (feet) 2.5 Figure 29. Depth suitability curve for spawning 3.0 c hi no o k s a I mo n in W iII ow C r e e k , A I as k a , Summer 1979 • _Not recommended for· applica-tion to other watersheds. Consult ADF&G for further interpreta~ion. c [ [ [ [ [ [ [ [ c [ [ [ r L l E [ [ ,. .. _. .... .. _j ' -' -, 1 -, ~ ' 0: 0 _)_ 1--u -, < u.. w ·~ (.) z w 0: 1 w u.. ___; w 0: ' a. ___; ' ' I' L .0 .8 .e .4 .2 .25 1.0 Figure 30. .. .... 2.0 3.0 4.0 5.0 VELOCITY (ft/sec) Velocity suitability curv·e for spawning chinook salmon in Willow Creek, Alaska, Summer 1979,: Not recommended for application to other watersheds. Consult ADF&G for further intrepretation. 6.0 a: 0 1- (.) <C 1.0 .8 U. .8 w (.) :z w a: . 4 w· LL w a: a. .2 1.0 2.0 Figure 31. 3.0 4.0 5.0 6.0 SUBSTRATE Substrate suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1979. Not recommended for application to other watersheds. ADF&G for further interpretation. -~: -:-- Consult c [ [ [ [ [ [ [ [ [ [ [ [ [ E [ L ., 1.0 .8 cc .. -e- 1- 0 < u.. .6 w 0 z w cc .4 w u.. w cc a.. .2 r ·~ i [ [ .5 Figure 32. 1.0 DEPTH 1.5 (feet) 2.0 Depth suitability curve for spawning chino-ok salmon in Willow Creek ,. Alaska, · Summer 1978 (adapted from Watsjold and Engel 1-9 7 SX Not. recommended for application to other watersheds. Consult ADF&G for further interpretation. 2.5 1.0 a: .8 0 ---------"o-~-~-1 (.) <C LL w (.) .6 z w a:· w LL ' w a: .4 a. .2 1.0 Figure 33 .. 2.0 3.0 4.0 5.0 VELOClTY (ft/sec) Velocity suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjol·d and Eng e I 1 9 7 8) • Not r e commended f o.r application to other watershe.ds. Consult A-D-F-& G f-o-r -f-u-r-t-h-s-r !-n-t-r-e-f)-r e-t-a-t-i-o-n. -60- [ [ [ [ [ [_ [ [ [ [ B [ [ [ r L c E [ _; -, _J -.. _,) --, -1 -, ~ ' _ _;; -, :::.:..; --, ,~ I L [ L 1.0 .a a: 0 1- (.) <C .6 LL. w (.) z w a: w .4 LL. w a: a.. .2 1.0 2.0 Figure 34. 3.0 4.0 SUBSTRATE 5.0 6.0 Substrate suitability curve fo.r spawning chinook salmon in Willow Creek. A I ask a. Summer 1978 (adapted from Watsjold and Engel 19 7 8). N_ot recommended for' ·application to other wastersheds. Consult ADF&G for further intrepretation. 1.0 a: .8 0 ----"'""------------------ (.) < u. w .6 (.) z w a: w u. ~ .4 a.. .2 .5 Figure 35. 1.0 1.5 ·DEPTH (feet) 2.0 Depth suitability curve for spawning pink -sa I m on in W ill ow C r e e k , A I as k a, Summer 1978 (adapted from Watsjold and Engel 1 9 7 8). Not recommended for application to other watersheds. Consult ADF&G for further interpretation. -68- 2.5 c .r [ r_ [ [ [ [ [ [ [ [ [ c E [ L ' a: 0 .- 0 _ _, <C u. --, w 0 z w a: w _ _; u. w -, a: 0.. ' ___j ' 1.0 .a .6 .4 .2 1.0 ·Figure 36. 2.0 3.0 4.0 5.0 VELOCITY (ftlsec) Velocity suitability curve for spawning pink salmon in Willow Creek, Alaska., Summer 1978 (adapted from Watsjoid and Engel 1978l.. Not recommended for application to other watersheds. Consult ADF&G for further intrepretation. 1..0 a: .8 0 1- 0 <(' LL. w .6 (.) z w a: W· LL. w a: .4 a. .2 1.0 2.0 Fi.gure 37 •. 3.0 4.0 5.0 SUBSTRATE ·substrate suitability curve for spawning pink salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Consult ADF&G for further interpretation. Not recommended for. application to other watersheds. -70- [ [ [ [ [ [ [ [ [ [ [ [ [ [" L L . E [ [ _j frequency analysis. This was accomplished by dividing the range of values obtained for each parameter (i.e., depth, velocity, or substrate), into appropriate equal increments, assigning each data point to the proper increment, and clustering adjacent increments to reduce the variance. The cluster pattern giving the least variance was plotted and the increment containing the greatest number of observations was desig- nated as the~ optimum condition, receiving a preference value of 1.0. ~----------------------------------------------------------------- ------------------- The remaining clustered increments were assigned preference factors by dividing the frequency of each increment by the frequency of the optimum. Detailed instructions for developing these curves are outlined by Bovee and Cochnauer (1977). Velocity and depth curves were developed without data modifications. Development of substrate curves, however, required some data conversions. Substrate data, were aggregated for use in developing suitability curves . .. The data collection method .used resulted in potentially unlimited combi-. . -· . . . ~ .. . . . . -. . -. ~ -. . . . . -. . ·. ·. . . . . nations of categories for substrate classification (i.e.~ categories could be based on any percentage of any or all of the seven substrate classes). As a result, one site might include 50 subtrate categories while another might contain 10. By limiting substrate categories which could be used at a particular site to three dominant particle size classes, each of which had to comprise at least 10 percent of the substrate particle sizes present, the number of categories was reduced to 275. The 275 categories were then grouped into 10 categories according to predominant substrate size. After data were organized according to this system, frequency analysis of substrate categories was performed to develop substrate curves. Substrate data, thus grouped, were easily -71'- converted to the modifiedWentworth classification (Table 5). Benthic Invertebrates One-hundred-six individual benthic invertebrates collected from the Willow/Deception Creeks Study reaches were classified to taxonomic order (Table 12). Eleven percent were identified as Trichoptera, 25 percent c [ [ [ [ ---------------~~-~~~:_~t_~a'-~6 -~~~~_:_-~:_~ip~~~~~_!__P_e~cent_~-~~heme~~~-t~~a_'_~~~-2-_________ [_ percent as representative of other orders. Computer Analysis Financial and time limitations restricted computer analysis of hydraulic data to one reach. The middle Willow Creek reach was selected because it contained both pink and chinook salmon spawning habitat. Discharge. and substrate.,data were coded and computer analyzed with the. IFG-2 and IFG-4 programs* stored on the Boeing Computer Services System. Using the IFG-2 model, encoded data were calibrated to the highest *The IFG-2 program is a modified version of the Water Surface Profile (WSP) computer program designed by the IFG which uses one set of observed stream flow data (depth, velocity, and substrate) to predict hydraulic parameters for a range of desired flow regimes. The hydraulic model is calibrated to reproduce water surface elevations and velocity distributions observed at selected stream flow conditions. Once properly calibrated, the computer prog-ram -\"Jill predict the \"'ater surface elevations and respective horizontal velocity distributions at each transect for a range of desired discharges. The IFG-4 hydraulic model, unlike the IFG- 2 model, requires at least two and preferably three sets of observed stream flows at each transect to correlate flow versus velocity and stage versus flow. Once calibrated, depths and velocities for flows of interest can be predicted from the established correlations (IFG 1980b). -72- [ [ [ [ [ [ [ [ [ r' C [ [ I "-J w I 'J l J l l .. J I" , j !l J I I Table 12. Benthic insects (no/ft.2), classified to order, collected from each iof the Willow/Deception Creek Instream Flow Study reaches, 1979. ] ! I I SITE TRICHOPTERA PLECOPTERA DIPTERA EPH 1EMEROPTERA I Lower Will ow I 07/12 1 'l 02 01 0 08/08 1 : 01 25 0 Middle Willow 07/ll 0 01 01 0 08/08 1 00. 02 0 Middle Willow Sloug~ 07/11 0 01 26 1 Upper Willow 07/11 0 06 03 0 08/08 2 00 00 2 Deception C1reek 07/12 2 13 02 4 08/09 5 02 00 0 L J L J ll L. .J OTHER -- 0 0 0 0 0 0 2 0 0 discharge {991 cfs) following the procedures outlined by the IFG (198Gb) and Trihey (1980).* IFG-2 computer output data for the middle reach of Willow Creek are presented in Appendix E. Unstable channel geometry and inability to obtain assistance of a hydraulic engineer prevented analysis by the IFG-4 program which would have required further hydraulic analysis (Newcome 1980). [ [ ·L [ [ [ --------------------------------------------------------------------------------------------------------------------------------------------- Once calibrated~ the hydraulic model was integrated with six different sets of point specific habitat suitability criteria for chinook and pink salmon to calculate predicted hypothetical Weighted Usable Area (WUA).** WUA values were predicted at six different discharges by each of the following IFG (l980b) methods: 1. Standard Calculation -"This is the calculation of the habitat area with the Jo.int Preference Factor (JPF) equal to (a x b x c); . . . . where a, b·,. and a,; equal preference variables for velocity, depth~ and substrate. This technique implies synergistic action; optimum habitat only exists if all variables are optimum". a. Standard Calculation With Three Matrices -"This is the Standard Calculation in which depth/velocity, velocity/ *This was based on the assumption that streambed elevations measured at this discharge level would be static for all predicted flows. **The WUA represents the square feet (ft2 ) or percentage (%) of wetted surface habitat area predicted to be available per 1000 linear feet of stream reach at a given flow. -74- [ [ [ [ [ [ [ [ r_ L c [ L 2. n I L substrate, or depth/substrate relationships are displayed in a matrix". Geometric Mean -"This is the calculation of the habitat area with the .JPF equal to (a x b x c)0.333. This technique implies compensation effects; if two of the three variables are in the optimum range, the value of the third variable has little [ ------------ ---- - --effect-unless--;-t-is zero"~---------- [ c [ ! L ,~ 1- L 3. LowestLimiting Parameter-"This is the calculation of the habitat area with the JPF equal to the variable having the lowest preference factor at a given discharge. In other words, the optimum habitat will be based on the most limiting variable for a given discharge. This implies a limiting factor concept, or that the habitat is no better than its least ·suitable factor". The six sources of habitat suitability criteria used in the demonstra- tion WUA analysis are listed below: A. 1980 depth, velocity, and substrate preliminary data on pink salmon habitat from the Terror Lake Hydroelectric feasibility study, Kodiak Island (AEIDC 1980); B. 1978 depth, velocity, and substrate data on pink salmon habitat in Willow Creek (Watsjqld and Engel 1978); C. 1979 depth, velocity, and substrate data on chinook salmon habitat in Willow Creek; -75- D. 1978 depth, velocity, and substrate data on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978); E. 1978 depth and velocity data on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978), and 1979 substrate data on chinook salmon habitat in Willow Creek; and F. 1979 depth and velocity data on chinook salmon habitat in Willow Creek; and 1978 substrate data, on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978). Descriptions of the calculation methods above suggest that the Lowest Limiting Parameter calculation method would generate the most tonserva- tive* vJUA value for a given discharge. However, results obtained by each of the three methods indicate that the Standard Calculation proce- dure will generate the most conservative WUA values (Figure 38; Tables 13, 14). This occurs because the su.itability values used to compute WUA must always range between 0 and 1. Results of the·above demonstration calculations to predict WUA values indicate that suitablility data collected from one stream system may not necessarily apply to another (Figure 39; Tables 13, 14).** For example, *Conservative WUA values, as defined in this report, represent the lowest predicted WUA values for a given discharge when more than one calculation method is applied. **It should be noted that suitability data presented in this report were derived from dissimilar samples in terms of the population size sampled and location of the sampling. These factors may also have influenced the results. -76- [ c [ [ [ [ [ [ [ [ c c [ [ c c [. L < w a: < w -1 ID -~ < 15 - - - - - --(/J-- - - - ;::) 0 w 1- ::J: (!J w 3:· 10 (/J 1 <( :I: 0 < ' w L a: u. 0 < w a: <( (/J (/J 0 a: (!J u. 0 1-z .W 0 a: w a. 5 Figure 38. Comparison of three methods for calculating weighted U$able area. (Demonstration analysis -consult ADF&G for further interpretation.) 