HomeMy WebLinkAboutSUS245·I
I
SUSITNA HYDROELECTRIC PROJECT
SUSITNA RIVER ICE STUDY
1982-1983
Prepared by:
R&M CCNBULTANTS, INC. .... ,...,.._ .. OL.Oet.-ra ...._ ... .._.._ eu.,evo••
TASK 4: ENVIRONMENTAL
FINAL DAA~T
DECEMBI!R 1983
Prepared tor:
SUSITNA JOINT VENTURE
'-----ALASKA POWER AUTHORITY ____ ,
s6/ggl
ALASKA POWER AUTHORITY
SUSITNA H Y DROELECTRIC PROJECT
TASK 4 -ENVIRONMENTAL
SUSITNA RIVER ICE STUDY
Prepared by:
G. Carl Schoch
R&M Consultants, Inc.
5024 Cordova Street
Anchorage, A l aska 99503
Telephone (907) 561-1733
1982 -1983
December 1983
Prepared for:
Harza/Ebasco Joint Venture
7 11 H Street
Anchorage , Alaska 99501
Telephone (907) 272-5585
s6/gg2
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
SUSITNA RIVER ICE STUDY 1982-1983
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF PHOTOGRAPHS
ACKNOWLEDGMENTS
1 .
2.
3.
4.
INTRODUCTION
1.1 B ackground
1.2 Scope of Work for 1982-1983
SUMMARY
METEOROLOGY
SUSITNA RIVER FREEZE-UP PROCESSES
4. 1
4.2
4.3
Definitions of Ice Terminology c..t~d Comments
on Susitna River Ice
Frazil Ice Generation
Ice Cover Development
4.3.1 Cook Inlet to Chuli tna Confl uen c e
4.3 .2 Chulitna Confluence to Gold Creek
4 .3.3 Gold Creek to Devil Canyon
4.3.4 De vi l Canyon (to Dev il Creek)
i
Page
Ill
v
vi i
xi
1
2
7
11
28
28
31
33
33
39
47
50
s6/gg3
TABLE OF CONTENTS (continued)
4 . 3. 5 Devil Canyon to Watana
4 .3.6 Ice Cover at the Peak of Development
5 . SUSITNA RIVER BREAKUP PROCESSES
5.1 Pre-Breakup Period
5.2 Breakup Drive
6 . SEDIMENT TRANSPORT
7 . ENVIRONMENTAL E FFECTS
8 . REFERENCES
APPENDIX A
Monthly Meteorological Summaries from Weather Stations
Page
57
58
90
90
92
124
130
134
at Dena l i , Watana , Devil Canyon , Sherman, and Talkeetna 137
APPEND IX B
Sus i tna River maps (Aerial Photo Mosaics) from Parks
Highway Bridge to Devil Canyon
ii
180
s6/gg4
Table
Number
1 . 1
LIST OF TABLES
Title
River Mile Locations of Significant Features on
the Susitna River.
3 . 1 Meteorolog:r.al Data Summary from Selected
3 .2
3.3
3.4
4. 1
Weather Stations Along the Upper Susitna
River , September 1982 -May 1983 .
Number of Freezing Degree Days (°C),
September 1982 -May 1983.
Number of Freezing Degree Days (°C),
September 1981 -May 1982 .
Number of Freez ing Degree Days (°C),
September 1980 -May 1981.
Susitna River Surface Water Temperature Profile ,
September 1982 -Octo ber 1982.
4.2 Susitna River at Talkeetna , Freeze-up
Obse rv at ions o n the Main stem.
4 .3 Sus i tna R iver at Gold Creek, Freeze-up
Observations o n the Mainstem, Octobet· 1982.
4.4 Susitna River at Gold Creek, Freeze-up
Obse rvations on the Mainstem ,
November 1982.
iii
Page
5
14
17
20
22
60
61
62
63
s 6 /g g5
Table
Number
LIST OF TABLES
(continued)
Title
4 . 5 Susitna River at Gold Creek , Freeze-up
Observations on the Ma i nstem, Decembe r 1982.
4 .6 Susitna River at Gold Creek , Freeze-up
4 .7
4.8
Observations Observations on the Main s tem ,
January 1983.
1983 Susitna River Ice Thickness Measurements .
River Stages at Freeze-up Measured from Top of
Ice Along Banks at Selected Locations.
4.9 Major Annually Recurring Open Leads Between
Sunshine RM 83 and Devil Canyon RM 151
Locations and Specifications on March 2 , 1983.
5.1 Water Stage and River Ice Th ick ness
Measurements at Selected Mainstem Locations.
5. 2 Susitna Ri ver at Susitna Station Breakup
Observations on the Main stem.
5 .3 Susitna River at the Deshka River Confluence
Breakup Observations on the Mainstem.
5.4 Susitna River at Gold Creek Breakup
Observations on the Mainstem.
iv
Page
64
65
66
67
68
106
1 11
1 i 2
113
s6/gg6
Figure
Number
1 . 1
LIST OF FIGURES
Title
Susitna Hy droelectric Project Location Map
3.1 Mean Monthly Air Temperatures,
September 1982 -May 1983 and H istorical
Averages
3 .2 Freezing Degree Days Monthly Totals,
September 1982 -May 1983 and Historical
Averages
3 .3 Average Historical Accumulated Freezing Degree Days
for Susitna River Basin Meteoro logical Stations
3.4 Monthly Precipitation Data , October 1982 -May 1983
4 .1 Ice Concentration at Talkeetna Relative to Mean
Daily Air Temperatures at Denali and
Talkeetna , and Daily Total Snowfall at
Talkeetna.
4 . 2 Ice Concentrations at Gold Creek Relative to
Mean Daily Air Temperatures at Devil
Canyon and Daily Total Snowfall at Gold
Creek
4 .3 Su-sitna River Ice Leading Edge Progression
Rates (mile/day) Relative to the Thalweg
Profile from River Mile 0 to 155
v
Page
6
24
25
26
27
71
72
73
s6/gg7
Figure
Number
LIST OF FIGURES
(co ntinued)
Title
4. 4 Stage Fluctu ati ons in Ground Water Well 9 -1 A
Rel2tive to Mainstem Discharge.
4 .5 Time lapse Camera Location at Devil Can y on .
5.1 We1 ter Surface Profiles Along 1 ,600 Feet of River
Bank Adjacent to Slough 21 Before and
During an Ice Jam.
v i
Page
74
75
114
s6/gg8
Photo
Number
4 . 1
LIST OF PHOTOGRAPHS
Description
Frazil ice clusters
4 .2 Frazil slush floes, S11~itna River at Gold Creek
4 .3
4 .4
4 .5
4.6
4 .7
4.8
October 16 , 1982.
Shore ice constriction near Slough 9 ,
October 26, 1982 .
Slush ice accumu lating by juxtapos it io n near
Sunshine, October 29, 1982
Border ice growth .
Hummocked ice at river mile 103.
Ice plume near Slough 9
Anchor ic e dam formed at river mile 140
4. 9 Sediment-laden ice gathered durin g breakup
4.10
river mile 142
Slush ice bridge at ri ve r mile 10
October 26, 1982 .
4.11 Confl uence o f Montana Creek and Susitna River,
October 29 , 1982.
vii
Page
76
76
77
77
78
78
79
79
80
80
81
s6/gg9
Photo
Number
4. 12
4 .13
4.14
4 .15
4 .16
4 .17
4 .1 8
4 .19
4 .20
4 .21
4 .22
4.23
LIST OF PHOTOGRAP HS
(co ntinued)
Description
Leading edge of ice cover at river mile 95 ,
November 2 , 1982.
Mai n stem S usitna Rive r adjacent to Talkeetna ,
Oct ober 30, 1982 .
Staging on mainstem Susitna River adjace nt to
Talkeetna , November 4, 1982.
Su~itna -C hulitna confluence, October 18, 1982.
Susitna -Ch ulitna con fluence, Oct ober 29 , 1982.
Susitna-Chulitna confluence, November 2 , 1982
Leading edge of ice cover near rive . mile 106 ,
November 9 , 1982 .
Ice cover on Slough 8A , March 14, 1983.
Susitna River at Gold Creek , January 13 , 1983.
Telescoped ice cover at r1ver mile 106,
November 17 , 1982.
Open lead at river mile 103.5, Februa r y 2 , 1983.
Anchor ice dam at r1ver mile 140 , December 15 , 1982.
viii
Page
81
82
82
83
83
84
84
85
8 5
86
86
87
s6/gg10
Photo
Number
4.24
4 .25
4 .26
4 .27
4 .28
5. 1
5 .2
5 .3
5.4
5.5
5 .6
5 .7
5.8
LIST OF PHOTOGRAPHS
(continued)
Description
Overflow onto bord e r ice caused by anchor ice dam .
Time lapse ca mera on south r im o f Dev il Canyon.
Ic e bridge i n Devi l Ca n yo n on October 21 , 1982.
Ice cover i n Devil Canyon at ri ve r m ile 151 ,
October 26 , 1982 .
Shore ice deve lopment near the confluence with
Devil Creek.
Open lead enlarging fro m ice fragments , confluence
of Deadhorse Creek, Ap ril 28 , 1983
Overflow near P arks Highway Bridge April 7 , 1983 .
Ice jam dive r ting flow i nto Slough 11 , May 7 , 1976 .
Ic e j am near Montana Creek con flue nce, May 3 , 1983 .
Ice jam adjc.cent to Slough 21 , May 4, 1983 .
Ice b locks shoved o ver the r iver bank at S lough 2 1 ,
May 5, 1983 .
Ice jam key releas ing a t Slo u gh1 1 , May 6, 1983 .
Triangula r ice w edge at S herman , May 6, 1983.
ix
Page
87
88
88
S9
89
115
115
116
116
1 1 7
117
118
11 8
s6/gg 11
Photv
Number
5.9
5.10
5.11
5. 12
5.13
5.14
5.15
LIST OF PHOTOGRAPHS
(continued)
Description
Ice jam near Sherman at river mile 131 .5, May 6 , 1983.
Pressure ridge at ice jam near Sherman.
Ice jam at Sherman
Ice jam at Curry, May 6, 1983.
Ice jam at Watana damsite , May 6, 1983 .
Ice sheets buckling at Sherman, May 8, 1983.
Ice jam, viewed from river mile 102.5, May 9, 1973.
5.16 Ice blocks shoved into fore s t by ice jam
at river mile 98 . 5 .
5. 17 Ice debri s piled on r1ver bank at river mile 10 1 .5
5.18 Ice shear wall near river mile 110.
6. 1 Ice floes stranded by Slough 21 after ice drive.
6.2 Si lt depos it from melting ice block.
6.3 Ice scoured r1ver bank.
X
Page
119
119
120
120
121
121
122
122
123
123
128
128
129
s16/aal
ACKNOWLEDGMENTS
This study was conducted under contract to Acres American, Inc. until
February 1983, and then under cont ract to Harza /Ebasco Join t Venture.
Funding was provided by the Alaska Power Authority in conjunction with
studies perta ining to the conti nu ing environmental impact assessment for
the proposed Susitna Hydroelectric Project .
Many individuals participated in the field data col le-:tion efforts during
freeze-up and breakup. The logistics involved in documenting over
200 miles of ice cover development were difficult . Consequently, many ice
measurements and daily observations were dependent on local residents.
The conscientious efforts, ofte n during severe weather conditions, by
Butch and Barb Hawley at Susitna Station , Leon Dick at the Deshka River
confluen c e, Walt Rice at Talkeetna and Harold and Nancy Larson at Gold
Creek are sincerely appreciated.
The services provided by Ai r Lo gistics, and particularly the judgement
and skill of the pilots , were invaluab le in obtaining ice thicknesses , water
velocities and observations of releas i ng ic e jams.
The cooperntion of the Watana Camp Staff (Knik/ADC) and Granville Couey
(Frank Moolin & Assoc.) in arranging the logistic support was extremely
helpful. Other agencies who contributed time and information to this
study include the Alaska Department of Fish & Game , the National Weather
Service, NWS River Forecast Center, Acres American , Inc., and the
Alaska Rail r oad.
The Arctic En vi ron mental Information and Data (AE I DC) Center provided
personnel and equipment to assist in breakup documentation. Special
thanks goes to Joe LaBelle for coordinating t~is joint effort .
xi
s16/aa2
I am especially grateful to Jill Fredston (AEIDC) for assistance in editi ng
the preliminary draft of this report.
This ice study was dev e loped with the assistance and guidelines of Steve
Bredtha uer , senior hydrologist at R&M Consultants, Inc. Steve
contributed the majority of the text in Secti on 7 and helped in clarifying
several other sections while editing the final draft . The R&M hydrology
staff prov ided assistance with field measurements and much us efu l
information fro m occasio nal aerial observation s. In addi ti on , the extraordi-
nary patience of the typing staff and their efforts towards a timely com -
pletion are si ncerely appreciated .
xii
s16/w1
1.0 INTRODUCTION
The study of ice on the Susitna River has been ongo1ng since the winter
of 1980-1981 . Prior to this report , the documentation had been restricted
to obliqu e aerial photography and intermittent observations by field crews.
Initially, the intent was to target locations of specific ice processes such
as frazil ice generation , shore ice const r i ctions, ice bridges, and ice jams.
Much qualitative informatio n was gathered and documented in the Ice
Observations Reports (R&M 1981b , 1982d). Renewed emphasis by
en vi ron mental concerns on potential modificat io ns to the river ice regime by
hydroelectric power deve lopment resulted in a more refined ice program for
1982-1983 directed towards specific problems which may be unique to
hydropower development on t he Susitna River . Staging, ice cove r
development in sloughs, ice jams and their relationship to sloughs, and
sediment transport are among the topics discussed in this report. It is
beyond the scope of the current study to mathematically analyze the
specific mechan ic s of river ice processes. Instead, the objective is to
describe the phenomena based on field observations and measurements.
1. 1 Background
Ice thickness data has been collected at surveyed cross-sections since
the winter of 1980-81, and used to compile a profile of the Susitna
River ice cover downstream of the proposed Watana damsite.
Additional h ,sto r ical data on ice thicknesses are available from the
U.S . Geological Survey (USGS). This agei}CY maintains several
s tream gaging sites on the Susitna River, most o f which are visi ted
during the winter to obta in under-ice discharges. Upper Susitna
data records begin in 1950 for Gold Creek ~nd 1962 for the Cantwell
si te . Bilello of the U.S. Army Cold Regions Research and
Engineering Laboratory (CRR EL) conducted a comprehensi ve study
entitled, "A Winter Environmental Data Survey of the Drainage Basin
of the Upper Susitna River, Alaska" (1980). This report summarizes
s16/w2
monthly ice thickness measurements from 1961 to 1967 at Talkeetna
and from 1967 to 1970 near Trapper's Creek.
Data concerning o ther aspec~s of the ice regi me on the Susitna are
scarce . The best potential s o urce for a variety of qualitative
historical information concerning ice jams and floods are area re-
sidents , especially those employed by the Alaska Railroad. Ma ny
interviews were conducted , with the resulting informatio n documented
in the 1981 ice repor·t ( R&M 1981 b). This first ice repo r t primarily
consisted of narrative chronological descriptions based on aerial
observations at various sites. The report also contains most of the
historical informat ion available from the U .S . Geological Survey, the
National Weather Service River Forecast Center, and the U.S.
Army, Corp of Engineers .
The 1981-1982 ice study followed the same general guidelines. Aerial
reconnaissance was conducted weekly through January , with the
freeze-up sequence of October through December described in the
final report (R&M 1982d). Ice thickness measurements were obtained
at many of the locations surveyed in 1981 i n orde r to assess
year-to-year variabili ty . Breakup was periodically observed from
April 12 to May 15 , with documentation limited to in formation gathered
on aerial overflights.
1.2 Scope of Work for 1982-1983
The Susitna River ice studies evolved considerably during the past
year. Emphasis was placed o n documenting site specific, ice cover
induced problems identified during p-evious observations. These
included ice jamming and flooding at the Susitnc. confluence with the
east channel of the Chulitna River, staging effects thro u gh spawning
areas, and ice jamming near the proposed upstream cofferdam at
Watana. Reaches where ice jams recur annually were investigated for
2
s16/w3
morphologic changes and for identificat io n o f c r it ical factors gove rn 1ng
ice j am formation . Collec tion o f add iti o nal quantitativ e data was a ls o
required for pro p osed modell i ng effo rts . These data i n c luded v e-
locities , maximum stages at v a r io us sites , ice thi ck nesses , ice d is-
charges , rates of ice cover ad v ance , water temperatures , and loca-
tions of s ignif icant open lea ds . The number of observ ations was
i n creased i n proportio n to the freq uency o 1 specific ice e v ents.
During breakup , f ield crews documented da ilv changes i n the ice
cover . The specific data collected during the 1982-1983 season in-
cluded:
1 . Locat ions of ice bridges
2 . Rate o f upstream pro gression of the ice cover
3 . Ice discharge estimates
4 . Ice cover at tributari es
5 . Ice cover at aquat ic habitat ar e as
6. Water temperature
7. Locations and size of open leads
8 . Aerial photography , obl ique and v ert1cal
Meteorological data at speci fic sites
10. lr:e cover processes i n Devil Ca n yo n
11 . Max imum water levels
12. Ice thicknesses
13. Velocities and discharges
14. Profiles and c t~oss sections
15. Time-lapse photography
16 . Locati o ns and effects of ice jams
17. Water table fluctuations
Meteoro logical data from five weather stations near the river channel
are summari zed in Section 3. In addition , figures are provided that
illustrate the v ariability in a i r temperatures, freezing degree-days
and precip i tation between the upper Susitna at Denali and Talkeetna.
3
s 16 /w4
Section 4 considers the processes associated with ice cover develop-
ment and how they relate to the 1982 Susitna River freeze-up . The
processes of frazil ice formation, ice cover progression by
jux taposi tion and staging, shore ice development , and effects on the
water table are described. Breakup is described in Section 5 , be-
ginning with the initial processes of ice deterioration followed by the
cause and effects of ice jams.
The processes of sediment transport during freeze-up are described
in Section 6 , along with the mo re dramatic nature of ice scouring and
erosion during breakup.
Section 7 discusses the environmental effects induced by ice cover
development. Topics in this section include:
1. Channel morphology changes
2. Aquatic habitat modificati o ns
3. Relationship between sloughs and ice jams
4. Damage to vegetation
5. Ice regime in side channels and sloughs
6. Flooding o f islands
Photograph s illustrating specific ice processes and events have been
included in order to assist in understanding the characteristics and
effects of the Susitna River ice regime .
Many of the discussions 1n this report rely on a familiarity with
certain place names and river mile locations . Table 1 .1 lists those
which are significant for this report . Figure 1 .1 shows the Susitna
Hydroelectric Project location relative to southcentral Alaska. River
mile locations have been annotated on detailed river maps included in
Appendix B. Left bank and right bank in this report refer to the
respective shorelines when viewed looking downstream.
4
*
sG/1 1
TABLE 1 .1
RIVER MILE L OCATIONS OF SIGNIFICANT FEATURES
O N THE S USITNA RI V ER
Place
Mo uth o f Devil Ca nyo n
Portage Creek
Slough 22
Slo ugh 21
In dian Rtver
Gold Creek
Slough 11
Sherman
Slough 9
Slough 8
Slough 7
Curry
Lane Creek
Chase
Whiskers Creek
Chulitna/Susitna Confi!Jence
Talkeetna
Head of B i rch Slough
Sunshine/Parks Highwa y Bridge
Rab ideu x Creek
Montana Creek
Goose Creek Slough
Kashwitna Creek
Wil l ow Creek
Desh ka River
Yentna River
Susitna Station
Alexander Slough
Alexander
Ri ve r Mile *
150.0
149.0
144 .5
142 .0
133 5
136.5
136 .4
131 .0
129 .0
127 .0
123 .0
121 .0
114 .0
108.0
101.0
98 .5
97 .0
93 .0
84 .0
83 .0
77.0
72 .0
61.0
49 .0
40 .5
28.0
25.5
19 .0
10 .0
Photo mosa1 c maps ind ica ting rtver miles are included in Appendix B .
Locations i n dicate the mo st upstrl:!am and o r entrance unless o the r·wise
noted .
- 5 -
!
LOCATION MAP
PRINCe
SOU NO
20 0 20 60
SCA LE I N MILES
SUSITNA HYDROELECTRIC PROJECT LOCATION MAP
Figure 1.1
;:::l&M COI\lSULTANTS, I NC.
•NO tN.eR W OeOt..."'lOI»'T& Pt..ANN8R8 ~UQV.VO R~ SUS/TNA JOINT VENTU RE
6
s 16/v1
2.0 SUMMARY
Frazil ice generally first appears on the Susitna River between Denali and
Vee Canyon. This reach of river is commonly subjected to freezing air
temperatures by mid-September . By the end of October 1982, most of the
rive r wate r had cooled to 0°C and f1 ·azil slush had accumulated i nto an ice
cover that started near Cook Inlet and extended upstream to Talkeetna.
The development of an ice cover on the lower river from 10 miles above
Cook Inlet up to Talkeetna required about 14 days. This rapid ice cov er
progression was due primarily to the cold air temperatures , gentle gradi-
ent , and a long open water reach o n the upper river for frazil generation.
Ve ry little staging was necessary during the ice cover advance , with level s
of 2-3 feet upstream to approximately r1ver mile (R M) 67 , then steadily
increasing as the channel gradient becamE' steeper . At Talkeetna the
staging amount ed to over 4 f eet near the entrance to a side channel .
On November 2 , 1982, an ice bridge formed at the confluence of the
Chulitna River east channel and the Susitna mainstem . This initiated the
ice cover progression on the Susitna upstream to Gold Creek . Staging
aiong this reach was generally more extreme than downstream of Talkeetna,
with water levels often rising more than 6 feet. The leading edge reached
Gold Creek by January 14 , 1983, after having slowed to a progression rate
of 300 feet/day. The slower ice cover progression was due to tl">e steeper
gradient and a reduction in the frazil ice generation, caused by the
development of a continuous ice cover on the upper river above Watana.
This effectively sealed off the air/water interface preventing heat exchange
and frazil generation. The reach from Gold Creek ( RM 136) to Devil
Canyon (RM 150) took even longer to freeze than the downstream reaches.
The rrocesses involved were different from those in the reaches further
downstream, as this area experienced extensive shore ice development and
anchor ice dams.
A time lapse came ra was mounted on the south rim of Devil Canyon in
order to document the formation of massive ice shelves that develop near
7
s 1 G/v2
the proposed dams ite . The slush ice cov er i n this turbulent , high velocity
reach, o ften the first to form o n the entire Susitna River , was v ery
unstable , constantly either disintegrating or accu mu lat 1ng. T he 8 mm
movie camera provided footage that reveal e d vaiJable informa tion concern-
i ng how an ice cover forms over rap ids .
The upper nver from Devil Ca n yon to Dena li was not mon1tored closely
during freeze-up o r b reakup , but rout ine flights t o Watana Camp prov ided
qualitative i nformatio n o n the processes affectir.g this reach. This reach
dev elops w ide sh o re ice by building successive la yers o f frazi l and snow
slush. The channel finally becomes so narro w that flow1ng slush is en-
trapped, eventually freezing i nto a co ntinu o us ice cover .
After an initial ice cove r forms, continually decreasing water levels lower
the floating ice until the majority of the cover has grounded . Open leads
develop over turbulent water , b ut may eventually close again throu ;h
accumulations of fine slush ice against the downstream edge o f the lead.
Many open leads pers1st all winter along the entire length o f the r iver.
Several isolated groundwate• seeps ha v e been identified i n the ma i nstem ,
side channels and sloughs . These can erode away the existing ice cover.
These areas often remain ice -free f ,...~ most of t h e winter.
Breakup processes on the Susitna River are similar to those described for
ot her northern rivers , with a pre -breakup period , a drive , and a wash
(Mich el , 1971). The pre-breakup period occurs as s n owmelt begins due to
increased solar radiation in early April . This p rocess generally begins .l t
th~ lower elevations near the mouth of the Susitna River , working its way
north . By late April , the snow has generally disappeared from t he r1ver
south of Talkeetna and has started to melt along the river above
Talkeetna. Snow o n the ri ve r ice genera ll y dis ap pears before that along
the banks , either due to overflow or because the snowpack is simply
thinner on the r ive r due to exposure to winds. As t he river discharge
increases, the ice cover begins to lift , causing fractures at variotJS points.
8
s16/v3
On the Susitna River , long , narrow leads beg in to form . Small jams of
fragmented ice f o rm at the downstream ends against the solid ice cover.
These ice jams often resemble a U-or V -shaped wed g e . wrth the apeY of
the wedge corresponding to the highest velocities in the flow di ~tr ibu tion
The constant pressure exerted by these wedge-shaped ice jam e ffectivel y
lengthens and widens man y open leads , reducing the potential f o r majo •
jams est these points.
The drive , or the act:ual downstream breakup of the ice cover , occur s
when the discharge is high enough to break dnd move the ice sheet. T h e
i ntensity and duration is dependent on mPteorological conditions during th e
pre-breakup period. Both weak and strong ice drives have 1--,een obserVE!d
on the Susitna River during the last 3 years.
Jam sites generally have similar channel c o nfigurations , ronsisting of a
broad chan nel with gravel islands or bars, and a narrow, deep thalweg
co nf i n ed alo ng one of the banks . Sharp bends in the ri v er are aho
potential jam sites. The presence of sloughs on a ri ver reach may indicat e
the locations of frequently recurring ice jams . During breakup, ice jarr s
commonly cause rapid , local stage increases that co ntinue rrsrng until
either the jam releases or the sloughs are flooded. Whil e the jam holds,
channel capacity is greatly red uced , and flow is diverted into the trees
and side-channels, carrying large amounts o f ice. The ice has tremendou~;
erosive force, and can rap idly remove large sections of bank. Old ice·
scars up to 10 feet above the bank level have been noted along s ide-
channels. Stabl e ice ja ms are sometimes crea ted when massrve ice sheets
snap loose from shore-fast ice and pivot out into the mainstem flow.
In May of 198_, an extensive buildup of flowing ice debris was sto pped near
RM 101 .5 by a comb inati on o f the only remaining solid ice cover , and a
shallow reach of rrver nearly 3 miles long. The ice cover disintegrated o n
impact but stalled the flow lo ng enough for the ice to prle up and ground
fast . This jam held for two days . Once this jam broke up , the ice deb.·is
flowed unobstructed to Cook Inlet . Alt ho ugh by May 10 , 1983 , the entire
9
s 16/v4
river was essentially ice-free, ice floes con t i:-.•Jed drrfting downstream for
several weeks as previously stranded flo\o\ s were picked up by steadily
increasi ng discharges.
The lower Susitna R iver downstream o f T Jl keetna experienced a mild
breakup in 1983. Observers at the Oeshka Riv~r confluence and at
Susitna Station thoroughly documented breakup. ""!"heir descriptions and
data irr dicated that the ice cover fragment ~,d and flowed out between May 2
and May 4. Most of the ice cover simply deteriorated while rc:naining
shore-fast, with little jamming activity taking place. The only signif ica nt
ice jam observed below the Parks Highway Bridge occurred near the con flu-
ence with Montana Creek.
I his past rrver ice season was significantly influenced by mild temper-
atures and heavy snowfall. Ice thicknesse:; did not reach proportions of
previous years , and little precipitat io n occurred during breakup. Much
data was documented during freeze -u p i n 1982 and breakup in 1983 for
computer modelling input , bu t it must be recognized that the data may not
necessarily represent conditions in a normal yea r .
10
sG /hh 1
3.0 METEOROLOGY
Mathematical derivations of heat exchange coefficients will be required for
compute r simulations of river ice cover formation. Accurate and consistent
measurements of meteorological parameters are essential for developing
representative values for the heat gain and heat loss components of the
energy exchange equation. A detailed heat exchange analysis is beyond
the scope of this report. This section is limited to brief comments on the
processes of surface heat exchange, definitions of the mechanisms by
which they occur, and identification of the meteorological parameters that
are currently being monitored in the vicinity of the Susitna Hydro electric
Project.
Natural water bodies receive the most heat from solar shortwave radiation
( H ) and longwave atmospher ic radiation ( H ) , and lose heat to the atmo-s a
sphere by longwave back radiation ( H b), ev aporation heat loss (He), and
conduction heat loss (H ) . Not all of the incom1ng solar and long wave c
radiation is absorbed, with a certain percentage reflected at the water
surface. Ref la~ted solar radiation (H ) is usually of greater magnitude sr
than reflected atmospher ic radiation (H ) , but is more vanable due to ar
cloud cover, latitude, and altitude.
The net rate of heat transfer across a water surface is:
H = (H s H • H sr a H ) -(Hb! H :t H). ar c e
The parameters representing the absorbed radiation , combined in the
parentheses on the left, are i ndependent of the wate1· surface temperature .
The terms i n the r·ight parentheses represent the temperature dependent
parameters of heat loss (Edinger, 1974).
Values for the individua l heat exchange <...omponents <..an be derived from
the following measured meteorolog ical variables: solar radiation , air temper-
ature, and dew poin t temperature. These parameters have been monitored
11
s6/hh2
at s e v eral locations throughout the upper Susitna Basin for the past 3
y ears by R&M Consultants . In addition, a 42 -year record is available from
the meteorolog ical station at th e Tal keetna Airport operated by the National
Weat her Serv ic e . These weather stations were selected for inclusion in
t his report because they prov ide the best available data to estimate the
climatic regime directl y influencing the water su rface . They are located at
Dena li, Wa tana , Devil Canyon, Sherman , and Talkeetna . Addi tional info r-
mation z bout each weather statio n, including axac:t location and senso r
specifications, have been published previo usly and is not included in th is
report. Those readers not fanriliar with t~is aspect of the project may
wish t0 consu lt the Processed Climatic Data Repo rts , Vo l umes 1-8 ( R&M ,
1982e), wh ich i n cl u ri e a detailed description of the meteorological d a ta
col lection progra'Tl.
Mean max imu m, mea n m1n1mum and mea n daily air temperatures fo r e ach
station from Sept~mber 1982 through May 1983 have been summarized in
Table 3.1. Mean dail y air temperatures are plotted i n Figure 3. 1 . Tables
3.2, 3.3, and 3.4 l ist the number of freez i ng degree -da ys per month
between September an d May fo r the existing record at each sta tion (Talkeet-
na 1980-1983 on l y), and are g raphed i n Figure 3 .2. On ly the Watana
(R&M Consultants) and Talkeetna (NWS) stations ha v e the capa b il ity to
measure precipitation on a daily basis throughout the winter months .
These data ha ve been p lotted i n Figure 3.3.
The meteorology within the upper Susitna Bas i n is h igh ly variable at any
given time between weather station sites . This is due, i n part , to the
movement of storm sys tems , the topographic variance , and the change in
latitude, but mostly to the 2,400-foot difference in elevation between Denali
and Talkeetna. The graphs presented in this section i llustrate not o nly
the colder dail y temperatures at Denali , but also their longer duration.
For instance, 1n October 1982 Denali had a t ota l o f approxi mately 3 70
freez ing degree-days (°C) while Talkeetna had o nly 170 . This difference
may be significant , since the entire Susitna River downs ~ream o f Talkeetna
developed an ice cove r by November 1 , 1982 . Caution is therefore advised
12
s6/hh3
in using average values of freezing degree-days for the entire Susitna
Basin, since these may not be representative of all locations along the
river. There is also significant difference in precipitation and wind run
between Watana and Talkeetna. Watana receives only a fraction of the
precipitation measured at Talkeetna, primarily due to orographic effects at
Watana and to the high concentration of storm systems from Chulitna Pass
to Talkeetna . The Watana weather station is situated on a high plateau
and is exposed to wind runs not common on the river.
The data summarized in the tables and figures in this section are based on
published and provisional monthly meteorolo~ical summanes from each
respective weather station . These have been included 'r, Appendix A.
13
1-'
""'
--
--Mean
Mn -..:imt lm
_(~
~mb er 12§?
IHikeetnH 11.5
Sl1 e rman 11.4
Ocvi I Canyon 9.'l
W<1 tana 8.4
Dona I 1" -
-
Bas 1 n Ave rage 10.2
ra I keetna -0.6
S he rm11n• I . 0
Devi 1 Canyon -2 .6
Watana -3.3
Dena 1 1 -
-
Bas1n Aver11ge -1.4
November 1 ~
rdlkeetna -II. 4
St1 erman* -Lt. 5
DtJVI I Canyon -'>. 8
Wa lilna -7. 1
Dena 1 1 • -
----------·-
Basin Average 5.5
lABL ( 3.1
MElE OROlOG ICAL DATA SU MMAR " FRO M Sl LI CT[O WlAT H[R
STATIONS ALONG THE UPPER SUSITNA RIVER
SEPTE MB ER 1982 -MAY 1983
Air Tempe r..2..t.l!r·es
~le11n M~an Oepa rture
M1n1mllm Monthly from Norma 1 Prec 1 p 1 ta t1 on
~J -( °C l ( °C l (nun l
ILl I. 8 0.0 190.0
2.8 7. 1 0.0 232.2
2.5 6.0 1 .11 156.6
1.6 5.0 0 ·'' 100 .8 -3.6 -0.?
2.8 5.9 0 . .3 169.9
-9. ,, -5.0 -4.9 52.2
-8.() -5.7 0 .0
-9.8 -6.2 -11. I
-11.9 -I. 6 -3.8 ''· 2 --11.8 -6.0
-
-9.8 -1 .3 -3.8 28.2
-12.6 -8.5 -0.4 42.8
-11. ,, -Hl.O IJ.Il
-11.9 -8.9 -1. 5
-111. 4 -1(). 7 -1. It 0.2 --15.7 -5 .2
-----
-1 2.6 -10.8 - 1 . 7 2 1 .5
O~pa rture
from Normal
lmm
76. 1
0.0
?9. 1
15.6
3 7. I
-11.8
-6. 1
-9.0
-2 .3
-2. ,,
-2. ,,
Depth of Snow
on Ground
e m
0.0
0.0
LtO. 3
IU. 6
* Partial Record-Some va lttes ror mean dail y temp eratu r es, u se d to compute the mean monthly temperature, are based on
1 •near ruyre~s•on analyse~. See AppendiA A.
-S~/C02
TABLf 3.1 (Contonued )
______ P..• r Temperatures
Mean Mean Mean Depar ture-Departure Oep t.h of Snow
Maxomum Monimum Nunthly from Normal P rec i p ' ta to on from Norma 1 on Gro untl
-~ ( oc ) '°C l '°C l (mm) (mml __icm l
DO £~m..QQL ~
Talkeetna -3.5 -10.8 -1.2 ~.6 4,,11 ?.3 73 0 1
Sherman -4.11 -1 2.7 -8.7 0.1)
Oev i 1 Canyon -~ 0 1 -1 1 0 3 -8.2 11,11
Wat.ana -6 .9 -13.9 -10.11 IL 7 7.0 2.3
Dena 1 i * -9.6 -19.6 -15.4 11.8
----
Bas on Average -6.0 -13.7 -10.0 L9 26 .2 2.3
JnnLodr~ 128J
l a l k(;etna -6.2 -15,14 -10.8 ;>, l 11.6 -24.9 80 .6
Sh erman* -8.6 -17 .4 - 1 1 0 t) IJ.O ---
Oev 1 I Ganyo11* -8.5 -15.4 - 1 1 0 II - 1 0 '; --93.?
Watana -11 0 0 -17 0 I I -111 . 1 -1 0 ;> 2.8 1 0 3 26.2 ..... Dena 1 '* -12 0 1 -22.0 -17 0 1 -1 0 "I --20.9
lJl -------·--
Basin Average -9.3 -17.5 -12.9 -0.3 7.2 -11 0 8 55.2
feb nw r':L. J.!l.!U.
Ia 1 keetna -1. I -13 0 3 -I .'.> ?.3 11.6 -~I. U 80.6
Shern.an* -9 0 1 -21 0 ~ -8.0 O.(J --107.9
Ccvi 1 canyon -3 0 2 -1 1.9 -7.5 1.5 --93.2
wa tana -6 .5 -13.6 -10.0 -2.5 0.0 -15.2 29.0
De n a 1 i -8.9 -1 9.3 -1 11 , 1 0. 7 --25.7
-----
Basi n Average -5.9 -15.9 -9,14 0.4 5.8 -2 1 0 1 67.3
* Pao t oa l Hecord-Some values for mea n cJao l y temperatures, u se d to compute t h e mean monthly tempera t u re , are bas ed on
1 iroear reyressoon anu l yses. 51;!t: AppcncJox A.