500 1979 Willow Creek chinook salmon spawning redd data. 1000 DISCHARGE -77- • • Geometric Mean o-----o Lowest Limiting Parameter o o Standard Calculation 1500 2000 (cfs) Table 13. Discharge vs. predicted available spawning habitat area (ft2) per 1000 feet of the Wi 11 ow Creek Instream Flow Study middle reach (Demonstration analysis-consult ADF&G for further interpretation). DISCHARGE (cfs) 2000 1500 0991 0598 0175 0050 2000 1500 0991 0598 0175 0050 2000 1500 0991 0598 0175 0050 PINK SALMON A B c Standard Calculations 00463 00538 00897 CHINOOK SALMON D E 00416 01371 02500 16051 18273 16132 19586 0000 0041 0026 0995 01941 04423 0042 0117 0234 1411 ~25.361 14315 45640 48735 39540 42264 44018 29093 0329 01552 0005 00255 Geometric Mean 0000 02933 0435 04999 0508 2210 1401 0127 08916 11093 09726 02315 Lowest Limiting Parameter 21451 23819 21557 0000 0064 0096 25112 1060 28956 0709 18719 . 0025 1128 1735 3610 4678 3326 0905 05930 01203 03853 06501 09633 14997 19015 05750 01070 02775 05513 08492 10095 02814 0751 0112 1072 1633 3447 7612 6923 2013 0477 0551 1005 3074 2058 0620 F 02876 03839 05674 07677 09284 01811 08044 13534 19737 23430 20612 04792 04631 07741 10916 13376 12521 03223 A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980). B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978). C Chinook salmon 1979 Willow Creek depth, velocity, and substrate data. D Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978). [ c [ [ [ [ [ c [ r L c [ [ [ [ c [ E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjold and Engel 1979 substrate data. F Chinook salmon Will ow Creek 1979 depth and velocity data; 1978 substrate (Watsjo1d and Engel 1978). 1978); [ -78-L ' J Table 14. Discharge vs. predicted available spawning habitat area (ft2) as a ..., 0ercentage of the Willow Creek Instream Flow Study middle reach Demonstration analysis-consult ADF&G for further interpretation) . ' DISCHARGE {cfs) PINK SALMON CHINOOK SALMON A B c D E F Standard Calculations 2000 10.73 0.00 00.31 00.28 00.03 01.92 1500 13.13 0.03 00.39 00.99 00.08 02.76 0991 16.18 0.03 00.90 02.51 00.23 05.69 0598 24.27 1.23 02.41 05.48 01.75 09.51 ~ 0175 39.52 0. 51 02.42 09.24 01.17 14.47 _) 0050 29.01 0. 01 00.52 02.44 00.23 03.67 ' Geometric Mean _ _) -2000 30.50 0.00 01.96 02.57 00.72 05.38 ' 1500 35.01 0. 31 03.59 04.67 01 .17 09.72 _) 0991 39.66 0. 51 08.94 09.66 03.46 19.80 ~- _j 0598 52.37 2.74 13.75 18.58 09.43 29.03 ~, 0175 68.59 2.18 15 .. 15 29.63 10.79 32.11 0050 58.96 0.26 04.69 11.65 04.08 09.71 ' _Lowest limiting Parameter - 2000 14.33 0.00 00.75 00.71 00.32 03.09 _; 1500 17.11 0.05 01.25 01.99 00.40 05.56 0991 21.62 0.10 03.62 05.53 01.01 10.95 _;; 0598 31.12 1. 31 05.80 10.52 03.81 16.57 ' 0175 45.12 1.10 05.18 15.73 03.21 19.51 _j 0050 37.94 0.05 01.83 05.70 01 .26 06.53 ' A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980). ~ B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978). c Chinook salmon 1979 Willow Creek depth, velocity, and substrate data. 0 Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978). E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjo1d and Engel 1978}; 1979 substrate data. :::J F Chinook salmon Willow Creek 1979 depth and velocity data; 1978 substrate data (Watsjo1d and Engel 1978). ~79- _.; 40 35 < w a: < w ..J m < 30 en [ . Effec1s of applying ·differ~nt habitat suitability curves to the same hydraulic model; c· (Demonstration analysis.-consult ADF&G for furth.er interpretation.),. • ••--...... • Pink salmon 1980 Terror Lake depth, velocity and substrate data (AEIDC, 1980) .. ... --•· Pink salmon 1978 Willow Creek depth, velocity and substrate data (Watsjold and Engel, 1978) o---~ Chinook salmon 1979 Willow Creek depth, velocity and s:ubs·trate .data. ... --... Chinook salmon 1978 Willow Creek depth, velocity and substrate data (Watsjold and Engel, 1978) [ [ [ ---------------____ ----:l ______ -----------------------------______ [ __ Q w t- J: ~ w ~ en < .::I: 0 < w a: u. 0 < w a: < en en· 0 a: ~ 20 15 u. 10 0 t-z w 0 a: ~ 5 ,.., I .......... , I ........_, I -............._ I ......... ......._ I ......... ......._ ' .P--------o-' .............. __ / ----- / ------~ ~-~--- 500 Figure 39. 1000 DISCHARGE (cfs) -80- 1500 [ [ c [ [ [ [ [ [ r L 2000 E [ L I L~ i L [ r L using the Stcu1dardCalculation, predicted WUA at a discharge of 175 cfs {based on suitability criteria for pink salmon collected from different stream systems) ranged from 329 ft2 (0.51%) per lOOO feet to 25,361 ft2 (39.53%) per 1000 feet (Tables 13, 14). Supplemental Biological, Water Quantity and Quality Study Peters/Purches Creeks Biological Data One hundred twenty four Dolly Varden and 10 slimy sculpin (Cottus cognatus) were captured in Peters Creek. Eighty Dolly Varden and 15 slimy sculpin were captured in Purches Creek (Table 15). water Quantity Flows ranged from 1 to 76 cfs on Peters Creek and 8 to 97 cfs on Purches Creek (Table 16). Substrate Substrate classes ranged from II to VII in Peters Creek and from I II to VII in Purches Creek (Table 17). -81- Table 15. Fish trapping results, Peters and Purches Creeks, 1979. No. of Fish Catch/Trae Date Index Area No. of Traes DV* SS* DV* SS* 08/23 Peters II ,20 33 5 1.65 0.25 08/24 Peters III 20 30 4 1.50 0.20 08/26 Purches II 20 35 9 1.75 0.45 08/27 Purches II 20 45 6 2.25 0.30 --Peters --ly--- - - --------------------------------------------------------0-97U9--20 43 0 2.15 0.00 09/10 Peters IV 20 18 1 0.90 0.50 Tab 1 e 16. Discharge measurements ( Q) in cubic feet per second (cfs) Peters and Purches Creeks, 1979. Date Index Area Mae Location No. Discharge (cfs) 08/23 Peters I Q1 01 08/23 Peters I Q2 43 . · . .. . 08/24 Peters III Q3 73 08/24 Peters III Q4 13 08/26· Purches I Q5 08 08/26 Purches I Q6 32 08/27 Purches III Q7 61 08/27 Peters III Q8 76 08/27 Purches II Q9 10 09/10 Purches IV Q10 97 *DV~Dolly Varden, SS~Slimy Sculpin. ~82~ [ [ [ [ [ [_ [ [ [ c .C [ [ [ r L [ c [ [ -. t L Table 17. Range of predominant substrate classes observed in Peters and Purches Creeks, 1979. PETERS CREEK INDEX AREA SUBSTRATE CLASS RANGE PURCHES. CREEK INDEX AREA SUBSTRATE CLASS RANGE I v VII I v VII II III IV -VII - II I -VI II III II I -VI III -VI Water Quality Water quality data were not collected because of instrument malfunction. ADF&G/USGS Sites . . Water. Quantity. and Quality Water quantity and quality data collected in the spring, summer, and ' fall of 1979 are presented in Appendix B. Additional water quality data collected in the winter of 1979-80 and spring, summer, and fall 1980 will be included in the USGS publication: Water resources data for Alaska, water year 1980. -83- DISCUSSION ~' I L_; L [ c L . DISCUSSION . Instream Flow Study The Willow/Deception Creeks Instream Flow Study constituted an initial "hands-on" experience at collecting and analyzing Alaskan_instream flow data for the ADF&G and cooperating agencies, following Incremental Methodology procedures established by the IFG (1980a, b; Bovee l980a; Bovee and Milhous 1978; Bovee and Gochnauer 1977; Trihey 1980). This demonstration project enabled the participants to develop the capability to perform this type of instream flow field data collection and analysis, identify the limitations of the methodology, develop suggestions for its improvement, and recommend a plan of study for determining instream flow values in Willow and Deception Creeks.* Hydraulic Data Collection Limitations and Recommendations Of· the six individuals required to collect hydraulic data for this project, only two were actually employed by the ADF&G to perform the study. To compensate, volunteers were recruited from other ADF&G proj- ects and from cooperating agencies. Scheduling necessary to accommodate changes in weather and to insure that one set of data was collected during each period of seasonal high, medium, and low flows often prevented *Additional recommendations and strategies for determining instream flow values are presented in the publications: fl synthesis and evaluation of ADF&G fish and wildlife resources information for the Willow and Talkeetna ~aSTnSTEStes and Lehner-Welch 1980) and Opportunities to-protect instream flows~ Alaska (White 1981). -84- the same volunteers from returning to the project. As a result, substi- tutes had to be recruited, and trained in the field, while collecting data. This proved to be time consuming, and hampered efforts to insure quality control and minimize data gaps and/or errors. Another disadvantage was that a hydraulic engineer, familiar with instream flow investigations, was not assigned to the project. Without this technical input, it was difficult to determine whether site selection and related· activities --- - --------------------------------------------------- --- associated with hydraulic data collection were· properly executed. These problems can be minimized in future studies if sufficient funding is secured to employ adequate numbers of full-time experienced personnel, including at least one biologistand hydraulic engineer. As would be expected in a first-time study, problems and complications arose in the data reduction and computer analysis portions of the project. The following check list of procedures for field coll~ction of hydraulic data is recommended to insure that future data will be suitable for analysis (Newcome 1980): 1. All initial cross-section data for each transect should be collected with a rod and level; 2. Sufficient elevation data should be collected between the water•s edges and headpins to document the shape of the entire streambed; 3. Headpin elevations should be measured both on the top of each headpin and on the ground beside each headpin to document its- -85- [ [ [ [ [ [ [ [ [ [ [ [ L [ [ [ L [ I ~ [ t vertical positioning and permit reinstallation in the event it is removed or disturbed at a later date; 4. Magnetic bearings should be recorded, and/or diagonal distances / 5. should be measured, between transects to facilitate scale drawings of the study sites; ----- Stationing should begin downstream (i.e. the downstream-most transect should be 0+00) to facilitate data reduction and coding in preparation for computer analysis with the IFG models; 6. Streambed elevations should be recorded from left bank to 7. 8. right bank looking upstream to facilitate data reduction and coding in preparation for computer analysis with the IFG models; Water surface elevation should be recorded before and after discharge is measured at a transect; Distance from left bank headpin (LBHP) to right bank headpin (RBHP) should be measured at each transect each time velocities are measured. This measurement should be equal to (LBHP to left edge of water) + (top width of stream) + (RBHP to right edge of water) and should not change at different flows; -86- 9. Transects over islands or gravel bars should be 11 dog-legged 11 to insure water surface elevations are equal on each side of the island; 10. Level loops should be clearly documented with station, backsight, height of instrument, foresight, and elevations in separate columns. There should be no question as to how each reading or calculation was obtained and the error of closure should be no greater than (0.1 ft) x ('.Jsquare mile-s); 11. Crew members should read Appendixes A and B of the IFG field data collection procedures publication No. 5 (Bovee and Milhous 1978) as part of their pre-field training; 12. When unusual measurements or readings are recorded, they should be footnoted with an explanation of the circumstances to insure the data will not be mistaken as being in error; 13. At least one member of the field crew (preferably the leader) should perform all the exercises in the manual: Field data reduction and coding procedures for use with the IFG-2 and IFG-4 hydraulic simulation models (Trihey 1980); 14. Field data should be reconciled and reduced in the field to identify and co.rrect data gaps and/or errors; 15. Half-inch margins should be left on all borders of field forms -87- [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ t [ ~--~ f- L to permit photocopying without loss of data resulting from distortion. Point Specific Habitat Data Collection Limitations and Recommendations Presently, limited information exists concerning the specific spawning, rearing, incubation, and passage streamflow requirements of culturally and economically important fish. These data are essential for wise land-use planning and development (Estes and Lehner-Welch 1980). Bell ( 1980) , Bovee ( 1980 b) , and Estes and Lehner-We lch ( 1980) recommend that habitat requirements for a particular life phase of a fish species should be determined by collecting and analyzing comprehensive stream- specific data in addition to reviewing all pertinent literature. Liter- ature review alone is not usually adequate because data and findings cited for one area are not likely to fully or accurately represent an- other specific location. As a result, it is recommended that point :_. •. . ·· .. specific data collected for a particular life phase of a particular fish species in a specific geographic location not be applied to another location unless careful analysis is completed to determine if such an application is valid. Point specific data collection for this study was limited to the spawning phase of chinook salmon.* Developing an understanding of other chinook life phases and the life phases of other fish species in Willow and *Funding, personnel, and time constraints prevented the execution of the pink salmon spawning habitat portion of Objective 3 of the Instream Flow Study and Objective 4, an evaluation of chinook salmon rearing habitat. -88- Deception Creeks will require a considerable amount of work over all seasons of the year (Watsjold and Engel 1978). It is recommended that future instream flow studies assign at least two individuals to collect point specific field data for species and life phases of interest. It is also suggested that research be performed by a hydraulic engineer and fishery biologist to evaluate the various techniques for collecting point specific data. For example, the topic of whether to measure point specific water velocity at the mean depth of the water column as opposed to the actual depth of the fish should be addressed. Computer Analysis Five man-months were expended in familiarizing personnel with methods of IFG computer analysis and in analyzing the hydraulic data. Limitations of and recommendations for improving computer analysis_ are discussed below:· Limitations Because of their familiarity with and day to day use of their programs, the IFG has inadvertently underestimated the limitations of user groups who are inexperienced or use the mode 1 s i nfrequen_tly. As a resu 1 t, 1. The IFG computer programs on the Boeing system require more experience than is provided by the IFG computer analysis -89- [ r [ [ L [ [ [ [ [ [ [ r' [ r L [ E l l -··' course, or require that users have access to a computer programmer familiar with the IFG programs on the Boeing system (Newcome 1980); 2. IFG computer analysis often requires the supplemental input of a hydraulic engineer to insure hydraulic output is valid. When field data are collected incorrectly or from complex field situations and cannot be readily analyzed, a hydraulic engineer is required to modify the data to develop stage, velocity, and depth relationships, calibrate the model, and interpret the output (Newcome 1980); 3. Some.of the recommended IFG procedures, as documented in the draft version of the IFG computer manual (IFG 1980b), do not work on the Boeing system. These errors are being corrected as users notify the IFG, but the errors are very frustrating for both novice and experienced users (Newcome 1980; Amos 1981); 4. Although there are less expensive methods for performing some of the analytical computer operations on an interactive* basis, the IFG has not incorporated these procedures into their manuals (e.g. running the programs in the batch** mode at a *Interactive refers to computer programs which request immediate responses from· the user resulting in a 11 dialogue 11 between the user and the program. **Batch refers to computer programs which contain all of the instructions for performing a job and are submitted to the computer to be run at a 1 ater time. -90- lower priority or entering data with the 11 Editor 11 (Newcome 1980); and 5. Examples presented in the sections of the IFG computer manual (IFG 1980b), illustrating how to weigh the advantages and disadvantages of various procedures, lack adequate documentation (Newcome 1980). Recommendations To minimize these problems, 1. IFG publications should be revised to provide more detailed background information on the resources and training required to collect and analyze data; 2. The IFG computer manual should be revised to include a variety of sample problems with an explanation of the iterative process for solving them •. Examples of outputs, interpretations of results, and sample computing sessions should also be provided (Newcome 1980); 3. The IFG should thoroughly test its computer programs and procedures on all computer systems having the IFG software (Newcome 1980); 4. IFG computer courses should be oriented towards use of all -91- [ [ [ [ [ [ [~ [ [ [ [ [ [ [ r L L E [_ [ L L L' I l r. L computer systems capable of using the IFG software (Newcome 1980); and 5. The IFG should develop procedures for improving its capability to communicate procedural changes to user groups (Newcome 1980; Amos 1981). · - B i ologica-1, Water Quantity -ancl Q(ral'ity Data Instream flow related data on water chemistry, stage, and supplemental biological conditions do not indicate the presence of any unusual con- ditions in the study area. Additional analysis of these data are beyond the scope of this study. Therefore, if additional funding can be secured to evaluate the biological, physical, and chemical relationships which are influenced by changes in disharge, it is recommended that: 1. hydrographs illustrating average daily flows as a function of time be developed for the Willow and Deception Creeks study reaches; 2. water temperature and quality data as a function of time be graphically illustrated; 3. graphics developed for (1) and (2) above be combined for the same locations to illustrate the relationships between discharge, water quality, stage, and temperature as a function of time; 4. fish species periodicity charts be combined with data from (3) -92- above to illustrate the relationships between the time of occurrence of each life history phase of each fish species present, and discharge, water quality, stage, and temperature; and 5. air temperature data be graphed and compared with water quality data from (2) above. WUA Calculations The hypothetical WUA calculations for the middle Willow Creek reach presented in this report demonstrate the variability which can result from_applying habitat suitability data collected for different stocks of the same fish species at different locations and times to the same sets of hydraulic data. They demonstrate also that the use of a particular calculation procedure will influence the WUA output. This variability illustrates the complexity of data acquisition, analysis, and interpre- tation, and emphasizes the importance of both understanding how to select and interpret a particular calculation, as well as insuring that habitat suitability data external· to the project apply to the system under question. Supplemental Biological, Water Quantity and Quality Study Biological, water quantity and quality data collected from the Peters/Purches Creeks and ADF&G/USGS sites do not indicate the presence of any unusual -93- [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ L E L L I L ·conditions in the study area. Analysis of these data is beyond the scope of this study. -94- · CONCLUSIONS n ,...., I . L lr: _) [ [ l_; CONCLUSIONS Criticisms in this report are intended to be constructive. Overall, the authors believe the Incremental Methodology is the be?t approach available for determining instream flow requirements when sufficient resources to collect and analyze the required information are on hand. The IFG has done a commendable job in developing this methodology, in light of their present budgetary constraints and the large number of user groups requesting their assistance. Alaska and other states will continue to benefit from the perpetuation of the IFG as a national clearinghouse for state-of- the-art instream flow techniques and as a central informatio.n source for all instream flow related studies. To insure that land-use activities are planned and implemented with minimal degradation to the fish and wildlife resources within the study area, the authors recommend that: 1. a follow-up comprehensive IFG Incremental Methodology instream flow study be.conducted over a 2-year period to: a) better define and/or identify seasonal life history habitat requirements of selected fish species in Willow and Deception Creeks; and b) recommend and file for an instream flow reservation to maintain the existing fishery values; and 2. alternative instream flow data collection and analysis techniques -95- described by Ott and Tarbox 1977; Fraser 1975; Orsborn and Allman 1976; Stalnaker and Arnette 1976; Smith 1979; Tennant 1975; Orsborn and Watts 1980; and Orsborn 1981 be tested on Willow and Deception Creeks to evaluate their advantages and disadvantages as alternative approach~s to the IFG Incremental Methodology approach for determining instream flows. -96- n r [ [ [ L [ [ [ [ [ [ [ [ REFERENCES REFERENCES AEIDC. 1980. Pink salmon spawning habitat suitability data. (Draft). Terror Lake Hydroelectric Facility. Instream Flow Studies File. Arctic Environment Information Data Center. Anchorage, Alaska. Amos, D. 1981. Personal communication. USFWS. Anchorage, Alaska. Bell, M. 1980. Personal communication. Fishery consultant. Seattle, Washington. Bovee, K.D. l980a. A user's guide to the IFG incremental method. (-Draft).-USFWS. IFG. Ft. Call ins, Colorado. 1980b. Personal communication. IFG. Ft. Collins, Colorado. ~---' and T. Gochnauer. 1977. Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: fisheries. Instream Flow Information Paper No. 3. USFWS. Ft. Collins, Colorado. , and R. Mil hous. 1978. Hydraulic simulation in instream --flow studies: Theory and Techniques. Instream Flow information paper No. 5. Cooperative Instream Flow Service Group. FWS/OBS- 78/33. Ft. Collins, Colorado. Buchanan, T.J., and W.P. Somers. gaging stations. Techniques the United States Geo 1 og i ca 1 Arlington, Virginia. 1973. Discharge measurements at of Water Resources Investigations of Survey. Book 3. Chapter A 8. Estes, C., and D. Lehner-Welch. 1980. A synthesis and evaluation of ADF&G fish and wildlife resources information for the Willow and Talkeetna sub-basins. ADF&G. Habitat Protection Division. Anchorage, Alaska. Fraser, J.C. 1975. Determining discharges of fluvial resources. FAO. Fisheries Technical Paper No. 143. Rome. Instream Flow Group (IFG). 1980a. The incremental approach to the study of instream flows. USFWS. W/IFG-80W31. Ft. Collins, Colorado. . 1980b. Users guide to the Physical Habitat Simulation Model --. (PHABSIM). (Draft). USFWS. IFG. Ft. Collins, Colorado. McCoy, G. A. 1978. ~~a ter reseurces of the new capita 1 site = a phase I progress report prepared for the Capital Site Planning Commission. USGS. Anchorage, Alaska. Mills, M.J. 1980. Statewide harvest study: July 1, 1980 -June 30, 1980. ADF&G. Sport Fish Division. Vol. 21. Anchorage. -97- REFERENCES-continued . 1981. Personal communication. ADF&G. Sport Fish Division. --Anchorage, Alaska. Newcome, N. 1980. Personal communication. ADF&G. Sport Fish Division. Anchorage, Alaska. Orsborn, J.F. 1980. Personal communication. Washington State University. Department of Civil and Environmental Engineering. Pullman, Washington. -~· 1981 Personal corrmunication. Washington State University. _ _ _________________ Dega rtment o_f_C_j viJ_a_nd_Eo_vj_r_o_nmeo_taJ_Eng_i_oeef".i_ng_. _ _l::l.uJJman_,_Washi_n_g_ton. , and C.H. Allman. 1976. Instream flow needs. Volumes I and II. --American Fisheries Society. Bethesda, Maryland. -,-----'and F.J. Watts. 1980. Hydraulics and hydrology for fisheries biologists. USFWS Fisheries Academy. Kearneysville, Virginia. Ott, A., and K. Tarbox. 1977. Instream flow, applicability or existing methodologies for Alaska waters. Prepared for· the ADF&G and ADNR. Woodward and Clyde Consultants. Anchorage, Alaska. Scully, D., L.S. Leveen, and R.S. George. 1978. Surface water records of Cook Inlet Basin, Alaska through September 1975. USGS. Anchorage, Alaska. Smith, G.L. 1979. Proceedings: Workshop in instream flow habitat criteria and modeling. Colorado Water Resources Research Institute Information Series 40. Colorado State University. Ft. Collins, Colorado. Smoot, G.F., and C.E. Novak. 1977. Calibration and maintenance of vertical-axis type current meters. Techniques of Water Resources Investigations of the United States GeO'logical Survey. Book 8. Chapter 82. Instrumentation. Arlington, Virginia. Spence, L.E. 1975. Guidelines for ustng the Water Surface Profile program to determine instream flow needs for aquatic life. Montana De.pt. of Fish, Wildlife, and Parks. Helena, Montana. Stalnaker, G.B., and J.L. Arnette .. 