TABLE 3 .1 (Cant t nued l
Air Te mperatures
Me an Mea n Mea n Depa rt-u;:e Departure Depth of Snow
Maxi mum Min i mum Mont hl y from Norma 1 P rec i pi tali on from Norma I on Ground
I 0 Cl I °Cl I 0 Cl '°C l 1mm) 1mm) I e m
Marc h ~
1 a 1 k ee 1 na 3. I -10 .7 -3.~ 3 .6 2.3 -35.3 75.6
Sh erman* 6.1 -11.2 -11.2 0 .0 --106.8
Devi 1 Canyon 0. I -10 .5 -11.9 -0.3 --96.3
Wa tana -3 .3 -1 2 .0 -7.6 -0 .9 ---
Dena 1 i -5.3 -18 .2 -11 .8 -2.2 --31.8
Bas i n Avera9e 1. 9 -1 2.~ -6.4 0.0 2 .3 -3~.3 78.9
Aori I 1.ill
1a lkee tna 6.9 -·L 1 1.9 1 .II 6~.0 30. I 55.4
Sh e rman 8.0 -II . I I 1.8 0.1) 68.0 0.0 -
Oev i 1 Canyon 5.6 -4 .0 0.8 ll.4 33.2 -92 .0
wa tana 3 .2 -5 .I~ -1 . 1 2.2 2 .6 -2 1.7
f-'
(1\
Dena 1 i 3 . 0 -7.6 -2.3 2.'> 0.8 -33.5
Basin Average 5. 3 -4.9 0.2 1 . 3 33.9 -50 .7
May 1983
Talkee tna 111 . 'I 3.1l 9. 1 3. I I 32.:1 -3. 1 n.o
Sh e rman 12. I o. 1 6.9 ().I ) 19.11 0.0 0.0
Dcvi I Ca nyon 11.9 1 .8 6.8 0.2 25.11 -0 .0
Wa La n a 9.9 0.6 5.3 0.2 15.2 -0.0
Dena 1 i 9.1 0 .11 4 .9 0.1 7.6 -0.0
Basin Avsrag e 11. 7 1 . 2 6.6 0.8 20.0 -0.0
.. Pa r ti a l l<eco nJ-Som e value:. fur me an duily t e mpl:lrature s, used to compute the mean mun UH y tt!tnl)c ratu re , aru tw:.ed o n
li near reg re ss t o n ana l yses. See Appendi x A .
s5/hh 1
Se~te mber 1982
Talkeetna
Sherman
Devil Ca n yon
Watana
Denali*
Basin Average
October 1982
Talkeetna
Sherman*
Devil Canyon
Watana
Denali*
Basin A verage
Nov ember 1982
Talkeetna
S herman*
De v il Ca n yo n
Watana
Denali*
Basi n Average
TABLE 3.2
NUMB ER OF FREEZING DEGREE DAYS (°C)
September 1982 -May 1983
Average
Historical**
Mon thl:i Accu mulated Mon thl:i
0 0 0
0 0 0
0 0 5
1 1 13
7 7 17
2 2 7
172 172 72
189 189
200 200 95
236 237 127
367 374 192
233 234 122
258 430 191
301 490
256 456 222
304 541 279
471 845 376
318 552 267
17
Mean Monthly
Air Temperature
(°C)
7 .8
7 .1
6.0
5 .0
3 .6
5.9
-5 .0
-5.7
-6 .2
-7 .6
-11 . 8
-7 .3
-8 .5
-10.0
-8.9
-10 .7
-15 .7
-10.8
s5/hh2
December 1982
Talkeetna
Sherman
Devil Canyon
Watana
Denali*
Bas in Average
Januar~ 1983
Talkeetna
Sherman*
Dev i l Canyon*
Watana
Denali*
Basin Average
Februar~ 198.1
Talkeetna
Sherman*
Dev i l Canyo n
Watana
Denal i
Basin Average
TABLE 3 .2
NU MBER OF FREEZING DEGREE DAYS (°C)
September 1982 -May 1983
(Continued)
Average
His t o rical**
Month I ~ Accumulated Month I ~
230 660 407
274 764
255 71 1 391
324 865 468
477 1322 627
3 12 864 473
336 996 311
340 11 04
354 1065 325
440 1305 402
630 1952 53 1
420 1284 392
~11 1207 224
225 1329
212 1277 254
281 1 586 289
395 2347 416
265 1549 297
18
Mean Monthly
Ai r Temperature
(oC)
-7 .2
-8 .7
-8 .2
-10.4
-1 5.4
-10 .0
-10 .8
-11 . 0
-11 . 4
-14 . 1
-17. 1
-1 2 .9
-7 .5
-8.0
-7.5
-10.0
-14 . 1
-9 .4
s5/hh3
March 1983
T alkeetna
S herman*
Devil Ca nyo n
Watana
Dena I;
Basin Average
Aeril 1983
Talkeetna
Sherman
Devil Ca n yon
Watana
Denali
Basin Average
Ma):: 1983
Talkeetna
Sherman
Devil Ca n yon
Watana
Denali
Basi n Average
T ABLE 3 .2
NUMBER OF FREEZING DEGREE DAYS (°C)
Se ptembe r 1982 -May 1983
(Continued)
Ave rage
Historical**
Month I):: Accu mu Ia ted Mo nth
120 1327 107
128 1455
153 1430 147
233 1819 223
366 27 13 302
200 1749 195
15 1342 36
2 1 1476 21
30 1460 75
65 1884 115
81 2794 151
42 1791 80
0 1342 0
0 1476 0
0 1460 0
0 1884 9
0 2794 5
0 1791 3
Mean Mon thl y
A i r Temperature
(°C)
-3 .5
-4 .2
-4.9
-7.6
-11 . 8
-6.4
1. 9
1.8
0.8
-1 . 1
-2.3
0 .2
9 . 1
6 .9
6 .8
5.3
4.9
6.6
* Partial Record -Some values are based on linear regre s sion analyses .
See Appendi x A.
** Period of Record: Talkeetna
Sherman
Devil Canyon
V/atana
Denali
1940-1983 , only used 1980-1983
1982 -1983
1980 -1983
1980 -1983
1980 -1983
19
s S/c cS
TABLE 3 .3
NUMBER OF FREEZING DEGREE D A YS (°C)
SEPTEMBER 198 1 -May 1982
Mean Monthly
Air Temperature
Monthly Accumulated (oC)
Se~tember 1981
Ta lkeetna 0 0 7 .3
Sherman (No Data)
Devil Canyon 12 12 4 .4
Watana 33 33 4 .0
Denali 40 40 3 .2
Bas i n Average 21 21 4.7
October 1981
Talkeetna 29 29 2.0
Sherman (No Data)
Devil Canyon 41 53 -0 .4
Watana 72 105 -2 . 1
Denal i 108 148 -2.8
Basi n Average 63 84 -0.8
November 1981
Talkeetna 205 234 -6.4
Sherman (No Data)
Devil C anyon 255 308 -8 .3
Watan a 316 421 -10.4
Denali 389 537 -12 .9
Basin Average 291 375 -9 .5
December 1981
Talkeetna 367 601 -11 . 7
Sherman (No Data)
Devil Ca n yon 363 67 1 -11 . 6
Watana 424 845 -13.7
Denali 514 1051 -1 6.5
Basin Average 417 792 -13.4
Janu ary 1982
Talkeetna 53 1 1 132 -17. 1
Sherman (No Data)
Devil Canyon 52 8 1199 -17 .0
Watana 622 1467 -20. 1
Denali 782 1833 -25 .2
Basin A v erage 616 1408 -19.8
20
s5/cc6
TABLE 3.3
NUMBER OF FREEZING DEGREE DAYS (°C)
S EPTEMBER 1981 -May 1982
(Continued)
Mean Monthly
Air Temperature
MonthlY: Accumulated (°C)
FebruarY: 1982
Talkeetna 285 1417 -9 .9
S herman (No Data )
Devil Canyon 344 1543 -12 . 1
Watana 365 1782 -13.0
Denali 525 2358 -18.7
Basin Average 380 1775 -10.7
March 1982
Talkeetna 161 1578 -5 .0
Sherman (No Data)
Devil Canyon 223 1766 -7. 1
Watana 299 208 1 -9.6
Denali 359 2717 -11 .5
Basin Average 261 2035 -8.3
April 1982
Talkeetna 46 1624 0. 1
Sherman (No Data)
Devil Canyon 102 1868 -2.7
Watana 140 2221 -4 .5
Denali 182 2899 -5.9
Basin Avera£'.,. 11 8 2153 -3 .3
MaY: 1982
Talkeetna 0 1624 6 .4
Sherman 0 6 .4
Devil Canyon 0 1868 4 .4
Watana 27 2248 2 .3
Denali 15 2914 2 .5
Basin Average 8.4 2164 4 .4
21
s5/cc7
TABLE 3 .4
NUMBER OF FREEZING DEGREE DAYS (o C)
SEPTEMBER 1980 -MAY 1981
Mean Monthly
Air Temperature
Month I ):: Accumulated (°C)
Seetember 1980
Talkeetna 0 0 7.7
Devil Canyon 1 1 3 .5
Watana 4 4 3.5
Denali 4 4 4 .7
Basin Average 2 2 4 .9
October 1980
Talkeetna 14 14 2.1
Devil Ca n yon 45 46 0.2
Watana 74 78 -2 . 1
Denali 102 106 -2 .9
Bas i n Average 59 61 -0.7
November 1980
Talkeetna 111 125 -3.5
Devil Canyon 154 279 -5. 1
Watana 216 29 4 -7 .2
Denali 269 375 -9.0
Bas i n Average 188 268 -6 .2
December 1980
Ta l keetna 623 748 -20 . 1
Devil Canyon 556 835 -17.9
\Vatana 656 950 -21 . 1
Dena li 890 1265 -28.8
Basin Average 681 950 -22 .0
22
s5/cc8
TABLE 3 .4
NUMBER OF FREEZING DEGREE DAYS (°C)
SEPTEMBER 1980 -MAY 1981
(Continued)
Mean Monthly
Air Temperature
Monthly Accumulated (oC)
January 1981
Talkeetna 66 814 -1 . 8
Devil Canyon 9 2 927 -2.5
Watana 143 1070 -4.5
Denali 181 1446 -5.5
Basin Average 121 1064 -3.6
February 1981
Talkeetna 177 991 -6. 1
Devi l Canyon 205 1132 -7 .3
Watan a 221 1291 -7.9
Denali 328 1774 -11 . 8
Basin Average 233 1297 -8.3
March 1981
Talkeetna 40 1031 -0.4
Devil Canyon 65 1197 -1.8
Watana 136 1427 -4.3
Denali 181 1955 -5.6
Basin A v erage 10 6 1403 -3.0
April 1981
Talkeetna 48 1079 -0. 1
Dev i l Canyon 92 1289 -1.8
Watana 141 1568 -4.3
Denali 190 2145 -6.2
Basin Average 118 1520 -3. 1
May 1981
Talkeetna 0 10 79 10 .0
Devil Canyon 0 1289 8 .7
Watana 0 1568 7.6
Denali 0 2145 7. 1
Basin Average 0 1520 8.4
23
a O
~0
a2 ~(I)
~c
~~ ~~ ~2 :,..
~m cw ·-:z
~n ..
I
""
, -co
c ...
G
C,t)
..,\
~~ ~ ~ ~~
:b. -(.L:
C5 ll
~~ ~~
~~ ~~ ~~
"'(§
0
~
w a:
::l ...
"' a: w
~
:i w ...
!:
"'
MEAN MONTHLY AIR TEMPERATURE SEPTEMBER 1982-MAY 1983 AND HISTORIC MEAN
0
~
w a:
::l ...
"' a: w
~
:i w ...
a: <
10
0
-10
-20
10
0
-10
-20
'/"
--1882-83
tlletotlcal a vetege,
1840-1883
-3o I I I I I I I I I
MONTH
Location: T a lkeetna Aluka
Operator: National Weather Service
10 ...
0
2..
0 w a:
::l ...
4( -10 a: w
~
:IE
-1882 -83 w
-20t ...
--Netorkel 1 \ena•. a: 1110-U ~
...
0
~
w a:
::l ...
10
0
"' a: -10
w
~
:IE w ... -20
!:
"'
--· uu-u
(no hletotlc: rec:otd)
-3o I I I I I I I I I I
-1812-U
--hlltOik:IJ I VIflgl,
1110-11
MONTH
Location: Sherman Weather Station
Operator: R & M Consultants, Inc.
...
0
~
w a:
::l ...
10
: -10
w
~
:1 w ... -20
a:
~
hl etcwk al •••r•;•.
1110-U
-3o I I I I I I I I I I -2o I I I I I I I I I I -2o I I I I I I I I I I
MONTH
Loc a tion: Devil Canyon Weather Station
Operator: R & M Consultanla, Inc:.
MONTH
Location: Watana Weather Station
Operator: R & M Conaultanta. Inc.
MONTH
Location: Denali Weather Station
Operator: R & M Consultant., Inc.
aO
~0
ii 2 ~(I)
~c
~~ n> ~2
L.f
~ln
c~ • <-:2 gn ..
N
VI
-n -· co c ..
CD
(,.)
• ~
~-~
)l> ~
' CJ 11 ~IR!t "'i~
~~ ~~ §~
fll(§
FREEZING DEGREE DAYS MONT H LY TOTAL
(/)
>
<t 4 00 0
0 e... 300
w w a: 200
" w
0 100
(/) > 000
<t
0
~
400
ttl 300·
a:
" w 200
0
" z 100
N w ~ ol ll'!lll'!llmll'i''lm 'llll llrrlll I
MONTH
location: Talkeetna, Alaek a
Operator: National Weather Se rv i ce
(/)
)o 500
~ c
0 400
~
w w a:
" w c
"
300
1 00
z 100
N
1!!11
D
1982 -83
H I STORICAL
AVERAGE
(/)
)o
<t 0 400
0
't. ~00
w w a:
" w
0
100
<-' !QO
z
N o +---~~~-4~-+~~~~~~~+-~ ttl SEP
a: MONTH
II.
location: Sharman Weather Station
Operator: R & M Con tultantt, Inc.
700
(/)
> 1 00 ~
0
0 100
~
w w a:
" w c
"
400
100 ·
! 100
N w w f 100
" z ~ o I ., I n I I 1'1 ljl!l II l!t I I';' ' I e:ll I m ! I I
w w a:
II.
'~ ol-nllillllll ll lil ll lli!IIYI I mllrnll al BEP OCT NOV OEC JA N fEI MAll APII MAY
o~~~~~LL~~~~~~~~~~~~
MONTH w a:
II.
MONTH
location: Devil Canyon Weather Statton
Op:rat!lr : R & M Contultante, Inc.
MONTH
location: Watana Weather S tation
Ope rator: R & M C on eultanh, Inc:.
Location: Dena li W e ather Station
Operator: R a M C oneultanh , Inc.
(/)
> «:(2000
Q
w w a: e
w
Q
e z
N w w 1000 a:
""
500
O SEP
AVERAGE HISTORICAL
ACCUMULATED FREEZING DEGREE DAYS
FOR SUSITNA RIVER BASIN
OCT
METEOROLOGICAL STATIONS
1980-1983
NOV DEC JAN
MONTH
FEB MAR APR
=================================================~
Fi g ure 3 .3 . ~~[Effj~~~®
26 SUS/TNA JOINT VEN TU RE
R&M CONSUL.TANTS, INC.
aNUINa.AS OCC\.CGISTa P'\.ANN.aa SUA V • ..,OIIIS
-E
E -
-E
E -z
0 -t-<t t--Q. -(J w
~
Q.
400
MONTHLY PRECIPITATION DATA
October 198 2 -May 1983
mEl precipitation water equivalent
0 precipitation anowfall
cs;:J maximum snow depth on ground
Location: Watana Weather Station
.,
Operator: R & M Consultants, Inc.
800
800
400
200
Location: Talkeetna, Alaska Operator: National Weather Service
Figure 3.4
R&M CCNSULTANTS1 INC.
.NOtNae~~~t• CICO~ SteT• •LANN··· •u•vevo•e 2 7 SUSITNA JOINT VENTURE
s6/ii1
4.0 SUSITNA RIVER FREEZE -U P PROCESSES
Freeze-up processes initiated in early October , 1982 and continued through
final ice cover development in March 1983. This section describes the
various types of ice covers that form on the Susitna River from Cook Inlet
upstream to the proposed dams ite at Watana .
4 .1 Definitions of Ice Terminology and Comments on Susitna River Ice
Some users of this report may not be familiar with standard terminolo-
gy used in describing river ice and since a rather extensive descrip-
tion of ice processes o n the Sus itna River follows , a brief discussion
on common types of ice observed on the S usitna is presented here.
This is not intended to be a complete glossary of ice terms, and those
in terested in information on oth er types of ice should refer to the
more defin itive papers o n river ice listed in Section 8 (e .g . Newbu r·y
1968, Michel 1971 , Ashton 1978, and Osterkamp 1978).
Frazil -Individual crystals of ice generally bel ieved to form whe al
atmospher ic (cold a i r) and hydraulic (turbulence) con d itions are
suitable to mainta in a su percooled ( 0°C) la ye r at the water surface
(N ewbury 1968, Michel 1971, Benson 1973, Osterkamp 1978). For
more information , see Section 4. 2 an d Photo 4 . 1 .
Frazil Slush -Frazil ice crystals ha ve strong cohesive properties and
tend to flocculate i nto loosel y packed clusters that resemble slush ,
(N ewbury 1968). The clusters may conti nue agglomerating and will
eventually g ain s uffi c ient buoyancy to counteract the tur!;>Ulence and
float on the water surface (P hoto 4.2). This s lus h is highly porous.
Samples co llected at Gold Creek in October 1981 yielded a ratio of
water volume to ice volume of 60-70 percent.
28
s6/i i2
Ice Constrictions -Slush ice drifts downstream at nearly the same
velocity as the current . The velocity of the slush is slowed by
friction against surface constrictions caused by border ice . These
constrictions generally occur in areas of similar channel configuration
where the thalweg is confined to a narrow channel along a steep
bank . When entering constricted areas, the slush ice concentration
increases and is therefore compressed. The slush ice continues to
pass through the channel surface constriction and is extruded from
the downstream end as a compacted continuous ribbon of ice
(Photo 4 .3). The structural competence of the ice layer is greatly
increased since the water fille :J interstices between the ice crystals
have collapsed. As the layer of compressed slush accelerates away
+rom the constriction , it b e g i r"l s to fragment into floes of various
sizes, depending primarily on the f low distribution in the channel.
The rafts break into floes ;w e raging 2-3 feet in diameter unless an
extremely turbulent reach is encountere d where the floes disintegrate
and emerge once again as small slus h clusters.
Ice Bridges When the air temperatures become very cold
(e .g. -20°C), and/or the density of the compressed slush is high ,
then the viscosity of the floating ice will increase until it can no
longer be extr·uded through a channel surface constriction . Once this
occurs , the continuous slush cover over t h e water surface freezes,
resulting in an ice bridge. lee floes contacting the upstream
(leading) edge of the ice bridge will either accumulate there
(juxtaposition Photo 4 .4) o r will submerge u nder the ice cover . The
stability of ice against the leading edge is critically dependent on the
water depth and velocity. Sur'iace water veloc ities exceeding 3 ft/sec
generally prevent ice accumulation (Newbury , 1968).
Snow Slush -This is similar to frazil slush in appP.arance but the
~Jacked snow particles are more dense and have a lower porosity due
to the smaller crystal size . Snow s lush is apparent during and
29
s6/ii3
following snowfa ll s contributing significantly to ice discharge during
these periods .
Shore or Border Ice -Initially, slush ice (formed by both frazil
production and snowfall) drifts into and covers the zero-velocity flow
margin against the river bank. Additional ice pans flowing down-
stream sometimes contact this ice and accumulate against it i n a layer
(Photo 4 . 5 ). This layer will continue to move downstream until
frictional forces against the bank or shore ice overcome the water
velocity and movement stops. The slush layers then freeze together.
Shore ice w i ll continue adding layers by this process until the ice
e x tends f ar out in to the river channel where flow velocities are in
equilibrium with the shea r resistance of slush ice . These ice layers
often constrict the surface of the flowing water and present a barrier
to floating slush ice. The constrictions have been observed to
become so narrow that the slush ice must be extruded through under
pressure.
Black lea -Black ice is new i ce of continuous uniform growth. It
appears dark because of its transpa r ency . It will form on the water
surface in lakes and zero-velocity areas in r i vers , or underneath an
existing ice cover (Michel, 1971). This type of ice normally grows in
a layer under the Susitna hummocked ice cover, and can atta i n a
thickness of several feet. Due to its crystalline arrangement, black
ice is extremely strong (shear resistant), even in relatively thin
layers , especially compared to drained slush ice . Slush ice w i ll
produce floes which are i nherently weak, due to the large , well-
rounded ice crystals.
Hummocked Ice -This is the most common form of ice cover on the
Susitna River. It is a continuous a Gcumulation of slush , ice floes,
and snow that progresses upstream during freeze-up (Photo 4. 6).
This process will be described in Section 4 .3 .
30
s6/ii4
4 . 2 Frazil Ice Generation
Frazil ic e
(Ashton,
cry stals are
1978, Michel ,
formed when water
1971 ; Newbu ry , 1968;
becomes supercooled
Oster kam p , 1978).
Supercoolin g is a phenomena by wh ich water remains in a liquid state
at temperatures below 0°C . Foreig n particles are assoc iated with the
nucleation of ice cr·ystals (Osterkamp , 1978). The Susitna River
discharges treme.-.dous volumes of s ilt and clay size particles prio r to
freeze-up. There is an apparent correlation between the first occur-
rence of fraz il ice and a suddel) reduction of turbidity in the river
water, indicating that the fine suspended sediments may initiate the
nucleation of ice (R&M , 1983). Once the river is at the freezing
point, snowfall also contri butes to the total s l ush ice discharge .
With sustained a i r temperatures below 0°C, a thin layer of water will
be cooled to the freezing point and ice crystals w ill form. Under
quiescent conditions, the ice crystals will for m on the water surfa ce ,
eventually bonding together into a sheet of black ice , and continuing
to grow vertically along the the r mal gradient. However , laboratory
experiments have determined that flow velocities of only about 1
ft ./sec. are necessary tu mix the surface layer sufficiently to pr.)duce
frazil (Osterk. 'tmp, 1978). These velocit1es are exceeded on the
Susitna mainstem through most reach~s so that the water body is
continually being mixed . Under these conditions , the water can be
supe:-cooled to several hundredths of a degree below 0°C throughout
the water column , and crys tals of frazil ice form in suspension be-
neath the water's surface. Once the fraz i l ice forms , it has a ten-
dency to rise to the surface. However , during the initial ice f orma-
tion, frazil particles are so small that they remain entrained in the
river due to turbulence .
Channel morphology can play an important role in concentrating fraz i l
ice, as indicated by ice plumes . These plumes are an ea ·ly indicator
of frazil ice and have been observed at sev~ral locations between
31
s6/i i5
Talkeetna and Vee Canyon when otherwise no ice was seen . Most
sites occur at sharp river bends caused by outcrops protruding into
the channel. The rock outcrops often create a slight backwater
effect on the upstream side . Suspended frazi1 floes are swept in to
these areas and swirl about , increasing in density and ice concentra-
tion until sufficient buoyancy is obtained so that the ice rises to the
surface as slush . The slush floats past the outcrop in a long narrow
stream wh ich is rapidly dissipated by the river (Photo 4 . 7). Any
subsequent turbulence can re -entrain the slush , once again making it
difficult to observe. In September these ice plumes are often o b-
served near Gold Creek and Sherman . The flow patterns are such
that these sites conc entrate ice throughout freeze -up .
After November, the majority of frazil ice i s generated in the rapids
of Devil Canyon, Watana Canyon and Vee Canyon . However, duri ng
the initial freeze-up period in October 1982, the difference in the
number of freezing degree days between Denali (370) and Talkeetna
(170) suggests that the majority of the slush accumulating against the
leading edge dow n stream of Talkeetna originates either as sn()wfall or
as frazil in the upper river from Vee Canyon on upstream . This
appeared to be veri f ied during a flig ht on October 21 , 1982. Esti-
mates at various locati ons from Talkeetna to Watana Creek showed a
consistent ice discharge in this reach, indicating that no frazil ice
was being generated at the rapids at Devil Canyon and Watana on this
date .
Frazil ice crystals have a propensity for adhering to any object in
contact with the river flow. When frazil adheres to rocks on the
channel bottom it is commonly refer r ed to as anchor ice . Anchor ice
has been observe::! to develop i nto ice dams on the reach between
Indian River and Portage Creek (Photo 4 .8). Although these ice
dams do not attain sufficient thicknesses to create extens iv e back-
water areas, they increase the water velocity by restricting the cross
sectional area , creating turbulence which could inc rease frazil
32
s6/ii6
generation. Slight backwater areas ma y be induced by general ra is-
i ng of the effective channel bottom due to anchor ice , affecting the
flow distribution between channels .
On days w ith intense sola r rad iation or warm air temperatures, anchor
ice has been observed t o release from the channel bottom and float to
the water surface, often carrying w ith it an accumulation of sediment
(Photo 4. 9). Because of the high sediment concentrations (silt, sand
and some small gravel), these ice floes remain easily identifiable even
after they are incorporated into the advancin g ice cover .
4 . 3 Ice Cover Development
This section discusses ice cover formation on the Susitna River from
the mouth at Cook I nlet to the pro posed damsite at Watana . For the
purposes of this d iscussion , the r iver has been separated i nto 4
reaches : Cook Inlet to Talkeetna, Talkeetna to Gold Creek, Gold
Creek to Devil Canyon , and Devil C anyon to Watana. An additional
section describing the unique freeze-up process in Devil Canyon is
includ ed .
4 .3 ., Cook Inlet to Chulitna Confl uence
Temperatures are usually not cold enough to cause significant
shore ice development in this reach prior to the relatively
rapid advance of the ice cov er . The i nitiat io n of ice cover
formation in this reach usually occurs when tremer.dous
volumes o \ slush ice fail to pass through a channel con -
striction near the river mouth at Cook Inlet . Between Octo-
ber 22 and October 26, 1982 , slush ice jammed a t RM 10
(Photo 4 . 10) and accumulated upstream for 57 miles to Sheep
Creek. Daily ice discharge estimates from Talkeetna showed a
sudden increase in ice concentrations during this period
33
s 6/ii7
(Ta ble 4 . 2). Th e ice discharge o n October 21 was estimated
at 1 .3 x 10 5 c u ft/hr and rose steadily to 5.8 x 105 c u ft/hr
on October 26 following several snow storms. Assuming that
the ice cover began progressing upstream on October 22 ,
then the progression rate was 11.5 miles per day.
As the ice cover moved upstrea m in 1982 , i ncreases i n water
level did n ot appear to exceed 2 feet between RM 10 and RM
25 .
The flow discharge at Sunshine , based o n provisional USGS
estimates, ranged from 16 ,000 cfs on Octobu 21 to 14 ,000 cfs
o n October 26.
Large open water areas appeared frequently in the ice cover .
On October 26, the ice cover was no longer continuous up-
stream from RM 25. There wa ·, no ice cover or evidence of
ice pr.,gression on the Sus1t11 a near the confluence of the
Yentna River . The Yentna was also completely free of drifting
ice and shore ice . A t RM 32 , a loosely pac ked ice cover
resumed and continued upstream to RM 67. Increases in
water le v el did not appear to exceed 2 feet, and large open
water areas appeared frequently in the ice pack. Surprising-
ly little conso lidation of the ice pack had taken place by
October 26, 1982 . This could be due to the shallow gradient
of the channel thro ugh this reach . In low velocity areas , the
ice front continued to advance by ju xtaposition (accumulation
of ice floes at the surface) at a rate proportional to the ice
discharge and channel configuration . Slush ice observed at
the lead ing edge was ;1ot :;ubme rgi ng under the existing ice
cover . From RM 67 to RM 97 near Tal keetna, the river
remained free of shore ice even though a large volume of
sl ush ice was continually drifting downstream . All of the
major tributaries to the Susitna b e low Talkeetna were still
34
s 6/ii8
flowing and remained ice-free. The discharge from these
tributaries kept large areas at their co nflue nces free of ice.
On October 28 , 183 mm of snow hll at Talkeetna. Observa -
tions on the 29th revealed no further compaction of the ice
pack. Open water areas between the slush floes had frozen
and were covered by snow. The ce pack remained confined
to the thalweg channel with the e )(ception of some side chan-
nel confluences where staging had created local backwater
pools into which slush ice had dri =ted. The leading edge of
the ice pack on October 29 was near RM 87 , just upstream
from the Parks Highway Bridge and adjacent to Sunshine
Slough . The ice cover remained discontinuous, however , with
long open water areas at the Yentna River confluence near
Susitna Station, the Deshka River confluence, Kashwitna
Creek, and Montana Creek. These tributaries were still
flowing but showed signs of an ice cove,. beginning to de-
velop . At RM 76 , the cover appeared extremely loosely
packed with individual slush rafts di scernible within the
cover . No ice movement was detected, and the unconsolidated
arrangement may have been stable .
Fro m RM 7 6 upstream to RM 87 the ice c o ver was thin and
discontinuous , with long open water leads adjacent to
Rabideux Slough and in a side channel that extended from 1
mile below the confluence of Rab ideux Creek downstream for
about 1 mile. The ice pack was diverting water into this side
channel, wh ich had begun to develop an ice cov,~r by slush
ice accumu 'ation. The confluence with Montana Creek was
flooded by an approximate 4-foot stage increase on the main-
stem (Photo 4 .11). Rabideux Slough was breached through
two entranc:e channels. This was indicated by flooded s now
only , and no slush ice was flowing into the slough . The
margi n of flooded sno w was particularly evident near the
35
s6/i i9
Parks Highway Bridge, where it extended all the way to the
northwest abutment .
The leading edge had advanced to RM 95 by November 2 at a
rate of 2 .1 miles per day during the previous 4 d<?.vs (Photo
4. 12). The stage had increased substantially i n th«! vicinity
of the leading edge causing water to flow out of the! thalweg
channel and flood the surrounding snow cover for several
hundred feet. Many side channels had filled with water and
the surface of the ice pack was near the vegetation line along
the left (east) bank . The staging effects , however, were
confined to the eastern half of the river, where the channel
is split by a forested island . The channel along the west
bank remained dry and snow covered .
By November 4 , river ice observers reported stage increases
as the leading edge approached Talkeetna (Table 4. 2). An
ice bridge that formed at the Susitna and Chulitna confluence
on November 2 had greatly reduced the volume of slush ice
flowing past Talkeetna, slowing the rate of ice cover advance
substantially.
Stage increases were over 4 feet near Talkeetna. On Novem-
ber 2 a staff gage at Ta I keetna had been dry , with the
nearest open water more than 1 foot below the gage . At this
time the two channels of the Susitna along the eastern bank
had essentially dewatered , so that the area at Talkeetna was
affected by Talkeetna River flow only. The staff gage was
not again accessible until after consolidation and freezing of
the ice pack on November 17 , at which time the ice surround-
ing the gage corresponded to a reading of 3. 6 feet (Photos
4. 13, 4 .14). This represents a stage increase of over 4 feet
at Talkeetna due to the ice cover advance .
36
s6/ii10
After the initial ice cover formation, the remainder of the
freeze-u p process required considerably more time . Many of
the side channels that were flooded by the increased stage in
the mainstem gradually became narrower as shore ice layers
built up along the channel banks and the flow discharge
decreased . By early March, when discharge in the mainstem
haJ dropped to less than 4,000 cfs at Sunshine (USGS), most
open water had disappeared. The continuous gradual reduc -
tion of flow also caused the ice cover to settle . Where the
sagging ice became stranded , it conformed to the configura-
tion of the channel bottom and created an undulating ice
surface. Open water areas persisted throughout March in
high velocity zones but were rare and generally restricted to
sharp channel bends and shallow reaches in side channels
which had originally been bypassed by the ice front . Some
side channels and sloughs may receive a thermal influx from
groundwater upwelling which would have b . :n sufficient to
keep these chao1nels ice free. An open lead located at the
end of the Talkeetna airstrip remained all winter although it
gradually decreased in size.
The following sequence su mmarizes the highli;hts and general
freeze-up characteristics of the lower river f;·om Cook Inlet to
Talkeetna during 1982-1983.
1 . Ice bridge occurs at a channel constriction near the
mouth of the Susitna during a h!gh slush ice discharge.
2. Rapid upstream advance of an ice cover by slush accu-
mulation .
3. Thin, unconsolidated initial ice cover .
37
s6/ii11
4 . Minimal staging, 2 -4 feet up to Sunshine , then over 4
feet near Talkeetna.
5. No telescoping or spr(:a ding out of the ice cover due to
consolidation . Ice cover generally is confi ned to the
thalweg channel.
6 . Tributaries continued flowing through December.
7. The following sloughs were breached with only minimal
f low an d little ice:
a. Ale x ander Slough, upper end only, no through
flow.
b. Goose Creek Sloug h , no through flow .
c. Rabideux Slough, minimal flow .
d. Sunshine Slough , upper end only, no through flow .
e. Birch Creek Slough, minimal flow.
8. Flooded snow along channel margins, variable widths.
9 . High initia l dis...,harges of 16,000 cfs at Sunshine and low
final discharges of 5 ,000 cfs based on USGS daily
computed values.
10. Gravel islands are seldom overtopped.
11 . Some surface flow diverted into connecting side chan -
nels .
38
s6/ii12
4 .3.2
12 . Ice c o ver sagging due to decreases i n discharge.
13 . Persistence of o pen leads in s ide channels and h ig h
velocity zones through March .
14 . Surface area decrease of open water by steady ice
accumulations and decline of water surface .
15 . Clear ice buildup under slush ice cover.
16. Minimal shore ice development due to lack of sufficiently
c o ld air temperatures before ice cover advan c es .
Chulitna Confluence to Gold Creek
Slush ice was first observed in the Susitna River at Talkeetna
on October 12 , mar k ing the beg i nning of freeze-up . Ice
studies during p revious years have observed slush ice as
early as September . In 1982 , however, no field crews re-
p o rted ice unti l after the snow storm on October 12 . Ice
continued flowing, i n varying con c entrations , through the
reach between Gold Creek and Talkeetna until November 2 ,
1982 when an ice bridge formed at the Susitna-Chulitna
confluence . This bridge was the starting point for the ice
cover that developed over this reach.
Events during the 22 days prior to the ice bridgi ng at the
confluence are of significance and will be described first.
This reach of river was subjected to colder air temperatures
and more flowing slush ice than the river below Tal k eetna.
Sho re ice had more time to develop ,. and at several locations
extended far out into the channel , effectively constricting the
39
s6/ii13
slush ice flow. The higher velociti es kept the slush ice
moving throug h the constrictions , and no ic e bridges formed.
The Susitna Ri ver cont r ibutes approximately 80 percent of the
ice at Ta l keetna, while the Chulitna and Talkeetna Rivers
combined produce the rema ining 20 percent. The high (4-5
ftlsec) velocities of the Susitna kept the rive r cha nnel open ,
pushing the s lush ice downs t rea m . After entering the conflu-
ence area, the mass es of slush ice and slowed dow n and
began to pile up at the south bend of the Susitna adjacent to
the east channel of the C h ulitna. On Octobe r 18 , 1982 , the
slush was still moving easily through this area, but was
coverin g all o f the open water f or about 600 feet with a
tra n slucent sheet o f compressed s l ush ice (Photo 4 . 15). This
ice accumulation was monitored frequently during October.
On October 29, the ice was being compressed and bare ly kept
moving by the mass of the upstream ice and by the water
velocity underneath the cover (Photo 4. 16). The ice through
this area was now white indica ting that the s lu sh had consol-
idated and increased in thickness sufficiently to rise higher
out o f the water and partially drain.
The ice constrict ions being monito red on this reach were
located near Curry (RM 120 .6), S lough 9 (RM 128.5) and
Gold Creek (RM 135 .9). Slush ice was passing easily through
these narrows on October 26 , but was being comp res sed into
long narrow rafts which u sua lly broke up within several
hundred feet downstrea m. Unlike the confluence area, these
constrictions were formed by successive layers of frozen slush
ice along the shore.