1976. Methodologies for· the determination of stream resource flow requirements: an assessment. USFWS/OBS. and Utah State University. Logan, Utah. Tennant, D.L. 1975. Instream flow regimes for fish, wildlife, recreation, and related environmental resources. USFWS. Billings, Montana. Trihey, E.W. 1980. Field data reduction andcoding procedures for use with the IFG-2 and IFG-4 hydraulic simulation models. USFWS. IFG. Ft. Collins, Colorado. -98- [ [ [ [ [ [ [ [ [ [ [ [ r~ L [ E [ n n l.: ,., l: I L, L-- [ REFERENCES-continued USGS. 1977. National handbook of recommended methods for water-data acquisition. USGS Office of Water Data Coordination. Reston, Virginia. 1979. Cooperative USGS and ADF&G agreement. Anchorage, Alaska. --.· 1980. Water resources data for Alaska. USGS -Data Report AK-79-1. Anchorage, Alaska. --------.--1-98"1-. ---Wa-ter-resourees--for-A-1-ask-a-; ----(-Elra-f-t-h -(;JSGS-----Ela-ta-- - ·Report AK-80-1. Anchorage, Alaska. Wadman, R. 1979. Memorandum: Autoclaving salmon roe. ADF&G. Sport Fish Division. Anchorage, Alaska. Watsjold, D., and L. Engel. 1978. New capital city environmental assessment program-phase I. Source Document 2. Fish and Wildlife Studies. ADF&G. Sport Fish Division. Palmer, Alaska. White, M.R. 1981. Opportunities to protect instream flows in Alaska. (Draft). USFWS. ·Office of Biological Services. Washington, D.C. -99- ACKNOWLEDGEMENTS ] l l l -l J -l J ] -1 ) -J -1 1 J ) I __ j J J 1 J 1 J > / ~ / ACKNOWLEDGEMENTS Many individuals representing several state and federal agencies pro- vided support to this project. The authors wish to especially thank T.W. Trent, L.J. Heckart, R. Redick, D.A. Watsjold, L. Engel, M.J. Mills, R. Logan, R. Andrews, J. Clark, C. Yanagawa, D. Lehner-Welch, E. Huttenen,_ R. Cannon, T.A. Arminski, C. Reidner, A. Bingham (ADF&G); M.L. · Harle, S. Mack, and D. Brown (ADNR); R. George, R. Brown, and G. Solin . (USGS); D. Amos (USFWS); B. Petrie, APA (former Chief of the ADNR Water Management Section); W. Trihey and J. Baldridge (AEIDC); and J.F. Orsborn (Washington State University, Department of Civil and Environmental Engineering). Special acknowlegement and appreciation are extended to N. Newcome (ADF&G) who dedicated many hours performing the computer analysis, the USDA Soil Conservation Service, most notably S. Powell, for proyiding the assistance which made this study possible, and the ADNR for funding a portion of the computer analysis. -100- APPENDIXES 9 Appendix A. I --:; u STREAM SURVEY FOBM Stream . @+er-s -_ Cree-k Index. AreaPeters (r. I.. Data ~/?J.d. /77 AveTaga Stream: Wi.dth:-.........,;J;;::..;::0;..,_ 1 _____ ~Average Stream. Depth~_.i-_· --------- Tributaries Present Gllc.c.> Cn.s:1 pi~~ Sc:.\rc:.~l is ma /1 :SG!"'fd ( 7:1.c!s) c\r-&4.•Y'\ ()"\At".Sr~.s Dams· and Obstructions L C\vv..e. bov.\devs wr .,.~ tpr--o:::.cy...+> w I (\O b"C!Ct.y~\1'" du 'I'Y...) - Immediate Shore ·vc~r±q:ho'O"• o..;e-r~'i\')IOC \...) dlo\u <:i·hvu..b .. ntoas.s.... Edt/· G.{. v..,qtev-Ma.rked . ~>f . abrup-t dr-op -A--o'IV\ ~'no~- Surround:tng Count~ 0 ~ e h ~ lu ( i ct \ v cd J'(.y . w I h L\ V"'f\ moc-k. s a + ~ 0 .5_5 Q~d ;., ha'f't ' al' iS ·"'r\1:, 'as. . Discharge 'f 3 c..C~ Map Location A~ c 'a() rr. ~ Q-7 0. I lV a I w ~ 0 B G P¢ Pools and Shelter b. Type rYlo sf-Qo<Jl> -Cr<f'l"\t"(( I ·r-.. • 0 'n ~ +r~,.,._ ( -L\ '"' '" +\¥\~.--C) 0 '-.!) 4 J c:.. Frequency rae\ I Ct..C~( e tfq+ro ", 5ta dre'{'\t tj I 0 Bottom Type _ L orr:ce-tfawlder~d: w,L ravb Shade . · \ c I - -Chemical,. Analysi.s-fV/'Pr . pa;......---------------~---- Dissolved Oxygen~ ........ ____ __.....,__ ........ __ _ Temperature~------------:----...___ / Conductivity ______________ _ -101- i ' t\:J L.. 1,.--1 .a [ .: . . . . . . . ~ ·. . ..... ··. S!REAM SURVEY FORM st~~~ Pnrc, Cn:rk _ Index; Area~-kc Cr.JI. Date: rba-~3/71 -3o' J.o' ~"!~rlilge· S_tr~Jiidth_ .... · .,.· --.· _. --------__ Average· Stream Depth:.----------- Tributaries-Preseut.~~~~~~~~~~~c~~--~~---~£)~/~4~~~S~e~v~~~r.~I~0~M~-~~J~/~~~e~~+.~~~~~~~n~w~:~~~,~~~~--~~~~ N I , I Dams. and Obstructions '"' \'N\rr,'l""i It;..,:. ... c. reek ~~~~~~~~~~~--~~~~~~~~~~~~~~~=-~~- Immediate Shore . ....;;S .... tt,.;::.:....T"-l'"-=-"'~-~....._.:..;;._~..;;.;....;.=...;..;,.;~,.....::.:~-=---:."-f..l.~~~.f..:,l,........,~~~~--- . .. v s_urroundmg eountry t..u. t<1\~ o ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fV 1.1 rn ~"' ·rn1. ~ \:,("'r,, t ,p r 1/"; r-,</"1) ~, . l - Spawning Area~---L,_C~t-r~~~~~---5~u~-.... b~.~-+ ... r_n_~_~ __ (_)._l6--.H_\,_~---·~--• .l_~l-n,_',_·-~.~-~ ... r_.y ___ ,_, __ h_"_'j'--L,_\,_ri_~_r_s __________ __ \ _, . Discharge~-~0.V~/~9:.----------------~Map Location:.--------------------~-------- Pools and Shelter ..., ' lo .:.. I ri'" . J • ~ l '"", J , -3 I I I • a.. Size~· _...:;.)....._-1..;...;;. __ ......;;;:'---,_'"'T:...· ;...;'·-,_''-;;..· '.;..;f"~;..;.'---"-;;..1 _1 r_·l ... +-_'1'1...;'~-·-·-5.._.,;.;;1.,;;;..;:..C ..... ___ ..;.___.;. __ ;v--._,.,_.A:....! .-r-_,.'f"'.:..t't'...;h-,.. __ n 1 ri' , Jjr_ c. Frequency--~y~!c~o~·~~~ ~~~r-~~~~-~-~~~~r~o~~~-~~~~2~!~~-=~~-------------------------- Bottom Type Lt-1 y--: . ..,e. r (l ( ~ '-( II 0 I I ) . Shade ~ )h ~ 't\0e... <:::f.-rroa l('f\. w cc;;. 6 hq;lt"d Chemical Analysis pH 7. 7s= Dissolved O:Jcygen._~J.;;..o_ .. .:_7.;;.5"--:...r_fl~"',_· ._I l.;.:;.J.:...J -------- QO! Temperature. __ -._./--<..,.....--------------------- -102- , . C. .. -[- [ D [ [ [ c r L [ c [ [ [ [ [ c l __ ) . Appendix A. '·. :· ......... . . ' ·. . ... ~ . . ·.' . . . . : . . :· .. ;~ . . .. . . . : . ~ . . ·, L I '---' ' w [ [ [ STREAM· SURVEY FOBM . Index Area ct-tery. ( r · If[_ Date 8 J d3)79 Average. Stream· Width Lf G ft. . Average stream. Depth:-.....~.1_~ s_:ct_· -· ------ Tributaries Present -.Scvt.V\ '(n de. Creek. o-0C\Jc:rc.d .:jm_a.IJ jr rt ('\ ''~-"> <T6c~r::, r(()'f'rl 1"1'\c.. i5ho::;5 Dams and Obstructions 1\1-tevideVtfq<A. Pe+-er_s Creek':> cr\nc:v: t-'h 14 "' a_-f.e~ 'oo~ld-ev~ Immediate Shore L1V\CQ b; v\1/61..(.) &brvtb~ ~uu.nott~ -~~d~~s .::-~russcs <....:>( ,spttce_.5fqadx G'la.ud. Juq._r::,_ \...J..£'re. e\JI.dr·l"ld wi low Wu_+-er. Sunounding Country Oror:> Old o...L"" c::; \qc.l_o,_{ CJcdlt.y l'r\+o q_ 'oroC!d :'\p<.Jc~ CCt\{ t'-1 lJ.J( (\ l-.Y'I\C 'fO\.L~ b~u_uer da 'M"'> Q'Off '(\(l(l f'6Ylt".?. ~ . . . . . Spawning Area Ctey DY.lJy 'olr COr w04~p'DIY\"' '-0 J C( '-.J..>tde.. [Ctf'lo!C,.. c/ .. • ~ 0 (t 4!-e_ . 0 1r~o" Discharge l (p t Cs Pools and Shelter a. Size woe!'? . 00 b~ Type-· Fo'(I(Y\rA k be.~-i.,..., +Inc.. s+r~OW' snd I an:.",. tee/c. s ,. '-' st Ae·c rc r) '"~" ~ c,\ ra d 1e;(\ -4--~. v c. Frequency pool. /r t-4\ e.. crp{t 0 s-o I m . I BottomType ~ ]Q7o CQhhlr) ( )-7 11 ) C..oir; f;?Cl'f',c(<::::--)Q1o .7 1 '+- Shade d.,o7{) G-f-Sfreo_'f',.,_ o'no.cfdf by Ouer\-:uY19t"Ac. spruce_ o-0hn-ubbery I -/ Chemical Analysis pH~~N~r~A------~---------------------------- ·Dissolved Oxygen. _________ ~--- Temperature:_ _____________ _ ; Conductivity ______________ _ -103- •: .. ··· [ Appendix A. ........ ,.. . :. .. . ~ . . ... Stream PETEIC_) . : .. -. . ... STREAM SURVEY FORM _ .. c- c Index Area~. _...i-l.\,.\{=-------.:Date ___ i:...,..~~Jt:;;;..~r--b"""7-· __ _ ' I Average· s·eream: Wid.~---_?f..;....;?;;..·__;::k::..;;;;;;;;.;.f-___ ___.Average' s·tream. Depth-· _,_,;;2;;._-~=-t--_____ _ 'rri.butaries Present A tew \J~('::f $' rvt~t\ ( L I c~~) .5e::oa.s \ . l , Dams and Obstructions /J~ ~ I'L-<-...._;"' ~ ~ I poc.S (j . j I} Surrounding Count:ry __ _.S-.:P~C'-v,.;;c.e_;;;;;.._.~evx~J;..._,.,..;~;;..;..J_. ~-=..;;:v..J;... . ..;.b.;:;c,:;;:cA;.;;.· .....;q¥v..;:o:.;:w~, "'-;.;.-~f>-.::;~:......;-· _.M._;...o;;..::;.~..;...: ... ~--l ..... t_,..'-f __ ' I! J I I '\\ . f).\ ~ -\-e ,.,...c._:~,'-" . l . J I j Discharge Cj 7.0 cf_s Map Location. __ ..;;;2;...;o;;;...;..;:,J..;;o;...2~W:;.;:;...·;..I Cf...:....;;;;.D""'D'"'D;;;:;,_'-------- Pools and Shelter a. Size ,2 u -"2 s-k+ W\c;l.t._ b. TyPe ,Po~/~ b-r~·J. .· ~ f b.v".._t_ ;·o·t ( Z~. ~ ~ !\ . , bo b.1 ~d\ Coc_\( <5 1 ar o. ~ ~...__d'S . c. Frequency d f) -~ D '7:~ r.:J ,!) p I$ I Bottom Type . levu::..~ coct·s 7-!o'/ o---rJ. bo...,fk-rs). -S\l~Smo..\\e.f' <Suh.:;.tr..._tc_ .tj, V ~ lo,~er c:tNt._c ~ol ptlo/-s, _ Shade v e r'-\ I t u~ Chemical Analysis N/ A pH~·--------------------------------------- Dissolved Oxygen __ ~-------------------------- Temperature ______________________ ~---------- Con~uctivity ____________ ~-------------------- -104- [. [ [ [ [ [ [ [ [ [ [ u [ l __ ) -, Ap-pendix ·A. .. .·: ':. . .. ·-· . • . . .• • . ··-=·,~ .. . . ~-J~.. :· . . . . . . ;. STREAM SURVEY FOBM · Stream 9 4 y-c., Yl"~:J C Y"-c-e. k... Index Area (J\.c.. 'fG ~c~ C h:e k I Date._-..:o'-'/..;::;d;..;:~::..,j}-.:.7...~.1_·-·_.....__ Average· Stream Width. __ -_d._,~_~_.+_. -----~Average Stream Depth:__l_-• ...;.3_-'4....,.:.:•:..._ ____ _ Tributaries Present {) I.A.(. \)(!.'('('f C~r-e..~\. f'l~~cvov.. :<:c. r-_ o .S Dams and Obstructions.--:L=O~Y"<.l~f)~e...:.......p,.;o~u.:.;;,jl~-~.d .... r.:...r'J...,. ---~--------------------- Surrounding Country l01 n r.-C:: \etC\ o \ UC<!I'{y w( U~t-.,. ~'-U <. p ~""tcc:e.-f3ozD-.:1 I.J.J/ b 1<,.1" b-err( . o,~\-c'fl .... ., a-'r\cllJ,....., ~ c,r(L::>.)~~- SpawningArea. ~os,.ld n_o+ ~e....s\J~t:r dead )~4-UJ\)I<V"\C; qcra \oeca~ rt;.J 4-re.-k 'tG'\e< S ~los-koJe.-<"v/2:u gvtd o~+n"' ch V"\<0 bt-t IJ-e ts .. 0 . ~ Discharge L1 0 c.fs. Map Location 9'f\ehor-o~~ Q-7 d.(JNe>/lv1&Y3l3f:t~ Pools and Shelter a. . c. Frequency poe(/ n4le. ·ro4...t.o Bottom Type . J'Y\as+k.t lo \"c;,.._ \Ock'? . w/6of'h..-'b'Nla_//e'("" Cobb(c.(/-s-1t), n?OG5 ,o-~~Sv:'fl_c{ Shade d,o ?o b'",, ou-e~ \v, ~""~ 0\! "'""· ~ hlu .. ~br-h" ' ¥' __./ ~· Chemical Analysis pH~-/~V~/~~----------------- Dissolved Oxygen. _______________ __ Temperature. ________________ _ Conductivity_------------------- -105- Appendix A. STREAM SURVEY FORM StreaiU,-~ ?~<Z.c.~~S C..Q.eeK Index Area ~· Date;_: _ ..... -~"""{=_· _1_./.,.;7_9.._...__ Average S t:ream W:idth 4o ·. Ccg,~ ·Average Stream Depth:.__,_I_ • ..;;S""_f...;...._+.;,.._ ___ _ Dams and Obstructions N~~ -----~-=---------------------------~------------- Immediate Shore .5'~ A~~/> c_,Jf-k>~lc-5 (~-~ t'.t.) ~~ ;5~ 'i vNH\ h~a $ a.l-.\.M. Wt<J?& t;..._.·c I:;, ab.ru p! slor+ bsmks w·J~. ;slor+-o~k~ i""J bv-~sl.... surrounding Country · Sp"';P woocJ.s 94J ~cc~. ~··• . .1 "?j •'='AA¥, f,Q.(of. tfl... .. b\~tH.-.:~'('C-1 Q A.+s:_kt.A 14 N_a.._ :\RY),.\~ f\ ~.1 Pools and Shelter c.. Frequency ____ ~~Sk;::;.D_'D.._Y..::.o::;.._ ____________________________ _ pH:._ __ ...._ _____ ...._ ___________ _ Dissolved Oxygen-:.......-------------- Temperature. ________ ...;__.... ___ ~_.... ___ _ Conductivity _____ __. ________ _ -106- D! ; ·b .[ [ [ [ [ [ [ [ [ [ [ [ [ c L _ _j r"': I - l r L Appendix A. STREAM-SURVEY FOBM Stream C(?.Erf: K Index Area;..__:J_C_:.....,.-__ ..-Date __ . _<&....;;.-+,!_2-_&+/_7"""9__.. __ Average Stream-Width:_·_...__?.=· .:D;...--~~...;;.+.;...__...__.__,;Average Stream Depth __ .. _--:../..;..;' O;.._...,t~~-------- Tributaries Present M~"~ SYV\"-lt +·r•.~v~te.S . I r~a,l-(tocb5) inhu~v; Dams and Obstructions N ~e. qo ~s, ll'l ;:r tf\Q. &J~ax : ~ o ......... 5t. ~. { .:::( -rc... .1-'r! b\1~~ v \A ~ c Immediate Shore tutl{61...A..) 6 hr1..1.. b'), OCCO.>to'l"\p) ~l'iS 1 Vel~+ ~l /ht..O~ ~Y'\cJ I v v Surrounding. Country G!~C.:t~\ \r::l\ t\e.l \1 \ Spawning Area O.rey \1\C.L> blA.t~cl\J \e dept'~/ 61..\,M--1-raJe ~ tri"-(e'-. ~r- \ _I i Discharge N/1\ . Map Location~-------------------------------- Pools and Shelter c. -...l J Frequency ____ 4~p~0~/o'---~O~o~9~1 __ -____ .0~D'-~~-~~~'~~-·f~[~Je~------------------------ \ Bottom Type M.OL?fk_, ( o.bbl-e, J-/ II 6ome lurqcr r<::t1~ d 't:<J<,J.Jr/~,s Qr~n+ ~~l.su·r,d I \ Shade @ t)/o 010e. V\-~ o VY\.L ~ he, oLt_ ~ .\roVV\ 60-tJ\.. \o_.,.,.,o.cb ;"'"' 5ofuc~ ~ Ol-e..l::>.r•S J J Chemical Analysis r\J{A pH~------------~------------------------- Dissolved Oxygen:_· ------------------------------ "T"emperature._... ___________________ -:--------- Conductivity ______________________________ ___ -107- Appendix B. ·AOfT&~/I:ISGS Site A L64 SOUTH-CENTRAL ALASKA . 152940,05 WILLOW CREEK' :-lEAR WILLOW LOCATlo;..;.--!.at 61°41)'4~'.', long 14.9°52'44", in NE\iSE~ sec.3l, T.2o· N., R.3 W., Ha.t:muska-Susitna Borough, Hyd·rologic UP.lt 19050002, on left bank 0.7 mi (l.l km) do~o.'ltstream from unnamed t:ributary, 5.7 mi (9.2 km) northeast of Wille~<, and 6. ~ mi (11.1 km) upstream from. Deception Creek. -, DRAINA:JE AREA. --166 mi 2 (430 km 2 ). WATER-DIScHARGE· RECORDS PERIOD OF RECORD.--June 197€. t•J current year. GAGE. --Wo.ter-stage re-corder. Altitude of gage is· 350 ft (107 m), from topographic rnap_. REMARKS •. --i\ater-discharge records good except those for Nov. 9 to Apr. 21, <<hich are poor. EXTRE~:ES F0R PERIOD OF RECORD.··Maximum discharge, 3,720 ft 3 /s (105 m3 /s) ~lay 28., 19i9; gage height, 7.82 ft (2.384 m); minirr.um daUy, about 50 ft 1 Is (1. 4 m3 Is) Nov. 22-25, 1978. E.XTRE~!ES FOR CURRENT YEAR.··Maximum discharge, 3,720 ft 3 /s (lOS m3 /s) Nay 28, gage height, 7.82 ft (2.384 m); minimum daily, about SO ft 3 /s (1.4 m3 /s) Nov. ZZ·ZS. 1 ? 3 4. 6 1 I' 9 In II 1~ 13 14 l<; OCT 214 26r. ;>3'5 211.1 ?.26 ?13 224 :?:ll 22F. 2111 ?.4.:. 1.91 27? ?.4Ft 211\ 16 ?!I' 17 ?.3'5 !A 374 i.<~·. ·' 2M 20 2'5" TOTAL !lEAN >;AX H!N CF~M IN. AC-FT 239 ?31 IA5 ?.39 ?.20 ~i.:? 2C< 1-'19 ?01 19() .. 179 7?.03 23;> ~•74 li'"- 1.4(1 1. ">I .l'-290 Ot'5CHARGF.o IN· CIJBIC FeO::T PF.Q 'iECO"lO. lofATEP YEi\R OCTORS:P t97A TO <;EPTE'If!FP 1979 ,.E 11•1 v 'lllJF.'i •JOV 187 !~J 159 l$!2 1'~0 f,qo 11\R 1111 11)0 1'5 .75 70 65 60 5'1 • 5" 54 5<. 52• 52 52 so· SIJ sn c;o ':>4 ,;~ 70 74 74 2726 90.9 !90 so .55 .... 1 5410 DEC 7<; 7& M <;(I 100 110 120 130 13'5 130 130 130 1311 130 130 120 PO 1?0 120 t?n. 11'5 11(1 110 100 100 1CO 100 95 95 '75 9'5 3411 110 !J5 75 .61\ .76 6770 90 oo 90 90 Ql) 90 911. 91} 85 .'IS 1!5 85 AS AS 80 M 811 1'0. 80. RO All RO RO 80 AO AO 110 ~0 80 78 78 2'5.'16 81.4 90 7!! .so .51! 5130 71f 7P, 11\ 71\ 76 76 76 76 71\ 76 76 7(o, 7Ft 74 74 74 74 74 ·.7~" 74· 7'Z 72 1? 7'? 72 70 70 70 2080 74.1 7'1 70 .4<; .47 4130 70 7~ M 61! 6'1 7<; 90 too 100 lOll 7'1?4 75.0 100 6" .4'5 .c;:> 4610 APR 70 66 66 65 64 64 64 .;4. 64 64 64 64 f,6 66 h6 110 113 116 129 142 !57 1M 1110 211 294 29115 99.5 294 64 .60 .67 5920 MAy· 382 4)4 474 484 540 '5.<15 . 626. 676 59'5 506 515 560 642 7?.4 786 fi48 1!3?. 856 ·Ril8 920 10:>0 1110 1140 124(1 1390 !8'>0 ?.310 :>700 2700 211!0 ?11\0 32693 10'55 2700 3R? .FJ •. 16 7.13 64RSO JU"' ?530 ?s.;o ?0?.0 1760 . .!liM 2040 1540 1470 1590. 1740 !6AO 141!0 13211 11'50 1100 IOAO 1000 960 92A 1000. 10?0 9114 1040 1070 1510 19AO 1410 1160 1010 81!0 42'!9:> 1410 25<'>0 I!'Ril !'1.61 9.61 i!SOI!O JilL 8"4 920 1020 !ORO 1920 ?140 1710 13?0 1170 uon 11}?0 1250 1170 non 17()1) t53n 1210 12A<l 11-61) .< 9R4 1070 9<J;> I!BO 840 1240.· !090 A<;6 751! 710 61!'! 9·2o 3577?. !1<;4 2140 6AA .... 95 B.O?. 7o9c;o AUG '100 779 Ft82 610 57n 620 <;1)0 '561) 4AII 448 421 393 JM 174 371! 141 137 3?7 300 :?94 ?94 ":>67 255 244 ?Jq 1?.348 191! 1!00 22? 2;40 ?..77 244QO 'lAX ?700 .,rN so CFSM ?..61 AC-"T 313500 NOTE. --~4o gage-height reco:-d ~ov. ·10 to Apr. 3. -108- 222 ?10 197 196 190 !8<; 180 179 176 171 172 170 1n 173 167 166 203 484 .SU 912' 11.00 758 676 . 700 570 502 461 456 409 378 11047 3f>R l!OO 166 2.22 z.:.a 2!'110 Appendix B. ADF&G/USGS Site A (cont.) SOUTHcCE~T~~L ALASKA . 15294005 WILLOW Cl',EEK NEAR WILLCW~-Cont.i~ued WATER-QUALITY RECORDS PERIOD OF RECORD.--~Iater year 19-79. · PERIOD OF DAILY RECORD.-- l~ATER TEMPERATUREs·: October 1978, Apr-il ta September 1979. INSTRUJ-IENTATION.--Temperature recorder since Oct. 5, 1978 RE~IARKS.--No record Oct. 10 to Apr. 4 and June 14·21 due to recorder or clock malfunction. EXTREMES FOR CURRENT YEAR.·· 11ATER TENPERATURES: Maximum, 15.5 •c July 3; minimum., 0. o•c most day.s during ~<inter period. WATER CU4LITY DATA. WATER YEAR OCT08ER 197~ TO SEPTE~~ER 1979 SPE-COLI-COLI-STREO- CIFIC FOR"', FORM• TOCOCCI ~ARO- STREAM-COlli-TOTAL• FECAL• FF:C"L• HARD-•JE<;c;, FLOiolt OUCT-o•.vr.E"'. IMMEO. 0.7 '<:F AGAC> NE<;S Nl)'ICA-'1- INST4111-ANCE PH TE""FR-ors--ICOLS. IJ>1-'4F ICOLS. 114GIL I>ONATE TIME TANEOUS I14ICRO-ATIJQf. <;OLVEO PF.R ICOLS.I """ 45 1'-IGIL DATE I.CFSI MHOS I IUNTT<;) liJEG C I IMGILI 1 on MLJ too "!LI 100 "''-' CACOJI CACO:ll OCT os ••• 1700 238 75 6.7 s~o 1?. .... 1(6 I<' I'> <I ;>J 3 50LIO<;, MAGNE-POT4S-C!-iLO-F"LIJO-SILICA, SliM OF CALCIUM STUM. SODiuM·, <;IU>1' '!I CAR-SIJLFATf. RIOF:. oroe:. 015-CO"'STI- DIS-DIS-DIS-DIS-An>! ATE CAR-DIS-OI<;-'liS-<;OLVED TUF.t.IT<;. S6LVEi)· SOLVED SOLVED SOL \lED (MGIL qQ!IIATF SOLVED SOLVED SOLVEI'l C"'GIL ore;- IMGIL (MGIL IMGIL I"'GIL A<; (M/;IL ("'GIL C>1G/L (MGIL AS SOLVED DATE AS CAl AS 14GI 4S NAI AC: I() HC011 AS C011 AS 5041 AS CLI A5 Fl SI02l <"'GILl OCT os ••• 7.0 1.4 4.4 .7 25 n z.a "·q .n 7.8 44 NITRO-NITRO-'HTRO-NITRO-NTTRO-'HTi~O- NIT PO• GEt.~. N!TPO-GCN. NITRO-c;EN. GE'l·AH-GE"'oNH4 GF.'-1.4..;- GPio NO?.+NOJ GE'N• AMMONIA t;f"l· rt~GANIC "0.NIA . • ORG. MONU . ~IITRO- NO?.••t03 DIS-AM ... ONI~ DIS-OPt;ANTC I)!S-ORGANIC SUSP. QPGAt.ITC GEN, ·ToT•L SOLVED TOTAL SOLVEO TOTAL <;oLVEO TOTAL TOTAL OI<;. TOTAL IMGIL IHGIL CHGIL C14GIL 1"1GIL 1!-!GIL (MGIL IMGIL (MGIL !!o!GIL DUE AS •H AS "'I AS •H ~.S Nl A~ !Ill 45 Nl AS N) AS !Ill AS 'll AS N! OCT ; •. oo~-. os ••• .• -o7 · -.IH· ·· •. on .;>9· .• za. •. 29 • o.i. .• r.A· •36 CHRO-TRI)"'. NITRO-PI-lOS• ~ARIU"'• CAI) ... !U"' 14TU"'• COPPER, IRON •. c;us- GE.,, PHOS-PHORIJS• TOTAL TOTAL TOTAL TUTAL TOTAL "EN!'lED IPON. DIS• P,.O<!US• ors-RECOV-~<~Ecov~ RECOV-RECOV-RECOV-RECCV-OIS- C:OLVED TOTAL SOLVED ERARLE ER4RLF. ECAALE EPABLE F.:PA8LE ERA~LE <;QLVE'l (MGIL IMGIL (MG/L !UGIL <l!GII. (tiG/L WGIL IUGIL IUGIL <UGIL DATE AS Nl AS PI AS PI 4S 8Al A5 Cl'l .A<; CRJ 45 CUI AS F'El AS FF:l AS FEI or.T os ••• .JS .oo .oo 0 0 n 3 141) 4() 1 nil "'lNGA-"'ANGA-<;F:DT- LF.41'lo !IlESE, NF.:SE• !otANGA-MERCURY SILVER, ZINC. ME "'T TOTAL TOTAL sus-fiFSE, TOTAL SELE-tOT4L TOTAL SEOI-ors- REC0\1:.. RECOv-CF.NDE!J DIS-.PECOV-"lTUMo RECOV-RECD\1-"F.t.IT. CHI\RGF.. ERAI-!LE I"RAPLE RECOV. SOLVEn E'H"!U:: TflTAL ERA8LE EPAF;LE -;us-sus- (IJGIL <UGIL (IJG/L WGIL iUGit IUGIL !UGIL <UG/L PENOED "E'lOEO o.nE AS PPI AS '1'11 AS MNI AS "'"'' AS l-4!';) AS SEI AS AGI A5 Z!lll I"'GILJ <TID~ VI OCT os ••• 2 0 ~ ~ .Q 0 0 1Q =! 1.3 K ':O?-:-IDEAL COL~~;y cou~:r -109.~ c HiS b [ ,- [ [ [ [ [ [ [ c [ [ [ [ [ L [ [ "1 Appendix: B. ADF&G/USGS Site A (cont.). lb6 SOUTH-CENTRAL ALASKA -, 15294005 WILLOW CREEK NEAR WILLOW--Continued TE~IPER,\TURE (DEG. C) OF WATER, OCTOBER 1978 frAY MA~. mN DAY ~lAX MIN 1 6-5.0 4.5 8 s.o 4.5 t': ·4. 5 .. 4.0· 9 5.0 4.0 ..., TEHPERATURE (DEG. C) OF WATER, APRIL TO SEPTE~!BER 1979 f'h\Y "'~~ MIN Mil~ '-I!N ... u MIN '44X M!N lolA X Mt"' M4~ '4!111 APQ!L MAY JIJNO:: JIJLY aur,u-;r <;E:r:>TE'-I'l~Q _) I 1.5 .o 1'1.5 4,1) )J.<; 7.0 13.<; 9.5 10.5 7.0 ; 1.5 .s 7.11 ..-•. n 14.'5 A,O 14.5 to.n 10.5 1.n 1 I.e; .5 7.5 J.l) 15.'5 A.S 15.11 10.0 10.1) '1.0 4 3 •. 0 1.0 ,. .·n 4_.n 15.0 9.0 15 .• 0 9.<; to.o 7.0 <; 1.0 .o 2.5 1.0 9.0 4,0 11.5 8.0 13.5 to.o; 10.~ 7.5 6 ·" .o 1.0 1.il 7.0 s.o !1;,0 7.0 1?.0 10.'5 1n.n 7,0 7 loll· .o 4.'5 I .·3 7.'5 4,5 l0.5 7,0 11 ... 10,0 10.'5 7,'5 " 1.'5 • !I 4 .• 5 1.5 '1.'5 5,n !0.5 7.0 13.0 10.0 }1).5 '1.0 ' 9 1.5. .'5 1.5 !.5 II .n 4.c; 11.5 'l.n 12.'5 10.1) u.n 7.5 tn t.o .5 5.n 1.0 q.c; <;,1) 13.5 7.0 12.0 10.0 }l.O 11l.Q _j 11 1.5 .o 4.; 2.5 q,<; .;.o !1.5 9,0 1?..'5 10.0 111.5 a·.o }:' !.<;. .o 5·.o . 2.0 9.5 4.5 12.5 9.0 13.5 10.5 111.5 9.1) 13 1.0 .o 1\,S ?..0 7.5 5.5 n.e; a.5 12.<; 10.0 10.5 9.0 .., 14 1.0 .o 6.0 ?.,0 u •. 5. a.5 1?.0 1o.e; 10,5 9.5 15 1.0 .o T.o ?.·,/) q·.5 l!,lt n.o to.n 1n,o !1,5 16 ?..-o .o 1,,1): ?.,0 10.0 '1.6 n.n 9.'5 9,<; 7.5 17 2.1) .s. 1.n 2.0 14.(1 a.n 1?.5 10,11 9,5 '1.5 18 1.5 1.0 ..,,5 2.n !:!.5 'l.O !2.5 10 •. o A,S 7,<; 19 z.n .s 6.0 2.5 !2.5 'l,O !2.c; 11.0 .9.0 7.0 ?0 J.S .s 7,0 :o.o 13.0 R.5 !2.'5 10.5 1'1~0 7.0 21 1.5 .5 7.5 2.5 13.0 10~0 13.o a.c; 7.5 6.5 ?;> ;o~o .5 7.0 ?.5 13.5 6.0 11.5 9.0 .14.n 'l.5 7.0 6.5 ..., 23 z.n .o .... o 3.0 11.5 1\.5 11.5 11.5 1'i.O 11.0 7.5 6.0 ?.4 1.5 .o 7.'5 J.n 11.n 6.5 u.o 9.5 15.0 Jl.O 7.5 6.0 ?.5 .5 .o· A.S 3.0 'l.S 6.<; ll.f) 9.<; 14.5 11.0 ;,.s s.o "" ?.F> 1.n .o 9.0 .3.0 7,0 5;.<; 12.0 . 7.5 14.1) I I. n. 6.0 4.'5 ?.7; . ~~-C!.o· .• n. 9.(!-' 2~5-7;~'5. .. s'.s • .. _ tJ<·o:· : 1'1·,5· n.5 11 •. 0 .,-.a· s.n ?ll z.o .o 9.(1 J;o ,.-.c; 6.1) 13.0 'l.O 13.5 11.0 7.0 5.0 ?.'1 !.'5 .o .... 5 J.n }0.0 6.0 13.0 9,'5 Jt.<; 9.·n "·5 :1.5 _) 10 ?.0 .o 6.5 3.5 p.c; 6.0 TJ.o 1.0.5 10.'5 7.5 l;.c; 3.5 31 1'1.0 . 3.0 11.'5 9.5 1"·" 8.0 "'O~ITH 2.0 .o Q,O .o 11.5 3.1) 1-i .5 7.0 15.0 7.5 11.n i.5 YE~P. 15.'5 .o -1110- Appendix B. AD~&G/USGS Site B 3GZ. AUALYSllS OF SAMPLllS COLLllCTED AT WATER-QUALITY PARTIAL-RECORD STATIONS SOUTH-CENTRAL AUSICA--Continued •15294012 • lHI.I.O .... C AT PAAI(~ HVY "'" lilLI.OII 4K' 'IIATf:P QUAt.IT¥ DATA• 'IIATE" YEAR· OCTn!IF'" 19711 · TO SFPTE'48EA t979 SPE-COLI• STAEP~ CIF'tC F'OAMo TOCOCCt HARD- STAEA-CON• F'ECAI.o-F'ECAt.• HAAO-NESS• F'LOIIo DUCT-TF.14PJ;~-~.7 KF' 4GAA IIIESS NONCAA- INSTAN•· ANCE PH &:l'tJAe:~ TFNPEA-UH-HF' ICOLS. IHG/1. F.IONIIT,O: Tt"£ TANEOUS I MICRO-AlA ATURE ICOL.So/ PEA AS IMG.IL DATE !CF'SI >!HOSt CUfofiTSI IDEG C) !nEG Cl 100 Mt.l 100· Mt.l C4C0'31 CACOJJ JUt. 1 ..... 11'150 104~ 54 6olo 15.0 u.s 53 1<16 20· 4 ltAGNE-POT AS-CHI..o-F'l;.Un-!Ul.ICAo CALC lUI+' S·IU14o SCOIUMo SIUIIfo RICA"• Sut.F'AT£ A toe: •. 'I IDEo "ts-ors-ots-ors-ors-80111-U£ C!R• DIS• ots-OI'!-SOLVED snt.ve:o !IOLVED SOLVED SOLVE'-' lNG A III~ATE SOI.VEO SOLVED SOLVE-D INGIL IMG/1. IMG/L I !olGA 1'!611. AS I"'GIL I !olGA IMGI1. lloiG/L AS DATE AS CAl as >!61 AS NAI AS lCI HCO:ll AS COli-~ S041 AS CLI AS Fl St02J JUt. 24···· 6.1 1ol 2o3· .... 19 I) lo9 •• o oD 6.9 SOLI"S• SOLIDS• I'll TAO-NITRO- 'lEStUU£ SU'" OP' NITRO-GENo llltTPn-llltTRO-GENoAM• PHOS- AT ldO COIIISrt• r.ENo 110?.-oft!Ol li!No li!No 140NIA • NtTRO• DHO<;-PH(IRIISo nF.G. c TUENTSo N02•NOJ ors-AMHONlA llPGANtC ()RGANlC GENo PHOAIJc;o ors-on-Ots• TDTAL SOLVED TOf4L T(ITAL TOTAl.. TOTAL TOTAL c;oLve:o SOLVED SOl .. v£0 IMGII. CHG.IL CNG.IL I '!GIL IMG/1,; CHG/L (HCi/1. IMG/1.. DATE .INGit,.l 114G/1.1 AS Ill AS Nt AS Nt A~ NJ. AS Nl AS IIIJ AS P) . A._ P) JUl.. , ..... 38 33 .11 .13 .01 ol2 .13 .24 .nt .n1 CHAO-IIIONo MANOA- !!AAlUHo CAOIHU" l'ltiJHo COPl'EPo fRONo sus-LEAn. Nf'SEo TOTAL TDTAL. TOTAl.. TOTAL TOTAL PENOED IAONo TOUL TOTAL aA~E'IIC RECOV• Pf"COV• AECOV-PECOV• OF.COV-AECOV-ots-oe:cnv-Pf"COV• TOT'-L £PARLE ED ABLE EP&BLE EPAFILE !';DA8LE ERABI.E SOLVED F.:o4ALE ;::PABLF IUGIL CUGIL IUGIL CUG/L CUGit. !UG.IL !UG/L (IJG.Il. IUGIL CUGit. DATE ac; A"il ·IS· BA.~: A.S COl-.. AS CRt 4'5 CUI A'S FEJ AS FEI as F'E> 4'i_Pl'll •. AS >4•11 Jut. ,,. ... 2 0 0 E-2 260 160 100 llo 20 t4AN6A• ~F.ni- NESEo >4AIIIGA• HEPCUPV SILVER· ZINC• >IF. 'IT sus-NESE• TOTAL SEI.E• TOTAl.. TOTAL. SEIJt• (1£<;- PENOED. ors-R!"COV• NIU14o A.ECOV-RECOV• CYAN tOE MENTo CHAAGEo RECOVo SOI..V£0 E'l.t.BLE TOTAl.. 'AABLF. EPARLE TOTAl.. sus-StJ"i- IUGIL IUG/t. IUGIL IIJGIL tur./1. lUG/I. IMG.IL PENQEI) PE~OEQ :I&TE AS IONt AS Nlllt AS HGI-AS SEl A'S AGI AS Z'll AS CNI I '!Gil.. I ITIDAVt JUl. z~c. ••• I) 30 611946151372600 DATE llCT .1 -CAPPS TtME 16. • • !:lOft K NON-1DEAL COLONY COUNT • L0\-1-FLOW PARTIAL-RECORD STAT!O)I c 0 0 60 .oo ·6 17 'lA TYONEI< AIC ., SEOI- MENT STOEIM• ·For-DIS•· FI.Oih "~"NT"o CHARGE. [NSTAN-<;liS-sus- TANEOU<; PENOEO PENOEO ICF"il I,.G.ILI IT.ICAYl 31 16 t.] -111-. --c- c [ c c c 0 c c c D ...J L I' I' L Appendix B. ADF&G/USGS.SiteG SOUTH-CENTRAL ALASKA 1oi 15294010 DECEPTION CREEK NEAR WILLOW LOCATION.--Lat 61°44'·52", long 149°55'59", in !'<E'iSE'~ sec.ll, T.l9 N., R.4 W., ~latsnuska-Susitna Borough, Hydrolbg1c Unit 19050002, on right bank 0.~ mi (0.8 km) do..,'Ilstream from unnamed tributary, 3.~ m~ (5.5 km) east of Nili.ow, and 5.0· mi (8.0 km) upstream from mouth. DRAI:-<AGE AREA.· -48.0 mi 1 (124. 3 km.1 ). WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1978 to current year. GAGE. --Wa:ter-stage recorder. Al1:itude of gage is ZSO ft. (76 m}, from topographic map. RENARKS. --Records good except those for period of no gage-height record, Feb. 9 to ~lar. 2S, which are poor. EXTREI·:ES FOR PERIOD OF RECORD.--~Iaximum discharge, 553 ft 3 /s (15. i m3 /s} May 9, 19i9, gage height, 6.22 ft (1.896 r.>); minimum, 14 ft 3 /s (0.40 m3 /s) Sept. 10, 1979, gage height, 3.52 ft. (1.073 m). EXTRHlES FOR CURRENT' YEAR.--Haximum discharge, 55; ft.3 /s (15.7 m3 /s) May 9, gage height, 6.22 ft (1.89J) m); minimum, 14 £t 3 /s (0.40 m3/s) Sept. 10, gage height, 3.52 ft (1.073 m). [)AY F, 7 ll q 111 11 J;? i3 . 14 j<; 1fl 17 lll 19 :!II 21. ?.? 23 ::04 25 ?fl 27 2q ;>q 11) 31 TOTAL NEAN N4X "'IN CFS~ Till. AC-FT OCT 27 fl? 5? 40 3R 37 3'5 40 40 37 '5"' 161':> 127 '107 7\ 5?. '54 ll<; 84 64 53 . sn 4il 4R 46 44 411 36. 39 39 33 1780· 57.4 1M ?7 1.20 1.311 3530 DISCMARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1978 TO SEPTE~RER 1979 ~F.AN VA.LUES NOV 34 .35 35 33 32 31 30 211 26 24 22 zn · 1q 17 17 1t'> 16 1"' 15 15 15.· ·1s ·15 IS 15 17 19 20 20 ?.1 653 21.8 35 15 .45 .51 1300 DEC 22 24 27 29 30 31 31 30 30 30 30 29 zq 29 21'1 27 27 26 26 zo; 24 22 22 21 21. 21 21) 20 20 2o 19 790 25.'5 Jl 19 .53 .61 1570 19 19 lq. 18 18 1R 1R 18 1R 18 18 18 18 17 17 17 17 l7 17 17 17 '17 17 17 17 17 17 17 17 17 17 541 17.5 1'1 17 .37 .42 1080 F'ER 17 17 17 17 17 lfl lf> 16· 16 16 16 1ft 16 lfl 16 16 1F, If> 16 1(, 16 16 16 16 16 16 16 16 4"i3 16.2 17 1"' .34 • :v; RQQ 16' 16 IF> IF, 16 1"i 1'5 15 ]'; IS IS IS 1'5 1'> 17 41'1 46 43 41 40 40 7'!1 25.2 '5? I<; .