A snow storm im mediately preceded the formation o f the ice
bridge at the Sus itna -Chulitna confluence. This storm may
ha ve caused a substantial local increase in ice discharge
40
sG /ii 14
which could not pa ss thro'-lgh t he channel at o ne time. The
result was a sudden con solidation of the ice cover that com -
pacted the slush and a t some point became shore-fast . The
cover remained stable long enough t o free ze and increase in
th ickness. The majority of the inco mi ng slush ice floes
accumulated against th e leading edge and the cover b eg an
advan ci ng upstream. App r oxi matel y 10-20 p er·cent o f the
s lu sh ice submerged on con tact with the upstream edge and
either adhered to the underside o f the cover o r conti nued
downstream . Ice disc harge e stimates were substantially lowe r
at Ta lkeetna after Novembe r 2 (F igure 4.1). The mo st dra-
matic effect o f the ice co nsolid a tion at the confluence was
flooding . The flow capacity of t he ice cho ked mai n cha nnel
was greatly r educed . Water s pilled from underneath the
cover, flowing late ra lly acro ss the ri v er channel towards the
opposite (north) bank (Ph oto 4. 17). Wa ter was a ls o dive r t ed
from upstream of the ic e jam , fl o wing i nto the new channel.
These diverted flows c o mbined and entered the C hulitna ea st
channel approximately 1 , 5 00 feet upstream of the origi nal
confluence . The total esti mated discharge of the diverted
fl o w was 700-1000 cfs , about 15-20 percent of t he total fl o w .
Substantial chan nel erosion was ca used by these diverted
fl ows, as subsequent depth meas uremen t t hrough the ic e
located a iso lated channel abo u t 700 feet fro m the left bank .
After the jam stabilized, the ice pack advanced slowly due to
the increased gradient . The slush ic e could no lo nger acc u-
m u late by simple juxtaposition , as the high flow v elo cities
submerged the slush ice on co ntact with the leading edge.
The ice cove r mo v ed u p st r eam by the staging pr·oces s , in
whic h the ice cov er thickens and restr icts fl o w , causing
i n c reased stages upstream of the ice fron t , T his lowe rs the
upstream ve locity so that incoming ice ma y acc umulate agai nst
t he leadi ng edge instead of being swept under th e ice cove r .
4 1
s6/ii15
On November 9 , 1982 the leading edge was beyond RM 106
(Photo 4 .1 8) and the ice advance appeared to have stalled.
The upstream edge was located ad jacent to the head o f a
flooded side channel. The ice cover was staging in order to
overcome high velocities at the leading edge. However , with
every ice pack consolidation and subsequent increase in
stage , more water poured i nto the side c hannel , effectiv ely
preventing a ny extensive backwater development upstream of
the ice cover . The side channel had to fill with ice before
the mainstem ice pack could continue the advance. The water
being diverted into the side channel contained a high ratio o f
slush 1ce to water volume, since o nly the surface layer of the
mainstem flow was affected . Therefore , the c hanne; qu ic kly
became ice-fill ed .
The rate of ice advance a ve raged 1 .6 miles pe r day for
thirteen days after passing Whiskers Creek. On Nov embe r 22
the leading edge was situated adjacent to Slo ugh 8A. The
total estimated discharge at Gold Creek was 3,300 cfs , a
decrease of 900 cfs s ince Nov ember 9. The ice cover had
staged app roximate ly 4 feet and was overtopping the berm at
the head of Slough SA. The estimated discharge throu gh
Slough 8A was 138 cfs. Much slush ice was carried into the
slough. Withi n 5 days this slough had developed an ice cover
of consolidated slush from the mouth to the head near RM
126.5, w it h slush ice thicknesses of up to 5-6 feet (Photo
4. 19 ) and ice extending ove r the bank o f the island .
Groundwater seeps a nd the dropping water level caused
collapse of the ice cover and development of a long narrow
lead .
The ice cover was very slow in advancing through the shallo w
section of river between Sloug hs 8A and 9. On December 2,
a sudden rise in the water table at Slough 9 , recorded
42
s6/ii16
electronically in a ground water well , i ndicated the proximity
of the lead ing edge (Fig ure 4.4). T he well was located
adjacent to RM 129.5. The ice cover advanced a t a rate o f
on ly 0.3 mile s per da y for t he previous 10 days, e v en thoug h
high fraz i l s lush dis ch arges were o bserv ed at Gold C reek (Fi -
gure 4 . 2). T his may reflect the consequence s of the stagi ng
in t o Slough 8A .
On December 9 the leading edge had reached RM 136, just
downstrea m of the Go ld Creek 8 :-idge. The ice cove r advance
s talled here for over 30 day s , as the ice needed to accumulate
i n thickness b efore it co uld stage past this high -veloci ty
chan n el const ri ction. Ic e d ischa rges estimated at Gold C reek
steadi ly d ecreased throug h December, primarily because the
upper river was freezing over , elimina t i n g the air/water
interface need ed fo r frazil productio n. On January 14 , 1983,
th e leading edge f ina lly crept past the Gold Creek Bridge
(Photo 4.20) at a rate o f 0.05 miles per day. The es timate d
disch arge o n January 14 at Gold Creek was 2 ,200 cfs , based
on provisional USGS estima tes . Ice discharge o bservatio n s at
Gold Creek for October 1982 throug h January 1983 are sum-
marized i n Tables 4 .3 throug h 4 .6.
The processes of ice cove r telescoping, sagging, o pen lead
development and secondary ice cover progr·ession a re impor-
tant characteristics through this reach. Telescoping occurs
durin g co nsol idatio n o f the ice cove r . When the v eloc ity at
fl oes drifting downstr ea m wi ll
the surface, and accumulate
a rate proportional t o the co n -
the cha nnel width . Th is accu-
mu latio n z o ne can be extremely long , general l y being gov -
the lead i ng edge is lo w , ice
c o ntact the edge , rem a in o n
u pstream by juxta position at
cen tration o f slush ice and to
erned by the local channel g radient , amount of staging and
e x tent o f the resulting backwater (F ig ure 4.3 and Tab le 4 .8 ).
43
s6/ii 17
This bui ldup will continue until a c ritical velocity is en co un-
tered , causing the leading edge to become unstable w i th ice
floes submerging under the ice cover. The pressure on a
thin ice cover increa ses as ice mass builds up and high er
veloci ties are reached in conjunction with upstream advance.
At an undetermined c ritical press u re , the ice cover becomes
unstable and fails . This sets o ff a chain reaction, and withi n
seconds the entire ice s heet is moving downst r ea m . Several
miles of ice cover below the leading edge can be affected by
this consolidation. This process results in ice cove r stabi-
lization due to a shortening of the ice cover , substantial
thickening as the ice is com pressed , a sta ge increase , and
t elescoping. The telescoping occu rs o nl y during each con-
solidation . As the ice compresses downstream, tremendo us
pressures are exerted on the ice cover below the acc umu la t ion
zone. Here the ice mass will shift to re l ieve t he stresses
exerted o n it by the upstream cove r , often becoming thicke r
in the proces s . This will tend to further const r ict the flow,
re s ul ting in an increase in stage. As the stage increases,
the entire ice cover lifts . Any additional pressures within
the ice cover ca n then be relieved by lateral expansion of the
ice acro ss t he river channel (Photo 4.21). This p rocess of
latera l telescoping ca n cont inue unti l the ice cover has e ither
expanded bank to bank or else has encountered some o ther
obstruction (such as gravel islands) on wh ic h the ic e becomes
stranded.
The ice cover over wate r -filled chan n els continues to floa t
during ice cover progression . However, because of constan t
contact with high-flowing wate r , the ice cover erodes rapidly
in areas , sagging and eventually collapsi n g. In s o me reaches
these ope n leads c an extend for severa l hundr·ed yards .
44
s6/; i 18
Table 4 .9 summarizes data on ope n leads photographed be -
tween RM 85 and RM 151 o n March 2 , 1983. A s'!condary ice
cover generally accu mulates in the open leads , often com-
pletely closing the o p e n water by the end o f March. The
process is similar to the in itia l progression except o n a small-
er scale. Slush ice begins accumulatin g against the down-
stream end of the leads and progresses upstream (Photo
4. 22). Generally it takes sever al weeks to effect a complete
closure.
Ice cover sagging, collapse, and open lead development
(Photo 4 .21) usually occur w1thin days after a slush 1ce co ver
stabilizes. A s teady decrease in flow discharge gradual ly
lowers the water surface elevation along the enti re river .
Also , the staging p r·ocess which had rai sed the water surface
within the thalweg c hannel tends to seek an equi l ibrium level
with the lower water table by percolating through the gravels
of the surrounding terraces . Percolation o f river water o ut
of the thalweg channel and the subsequent charg ing of the
surrounding water table 1s currently under study. This
process is being documented by recording the relationship
between mainstem
fluctuations in
(Figure 4.4).
water su dace elevations and relative stage
groundwater wells located near Slough 9
Examination of aerial p h otog r·ap hs of the
sloughs taken during the ice cove r ad vance up the ma instem
revealed an increase in the wetted surface area in sloug hs
wh1ch were not overtopped by staging at the upper end .
This increase is attribu ted to a rise in the water table.
Many of the 5 loug hs have groundwate r seeps whic h persis t
thr·ough the winter . This gro un dwater is r·elatively warm ,
with winter t emperatures of 1°-3°C(R&M, 1982). This is
sufficiently warm to prevent a stable ice c ove r from for·ming
i n thes e areas not filled wit h slush ice. This relatively warm
45
s6/i i19
flow will develop ice along the margins , constricting the
surface area to a nar row lead . The leads rarely freeze ove r ,
o ften extending for thousands of feet downstream
(Table 4 . 9). Open water was obse r ved all winter in the
following sloughs in this reach :
Slough 7
Slough 8A
Slough 9
Slough 10
Slough 11
Slough 8A was the o n ly slough breached by slush in this
rea ch and co nsequently was the only one to develop a contin-
uous ice cover . However, the thermal influe nce of gro und-
water quickly eroded throu gh the frozen slush ice cover , and
an open lead remained for the duratio n o f winter .
The 1982 -1983 freeze -up c haracteristics on the Sus itna Ri v er
between Talkeetna and Gold Creek a re summarized as follows:
1 . Frazil ice plumes appearing as early as September , but
more commonly in early October .
2 . V elocities between 3-5 ft/sec.
3. Oischa rges at Go ld Creek ran ging from 4 , 900 cfs o n
November 1 to 1 ,500 cfs by the e nd of March. (USG S
esti mates ) .
4 . Ice o rid ge initiating the ice cover progression from the
Susitna/Chulitna confluence.
46
s6/ii20
4 .3 .3
5 . Gradually decreasing rate of ice advance from 3 .5 mi les
per day near the confluence to 0.05 m ile s per day at
Gold Creek.
6 . Flow diversions into side channels and Slough 8 A .
7. Surface ice constrictions by border ice growth .
8 . Staging , commonly from 4 -6 feet .
9 . Ice pack cons0 lidation through telescoping o f 1ce cove r
laterally acros s c hannel.
10. Sagging ice cover .
11 . Open leads and secondary ice c ove rs.
12 . Berm breached at Slough 8A.
13. Staging effects on the local water table.
14. Thermal i nfl ux by groundwater seepage prevents ice
cover formation in sloughs that are not breached and
inundated with slush.
Go ld Creek to Devi l Canyon
The reach from Go ld Creek to Dev il Canyon freezes ove r
gradually, with comp lete ice cover occur r i ng much later than
on the ri ve r below it . The delay can be expla ined by the
relatively high ve locities e ncountered due t o the s teep grad i -
ent an d si ng le channel , and to the absence o f a continuous
47
s6/ii21
ice pack progression past Gold Creek , due to the upper rive r
having already frozen ove r .
The most sig n ificant features of freeze-up between Gold Creek
and Devi l Canyon are wide border ice layers, ice build-up on
rocks and formation of ice covers ove r eddies. Ice dams have
been ide ntified at several locations below Portage Creek
(Photo 4. 23). Generally, these dam s f o rm whe n the rocks to
which the frazi l ice adheres are located near the water su r-
face. Whe n air temperatures are cold (less than -10°C), the
ice-covered rocks will continue accumulati ng add itional la yers
of anchor ice until they break the water surfac e. The
ice-covered rocks effectively increase the water turbulence ,
stimu lat i ng frazil production a nd accelerati ng ice formation.
The ice dams are often at sites constricted by border ice.
This creates a backwater area b y restricting the streamfl o w,
subsequently c a using extensive overflow onto the border ice
(Photo 4 .24). The overflow bypasses the ice sills and re-
enters the channel at a point further downstream. Within the
backwater area , slush ice accumulates in a thin laye r from
bank to bank and eventually free zes .
Since the ice formation process in th is reach is primarily due
to border ice growth , the processes described for the
Talkeetna to Gold Creek reach do not occu r . There is only
minimal staging. Sloughs and side-channels are not breached
at the upper end , and remain o pen all winter due to ground-
water inflow, although ice ca used by overflow 1s evi de nt.
Open leads exist in the main channel , bu t are primarily in
hig h-veloci ty areas between ice bridges.
48
s 6 /i i22
To summarize , the following are the signific ant freez e-up
characteristics of the river reach between Go ld Cre ek and
Devil Canyon .
1 . Steeper gradient , high velocities , single channel .
2 . Minimal conti nuous ice cover pro gression, usually onl y
f o rmation o f local ice covers separated by o pen leads .
Results in late freeze-over , generally i n March .
3. Extenr.ive b o rder ice growth , with very w ide la yers o f
shore-fast i ce c onstricti ng the channel .
4 . Anchor ice dams c rea t ing local backwater areas which
f o rm ice cov ers and ca use ove rflow .
5 . Ice cov ers ov er eddies which f o rm behind large boulders
i n streamflo w .
6 . S o me teles coping , a lthough u sual ly not w idespread .
7 . Minimal staging . No sloughs breached , no diverted flow
into s ide channels.
8. Few leads o pen i ng a f ter initia l 1ce c o ver .
s agg i ng .
Minimal ice
9 . Thermal in flu x by groundwater seeps k eeps sl o u g hs open
all winter .
49
s6/ii23
4 .3 .4 Dev il Can yon (to Dev il Creek)
Ice processes in Devil Canyon ( RM 150 to RM 151 . 5) create
the thickest ice along the Susitna River , with measured
thicknesses of up to 23 feet (R&M , 1981c ). The canyon has a
narrow , confined chann~l with h igh flow v eloc ities and ex-
treme turbulence , making d i rect observatio ns diff ic u lt .
Consequently , in 1982 a time-lapse camera , on loan from the
Geophys ical Institute, University of Alas k a , was mo unted on
the s o uth rim of the canyon (Photo 4. 25) to d o cument the
processes causing these great ice thicknesses .
The t ime -lapse camera ;:>rovided d ocumentation that the ice
form a tion through Devil Can yo n is primarily a staging pro-
c ess . La rge v o lumes of slu s h ice enter the can y on , and
additional frazil ice is g enerate d i n the c an y on . The slush
ice jams up in th e lowe r c an yon (P hoto 4 . 26), and the ice
cover pro gresses up the can yon thro ugh large staging pro-
cesses . Howe v er , the slush ice has little strength , and the
center o f the ice c over rapidly c o ll a pses after the downstream
jam disappears and the water drains from beneath the ice.
The slush ice bonds to the canyon walls , increasing in thick-
ness eac h t ime the staging pro cess occurs . The ice c o ver
f o rms and erodes sev eral t imes during the winter .
The following chronolo gical sequence of events was com pi led
fro m examination o f the film . The descript ions will b e g in o n
then taper to week l y and monthly descriptions as fewer
changes were observed . Air temperatures (mean da ily °C )
were obtained from the meteorological record of the Devil
C a n yo n w eather .. ~"'t io n . Streamflows are provisio nal estimates
fro m the Go ld Creek Station and are subject to re vision b y
the U .S. Geologic al Survey. Ice thicknesses are estimates
f rom the f ilm reco rd .
50
s6/ii2 4
October 18 , 1982 Air temperature -5.0°C , discharge
6, 720 cfs . The c hannel appeared open with n o ice bridges
and n o constrictio ns . There was 1-2 feet of shore-fast ice on
the channel banks .
October 19 -Air temperature -3 . 2°C, discharge 6, 900 cfs. It
was snowing heavily and the c hannel was partially o bscured.
It appeared to be comp letely filled with slush ice with no o pen
wabr visible. Staging of at least 3 -4 feet was ev;:lent. The
channel r emai n ed ic .. ' covered throughout the day and the
snow ended about 2 p .m .
October 21 -Ai r temperature -9 .5°C, d ischarge 6 ,500 cfs .
No s ignificant cha nges as the c hannel remained ic e covered all
day w ith no open leads appearing. The weather was clear
and sunny with swaying trees ind icating high winds.
October 22 Air temperature -9 .6 °C, disc har·ge 6,200 cfs.
The ice cover began to sag in the center o f the channel and
submerged . The flooding ice cover r c>;:>ld ly eroded away . Ice
along the s ides of the now ope n lead co ntinued to c alve off
in t o the open water a n d mel t.
October 23 -Air temperature -9.8°C , disch arge 6,000 cfs . It
snowed heavily early i n the morn i ng , tapering off <1round
10 a.m. Open le ads were clearly visible i n the hi gh-velocity
reac hes . Water sa tura ted ice remained i n some a rea s o f lowe r
velocity where erosional forces were not as severe . Little
c hange was notice d during th e day.
October 24 -Air temperature -10.S°C , discharge 5 ,900 cfs.
Large volumes o f frazil were fl owing 1n the open cha nnel . An
ice cover had aga in formed over the downstream portion of
the ope n water lead . T h e upper portion remained ope n where
5 1
s6/ii25
apparently the water velocities were sufficiently high to
prev ent further ice cover progress io n at the prev ailin g ice
discharge. During the day , the ice cover over the lower
rea ch rapidly deter iorated by sag gi ng and eros io n . The
floating ice cover was !"low sagg in g so far down tnat it
sheared ve rti cally from the shore -fast ice and floated within
the open lead (Photo 27). This subjected the fragmented ic e
cover to the full v eloc ity of the water, quickly erod ing the
ice away. The fl o ating ice seemed to ride ve ry lo w i n the
water , at times submerg i ng comp letely . T h is is probably due
to the high p o rosi ty ot the s lush ic e wh ich i nitiall y formed
the cover.
October 25 -Air temperature -12.8°C, discharge 5, 700 cfs.
There were no apparent c han ges, as part of the channel was
still partially covered , with the remainder being choked with
fl oa t i ng water -saturated ice. Ice shelves o n the banks were
approx imately 3 -4 feet thick.
October 26 -Air temperature -15.4 °C, discha r ge 5,600 cfs.
The images of the canyon were obscured by hea vy fog , but
the channel seemed t o be ice covered with no open leads
d isce rnible.
October 27 -Air temperature -19.1°C, discharge 5,400 cfs .
There were no apparent changes. The ice cover ramained
intact and no water was visible.
October 28 -Air temperature -13.2°C , d i scharge 5 ,300 cfs .
Overnight , an op en lead developed in the upstream rapids
sed ion. No f urther· chan ges were noted on this day .
October 29 -Air tempe r ature -13 .3°C , discharge 5 ,200 cfs .
Fog again partia l ly o bscu red the images . The open lead at
52
s6/i i26
the upstream end of the reach expanded in width and length.
It appeared to be open for its entire wetted width and no
overhanging ic e shelves remained. This open water r·each
extended upstream ou t of the field of view. Another open
lead about 300 feet downstream of the upper lead continued to
increase its length by collapsing at both ends. By the end
of the day , the two open leads had extended to within
50-75 feet of each o ther .
October 30 -Air temperature -1 9 .1°C , discharge 5,100 cfs.
The first hour of da yligh t showed a long open lead partially
obscured by fog. Apparently, the two leads of October 29
merged overnight when the ice bridge separating the leads
collap sed and formed a narrow channel. The channel then
widen ed considerably , with the downstream end located j ust
above the south river bend. The upstream end was not
visible. However , the upstream reach through the canyon is
generally open because of ext reme turbulence and high v ::-
locities.
Octobe r 31 -Air tem;:>e rat ure -1 5.9°C, discharge 4 ,900 cfs.
The channel constriction of October 31 closed again, separat-
ing the open water reaches by about 75 feet of ice. This
indicates the location of the deep pool surveyed in 1981,
where flow velocities tend to allow gradual accumulation of
frazil slush against the channel banks (R&M, 1981c). About
1 p.m ., this ice closure began to erode along the left ba nk .
November 1 -Ai r temperature -4.5°C, discharge 4,800 cfs.
The first exposure of the day revealed o ne long ope n lead
running almost the entire length of the visible ca n yon. The
border ice shelves were the only ice remarn ing within this
reach of the canyon . These appeared to have thicknesses
exceeding 10 feet in some places , parti cula rly at the upstream
53
s6/ii27
channel constriction. This is also usually the first ar·ea to
bridge ove r .
November 2 -Air temperature -5 .1°C , discharge 4 , 700 cfs.
A high volume of ice seemed to be flowing and an ice cover
was accumulating in the lower canyon reach. The channel at
the most downstream end was filled with slush. Severa l
advances of 20-30 feet were visi ble during the day. These
were followed by consolidation phases during which the ice
cover was compressed and the net stage increased .
November 3 -Air temperature -7 .8°C , discharge 4,600 cfs.
The ice cover adva nced about 100 feet overnight. The cover
appeared to be thin , and did not come c lose to the top ele-
vation of the shore ice. A lthough much ice was evidently
flowing, it all seemed to be submerging underneath the exist-
ing cover and not accumulating against the leading edge.
Thi s indicates that the ice cove r was thickening at some point
downstream. No appreciable upstream advance occurred on
this day .
November 4 -Air temperature -2.9°C, discha rge 4,500 cfs.
The ice cover had not advanced since the previous day, but
has instead t hic ken ed and staged substa ntiall y. In the lo wer
reach, the diffe rence in elevation between the top o f the
shore ice and the ice cover in the c h anne l was no less than
2 feet.
November 9 -Ai r temperature -7.1°C , discharge 4 ,100 cfs .
Little change was apparent in the ice regi me despite a high
vo lume of flowing ice.
November 14 -A i r temperature -6.2°C , discharge 3 ,800 cfs .
The p ast 5 days showed littl e cha n ge in the shape or size o f
54
s6/ii28
the open lead except for minor advances of 10-20 feet at the
lead i ng edge. These subsequently consolidated , relocati ng
the ice fro nt to its origina l position. On this day the ice
cover finally closed the lower canyon reach . The upper lead
remained open , but a ve ry high volume of slush ice co uld be
seen flow i ng within the lead. This sudden increase i n s lush
ice concentration was probably related to the rapid ice cover
formation in the lower canyon. A correlation between snowfal l
on November 14 and ice discharge can be seen, and is illus -
trated in Figure 4.2.
November 15-21 -Discharges dropped from 3, 700 cfs down to
3,400 cfs. Ice covers formed re peatedly over the lowe r
canyon reach but seemed to be extremely unstable. The
covers typically lasted only a few days, with destruction
genera lly o :curring c o in c idently with a decrease in ice dis-
charge. The durati o n o f ice cover deterioration was variable
and probably depended on ve loc ity as well as climatic con-
ditions .
December -January -Discharges fell from 3,0 00 cfs down to
2,000 cfs . No new processes were observed during th is
period. Snowfalls continued to stimulate heavy frazil ice
loading and subsequent ice cover progression through the
canyon. The ice cover over the reach finally stabilized. The
final 20 days of filming showed that the ice cover over the
lower reach began from the b o rder ice const riction and ex-
tended beyond the south river bend. This cover did , howev-
er, eventually develop cracks . A sag appeared, the ice
finally collapsed, and open water showed through . The final
exposu res , in F ebruary, clearly showed the ice co v er begin -
ning to fai l along its entire length. This seems to indicate
tha t the ice covers within this narrow and turbulent river
reach are i nh erently unstable.
55
s6/ii29
There were a total of 6 ice cove r advances on the lower reach
and 3 on the upper . This difference is due primarily to a
steeper gradient , higher velocities and turbulence in the
upper section. Only during extreme ice discharges did the
upper reach f o rm an ice cove r . The initial ice cover d e-
veloped in Octobe r over both reaches , but rapidly eroded
away , le aving on ly remnant shore ice. The seco nd major ice
cover event occurred in December , with the final ice cover
forming in January. All of the major ice advances seemed to
be related to heavy snowfalls. A storm i n January left an ice
cover on the lower reach which appeared t o be stable. The
low discharges in January cou ld explain the longevity of this
ice cover.
Devil Canyon and the reach between Devil Creek (RM 161)
and the Devil Canyon dam site (RM151) have the firs t areas on
the Susitna to form ice bridges and develop an extensive ice
cover. Ice covers of one mile 1n length were observed t"
form about two miles below th e Devil Creek c o nfluence as
early as October 12 , despite relatively warm air temperatures.
The ice format ion process at this point is belie ved to be
similar to that in Devil Canyon.
To summarize the h ighlights of freeze-u p 1n Devil Can yo n :
1. Na rrow, confined channel with high flow velocities and
turbulence .
2 . Earl y formation of ice bridges and loos ely packed s lush
ice covers.
3. Formato v n and erosion of ice covers several times during
the winter.
5 6
s6/ii30
4.3.5
4 . Inherently unstable tee covers, eventual collapse long
bef ore breakup.
5. Extreme staging and ice thicknesses up to 23 ft .
Devil Ca n yo n to Watana
This s ection o f the river has n o t been th o r·o ughly studied .
Ho wever , SO!'Jle general comments on the freeze-up processes
affectin g t his reach can be made. These are based mostl y on
ice format ions observed during breakup a fter the snow had
melted o ff of the ice cover.
An accumula ti on of border ice layers is primarily res po n si ble
fo r the ice cover d •'velop ment (P h o to 4 . 27). The border ice
o ften constricts the open wa te r chan nel to less than 30 feet .
The slush ice then j a ms in between the s hore -fast ice and
freezes , for·ming an unbroken , uniform ice cover acro ss t he
r i,:er channel. However , since thi s p r ocess does not occur
si mul taneously ove r the entire reach , a v ery discon tinuo us ice
cove r resu lt s. Open leads gener ally abound u ntil e arly March
when the comb inat ion o f snowfall and ove rfl o w c lo ses mos t of
the openings.
Characteristics of freeze-up between Devil Ca n yo n and Watana
are summarized as follow s :
1. E xt remely wide acc umulations o f bord e r ice la ye rs ,
resu lting in gradual filli ng o f the narrow open channel
with sl ush whic h freeze s and forms a contin u ous ice
cover .
2. Extensi v e overflo w and flooded sno w .
57
s6/ii31
4.3 .6
3 . Minimal staging or telescoping.
4. L ow discharges , resulting in sha llo w water and modera te
v e locities .
5. Mini mal ice sagging, few leads open ing after initial
freeze-up.
6 . Extensive anchor ice with h ig h sediment concentrations .
Ice Cove r at the Peak o f Development
The ice cov er o n the Su s i l na Ri ve r is extremely dynamic .
F rom the moment th a t the initia l cover forms , it is either
thicken i n g o r erod ing . Slush ice will adhere t o th e unders ide
of an ice cover in areas o f l o w ve locity , with cold tempera-
t u res subsequentl y bonding this new layer to the surface i ce .
Table 4. 7 l ist s Susitna i ce cove r thicknesses measured be-
tween Watana and the Chulitna confluence. These mea sure-
ments repres e n t the cover at ma xim um development i n 1983.
If the ice cover could eve r be considered stable , i t would be
at t he h e ;g ht of its maturity in March . During th i s period o f
the winter , snowfalls become less frequent and very little
frazil slush is ge nerated . The only air-water interfaces are
at the numerous open leads whi c h pe r sis t over turbulent
reaches o r groundwate r seeps . These are usually o f short
length with Ins u ff icient heat exchan ge ta ki ng p lace to g e n e r-
ate significant amounts o f frazil ice . Tab le 4.9 presents the
lo~ations and dimensions o f most annually recurrin g leads
between S u,s hine a n d Devi l Canyon .
58
s6/ii32
Discharges i n March a r e ge nera ll y at the annu al minimum,
reducing the flowing water t o a shallow and narrow t ha lweg
c hannel, indicated by a depression in the 1ce cover. The
depressio ns f o rm shortl y after ice cover f o rmation when the
compacted slush ice is fl exi ble and porou s . Wa ter leve ls
decrease through March, resu lting i n the floating ice c ove r
grou nd ing o n the ri ve r botto m . Wate r gradually percolates
o ut o f the cover . Alte rn ating layers o f bon d ed a nd unconso l -
idated ice c r ystals form within the ice pack when the receding
level of saturated slush freezes at ex t reme air temperatures.
The resul t is the f ormation o f rig id la yers at random lev els ,
w i t h th e layers represen t ing t he frequency o f critica lly co ld
periods .
59
s5/ii1
TABLE 4 .1
SUSITNA RIVER SU RFACE WATER TEMPERATURE PROFILE*
SEPTEMBER 1982 -O C T O BER 1982
Water T emeeratu re °C
Mean
Seetember 1-30 , 1982 Min. Max. Mean 9/1/82
Above Yentna River , RM 29 .5 4.0 9 .5 7 .0 8 .5
Park Highway Bridge , RM 83 .9 4 . 1 9 .0 6 .3 8.0
Talkeetna Fish C amp , RM 103 .0 4 .4 9 .9 7 .0 8 .7
Curry, RM 120 .7 4 .5 9 .1 6.8 8 .4
LRX-29, RM 126 . 1 3 .8 10.0 6.8 8 .6
Devil Canyon, RM 150 .1 4 .0 9 .5 6 .8 8.5
Water Temeerature °C
Mean
October 1 -17 , 198 2 Min . Max. Mean 10/1/82
Above Yentna River , RM 29 .5 0.0 5 .0 1.9 4.8
Parks Highway Bridge , RM 83 .9 0.2 4 .6 1.2 4.6
Talkeetna Fish Camp , RM 103 .0 0 .2 4 .9 1.2 4.7
Curry , RM 120 .7
LR X-29 , RM 126 .1
Devil Canyon , RM 150.1 0.0 4 .0 1.8 3.5
Mean
9/31 /82
4.7
4.6
4 .9
4.5
4 .0
4.0
Mean
10/31 /82
0.0
0.2
0.2
0.5
* These data were obtained from published reports by Alaska
Department of Fish & Game , Susitna . Temperatures were recorded on
a thermograph at all sites except Devil Canyon which was recorded
electronically, (ADF&G , 1982).
60
s 5/cc4
Date
October 1982
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Nov ember 1982
1
2
3
4
5
6
7
8
9
10
11
12
T AB LE 4.2
SU SITNA RIVER AT TALKEETNA
FREE ZEU P OBSERVATIONS ON T HE MAI NST EM
Staff Discharge
Gauge ( 1) @ Sunshine(2 ) 0o lce(3)
if.!.L (cf s ) in C hannel
1.65 20 ,000 0
1.68 20 ,000 10
1 . 55 20 ,000 0
1.42 19 ,000 30
1. 25 18 ,000 30
1 .30 17 ,000 25
1 . 24 17 ,000 25
1.23 17 ,000 25
1. 20 17 ,000 20
1. 15 16 ,000 30
0 .98 16 ,0 00 60
0 .97 16 ,000 70
0 .40 15,000 75
15 ,000 80
-1 .00 14 ,000 90
-1 .50 14 ,000 90
-1 .50 14 ,000 90
-1.50 13 ,000 85
-1 .50 13 ,000 80
-1 .50 13 ,000 80
2 .50 12,000 80
1 . 54 12 ,0GJ GO
1. 52 12,000 50
11 ,000 40
11,000 50
3.60 (Top of ice after freez e up) 50
3.60 11 ,000 70
3 .60 11,000 80
3 .50 10,000 100
3 .60 10 ,000 100
3 .60 9 ,800 100
3.30 9,800 100
Ice
Th icknes s
(ft )
.01
.03
.09
.09
.09
. 10
. 10
. 10
.20
.20
.30
.40
.40
.40
.40
.40
.40
3 .30
3 .30
3 .30
3 .30
3 .3 0
3 .30
3.30
1 . Re lative e l ~;vations based on an arbitrary datum . Gage located near chan nel adj acent
to T a l keetn a.
2 . Provisional data subject to revisio n by the U.S . Geo log ica l Survey, Water Resources
Division , An c h orage , Alaska .
3 . Visual estimation based on o ne daily observat io n , usually at 9 a .m .
61
0'1
N
s5/d d1
TAB LE 4 .3
SUS I TNA RIVER AT COLD CREEK
FREEZE-UP OBSERVATIONS ON THE MAIN STE M
Octo ber 1982
Co l d Creek
Mea n Air Wat er I ce in Bord er 1 ce Snow 0 i scha rge ( 1 ) Tempera ture (2 ) Tempe r ature (3) Channe l ( 4) Thickness Depth Oa te (cfs l ( OC) ( OC) (%! ( f~ l Lf..U_ Wea J.he r
Oct. 19 6900 -1 0 ,, 0.65 50 s lush 0.6 s now 20 6800 -5.0 0.80 40 s l us h 0.6 C l ouuy 2 1 6500 -5.6 1.00 60 slus h 0.6 Windy/Sunny 22 6200 -4 0 '~ 0.90 60 0. 3 0.6 Wi ndy/Sunny 2 3 6000 -9.2 0 .80 65 0 .3 0.6 Windy/Sunny 2 4 5900 -7.8 1 0 00 50 0 .3 0.6 Partly C l oudy 25 5700 -1 0.0 1 0 00 60 0.3 0.6 C l oudy 2 6 5600 -14 .4 0.50 60 0.3 0.6 C l oudy 27 5 110 0 -1 3.6 0.20 65 0.4 0.6 Sunny 28 5300 -7.8 0 .00 65 0.4 1.0 s now 2 9 5200 -6.9 0.00 70 0.5 1.5 Snow 30 2 100 -18 .3 0. 10 70 0. 7 10 5 Su nny 3 1 lt900 -17.8 0.00 70 0. 7 1. 5 Sunny
1 . Provisiona l dat a s ubJ eC t to revisio n by the U.S. Geolog i ca l Survey, Wat er Resources Di vosion, An chorage , A l aska.
2 . Average va lue of the uays minimum and ma x imum t e mpe rat ure.
3. Based on one in stan t a neou s measure ment , usually taken at 9 a.m. daily.
4. Vi s u a l es t i mate based on o ne in s tantaneou s ob servation , u s ually at 9 a.m. daily.
s~/dd 2
TABLE 4.4
S USITNA R I VER AT GO LD C~EE K
FREEZE -UP OBSERVATIO NS ON TH l MAINSTCM
November 1982
Go ld Creek
Nean Air Water I ce in Border Ice Snow
Discharge ( 1 ) Te mp e rature ( 2) Temperat u re ( 3) r 1a nne I ( 4) lhi ckness Depth Uate __ Ccfsl ( oc ) (°C ) _l$.L_ __LL.U __ .Lf.!J_ we a !,her
No v. 1 48CIO -2.2 0.00 70 0.9 1 . 5 Wind y/Cloudy
2 11700 1 . 1 0.10 20 0.9 1 . 5 Snow
3 4600 -6.9 0 .2 0 50 0.9 1.7 C loudy
4 11 ~00 -3.3 0.30 15 0.9 1. 8 C loudy
5 1111 00 -6. 1 0. 40 10 0.9 1. 8 C lou dy
6 4300 -1 6.9 0.30 50 0.9 1. 8 Sunny
7 11 300 -17.8 0.20 55 1 . 0 1. 8 Sunny
8 4 200 -7.5 0. 15 5~ 1 . 2 1 .8 Snow
9 4100 -5 .6 0. 15 5 5 1. 2 2.6 Cloudy
10 4000 -5.0 0.30 50 1 .2 2.5 Cloudy
1 1 4000 -1. 1 0 .20 50 1. 2 2.5 Snow
12 3901) -1.9 0.20 35 1. 3 3.3 C loudy
13 3800 -3 . 1 0.20 35 1.3 3 .3 S unny
14 38011 -1.9 0.20 30 1 . 5 3.4 C loudy
1~ 3700 -1 2.2 -40 1.5 3.4 Sunny
16 3600 -1 5.8 -60 1. 6 3. l j ~·•nny
(j\ 17 3600 -1 5.0 -70 1.6 3.4 Su nny w 18 3500 -22.8 0. 30 70 1.6 3.3 S11n1o y
19 3500 -25.7 0.20 75 1. 7 3 .3 S unny
20 3400 -1 0 .0 0.30 70 1 . 6 3.3 S now
?1 3400 -6.4 o. 30 60 1. 6 4 . 1 S now
22 3300 -5.0 0.40 55 1. 6 11.1 Sunny
23 33011 -4.4 0. 30 4 5 1. 3 Ll . () S unny
2 11 3 200 -3. 1 0. 30 30 1 . 3 4.0 Sunny
25 32()0 -2 .8 0.50 40 1.2 3 .9 Sunny
26 3 100 -3 . 1 0 .40 50 1 .2 3.8 Sunny
27 3 100 -8.3 0 .11 0 50 1 . 2 3.8 Sunny
2R 3 100 -1 2.8 0.50 60 1 . 3 3 .8 Sunny
2 ':1 3000 -9.7 0.30 60 1.3 3.8 Snow
30 3000 -8.9 0.20 40 1. 3 3.8 Cloudy
1 . Provi s ional data s ullJ8CL to revision by Llle U.S. Geo l ogocal S urvey, WaLer Resources Oivi s 1o n, An c h orage , A l as ka.