<;1 .t'>l 1550 APR 40 41 42 42 42 43 43 44 44 46 48 48 47 . 47 47' 47 48 52 54 58 64 70 1'1:1 88 100 120 150 180 230 300 2303 76.8 300 40 1.60 .!. 78 4570 "'"Y 360 410 430 450 440 440 450 4q4. 501 359 347 3sq 361 368 385 354 326 2q2 274 268 . 228 215 219 242 203 193 176 167 150 130 110 9701 313 SOl 110 1,.52 7.52 19240 JUIII lOO· 95 90 8'> 84 RO 7'5 70 6'! 64 61) 58 55 71 <;6 511 '51"1 46 44 60 67 51 42 36 6<; 33R 2RS 209 1M lOR 2733 91.1 • 338 36 1.90 2~12 5420 JUL 1'> 62 so 4Sl 129 155 145 qs 76 64 53 55 R4 78 310 21'18 199 290 234 145 106 11.6 1.12 aq 217 191 114 86 70 62 64 3853 124 310 48 2.sa 2 .• 99 7640 4UG 76 69 55 48 60 7D 55 58 54 48 45 42 40 42 so 45 J<; 35 32 22 19 26· 24 22 20 20 19 19 21 29 26 1230 39.7 76 19 .83 .~5 2440 WTR YA 1979 TOT~L 26471 MAX 5111 ,.fN 14 CF'SN 1.'51 IN 20.'51 ~e-FT 5251 o -112- SEP 22 20 19 19 17 16 16 16 15 14 15 15 16 19 !9 '22 34 63 7!) 138 244 146 92 !1'> 114 .76 62 73 BO 63 1651 ss.o 244 14 1.15 1.28 n1o Appendix B. ADF&G/USGS Site C (cont.) i6S SOUTH-CENTRAL ALASKA · 15294010 DECEPTION CREEK NEAR WILLOI1--Continued WATER-QUALITY RECORDS PERIOD OF RECDRD.--October 1978 to September 1979. PERIOi/ OF DAILY RECORD .• --. . . 1~ . .\TtR TE~!PERATUR:ES: October 1'978, Hay to. September 1979. INSTRUME.Hc\T.ION.--Tempe-rature recorde:r·Since October 1, 1978 .• RHL".RKS.--~;o record October 23 to Nay 6 and August 1-8, due to recorder malfunction. tem.persture at s.ensor "'·ithin 0.5°C. Records represent ~tater E :rr;;..C1·!ES FOR CiJRRE~lT YEAR.-- '!lATER TE:-!P!:RATURES: ~taximum, 17 .o•c July 3; minimum, o.o•c on many days during winter period. OHE OCT os .... .Jl!L 24 ••• OCT os ••• .JUL OCT n'i .... Jlll ?.4 ••• OCT Tt'4E .1751) 08)5 C4LCtul'4 ors- soLvEr> IMG/L A<; CAl 11 >HTC!O·· GENt NO?.+N03 TOTAL ·ti-'GiL AS .!Ill . .os .os WATER QU.AltTY O.AT4. WATF:D YE4P OCTO"ll;l> 19711 TO SEPTE>4i3~R 1'179 STREAM- F"LOw. HlSTAN- UNEOUS ICF"<;J 4(1 Al '44G"'F.- '5l1J>4• orc;- soLvEo C>4G/L AS MGI 1.5 N!ikO- t;E"l• N0?•11103 !liS· SOLVED . (l.fi;/L ' 4'5 ,,, . .o1 SPE• C IF'tC CO•l- OUCT- .AIIICE .1'-'lCRO- MHOSl 125 AS SflQIUH• DIS- SOLVED !MG/L A5 NAl ~~ 6.5 NITRO-· r;r.IIJ. AM'"'ONlll TOTAL .CMG/l AS Nl .• oo .OJ "ARHJH. PH !UNITS I 6.R. 7.2 POT4S- S-TUM· t)J<;- SOL~EO I>4G/L "S I<') t.~ .7 NtTRO- C.F."l• AMMI)Nf ~ !)!5- SOLVEO IMG/L. AS >II· .01 TI':"'PER- HURF.o A[R !OEG Cl 14.o ~!CAR"' BONiiTE IMG/L AS. liCOJl 41) 3? "'lTI~O­ GE"No OR(,ANII: TOTAL IMG/L AS NJ· .27 .28 T~"PE<>­ ATURF. IOI'"G Cl 4.5 11.0 CAR- RQNATF" (MG/L AS C01l 0 n NfTRO- (';-Ef\le ORGAN!C ors- <;OLvEn !MG/L · AS IIH .?.1 OXYGEN. ors- o;nLVEil !MG/Ll 12.1 Ill.?. <;lJLF4TE ors- c;nLVEo I·"'G/L 4'5 '>041 2.3 5.1 llltT"'0- (';~~.4M­ UIJ>J!A • ljPGA"'!C TflHL ·("'G/l: A<; Nl- ·31 COt:.I- F"ORM, TOTAL• IMMEO. !COLS. PER 100 '4Ll K.lo CHt.O- RfOE. O!S• SOLVED ('!G/L 4S CL! 111 III!TRO- GE"'•AM- 1-'QNfA • ORGANIC ors.· !MG/L AS. t>il .30 !RON. COLI- FORM, F"ECAL• 0.7 UM-HF" ICIILSo/ 100 Ml.l 120 rLUO- RlOE. Dl'l- 50LVEn !MG/L A<; F"l ol .o NITRO- GEN. . TIIT4L !"'G/L .\.c;· Nl .32 . I<>oN. <;TRF.I>- TOCOCCt F"f.C4L• Ki'" AGAP !COLS. PEQ liJO 'ILl <; IL! CA • 0!5-. SOLv~n !"GIL AS <;[O~l 11 10 PHi)<;- I>HOQU'5o TOTAL IJotG/L 4'5 I>) .ot .nl HARD- NESS (HG/L AS CACOJI )6 c;oL ms. RE"SIDuE AT 11!() DeG. C: nr<>- SOLVEI") 11-16/U 1!0 (,J 1>>!05- PHORVS· llTS· SOLVC.O !MG/L AS P) .01 HAI>f'l- NESSo NONCA~- 80NATE IMG/L CACI\31 3 0 c;ounc;, Sll'-~ nF" CO"''iTI- TUENT'>• orc;- soLvEo C'-'G/LI 76 55 4LU"~­ l"lU'"'• TOThL RECOV• EQA!'!LE !UG/L AS All l.fA~!t';l­ "l~SF'• .&RSENIC TOT4L (IJG/L AS A.Sl TOT.AL RECOV- F,:QIIP.LE WG/L liS AAI CA0'4fUM TOTAL Qf.COV- E"RARLE" IUG/L AS COl C~-'RO­ MTUl-1, TOTAL <~F:COV• EPAALE (IIG/L A~ CPl COI>I>FQ, TOT4L RECnv- E<>ARLE (IJG/l. A<; 1:111 !RO"lo TOUL PECOV• ERA'3!_E (IJI';/L 45 F"Fl sus- ?E11111F.O R~cov­ E~<Ai'IL£ IIJG/L A<; FEI DIS-' <;OLVl"l:' IUG/L 45 FEl LJ;:An. TOTAL RECOV- El'IA!!LI'" (IJG/L ~~ PF)). .Lf4Ni,A- NF.:'>Et TOTAL RFr.ov- .ERA'lLE IIJI';/L A5 '4Nl sue;-· PF:IIIf)F"O QF.Cnv. lllG/L A'i "'IIII 0'5 ••• 0 0 340 210 () ;_, 0 __ .,. JUL 24· ••• O'i • •. ~ANG.:a­ Nf.S~. O!S- SOLVf.O (UG/L A'> '1Nl 10 n uc:-QCURY TOTAL l>fCOV- ERAS!_'O .I!JG/L ,\S HG1 .o •. 1 III!Cl<E:L• TOTAL Rf.COV- F.ClARU' !Ut>/L AS N!l 0 SFLF:- NFUN, T'1TAL IUGIL AS <;£) 0 0 13 StLVF.I>, TOTAL R~:cov­ F:'~~RLE IIJfi/L AS AG) 0 7TNCo TO'!"hl QF:COV• i;QAAt.t=: (J)!;/L AS ?•ll n Jn -113- 1'10 CAR'31liJ, ORGA'IIIC D!S- SOLV!'D C"4GLL A'5 Cl <..7 190 CAR'lO~I, ORGMiiC su~- POJOf.'n TOTAL (l.tr;/!_ Ac; CJ l.(l 1'5 CYA•l!OF.: TOTAL I,_,G/1. A<; Clll ,no ?0 <;JOI)!- MFJ~JT, <;IJS- PF.'lOED {•At';/L) J <;fOT- Mf:NT 1)[5- 0 r: .. t~RG~ • SII<;- PFIIIOF:O CT /OAYl .3?. 1. 1 [ [ [ [ [ c [ [ [ [ [ L [ L ~ ~j -) Appendix B. AOF&G/USGS Site c (cont.) SOUTH-CENTRAL ALAS~~ l~S ; 15294010 DECEPT!ON CREEK ~lEAR \'/JLLO\~·-Cont:inued TEMPERATURE. (DEG. C) OF WATER, OCTOBER 1978 DAY· . MAX. . ~UN. DAY MAX MIN DAY. MAX I-liN ""~ 1 4 .5. 4.0 9 5.(} 5.0 16 2. 5 . 1.5 2 5.0 4:5 10 5. d. 4.0 17 3.0 ' -··" 3 5.0 4.0 11 4.5 4·. 0 18 s.s 3.1} 4 4.0 3.5 12 4.0 3.5 19 3 .. 5 3.5 5 4.5 4.0 13 3.5 3.5 20 3.5 2.0 -., 6 5.0 4.0 14 3.5 3.0 21 z.o 2.0 7 5. 0. 4.5 15· '3.0 1.5 22 2.0 1.5 8 5.0 5.0 TE~IPERATURE (DEG. C) OF l~ATER, ~lAY TO SEPTEMBER 1979 DAY "'U MIN "fj\X. "'IIII !-lAX "!TN "'AJC MIN MAlC' MIN "'AX "I"'· APRJ!,. MAY JIJI>If' JULY AUGIJST SEF'TEMBEq _, 1 10.5 9.5 15.0 10.5 10.5 e.o ?. 11l.5· 9·..s 16.0 11.0 10.0 7.5 3 In.o s.o 17.0 12.0 9.5 e.o · __ ;' 4. 11.0 9.5 16.0' 13.0 10.0 7.0 c; .. 12.0 9.5 14.0 12.5 10.0 7.0 ~. ~ ---12.0 10.5 12.5 12.0 'h5 7.0 7 3.0 !.5 tn.5 9.<; 13.5 11.0 9.5 7.0 ~" 8 2~0 1.0 11.0 9.5 14.0 .11.5 1o.o 7.c:; 9 2.5 !.5 1?.0 9.0 14.5 11.5 14.0 12.0 10.0 7.0 10 . 3 .• n 1.5 1:>·~0 10.0 1<;.5 11.5 . 13.0 12.0 10.5 .~.o ..., n 3.5 . 2.0 1·!.5 10.0 16.0 13.5 13.0 u.s 10.0 ~-:J. 1? 3.5 2.0 11.5 9.0 15.5 13.0 14.0 12.0 9.5 !1.0 __.: 13 4.5 2.0 1!.5 9.5 13.5 12.0 13.0 u.s 9.5 a.s 1'-s.o 2.0 li. 0 A.c; 13.5 12.0 13.0 12.0 10.0 9.0 !"i 6.0 3.0 11.0 9.0 12.0 11.5 12.0 u.s 1n.o 9.0 -, 16 s.s 3.0 10.0 9.c;. 12.0 n.c; 12.0 u.o 9.5 e.o 17 s.o 3.0 10.0 9.5 14.0 11.0 !3.0' 11o0 9.5 9.0 ....) !A s.s 3.5 l! .5 'l.n 12.5 11.5 12.5 11.0 9.5 9.0 19 6.0 4.0 l! .s 10.0 14.0 12.0 12.5 11.0 9.5 e.s 20 6.0 3.5 1n.c; 10.0 15.0 11.5 12.5 11.0 9.5 q.o 21 7.0 4.0 13.0 9.5 14.0 12.5 12.5 9.5 9.() 8.5 2?. 7.0 s.o 14.5 10.0 12.5 11.5 12.5 9.5 'l.O 8.() -~ 21 7.0-s.s 14.5 ll.IJ 12.5 12.0 13.5 10.0 9.0 a.o ?4 7.5 .5.5: n.s !l.o 12.5-n.o· 13.5 10.0 a.s '!.0 2'5 . 9.0-·5.s· 11.5 to.c; 12.0 ll.S 13 .• 0 10.0 1\oS 7.0 ?.6 9.5 6.5 10.5 10.0 12.5 10.5 13.0 10.0 7.5 6.'5 ?7 10.5 7.0 10.0 9.0 13.o. 10.5 1?.5 10 •. 0 7.0 7.0 ?.A !1.5 a.n 10.0 9.0 13.5 10.0 !2.5 10.5 7.5 7.0 zq 11.0 A.S 11.5 9.5 13.0 10.5 u.s 10.0 7•5 5.5 -.~., 30 10.5 a.5 !1.5 9.5 13.0 u.o u.o a.s 6.5 5.0 31 1o.s A.O 12.5 11.0 11.0 9.0 '10"1TH u.s 1.0 14.5 8.1) 17.0 10.0 1"4.0 .a.5 10.5 5.0 Yf4F! 17.0 =-il [ -114- f: L Appendix B. ADF&G/USGS Site D Discharge measurements made at low:-flow-partial-record stations during water year 1979· ·Continued 277 Station No. 15241570 15241590 15242080 #15242100 *15285000 115290200 #15294002 #152940_07 Station name Ninilchik River tributary 3 near Ninilchik Ninilchik River tributary 3 at mouth near Ninilchik Crooked Creek near Clam Gulch Crooked Creek near Kasilof Wasilla Creek near Palmer Nancy Lake tributary near Willow Willow Creek at Hatcher Pass Road near Willow Deception Creek above tributary near Houston Location South-central Alaska--Continued Drainage area (mil) Period of record Lat 60°05'27", long 151°19'44", in SW~ NW!~ sec.lS, T.l S., R.l-2· W., Kenai Peninsula Borough, 100 ft downstream from unnamed right bank tributary, and 12 mi east of Ninilchik. Lat 60°03'26", long 151°32'48", in SW~ SEk sec.29, T.l S., R.l3 ,. , Kenai Peninsula Borough, 300-ft upstream from mouth, and 4.0 mi east of· Ninilchik. Lat 60°08'16", long 151°10'30", in SE~ NW~ sec.34, T·l N., R.11 W., Kenai Peninsula Borough·, 500 ft downstream from unnamed left bank tributary, and 9.8 mi southeast of Clam Gulch. Lat 60°17'50", long 151°16'20", in NE~ sec.l, T.Z N., .R.lZ w., Kenai Penin· sula Borough, SO ft downstream from culvert at Old Sterling Highway, 1.8 mi upstream from mouth, and 6.5 mi southeast of Kasilof. Lat 61"38'47", long !49°11'45", in SW~ sec.l3, T.l8 N., R.l E., Matanuska· Susitna Borough, 60 ft upstream from culvert entrance on Wasilla Fishhook Road and 4.1 mi northeast of Palmer. Lat 61°41'17", long 149°57'58", in SE~SE~ sec.34, T.l9 N., R.4 w., Matanuska· Susitna Borough, 10 ft upstream from culvert at Parks Highway, 0.3 mi up· stream from mouth, and 4.5 mi southeast of Willow. Lat 61"45'49", long 149°40'54", in NE~ SW~ sec.S, T.19 N., R.2 W., Matanuska· Susitna Borough, 0.2 mi downstream from old bridge crossing, 2.5 mi up· stream from Peters Creek, and 12 mi east of Willow. 22.7 56.8 21.9 53.8 1978-79 1978-79 1978-79 a1951·52, al973·77, t978-79 16.6 al954·55, 1971 a1976·77 1978·79 8.00 1978-79 50.1 1978· 79 Lat 61"41'48", long 149°46'19", in SE~ 17.9 1978· 79 NW~ sec.35, T.19 N., R.3 W., Matanuska· Susitna Borough, 0.2 mi upstream from unnamed left bank tributary and 4.8 mi northeast of Houston. # See analyses. of samples collected at miscellaneous sites. Also crest-stage par-tial--record station. a Published in miscellaneous measurements table. b Base flow. c Water going into ice and channel storage; measurement does not represent basin yield. -115- Measurements Discharge Date (ft 3 /s) 10·11·78 11· 8-78 1·10·79 3·13·79 4·18-79 5-z -79 5·16·79 5·31·79 6-14·79 7·19·79 8·15·79 10·11·78. 11· 8-78 1·11-79 3·14-79 4·18·79 5· 2-79 5·16·79 5·31·79 6·14-79 7·19·79 8·15-79 10·11·78 11-8·78 1·10·79 3·13-79 4·18-79 s-2·79 5·16·79 5·31·79 6·14-79 7·19-79 8·15·79 10· 9·78 11· 7-78 1· 2-79 3-12·79 4-16-79 4·30·79 5·14·79 5·29·79 .. :. 6-13-79 7-18-79 8-14-79 5-7. 79 5-24-79 5-31·79 7-16-79 10-17-78 10· 5·78 10-5·78 1· 3·79 7·24·79 7.7 5.3 5.6 b2.1 9.4 40 26 9.4 b5.2 7.8 s.z 33 c9.0 l6 b20 47 164 74 41 b24 28 26 zs c7.2 21 bZ1 l3 45 26 23 b19 22 19 80 40 33 b30 96 155 81 51 . b40 51 36 96 49 50 72 7.6 7Z 16 28 31 [ [ [ n [ -[ c c c D u ,. •• J • ..J r: Appendix B. ADf&GJ,USGS Sites E and B 278 Discharge measurements made at low-flow partial-record stations during water year 1979--Continued·: Station No. £ -. *15294008 B-... 1115294012 *15294025 *'!15296554 15511100 15511500 15512500 15514005 15514010 .Station name Deception Creek tributary near Hous-ton·· Willow Creek at Parks· Highway. near Willow Moose Creek near Talkeetna· Thumb River near Larsen Bay Hopper Creek near Fairbanks Steele Creek near Fairbanks Columbia Creek near Fairbanks Isabella Creek near Fairbanks Jusilla Creek dear Fairbanks brai~~ge. Period area of ·Location (mi 1 ) record South-central Alaska--Continued -~at 61"41'40", long 149"46'21", in SE~ 8.89 1978-79 NW~ sec.35, r·~l9 N., R •. 3 w., Matanuska- Susitna· Borough, 0.1 mi upstream from mouth and 4. 7 m·i northeast .of Houston. Lat 61"46'03", long 150°03'48", in SW~ 233 NE% sec·.6, T.l9 N., R.4 w., Matanilska- Susitna Borough, at bridg.e· at Parks Highway, 0.9 mi downstream from Decep- 1978-79 tion Creek, and 1.7 mi northwest of Willow. Lat 62"19'00", long 15.0"26'30", in NE~ sec. 30, T. 26 N. ·, R·. 7 W. , Matanuska· Susitna Borough, at b.ridge on Peters· vi Ile Road and· 10. S mi west of Talkeetna. Lat 57"il'26", long 153"59'41", in NW~ SEl• sec.31, T.32 s., R.29 w., on Kodiak Island,. 600 ft upstream from inlet to Karluk Lake and lZ. 5 mi south of Larsen Bay· •. '(ukon.Alaska Lat 64"53'33'', long 147"24'42", Fairbanks North-Star Borough, in NE~NE% sec.30, T~l N., R.2 E., at downstream end of culvert on Chena Hot Springs Road, 2.5 mi upstream from mouth, and 9.5 mi no.rtheast of Fairbanks. Lat 64·"53'36", long 147"29'12", in SE% sec.23, T.l N., R.l E., Fairbanks North-S.tar Borough, 8 ft upstream from culvert at mi 4.5 on the Chena Hot Springs Highway, and }.5 mi northeast of Fairbanks. Lat 64"53'29", long 147"32'39", in SW% NE~NE~E~ sec.28,. T.l N., R.l E., Fair· banks· North-Star Borough., at d_own·· stream· end of culvert at mi 2.6 o·n Chena Hot Springs Road, 1.0 mi up- stream from Wigwam Creek and 6.1 mi northeast, of Fairbanks . Lat 64453'10", long 147"40'30", in NE~. NE~SE~ sec.26, T.l N., R.l W., Fair- banks North-Star Borough, at down- stream end of culvert at mi 1.0 on Farmers Loop Road, 2.8 mi upstream from.mouth and 3.1 mi north of Fairbanks. Lat 64~53'59", long 147"42'59~, in NE~ NW~SE~ sec.22, T.l N., R.l W., Fair- banks North-Star Boroug·h, at down- stream end of culvert at mi 3.4 on Farmers Loop Road; 0.5 mi upstream from Creamers Field and 3.9 mi nor·th of Fairbanks. 