2 . Average value of Lhe day s minimum and ma x imum Lemperature.
3. fla !.ed on une ins t antconeot•s measuremen L, usually taken at 9 a.m. da i ly.
4 . Vi s ual es timaLe lla sed o n one insta ntan eous ollse r vatio n, u s ua ll y at 9 a.m. da• ly.
SJ/tld 3
TABLE 4.5
S US ITN A RI VE R AT CO LD CREfK
FREEll-UP OBSE RVAT IONS ON TH E MAIN S I EM
Decemb er 1982
Gold C r ee k
Mea n Air Wa t er I ce i n Bord e r I ce Sn o w
D i scha rge ( 1 ) Tem pe r a ture ( 2 ) Te mpera to re ( 3 ) Ch a n ne l ( 4) Th oc kne s s De p th
Dat,c -l£.[~ ( OC) (°C } ('X,} __Lf!.l__ lil.L Weather
Dec. 1 3000 -7.8 0 . 10 30 1 . J 3. I~ C l o udy
? 2900 -1 6.9 0 .10 55 1.3 3 .3 C I Olt d y
3 2900 -1 6.9 0.00 70 1 . 3 3 .3 Wi ndy/Sunny
IJ 2900 -1 0.0 0 . 10 75 1 . 3 3.3 C I o wl y
5 281\0 -8.3 0.20 I') 1 . 3 3.3 C l o utl y
6 2800 -1 . 7 0.20 6 5 1 . 3 3.0 Sunny
I 281lll 2.5 11. 30 11 0 1.3 3 .0 Wondy/C i oudy
8 2 700 3.6 0 .20 15 1 .1 3 .8 Snow
9 2"100 -1.9 0 .20 25 1 .1 3.9 Cloudy
10 27 00 -1 6. 1 0 . 10 60 1.2 3 .9 Sun ny
1 1 2600 -6. 1 o.on 40 1.3 3.9 Su nny
12 2600 -3. 1 0.00 60 1.3 3 .8 Clo udy
1 3 2600 -1.7 0. 10 110 1 . 3 3.8 Su nny
)II 2 600 -').0 0.20 25 1 .? 3.8 Sunny
1') 2600 -0.3 0 .20 10 1 . 2 3.8 Sunny
16 250U -3.3 0 . II) 10 -3.7 Sunny
17 2500 -6 .7 0.10 10 -3.7 Su nny
0"1 18 251)0 -1 0.6 0.00 50 -3 . 7 Su n ny
"'" 19 2 11 00 -11 . 7 0.00 1~0 -3.7 Su nny
?n 21100 -I . 2 0.00 40 -3. 7 Su n ny
2 1 2 4 00 -2 1 . 1 0.00 50 0.5 3 . 1 Su n ny
22 2 11 00 -23. 1 0.00 50 0.5 3.7 Su nny
23 2 4 00 -1 5 .6 0 .00 30 0.5 3. 7 Sunny
2 11 2 1~0 0 -11.9 0 .00 30 0.5 3.6 S u nny
2J 2 300 -9.2 0.10 30 0.6 3.6 S unny
26 2300 -5.6 0 .1 0 30 0.6 3 .5 S unn y
2 1 2 4 00 -1.1 II . 10 35 0.6 3.5 Snow
2 8 2 1100 0 .6 ---5.0 S no w
29 2600 1 . 7 ll. 10 5 overfl ow 3. 1 Ra on
JO 280(1 -0 .3 0. 10 25 overf l o w 3.2 Rain
3 1 2900 -0.10 5 1.3 3.2 Sunn y
1 . Prov i s i ona l d a t a s ubJeC t t o revis i o n b y t h e U.S . Geo l o g ica l Survey, Wa t er Resourc es Divi s oon , An c h o r age, AI aska.
2 . Avera g e va lue of the d ays mi nomum a nd ma x imum t e mpera tu r e .
3 . Based on une in s t a nt a ne ou s meas u reme nt u s uall y taken at 9 a .m . d a il y.
II. Visu a l es to ma t e base d o ro o ne i ns tanta n eou s o b serva to o n, u s uall y a t 9 a.m. daol y.
(j\
V'
S~/lldl~
Di sc h arye ( 1)
-~-e __ ( c f s l -
J a n . 1 2 900
2 2 800
3 2 800
I I 2700
~ ~~ 2100
6 2600
7 2~00
8 2500
9 2 ll 00
10 2 4 00
11 2 401)
12 23 00
13 2300
111 2200
*
Go ld C r ee k
Mea n Air
TABLE 4.6
SUS ITNA R I VER AT GOLD CREEK
FR EEZE-UP OBSERVATIONS ON Til E MAIN STEM
J a nuary 1983
Wat er I ce in
Temp e ratu re (2 ) Te mperature (3) Channe l ( 4)
( OC) ( °C l _il l
-2.8 0.00 8
-2.8 0.00 10
-3.9 o.on 30
-5 .0 0.00 60
-1 3 .9 0 .1 0 6~
-1 9. 1 0 . 10 65 -o .ou 70
-25.3 0 .00 65
-22.2 0.00 60
-2 0.6 0.00 70
-1 6.7 0.00 85
-18 .6 0.00 90
-16.7 0.00 90
-13 . 1 0.00 100
Bord er Ice
1 hlt:kness
( ft l
1.3
1 . 3
1 . 3
1 .11
1.3
1 . 3
1 . 3
1. 3
1 .11
1 .11
1 . 4
I . 5
1.5
1 . 5
S n ow
Depth
Lf.1j_
3.2
3.2
3.5
3.5
3.5
3.5
3.5
3.3
3.3
3.0
3.0
3 .0
3.0
3.0
Wea t.hcr
Sunny
Sunny
Cloudy
S unny
S unny
Su nny
S unny
S u nny
S unny
ll igh Wi nds
Sunny
Sunny
Sunn y
Su nny
1 . Prov i s ional data s u bJeC t t o r ev ision by t h e u.s . Geo l ogical Survey, Wate r Reso u rces D1vis1on, Anc h orage, A la ska .
2 . Average value of the days minimum and ma x 1mum te mperature .
3 . Based on one ins t ant ilneou s meas ure men t, usually t aken at 9 a.m. d a il y.
4. Vi s u a l es timate based on one i nsta ntaneous observat i on, usually at 9 a .m . d ai l y.
Ch an ne l fr'o/en o ver.
0\
0\
::.~/ JJ 1
TABLE 4 o I
1983 SUS ITNA R I VER I CE THI CKNE SS MEAS URE MENTS
Ma1n s t e m I ce
Thicknesses (ft) Nurnb e r Water S urface
--.!1l.!L ~ -.AY.!L of llol es [I eva t • on
Lo b £lli!.£~.!L.__!2!U
Wa tana 1 oll 3o6 2o 4 2 1 14 3608
Po rtage Cree k 1 0 I~ 3 oi l 2 05 5 83110 1
Go ld C r ee k 1 0 3 1o 9 1 o6 5 61\40 6
Cur r y 1o8 2 0 1 1.9 II ~2207
I ~X-3 2 o0 3 o9 2 o9 5 3 4 208
Aurt I 12 1.2..§.1
Wa tana 1 0 8 40 2 2 o8 19 14 36o 1
Pc>rt<tge Cree k 3on IL O 4 0 1 6 8 3 3o'.l
Go ltl C r eek 1 0 8 2 09 2o3 6 682o9
Curry 1 0 3 3 o3 2 02 7 52 1 0 9
LHX-3 2 00 3o6 2o8 7 311 1 0 5
.. Average underice water ve l oc itY was measure d a t po1nt of mo s t flow and c onstitutes an average of the ver t1 ca 1
v ~l o c tty prof i l eo
Avoraye *
Under ice
Water VC IO Ct t .Y
2 o6
2o ?
4 o2
(11
...J
S~/ff 1
TAI}LE 11 .8
R I VER STAGES AT FREEZEUP MEASURED
FROI1 TOP OF ICE ALO NG BA NKS
AT SELECTE D LOCATIO NS
Open Wat.er
E 1 eva L ion Ma x imum Doscharge USGS Co mp ut.e d
App rox i rna te Top of Ice Corresponding Do sc hary e at
R over DaL e of River Bank E l eva Lo on* LO S tage Gold C r oe k
lliJJL Loca tion Freezeu o I fL l I ft l l c f s l I c f s
1118.9 f'or t.a ge Creek 12/23/82 843.0 839.5 27 .000 2 ,400
1ll l'. 3 Slough 2 1, 1-19 -158. 3 7 55.5
11 10.8 S l oug h 2 1 , LRX -511 -735.3 733.3
136 .6 Go l d Creek 1/14/83 687.0 685.3 16 ,000 2 ,2 00
135.3 s :oug h 11, Mout h 12/6/82 67 1 .5 --2,800
130.9 S l oug h 9 , Sh e om an 12/1/82 622.11 6 2 0.1 30 ,000 3,000
12 8.3 S l oug h 9 , MouLh 11 /29/82 -16.91 -3 ,000
:::7.0 S l ough 8, Head 11 /22/82 -519.3 -3,300
124.5 S l oug h 8 . LRX-2 8 11 /20/82 556.2 559.3 44,000 (aufe os ) 3,4 00
120. ( Cu rry, LRX-211 11/20/82 527 .0 52 1~. 6 28,000 3 ,400
116.7 Mc Ken z oe Cr e ek 11/18/82 -493.3 -3,500
11 3. ( La ne Creek 11/1 5/82 -I 6. 71 -3, IO U
106.2 LRX -11 11/9/82 -I 5. 3 1 -4 , 100
103.3 LR X-9 11/8/82 384. 1 383 .9 111,000 11,2 00
98.5 LR X-3 11 /5/82 346.4 345.5 -4 ,4 0()
* Val ues on urac kets 1 1 rep r esent rela ti ve e l e vat i ons based on an assumed datum f rom a Lemporary benchmark
all ja ..:e llt LO the so t e.
S 16/ X 1
Location of
Ups team End
River Mi le #
85 .0
87 .1
87.6
89 .0
89 .5
91.0
~2.3
93.7
94.0
95 .2
96 .9
97 .0
102 .0
102.9
103.5
104. 1
104.5
104.9
105 .9
106 .1
106 .4
106 .6
107.4
109.1
110 .3
110.5
110 .9
1 11.5
111 .7
111.9
112 .5
1 12 .9
113 .8
117.4
117 .9
119 .6
119.7
TABLE 4 .9
MAJOR ANNUALLY RECURRING OPEN LEADS
BETWEEN S UNSHINE RM 83 AND DEVIL CANYON RM 151
LOCATION AND SPECIFICATIONS ON MARCH 2, 1983
T ype
Chann el of Approx. Widest
T~~e Lead ( 1) Length ( Ft) Point (Ft)
Main stem Velocity 550 80
Slough Velocity 4 ,500 50
Main s tem V elocity 700 100
Main stem Velocity 1,200 100
Side Channel Vel oci ty 2 ,500 40
Main stem Velocity 1,400 60
Mainstem Velocity 1 '700 80
Main stem Veloci ty 1 ,300 110
Main stem Velocity 3 ,500 110
Main stem Thermal 3 ,500 20
Side Channel Velocity 2,400 100
Side Channel Velocity 5 ,600 150
Main stem Velocity 1 ' 100 30
Main stem V elocity 2,400 100
Mainstem Velocity 600 100
Main stem V elocity 1,850 100
Mainstem Velocity 280 70
Main stem Veloci ty 1 '700 110
Matnstem Velocity 900 150
Mainstem Veloci ty 1,050 100
Main stem Velocity 200 GO
Mainstem Velocity 370 50
Mainstem Velocity 350 50
Main stem Velocity 200 50
Main stem Velocity 550 100
Mainstem Velocity 150 100
Main stem Ve locity 290 50
Main stem Velocity 450 50
Mainstem Velocity 1,600 100
Mainstem Velocity 500 90
Main stem Velocity 900 150
Main stem Ve l ocity 700 100
Main stem Ve l ocity 500 1 10
Main stem Ve l ocity 600 110
Main stem Thermal 780 60
Side Cha nn el Thermal 1 '260 120
Side Cha nnel Thermal 550 50
Mai nstem Velocity 350 50
68
Contin u ous
or
Discontinuous
Continu ou s
Discon t inuous
Continuous
Conti n uou s
Continuou s
Discontinuous
Discontinuous
Discontinuous
Continuous
Discontinuous
Continuous
Discon tinuous
Continuou s
Discontin uous
Conti nuous
Discontinuous
Continuou s
Continuou s
Continuous
Continuous
Continuous
Continuous
Di scontinuous
Continuous
D iscontinuous
Discontinuous
Conti nuous
D iscon tinu ou s
Con tinuous
Conti nuou s
Continuous
D 1scontinuou s
C o ntinuous
--on tinuous
Continuous
Disco ntinuous
Cont i nuous
Continuous
s16/x2
TABLE 4 .9 (Continued)
Location of Type C o ntinuous
Upsteam End Channel of Approx. Widest o r
River Mile # Type Lead ( 1) Length ( Ft) Poi nt ( Ft) Discontinuou s
120 .3 Mainstem Velocity 800 1UO Continuous
121 .1 Main stem Velocity 550 100 Contin uous
121 .8 Side C hannel Thermal 1 ,450 30 Disc o ntinuo ~J s
122.4 Slough (7) Thermal 1 ,850 60 Discontin u o us
122.5 Slough (7) The rm al 380 50 Continuous
122.9 Slough (7) Thermal 1 '950 80 Discon t inuou s
123. 1 Main stem Veloc ity 1 ,000 80 Continuous
123.9 Side Cha nnel Thermal 200 50 Continuo~s
124 .4 Side Channel Veloc ity 270 40 Continuous
124 .9 Main stem Thermal 600 90 Continuous
125.3 Slough (8) Thermal 3,500 50 Disco ntinuous
125.5 Main stem Veloci ty 2 ,140 100 Continuous
125.5 Slough (8) Thermal 800 500 Continuous
125.6 Mainstem Veloci t y 350 60 Continuous
125.9 Slough (8) Thermal 580 50 Continuous
126. 1 Slough (8) Thermal 500 30 Continuous
126.3 Slough (8) The rmal 250 50 Continuous
126.8 Slough (8) Thermal 1 '500 80 Discontinuous
127.2 Side Channel Thermal 2,450 50 Continuous
127 .5 Main stem Velocity 700 80 Continuous
128.9 S l ough (9) Thermal 5,060 100 Con tinuo us
128.5 Side Channel Thermal 1 '210 30 Di sconti n uou~
128.8 Side Channel Thermal 380 20 Continuous
129.2 Slough Therm al 4 ,000 30 Discontin uous
130 .0 Main stem Velocity 600 90 Continuous
130.8 Side Channel Thermal 5 ,000 50 Dis co ntinuous
130.7 Main stem Veloci t y 150 50 Continuous
131 . 1 Main stem Velocity 490 90 Continuous
131.3 Main stem Veloc ity 800 100 Continuous
131.5 Side Chan nel Therma l 5,000 80 Discontinuous
131.3 Side Chan nel Thermal 900 90 Discontinuous
132.0 Main stem Veloci ty 150 20 Continuous
132. 1 Main stem Vel ocity 500 20 Discontinuous
132 .3 Main stem Velocity 400 80 Continuous
132.6 Main stem Velocity 1 ,350 80 Continuous
133.7 Slough Thermal 6,000 60 Continuous
133.7 Main stem Vel oc1ty 1 '11 0 100 Continuous
134 .3 Slough ( 10) Thermal 4 ,500 40 Continuous
134.0 Side Chan nel Thermal 1 ,200 50 Continuous
134.5 Side Channel Th erma l 850 100 Continuous
135.2 Mainstem Velocity 1 '580 90 Discontinuous
69
s 1 G/ x3
TABLE 4 .9 (Con t inued)
Location of T ype Con t i nuous
Upsteam End Channel of Approx. Widest or
River Mile # T 1:e e L ea d (1) Length ( Ft) Poin t ( Ft ) D i sconti nuous
135.7 S loug h ( 11 ) Thermal 5 ,500 80 Conti nuo us
13 6.0 Mainstem Veloc i t y 230 80 Continuous
136 .3 Side Channel Th ermal 2,050 40 Conti nuous
136 .7 Main stem The rma l 1 ,620 80 Co ntinuous
137 . 1 Main stem Veloci ty 750 60 Co nti nuo us
137 .4 Side Channel Thermal 2,500 20 Disconti nuous
137 .8 S lough ( 16) Thermal 1 ,400 30 Disconti nuous
138 .2 Main stem Velocity 2 ,000 150 Conti nuo us
138.9 Main stem Thermal 2,100 150 Con tinuous
139 .0 Main ste m Veloci ty 780 20 Conti nuous
139 .1 Mai nstem Velocity 500 30 Conti n uou s
138 .4 Main stem V e locity 600 30 Continuous
140 .6 S i de C h a nnel Thermal 1 '900 100 D i scontin uou s
Slough (20) Therma l 1 ' 100 20 Conti nuous
142 .0 Slcugh (21) Thermal 3 ,850 40 D iscontinuous
141.5 Mainstem V el oc i ty 850 40 Continuous
142 .0 Mainstem Veloc 1ty 950 50 Co nt i nuous
142 .6 Mainstem Velocity 1 ,600 150 Discontinuous
142.8 Main stem Velocity 850 150 Co nti nuous
143.6 Main stem Velocity 550 20 Discontinuous
Mains tern Vel oci t y 280 20 Continuous
143.8 Main stem Vel oci t y 780 100 Continuous
143.9 Main stem Velocity 500 30 Co ntinuous
144 .5 Mainstem Veloci ty 900 100 Disconti nuous
S lough (22) Therma l 250 20 Continuous
144 .6 Slough (2 2 ) Thermal 300 20 Continuous
145.5 Mains t ern Velocity 1 '150 100 Conti nuo us
146.9 Mai n stem Velocity 700 100 ,Conti nu o~s
147. 1 Main stem Velocity 850 80 Disconti nuous
147 .7 Ma in stem Veloci t y 150 40 Continuous
148 . 1 Main stem Ve locity 42(, 50 D i scontinuous
148 .5 Main stem Velocity 680 140 Continuous
149 0 Mai n stem Ve l ocity 400 60 Contintwu s
149 .5 Main stem Ve l ocity 500 80 Conti nuc us
150 .0 Main s tem Ve loci t y 350 20 Di sco ntinuous
150.2 Main stem Ve l oci t y 750 100 Conti nuous
151 .2 Mai nstem Ve locity 2 ,800 100 Discontinuous
(1) Veloci ty i nd i cates lead kept open b y high -veloc ity fl ows . T hermal i nd icates le~d
ke1=t op en by groundwater seepage .
70
-1 .....
on ao 62 ~(I)
~c
:~ ~)) !z =~ .. !!!
c ~ • c -~2 go ..
"'" ~· co
c ..
ell
~ •
~
~~ ~~\:::' ~ 1.:::: ' . 0 11 ~lRli "'"i ~
~~ ~ t;.l~ "'"i~ ~~ Ill!.§
-0
0 -
w
a:
::;) ....
ct
a: w a.
~ w ....
a: -ct
>-
..J -c(
0
z
< w
~
10 8CE CONCENTRATIONS AT TALKEETNA RELATIVE TO
MEAN DAILY AIR TEMPERATURES AT DENALI AND TALKEETNA
AND DAILY TOTAL SNOWFALL AT TALKEETNA
of '
~~Talk••:• --w -10
I
I
-20 (
- -Ice concentration percentage of channel aurfaca coverage I
--mean dally air temperature at Denali I (367 freezing degree daya In October)
-mean dally air temperature at Talkeetna I
(170 freezing degree daya In October) I
-30 0 total snowfall at Talkeetna (mm) I
I
J 1-r -e e I !\ I e .... o '-I
-40 -1-
Q I ... -"?"' n e
I e e
Ql ~ I ,..
e
I e
0
-50 I
''-.! I I I I I r.
10 210
f100 freeze-up~
,~
I I ao
T
J
I
+so
I
l
1_40
I
~--~
~ I
T2o
J
e e I
~ • 0
OCTOBER NOVEMBER
-?f. -
z
0 -....
ct
a: .... z w
0 z
0
0
w
0
~~~~p ;s "(J,
• on
oO g2
ii Ul ~c
'~ 0> ;z .... .m C•
I c -~2
~n ..
"" -co
c:
-..J ..
IV •
~ .
It\)
§ ib ~ ~ .&.;::
Cs II
~!Rli
..... ~
~~ ~~ §~ ,.,(§
-0
0 -
w a:
10
0
::) -10
t-
<t a: w
0..
::i w
t-
a: -ct
-20
~ -30 -< c
z
<(
ICE CONCENTRATIONS AT GOLD CREEK RELATIVE TO
MEAN DAILY AIR TEMPERATURES AT DEVIL CANYON
AND DAILY TOTAL SNOWFALL AT GOLD CREEK
--Ice concentration percentage of channel aurface c overage
-mean dally air temperature at Devil Canyon
0 total anowfall at Gold Creek (mm)
freeze -up '-...
I
~'""' I I
I I f
I \I
I ~
\ I
\I
\ e e
EIO eiO ....
0
(I') ....
I
I I
I r 1 I
I I ~\ I
I ' f gl, I
Ill I N~ \ I Ill I I
Ill I \,I
Ill I ~
l11/ ~ II
\
\ I I I
e\ ~I I I ~\ IJ I I
N \ I I I
\ 1 l I
\I \ I ~ v
\
\
I l ~ Ice at
I r lr-Gold Creek
1! I I 1 I 1~ I\ 11 t\ r\ lnlq iJ \,
I I 1 \~
I I I I
\ I I
I
J
(
I
I
' I I\\ I
( AV
I
I
I
I
I
I
I
w -40 ..
~ ~~ ~ J ~
Snowfall at
Gold Creek \ I I \J II
I
I 0
10 oe e 10E e 0
10 ~ r
-100
I
~
I
Teo~
J
I
-
z
0
+60 t-
1 ~
l ~
1_40
I
-f
w
0 z
0
0
I w
T2o o
J
I
_50 ,,,, ''''I''' ,,,, ,, 11 , 1 ''" , ,, •1 , , 0
October 19 -January 17
~
w
"" -(Q
c ..
G
~ •
(,.)
~~ ~~ <...~
0 u ~
""i U1Fi ~ ~2§ ~~ ~~ Ill §
~
" >
.!
Ill
1, ..
c:
Ill
Gl
E
" >
0
.Q
Ill ..
" • -
z
0 ...
"' > w _,
w
800
~:>O C
400
200
N
N .. u
0
"' N -u
0
...
>
N 0 ,. z
g)
0 I v N z ::t .. I i ; u
0
I
~
2 .1 Mtld
.....-7 ml /d----+-
------12 mild I TALKEETNA'
Cll
> 0 z
...
> 0 z
1.t lftl/d
2 .2 mild
• ..
c • tO~
0
N
~
N I~ > 0 z .. "'''"
\OOLD CREEK
"----IHERMAN
.,ILOUOH I
"--ILOUOH I
'\_CURRY
\
\CHUU TNA-IUIITNA CONfLUENCE
RAD IOE AUX CREEK~ ~
,r IIAC H CRUK ILOUOH
'-auNSHN
\ "MONTANA CREEK
\. OOOIE CREEK ILOUOH
SU81TNA-YEKTNA \
CONFLUEKCE \
0~--~----.---_.----.---------~--------~--------~--------~------~~------~ 20 40 60 80
RIVER MILE
100 120 140
SUSITNA RIVER ICE LEADING EDGE PROGRESSION RATES (miles /day) RELATIVE
TO THE THALWEG PROFILE FROM RIVER MILE 0 (Cook Inlet) TO RIVER MILE 155
160
;DI~o !!~ ~ ~~ ~ •
aO
~0 c;z
~(I) :c
~4 n> !z =~ .m , .. ·-;z
~0 ••
.,. -co
c
-...! ... ,. .
~ • ~
(/)I c::: . ~ b< ~
). loi:'
Cs II
~fti'l ""i ~
~~ §@0 ~~
"'(§
-....
Q)
Q) .:=. 3.0
ct
~
I
0) _,
_, 2.0 w
~
~
w
~ 1.0 ....
CJ)
a:
\
\
\
\
' \
\
\
\ \_"'
STAGE FLUCTUATIONS IN GROUND WATER WELL 9-1 A
(River Mile 129.5) RELATIVE TO MAINSTEM DISCHARGE
'-,
\
\~"\
\"
'\
' "-......
................
........ _ --'--"'--
--USGS dlachargea at Gold Creek
--water surfa c e elevatloo In
ground water well 9-1A
end data~_ .. ··· ...
·.
-
-r-1 2,000
I
l
1_10,000
1 0 ....
-1 2
I en Ta,ooo ~
J ~
I 5
+6,000
I
en -c
l ~ w w
1_4,000 5
I c
/-1 ~
'---._'""'r I (!)
T2,ooo
J
'-leading edge of Ice cover 1
progreaaea paat well loc ation UJ ....
ct o ' I I I +-Lo 3: . OCTOBER NOVEMBER DECEMBER I
MONTH
!~~~~ ~~ r~ ? o n ·~
"0 ~2 :;(I)
~c
~~ D:i ;z , ....
,(1) c .
D ~2
go .....
.,. -ca c
~ ~
Vl • ... •
"'
~ &~(,.;:
-1;: ~
~~ .._ t'-
0 11
~r.:;.-. '1~
~~ <:@:e) ~~ Ill <§
TlME__LAPSE CAMERA . LOCATIO.H AT .. DE .. YLL. CANYON .PROP-OSED DAMSJT.._.e ___
J ~ \ . -;-. ! . ~ -~ . ·;-. .I -·,
-: · · · . I : ! ... : i : I i i · :
~ """ • . . ' ' • • • • ' ' ' ' ' • • g •· ; '
~ I ... r' . ~. ~ . ~: . ~ , . ~ ~--:· ~· ---; -:--r -.. ! -l : -, j ~ . J ; • .
1 L :_ -----~ :__ _ .. _. ~ ~-~ .;_ . -~ -----".. ~ ·---·----I L --" --~-~ l . . r--·---------------~ ---------n · •-~ ----I ---------T I , -l ...;::.:. -==-r I~ I'-J i T--r-· ! i 1 -:··--:-TT --: .. :-·r--I:-· -----+-~·_t ~·oo2!2U:u_:__l -· -.
1 ! .. ~-. .·· .
0 r..
-6..0
(. ,
"' 820 ~
600
.......
I I ,--·:-·-~· .,. : ••. : •
. / i . . ~. . i I .
. . ...... ' • .. · .. :·
I
I
--1 .
~~J . ~
Horizontal: 1• = 800'
Vertical: 1• = 30'
. -BOT T O M ,
{
---W4Ttloflt ~#IC.tr:'A G &' !
~ Jf/MI ----· &Dt:~ O il u:•
• -· --1 0P O' IG£ A T SUOR C
_ _ WAT.,. .S <.HV 'ACI!! .~IZ.IWJZ ( _ ...... n:w"" or /Cl!
7 · 7 1-u V t.'
PHOTO 4.1
Frazil ice discs collected from floating ice pan.
PHOTO 4.2
S u sitna River at Go ld Creek on· October 16, 1982, looking downstream from the
railroad bridge. Note the frazil s lu sh floes and shore ice development.
~ &M :::ONSULTANTS, IN:::.
aNGI NaCRS OCOL.DCI!JT!i P'"-ANNe-IJ'tS S UAVC.VD.S SUSJTNA JOINT VENTURE 76
PHOTO 4.3
·_, }_ -~
Shore ice constriction near Slough 9 on October 26 , 1982 . Flow i s from r ig ht to
left . Note the successive layers of slush ice that have built up along the left
bank. Slush ice is being compressed throug h the surface constriction ,
emerging on the left as r afts.
PHOTO 4 .4
Slush ice accumulating by j u x ta position on October 29, 1982 at Sunshi ne . Flow
is from left to rig ht . This area represents the l eading edge of an ice front
that has just p assed the Park s Highway Bridge . Note t he fl ooded side cha n nel
in th e upper photo . The ice pack has caused a loca l i ncrease in water level of
about 2 feet .
R&M CONSULTANTS, INC.
•NOIN•a•a O&OLOO,aTa PLANN.Aa av•vavo•a 77 SUSI TNA J OINT VENTURE
I
Border ice growth .
low-velocity region
collisions by floating
PHOTO 4.5
The smooth areas are black ice or snow ice formed in the
along the shore . The layers of ice are caused when
ice p a n s deposit frazil ice along the edge .
PHOTO 4.6
Hummocked ice at river mile 103 , formed by the accumulation of slush , ice
floes, and snow which progresses upstream during freeze-up .
R&M CCNSUL.TANTS, INC.
eNGIN···· OaOLDDI•Ta •'-ANNe•• au .. vavo•a 78 SUSITNA JOINT VENTURE
PHOTO 4.7
Ice plume near Slough 9, flowing towards bottom of photo . Frazil ice can form
in September on the upper Susitna River between Denali and Vee Canyon where
air temperatures are generally much colder than near Talkeetna . These ice
plumes are often the first indicators of frazil formation.
PHOTO 4.8
Anc hor ice dam formed at river mile 140 , between Indian River and Portage
Creek. Ancho r ice has f o rmed on the rocks due to attachment of frazil ice .
R&M CONSULTANTS, INC.
.NOtNa .... a a•O\.OCitWTa ~ANN••• au"v •vo•a 79 SUSITNA JOINT VENTURE
..
PHOTO 4 .9
Sample of ice taken du ri ng breakup at river mile 142. Den~e concentrations of
anchor ice were observed through this reach during freeze-up . This ice had
accumulated sediment by filtration and entrapment of saltating particles .
-. -~ ·~ -:.: ::.; ,..
··--s.J
--. -. ---...... -
PHOTO 4.10
Slush ice bridge at river mile 10 on October 26, 1982. Th is ice bridge is the
key to upstream progression of the ice cover up the lower Susitna Ri v er . The
bridge forms when large vo lumes of ice d ischarge are unable to pass through
the river bend.
R&M CONSULTANTS, INC.
•Nau-.•••"• a•o~oa•aTa ~ANN8Aa au•vavo•• 80 SUS/TNA JOINT VENTURE
•• s_zu
----...
·-..
P HOT O 4.11
Confluence of Montana Creek and Susitna Riv er , October 29, 1982 . T 1e ice
cover progression caused staging of about 4 feet, demonstrated by the wa ter
backed up at the tributary mouth .
PHOTO 4 .12
Leading edge of ice cover at r ive r mile 95 on November 2, 1982 .
fl-{]f)JW &J IE fBi!~~®
SUSITNA JOINT VENTURE
c:;&M =oNSLJLTAI\!TS, INC.
.NOfNaeaa OCCLD0t8 T a PLANN.AS SuavevOA 8 81
•
•
I
I
I
PHOTO 4.13
View of the mainstem, adjacent to the town of Talkeetna , on October 30, 1982.
The water level dropped over 3 feet since October 12 , exposing the gravel bar
in the foreground. The photo was taken 5 days before the ice front pass ed
Talkeetna . By November 7, this areas was covered by 4 feet of ice .
PHOTO 4.14
View of the mainstem, a djacent t o the t own of Talkeetna , on November 4 , 1982.
The ice fro nt has prog ressed to w ith in 1 mile of this area , and caused the
water lev el to inc r ease o ver 2 f eet. The s h ore ice i n the foreground has
fri:lgmented and wi ll eventually was h awa y .
R&M CONSULTANTS, INC:.
aNOIN•••• aaoLooeeTa •~o..aNN•A• a u •vevo•• 82 ~ll f:'ITAIA ,,.. ..... -· ·-·
~.
·--:_ '-
PHOTO 4.15
Susitna-Chulitna confluence, looking upstream on October 18, 1982. The slush
ice was sti ll moving easily through this area . The Chulitna east channel is
e ntering from the left.
PHOTO 4.16
View of the Chulitna confluence with the Susitna mainstem, looking upstreaM on
October 29, 1982 . The Chulitna west channel enters in the left fo reground, the
east cha nnel comes in on the upper left, and the Susitna River flows diagonally
f rom the center to the right margin . Note the slush ice accumulation at the
east channel.
R&M CONSULTANTS, INC.
aNO•N•••• a•a~oa••T• •\..ANNa~~t a au•vavo•• 83 SUSJTNA JOINT VENTURE
Susitna River confluence with
view looki ng downstream on
confluence has consoli dated
subsequent flooding. About
channel .
PHOTO 4.17
the Chulitna east channel on November 2, 1982,
the Susitna. The slush ice constriction at the
and frozen , creating this jam and causing
1000 cfs is being diverted into the Chulitna east
PHOTO 4.18
Looki ng downstream at leading edge at river mile 106 near Chase on November
9 , 1982. The ice cover was stagi ng to overcome high velocities at the leadi ng
edge. However, water flowed into the side-channel at left , preventing
extensive backwater development until the side-channel filled with ice.
R&M CONSULTANTS, INC.
8NOtNae•• GaOL0018Te •LAN .... eA8 SUtltVAYO•s 84 SUS/TNA JOINT VENTURE
-----------
PHOTO 4.19
Ice cover at Slough SA on March 14, 1983 . The steep-walled channel in the
center is between consolidated slush ice . Staging had caused large volumes of
slush ice to be swept into the slough, which developed slush ice thicknesses of
5-6 feet.
PHOTO 4.20
Susitnd River at Gold Creek on January 13 , 1983 .
constricted the water surface width to less than 50
ice cover progressed past Gold Creek on January 14 .
R&M CONSULTANTS, INC.
aHOIN..... 0•011..001aT8 Dl,.ANN.A8 SUIIIIIV8VO .. S 85
Shore ice development has
feet under the bridge. The
SUSITNA JOINT VENTURE
PHOTO 4.21
Susitna River at river mile 106 on November 17 , 1982. Flow is from the upper
right to lower left. Ice cove r has telescoped to cover the river channel frorr.
bank to bank . Note the sagging ice cover over the narrow winter channel anc
the open leads created by turbulent flow.
PHOTO 4 .22
Open leads on February 2 , 198 3 at rive r mile 103 .5 , vi e w looking d ow nstream .
Note the slush ice cover developing in th e foreground .
[J{Jj)jW u IEI:Jffil~~®
SUSITNA JOINT VENTURE
R&M CONSULTANTS, INC.
eNO•N•••• aao~oat•T• •l..ANN••• auAv•vo"• 86
PHOTO 4 .23
Anchor ice dam or sill at river mile 140 on December 15 , 1982. These dams
form when the r ocks to wh ich the frazil ice adheres are near the water surface .
The ice-covered rocks will continue accumulating additional layers of anchor ice
until they break the surface.
PHOTO 4.24
Ove rflow onto border ice caused by an anchor ice dam . Fl ow is normally from
upper left to lower right. The backwater effect of the anchor ice dam has
caused some water to be d iverted to the left o n this photo.
~&M CONSULTANTS, INC.
•NOIN.aA8 QeOl..OCISTS Pt..AN,.,.AS S UftVr;VOA S 87 SUSITNA JOINT VENTU.q£
' ) ..
~ . I
./·
PHOTO 4.25
Time lapse camera mounted on the south rim of Devil Cany0n near the proposed
damsite. This camera filmed the ice cover development in the canyon from
October 21 , 1982 until February 7 , 1983.
PHOTO 4.26
Ice bridge in Devil Ca n yon on October 21 , 1982. Th is closure represents the
first ice cover on the Susitna above Talkeetna. Flow is from left to right.
Th e initial constriction by shore ice is still evident. The channel has a shallo w
gradient , with a gravel bar o n th e right bank and a deep narrow thalweg along
the left bank.
R&M CONSULTANTS, INC.
.NOINae•a OaOL00$8T e .. LANN.RS au•v•vo•• 88 SUS/TNA JOINT VENTURE
PHOTC 4 .27
Ice cover in Devil Canyon at river mil e 151 on October 26, 1982.
t hickness along the shore is about 4 feet and will eventual ly thi cken to
feet . Fl o w is from lowe r left to upper right.
PHOTO 4 .28
The ice
cover 15
Extensive shore ice development near the confluence of Devil C reek . Fl o w is
from left to right . Sho r e ice had built o ut in successive layers to constrict the
channel unt il sl-ush ice could n o lo ng er fl o w through .
R&M C:CNSUI'-TANTS, INC. IIN OI,_..... a •OLOOtaTa P \.ANN.Aa S UAVa..,OIII S 89 SUSITNA JOINT VENTURE
s6/jj 1
5 .0 SUSITNA RIVER BREAKUP PROCESSES
Destruction of a r1 ve r ice cover progresses from a gradual deterio ration of
the ic e to a dramatic d isintegrat io n which is often accompani ed by ice jams ,
fl ooding, and erosion. The duration of breakup is primarily dependent on
the intensity d solar radiation , ai r tempe rature , an d the amo u n t of rain -
fall. An ice cover will rapidly break apart at high flows . Ice debris
accumulates at flow constriction s and c an become grounded . The final
ph ases o f brea kup are cha racter i zed by long open reaches separated by
massiv e ice j ams . A la rge ja m releasing upst ream will usually carry away
the remain i ng down s tream debris leaving the river channel virtually ice
free .
5 .1 Pre-Breakup Period
Breakup processes on the Susitna River a r e similar to those described
for other n o rthern ri ve rs , with a pre-breakup period , a drive, and a
wash (Michel , 1971). The pre-breakup period o cc urs as s nowmelt
begins due to increased solar radia t io n in early April. This process
generally begins at the lower elevations near the mouth of the Su si tna
River, working its way n orth. By late Ap ri l , the snow has gene ra lly
d isappeared from the rive r south of Talkeetna and has started to melt
along the r iver a bove Talkeetna . Snow o n the ri v ~r ice generally
disap pears before that a long th e ban ks, ei ther due to overflow or
because the snowpack is simpl y thinner on the river due t o exposure
to w i nds.
Overf low takes place because the rigid and impermeab le ice cove r fails
to r espond to water level fluctuations (Table 5 .1 ). Where th e ice is
continuous a nd unbroke n , stan ding water commonly appears i n the
sags and depres s ion s . Th is water substant:ally reduce s the ;•lbedo o f
the ice s urface. Wi thin d a y s , a n open water lead develo ps in these
depressions . With water levels steadily rising, the chan n el p eri meter
90
s6/jj2
expands , initiating undercutting of the stranded ice . This causes
portions of the ice cover to hang over the open lead . When the
critical shear stress is exceeded , portions of the ice.. cover collapse by
either hinging at t h e p oin t where it con tacts the rive r bottom or else
by shearing v ertically f rom the main ic e body . The ice fragments
then drift downstream to accumulate with other f loes against the solid
ice cov er at the d o wnstream edge of the lead (Photo 5 .1). By this
process, open leads gradually become wider and lon ger .
The high velocity reaches in which most leads form are more common
above Talkeetna because the river channel is relati v ely narrow , lac k s
a wide flood plain , and has a steeper grad ient . Downstream fro m
Talkeetna, the broad and shallow river channel has a lower gradient,
tend i ng to reduce v elocities by d is tri buting the flow o ver a wider
area. Here open leads occur less f requently, with extens ive overflow
being the first indil-dtor o f r i sing water levels. On April 7, 1983 , an
area of overflow near the Pa rks Highway Bridge covered the ice sheet
with ove r 6 inc hes of fl ow ing water (P hoto 5 . 2).
Solid and contin uou s ice covers can fragment en masse when the
pressure created by the rising water level can no longer be con-
tained . This was especially true o n the lower river downstream o f
Talkeetna. The shattered ice cover, howeve r, may rema in in place
for severa l days if the ice downstream remains i nt;:,ct.
By the end of Apr i l , 1983 , the Susitna R:ver was laced with long,
narrow open leads . Floes that had fr7.~gmented from the ic e had
accumulated into small ice jams. The configuration o f these small ice
jams o ften resembled a U o r V-shaped wedge, the apex of the wedge
corresponding to the highest velocities in the flow distribution . The
cons ta nt pressure e x erted by these wedge-shaped ice jams effectively
lengthens and widens many open leads, 1·edu ci ng the p o tential f o r
major ice jams at these points.
91
s6/jj3
5 . 2 Breakup Drive
The drive , or the actual downstream breakup of the ice cover , o ccurs
when the discharge is high enol.!gh to break and move the ice sheet .
The intensity and duration is dependent on meteorological conditions
during the pre-breakup period. Both weak and strong ice drives
have been observed on the Susitna River during the last 3 years . In
1981, there was a mi nimal snowpack and only light precipitation
during spring . Air temperatures were warmer than normal in early
spring, but returned to normal in April , resulting in slow melting of
what snow there was . Consequently, there was not a sufficien t
increase in flow to develop strong f o rces on the ice cover, and the
ice tended to slowly d isintegrate in place . Although some ice jams
did occur during the drive , they did not tend to last long , and the
breakup was generally m ild.
Conditions were rev ersed i n 1982 . A heavy snowpack remaining i n
late April and temperatures slightly cooler than normal prevented
weakening of the ice . The ice remained sufficiently strong to cau se
several severe jams. Near RM 128 bebw Sherman , a dry jam formed
which diverted most of the flow out of the mainstem into side chan-
nels . Closer to Talkeetna , a jam f o rmed at RM 107 that lasted for
3 days , jamming ice for o v er a mile and damaging sections of the
Alaska Railroad track.
Jam s ites gen erally have similar chan nel configuratio ns , consi s ting of
a broad c hanne l with gravel islands o r bars , and a narrow , deep
thalweg confined along one of the banks . Sharp bends i n the river
are also good jam sites . The presence of sloughs on a river reach
may indicate the locations of frequently recurring ic e jams . Many of
the s lo ughs o n the S usitna River between Curry and Devil Canyon
were c a rved t h r o u g h terrace pl ai ns by some e xtreme flood. Summer
floods , although frequent ly flowing th ro ugh sloughs , do not gene ra lly
result in water levels high enough to ov ertop the r:ver ban k.
92
s6/jj4
During b r eakup , however , ice jams commonly cause rapid , local stage
increases that continue rising until either the jam releases or the
sloughs are flooced . While the jam holds, channel capacity is greatly
reduced, and flow and large amounts of ice are diverted in to the
trees and side-channels. The ice has tremendous erosive force, and
can rapidly remove large sections of bank. Old ice scars up to
10 feet above the bank level have been noted along side-channels
near this reach . It appears that these sloughs are an indicator of
frequent ice jams on the adjacent mainstem , influencing the stability
and longevity of these jams by relieving the stage increases and
subsequent water pressures acting against the ice .
In May of 1976 dur i ng an extreme ice jam event at river mile 135 .9 ,
the river not only flooded the adjacent bypass channel but also
carved out what is now identified as Slough 11. Photo 5 .3 is a
photog r ap~, taken from the Gold C reek railroad bridge on May 7 ,
1976 , showing a substa ntial volume of water flowing through
Slough 11 . The ma instem and bypass chan nel are towards the right
of the photo and appear to be completely ice choked. Local residents
have indicated that this event created most of Slough 11 . Several ice
jams of smalle r magnitude since 1976 have also breached the berm at
the channel head and enlarged the s lough to its present configura-
tion.
The follow i ng chan nels between Devil Canyon and Talkeetna, are
regularly infl u enced by ice-ind uced flooding duri ng breakup:
Slough 22
Slough 21 from RM 142 .2 to RM 141
Slough 11 from RM 136.5 to RM 134.5
Side channels from RM 133 .5 to 131 .1
Side channels from RM 130 .7 to 129.5
Slough 9
Slough 8A and 8
Slough 7
93
s6/jj5
In general , the f in al destructi o n of the ice cover is accomplished by a
s e ries of ice jams wh ich break 1n succession and are added t o the
nex t jam . This mass o f ice continues buildi ng as it move s down-
stream . Upst rea m from this accumu latio n , the river channel i s com-
monl y ic e free except for stranded ice floes and some drift ing ice
c o mi ng from above Devil C an yon.
Ice studie s during the 1983 Susitna Ri ver breakup were primarily
ori e nted towards acq u i ring ice jam profi les on the river reach between
Tal k eetna and Devil Canyon as well as quantitative data on ice thick-
nesses, staging , and i low velocities (Fi gure 5 .1 and Tables 5 .1 to
5 .4). Bel ow Talkeetna , the use of loca l observers and aerial recon-
na is sa n ce flights resulted in information on the sequence of brea k up
in the lower Susitna R ive r .
Measurem ents were initia lly takeP tw ice da i ly at specific sites above
Talkeetna known to be affected by ice jams . Water surface elev a-
tions , ice thi cknes s es , an d ice cover erosion rates were measured
through b o re holes. Velocities in the mainstem abo';e and below ice
jams were successfully measured by suspendi ng an electronic sensor
with 30 feet of wire cabl e fro m a heli copter and obtaining a spot
reading at 2 feet below the wate r surface. The water depth both
above and b elow jams was a lso often measured by r ead i ng the depth
d irectly from metal flags attached to the cable which was k ept vert ical
wi th a 50 lb . lead weight . Wit h the exception of water depth , these
d ata are presented i n T a ble 5 .1 . Residents at Susitna Station , the
Deshka Ri v er coi1f luen c e , and Gold Creek p r o v ided measurements of
water levels and ice thick nesses as well as qual itative desc ri ptions o f
the seq uence of events lead ing up to ice-out . Weekly aerial
reconn ai ssance flights were cond ucted in order to document the
interrelationship betwee n river reaches . Tables 5 .1 t o 5.4 at the end
of th is sectio n present all pertinent information. The follow ing de-
sc r iption is a chronological sequence o f breakup even ts . Breakup o n
94
s6/jj 6
the lower Susitna is f i rst d e s cribed , f ollowed by t h e d escri p tio n o f
brea k up events above T alk eetna fro m A p r i l 27 to Ma y 10 , 1983 .
The major streams flow i ng d i rectl y i nto the lo wer Sus it n a Riv er we r e
c o ntributi ng substantial disc harg es by April 27 , 1983 . The ice was i n
varying stages o f decay o n these tributaries , with Ka s hwitna C r e e k
retaining a virtually intact ice c over , and Montana C reek , Sh e ep
Creek , and Will o w Creek breaking up rap idl y . By A pril 28 , t h ere
was an o pen c hannel for mo st o f t he reach b e t ween Ta lk·!etna and the
Parks Highway Bridge . Observ ation during an ae rial r ~co nna i ssance
on Ap r il 29 d o cumented a rapidly d i sinte grati ng main s t ,~m ice cove r
from Talkeetna down t o the Mo n tana Creek co nflu ence . Further
downstream , the mainstem ice cover was ex tensively flooded but
remained i ntact . Above t h e Parks Highway Bridge the ice cover had
shattered into large ic e sheets i n several areas .
these fra g ments h o wever , prevented the ice from
Sunshine , an ice cov ered reach was fl ooded by
The large s i ze o f
flowing o ut . At
about 0 . 5 feet o f
overflow and y e t r e ma ined intact . No ic e jams had occurred .
Observers at Susitna Station r epo r ted ice begi nning to move down -
stream on May 2 w ith flowing ice conti nu i ng to pass fo r several da y s
(Table 5 .2). Desh k a River resi den ts o b s erved the fi rst ice mo v ing
o n May 4 and the steady ice flows ending on Ma y 10 (Table 5 .3). No
significant j ams were note d. This indica tes an ups tream prog r essio n
o f ice brea k up wh 1c h c onfi rmed the aeri al o bserv ations o n th e r iver
below Montana Creek.
The largest ice jam observ ed on the lower r iv er o ccurred on May 3
near the confl uen c e w ith Mo ntana Creek at RM 77 . Here an e x tensi v e
acc umulation of drifting ice debr is h ad fa i led t o pass around a ri v er
bend and jammed (Photo 5.4). The Montana Creek confluen c e was
f looded but n o damage o r s ig n if icant impact by ice or water was
noted .
95
s6/jj7
On May 4 , 1983 , two relati v ely small ice jams formed at RM 85 .5 and
RM 89 . The j am keys were small b ut even the minimal stagi ng that
resulted caused extensive flooding of the surrounding gravel and
sand flood plain. Many logs were set adrift that had previously been
stranded after high summer flows.
On April 27 , 1983 , daily observations and data acquisition began
upstream of Talkeetna. By th is time, the river had opened in some
areas by the downstream progression of small ice jams (Photo 5 .1).
These minor ice floe accumulations r emained on the water surface,
often breaking down any intact ice cover obstructing their passage .
As described earlier , this process is ini tiated in open leads wh ich
gradually become longer and wider u ntil extensive reac hes of the
channel are essentially ice free . These sma ll ice jams may be impor-
tant in preventing the occurren ce of larger, grounded ice Jams. This
was evident in 1983 when large ice jams released , sending tremendous
volumes of floating ice downstream. The small jams had provided
wide passages for the flowing ice which may have jammed again if the
channel had remained constricted. On April 27, extensive channel
enlargements and small ice jams were steadily progressing downstream
near the following locations:
Portage Creek, RM 148.8
Jack Long Creek, RM 145 .5
Slough 21 , RM 142.0
Gold Creek, RM 135.9
Sherman Creek , RM 131
Curry Creek, RM 120
A large jam had also developed near Lane Creek at RM 113 .5 and was
apparently grounded. Flooded shore ice surrounding the j am
indicated that some water had backed up . A noticeable increase in
turbidity occurred on this day.
96
s6/jj8
On May 1 , the ice jam key at Lane Creek had shifted down to RM
113 .3 and was still accumulating ice floes at the upstream en d . The
source of the floes was limited to fragmen ting shore ice and no
sign ifica nt accumulat io n would occur here unt i l ice jams further up-
stream released . The ice jam near Slough 2 1 had increased in size
and was ra isi ng the water level along the upstream edge . This
backwater extended approximately 300 feet upstream. Figure 5.1
-;hows a relative stage increase at this measurement site of over 3 feet
in 24 hours , i llust r ating the water profile before and after this ice
jam occurred.
By May 2 , 1983, several large ice jams had developed. The small ice
jam at Gold Creek had broken through the retaining sol id ice s heet ,
forming a continuous open channel from RM 139 near Indian Ri v er to
a large ice jam at RM 134.5. The small ice jam that had been
fragmenting the solid ice at the downstream end of an open lead
adjacent to Slough 21 had progressed down to RM 141. A large jam
had developed at RM 141 . 5, leaving an open water area between \ e
two jams. The upstream ice jam was apparently created when a
massive ice sheet snapped loose from shore-fu st ice and slowly pivoted
out into the main stem flow, maintaining contact with the c hannel
bottom at the downstream left bank corner . The ice sheet was ap-
proximately 300 feet in diameter and probably between 3 and 4 feet
thick. The upstream end p ivoted around until it contacted the right
bank of the mainstem . The ice sheet was then in a very stal ~
position , jammed against the steep right bank and grounded in shal-
low water along a gravel island on the left bank . Several small ice
jams upstream had released and were accumulating against this ice
sheet , extending the jam for about o ne-half mile . The water level
r o se, with an estimated 2,000 cfs flowing around the upstream end of
the g ravel island at RM 142 into a side chan nel. Th e entrance berm
to Slough 21 at cross section H9 was also overtopped . Although the
estimated discharge at Gold Creek was less than 6 ,000 cfs based on a
staff gage reading, the normal summer flows required to breach this
97
s6/jj9
berm exceeded 20,000 cfs. The entrance channel at cross section A5
was breached, with abou t 150 cfs being diverted into the lower
p ortion of Slough 21. Many ice floes also dr ifted through this narrow
access channel and were grounded in the slough as the flo w was
distributed over a wider area . This illustrates the extreme wate r level
changes caused b y ice jams .
By May 4 , 1983 , stable ice jams had developed and were gradually
growing i n size at the f ollowing locations between Talkeetna and Devil
Canyo n:
Lane Creek at RM 113 .2
Curry at RM 120.5 and RM 119 .5
Slough 7 at RM 122
Slough 9 at RM 129
Sherman Creek at RM 131 .4
Slough 11 at RM 134.5
Slough 21 at RM 141 .8
Downstream from the ice jam at Lane Creek, the ice cover was still
intact , although extensively flooded . Between Lane Creek and
Curry , the channel was open and ice free with the exception of some
remnant shore ice . From C urry upstream to the ice jam adjacent to
Slough 7 some p ortions of the ice cover remained , but wet~e severely
decayed and disintegration seemed imminent . An intact ice cover
remained from Slough 8 past Slough 9 to the ice jam at Sherman.
This ice cove r had many open leads and large areas o f fl ooded snow .
Between the remaining ice jams at Sherman, Slough 11 and Slough 2 1 ,
the mainstem was essentially C"?en.
The jam at S lough 21 was still receiving ice floes from the dis i nte -
grating ice cover above Devil Canyon. As ice floes accumulated
against the upstream edge of the jam , the fl oa ting layer became
increasingly unstable. At some critical pressure within this cover,
98
s6/jj 10
the shear r esistance between floes was exceeded, r es ulting in a chain
reaction of collisions that rapid ly caused the entire cover to fail . At
this point, several hundred feet of ice cover consolidated simulta-
neously. These consolidation phases occurred frequen tly duri ng a
4 hou r observat io n period at Slough 21 on May 4 . The frequ e ncy was
dependent on the volu me of i n coming ice f loes . Wi th each consolida-
tion , a surge wave resulted . During one partic ular consolidation of
the entire half-mile ice jam , a surge wave broke loose all the
shorefast ice along the left bank and pushed it o nto an adjacent
gravel island . These blo cks of shore ice were up to 4 feet thick and
30 feet wide . The zone affected was almost 100 feet long , with the
event la sting o nly a few seconds. This process is essentia lly the
same as telescop ing during freeze -up except that the ice is in massi v e
rigid blocks instead of fine frazil slush , and is thus capab le of erod-
ing substantial volu mes of material in a very short time (Photos 5.5 ,
5. 6). The ease with which these ice blocks were shoved over the
river bank indica tes the tremendous pressures that b uil d within maj or
ice jams .
During all of the obse rved consolidations at Slough 21, the large ice
sheet forming the key of the jam never appeared to move o r shift .
The surge waves would occasionally overtop the ice sheet , sending
smaller ice fragments rushing over the surface o f the sheet. Towards
the end of the day , the ice sheet began to deform . Solar radiation ,
erosion and shear stresses were rapidly deteriorating this massive ice
block . Final observations sh owed it to have buckled in an undulating
wave and fractured in places . Observers at the Gold Creek Bridge
reported tremendous volumes of ice flowing downstream at 6 p.m . on
May 4 . Taking into account the travel time , this indicates that the
jam had probably released about 1 hour earlier.
The ice released at Slough 21 continued downstream unobstructed
until contacting the jam adjacent to Slough 11 at river mile 134 .5.
The s udden influx o f ice displaced the mainstem wate r and caused a
99
s6/jj 11
rapid rise in water levels. The stage increased sufficiently to breach
berms and fl ood the side channel below Slough 11 adjacent to
mainstem ri v er mile 135. The jam key at this site consisted of
shorefast ice constricting the mainstem flow to a narrow channel of no
more than 50 feet . Large ice floes , mostly from the ori ginal jam at
Gold Creek, had lodged tightly in this bottleneck. Pressures
appeared to be exerted laterally against the shore-fast ice which
inherently is res istant to movement due to the hig h friction coefficie nt
of the contacting river bed substrata.
On May 5 , few significant changes were observed in the ice jams
despite warm ~ sunny weather and constantly increasing discharges
from the tributaries to the main stem.
It was at first thought that when the ice broke at Sl o ugh 11 on May 6
(Photo 5 . 7), it would carry away the ice jam at Sherman and start a
sequence that could destroy the river ice cover potentially as far
downriver as Lane Creek . This was prevented by an event that
actually increased the stability of the jam at Sherman so that it held
for several more days . When the ice jam released near Slough 11 and
the debris approached the jam at Sherman, it created a momentary
surge of the water level. This surge broke loose huge sheets of
shore ice which slowly spu n out into the mainstem. One triangular
ice sheet about 100 feet w ide wedged tightly between two extended
sheets of shore-fast ice (Photo 5 .8). Ice floes continuing to
accumulate against the upstream edge of this wedge exerted
tremendous pressures o n the o bstruction (Photo 5. 9). A pressure
ridge rising at least 10 feet above the ice formed along the contact
surfaces of the wedge (Photo 5.10) .. Th is ridge consisted of angular
fragments and ice candles .
The water level continued to rise as the mainstem channel filled with
ice which eventually extended upstream to RM 132. 5. The ice jam
had lengthened to over 1 . 5 miles (P h o to 5 .11). Flooding quickly
100
s6/jj 12
occurred on the side channels adja cent to the mainstem and some ice
drifted away from the main cha nnel. The volu me of water flowing
through the side channel was estimated at approximately 2 ,000 cfs .
As the ice jam consolidated and the water level rose , even more water
was diverted through the bypass channels. This volume of diverted
flow was critical to the stability and duration of the ice jam. Even
though the jam i ncre ase d in size, any additional hydrostatic pressure
was relieved by diverting water into the side cha nnels. The entire
sequence of events lasted only about 10 to 15 minutes. The water
level rose over 1 foot during this time span . Consolidations occ urred
periodically for the rest of the day but the jam key was never
observed to shift .
Other maj or ice jams keys on May 6 were located at :
Watana Oamsite
Sherman Creek at RM 131.5
Slough 9 at RM 129
Slough 8 near Skull Creek at RM 124.5
Slough 7 at RM 122
Curry at RM 120 .5 (Photo 5.12)
Lane Creek at RM 113
A small and unstable ice jam at RM 126 near Slough 8 had
consolidated and the resulting surge started a rapid disintegration of
the remaining ice cover down to the mouth of Slough 8 near Skull
Creek. This same surge appeared to have breached the entrance
berm to Slough 8. Slough 9 was flooded by a jam at RM 129 near the
upstream channel entrance . The Slough 7 ice jam received some
additio nal floes when the jam at Slough 8 released. This resulted in
a rise in water level and flooding at RM 123 .
At 6:30 p .m . on May 6, a moving mass of ice debris that stretched
continuously from RM 136 to RM 138 , with lesser concentrations
101
s 6/jjl3
extendi ng for many more miles upstream , was observed approaching
the Shetlllan ice jam . However , the consequences of this on the
Sherman jam •vere not immediately observed. The condition of the
floes indicated t hat this ice origi nated from above Devil Canyon. The
well -rounded floes appeared to be no larger than 1 foot i n diameter
and were p r esumably shaped by the high number of collisions
experienced in the turbulent rapids through Devil Canyon.
Reconnaissance of the river above Devil Canyon on May 6 revealed a
ma instem enti rel y clear of an ice cover for many miles. Stranded ice
f loes and fragments littered the river banks up to the confluence of
Fog Creek . In several short reaches f rom here upstream to Watana,
the ice cover r e mained intact. A large jam had developed near the
proposed Wata,a damsite and extended approximately 1 mile (Photo
5. 13).
On May 7, the following ice jams persisted :
Key Location
Watana Damsite
Sherman , RM 131 .5
Slough 7, RM 122
Slough 6A, RM 11 2.5
(formerly Lane Creek jam)
Length
1 mile
3 .5miles
1 mile
2 miles
Downstream from the jam at Slough 6A, the rive r retained an inter-
mittent ice cove r that was severely decayed a nd flooded. Below the
Chulitna confluence , the mainstem was ice free an d no ice jams were
observed. The reaches between the remaining ice jams were generally
wide open. The Curry jam had release d overn igh t and traveled all
the way t o the Lane Creek jam . Here , the sudden increase in ice
mass shov ed the entire ice jam downstream about 1 mile where it again
encountered a solid but decayed ice cover.
102
s6/jj 14
At about 10:30 p.m. on May 8, the ice jam at Sherman released
(Photo 5 .14), sending the total 3 .5 miles of accumulated ice drifting
downstream en masse at approximately 4-5 feet per second . This
accumulation of ice, representing many thousands of tons, easily
removed the remaining ice jams at S lough 7 and Slough 6A . In
addition , the last solid ice cover between Slough 6A at RM 112 and
the Susitna-Chulitna confluence at RM 98 .5 was destroyed and re-
p1aced i.."'Y one long , massive ice jam (Photo 5 .15). This jam extended
continuously from RM 99.5 to RM 104 and then was interrupted by an
open water section up to RM 107. At this poi nt a second ice jam
resumed upstream to RM 109.5. This blockage was late r measured t o
be over 16 feet thick in some sections but more commonly was about
13 feet th ick .
These ice jams released on the night of May 9. Further observations
were conducted on May 10 between RM 109 and RM 110. Along this
reach , the final ice release had left accumulations of ice and debris
stranded o n the river banks, lea ving ice fl oes deep in the fores t
(Photo 5. 16). When the ice jams released, the ice floes pi led up
along the margins did not move , probably due to strong frictional
forces against the boulder strewn shoreline . This created a fracture
line parallel to the flow vector where shea r stresses were relieved
(Photo 5. 17). The main body of the ice jam flowed downstream
leaving stranded ice deposits w ith smooth vertica l walls at the edge
of water. These shear walls at RM 108.5 were 16 feet h ig h (Photo
5.18). The extreme height of the water surface within the ice jam
was demarcated by a difference in color . A dark brown layer
represented the area through which water had flowed and deposited
sediment in the ice pack. A white layer near the surface was free of
sediment and probably was not inundated by flowing water.
On May 10, thP o nly remaining ice in the main stem was on the upper
river above Watana. Here an ice jam about 1. 5 miles long had devel-
oped near Jay Creek.
103
s6/j jl5
Ice floe s continued to drift d o w nstream for several weeks after the
f i nal ice jam at Chase rel eased. As increasing d ischarges gradually
raised the water level , ice f loes that had been left stranded by ice
jam surge waves were carried away by the current. On May 21 , the
massive deposits of ice floes , fragments , slush , and debris were still
intact near Whiskers Creek and probably would n o t be washed away
u ntil a h i gh summer flow.
The ice break up of 1983 occurred over a longer time span than in
previous years , according to historical informatio n and local resi-
dents . This was primarily due to the lack of precipitation during the
c ritical period when the ice cove r had decayed and co uld have been
easi ly and quickly destroyed by a sudden, area-wide stage increase.
During a yea r with more precipitation in late Apri l , ice jams of great-
er magnitude ma y form and cause substantially more flooding and
subsequent damage by erosi o n and ice scouring.
Sev e r al important aspects related to 1ce jams were obs erved this year
and are summarized here :
1. Ice jams generally o cc ur in a reas of si milar channel configura-
tion, that is , shallow rea c hes with a narrow confined thalweg
channel along o ne bank .
2. Ice jams commonly occur adjacent to side channels or sloughs .
3. Sloughs act as bypass channels during extreme mainstem stages,
often relieving the hydro static pressure from ice jams and con-
trolling the water le v el in the main channel. Ice jam flooding
probably formed the majority of the sloug hs between Curry and
Gold Creek.
4 . Ice j ams commonly c rt~ate surge waves dur i '1g consolidation which
hea ve ice laterally onto the overban k.
104
s6/jj16
5. Large ice sh eets can break loose from shore-fast ice and wedge
across the main stem c hannel , creating extremely s table jams that
generall y only release when the ice deca y s .
105
s5 /gg 1
TABLE 5.1
WATER STAG E AND R IVER ICE THI CKN ESS
MEASUREMENTS AT SELECTED MAINSTEM LO CA TIONS
Water
Ice Surface Top of Ice
T hicknes s Ele v ation 1 Elevation 1 Velocity3
(ft) (ft) (ft) ft/sec
Aeril 271 1983
Gold C reek Di scharg e :
2 Observed = 4300 cfs
USGS = 2700 cfs
Portag e Creek 832 .54 5 .2
Slough 21 I LR>:-57 749 .69 755 .5 2 .1
Slough 21 I LRX · 54 3 . 1 732.2 1 733 .3 2 .6
Gold Creek 682 .04 4.6
Slough 11 I Mouth [1 .11] [3 .3] 4.3
Slough 91 Sherman 6 17 . 18 1.1
Sl oug h 9 1 Mouth 2 .2 [5 .74 ] [5.7]
Aeril 28 1 1983
Gold Creek Discha r ge :
Observed 2 = 4100 cfs
USGS = 2900 cfs
Portage C reek 3 .9 834 .22 (+1 .68) 83 7.0
Sloug h 21 I LR X -57 4 .2 753 .03 (•3 .3) 754 .7 (-0.8)
Slough 21 1 LR X -54 3 .0 (-. 1 ) 732.32 ( +. 1) 733.3
Gold Creek 681 . 94 ( -. 1)
Sl oug h 11 1 Mouth [ 1. 26] (+. 1 ) [2 .2] (-1.2)
Slo u g h 9 1 Sh erman 617 . 16 620 .1
S l ough 9 1 Mo uth 2 . 1 (-. 1) (5.57] (-.2) [5 .8 ]
Slough 8 1 Head 5.3 3.6
Sl o u gh 81 LRX-28 55 2 .39
Curry 3 . 1 522 .46 524 .8
Mc Ken zie Creek 487 .92 493 .3
Lane Creek 2 .9 [ 4. 0 1] [4 .8] 3 .6
LRX -1 1 [ 1. 22] (5 .3 ]
LRX-9 379 .3 2 383 .9
LRX-3 3 .7 34 1.00 342.4
106
s5/gg2
TABLE 5 .1 (Continued)
Water
Ice Surface T o p of Ice
Thickness Elevation 1 Elevation 1 Velocity3
(ft) (ft) (ft) ft/sec
Ae ril 29 , 1983
Go ld Creek Discharge:
2 Observed = 4100 cfs
USG S = 3100 cfs
Portage Creek 2 .8 833.04 (-1 .18) 834 .0 (-3.0)
Slough 21 , LRX-57 3.9 753 .10 754.5 (-.2) 2 .4
Slough 21 , LR X-54 2.9 (-. 1) 732 .32 733 .3
Gold Creek 681.94
Slough 11, Mou th 1 .3 [1. 23] [2 .5]
Slough 9 , Sherman 617 .29 (•.1) 5.4
Slough 9 , Mo uth 2.0 [5 .80] (+.2) [5 .6] (-. 1)
Slough 8, Head 5 .0
Slough 8 , LR X-28 552.51 (+.13)
Curry 3.0 522.64 (•.18) 524.8
McKenzie Creek 488 . 05 ( + . 13 )
Lane Creek 2 .9 [4 .18 ] (•.17) [4 .8 ]
LR X-9 380 . 63 ( + 1 . 31)
Talkeetna Airstrip [0 .55]
Aeril 30, 1983
Gold C reek Discha rge:
2 Obse rved = 4325 cfs
USGS = 3300 cfs
Portage Creek 2.5 (-.3) 833.09 833.9 (-.2)
Slough 21, LR X-57 4 .0 ( +. 1) 753.74 (+.64) 754 .52 2.8
Slough 21 , LR X-54 2.9 731 .51 (-. 8 1) 733 .2 (-. 1) 1.5
Gold Creek 682.05 (•.11) 3.6
Slough 9 , Mouth 1 . 8 (-.2) [5 .82] [5 .5 ] (-. 1)
Slough 8 , Head --5.7
Lane C r eek 2 .9 [3 . 90] (-.28) [4 .8 ] 5 .3
LRX-11 [1.81] (-.4)
LRX-3 3.6 343.43 (+2 .46) 343 .0 ( +. 6)
107
s5/gg3
TABLE5 .1 (Continued)
Wa ter
Ice Surface Top of Ice
Thickness Elevation 1 Elevation 1 Velocity3
(ft) (ft) (ft) ft/sec
Ma•t 1, 1983
Gold Creek Discharge :
2 Observed = 4700 cfs
USGS = 3600 cfs
Portage Creek 2 .1 833 .27 (•.2) 833 .4 (•.4)
Slough 21, LRX-57 3 .9 752 .54 (-. 6) 754.4 (-. 1)
Slough 21, LRX-54 2 .9 733.09 (•1.6) 733 .4 (•.2)
Gold Creek 682 .20 ( +. 15)
Slough 8, Head 6.5
Curry 2 .9 (. 1) 523 .21 ( +. 6) 524 .6 (-. 1)
Lane Creek 3 .0 [6 .85] (•2 .95) [6 .6] ( +1 . 8)
Ma~ 2, 1983
Gold Creek Discharge :
2 Observed = 5750 cfs
USGS = 3900 cfs
Portage Creek 2.2 833.63 ( +. 36) 833 .7 (•.3)
Slough 21, LRX-57 3 .9 753 .02 (+.48) 754.5
Slough 21 , LRX -54 2 .8 731 .74 (-1 .4) 733 .1 (-.2)
Gold Creek 682 .62 ( +. 42)
Slough 8 , Head 8 .1
Lane Creek 2 .9 [6 .37] (-.48) [6.5] (-. 1)
Ma~ 3, 1983
Go ld Creek Discharge :
2 Observed = 6180 cfs
USGS = 4200 cfs
Slough 21, LRX -54 2.8 (-.1) 731.91 (•.17) 733 .1 (-.3)
S lough 11 , Mo uth [4 .88] (+3.65)
Slough 8 , Head 9.6
108
s5/gg4
May 4 , 1983
Gold Cree k Discharge :
Observed2 = 6180 cfs
US GS = 4500 cfs
Gold Creek
Slough 8, Head
May 5, 1983
Gold Creek Discharge :
2 Observed = no data
USGS = 4900 cfs
Slough 9, H9 berm
Slough 9 , Sherman
May 6, 1983
Gold C reek Discharge :
Observed2 = 10 ,920 cfs
USGS = 5400 cfs
Gold Creek
TABLE 5.1 (Continued)
Ice
Th ickness
(ft)
(breached)
Water
Surface
Elev ation 1
( ft)
682.78 (+. 16)
606 .51
620 .89 (+3 .60)
684 .15 (+1.37)
109
Top of Ice
Elevation 1
(ft)
Velocity3
ft/ sec
9.2
s 5 /g g5
May 10, 1983
Gold Creek Discharge :
Observed2 = 14 ,350 cfs
USGS = 5800 cfs
Gold Creek
TABLE 5.1 (Co ntinued)
Ice
Thickness
(ft)
Water
Surface
Elevation 1
(ft)
684 .97 (•.82)
Top of Ice
Elevation 1
(ft)
Velocity3
ftlsec
1 . Values in brackets [ ] represent relative elevations based on an arbitrary
datum from a temporary bench mar k adjacent to the site. Values in parenthesis
denote the increase (•) or decrease (-) since the prev io us measurement.
2 . Observed discharges were computed from the U.S.G.S. stage/discha rge curve
and are based on staff gage readin gs. The second "US GS" va lue is the
provisional estimated flow obtained f r o m the US Geo logical Survey .
3 . Veloc ities represent measurements o btained at one point on a sectio n at a depth
of 2 feet near mid-channel.
110
~5/cc3
TABLE 5 .2
SUSITNA RIVER AT SUSITNA STATION
BREAKUP OBSERVA TIONS ON THE MAINSTEM
Staff Mean Air
Gauge 1 Temperature 2 Ice Thickness
Date illL (°C) (ft) Weather Apri l 1983
1 4 .7
2 4 .7
3 0 .8 3.3 Cloudy 4 6.18 2.8 3.3 Rain/Snow 5 6.23 3.1 3 .3 Snow 6 6.30 3 . 1 3 .3 Snow 7 6.33 3 .3 3 .3 Cloudy 8 6.33 3 . 1 3 .3 Cloudy 9 6.35 3.6 3 .3 Sunny 10 6.35 0.3 3 .3 Sunny 11 6 .35 0.0 3 .3 Sunny 12 6.35 0.6 3.3 Snow 13 6 .30 2.5 3.3 Snow 14 6 .40 4 .7 3 .3 Rain 15 6 .40 1.9 3.3 Rain 16 6 .58 3 .6 3 .3 Snow 17 6.68 1.9 3 .3 Rain 18 6.78 3 .3 3 .2 Snow 19 6.90 3 .6 3.2 Cloudy 20 7 .00 3.6 3 . 1 Cloudy 21 7.10 4.2 2 .8 Sunny 22 7.33 6.4 2 .6 Cloudy 23 7 .63 6.9 2 .6 Rain 24 7 .95 6.9 2 .4 Sunny 25 8.68 10.0 2.3 Sunny 26 9.43 7 .5 2 .3 Sunny 27 11 . 10 6 .1 2 .2 Sunny 28 11 .45 3 .6 2. 1 Cloudy 29 11.00 5.6 2 . 1 C l oudy 30 11 .45 3.6 1.9 Sunny
May 1983
1 6.4 Sunny 2 5 .0 Ice began moving Cloudy 3 6 .9 Ice flowing Cloudy 4 5.6 Ice f l owing C l oudy 5 5.8 Ice flowi ng C l oudy 6 6 .7 Open Sunny 7 8.3 Open Sunny 8 9 .4 Open Sunny 9 9 .2 Open Sunny 10 9 .2 Open Cloudy 11 11 . 1 Open C l o udy 12 12.5 Open C l o udy
1 . Relative elevation based on an arbitrary datum.