52.3 25.3 2.25 al972·75 ,. 1978-79 1979 1978-79 10.7 adl967·74, 1976-79 £3.0 1976-79 £4.3 1976-79 fl.6 1976-79 Measuremeri t'S Discharge Date (ftl/s) 1!1-5-78 7-3-79 7-24-79 11-14-78 12-Zl-78 1-22-79 3-29-79 7-10-79 7-24-79 8-8-79 9-14-79 5-9-79 8-1-79 i0-18-78 11-17-78 1-23-79 3-28-79 5-19·79 6-27-79 8-6-79 9-19·79 8-13-79 8-13-79 8-13-79 8-10-79 8-14-79 8·10-79 8-14-79 8.9 10 16 cl03 bl61 bl39 164 1,180 1,040 652 b205 596 34 327 60 63 85 151 118 31 24 b0.0002 bl.l bO .10 bO. 11 b0.12 bO.Ol b0.008 15514015 Grenac Creek near Fairbanks Lat 64"53'53", long 147"45'13", in SE~ NW~SE~ sec.Zl, T.l N., R.l W., Fair- ba~ks North-Star Borough, at down- stream end of culvert at mi 4.6 on Farmers Loop Road, 1.0 mi upstream from Creamers Field and 3.9 mi north of Fairbanks. fl. 3 al967-68, 8-10-79 1976-79 8-14-79 bO.OS b0.06 # See analyses of samples collected at misc.ellaneous sites. ** Also a continuous·record 'station for ~water temp.erilture. a b c d f Also crest-stage partial-record station. Published in miscellaneous measurements table. Base flow. Water going into ice and channel storage; measurement does not represent basin yield. Operated as a crest-stage partial-record station. Approximately. -116- Appendix B. ADF&G/USGS Site D 3oo PHOS- Pfi6RUS. ANALYSES OF $ANPLES COLI;ECTED AT WATER-QUALITY .PARTIAL~RECORD STATJ.ONS SOUTH-CENTRAL ALASKA--Continued 15294002 -I~ILLOI~ C AT HATCHER PASS ROAD NR. WILLOW AK--Com:inued WATER QUALITY DATA, \'lATER YEAR OCTOBER 1978 TO SEPTE~IBER 1979 BARJUI'Io TOTAL C'iRO- "'lUM. TOTAL IRON. OATF. D't.s- set.vEo 11-lG/L A5 P) ~LUM­ lllUMt TOTAl. RECOv-· ERABLE IUG/L AS AU ARSENIC TOTAL IUG/L AS AS! ... RE:Cov- ERAI'!LE IUG/L AS BAI CADMIUM TOTAL RECOV- ER'ARLE IIJG/L AS COl . RE:Cov- ER.ARLE IIIG/L Ac; CR! GOPPERo TOTAL RECOV.- ERABLE IUG/L AS CUI IRON •. TOTAL RECOV- ERABLE IUG/L A<; FE) DIS• SOI.V.ED tUG II. AS FE! LE~D. TOTAl RECOV- F.R~BLE CUG/L AS PRJ "1o\NGA- NF.SEw TOTAL RECOV- ERAEltE tliG/L AS "'Nl OCT os ••• .on 50 3 0 0 0 3 llO 110 0 OATE OCT os ••• JUL. 24 ••• DATE OCT os ••• JUL 24 ••• DATE OCT os ••• JUL 24 ••• O.ATE OCT O"S •. ~·. 0940 1345 CALCIUM tHS- sot.:v£o· fMG/L AS CAl 10 7.5 IIIITRO- GEN• N02+N01 TOTAL IJIOG/L AS Nl .37 "'ANGA- NESE• orc;- sot.vED IUG/L AS "'1111 D STREA"'- ~"LOW. !NSTAN- T.&.NEfJUS ICFSI 16 31 14AGNE- SIUM• . OI5- SOLVE[I (MG/L 4'5 MGI ?.1 1.4 NIT'lO- Gf'lll, N02+>103 OIS- SOt.VED' I"'G/L AS 'II .06 .10 MF.RCURY TOTAL RECOV- ERABlE IUGIL AS HGI .o SPE- CIFIC CON- DUCT- ANCE !MICRO- . "1H0Sl 120 811 SODIUM• DIS-. SOLVED tMG/L AS NAl 12 7.0 NITRO- GEN• ~MMONIA TOTAL . IMG/1. AS Nl ,01} .o1 NICKEL• TOTAL RECOV- ERABLE IUG/L AS Nil 1 SEt.f:- NIUi'h TOTAL. IUG/L AS SEl SILVEP, TOTAL RECOV- ERARLE IIIG/1. ' liS AGl 7INCo TOTAL C!ECOV- ERABLE (IJGIL A'i ZNI CARBON. ORGANIC DIS- SOLVED CMG/L AS Cl CARBON. ORGANIC sus- PENDED TOTAl CMG/L AS Cl *15294007 • OECE~TION C ~B TR NR HOUSTON AK PH !UNITS! 7.4 POT AS• SIUM, 015- SOLvEn· 1"4G/L AS K) 1o1 ,7 NtTC!O- GfN, A>l'lONI A . DIS- SOLVE!' IMG/L AS ~Jl .oo T!;;MPER- ATURE. AIR tOE:G Cl 16.5 BICAR- BONATE . IMG/L AS HC031 37 28 NITRO- GF.I'.Jo ORGANIC TOTAL ti'IG/L AS Nl .20 .zn TEI'IPEC!- ~TURE IDEG Cl 3.5 12.0 CAR- BONATE: (MG/L AS C03l 0 ,(I NITRO- GEN. OP\,ANIC DI5- 50LVF.O IMG/L AS Nl .?o COPP€R. OliYGEN. DIS- <;OLVEO IMG/Ll 13.() 10.3 5Ulf'ATE ors- c;oLVED IMGIL Ac; S04) 2.3 6.2 III!TRO- GO::N.AM· "'fJIIIlA + O>IGANiC TOTAL IMG/L A<; NJ .20 .21 COLI- FORiolo TOTAL, I!4MED. CCOLS. PER loO MLl K36 CHLO• RIDE, DIS- SOLVED tMG/L AS CLl 22 8.6 NITRO- GENoAi.t• '40NU • ORGANIC Dts. tMG/L AS Nl .zo COLI- FORM. FECALo 0.7 U"4-MF' ICOLSo/ 100 MI.! 1(22 FLUO- RIOEo DIS- SOLVED ti'IG/L A.S -F'l .o .o NITRD- GE"'o TOTAL. tMG/L AS Nl .24 .sa IRON. IRON• SEDI- MENT• sus- PENDED IMG/LI STREP- TOCOC.CI FECAL• t<F AGAR I COL '5o PER too ~~ K2 )(4 SILICA, ors- •>ot.ve:o CMG/L AS SIO?.l 11 PHOS- PiiORUSo TOTAL CMG/1_ A<; PI .no SEOI- .. E:IIIT DIS- CI-!4RGE, sus- PE:NDED IT/DAY! l-IARD- NESS II'IGIL ~s CAC01l 34 25 souos. RESIDUE AT lBO OcG. C OIS- SOLVE:D CMG/U PHOS- PiiO~lUS • DI~­ SOLVEO II'IGIL AS P! .oo .o1 HARO-' NEss. IIIONC~R­ BONATE IMG/L CAC03l 3 2 souos. SUI-t OF CON<;Tl- TIJi;NTSo OI<;- SOLVEO' IMG/LI 79 56 AUJ!o!- INIJM• TOTAL RECOV- ERA~LE IUGIL AS ALl 60 '!ANGA- NESE•· TOTAL P.E:COV- ."A"'GA- NE:'iE• suc;- PF:Mne:n -QE-COV• -- ll!G/L OATE ARSE>J!C TOTAL IUG/L AS ASl ilARIUM• TOTAL REcov- ERABLE IUG/L AS SAl C~OfltlJM TOTAL RECOV- €P.JI6lE IUG/L AS CO! CH>IO.- "'TU"', TOTAL RF.:COIJ• E'~ABLE !UG/L ~c; CRl TOUL RO::CCIV- E11AAt:E II.JG/L AC: CUI I 'ION, TOTAL RF.COIJ- EI'lABLE IUG/L AS F'EI sus- PENDED PECOIJ- E"A8LE (UG/L. AS F'EI DtS- SOLVEO (UG/L AS F'El LE"-0• TOTAl RECOV- ERABLE IUG/L AS PAl -ERABLF:-- IUG/l. A<; H"ll ~c; ""~' OCT as ... 0 0 0 9 190 n 0 JtJL 24 ••• 0 0 0 10 2R 120 170 14 10 5 K * ~;o:-o-IDEAL COE.ONY COUNT LOW-FLC\'1 PARTIAL-RECORD STATION -11;7- n n L~ r L [ [ [ [ [ [ [ [ [ [ [ L __ ) c.J " I ..__; r ' ! L I L [ [ [ Appendix B. DATE OCT o~S ••• JUL. Z4···•··· MANGA- NESE, ais- _s6t.VEO CUG/L AS MNl 0 o; F ADF&G/USGS SiteD (cont.);._SiteF ANALYSES OF SA.\IPj:.ES COLLECTED AT WA'FER~QUALITy PARTIAL~RECORD STATIONS SOUTH-CENTRAL.ALASKA--Continued 15294007 -DECEPTION C AB TR NR HOUSTON• AK--Continued I~ATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 '~ERCI)RY TOTAL RECOV- ERABLE· !UG/L AS HGI .o .I N.lCKEt..o TOTAL RECIJV'- EPARt.E !UG/L AS Nil 3 SFLE- IIIIUMt TOT4L IUG/L 4<; SEi o· 0 SlLVFRo. TOTAL . RFCOV- ERABLE. !UG/L A<; AG! 0 0 ZINC. TOTAL RECOV- ERABLE WG/L 45 Zllll 0 CAPBOih ORGANIC ois-sotvF.:o !MG/L AS Cl 4.2. CARBONe· ORGANIC sus- PEIIIOEO TOTAL IMG/L AS C! .3 ~15294008 -DECEPTION C TR NR HOUSTON AK. COLI- F'ORHt CYANIDE TOTAL !MG/L AS OH c;e:oi- MENT· ·sus- PENDED !MG/LI J 3 sFor- '4ENT ots- CHARGE. sus- PE"'DED !T/OAYI .13 .25 3tH S~E­ Cif'IC CON- DUCT- A~JCE PH TOTAL, IMMEO, I.COLS. COLI- F'ORM, FECAL• 0.7 UI-I-MF <;TREP- TOCOCCI ~f:C~L• KF' AGAR !COLS. HARO- "'F.:SS tHG/L HARIJ- NESS• NONCAR- !!OIIIATE !!o4G/L . DATE STREAM- FLOW, PlSTAN- T4NcOUS !CF'H !MICRO- MHOS! !UNITS I TEMPER- IHURE, 'AIR !DEG Cl TEI'PER- HURE tOEG Cl OlCYGENo IHS- SOLVEO !t.IG/Ll PER. 100 MLI !COLS./ 100 ""-) PER 100 '4Ll AS Ct.C031 CAC03t OCT os ••• JUL 24 ••• Oo\TE OCT os .... JUL 24 ..... DATE OCT os ••• JUL 24 ••• 1115 1430 C~LCIUH nrs- soLvEa !MG/L AS CAl 11 8.4 NITRO"' GENt N02+N03 TOTe.L !MG/L AS Nl .1'3 .26 8,9 ISO 16 M.fiGNE- SIUM, DIS- SOLVED !MG/L AS MG) 2.2 1.6 NITRO- GE'Io N02+N03 DIS- SOLVED !MG/L . AS Nl .15 .22 9o SODIUM, DIS- SOLVED !MG/L AS NAI 14 e.o NfTRO- GEIII• AMMONIA. TOT4t. !MG/L ·Ac: Nl .oo .01 POTAS- SIUM• DIS- SOLVED !MGIL A5 Kl lo1 .2 NITRO- GEN• AMMONIA DIS- SOLVED· !MG/L A5 Ill) .01 15.0 8TCAR- 80NATE !MG/L AS HC03l 41 NITRO- GEN• ORGANIC T'lTAL !MG/L AS Ill! .2.9 ,04 CHRO- MIUI'h 3.0 11.0· CAR- 80111ATE !!o!G/L ~s co3! 0 0 "'ITPO- GENo ORGANIC DIS- SOLVED !MG/L AS N! .56 SULFATE ors- soLvEo (MG/L ·Ac; S04) 2.0 "'tTRO- GENoAiol- lo!OIIIIA + OR~ANIC TOT ~L !MG/L ~c; m .29 .os K22 CHLO- RIDE, DIS- SOLVED !!4G/L AS CL! 24 NITRO- GEN,A11- MONIA • ORGANIC . J:s. !MG/L AS Nl IRO!Il. IRON, TOTAL IRONo 1<76 FLUO-· RIDE, DIS- SOLVED !MG/L AS F'l .o .o NITRO- GEN. TOT.\L {loiG/L AS N! .39 .31 1(4 KS SILICA. nrs-soLvF.:o !~GIL AS SIO:>J 11 11 PHOS- PHORUS • lOTAL !MG/L AS PI .oo .01 17 28 snuos. RESIDUE AT lBO I)EG. C nrs- soLVEO (MG/U 92 67 PHOS- PHORUS• DIS- SOLVED !MG/L 4S P) .oo ·01 J 3 souos. SUM OF' CONSTI- ·ruF.hiTS• orc;- SOLVED (MG/U 86 59 ALUioi- INU14o TOTAL RECDV- EPAF!LE !UG/L AS ALl 60 '4ANG4- NESE• DATE ARSENIC TOTAL IUG/L AS ASI F.IARlUMo TOTAL RECOV- ERABLE !UG/L AS BAI CADMIUM TOTAL RECOV- ER~BLE !UG/L AS CO! . TOTAL RECOV-,. ERA8LE IUG/L AS CRJ COPPER, TOTAL ::!ECOV- ERARLE !IIG/L A<; CUI .RECOV- F.R~BLE IUG/L AS F'El sus- PENDED RECOV- ERASLE IUG/L AS FE> DIS- SOLVED IIJG/L AS FEl LEAD• TOTAL RECOV- ER&.BLE !UG/L AS· PB! M4111GA- NESE• TOT At. RECOV- EPABLE (Ut;IL At; MNI sus-PENo::o RECOV, !IJG/L AS Mil) OCT QS ••• JUt 24 ••• DHE f\CT ~s •.• JUt 0 MANGA-NESE, DIS- SGL'tED !II GIL AS "'Nl 40 30 0 0 Mt:RCUR'Y TOTAL RECOV- ERABLE !UG/L AS HGJ .o .o 0 0 NICKEL, iOTAL i<ECOV- ER~BLE <UG/L ~5 'li J :; NON-IDEAL CO LOW CCU!'iT 0 10 SFLE- NIUK• T<lTAL lliG/L AS SEI 0 0 LOii-FLOW PA:<TIAL-RECORD STATION ) 3 S!LVER, T'lHL ~:<'CI1V­ E'H'lLE !I.!G/L ~c; kGJ 0 300 360 ZINC, TOTAL RECOV- E:!aBLE ClJGIL b.S Z"'l 10 0 ?0 -118,... 120 C.&.J;BQN, ORGANIC ors- soLve:o !HG/L AS Cl 230 240 CARBON, O~GIINIC sus- PE"'OED TOTAL I"'GIL AS Cl .7 11 CY4Nl0E rOTAL !,_,GIL A<; CNI .oo 40 SEDI- "'iE~T. suc;- Pf.NDED • !"'G/U 3 7 10 SEOT- 11E"'T ors- CKARGE. sus- PF.W)EO- (T/DAYl .38 ·Appendix B. DATE JUL ?4 ••• DATE JUl., 2"4 .... DATE JIJL 24 ••• POTAS• SIU"• DIS- SOLVED IMGIL AS Kl .5 NITIIO• GEN• ORGANIC TOTAL IMGIL AS fill .J4 IRON• ors- 'iOLVED (IJGIL AS FEI J9Q ADF&G/USGS Site F ANALYSES OF'· SA~IPLES COLLE6TED AT HISCELLANEOUS SITES SOUTH-CENTRAL AtAS!CA--Continued 614446H9551000 -U:-INAI·lED TRIB TO DECEPTIO~ C NR WILLOW AK--Continued \1ATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTENBER 1979 BICAP• BONATE !lo!GIL AS HC011 30 NITPO• GEN.AN- MONill + OIIGANIC TOTAL IMG/L AS "') .37 LEAO, TOT•\l RECOV- ERA~LE IUGIL AS <>91 CAR- BONATE IMGIL AS C03l 0 NITRO- GE"'o TOTAL OofG/L AS Nl .42 MANGA• NESE, TOTAL REcov- EPARLE IUGIL AS MNI 30 '51JLF'ATF. ors- soLvEo IMGIL AS S04J PHOS- PHORUS. TOHL IMGIL AS PI .02 MANGA- NESE• c;us- PENOEo RECOV. IUGIL AS loiN! CHLO- RIDE, OIS- SO.LV£0 IMGIL AS CLJ PHOS- PHORUS. ors- soLvEn IMGIL AS Pl .02 MANGA- NESE·• DIS- SOLVED IUGIL AS MNI 20 FLUO- RIDE, . nis-sm. •JEll IMGIL AS F'l .o A<?SENIC TOTAL IUGIL A'5 A<;) MEPCUPY TOTAL RECOV- EIIARLE IUGIL AS HGJ .n 'HLICA, ,Is- c:;oLVEO IMGI'L· AS. c;yo?.J 11 AAPlUM• TI)TAL l>£COV- EC!A8LE IUGIL AS BAI o· 5~tE­ NTU"-• TI'ITAL IUGIL AS SEI 0 souos. RESIDUE AT tao. DEG, C DIS- SOLVED (MG/Ll 70 CAD~IUM TOTAL RECOV- ERABLE IUGIL AS CO-l SILVER. TOTAL RECOV- ERABLE CUGIL AS AGI 0 SOUDS· SUM OF' CONSTI- TUENTS. OIS-· SOLVED tHGILl 54 CHRO- MIUM• TOTAL RECOV- ERABLE IUGIL A<; CRl 10 71NC• TOTAL . PECOV- ERABLE IIJGIL AS lNI 0 N!Tl>O•· GE"'• N02•N03 ·TOTaL I'IGIL AS m .as COPPER• TOTAL .RECOV- ERA!lLE IUGIL AS CUI 17 CYAIIIIOE TOT.\L IMG/L AS CNI .oo 614251149585100 -LILLY C AB HONLING DOG FAP.M NR NILLOW AK <;FE- C!F'!C CON• DUCT- ANCE COLI- FORM, TOT~L• IMMf':O. I COLe:;. S'I'REP- TOCOCCI FF:CAL• KF AGAR ICOLS. HARD- NESS IMGIL HARD- NESS. "'!TRO- GEN. NITRO- "'O?+NI)1 GF.:No DIS• AMMONU SOL VEO · · TOTAL tMGIL IMGIL AS NJ AS !Ill IRONo TOTAL P!'COV- .ERA!lLE IUGIL AS F'EI sEOI- '-E'NT. sus- PE'NOED !MGIU 10 .03 IRON, sus- PENnED RECI'IV• ERARLE IUGIL AS F'EI 300 SEDI- MENT ate- CHARGE. sus- .PENoe:o IT IDAYl .32 'l'lME I MICRO• MMOSJ TEMPER'- HURE IDEG Cl OXYGEN. nrs- SnLvEo I,.GILJ PER 100 MLJ COLI- F'O'IM+ FEr.AL, 0.7 UM•MF' ICOLS.I PER 100 MLI AS CACOJI NONCAR- 80NATE IMGIL CAC03l CALCIUM OI'i- SOLVED IMG/L A<; CAl 'IAGNE- Sill"'• OIS- 50LVED !"'GIL AS ""Gl DATE OCT 17 ••• ·. 1'100 DATE OCT 17 ••• DATE OCT 'l7 ••• SODIUM• 'DIS- SOLVED IMGIL >\S lilA) 1.8 NITRO• GEN• N02+NOJ TOTAL IMGIL AS Nl .07 POTAS- SIUM• DIS- SOLVED IMGIL liS 10 NITRO- GEN. NEJ2•N03 DIS- SOLVED IMGIL AS Nl ..07 2.0 BICAR• BONATE IMG/L AS HC03l 27 NITRO- GEN• AMMONIA TOTAL IMG/L AS Nl .02 12.4 CAR- FIONATE IMGIL AS C03l 0 NITRO- GEN• AMMONIA ors- SOLVED IHGIL AS Nl .ot 1nn "'LI 1Jq" SULFATE DIS- SOLVE'I) I"'GIL AS SD4l NITRO- GEN• ORGANIC T.OTAL IMGIL AS Nl ~51 A3· CHLO- RIDE, DIS- SOLVED llofGIL AS CLl 1.9 NtTRO- GEN •. ORGANIC DIS- SOL YEO lloiGIL AS NJ .43 -119- 71 FLUO- RIDE• DIS• SOLVED IMG/L AS F'l ·1 NITRO- GEN•AM- lofONIA + OPGANIC TOTAL IMGIL AS Nl .55 28 SILICA. DIS- SOLVED tMGIL AS Sl02l 9.0 ~I!Tl'!O­ GENoAM- MONIA • ORG4.NIC PIS. IMGI'L AS Nl .44 c:nLI'ls. RESlf'JUE H 180 OEG, C DIS- c:;OLVEO. {lofGILJ 56 N1Til0- GE"', TOTAL IMG/l AS Nl .62 souoc;. SU!o! OF' CO"'STI- TUE"lTS, DIS- SOLVED 11-<GILI 41 PHOS- PHI)IlUS. TOTAL CM.GIL AS Pl .o! 1.8 [ [ [ [ I L [ [ [ [ [ [ [ [ [ [ t ~ Appendix B. . ADF&G/USGS Site G 1 ANALYSES OF SAJ.IPLES COLL~CTED-AT. ~llSCELLANEOUS SITES ~ 1 .. SOUTH-CENTRAL ALASKA--Continued ',i -, 614906149385000 -PETERS C BL FURCHES C NR WILLOW AK W'A'fER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 SPE-COLI- ' ClF'TC FOR"'• HIIRO- STREAM-CON-FECAL• HARD-"'ESS. FLOW• nucr-TE~<PEC!-OXY6EN, 0.7 "'F.c;o; "'ONC~I>- . INST.AN-· At-ICE. PH A.TURE .