2. Average of the maximum and minimum temperatures.
111
s5/cc1
TABLE 5.3
SUSITNA RIVER AT THE DESHKA RIVER CONFLUENCE
BREAKUP OBSERVATIONS ON THE MAINSTEM
Staff Mean Ai r Snow
Gauge 1 Temperature 2 Ice Thickness Depth
Dati~ (ft) ( oc) (ft) illL Weather
April 1983
1 0.00 1.4 3.7 Sunny
2 0.00 1 . 7 Sunny
3 0.00 1.1 Sunny
4 0 .00 3 .3 Snow
5 0.00 1 . 7 Rain
6 0 .00 1. 9 Fog
7 0 .00 1.1 Sunny
8 0.00 1.7 Cloudy
9 0.00 2.2 Cloudy
10 0 .00 -1 . 1 0 .10 Su nny
11 0.00 -5.8 0.20 Cloudy
12 0.10 -0.6 1. 20 Snow
13 0.10 1.9 0.80 Cloudy
14 0.20 3 .1
15 0 .40 3.3
16 0.50 4 .2
17 0.50 1 . 7 1.0 Snow
18 0.60 2.8 Cloudy
19 0.70 4.2 Cloudy
20 1.00 4.2 Cloudy
21 1.00 4.7 Sunny
22 1.20 6.7 Rain
23 2.00 5.8
24 2.40 7 .2 Sunny
25 3.40 5.8 Sunny
26 3.40 6.7 Sunny
27 3.80 6.4 Sunny
28 3 .80 3.6 Cloudy
29 3.80 6. 1 Rain
30 4.10 6.4
May 1983
1 4.30 6.7
2 8.3
3 7.5
4 7.8 Ice began mov ing
5 6.9 Ice flowing
6 1.00 6.1 Ice flowing
7 1. 20 7.8 Ice flowing
3 1 . 20 9 .2 Ice flowing
9 1 . 20 9.7 Ice flowing
10 1 .00 8.9 Ice flowing
11 1.00 8.6 Open
12 1.10 10.3 Open
13 1. 90 10 .6 Open
14 1. 50 10 .3 Open
15 1 . 50 10.6 Open
1. Relative elevation based o n an arbitrary datum.
2. Average of the daily maximum and min i mum temperatures.
112
s5/cc2
TA BLE 5 .4
SUSITNA RIVER AT GO LD C REEK
BREAKUP OBSERVATIONS ON THE MAINSTEM
O pen
Staff Mean Air Chan n el
Gauge (1 ) Discharge (2) Temperature (3) Width (4)
Date illl_ (cfs ) (oC) (ft) Weather
April 1983
17 1700 2 .8 16 Snowi ng
18 1800 5 .6 16 Partly Sunny
19 1800 6 .9 20 Sunny
20 1900 5 .8 25 Sunny
21 2000 8 .6 40 Sunny
22 20 00 8.3 40 Rain
23 2.80 2100 9.7 40 Partly Cloudy
24 2 .90 2300 12 .5 40 Sunny
25 2400 8 .9 40 Sunny
26 2500 8.6 40 Sunny
27 2 .57 2700 9 .2 50 Sunny
28 2 .49 2900 7 .5 80 Cloudy
29 2.49 31 00 5 .0 150 Rain
30 2 .65 3300 200 Sunny
May 1983
1 2 .75 3600 8 . 1 Open Sunny
2 3 .17 3900 8 .3 Open Sunny
3 3 .20 4200 7 .2 Open Rain
4 3 .33 4500 8 .6 Open Sunny
5 4900 7 .2 Open Sunny
6 4 .70 5400 Open Su n ny
7 5 .52 5800 Open Sunny
8 6400 Open Sunny
9 7200 Open Sunny
10 8000 Open Partly Cloudy
11 9000 Open Sunny
1 . Relative elevations based o n an arbitrary datum.
2. Prov isio nal data subject to revision by t he U.S. Geological Survey , Water Resources
Div is ion , Anc h orage , AK .
3. Average of the daily maximum and minimu m temperatu r es .
4 . Visual estimation based o n one daily observation .
113
"' -co
...... c ...... ..
~ CD
en • ....
Ei Cl)l ~
0 •
~~~ ~
~ ~~
-~
Q)
Q) --z
0
i= < > w _,
w
w
0
6
0
< 10
u. a:
::;)
U)
a: 5 w ....
< ~
w 0
> i= < _,
w a:
«! .-
"' .-
.! e .. • ~
WATER SURFACE PROFILES ALONG 1600 FEET OF RIVER BANK
ADJACENT TO SLOUGH 21 BEFORE AND DURING ICE JAM
~
May 2 , 1883
vertical drop 3 .01 f eet In 1800 feat
channel Ia lea c overed
ICE JAM
May 3, 1883
vertical drop 5.28 feet In 1600 feet
channel Ia Jammed by Ice
300 eoo 800 1200 1600"':
DISTANCE ALONG RIVER BANK (feet)
C\1
"' .-
.! e .. e
~
PHOTO 5.1
The confluence of Deadhorse Creek (at Curry) on April 28, 1983. Flow on the
mainstern is from right to left. Open lead on the right is enlarg i ng a n d
fragments of ice are accumulating against the solid ice cover at the downstream
end.
---....
PHOTO 5.2
Overflow above the Parks High way Bridge o n April 7, 1983, covering the ice
s heet wiH. ove r 6 inches of water.
R&M CONSUL-TANTS, INC.
eNOtNa•ae o•DLDOISTS •LANN .... S suav•Yo•s 115 SUS!TNA JOINT VENTURE
PHOTO 5.3
This photo was taken on May 7 , 1976 from the Gold Creek Bridge, looking
downstream toward Slough 11. The mainstem is completely ice choked and much
flow has been diverted to the left into Slough 11.
PHOTO 5.4
Looking upstream at edge of ice jam (river mile 77 . 6) o n May 3, 1983 , near
Montana Creek confluence . Ice jam key was near river mile 76.
R&M CONSULTANTS, INC.
•NOINea•a 0.0\..00IBTa .\,.ANNa•• SU.V5 vo•a 116 SUSITNA JOINT VENTURE
PHOTO 5.5
When this ice jam adjacent to Slough 21 consolidated on May 4 , 1983 it :reated a
surge wave that snapped loose the shore ice and heaved blocks onto a gravel
is land. T he view is looki ng upstream along the south bank. This ice is about
4 feet thick and the area affected by the surge extended several hund r ec feet.
PHOTO 5.6
This is a close-u !J view of the ice bl ocks shoved ove r the r1 ve r bank at Slough
21 on May 5 , 1983 . Note the debr is scoured by the ice .
R&M CONSULTANTS, INC .
• NOINa••• D.OLOOI.Ta !laLANN••• au•va¥0.8 117 SUSITNA JOINT VENTURE
PHOTO 5. 7
This shows the release of an ice jam key adj acent to Slough 11. This jam was
about 0 . 7 miles lo ng on May 6 , 1983. The pressure exerted on the shore-fast
ice by this accumulation snapped loose these massive ice sheets .
PHOTO 5 .8
A triangular ice sheet wedged t ig :1 tl y betwee n two ~x tend e d s h e e ts of shore-fast
ice o n May 6 , 1983 . This ice jam at Sherman lasted fo r 2 day!..
R &M CClNSr J LTANTS, INC.
.NQINeeAB Oe'DL.OOIB'T. Pt...NN•A• •uAVCVO ... S 118 SUSITNA J OINT VENTURE
PHOTO 5.9
An aerial view of the ice jam near Sher·ma n at ri ver mile 131 .5 o n May 6 , 1983.
The flow is from left to right. The original jam had released but the large ice
sheets wedged and created this new , and very stable , ice j am that lasted for 2
days.
--
7
PHOTO 5 .10
This is a close-up view of the ice sheet that wed g ed near Sherman. Massive
blocks of ice had fr·agmented and fo rme d ridges along the sh ear surfaces .
R&M CONSULTANTS, INC.
•~to•,..•••• o•a~.oa:eaT• •t.ANNe•• a u•vcvo•• 119 SUS/TNA JOINT VENTURE
. _, ~· . ,.a;_ .... ,. ....
' . --· ....
-~ . ..
' ·. . -_,. .. .. ......
-l · . ' . . ., .... . . . .... ~ . -·-~--. -...... ·....,...--.. -_....,. -· . . . . ~.........._ '-. : .•.. ....... -, ' .
. ·~. I. I
PHOTO 5.11
. ..... __ ....... : . .· ....... , '
·-
The ice jam at Sherman accumulated over 1. 5 miles of debri s. The subsequent
increases in stage and pressure wit hi n the ice pack shoved floes onto th e
forested is lands . This ofte n knocked trees down and caused ice scouring .
... · .. -~-· ,-:--. . ~. 'y
.-.~
~~--
This photo shows a
grad ua lly progressing
sl owly d isinteg rated .
PHOTO 5.12
large ice jam at C urry on May 6 , 1983. This jam was
downstream as t he solid ice cover holding back the debris
R&M CONSULTANTS, INC. 120 SUSJTNA JOINT VENTURE aNOtNaa•• a•o-..oataTa ~~~»-..ANN•A • au•vavo••
.. .. . .. . . ·_ .. _._
PHOTO 5.13
Ice jam at Watana damsite, May 6, 1983. Flow is from right to left. Ice jam at
upper right is near the entrance to the diversion tunnel .
PHOTO 5 .14
The ice sheets hold ing bzck the ice jam at Sherman g•·adually decayed and
weakened. They are shown here on May 8, buckled and fractured just before
they released. Flow is f rom right to left.
R&M CONSULTANTS, INC.
eNO•N•••• ••o~oate.,.. ~H..._._. au•v•..,o•• 121 SUSITNA JOINT VENTURE
-...._ ~ .... --... '!:1'--.. -
~-;-. ,....._:-..
PHOTO 5.15
Looking downstream from river mile 102 .5 at ice jam key ed at r iver mile 98.5 .
This jam formed the evening of May 8, 1983, and extended to river mile 104.
It released the evening of May 9 , 1983.
PHOTO 5.16
This photo shows the effects of an ice jam near the Susitna confluence at river
mile 98 that caused flooding on the adjacent terrace plain, sending ice floes
deep into the-fores t .
R&M CONSULTANTS, INC.
•NOtN••"• o eo""ooteTa •\..ANN••• au•vevo•• 122 SUSITNA JOINT VENTURE
PHOTO 5.17
Ice debris piled onto the ri v er at river 'mile 101.5. The
approxn;--=-tely 14 feet high. The water level attained duri ng
indicated b >' a line separating the dark layer , with a
concentration , trtJ a lighter and thinner lay er on the surface .
PHOTO 5.18
shear wall is
the ice jam is
high sediment
View of the shear wall a long accumulated ice debris stranded o n the right bank
near ri ve r mile 110. Fl ow is from right to left. This photograph was taken o n
May 10 , 1983 abo ut 8 hours after the ice jam released . The wall is abo ut 16
feet high.
R &M CONSULTANTS, INC.
.NGtNaa•a OaOL0018T8 DLANNeAS •u i•VeYOaa 123 SUSITNA JOINT VENTURE
s 16/u 1
6.0 SEDIMENT TRANSPORT
The transportation of sediments decreases substantially between freeze-up
and breakup primarily because of the elimination of glacial sediment input.
The glaciers contribute the majority of the suspended sediment by volume
to the Susitna . Other factors that significantly influence the sediment
regime are turbulence , v elocity , and discharge, all of which are greatly
reduced during the winter. The advent of frazil ice in October , however ,
greatly increases the complexity of sediment transport by providing a
variety pf processes by which particles , both in suspension and saltation,
can be moved. Ice nucleation, suspended sediment filtration , and
entrainment of larger particles in anchor ic e are some of the processes
described in this section. The dramatic nature of breakup often intro-
duces sediment to the flow by re-entraining particles that had settled to
the bottom. This ice event is characteristically accompanied by ice
scouring and erosion during extreme stages . Ice jam induced flooding
commonly f lushes sediments from side chan nels and sloug hs . Ice blocks
are heaved onto river banks or scraped against unconsolidated depos itional
sediments, remov in g soils which may become entrained in the turbulent
flow and carried downstream.
Laboratory in vestigations have determined that ice readily nucleates around
supercooled particles . These particles may be i n the form of organic
detritus, soils, or even water droplets (Osterkamp, 1978). The Susitna
River prior to freeze -up abounds in clay size sediment particles wh ich may
form the nucleus of frazil ice crystals. The first occurrence of frazil is
genera lly also marked by a reduction in turbidity. Visual observations
seem to i ndi cate that the decrease 1n turbidity is proportional to the
increase in fraz il ice discharge. The Sus :tna has often been observed to
clea r up ove rnight during heavy slush flows. It is not certain whether
this occurs because of the nucleation process or by filtration .
As described in prev ,:o us sections, frazi l ice crystals tend to flocculate into
clusters and adhere together as well as to other o bjects . When frazil
124
s16/u 2
floccules agglomerate they form loosely packed slush (Newbury , 1978).
Water 1s able to pass through this slush but suspended sedi ments are
filtered o ut . Sediment particles are therefore entrained in the accumulat-
ing ice pack. Ice shavings from bore holes drilled through the ice often
contain s i lt-size particles of sediment. Early flows of slush ice accumulate
on the lower river below Susitna Station and progressively advance up -
st ream . These early slush floes possibly filter high sedi ment concen-
trations in October and retain them in suspensio n all winter.
When frazil ice collects on rocks lying on the channel bottom , it is re-
ferred to as anchor ice (Michel , 1971). Anchor ice is usually a temporary
feature, commonly forming at night when air temperatures are colde!.t , and
releasing during the day. Like slush ice , anchor ice is porous and often
has a dark brown color from high sediment concentrations (Photo 4 .9).
These sediment particles were either o n c e suspended and subsequently
filtered out of the water or else were tran sported by saltation until they
adhered on contact with the frazil. When a nchor ice breaks loose from the
bottom, it generally lacks the structural competence to float any particles
larger than gravel-size. Clusters of released anchor ice , suspended in the
ice pack and clear border ice , have been observed near Gold Creek .
Frazil s lu sh is therefore an effective medium for sediment transport dur i ng
freeze-up whether the process is nucleation , filtration or entrapment .
An ice cover advancing upstream can cause a local
ofte n flooding previously dry side channels and
r ise in water levels ,
sloughs. Substantial
volumes of slush ice may accompany this flooding. On December 15, 1982,
Sl o ughs 8 and 8A were fl ooded when the ice pack increased in thickness
on t he mainstem immediately adjacent to the s lough entrance·. These
sloughs received a disproportionate vo lume of slus h ice relat ive to water
vo l ume since the water breaching the berm constituted only the v ery top
layer of ma i nstem f low . The ma jo r ity o f slush ice floats near the water
surface despite o nly minima l buoy a ncy. The flow sp i lling over the slo ugh
berms therefore carried a high concentration of ice. This slush ice and
125
s16/u3
entrained sediment rapidly accumulat ed into an ice cove r that progresse1..1
up the enti r e length of Slough SA.
Side channels and sloughs t h at were breac h e d d uring freeze-u p an d filled
w ith slush ice are not necessarily flooded du r ing breakup. If these
sloughs a r e not inundated then t h e ice cov er begi n s to det e r iorate in
place. The entrained sediment consolidates i n a la yer on the ice surface
and effectively reduces the albedo, furt he r increasing the me lt rate . What
finally remains is a layer of fine sil ~ up to !-inch thick covering the
channel bottom and shoreline.
If berms are breached during breakup , then ice fragments from the mai n
channel are washed i nto the slough and usual ly become stranded in t h e
shal low reach (Photo 6 . 1). These ice floes then simply melt in situ,
depositing thei r sediment load in the side channel. T his occurred in
May 1983 when the "AS " access cha nnel to Slough 21 flooded during a
major main stem ice jam , and also near Rabideux S lough (Photo 6 . 2).
Shore-fast ice along the perimeter of an ice jam is usually not floating.
When debris accumulating behind a jam consolidates, the resulting surge
wave may p r ovide the critical lifting force to suddenly shift the borde r
ice. This occurred near Slough 21 on May 4 , 1983 .• Tons of i.;e were
shov ed onto a gravel island (Photos 5.5, 5.6), entraining partic les up to
boulder-size and producing ridges of cobbles, gravels and organics. By
th is process of laterally shoving substrata materia l , ice can build up or
destroy considerable berms and change the size of grave l b ars near ice Jam
locati o ns . When the lateral pressure exerted by ice is comp l icated by
simultaneous downstream movement such as during an ice jam r elease , the
effects on the r iver banks can be devastating . Many cubic feet of bank
ma t eria l was scoured away in minutes when massive jams r e leased near
S lo ugh 21 , Sherman , and Chase (Photo 6 .3) in May 1983 .
An interesting phenomenon observed during breakup was the effective
filtering capability of ice jams and individua l ice b locks. Sediment-l ade n
126
s 1 6/u4
water flows through the many channels and interstices between the frag-
ments in an ice jam . These interstices are usua lly filled with porous slush
wh ic h removes suspended sediments from the water . Ice jams can concen-
trate sediment in this manner and often become very dark in color.
As discussed, Susitna River ice generaHy consists of alternating la yers o f
rigid, impermeable clea r ice and p orou s, loosely packed , rounded crystals
of metamo rp ho sed frazil ice. Water can percolate throug h the permeable
layers, which strain o ut suspended sediment particles. Th is sediment
becomes concentrated when the ice melts and is either re-entrained into
suspension or deposited on the river bank if the ice floes were stranded.
127
PHOTO 6.1
Ice floes stranded by Slough 21 after the ice drive.
--~ _"")-,.
-~ ... . .. -~-: ~
PHOTO 6 .2
Silt deposit left at Rab i deu x Slough by melting block of ice.
mechanical pencil in foreground for scale .
Note th e
~&M CONSULTANTS, INC.
.NQtN .I!DB OEOL00111T'8 •\.AN""'.AII S UDVeVORS 128 SUS/TNA JOINT VENTURE
PHOTO 6 .3
After the ice jam released near Chase, the ice severely scoured the r iver :>anks
and carried away large trees .
R&M CONSULTANTS, INC.
.NIGtN···· OaOt..OOieT • P~ANN.AS SUIIIVaYo•a 1 29 SUSITNA JOINT VENTURE
s16/z1
7.0 Environme ntal Effects
Ice processes have been a major en vi ron mental force on the Susitna River ,
affecting channel morphCllogy, vegetation , and aquatic and terrestrial
habitats . The impacts vary along the length of the river . The en vi ron-
mental impacts of ice processes will be summa r ized in the follow ing p,,ra-
graphs. This will be followed by a brief discussion of potential mod if ica-
tions to the ice processes of the Susitna River caused by operation of the
proposed hydroelectric development, and the subsequent changes in en-
vironmental processes .
Ice processes appear to be e major factor controll i ng morphology of the
r iver between the Chulitna r:.onfluence and Portage Creek . Areas with
frequent jams have numerous side-channels and sloughs. T h e size and
configuration o f existing sloughs a p pear t o be dependent on the frequency
of ice jamming in the adjacent main s tem .
Major ice events probably f o r med the sloughs when ice floes surmounted
the river banks . The size an d configuration of existing sloughs is depen -
dent on the frequenc y of ice jamming in the adjacent mainstem . Ice floes
can easily mo ve the bed material , substantially modifying the elevation of
entrance berms to the sl o ughs. In May , 1983 , a surge wave overtopped a
sha l low gravel bar that isolated a side channel near Gold Creek. The
surge also created enough lift i ng force to shift large ice floes. These
floes barely floated but were carried into the side channel by the onrush
o f water , dragging against the bottom for several hundred feet , scouring
troughs in the bed material . T his same process will also enlarge the
sloughs . When staging is extreme in the mainstern and a large vo lume of
water spills over the berms , then ice floes drift into the side channel.
These ice floes scour the banks and mo v e bed mater ial , expanding the
slough perimeter . T h is scouring action by ice c a n the r efore drastically
alter the aquatic hab itat.
130
s16/z2
The erosive force of ice effects vegetation along the river. The frequency
of major ice jam events is often indicated by the age or condition of vege-
tation on the upstream end of islands in the mainstem. Islands that are
annually subjected to large jams usually show a stand of ice-scarred ma-
ture trees ending abruptly at a steep and often undercut bank. A stand
of young trees occupying the upstream end of islands probably represents
second generation growth after a major ice jam event destroyed the origi.nal
vegetation. Vegetation is prevented from re-establishing by ice jams that
comp letely override these islands.
Ice processes have several impacts on aquatic habitat . The sloughs may
fill w ith slush ice, which then forms a ice cover up to 5 -6 feet thick.
This would prolong colder than normal water temperatures in the slough.
(It could also cause problems for any beavers with lodges in the s lough by
filling pools with ice). Diversion of flow and ice into the sloughs may
cause large changes in channel morphology. Large amounts of silt may be
deposited in the system at breakup , migrating dow t1s ream during hig h
flows in the summer and covering good spawning habitat .
Ice processes do not appea r to play as important a role in the morphology
of the Susitna River below the Chulitna confluence . This river reach
below the confluence regularly experiences extensive flooding during
summer storms. These seem to have significantly more effect on the
riverine environment than processes associated with ice cover formation
(R&M, 1982a, 1982c). This reach is characterized by a broad , multichan-
nel configuration with dist ances between vegetated banks often exceeding
1 mile. The thalweg is represented by a relatively deep meandering
channel that usually occupies less than 20 percent of the total bank to
bank width. At low winter flows the thalweg is bordered by a1'l expanse
of sand and gravel (R&M, 1982c). Although ice cover progression fre-
quently increases the stage abo ut 2 -4 feet above normal October water
levels, no significant overbank flooding takes place, although some sloughs
and the mouths of some tributaries do receive s o me overflow. The ice
131
sl6/z3
cover below Talkeetna is usually confined to the thalweg , and surface
profiles rarely approach the vegetation trim line along the banks.
Operation of the Watana and Devil Canyon projects would significantly
modify the ice regime of the river below Devil Canyon . Flow rates will be
2 -4 times greater than natural winter flow rates, with water temperatures
of 2°-4°C immediately below the dams . The frazil ice generated i n the
upper basin i n early winter will be trapped by the upper reservoir . Once
Devi I Canyon Dam is built, the major rapids in the system will be flooded,
further red ucing frazil ice generation. These major changes in the phys-
ical system and in the hydrologic and thermal r egimes will combine to
greatly delay ice for·mation below the project .
Progression of the ice cover on the lower Sus 1tna is now due to rapid
juxtaposition of ice floes from the upper nver , with the Sus itna River
contributing 70-80 percent of the ice . Much of this ice will not be avail-
able under post-project con ditions . Ice cover progression initiates when
an ice bridge forms at about R M 9 at a sharp bend in the river. With the
reduced volume of ice available under post-project conditions , formation of
this bridge will be significantly delayed , or may not even form at all in
some years . Consequently , ice cover on the lower Susitna will form at a
later date than now occurs . Progression of ice up the river will also be
much slower , due to the reduced ice discharge from the upper Susitna.
Water temperature below the project will not decay to the freezing level for
man y miles . It is more likely that an ice cover will form on the river
above the Chulitna confluence when on ly the Watana project 1s opera ting ,
than when Devil Canyon is also on line. The ice cov er now progresses
upstream from the Chulitna confluence when slush ice bridges a narrow
channel at the confluence . One question now under study is the formation
process of this bridge. In some years , this bridge does not appear to
form until ice cov er has progres !.ed up the low er Susitna River to a point
near the conf luence . However , it has also been observed to form indepen-
dently when heavy ice discharges were unable to pass through the
132
s16/z4
channel, and when the lower Susitna ice cover was still far downstream .
Formation of the bridge appears dependent on the rate of ice discharge
from the Susitna above th is point , and o n the location and flows o f the
various Chulitna River channels . It must still be determ i ned if sufficient
ice will be generated under post-project conditions to cause this bridge to
form and whether an ice cover will progress up the lower ri v er in time to
help form this bridge. If ice does progress upstream of the Chulitna
confluence, staging levels will probably be higher, as flow level s and
v elocities will be greater than under natu rat cond itions .
Breakup patterns will change on the river below the projec t . An ice cover
may o r may n o t exist above the Chul itna confluence . The warm water
released from the reservoirs, combined with the i ncr~ased air temperatures
and solar radiation in s pring , w i ll cause the upstream end of the mainstem
ice cover to decay earlier in the season. Flow levels will be significantly
lower in May as the reservo ir stores flo w from u pstream . No ice will reach
the river above the Chulitna confluence from above the reservoirs . The
breakup processes now occurring above the Chulitn a confl uence will be
effectively elim i nated. Below the Chul itna confluence , breakup impacts w ill
probably also be reduced due to the lower breakup flows , although ice
thicknesses may be increased due to the increased winter flow levels . The
lower Susitna Rive r generally is ice-free before the final breakup dr ive
reaches it from above the Chulitna c onfl uence .
133
s16/y1
8.0 REFERENCES
Alaska Department of Fish & Game. 1982. Susitna Hydro Aquatic Studies
Phase II Basic Data Report. Anchorage, Alaska. 5 vol.
Ashton , George D. 1978. River Ice . Annual Reviews on Fluid
Mechanics . Vo l. 10 . pp. 369 -392 .
Benson, Carl S . 1973. A Study of the Freezing Cycle in an Ala skan
Stream . Fa i rbanks , Alaska. Institute of Water Resources . 25 pp.
Bilello, Michael A. 1980. A Winter Environmental Data Survey of the
Drainage Basin of the Upper Susitna River, Alaska. Special Report
80-19 , U .S . Army Corps of Engineers , Cold Regions Research and
Engineering Laboratory , Hanover , New Hampshire. 1 vol .
Calkins , Darryl J. 1978 . Physical Meas urements of River Ice Jams. Water
Resources Research , Vol. 14 , No . 4 (August). pp . 693-695 .
. 1979 . Acce lerated Ice Growth in Rivers . U .S. Army Corps of
Engineers , Cold Regions Research and Engineering Laboratory,
Hanover, New Hampshire . 5 pp.
Edinger .. J .E ., et. al. 1974 . Heat Exchange and Transport in the
Environment. Baltimore Maryland. John Hopkins U niversity .
124 pp.
Michel, Bernard. 1971. Winter Regime of Rivers and Lakes. U.S. Army
Corps of Eng i neers, Cold Regions Research a!ld Engineering
Laboratory , Hanover, New Hampshire. 130 pp .
Newbury , Robert W. 1968 . The Nelson River: A Study of Subarctic
River Proc.esses. University Mi c rofilms, Inc ., Ann Arbor, Michigan.
319 pp .
134
s16/y2
Osterkamp , Tom E . 1978. Frazil Ice Formation : A Review . Journal of
the Hydraulics Division . Proceedings of the American Society of Civil
Engi neers . September , pp . 1239-1255 .
R&M Consultants , Inc. 1981a . Hydrographic Surveys Closeout Report .
Anchorage, Ala ska . Alaska Power Authority . Susit na Hydroelectric
Project . Report for Acres American, Inc . 1 vol.
1981 b . Ice Observations 1980-1981 , Anchorage, Alaska.
Alaska Power Autho rity . Susitna Hydroelectric Project . Report for
Acres Ameri can, Inc . 1 vol.
1981c . Preliminary Channel Geometry, Velocity and Water
Level Data for the Susitna River at Devil Canyon. Anchorage,
Alaska. Alaska Power Authori ty Susitna Hydroelectric Project.
Report for Acres American , Inc . 1 vol .
1982a . Field Data Collection and Processing. Anchorage ,
Alaska. Alaska Power Authority. Susitna Hydroelectric Project .
Report for Acres American, Inc. 3 vol.
19 82b . Hydraulic and Ice Studies . Anchorage , Alaska .
Alaska Power Authority . Susitna Hydroelectric Project. Report for
Acres American, Inc . 1 vol.
1982c . Hydrographic Surveys Report. Anchorage, Alask.L
Alaska Power Au+:hority. Susitna Hydroelectric Pr·oject. Report for
Acres American, Inc. 1 vol.
1982d. Ice Observations 1981-82. Anchorage , Alaska .
Alaska Power Authority . Susit na Hydroelectric Project . Report for
Acres American, Inc. 1 vol .
135
s16/y3
1982e. Processed
September 1982. Anchorage,
Susitna Hydroelectric Project .
8 vol .
Climatic
Alaska.
Data, October 1981 to
Alaska Power Authority.
Report for Acres American , Inc.
1982f. River Morphology. Anchorage, Alaska. Alaska Power
Authority. Susitna Hydroelectric Project. Report for Acres
American , Inc. 1 vol.
1982g. Sloug h Hydrology. Anchorage, Alaska. Alaska
Power Authority. Susitna Hydroelectric Project. Report for Acres
American , Inc . 1 vol.
Smith, D.G. 1979 . Effects of Channel Enlargement by River Ice
Processes on Bankfull Discharge in Alberta , Canada. Wate r
Resources Research , Vol. 15 , No .2 (Ap ril). pp . 469-475.
U .S. Geological Survey . 1982. Water Resou rces Data , Alaska, Water Year
1981 . Anchorage , Alaska. Water Resources Division, U .S. Geological
Survey. United States Department of the Interior .
136
s 16/y 4
APPENDIX A
Month ly Meteo rological Summaries for Weather
Stations at Denali, Watana, Devi l Canyon , Sherman and Talkeetna
137
C D N ~;3 U!... T ~.NT E >
H Y D I~ DE!... E C T I ~ :1: C
MON THLY SUMMARY FOR DENALI WE~THER ST~TIO N
DAT~ TAKEN DURING Dece Mber > 1982
!lAX.
TE!iP .
~EC C
(
KIN.
TtHP.
DEC C
MEAN
ID!P.
DEC C
RES.
WI!!D
JHR.
DEC
RES .
umo
SPD.
11/S
AVC.
IHllD
SP!'.
11/S
llfiX.
GUST
DIR .
DEC
~AX .
GUST pI 1JAL !lE t,~
SPD. DIR . RH
11/S %
:t:NC.
MEAN
DP
DEG C
PRECIP
M ~
~AY'S
SOtAP.
ENERC~ DAY
WH/SQ~
-------------::-:i:"'l------------------------------------------------------
1!1!11!1 Hfl!l l!lfH Ul 1!1!!1 !HI HI IU!! U!l U H!ll!! U U lf'UH
2 filii Hll!l tilt\ . !H HI! f!fl !I! Iff! HI !!! !HI!! HI!! H!!!!l!! 2
J -27 .2 -35 .4 -31.3 Uf fHI Ulf U l H!!l Uf !I H!fl :tllll 462 3
4 -24.3 -32.0 -28 .2 1!1 11!!1 !!!I !!I!! 11!!1 !I!! I!! 1!!1!1 !!!!I! ~60 ~
5 -15 .4 -2e.1 -21.8 Ul lUI 1!111 !!H !!Uf !!1!1 I!!! Hll!ll Ulll 315 '5
6 -4.4 -21.9 -13.2 If!! HH H!!l !II Hll HI! !l! !!X !!I!! 1!!1!! 37 ~ 6
7 2.7 -7 .7 -2 .5 l'U liH!! Ulll! HI !!!1!!1 I!U H HIH Hit 312 7
8 .6 -5.0 -2.2 Ill! 11!!11 !!!!I !II !Ill II! *!! !!1!!1! Jl!!! 33~ S
9 -1 .0 -20 .7 -10.9 !!!! 111!1 11!111 Ill 11!1!! 11!!1 1!1 l ·lfl!! *!!t \28 9
10 -18 .o -27 .4 -23.0 !1!!1 Jl!lf 11!1 !!I!! UU U!! I!! Hll!l Wll 379 10
11 -9.8 -25 .9 -17 .3 Iff 1111! 1!!11 !I! 1111 1!!1 II 1111!! 1111 265 11
12 -7 .6 -!2.6 -10.1 ~!1!1 1!!1! 111!1 I ll !!1!!1 !!II I I 11!!1! 1!111 355 :2
13 -3 .4 -!0.9 -7 .2 !Ill f l fl !!1!!1 Ill !Ill ~II !I lf.fl!! ll!!ll 308 13
14 -5.5 -16.8 -11.2 II! Iff!! lllf 1!!!1 !11!1 !I! I!! 1!!1!1 !~I!! 303 1~
15 -5 .2 -16.3 -10 .2 Ill Ulf U ll 1111 HI!! Ul !!!! II!H Ull 318 15
16 -12.9 -17.7 -15 .3 W!l !~II 1!1!1 1!1 ~~~~ !f!! ~~ ~!II! 1~!!1 299 !~
17 -7 .8 -15 .3 -11.6 !1!1 ~~~~ 1~11! !!II fl!!l !!I! t f. ~1!!11 *Ill 24t 17
18 UUI IU!I!I !tit! fU !IU UH !1!1 UH U'! H !!!!!!!'! l!!~f ~I U!I !9
1~ H ilt 1!!1!!1 ui;~ U!! U!!l ~.:H IH lUI !IH ll!l H fl!! I~H I!!Hit 19
20 llfll 111!1 !!II~, tl!! llll '!f\1 til lll!l 1!!1 ~~ lfl!!l ~!!!!! X~l~l!! 2 ~
21 l llfl Ifill ~~-~ HI !I!H H!l!! U!l !H!! f!!l I!! HHI flU ·l!f-Hfl 2!
22 IIIII !11!1 ~~ Ill 11!1 11!!1 !!I! ~~~~ 1!!1 ~~ ~1!11! ~!!I! ll!!l!!!! 22
23 f.l!lf !l!lfl ~ltif Ill ~!Ill ~Ill !I!! flf.l !!!I !!J !!1!!!1 ~1*1 fi*F~l 23 . -.;
24 !lltfl IIIII II!~ !II !1!!1!! 11!1 1!!1 !!1!!1 !I!! I!! !!1!!!!1 II!~ Jl!!!!l!! 2~
25
26
27
28
29
30
31
MONTH
l!UH
H ill
I!UU
l!l!ll
UUl!
J!F'IIf
9JiH
2.7
!!l!l!f!!
HI I!
lllllf
lilt!
H!'tf
HUll
-35.4
UfH
l~ . ·.' fllfl
. I ~
lflH ... : .o
HUI
-to,.
!HH
itlu
-14.4 HI
Ill!!
11!!1
Ufl
1111
IIU
1!!1!!
:t!!ll
!!!I!! I
GUST VEL. AT M~X.
GUST VEL. ~T MAX.
GUST VEL . AT MAX.
GUST VEL. AT MAX.
l!!l!!
IHI
uu
!19!1
~~!!,;
HI!!
li!!H
HH
GUS T MINUS
GUST MINUS
GUS T PLUS
GUST PLUS
lUI IU
t !!U Ul
!!II! IU
l~U Ul
~.n'! a!!
l!!H HI
1!!11 !!U
li!!~!l
l!lf!!l
!!I!! I!
HI!*
XH!II
Ul!!!f
U!!l!!
Ul!!
Ulf
ll!!l
!U~J
2 IN TERV ~LS ??9 .0
HITER'.1 AL 9?9. C
1 INTERVnL 999.0
2 INTERVnLS 999.0
UHH 2~
:'!li!!~H 26
!lll!!ltt 27
!lll!f!! 28
H ·~~H 29
~P:~l:!' 3Q
*!X·!H 31
5 l~~
NOT~: RE L~TIVE HUMIDITY RE~DINGS ~RE UNRELinBLE WHE N WIND SPE~DS ~RE LE33 T H~N
ONE METER PER S ECOND. SUCH REnDINCS H~V E NOT BEE~! INCLUDED IN THE J AIL~
0!~ MOtHHL Y ME~N FOR RELt'ITIVE HUMIDITY r~ND DEW POH!T.
x .. :o: x GEE t!OTES IH THE BACI < OF THIS REPORT X··Y.··X··~
138
J
I
; ·t ·-. ..-D t< U :;:: i ... ,;;: C T I ~ :t: C
MON II-tt. t . SU MM 14" t FCR D1~N i-lt. I \IJ E1-H ··1E1~ S i A f IQrJ
DA TA TAI(EN DL ~IN G january .. 1983
DAY
MX.
iEr.?.
w; ~
rl itt .
itn?.
Dt:; C
KES.
WIND
DIR .
DtG
.<t:S .
~tlrlD
Si'D.
:liS
A'~G .
lHND
SPD .
i\/S
MAX .
CUSi
DIK.
D:.G
MAX.
GUSi ? 'VAl nEAN
SrD. DiR . RH
;;;s z
:1: h!C .
hi: AN
DP PK EC:P
DEG C nri
~A I 'S
SO LAK
chERG'f DAY
wn/SQn
----------------~-------------------------------------------------------
1
2
3
4
5
6
i
B
9
10
\1
12
13
14
15
16
17
18
1Y
20
21
22
23
24
25
26
27
28
2'?
30
31
.::::: ::::: ~~~ :::
a!t ttt ttlfl I**** Ill
-:1 ... -
ktSU fllilt ~; ***
UOt UOt ••• ,~ HI
fUU UtH *_*!!.' IH
UtU Hltt ItO~ Hf
UHI UIU i~ HI .. "f •·-
UUI lltUt t_t~t~ . hi
jfttf IIIII it~ Itt
Ulltt UUII
-25 .9 -32 .8
-26.3 -36 .6
-L7.o -32.'1
-14.7 -24.4
-8.3 -\8.2
-7.6 -H.B
-5.8 -14.4
-6 .7 -13.6
-il.2 -19.1
-i2.6 -23 .3
-17.3 -24.7
-16.5 -2 7.5
-8.6 -2o .u
-13.5 -24 .~
-9 .5 -2\.o
-e.3 -1Y.4
-5.8 -14.2
-:2 .8 -~2.6
-a.o -23 .1
-o.5 -i ~.o
tUU Uf
-29.4
-32.2
-25.3
-19.6
-13.3
-11.2
-10.1
-10.2
-13.7
-18.0
-21.G
-22.6
-14.3
-19.0
-15.6
-13.9
-LO .D
-17 .il
-15 .&
-10.1
fU
IH
nt ....
Uf
1 1111
***
Ut
tit
Ul
HI
~u
Iff
!Ht
Uf
tltt
HI
Hit
*** Ut
.Hiillt
.tttt .....
Hit
Utt
**** uu
uu
****
Utt ....
uu
lUI
lith ....
uu
11*1
Ulltt
nu
uu
Hit
UH
II HI
HU
Off
UH
HH
r.i:Jt1i H -5.2 -36 .\i -!7 .I u~
GUST ~E L. AI MAX .
GuST VE L. AT nA ~.
GUST ~EL . AT nA~.
GJ~T VEL. AI nA~.
HU
UH
lUI
111ft
**** nu
H it
tllil
Uti
Uti
Hill
.. H
lUI
Ulll
Uti
HH
IIU
UH
on
uu
O ff
UH
on
HU ....
uu
-uu
uti
tU
fill
Ul
HI
Ull
i ll
Ill
HI ...
*** Itt
Ut ...
HI
Ul
Uf
HI
lH
HI
k)t
Ill
IU
til ...
IU
fU
"**
ktft
Uti Ill
Uti *** kUII Ut
till "ltl
Hftl Ill
lt•** Ut
1111 ...
1111 Ul
uu fit
till
Ull
uu
Ifill
1111
Ul
11'.1
Ut
fH
Ill
Uti fit
IU
IIU HI
Rtll IIH
Hll HI
uu
t i U
Ul
HI
nu N t
1111 Ill
lUI Uf
HU Ill
Ull Ill
**** HI
nn xu
UU fH
Ut
II
**
77
75
ao
n
u ..
H
u ..
lit
** 83
59
71
83
u
II
If
H
tt
tun .....
II HI
fUll
ltfHt
-32 .4
-35.1
-32 .5
IIUit
filii
HtU
UHI
IUU
UIH
HUt
tllllt
-2 ~.4
-2 1.9
-24.7
-1&.9
IUU .....
UHI .....
Hit
uu
lUll
flit
*"* ttl II
lll* ....
nn
flit ....
IIIII
Uti
tiff
nu
lUI
HH
••u
****
*"* lilt
Ull
It If
HH
fl~l ·~~ 74 -26 .9 ~·~·
GuS T MINUS c INT ERVALS 999.0
GuST MINUS 1 INTERvAL ~99.0
GUST PLuS 1 I~TE~V AL 999.0
GUST PLUS 2 INTERVHLS 999.u
UIHI 1
2
4
6
7
a
~~..... 10
Utili
11
12
UIHI 15
unu l b
Ulttff 17
18
19
...... ~0
UUtt ~~
Hlttf 24
HHtt 25
2il
27
28 IIHH
~:UfH 29
1-H fft 3 ~
UJ:Ut 3.
HU..t~
Nuf E: ~ELATI~E ~JM I~IIY REhDINGS ARE UNRELIABLE WH EN WIND SPEEDS H~E LESS ~hAN
O~E nETER ?ER S ECON D . 3WC H READ I~GS HAVE NOT BEEN INCL J DED IN TH E DAiLf
uR M8N Tn L f MEAN F O~ RELAfi~E riUMIDITY AND DEW POiNT .
~~•• S EE ~DT E~ AI ~rlE BAC~ OF Trl iS REPORT k**~
139
&. M CONSULTANTS > :t:Nc .
MON THL Y SU MMAR Y FOR DENALI W£ATHER STATION
DATA TAKEN DURING February 1 1983
RES . RES. 1\VG, MX. MX. DAY'S
MX. tUM. lOt IIlii) III MD IIIND QJST GUST pI VIi. I£AM II£Ajt SOLAR
DAY rot . IDI. mtP. III. SPI. SPO. DIR . SilD. DIR . RH DP PIECIP ~DAY
GC DE~ C IG C DE~ IVS 11/S DEG IVS I DE~ C lilt IIVSQI\
1 .7 -14 .2 -6.8 IH tHI IIH tH ltHI tH H HHt tHI HHH 1
2 -4.2 -11 .8 -8 .1 IH tHI ffH IH HH ... H ..... HH IHfH 2
3 -3.7 -tt. I -7.4 IH HH IIH IH IIH IH II HIH HII 241 3
4 -4.6 -11 .9 -8.3 HI .... ifH HI HH IH H IHH IHI 698 4
5 -4 .4 -14 .2 -9.3 IH tHI IIH Ill IIH IH H HHI Hit 813 5
6 -3.6 -11.6 -7.6 IH .... tfH ttl IIH tH II tHH HH 743 0
7 -3 .2 -B . 1 -S .7 Ill HH HH IH IIH Itt H ttHI IHI 851 7
8 -5.3 -9.9 -7.6 IH IIH IHI ... IHI IH H IHH IIH 578 8
9 -9 .2 -t4 .i -11.6 IH HH IIH Ill HH Ill II HIH IHI ne 9
11 -l\.9 -22 .4 -17.2 ... HH IIH IH IIH IH .. tHfl HH 873 11
1t -13 .7 -24 .9 -19.3 IH HH IIH IH IIH IH II ..... HH 1378 11
12 -15.7 -26.8 -21.3 IH tiH .ffH IH tiH IH It tHH IIH 948 12
l3 -22 .8 -31.8 -2&.4 IH IHI HH HI HH IH H IIIII "" 1S5S 13
14 -19 .2 -3t.o -2S.4 IH I H* HH IH tiH IH H Hilt IHt 17SB 14
15 -111 .7 -31.2 -24 .1 IH IHI HH IH IIH IH H ..... 1111 tns IS
1& -1 7.5 ·31.4 -24.5 IH *"' .... *" 1111 ... .. tHH Htl 1845 16
17 -11 .o -31.4 -24.5 Ill .... HH IH IHI IH .. IHH tHI \895 17
19 -14 .5 -31.0 -22 .8 HI IHt IIH IH HH IH II ..... IHt 1221 18
19 -4 .9 -19 .1 -12 .1 IH .... HH HI ltHI IH H II HI HII 1995 19
28 -8.3 -19.1 -13.7 HI HH IHI IH IIH IH H IHH HH 1663 21
21 -s.s -18.6 -12 .1 IH .... UH IH HH Ill H IHH IIH 1988 21
22 -5 .o -18 .1 -tt .o IH iHI I IH tH IIH IH H HHI IHt 2138 22
23 -8 3 -22.1 -1s.s HI HH HH HI HH IH :'"1 HHI IHI tern 23
24 -3.3 -12.5 -7.9 IH tiH IHI IH HH IH H tHH HH 1298 24
25 -8.3 -17 .6 -13.1 HI ltH IIH tH Hit IH H ..... .... 2881 25
26 -b.b -15.8 -11.2 HI HU IHI ... ltH IH ** HIH IIH 2170 26
27 -8.4 -17.2 -12.8 ... IHI .... . .. HH IH H HIH tHI 18b3 27
28 -3.8 -11.4 -7 .6 ... 1.8 ••• ltH ••• HI fl tHH IHI 1319 28
ltOMTH .7 -31 .6 -14.1 IH 8.1 1.8 tH 8.1 IH H litH Hit 30483
GU S T VEL . AT MA X. GUST MINUS 2 INTERVALS 999.0
GUST VEL. AT MA X. GUST MINUS 1 INTERVAL 999 .0
GU S T VEL . AT MA X. GUST PLUS 1 INTERVAL 999.0
GUS T VEL. AT MAX . GUST PLUS 2 INTERVALS 999 .0
NOT E : RE LA TIVE HUMID I TY REA DINGS ARE UNRELIABL E WHEN Wl i'J D SPEEDS ARE LESS THAN
ONE METER PER SECOND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR MONTHL Y MEAN FOR RELATIVE HUMI DITY AND DEW POINT.
'JBt·lt·lt SEE NOTES AT THE BACK OF THIS REPORT «-*·)(-·)to
140
I~ J.')c M C D N ~:> U 1... T ANT ~:; ,. :I:NC
• b u ~:~ .1. rNA H Y D l~ DEl... EC T I~ :t: C P I~D,T ECT
• MONTHLY SUMMARY FOR DENALI WEATHER STATIO N
DATA TAKEN DURING Mar ch , 1983
I RES . RES. AVG. 111\X , 111\X , DAY 'S
MX . IUN. ItEM WIHD IHHD WIND GUST GUST P '~-IIEAH fi£AN SOLAR
i DAY TEN . rntP . rot. Dill. SPD . SPD. DIR . SPD. DIR . ~H DP PRECIP EJOGY DAY
DEGC DEG C IG C DEC IVS IVS DEC IVS I DEC C "" WK/SQit
1 -7.7 -18.4 -13.1 HI HH HH IH HH IH H IHII IHI 1321 1 • 2 -11 .5 -23 .2 -17.4 IH HH IIH tH 1111 IH II I Hit IHI 1515 2
3 -12.& -26.2 -19 .4 HI "" ltH tH IIH IH H Hill IHI 983 3
~ -12.5 -19.7 -16.1 Ill HH HH tH .... tH H IIIII HH 1313 4
s -18.1 -20.0 -15.1 IH HH IIH tH 1111 IH H HtH IHI 1178 s
Q -18 .1 -20.6 -15.4 IH HH HH ... IHI IH H ..... UH 1865 b
7 -9.4 -21 .9 -15.2 IH HH IHI tH HU tH H tHII "** 2158 7
8 -11.7 -2&.4 -19 .1 Ill lilt IHI Ill Hll HI II IIHI HU 2333 8
I 9 -18.7 -2b.7 -18.7 tH 1111 Hll tH HH tH II Hill IHI 3129 9
11 -8 .8 -14.3 -11.& 348 1.5 1.7 257 7.8 NHW II IHH IHI 2885 10
11 -1.7 -13.4 -7.& 174 2.4 3.3 106 8.9 SSE .. IIHI IHI 2713 11
' 12 1.8 -12 .5 -5.4 12& .1 l.b 1bS 9.5 MMW II IHII tiff 2318 12
13 -.8 -1o.2 -8 .5 338 .7 1.2 333 3.8 MNil H Hill IHI 3193 13
1~ -4 .2 -17.1 -11.7 33& .4 .9 3~ 3.2 NHU If HtH HH 2890 14
15 -.9 -15.0 -8.1 172 .5 1.7 1&5 5.7 s H Hffl IHI 2573 15
I ta -:u -to.& -o .a 347 1.8 2.8 l4e 5.7 NNW If IIIII IHI 3133 ta
17 -5.1 -1&.0 -11.& 348 1.1 1.4 330 3.8 MMII H Hill IHI 30 ~8 17
18 -4 .9 -21 .& -13 .3 342 .8 1.3 350 3.8 NHW .. IIHI IHI 3330 18
19 -&.4 -19 .7 -13.1 335 .b 1.0 330 3.8 NNW H Hill IHI 3388 19
21 -3.4 -1&.4 -9.9 244 .1 l.S 1&8 7.& N II Hill IIH 3285 20
21 -.9 -15 .1 -8 .0 341 .7 1.1 180 3.8 M II lUff IHI 3578 21
22 -3 .3 -1b.b -10.8 344 .b 1.0 &Ub 2.5 NHW H HHI IIH 3703 22
23 -4.7 -18.0 -11.4 341 .8 1.0 335 3.2 NNW H IIIII IHI 3855 23
24 -3.9 -19.8 -11.9 343 .7 u 004 3.2 NHW 'I IIIII '"' 3178 24
25 .1 -14.3 -7.1 340 .9 1.3 358 4.4 NMII .. IHII IHI 3923 25
26 -3 .7 -17 .0 -18 .4 170 2.2 3.0 17& 10.8 s II ..... IIH 3808 2&
27 -3 .& -15 .9 -9.8 175 l.b 3.2 172 12.7 s If Hill Hit 3933 27
28 -&.3 -17.8 -12.1 348 1.3 1.7 127 5.7 IIHW .. IIIII IHI 3888 28
29 -l.b -28 .0 -18 .8 341 .B 1.3 344 3.8 NNW H IHH .... 4258 29
30 -2.1 -1 7.8 -10.0 345 .7 1.1 348 3.2 NM\1 II II HI HH 4333 30
31 -1.8 -1&.9 -9 .4 348 l.b 1.8 218 5.1 NNII II HIH IHI 3870 31
liOIITH 1.8 -2&.7 -ll.B 335 .4 l.b 172 12.7 HNII II Ifill l fll 90588
GUST VEL. AT MAX. GUST MINUS 2 INTERVAL S 9 .5
GUST VEL. AT MA X. GU ST MINUS 1 INT ERVAL 9 .5
GUST VEL . AT MA X. GUST PL US 1 INTERVAL 11 . 4
GUST VEL . AT MAX. GUST PLU S 2 INTERVAL S 1 1 . 4
f
NOTE: RELATI VE HUM IDITY REA DINGS ARE UNRELI ABLE WHEN WIND S PEED S ARE LE SS THAN
ONE ME TER PER SEC OND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR MONTHL Y MEAN F OR RELATIVE HUMIDITY AND DEW POINT.
SEE NOTES AT THE BACK OF THIS REP LlR T ·)(-·)(-·X. ·X·
141
l~ & M C DNSUL.T~•NTS _, :J:NC.
MON THLY SUMMARY FO R DEN ALI WEATHER STA TI ON
DATA TAKEN DURING Apr i 1 .. 1983
RES . RES . AVG . MAX . th\X . DAY'S
MX. IHN. ltEAH WIND WIND WIND GUST GUST pI Vtt. tiEAH !lEAN SOLAR
DAY TEttP. TElf. TEMP . Dll. SPD . SPD. DIR. SPD . DIR . RH DP PRECIP ElERCY DAY
DEG C DEG C DEG C DEC tVS lt/S DEG lt/S I DEC C "" WtVSOfl
1 -1.1 -16.8 -9 .0 348 1.6 1.9 342 5.7 NtiV h *"** 8.1 4385 1
2 -.7 -1&.5 -8.6 339 1.2 t.b 3~ s. 1 MNW ** IIIII 1.0 4b83 2
3 3 .8 -14 .5 -5 .4 lSI 2.9 3.8 138 23 .5 s H HHI 0.0 4735 3
4 4.5 -4.4 .I 195 2.1 •. 1 154 20.3 IISW ** HHf 8.8 2448 4
s .8 -8 .8 -4 .1 166 4.1 4.5 152 13.3 SSE .. II HI 0. 0 4065 5
& 1.3 -10 .9 -4.8 186 .4 1.6 184 7.0 s ** IIIII 0.1 5048 6
7 .8 -13 .9 -6.6 335 .8 1.4 Ott 5.1 lltN II HHI 0.0 4655 7
8 .8 -16 .9 -8.1 341 1.6 1.5 34b 3.8 HNW .. IHII 0.8 4871 8
9 2.7 -11.7 -4 .5 339 .6 1.4 225 s. 1 NtN H UHf 1.0 4615 9
10 -6 .7 -18.6 -12.7 001 3.4 3 .5 006 6.3 H II ***** 8.8 5410 10
11 -4 .2 -22 .2 -13.2 188 1.5 3.2 141 1&.5 sw II I HII 0.0 3783 11
12 4.3 -5.0 -.4 168 3.1 3.8 140 15.2 SSE If *'*** o.a 4235 12
13 -.b -9 .9 -5.3 344 1.3 1.8 335 5.1 Htftl u ...... 9. 0 :i398 13
14 1.9 -2.9 -.5 191 4.1 5.8 177 12.7 s II IIIH ., ... 5098 14
15 2.1 -3 .0 -,5 161 3.9 4.3 155 12 .7 SS£ II HHI .2 4031 15
1b . 1 -4 .2 -2. t 351 4. 0 3.1 339 7.6 MHW H ..... 0.0 5368 16
17 4.b -8 .2 -1.8 241 .2 2.b 161 11.4 NttE II ..... 8.0 5551 17
18 2.4 -4.1 -.9 152 4.8 5.4 137 17 .8 SSE .. ***** 0.1 56Z8 18
19 3.1 -2 .2 .5 152 b.O 6.5 144 20 .3 SE H II HI 0. 0 5908 19
20 5 .7 -4 .1 .8 176 2.2 3.0 162 14 .0 s .. ..... 0.8 5815 20
21 4.2 -5 . D -.1 181 .9 l.b 159 7.6 s H IIIII 0.0 6893 21
22 5.8 -4.2 .4 181 3.3 3.5 lb7 11 .8 s .. *"** 0.1 6340 22
23 5.4 -1.8 1.8 191 1.7 2.0 ISS 7.6 s H ..... I. i 5171 23
24 5.7 -2 .4 1.7 340 2.1 2.5 339 8.9 NMW .. ..... 1 .0 6921 24
25 12 .5 -2 .5 5.0 329 .7 1.7 lbb 5.7 It H tUff 0.0 6805 25
26 6.4 -3.5 1.5 348 2.8 2.9 006 b.3 liN .. . ..... 0.0 &m 26
27 6.5 -3.3 1.6 359 2.7 2.8 019 5 .7 N •• ..... 1.0 6865 27
28 7.8 -4.7 t.b 326 .6 1.2 330 4.4 NHW .. ..... 0.0 sass 28
29 5.4 .2 2.9 359 2.2 2.3 351 6.3 H H t~HI .4 '\ItS 29
JO 4.4 -2.8 .8 3S3 3.8 3.9 339 8.9 N .. Hill 8.0 7128 30
~n• 12 .5 -22.2 -2.3 166 .4 2.9 138 23.5 NNW .. ..... .8 154391
GU3 T VEL. AT MA X. GUST MINU S 2 INTERVALS 20.3
GUST VEL. AT MA X. GUST MINUS 1 INTERVAL 19.7
GUS T VEL. AT M~X. GUS T PLUS 1 INTERVAL 19 .7
GUS T VEL. AT MAX. GUS T PLUS 2 INTERVAL S 17 . 1
NOTE: RE LA TIVE HUMIDITY REAl>INGS ARE UNRE LIA BLE WHE N WI ND S PEEDS ARE LES S THAN
ONE METER PER S ECOND . SUCH READINGS HAVE NOT BEEN INCL UDED IN THE DAILY
OR MON TH LY MEAN FOR RELATIVE HU MIDIT Y AtlD DEW POIN T.
l(-·X·'.<-·~ S EE 'NOTES AT THE BACK OF THIS REPOR T -)(--~~·')(>
1 42
1 -~ ·-o. :t: i'-J c .
SUD T T NA H Y :0 1~ OF L EC ·r F~ T C P t:.c• 0 .. T E C T
MON THLY S UMMARY FO R DFN ALI WFATHER STATION
DA TA TAKE N DURING M~v . 1983
DAY
ltAX.
TEMP.
DEG C
111~l .
TEMP .
DEG C
b. I -5 .2
5.0 -.8
3 *****
4 3.8
5 5.5
6 b.S
7 6.8
8 8.8
9 9.8
10 9 .2
11 10.2
12 7.4
13 I 1.3
14 9 .9
15 13 .7
tb e. 4
17 5.9
18 5. 7
19 °. 0
20 11.1
21 8. 5
22 8.7
23 8.5
24 9.6
25 13 .1
26 7.7
27 9.6
2R 13.9
29 16.1
30 21.4
31 15.0
MO NTH 21.4
Hllll
-4 .5
-3 .0
-2 .4
-1.3
-I. 7
-2.8
-1.6
-2.5
1.0
2.5
1.8
1.0
,4
1.2
-l.b
3.3
1.8
'l ') .......
.6
1.1
.1
2.4
0.0
3.4
5.0
7.7
~.3
-5 .2
liE AN
TEMP .
OEG C
RES.
\liND
DIR ,
DEG
.5 206
2.1 218
Hill liH
-.4 229
1.3 334
2.1 no
!.8 348
3.6 346
3.5 229
3.8 203
3.9 312
3.9 2Q3
6.2 195
6.2 198
6.3 324
4, 7 192
3.2 2!Q
3.5 170
3. 7 321
7.2 283
5.2 263
5.5 186
4.b 143
5.4 04h
b.b 343
5.1 185
4.8 297
8.7 G87
19.6 PS
14 .6 177
9.7 164
4.9 2qs
RES.
\II MD
SPD.
lt/S
AVG .
\liND
SPD .
~IS
11AX.
GUST
DJR.
OEG
1.0 1.7 183
.5 1.7 138
Hll
.4
.8
.5
2.5
1.3
.6
1.6
1.1
1.2
1.2
1.4
1.0
2.4
C' • .J
.3 ., ,,
2.0
2.4
1.5
1.8
.4
.7
,8
.6
.4
3.5
1.2
3.1
.5
1.1
I .6
1.2
V3
1.5
1.3
2.7
2.2
1.8
1.5
2.2
1.9
2.9
1. 4
!.b
t.b
3.5
3 . g
2.0
2.5
2.5
2.4
1. 9
~ .1
1.9
4.0
2.4
4.2
2.2
*** 170
343
3?.7
J42
148
205
177
?&2
181
228
137
171
175
26 4
159
264
?33
263
164
143
110
298
223
140
122
160
177
130
tbO
GI.J<H I,JI:::L..
GU ST '·JF.:L.
Gl.l ~n '.JE L.
G U ~T 'JF.:L .
AT MAX, (~LIST M I NIJ!3
AT MA'x. GUST MINUS
AT MAX. ~US T PLUS
AT MAX. GUST PLUS
MAX.
GUST ? 'VAL MEAN
SPD. DJR. RH
!1/S %
!lEAN
DP
DEG C
PREf.IP
i1"
8.3 ssw ** llllf 0.0
9.5 w ll ***** 1.2
lUI !Ill
4,4 Sl~
5 .7 NNW
3.8 N
7 . 0 NNW
4.4 tlNII
~.4 ~~~
7.6 5
6.3 NNW
8.3 ssw
5.7 ssw
7.0 s
5.7 ~NW
s It. 4
7' 0 ssw
7.0 II
6.3 N
9.5 NNW
10.8 ~SII
8.3 SSE
12.7 SE
8.9 Nti\ol
7.6 N
9.5 s
7.6 NNII
11.4 £
17 .1 ~~
It. 4 S
17.1 SSE
17.1 NNW
n *****
U Ul*'
U HHI
H IHH
U Hill
Ill *****
U HIH
H IIHI
** *****
** ***** II 41HI
U IHH
.... **"*
fi iUH
** *"'***
n *****
lll 'fHH
n *"**
H HUll
llf liUH
II Hill
** HHI
H HIH
** ***** II fHH
H l HH
H HHI
H UIH
·H ·HUll
H Hill
2 T NTFR ~.'AI S
INTERW~L
·1. INTFR 'JAL
-:> [N T E R~)ALS
***' 0.0
0.0
0.0
u
0.0
0.0
0.0
u
0.0
u
0.0
u
2.0
1.B
0.0
~.0
0.0
u
.B
1.6
0.0
u
'l ....
u
Q,O
u
0.0
u
7.6
1 fl . ;~
1 0 . ~~
1l. 4
7.6
DAY'S
SOLAR
FliERGY DAY
WH/Sw"
67"!5
3'540 2
"**** 3 5198 4
7088 '5
5500 6
1,803 7
7570 8
6715 '1
7553 10
7473 ! 1
4560 12
5903 13
5303 14
6318 15
4553 16
3220 17
3905 IB
5898 19
5383 20
40313 21.
4783 22
4735 23
5093 2.1
6~23 ~5
3785 26
4803 27
4000 28
4430 20
5753 30
40 43 31
160899
N!JiE : f<EI...AiiVE HUM TD TTY ~~EADJNCS ARE UNR FI.. I AB i..E I..JI-11:::1··! I...JTND ~WI='F D S AI~ I;: I FSS Tlh~N
ON~ MF.:TFR PF.:R ~~C!J ND. S UCH READINGS HAV[ N!JT BE EN IN~I...UDED IN THE DA I I_Y
0 1~ WJNTHI .. Y t1F.,~N Ff)l~ I?ELA TTVF HIJI1TTHTY ANJ) DFI.·' PnTNT.
**** SEE NfJTF.S AT THF. BA CK n F THI S RE POR T ****
143
I~ &. M C CJ N S U L. T ANT B , :t: NC .
S US :1 : T N A H Y D I ~ DE 1 ... E C T I~ :1: C P I~ Cl .T E C T
110NTHL Y SU MMAR Y FO R WATA NA WEATHER STATION
DATA TAKEN DURING S ep teMbe r .· 1982
RES. RES. AUG . IIAX. !lAX. DAY 'S
MX . IIlii. !lEAH \liND Iii MD \liND GUST GUST p I Wl. IlEAl! !lEAN SOLAR
DAY TEMP . TEltP . TE!f. DIR . SPD . SPD. DIR . SPD . DIR . RH DP PRECIP OtER'Y DAY
fiE(; C DEG C DEG C DEC 11/S 11/S DEC 11/S I DEC C Ill\ IIH/S~
1 11 .1 2.& u 858 .7 1.4 145 5.1 N H ..... .2 349ti 1
2 11.3 t.2 6.3 250 .7 1.9 247 7.8 E .. HHI 2.2 3938 2
3 7.1 2.1 4.6 337 .4 1.1 251 5.7 N H Hilt 8.2 2098 3 .
4 11.5 .7 5.6 059 .8 138 4.4 u 4485 4 I 1.6 N H .....
5 13 .6 2.9 8.3 179 5.6 5.8 894 14.D E H Hill .8 2191 5
l b 14.5 5.9 11 .2 078 2.8 3.5 182 ".2 E II tltlt 1.2 2930 &
.j 7 9.9 5.1 7.5 269 2.8 2.9 ~ 7.8 \1 H tttU 4.4 2865 7 I 8 7.4 4.9 6.2 2b6 t.b 1.8 271 4.4 \1 H IIHI 2.2 1490 8
9 8.8 4.b b .? 089 1.7 2.1 087 8.3 E H fHII 4.b 2265 9 I 851 t.2 1.5 067 0.1 2220 18 ' 11 8.5 3.4 6.8 4.4 N H ltHH
I 11 &.b .b 3.& 257 1.1 1.9 255 8.9 \1 H ..... 12.0 1b95 11
12 7.b -.6 3.5 881 2.4 2.8 07& 10.8 E H litH 2.6 3743 12
I 13 12.1 1.4 b.8 163 2.3 3.7 055 8.9 ENE H ..... 18.b 2195 13
14 7.8 5.2 b.5 079 1.7 2.a 073 7.0 OlE H tiiH 12 .& 1185 14
I 15 9 .1 &.& 7.9 854 3.5 3.!. 869 7.6 HE It It HI ?.b 542 15
lb ..... litH ..... IH IIH Hit IH IIH IH .. IHH UH ...... 1&
17 7.9 6.1 7.0 29o 1.1 1.3 330 3.2 IIHW It IIIU i.O 98 8 17 -18 11.4 b.O 8.7 078 2.1 3.2 Ill 8.9 E .. ..... 8.0 ms 18
19 8.1 2.& '5.4 2&9 1.1 1.S 2'51 5.7 \1 It ..... 4. 8 1411 19
29 i.3 2.4 4.9 353 .1 1.3 238 4.4 II .. . .... .6 21 45 2Q
I
I 21 18.2 2.1 11.2 Q79 2.4 3.9 188 11.4 E H Hilt l.b 1413 21
22 b.'S -1.1 2.7 296 1.2 1.9 248 7.& II H IIIII 1.1 2720 22
23 6.7 -4 .1 1.3 325 .8 1.7 226 '5 .1 II It ..... 1.0 3958 23
i 24 7.9 -5.b 1.2 m 2.2 2.3 175 7 .a E If ..... u 29&0 24 l
I 25 11.2 -1.1 4.& 058 1.4 1.9 078 7.8 E H ..... u 2745 25 I 2& 5.2 .9 3.1 32& .& 1.5 145 5.1 IIHW If IIIII 2.8 1798 26
I 27 6.3 -2 .1 2.2 285 l.b 2.2 2&9 7.0 II It tHH .6 2755 27
28 3.1 -4 .3 -.6 17& 4.3 4.4 1183 9.5 ENE .. . .... 2.0 1598 28
II 29 4.7 .1 2.4 171 2.8 3.1 092 1.b liE H ..... 5.8 1731 29
30 2.9 -1.1 .9 274 .b 1.1 261 3.8 II It Hill 4.4 1508 30
! ttOHTH 14.5 -5.6 5.1 162 .9 2.4 094 14.0 E Itt IHH 118 .8 67248 i
I
I GUS T VEL . AT MA X. GUST MINU S 2 INTERVALS 10.8
GU ST VEL. AT MAX . GUST MINUS 1 INTERVAL 9 .5
GUST VEL . AT MA X. GUST PLUS 1 INTER VAL 11 . 4
I GUS T VEL . AT MAX . GUST PLUS 2 INTERVALS 10.2
NOT r.: RELATIVE HUMID I TY READING S ARE UN RELIABLE WHEN WINO SPEED S ARE LESS THAN
I ONE METER PER SECON D. SUCH READ INGS HAVE NOT BEEN INCLUDED IN TH E DAIL Y
OR MONT HLY ME AN FO R RELATIVE HUM I DITY AND DEW POINT.
·~···~'k SEE NOTES AT THE BACK OF THIS REPORT lHt*·X·
I
I 144
I
·~ ~ M CONSULTANTS> :a:Nc.
I SU~!) :t: TNA H Y l) I~ Cl E 1... t::: C T I~ :1: C F''l~ DSECT
I MONTHLy SUMM ARy FOR WATANA WEATHER ST ATION
DATA TAKEN DURING Oct ober , 1982
t )
RES. RES. AVG. MX. MX. DAY 'S
I MX . IUN . I£M vum VIM> vnm GUST GUST P'Wt. HEM I£AH SOLAR
DAY TDIP. TE!f . TDIP . DIR . SPD . SPD. DIR . SPD. DIR. RH w PRECIP BOGY DAY
DEit C DEG C TGC KG IVS lt/S DE It !VS % DEC C "" WK/SQil
1 3.7 -2 .1 .a 218 '1 .& 271 3.8 S£ H HIH I .I 1831 1
2 2.2 -2 .0 .1 162 .9 1.1 111 4.4 " H IHH 1.1 2278 2
3 1.8 -2 .& -.4 152 2.2 2.4 131 &.3 liE H HIH . 4 1481 3
4 1.9 -3 .3 -.7 149 3.3 3.4 146 7.& liE H fHH 1.0 2891 4
5 -.1 -3.5 -1.8 141 4.1 4.1 ·~ 8.9 liE H HHf 1.0 2781, s
6 1.1 -3.5 -1.2 149 4.3 4.4 OM 8.3 ME If HIH ••• 2105 6
7 -.8 -3.8 -2.3 1119 3.3 3.8 173 8.9 EHE H HHf 1.0 985 7
8 -2.3 -5 .7 -4.1 261 3.8 3.5 265 8.9 II5W II ffiH ••• 2229 8
9 -1.2 -18.9 -&.1 276 1.4 1.6 257 4.4 v H IUU 1.0 1468 9
u -.9 -7.3 -4 .1 297 .& 1.1 2&& 3.8 v H HHI 1.1 1885 11
11 -1.9 -9 .9 -5.9 HI HH 3.5 HI HH HI H HHf .2 931 11
12 1.8 -4.2 -1.2 162 4.4 4.& I '](! 11.4 El£ H HHf .2 1181 12
13 -3.3 -1 8.1 -11 .7 152 1.5 2.0 829 8.3 N It "*" ••• 1435 13
14 -4.1 -14 .5 -9 .3 868 1.7 1.9 196 5.1 E H fHH 8.1 1513 14
15 -4 .1 -17 .2 -U.& 839 1.8 2.2 073 7.& M H HIH 1.1 2619 15
16 -3.2 -11.3 -7.3 167 5.1 5.1 186 11 .2 ENE H Hflt I .G 1821 16
17 -.s -7.& -4 .1 112 1.1 1.4 117 3.8 HI( H HID 1.8 1b41 17
18 -.3 -11.0 -5.7 83& 1.2 1.5 346 3.8 N " II HI 8.1 2111 18
19 5.1 -&.& -.8 0&5 1.2 1.5 037 3.8 E H IHH 1.0 1856 19
20 4.1 -4.7 -.3 852 2.3 2.7 126 8.9 ltHE If if*H 1.1 IUHI 21
21 -.1 -7.5 -3.8 144 4.7 4.9 136 8.9 liE H IIHI I. 0. *"*" 21
22 -3.3 -12.1 -7.7 852 5.9 6.0 159 18 .2 ME .. HIH 1.0 HIHI 22
23 -4.5 -1&. 0 -18.3 863 5.5 5.7 843 8.9 EHE H HIH 1.0 ftHII 23
24 -6 .4 -1&.8 -11.6 U&& 4.U 4.2 8~ 8.9 El£ •• II HI 1.1 IHHI 24
25 -4 .1 -14.11 -9.3 186 2.2 2.5 151 6.3 atE " IHII 1.8 ...... 25
26 -11.1 -22 .7 -1&.9 181 3.2 3.& Orl 8.9 E u · HHI ••• IIHH 26
27 -17.3 -21 .9 -22.& 154 2.7 2.9 .82 8.3 EHE H Hltl 1.8 1551 27
28 -16 .2 -21.2 -18.7 872 3.9 4.1 172 9.5 EME H "*" 3.1 731 28
29 -11.3 -22.3 -16 .3 312 .7 1.4 lU 3.2 IIHW H "*" .4 1515 29
30 -15 .1 -32 .8 -24.1 IIH IIIII l.b IH .... HI If fHH O.G 1488 38
31 -13.1 -24.3 -18.7 056 6.2 4.4 IS& 11.2 t( H fHH 1.0 1135 31
~NTH s . 1 -3C..B -7 .& 850 2.7 3.e 119 11.4 E1IE II HHI 4.2 38729
GUS T VEL. AT MAX . GUST MINUS 2 INTERVALS 8.9
GUST VEL. AT MAX . GUST MINUS 1 INTERVAL 7 .6
GUST VEL. AT MAX . GUST PLUS 1 INTERVAL 8 .9
GUS T VEL. AT MAX. GUST PLU S 2 INTERVAL S 8.9
NOT E: RELATIVE HUMIDITY RE AD INGS AR E UNRELIABLE WHEN WIND SPEEDS ARE LESS THAN
ONE METER PER SECOND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAIL Y
OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT.
·Xo ·.:<-*'* SEE NOT ES AT THE BACK OF THIS REPORT ~H~*·~
145
~:> U G :t: T N A H Y D I ~ U E 1... E C T I ~ :1: C P F~ U S 1::: C T
MO NTHL Y SUMM ARY FOR WAT A~ WEATHER S TAfiON
DA TA TAKEN DURIN G No ve Mber , 1 9 8 2
RES .
11AX. 11IH. HEAH WIND
RES. AVG.
IIIHD IIIHD
SPD . SPD .
11/S 11/S
DAY TEMP . TE)'!P. TEl1 P. DIR.
DEG C DtG OEC C DEC C
• 1 -3 .0
2 -1.4
3 -4.3
4 -4.3
5 -e. 4
b -11.3
7 -1:?.&
8 -11.2
9 -8.2
10 -8 .3
11 -s . 4
12 -1.6
13 -1.5
14 -4.2
IS -5 .8
16 -10.2
17 -ltd
18 -!4 .5
19 -16 .8
20 -13 .:,
21 -b . 0
22 -5 1
23 -2 .7
24 _, .&
25 -J.3
2& -5.8
27 ·3.8
28 -7 .:?