• TEMPER-DIS-UM-Iolf CMGIL RONATE TI~IF. TANEOUS CI<JCRO'-. AlR' ATURE SOL VEl}' ICOLSw.f. .. s tMGIL DATE !CFSl MHOS! !UNIT<;>· IDEG Cl cnF.G Cl CMGILl 100 MLl CAC011 C,!.C031 JIJL :;!4 ••• 1230 465 33 6.7 ts.o a.o 11.5 <1 13 2 _j !otAGNE-POT AS• _CI-4LO-F'LUO-SILICA, CALCIIIH SlUM,. SODiuM, SIUM• BY CAR-SULFATE' RIDEo RIOt::, DIS- DIS-DIS-OIS-ors-RON ATE r.aR-DIS-DIS-DIS-SOLVED SOL VEil SOLVED SOLVED SOLVEO IMG/L RON ATE SOLVED SOLVED SOLVED IMGIL ' IMG/L CloiG/L IMG/L IMG/L AS (MGIL !"'GIL (MG/L !"'G/L AS DiTE AS CAl AS MGl AS NAl AS Kl HC031 Ac; C03l AS 5041 AS CLl AS F"l SI02l ~ .JUL .?.4 ...... 4,6 .,4-t.n ,4 13 0 4.3. ,R .o. 5.?. ; SOLI OS. souos. NITRO-NITRO- _j RESIDUE SUM OF' NITRO-GENo NITRO-NITRO-GENoAM-PHOS- . AT 180 CONSTI-GENo "102•N01 GEN. GEN. "ONIA + NITRO-PI-lOS-PHORUS, OEG. C TUENTS_, IIIO?.•N03 DIS-A~""'CNIA OR<;A"'IC ORGANIC GEN, PHORIJS• ors--, Dis-·ors-TOUL SOL YEll TOT"-L TOTAL TQT<\L TOTAL TOTAL SOLVEr> SOLVED SOLVED (lo4r;/L !"'GIL !"GIL (MG/L CMG/L !'"'GIL IMG/L (~GIL DATE ___; !14GILl !14G/Ll ~s Nl AS N) AS Nl A<; Nl AS Nl AS Nl ~S PI AS PI JUL -., 24 .... 19 23 .oc; .os .01 .27 .28 .33 .no .no CH~O-IPONo 14ANGA- !UR!UM. CAQI-IIU'I M!UMo COPPF.t:!, It:! ON, sus-LEAD, IIIESE, " TOTAL Tr>TAL TOTAL TOTAL TOTAL PENOEO IRONo TOT4L TOTAL ARSENIC RECOV-RF:COV-t:!ECOV-t:!ECOV-Q"'Cnv-RECOV-DIS-RECOV-i'1ECOV- TOTAL ERARLE ERA8LE ERA8LE ERABLE ERA6LE ER"<BLE SOLVED fRARLE ERABLE CUG/L IUG/L IUG/L IUG/L IIIG/L CllG/L IUG/L IUG/L lUG/L CUG/L DATE AS AS! AS S_Al AS COl AS CRl AS CUI A<; F'El AS-F'EI AS FEI AS PF!l AS "'"'l ~ . IUL 24 ••• 0 0 10 3· so 40 10 ~q 0 lo4ANGA.., SEDI- NESEo HANG A-MEPCURY SILVEC!, ZI'ICo "lENT sus-NESE, TI'ITAL SELE-TOHL TOTAL SEOI-CllS- PEND ED DIS-RE:COV-"'IU"~• RECOV-RF.CQV-CYANIDE MENTo CHARGE, RECOV. SOLVED E<>ARLE TOTAL El'lASLE ERABLE TOTAL sus-sus- IUG/L CUG/L IUG/L IUG/L cur.tL IUG/L I!"G/L PENOEO PE'IOEO OATE AS MNI AS MN) AS 1-1Gl AS Stl AS AGl Ac; Zt<ll AS CNl IMG/LI <T./DAYl JYL 24 ••• 0 .1 .n 0 20 .oo 4 s.o 614446149551000 -UNNANED TRIB TO DECEPTION c NR WILLOW.AK SPE-r.nLI- CIF'IC FORM, HARD-,.AGNE- STREAM-CON-FECAL, HARD-NESSo CALCIU'-4 siu.-., <;O{l!lJI4• F't.OIIo DUCT-TE1o4PEtl-o.7 NESS NO"'CAR-OIS-ore:-Dis-r-INSTAN-ANCE PH ATtJREo TEio!PER-UH-MF' CMG/L BONATE SOLVED SOUlED SOL'!FO TIME T~NEOUS t~ICRO-AIR ATURE ICOLS,/ AS <14G/L 11-15/L CMG/L !~GIL DATE. !CF'5l "lHOSl !UNITS! !OEG Cl IDEG Cl too ML> CAC03l C~CD3l t.S CAl AS MGl t.<; "'AI JilL 24 ••• 1550 12 76 ... 7 16.1) 13.Q 94 27 2 8.0 1.7 ... 9 [ L -120- ~ 9J06!.:1 ~380.L~O ~38~3.Ld3S .Lsn~n\f A1nr oc: 0~ oc: oc: 0~ G') -> G') m '--" c m .-- "0 L -1 :L r- '---' ., m ;_ : m ~ -1 -L. L ·61.6~ SE>NIO\f31:i 3E>VE> .:1.:1\fl.S M0111M tf3M01 ·::> x~pu~dd'g' Appendix C. 3 -.... ·w ·w u.. -2 :t: .... a. w 0 w (!) 1 < (!) MIDD·LE WILLOW STAFF GAGE READINGS 1979 10 20 JULY ,, .- 10 20 AUGUST Figure . 2 -122- 10 20 SEPTEMBER 10 20 OCTOBER [ n n u [ [ [ [ [ [ [ [ [ [ [ c E [ [ -£Zl- ~380J.OO ~38W3J.d3S J.sne>nv A1nr 0~ 0~ 0~ 0~ 0~ 0~ 0~ 0! • 4 ._. .-. .• ! .~ .. . .. . 6.l6~ SDNIOV3l::f 3E>VE> =I.:IV l.-S 13NNVHO 301S M0111M 31001W Ci) > a. Ci) m m m .. r -f L - App~ndi x C-:. -..... w w u. 3 -2 l: ..... a. w 0 w CJ 1 <( CJ MIODLE WILLOW SLOUGH #1· STAFF. G'AGEREADINGS 1979 10 20 JULY 10 20 AUGUST Figure 4 -124- 10 20 SEPTEMBER 10 20 OCTOBER [ .[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ E [ C -szt- s aJn6!.::1 l:f380l.OO l:f38W3l.d3S l.Sne>nv A1nr 0~ 01. 0~ 01. 0~ 01. 0~ 01. L.. r G) )> G) m .-- c L m r "'0 '--r :I: r L -.., L m m '- -r ,-- L. 6L61. ·e S~NI0\'3!:1 3e>Ve> .:1.:1\fJ.S G# He>n01S M0111M 31001W L ":l x~puadd\f ·.Appendix C. ·. .. : 3 -.... w w u.. -· 2 :r: .... a. w 0 w (!' 1 <C (!J • .. UPPER WILLOW STAFF GAGE READINGS .. .·. 1979 10 20 JULY 10 20 AUGUST Figure 6 -126- 10 20 10 20 SEPTEMBER OCTOBER C. ·[ . [ [ c [; [ L Q [ [ u [ [ [ c D c D ~380J.OO ~38W3J.d3S J.snenv A1nr 0~ 0~ 0~ 0~ 0~ 0~ 0~ 0~ L.. . ~~~ G) > ~ G) '-m ' c '-m "tJ -f L ~ ,- .·~ L -, ,- m L m -f -'- ,- \..._~~ ·.6L6J. .£ Se>NIOV3t:l 3E>VE> .:1.:1\fl.S >t33t:IO NOil..d3030 L ,-· '- ·"3 x~puadd't( .I- "" ... · .... " .. .;·. •.'. . · .. ·. L ··.: ...., _ _;, ' i _J ' _ _j ' ___) . i -.. _ _} ' ___) ...., _j _J -, ' _; cd -, _:; Appendix D. Table 1. Thermograph data summary for Willow Creek lower reach, 1979. Date High Mean* Low Date High Mean* Low 08/03 15.0 14.0 13.0 08/22 13.8 13.0 12.2 08/04 13.4 13.2 13.0 08/23 14.9 14.2 13.5 08/05 13.0 12.8 12.5 08/24 15.4 15.1 14.8 08/06 12.5 12.3 12.0 08/25 15. 1 15.0 15.0 08/07 12.2 12. 1 12.0 08/26-09/10 equipment malfunction 08/08 12.2 -12.2 12.2 09/11 14.4 13.3 12.2 08/09 12.2 12. 1 12.0 09/12 12.8 12.5 12.2 08/10 12.0 12.0 12.0 09/13 12.5 12.5 12.5 08/11 12.5 12.3 12.0 09/14 12.8 12.7 12.5 08/12 12.5 12.5 12.5 09/15 12.8 12.8 12.8 08/13 12.5 12.5 12.5 09/16 12.8 12.3 11.7 08/14 12.5 12.3 12.2 09/17 12.2 12.1 11.9 08/15 12.0 11.9 11.8 09/18 12.2 12.2 12.2 08/16 11.8 11.7 11.5 09/19 12.2 12.0 11.7 08/17 12.3 12. 1 11.8 09/20 11.7 11.4 11.1 08/18 12.4 12.2 12.0 09/21 11. 1 11.0 10.8 08/19 12.5 11.8 11.0 09/22 11.1 10.9 10.6 08/20 11.5 11.4 11.4 09/23 10.6 10.6 10.6 08/21 12.5 11.8 12.5 09/24** 10.6 10.6 10.6 *Mean temperature (°C} is the average of the daily high and low over a 24 hour _period from midnight to midnight. **Equipment malfunction -09/25 to 10/12. -128- n Appendix D. c Table 2. Thermograph data summary for Wi 11 ow Creek middle reach, 1979. Date High Mean* Low Date High Mean* Low c 07/03 10.5 09.0 07.5 07/28 11.7 11 .2 10.7 n 07/04 08.5 07.8 07.0 07/29 11.7 11.6 11.5 07/05 10.5 09.4 08.3 07/30 11.7 10.7 09.7 c 07/06 10.5 09.0 07.5 07/31 11.5 11.0 10.5 07/07 11.5 09.8 08.0 08/03 13.5 11.8 10.0 [ 07/08 12.0 10.1 08.3 08/04 12.6 11.6 10.6 [ 07/09 12.0 10.5. 09.0 08/05 12.2 11.6 11.0 07/10 12.0 10.7 09.3 08/06 11.0 10.9 10.8 [ 07/11 1 o. 5 09.7 08.8 08/07 10.8 10.4 10.0 07/12 1 o. 5 09.8 09.0 08/08 . 12.0 11.0 10.0 c 07/13 09.5 09.0 08.5 08/09 11.6 11.2 10.8 07/14 10.0 08.8 07.5 08/10 11.0 10.9 10.8 c 07/15 13.5 11.0 08.5 08/ll 11.0 10.8 10.5 c 07/16 12.5 11.0 09.5 08/12 12.0 11.5 11.0 07/17 12.3 10.9 09.5 08/13 12.0 11.5 11.0 c 07/18 12.5 11.0 09.5 08/14 11.2 11.0 10.8 07/19 12.5 . 11.0 10.5 08/15 10.8 10.5 10.2 c 07/20 1 o. 5 10.0 09.5 08/16 10.2 10. 1 10.0 07/21 10.6 10.1 09.5 08/17 n.o 10.5 10.0 [ 07/22 10.6 10.5 10.3 08/18 11.0 10.5 10.0 [ 07/23 1 o. 5 10.0 09.5 08/19 11.2 11.1 11.0 07/24 12.3 09.9 07.5 08/20 11.2 11 .1 11.0 c 07/25 12.0 10.8 09.5 08/21 11.0 10.3 09.5 07/26 12.3 11.4 10.5 08/22 11.8 10.9 10.0 L *Mean temperature (°C) is the average of the daily high and low over a 24 hour period E from midnight to midnight. -129- [j ., __ J Appendix 0. Table 2. (continued) Date High Mean* Low Date High Mean* Low -~ , 08/23 12.5 11.9 11.2 09/23 8.5 7.8 7.0 _ _) 08/24 12.8 12.6 12.4 09/24 8.9 7.7 6.5 -, 08/25 12.8 12.4 12.0 09/25 6.9 6.3 5.7 _ __J 08/26 12.8 12.4 12.0 09/26 5.7 4.9 4.1 -, 08/27 12.2 11.9 11.6 09/27 5.5 5.4 5.3 --, 08/28 12.2 12.1 12.0 09/28 6.0 5.8 5.5 J 08/29 14. 1 14.0 13.9 09/29 6.0 5.1 4.2 , 08/30 14.0 12.0 10.0 09/30 5.0 4.6 4.1 _} 08/31 10.0 09.3 08.5 10/01 5.3 5. 1 5.0 ' 09/01 09.5 09.3 09.0 10/02 5. 1 5.1 5.1 _) 09/02 09.5 08.8 08.1 10/03 5.3 5.3 5.2 -, _; 09/03 09.0 08.6 08.1 10/04 5.5 5.3 5.1 09/11 10.5 09.8 09.0 10/05 5.8 5.7 5.5 09/12 09.5 09.5 09.5 10/06 5.8 5.5 5.2 ' 09/13 09.8 09.7 09.5 10/07 5.5 5. 1 4.8 .__) 09/14 09. 9' 09.9 09.8 10/08 5.0 5.0 5.0 09/15 09.9 09.2 08.5 ~-i 10/09 6.0 5.6 5.0 09(16 08.8 08.4 08.0 10/10 6.0 5.6 5.2 =-, 09/17 09.0 08.9 08.8 10/11 5.8 5.7 5.5 09/18 08.8 08.2 07.5 10/12 5.5 5.0 4.5 ~ 09/19 08.3 07.9 07.4 ,-, ! ~ 09/20 08.4 07.4 06.5 u 09/21 07.0 06.5 06.0 [ 09/22 09.0 08.9 08.8 [ *Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight. .-' -130- L D Appendix D. [ Table 3. Thermograph data summary for Willow Creek upper reach, 1979. n " Date High Mean* Low Date High Mean* Low 07/08 09.5 09.4 09.3 08/02 15.6 13.1 10.5 c 07/09 09.3 08.9 08.5 08/03 14.3 12.2 10.0 07/10 11.5 09.6 07.7 08/04 12.7 11.7 10.6 c 07/11 12.7 10.9 09.0 08/05 12.0 11.5 11.0 u 07/12 09.5 09.0 08.5 08/06 11.0 10.9 10.8 07/13 09.0 08.5 08.0 08/07 11.8 11.2 10.5 c 07/14 09.7 09.1 08.5 08/08 11.5 11.0 10.5 07/15 08.5 08.0 07.5 08/09 11.5 11.0 10.5 c 07/16 09.5 08.6 07.7 08/10 11.3 10.9 10.5 Q 07/17 11.5 10.0 08.5 08/11 10.7 10.5 10.3 07/18 11.0 10. 1 09.3 08/12 12.5 11.5 10.5 c 07/19 n.7 11.0 10.3 08/13 11.0 10.8 10.5 07/20 11.7 11.3 11.0 08/14 11.5 10.5 10.0 r L 07/21 12.5 10.6 08.7 08/15 10.0 09.9 09.7 07/22 11.5 11.0 10.5 08/16 10.5 10.3 10.0 [J 07/23 09.5 09.3 09.0· 08/17 11.0 10.5 10.0 [ 07/24 10.0 09.5 09.0 08/18 11.5 11.0 10.5 07/25 10.5 09.5 08.5 08/19 11.5 11.1 10.7 [ 07/26 11.0 09.5 08.0 08/20 11.5 11.0 10.5 07/27 11.0 09.8 08.5 08/21 10.7 10.6 10.5 D 07/28 11.5 10.0 08.5 08/22 11.5 10.8 10.0 07/29 11.5 10.2 08.8 08/23 12.7 12. 1 11.5 [ 07/30 11.5 11.0 10.5 08/24 12.7 12.4 12.0 c *Mean temperature (°C) is the average of the daily high and low over a 24 hour period D from midnight to midnight. -131- lJ __ _) ....., Appendix D. -, Table 3. (continued) Date High Mean* Low Date High Mean* Low -.. 08/25 12.7 12.2 11.7 09/25 6.1 5.0 3.9 08/26 13.0 12.8 11.5 09/26 4.4 4.2 3.9 08/27 11.6 11.3 11.0 09/27 4.4 4.3 4.2 ~ 08/28 11.8 11.7 11.6 09/28 5.0 4.7 4.4 08/29 11.6 10.6 09.8 09/29 5.0 4.2 3.3 ~ 08/30 09.8 09.2 08.5 09/30 3.9 3.6 3.3 08/31 09.0 08.8. 08.5 10/01 4.4 4.2 3.9 -., _) 09/01 09.3 08.8 08.3 10/02 4.4 4.3 4.2 .., 09/02 08.5 08.5 08.5 10/03 4.7 4.5 4.2 _) 09/03-09/10 equipment malfunction 10/04 5.0 4.5 3.9 """\ 09/11 l0.5 09.4 08.3 10/05 4.4 4.2 3.9 ._) 09/12 08.9 08.8 08.6 10/06 4.4 4. 1 3.6 ....., 09/13 09.3 09.1 08.9 10/07. 4.2 4.1 3.9 09/14 09.3 09.1 08.9 10/08 3.9 3.9 3.9 ..., ~..J 09/15 . . oa. 9 08.4 07.8 10/{)9 5.0 4.5 3.9 ~--, 09/16 08.3 08.1 07.8 10/10 5.0 4.2 3.3 09/17 08.3 07.8 07.2 10/11 4.7 4.3 3.9 09/18 07.8 07.5 07.2 10/12 4.4 3.9 3.3 ~ 09/19 07.8 07.5 07.2 10/13 4.7 3.7 2.8 ~ 09/20 06.7 06.2 05.6 '-' 09/21 06.1 05.9 05.6 l_; 09/22 06.7 06.2 05.6 G--09/23 06.7 06.2 05.6 09/24 06.7 05.9 05.0 c *Mean temperature (°C) is the average of the daily high and low over a 24 hour period L from midnight to midnight; -132- n Appendix D. Table 4. Thermograph data summary for Deception Creek· reach, 1979. r Date High Mean* Low Date High Mean* Low lt l ' 07/08 11.0 10.5 10.0 08/03 14.8 12.9 11.0 07/09 12.0 11.0 10.0 08/04 13.5 12.0 11.5 n ' 07/10 13.1 11.5 10.0 08/05 13.0 12.4 11.8 07/11 14.0 13.2 12.5 08/06 11.8 11.7 11.5 [ 07/12 13.5 12.5 11.5 08/07 11.8 11.5 11.2 [ 07/13 12.0 11.4 10.8 08/08 12.0 11.5 . 11.0 07/14 12.0 11.5 11.0 . 08/09 12. 1 11.6 11.2 [ 07/15 11.0 10.1 09.2 08/10 12.0 . 11.6 11.2 07/16 10.5 09.9 -09.2 08/11 11.4 11.2 11.0 [ 07/17 14.0 12.2 . 09.5 08/12 12.4 11.8 11.1 ~ 07/18 13.0 11.5 10.0 08/13 12.2 11.6 11.0 07/19 11. 5 10.8 10.0 08/14 12.0 11.5 11.1 [ 07/20 12.2 11. 1 11.0 08/15 11.1 11.0 11.0 07/21 12.2 12.0 11.8 08/16 11.0 11.0 11.0 [ 07/22 12.0 11. 1 11.2 08/17 11.5 10.9 10.4 07/23 11.5 11.2 10.8 08/18 11.4 11.1 10.8 [ 07/24 11.0 10.9 10.8 08/19 11.4 11.2 11.0 [ 07/25 11.2 10.9 10.5 08/20 11.5 11.3 11.0 07/26 11.0 10.2 09.5 08/21 11.5 10.7 09.8 [ 07/27 10.0 10. 1 10.2 08/22 11.6 10.6 09.5 07/28 11.5 10.9 10.2 08/23 12.0 11.0 10.0 [ 07/29 12.0 11.5 11.0 08/24 12.0 11.0 10.0 07/30 12.0 . 11.8 11.5 08/25 12.0 11.0 10.0 [ 07/31 12.2 11.9 11.5 08/26 11.6 10.8 10.0 L 08/01 11.2 11. 1 11.0 08/27 11.8 10.9 10.0 08/02 12.0 11.5 11.0 08/28 12.2 11.1 10.0 b *Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight. [ -133- ~ i --" Appendix D. Table 4. (continued) Date High Mean* Low. Date High Mean* Low 08/29 11.0 10.2 09.4 . 09/24 06.7 06.6 06.4 .-, 08/30 09.4 08.9 08.5 09/25 06.7 06. l 05.6 ! ! ~) 08/3l 09.2 08.8 08.4 09/26 05.6 05.3 05.0 .-, I . 09/01 09.5 08.5 L_j 07.5 09/27 05.0 05.0 05.0 09/02 08.8 07.9 07.0 09/28 05.6 05.4 05.3 [ 09/03 08.8 07.9 07.0 09/29 05.6 03.7 03.9 ; 09/04-09/10 equipment malfunction 09/30 03.9 03.6 03.3 __; 09/11 08.9 07.8 06.7 10/01 03.9 03.8 03.6 09/12 07.8 06.2 04.7 10/02 04.2 04.1 03.9 ~I 09/13 07.8 07.5 07.2 l0/03 04.4 04.3 04.2 r 09/14 08.3 08".0 07.8 10/04 04.7 04.6 04.4 L, [ 09/15 08.3 08.3 08.3 10/05 05.0 04.9 04.7 09/16 08.3 07.5 06.7 10/06 05.3 04.6 03.9 [ 09/17 07.8 07.5 07.2 10/07 05.3 04.8 04.2 09/18 07.8 07.8 07.8 10/08 04.2 04.2 04.2 [ 09/19 07.8 07.6 07.5 10/09 04.2 04.1 03.9 09/20 07.8 07.2 06.7 10/10 05.3 04.1 03.9 [ 09/21 07.2 06.7 . 06.1 10/11 05.0 04.7 04.4 [ 09/22 06.]. 06.4 06.1 10/12 05.0 04.1 04.3 09/23 06.7 06.4 06.1 [ *Mean temperature (°C) is the average of the dqily high and low over a 24 hour period [ from midnight to midnight. E------- E -134- c -, ' ~ => _c) -, ~ --. _j u [ L 1: u [ VOLUME TWO Appendix E* Instream Flow Computer Analysis Data Willow Creek Middle Reach *Copies of Volume Two are on file at the ADF&G Region II Headquarters of the Habitat and Sport Fish Divisions in Anchorage. -135-