29 -:. ~
3C -~. 9
t\ONTH -1.4
-14 .9
-10 .9
-13 .4
-9 .:?
-15.7
-20 .5
-21.9
-1&.5
-18 .5
-16.7
-9 .5
-7.1
-&. 0
-10.2
-1 7.&
-19.4
-22.7
-:!4 .5
-24 .7
-1 7.9
-IS .1
-\1 .2
-5 ,5
-4.2
-1 0.9
-1 \.b
-14 .5
-1 6.6
-9.4
-!~.2
-24.7
-9.8
-6 .2
-8.9
-&.8
-12.1
-15.9
-\7.3
-13.9
-1 3.4
-12.5
-7.5
-4 .4
-3.8
-7.2
-11.7
-14 .8
-19.5
-1?.5
-:?0 .8
-t5.b
-!0.9
-9 .2
-4.1
-2 .9
-7.1
-8.7
-9.2
-11.9
-8.2
-t I. 1
-!9.7
072
066
071
ObO
052
005
Ob 4
064
302
064
Db3
0&6
054
025
Ob5
07 5
077
Obb
070
091
Obi
056
356
058
07&
0&2
Ob6
07 1
oss
C35
06 3
6.3
1.5
2.7
4.0
:?.3
1.2
3.6
4.3
.8
3.9
1.9
5 .9
3.2
1.2
1.5
1.7
:?.3
2.8
5.7
2.4
3.6
1.8
4.3
4.5
4.5
5.7
2.3
\.b
7 \ w o"t
3 .9
3. i
6.4
2.8
2.9
4. I
:?.~
1.4
7 ., .....
4.8
1.:?
4.0
2. 0
&.0
3.6
1.3
1.7
I .8
2.3
3.0
5.8
2.5
3.S
2.0
4.4
4.5
4.&
5.7
2.4
1.7
3.5
4.1
3.3
GUST ~E L . AT MAX. GUST
GUST VEL. AT MAX. GUST
GUST VEL . AT MnX. GUST
GUST VEL . AT MAX . GUST
MAX .
GUST pI VAl MEAN l'ltAN
PIAX.
GUST
DIR.
DEC
SPD. DIR. ~H DP PR £CI P
073
064
076
068
057
0 4~
064
064
288
067
075
082
086
009
089
073
073
391
074
071
052
051
059
092
OBI
067
DeS
Ob O
e:s
030
073
MINUS
MINUS
PL US
P L US
tt /S ! DEG C M~
14.0 ENE
6.3 E
7.6 ENE
10.2 E~E
5.1 NE
4.4 E
9.5 ENE
11 .4 E.HE
5.7 WNW
9.5 ENE
7.6 ENE
12 .1 ENE
8.9 HE
3.2 H
4.4 ENE
5.7 ENE
4.4 E
8.3 [.'{[
11 .4 ENE
7.6 E
7.6 NE
5. I E
7 .0 ENE
7 .a ~E
9.5 ENE
10.8 ENE
7. 0 ENE
4.4 E
7.6 NE
!~ .2 ~!llE
14.~ ENE
H U I H
u ntH
U HUf
H! XH!!li
!l! UHf
n Hli!l*
n ***"
H U!lll
H U UI
U UIU
l!f UIU
68 -9.1
73 -7.3
H I~H
68 -14 .9
72 -20 .4
63 -25 .1
47 -28.9
46 -28 .6
52 -::3.2
58 -16 .4
62 -14 .0
71 -8.5
!I H H!I
73 -11.6
66 -\3.9
73 -9.2
ill *l!!IU
U Hif.Jf:
77 -!b .~
62 -16 .5
2 INT E I~Vrt L S
1 [r!TER \Hd_
1 T.NTER'.lf."'L
2 HlTERVALS
u
0.9
0.0
o.o
0. 0
~.0
0.0
0.0
u
')
o.e
0.9
0.0
0.0
u
0 .~
0.0
~. J
u
e.~
OJ •
0.9
0 .I
0.0
0.1
0.~
0 .o
9.9
u
u
?
.. , ., . -..
11 . 4
1 3.3
12. 1
DAY'S
S!JLAR
t i!ERGY DAY
WHi sml
toa
~85
588
913
9~5
:~29
!515
C"')-w~.l
495
2
3
5
7
e
9
573 !0
641 1!
~0 !2
64 J 13
798 \~
921 15
t 003 16
991 17
! 003 18
7PS 19
~05 20
52t 2!
459 22
43S 2 3
62~ 2 ~
s ·~ :J
55.1 26
518 27
558 28
385 29
21 573
~IDTE : RELn TEVE HUM IDITY RE ADIN GS ARE UNRELIABLE WHEN WIND SPEEDS ~RE L~S 3 TH~N
ONE METER PER SECOND. SUCH READINGS HAV E NOT BEE N INCLUDED IN THE ~~IL Y
OR MONTHL Y MEnN FOR RELATIVE HUMID I TY AND DEW POIN T.
~*»* SE E NOTES AT THE BACK OF THIS REPORT ****
1 4 6
& M C D N ~:> U L. T i~ NT ~:> :•
,'\Or•T:-it 1 :.1U MMAKY FOR wA"i=~NA WEA Ti-t ER STATIGN
DA fA TAkEN Du RI NG Dece Moer ~ 1 9 8 2
DAY
IIAX.
iEi"i.
atr. c
,.
nih.
TEMr .
DEi. C
IIEAH
Taw.
fiEf. C
itS.
WIND
DIR.
DEG
RES .
WIND
SrD .
11/5
AVG.
WIIiD
SPD .
rii S
i'IAX.
GUST
iliR .
DEG
riAX,
GUST P'V AL MEAH
SPD . Dii . ~ri
titS 4
:J:NC.
I'IEA!i
DP PREC lil
DEG C r!n
IIAY 'S
sow
EriEiG'f ~AY
IIH/Swn
-----------------------------------------
1
2
3
4
5
6
7
8
9
10
ll
12
13
14
\5
iii
17
IB
19
20
~~
22
23
24
25
j " ... o
27
28
2.9
30
31
hiiNi n
-14.4
-17 ' l
-17.7
-15. I
-7.4
-5.3
-.?
-1.0
-2.4
-a ,3
-7.o
-5 .8
-3.3
-2 .9
-2.8
-4.5
-o.2
-7.3
-a.7
-8 .9
-1'!.&
-14.4
-1 ~.3
-9 .4
-11.o
-2.5
.4
2.i
2..o
-1.6
-4 .1
2.i
-19 .7
-23 .9
-24 .2
-24 .1
-15.o
-1 6.8
-5 .9
-~.a -
-17 .2
-18.4
-10.2
-9.2
-6.9
-10.8
-\D.o
-11.&
-1 2 .~
-15.1
-H .b
-17 .5
-2U
-2 2.7
-~u.iJ
-lB . a
-\&.1
-13.4
-3.G
-.3
-3. i
-11.6
-1~.5
-24.2
-17.1
-2&.5
··21 .0
-19.6
-11.5
-8.1
-3.4
-2.9
-9 .8
-13.4
-8.9
-7.5
-5 .1
-b.9
-o .7
·8.2
-9 .2
-11 .6
-11.7
-\3.2
-\8.4
-18 .&
-1 7.2
-13.7
-14.9
-8.0
-1.7
-.3
-b.7
-8.3
-l il.4
032
070
065
Ob3
fl b1
057
082
679
059
07b
0&3
Obb
670
077
ubC!
665
uoa
Obi
059
Ob6
077
075
1162 m,
073
062
083
078
088
Ob1
oaa
5.5
5.3
4.5
S.o
b.b
6 .5
7 . I
3.6
.8
3 .4
o.o
&.8
5.7
3.o
5.3
5.5
;:l -~·J
3. I
5.7
4.2 . ") '·~ 4.2
5.5
3 .3
3 .1
&.o
5.i
4.1
3.4
.I
2.3
4.4
5.7
5 .4
4.8
5.&
b.7
6.b
7.2
3.8
2. ~
3.5
6.7
7. I
b.O
3.8
5.4
s.o
2.4
3.1
5.7
4.4
2.3
4.4
5.6
3.4
3.3
6.7
5.8
4.2
3.7
1.9
2.5
4.i
025
071
07 4
063
062
u57
089
u79
279
060
Oo7
ij8 4
~7i
091
iJi4
075
654
uo7
fl 55
•i 49
[J iJ9
u79
iJ &1
053
055
u78
098
il 80
075
2o5
u50
089
10.8 NNE
10 .2 EN£
9.5 ENE
10.2 ENE
10 .2 ENE
12.1 rtE
14 .o E
12.1 ENE
7.0 EN£
8.9 E
13 .3 ENE
14.0 ENE
12.1 ENE
&.9 E
9. 5 EllE
12.1 ENE.
7.o t
i.b ENE
10.2 EiiE
9.5 ENE
S.i Ei'i E
9.5 Et.E
9.5 ERE
7.6 E
-9.5 E
II. 4 ENE
12 .7 c:
9 .5 E
10.2 E
o.~ E
7.u EhE
14.6 EriE
6o
59
bO
ou
72
b9
86
u
It
o6
66
69
u
70
7Q
70
i 5
H
69
65
83
74
o4
69
85
78
u
** u
-i1 '9
-24 .8
-2il .3
-25.o
-IS .l
-1 3 .4
-8 .4
HU~
U:lltt
-15 .5
-14.3
-12 .4
IUU
-1 2.1
-9.2
-I!. 0
-10.5
HH•
-15 .9
-l i.o
-21.4
-22.4
-21.2
-18 .3
-1 7.5
-13.b
UfH
-HU11
UU~t
kHd
u~J:l
-1o.7
Q,O
0.0
.2
0.0
u. 0
.a
2.8
.4
a. II
0.0
1.0
6.9
8.0
o.a
8.0
0.0
& • 0
o.u
O.il
u
U J
o.a
u
u
O,ij
11.0
0.0
2.8
u
o.o
9.0
7. u
GUST V~L. AT ~AX. GUST MI~U ~ 2 I NTERVALS 10 .8
G~ST VEL. AT MAX. GUST M l ~~S 1 I~TER~AL 12.1
GU ST VE L. AT MAX. GUST PL~S INTERVAL 12.7
GUST ~EL. AT MA X . GU ST P LU S ~ l~TERVALS 10.8
44d 1
498 2
-'183 3
4o3 4
39~ 5
458 0
j5lj
:io a a
12u 9
375 10
345 l l
366 12
IiS 13
358 14
383 IS
3au 16
355 17
3a 3 1a
35~ 19
41 0 20
-\o~ 2.
475 22
40 5 23
390 24
385 25
356 2o
31)3 27
290 28
.i48 29
313 j ~
4uli 3i
12aoil
NG TE : ~E LR TIV E HUMI DIT i RfADi NG S A~E UNRE L IABLE Wh EN ~I N D SPEE DS A~E LESS TnAN
ONE METER PE R SECON D. SuCH REA DINGS HAVE NOT BEEN INCLU DED IN THE DALLY
GR MG hTHLY MEA N FOR RE LA TIVE hUMID ITY AND DEW PO[NT .
••~» SE E ~GTES AT Th E BACK OF Trl iS REPO~T i***
14 7
:t: N C .
S U S :t: T N A H Y :0 I ~ D E L E C T I~ :1: C P I ~ 0 ,T E C T
MONTrii .. ( SUM Mi4 Ri FO K wATANA \li EAi Ht:R STA T ION
DATA TAKEN DuKING January) 1983
( RES. Rt:S. AVG . IIAX. !lAX . vAY 'S
!lAX. rH ri. ntAM iil HD "HiD Ill MD GUST cus T ? 'v ~ KEilll IIEA N Su LAK
DAY iEi1P. TEMP. TEJIP . Dli . SrD . srn . DiR . SPD. DIR . ~H DP PREC i P ENt.KGY DAY ... l DEG C DEi; C fiEG C DEG IVS IVS DEC M/S % DEC l. 1111 1111/51:1~ / . r , ----'-·-------·-----------·------------_,
-.J <. ~. 4-:---1 . u -5.7 ;;.1~9' Ob4 5.3 5.4 072 10.2 EN£ u IUh 6. 0 425 I
2 -4 .2 -7.1 -5.7 062 4.6 4.8 059 6.3 ENE tf fHH o.o 410 2
3 -o .b -11.5 -9.1 053 4.7 4.8 GSJ 8.3 ME 58 -17 .3 l.b 348 3
4 -1 0.o -25 .7 -18.2 076 3.1 3.3 080 7.0 E 51 -25 .7 0.8 495 4
5 -2iU -28 .o -24 .4 091 3.o 3.7 Otib 7.u E 55 -30 .9 Q.O 415 " ..1
0 -2 0.o -26.1 -23.4 951 o.O 6.2 a4o 11.4 liE 54 -28.11 o.o 435 II
7 -22.1 -27 .2 -24 .7 &52 5.9 b . 0 0112 12 .1 HE Sb -30.3 0.6 4{)8 7
6 -21 .a -28.b -25.2 07b 5.0 5 .3 ObO 10 .2 ENE 54 -32.8 u 515 8
9 -2 7.0 -34 .4 -39.7 088 2.9 3 .I 07 8 8.9 ESE 51 -37 .5 0.0 518 9
10 -27.5 -2 7.5 -27.5 ~93 4.5 4.5 693 7.0 E 55 -33.8 U H 240 10
11 -17.9 -2 £1.8 -19.4 ust 4.0 4.9 010 8 .9 t 28 -34 .4 0.0 240 11
12 -2 6.5 -25 .il -22 .8 0112 5.8 5.9 052 10.8 ENE 49 -32 .7 u 598 12
13 -21 .1 -25.2 -23 .2 ir iiS 7.2 7.3 059 13 .3 84£ 4i -32 .5 9.6 573 13
14 -14 .1 -24.6 -19 .4 Ob8 S.il 5 .2 Ob9 1\.4 tHE 49 -27.il 0.0 SuS 14
15 -4 .9 -20.9 -12.9 Oo9 3.9 4.1 0112 9.5 ENE bi -19.3 a.u 45ij 15
16 -o .1 -10 .2 -8.2 Olio 4.8 4.8 ObO 10.2 ENE b5 -13 .7 o.u 485 16
17 -5 .8 -12 .11 -9 .Z i44 z.o 2.3 ij b7 8.3 ~ 70 -13 .3 u 475 17
18 -4 .~ -b .9 -5.b 057 5.9 b.2 075 12.1 ENE b8 -1 0.4 u SoO 18
19 -b.il -liLY -6.5 Obo ~ ·"' 2.8 072 9.5 E.llE llfs -12 .9 1.2 4~ 19
2il -S.il -ta.s -9.3 047 5.5 5 .5 Qb1 8.9 NE b7 -14.2 0.0 5&5 20
21 -7.4 -15 .2 -11.3 047 5 .1 5 .2 OSb 8.3 liE 4& -19.4 u 726 :!1
22 -3.8 -17.2 -10.5 uib 3.o 3 .7 083 9.5 ENE 39 -22.7 O.Q 7&0 22
23 -b.O -1&.4 -11.2 075 3.11 3.7 070 8.3 E 31 -211.7 0.0 79& 23 -. '~ -a.~ -1 ~.7 -11.1 li b2 o.ir b.2 Gb3 i2 .l ENE 33 -24 .1 u 815 24
25 -8 .7 -14.& -11.7 u&s 7.4 7.5 Ob5 i 3.3 ~ 39 -23.8 u 75v 25
26 -b .7 -11.3 -9 .1) Gb9 7.4 7.b Ob5 14.& ENE 52 -1&.9 0.0 &48 2b
27 -o .b -13.6 -16.2 072 3 .1 3.3 075 9.5 ENE 64 -15.0 0.0 598 27
28 -·1.7 -1a .i -7.7 070 1.4 l.b 095 3 .8 E u ..... 0.0 b93 28
29 -8.1 -15.6 -12.0 073 2.2 2.4 097 5.7 E 75 -14.8 u &88 29
,)~ -o.1 -i4.2 -lii. 2 J58 o.4 b.4 ~57 111 .2 EN£ 77 -12.o u 65J 3u
3\ -2.2 -o.1 -4 .6 0&3 .. . ,J,, 5.4 675 10 .a EHE bb -9.8 o.u no 31
rruliin .A ,~. -~4.4 -1 4 .I uo4 4.5 4.8 ObS 14.& ENE 53 -22.6 2.8 17675
cu::l r '· fi_. AT 1"1 (-) ;( • GUST M.i.N Li S -., .... INTE RVAL S 1 I . 4
GUS I '" t. i_ • AT n ?l .x.. GUST MINUS 1 I NTE RVAL 14. l)
GJ E>T vEL. 1-\f nr~X. GuST p,_us 1 I NTERVAL 1 4. 0
Gu ST VE.L. AI rlA.-\. GUST PLUS 2 I NT ERVAL S ! 2. 1
NUi't:: f<ELAT:i>)t: HUM iii .;:!"( Rt::ADII'lGS ARE UNKEL I AB LE WHE N WI ND SP EE DS AI<£ LE SS TH AI''
Jr~E METER PER SE COND. ;:)uC.H R t:AD I I'!GS HAV E NO T BEE.r~ INC LUIJED 11'1 THE lJA 1 Lr
uR ntJI'Y TrlLY M Et'o~N 1=-0R Rt:I_AfiVf.: HU MI-;)ITY AND DE w PO I N i.
;<; }: ·t.: 1< SEE ;~DTES f-lT T t-it:: BACK GF THIS REPORT ·Xo ·X·-Xo·~
1 48
·~ ~ M C 0 N S l .J 1... T A N T S > :a: NC.
S l.J S :a: T N A H Y 1) I~ D E 1... E C T I~ :a: C PI~ Cl,TECT
MONTHLY SUMMARY FOR WATANA WEATHER STATION \
DATA TAKEN DURING February , 1983
RES . RES. IWG. MX. MX . DAY'S
MX. MIM. I£AM Iii MD lilt& li!lti GUST GUST P'VAL !'£AN ION stiLAR
DAY TEMP . TEitP. T£MP. DIR. SPD. SPD. DIR. SPD. DIR . RH DP PRECIP EHERGY DAY
KI:C KG C IG C DEG MIS M/S IIEG IVS % DEG C lilt liiVSQit
.3 -u.2 -S.I 1119 4.8 5.1 lb9 13.3 ME 59 -u.s ••• 913 1
' -1.7 -5.3 -3.5 1&3 5.3 5.5 871 11.8 a£ 77 -7.3 1.1 S"~ , .. 2
3 -2 .8 -5.7 -4.3 059 S.D 5.1 174 11 .8 ME b9 -9 .3 1.0 813 3
4 -2 .7 -o.3 -4.5 171 5.5 5.o 177 12.1 a£ il2 -11.8 1.1 83:. 4
5 -2.4 -9 .4 -5 .9 aoa 4.7 4.9 87t 14.1 EJtE ot -11.7 1.0 nas 5
0 -1.7 -10.7 -o.z IM 4.o 4.9 061 11.4 EHE 04 -9.3 ••• 1181 0
7 -4.4 -7 .4 -5.9 028 .9 2.5 D77 8.3 WHII 7o -8.8 1.0 931 7
8 -5.1 -13.5 -9 .3 341 1.2 1.4 290 3.2 M H ""* ••• 087 8
9 -7 .5 -15.9 -11.7 1&3 1.2 1.7 180 8.1 E o& -17.S 1 .~ 783 9
11 -11.1 -17 .4 -14.3 174 1.7 1.8 079 5.7 E 08 -18.1 1.8 7S1 10
11 -13.o -21.8 -17.2 87S 2.1 2.4 073 5.1 E 08 -22.4 1.0 828 11
12 -12.7 -22.9 -17.8 174 1.9 1.9 09o 5.1 E M -24 .(, ••• 935 12
13 -14.8 -25 .4 -2&.1 0&3 1.7 1.9 too 3.8 ENE 63 -27 .3 1.0 1912 13
14 -13.2 -25.4 -19.3 072 2.8 2.9 073 8.9 DE 59 -24 .7 ••• 1973 14
15 -11.4 -15 .1 -13.3 17o 7' 1 7.1 978 11.4 ElE 52 -21.1 0.0 1558 15
l b -12 .0 -15.3 -13.7 173 8.0 8.0 176 11.4 E'HE 47 -22 .4 8.1 1&31 16
17 -14.0 -19.4 -1o .7 177 o.o &.7 876 11.4 E1tE 45 -25.o 1.0 1085 17
18 -11 .9 -18.0 -14.5 p~ 7.1 7.2 105 11.4 Ei£ 50 ·21 .7 1.1 1245 18
19 -5.1 -t3.o -9.4 lSi 4.1 4.2 861 8.9 EME 73 -13.o 1.0 1691 19
21 -5.8 -12.9 -9 .1 lbb S.b 5.7 177 9.5 DE bl -14.3 u 1741 21
21 -4.1 -12 .3 -8.2 067 4.U 4.1 lbb 8.3 ENE sa -14.1 a.o 1845 21
22 -1.1 -11 .8 -o.s 803 3.8 4.0 005 9.5 a£ 65 -18 .9 1.0 1920 22
23 -3.7 -12 .3 -a.t 106 5.o 5.7 oot 11.4 Eli£ so -14.3 u 1908 23
24 -3 .4 -8.6 -o.o 858 2.9 3.2 168 15 .2 El£ 7S -9.8 l.i 1253 24
25 -3.& -14.4 -9.0 tot 3.7 3.1 tb2 6.9 I( 61 -12.3 1.0 2305 25 1 2b -4.8 -9 .0 -6.9 055 6.4 6.5 A6Q 18.8 ME 62 -12.6 1.8 2110 26
'lJ -3 .9 -12.8 -8.4 056 3.Q 3.1 OM 8.9 EME 61 -13.7 a.o ;em 27
28 -4.2 -9.2 -6.7 QS9 1.0 1.1 073 3.8 ENE bO -13.(, 0.8 1050 28
liOMTH .3 -25.4 -10.0 lOS 4.1 4 .3 @08 1S.2 EME o1 -15.6 0.0 38982 I
J
GUST VEL. AT MAX. GUST MINUS 2 INTERVALS 8 .3
GUST VEL. AT MAX. GUST MINUS 1 INTERVAL 8.9 I GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 14.6
GUST VE L. AT MA X. GUST PLUS 2 INTERVALS 8.3
NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIAB LE WHEN WIND SPEEDS ARE LESS THArl
ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR HONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW PO I.H .
*•X··X.·X. SEE NOTES AT THE BACK OF THIS REPORT -~·-*•* )
1
149
1:.{ T i'-IC.
~:; l.J U :i: T N f.:·r H Y D I ~ D E L. E C:: T 1 ~ :&: C p 1 ~ U :r 1::: c ··, ·
rtur~ tt"1t 1 SLI MMAt< "( FOR i,.if-1TANI-1 WEriT11E F, STA T ION
u AT H TAkfN DU ~lNG narch, 1 983
DAY
7
&
9
Iii
i i
12
13
14
1i
18
19
20
2..2
2~
24
26
28
29
30
31
MOri1H
t\A},.
TthF.
u~~ :
-2.b
-8 .1
-1 i. 0
-1, ...
-~ .b
-o .5
-4.9
C' •
-.~.o
-i.&
HH'I<
HH*
t.a
u
-1.3
-.i
.o
-.5
-.6
-1.0
-2 .8
-I.e
-1.9
-2.5
-~.6
-2.4
-2.6
-u~
-2.u
-1.£
-.5
9
1.8
riltl .
iEh?.
ii EG C
-i~.o
-17 .4
-21.j
-20.2
-1o.4
-15 .4
-15.2
-17 .5
-2u.6
HUll
tUH
-1.8
-8.1
-tl .3
-8.4
-1.a
-9.2
-7.1
-1U
-7 .8
-9 .I
-9.8
-11.7
-14 .9
-8.7
-8.9
-9.1
-13 .4
-lid
-13.4
-10.i
-21.3
r\EAit
i Eh?.
IJEG C
-6.2
-12 .8
-1 t>.5
-lo.3
-12.1
-11. Q
-10.1
-11.6
-14.2
UIU
IUU
6.0
-4.0
-3.8
-4.6
-4.b
-4.9
-4 .0
-6.6
-5 .3
-5.4
-5 .9
-7.1
-8.8
r • -.,.o
-5 .8
-6.7
-?.i
-6.1
-7 .0
-4.6
RES.
IIIND
OiR.
DEl.
un
u34
u5 o
05 1
069
070
G53
074
on
***
tU
042
054
052
043
H4
848
654
oou
059
054
054
032
058
058
055
ubi
048
&59
055
05i
u57
~ES.
WI Nil
sn .
IVS
1.if
I.e
4 u
3.3
3./
c -.J ,.)
2.o -~ .),_
3.8
H H
uu
3.6
4.1
~ C' .... .~
2.& . ' '-·~
3.0
3.2
4.~
3.3
4.~
4-.2
2.4
3.~
4.~
5.4
b.o
3.3
3.6
2.7
2.8
3.5
AVG.
II HID
SFIJ .
n t~
1.2
2.0
4.4
3.8
3.6
5.3
2.7
3.2
3.9
H!ll
uu
3.6
4.2
2.6
3. 0
2.3
3.2
,),,)
u
3.5
4.4
4.3
2.7
:; .1
4.4
5 .4
6.7
3.4
u
2.9
2.9
3.7
MAX.
GUS T
Di?..
EG
u u~
YtlO
064
o;s
072
072
074
07 0
tfll
IH
051
017
G66
036
o4a
011
u54
063
07 8
075
061
056
064
069
860
05:3
054
070
07 4
06i
o7 u
nA X.
GUST pI V~l IIE.AN 11t.Atl
5?11. DiR . i!n iit .... ::: Ill ~
4 . 4 tl
~. i tit.=:
&.~ EhE
a.3 m:.
i .o Erlt.
10.2 HE
6.3 Etit
i.b ENE
12 .": EliC:
H H IH
Hh IH
5.7 NE
6. 8 t itt
3.8 liE
6.8 HE
3.8 NC:
b.2 NE
5.7 NE
5.7 NE
b.3 [}l£
i. t> Er~~
b • .) NE.
b.3 NE
6.3 NE
~.3 EIIE
10 .8 ttC:.
1 i. 4 E![
7. 0 NE
8. 9 ENE
5 . ;· EKE
t>.3 EriC.
12.1 EiiE
lo
0 .>
00
bB
64
60
58
53
49
u
tlt
53
50
56
6b
o1
54
56
58
57
5j
52
50
5b
55
53
Si
54
58
bO
b' 59
-1a .s
-211.3
-1~.9
-lb.4
-15 .o
-1t>.i
-1~.5
-22.5
***** un:.-
-8.0
-i0.2
-1o.o
-B.o
-1 0.2
-12.1
-10 .8
-12.8
-1\.8
-12.i
-1 2.9
-1 5.4
-13 .0
-13.1
-13 .5
-14 7
-13 .1
-1 3.0
-10.0
-14.0
rP.E CH
M
ttlt11:
UH
un
flU
lt'H ....
H H .. , .
H H
uo
lfH
flU
H it
fit~
t nt
****
H U
flU
"**
**** H l!+-
IIU
tift
**** U H
tHf
HU
H llf
ltH
Ill*
**** HU
Gu ST VEL. AT MA X. Gu S T MINUS 2 I NTE RV AL S 8 .9
GUST VEL. AT MA X. GUS T MINUS 1 INTE RVA L l U.~
C.LJ'.:·T 'v'CL. ,.,, MA A . GLJS I PLL.lb It!TEI-.VAi_ B .S.
C.,u2,. ·,-v:::.._. 1-t -i t-'1A1',. •.:,u~> -i P LU S 2 1 rH ER VA LS :; . ':
i):,( ·;
SOLAR
81E~GY DAY
wri/Sun
1~3 u
245 u 2
274ll ~
m1 4
172:. :::
2503 b
,&38 7
362:; 8
4227 9
****** 10
****** 1 i
39b0 12
291~ 13
co~5 14
1287 15
1o73 lo
3378 17
4926 18
24uC 19
4 10 2G
3471 2i
492 C 2.2
415? 23
3249 24
4i 12 25
39 63 26
422u 21
4320 28
4523 29
4ns 3D
450ii 31
900 91
:G .~: ~~L"1~0E nU .,I DITt ~~A DI N G S ARE UNRELIABL E WHEN WI ND SPEED S ARE LESS TH AN
C.w: r _ i !:.• i' E~· SECOHl1. SUC h RE?;Dlr~GS H?,\.'E. rWl BEE!\: lr-!CLU[J[D It: THE l.Jti cL 1
L'• r~';··i··1L. r;r.::Hr~ l-OR ~:;::L ;~i.iVC. i-IUMIDI T'T 14 ND DEW POiNT.
... :.. ::. :. I .~I:::.~. ;, I T Hi:: :t.,., c:' 0 F 1 H j, :. REp 0 R T X:·)(; ·X:.,
150
I~ &. M C 0 N ~:; U L T r.e N T ~:; .' :1: NC .
MONTHLY SUMMARY FOR WATANA WEATHER ST ATION
DATA TAKEN DURING Apr J.l. 1983
RES . RES. AVG . IIAX. l1t\X. DAY 'S
MX. KIM. ltEAH III MD III MD III MD GUST GUST pI VAL ItEAM HEA.~ SOLAR
DAY IDIP . TBIP. mw . DIR. SPD. SPD. DIR. SPD. DIR. iH DP PR ECIP EHERCY DAY
DEC C DECC DEG C DEG K/S K/S DEG 11/S I DEG C "" liH/SQ"
1 1.8 -11 .9 -4.b 058 2.b 2.7 Db9 b.l EME 58 -9 .1 0.0 ~918 1
2 3.& -11.1 -3.8 ·~b 2.3 2.5 Ob8 7.1 ME 54 -11.6 8 0 SObS 2
3 .8 -11.3 -5 .3 •a a 3.9 4.1 171 13.3 ENE 59 -18 .s 0. 0 5138 3
~ 1.7 -3 .9 -1.1 148 1.1 4 .9 274 14.& ENE bO -&.3 2.8 2143 4
5 1.0 -7.8 -3 .0 851 2.~ 2.8 073 8.3 ENE b3 -6.5 o.o 4013 s
b .3 -19 .3 -5 .0 831 1.8 2. t U7 5.1 NtlE 58 -18 .9 8.0 5288 b
7 .b -10 .b -s .o 033 1.8 2. t 009 4.4 NNE 57 -1 t. 9 o.o 5383 7
8 2.2 -10 .4 -4 .1 051 .b 1.3 249 4 .~ NE 58 -11.6 0.0 ~303 8
9 2.& -10.7 -4 .1 322 .b t.b 278 5.7 H b9 -12 .1 .2 3473 9
li -4 .& -15.9 -10.3 028 1.9 2.1 022 s. t NE 54 -17 .7 0.0 5&53 tO
11 -8.2 -17.0 -12 .& Ob9 4.0 4 .I 078 10.8 ENE &3 -18.4 a.o 5&15 11
12 .4 -1.0 -.3 154 3.b 3 .7 069 5.7 EME 60 -o.9 0.0 10829 12
13 o.a O.Q 0.0 058 1.7 1.7 055 1.9 HE •• ..... 0. 0 7440 13
~~ 5.1 a.a 2.6 033 1.2 1.4 035 3.2 NNE 46 -7.5 .2 13920 14
15 .I -3.2 -1.& 876 2.7 2.8 099 &.J ENE u IHll Q. 0 1271 15
16 1.~ -s .o -1.8 045 2.5 2.8 061 9.5 ENE 62 -b .O 0.0 4878 l b
17 6.8 -5 .8 .5 320 .9 1.7 245 7.0 IINW 53 -9 .9 o.a S&Oi 17
18 1.8 -4.2 -1.2 871 3.0 3.7 083 10.2 ENE 58 -7. t u ~oso 18
19 3.4 -3 .1 .2 057 3.0 3.9 079 11.~ ENE 47 -1o .a o.o 5:)71 19
20 3 .~ -4 .2 -.~ 067 2.9 3.2 OBI 8.9 ENE bO -7 .4 u.a 4740 20
21 3.7 -4.4 -.~ 0~4 2.4 2.7 080 7.8 rt£ 53 -&.3 0. 0 &108 21
22 &.5 -3.0 1.8 836 .9 1.7 &9~ 5.7 EHE 56 -~.8 a.o 5803 22
23 4.9 -2.1 1.4 302 .4 1.3 255 5.1 E 63 -2.7 0 . u SibS 23
24 8.3 -1.2 3.& 8~1 2. 0 2.2 076 &.3 HE 49 -4 .& 8.0 69&8 24
25 10 .1 1.3 5.7 052 2.b 3.0 86U 7.0 EN£ 51 -3 .4 0.0 7031 25
2o 8.9 -1.8 3.6 002 1.7 1.8 001 4.~ N 50 -3 .9 o.o 8238 2b ' 27 8.7 -2.2 3.3 336 l.b 2.0 2&5 &.3 N 49 -3.7 .2 6895 27
28 7.& -2 .8 2.4 344 .9 1.5 081 4 .~ N 57 -1.8 8.0 4610 28
29 b.4 .3 3.~ 275 .7 .9 219 3.2 II H UIH 0.0 4081 2)
30 7.7 -1.1 3.3 035 1.7 1.9 Otl 5.1 NNE 49 -8.3 0.0 7525 30
IIOKTH 18.1 -17.8 -1.1 045 1.7 2.5 27~ l~.b ENE 55 -8.2 ') . ... o 1717&4
GUST VEL . AT MA X. GUS T MINUS 2 I NTERVA LS 11 . 4
GUST VE L . AT MAX. GUST MINU S 1 INTERVAL 12./
GU ST VEL. Af MA'X. GUST PLUS l I NTE RVAL 14.6
GUST VEL. AT MAX. GUS T PL US ':> .... IN TERVALS 14 .U
NOTF: RELATIVE HU MIDITY RE ADINGS ARE UNREL IAB LE WHE N WIND SPE::t:DS ARE LESS THA)
ONE METER PER SECOND . SU CH REA DIN GS HAVE NOT BEEN IN CLUDED IN THE DA ILY
OR MONThLY MEAN FOR RELATIVE HUMIDITY AND DEW POIN T.
X··X· ·)(-l(· SEE NOTES AT THE BACK OF TH IS REPORT ·li;·X·~·*
151
1 •• ,
'< ·' •"':"":c M 1.:: 0 j" ... J ~:; 1 . ..1 1. .. T ,~:·, i'-J T ~:~ T i'-J C .
MntHHLY S UMMARY :·no I,I ATANA l·JF A T I''.R S TAT HlN
nArA TAKE N DURIN ~ M~u 1983
DAY
tl!l~.
TEi~P .
DEG C
8.0
2 2 .1
3 3. 3
4 5. t
5 b. 0
b 7 . i
7 Ill. 0
a t t.t
9 9.4
I 0 i 0.2
It 11.6
!2 9.4
13 12.0
14 11.1
IS 11.1
16 9.6
18 6. 7
19 ? 8
20 ~****
21 liHH
22 UliU
23 8.1
24 10.6
25 !~. 7
26 8.6
27 10.4
2R 15.6
29 17 . ~
::0 20 .I
3: !2.1
HCltiTH 23. i
HilL
T(i'\P .
DEG C
-3.6
-.8
-!.6
-2 .1
-!.8
-3 .3
-2.4
-!. 4
-1.8
.1
-2.5
.3
2 •. ;
3.1
2.1
. 1
u
.6
-"
Hllllll
>Hlll
HHll
1.8
~ ·' -1 .2
2.1
!.2
.:.o
o.7
7 .6
5.8
-1 .6
t'EAN
TEMP.
~~G C
RES.
II HID
DT R.
DEC
2.2 069
.7
.9
1.5
2.1
1.9
3.8
4.9
3.8
5.2
4.6
5.1
7.6
7 01
6.6
4.9
1.7
3.7
.t •. ~
HHI
lUH
"*** 5.0
5.7
5.9
5.4
s.a
10.1
12.2
13 ,Q
9.0
5.3
279
:n
OM
037
un
Oc3
010
332
314
015
063
049
270
},)p
08 4
262
~7t.
261
)JI
HI
29 4
055
2n
254
RES.
4l~D
SPD .
Ht !J
AV G.
lll ND
SPD .
11/S
/l AX.
G1JST
D!R.
DEG
2.7 3.2 08 1
1.1
1.5
3.6
') 7
• .... .J
2.0
~.8
1.6
! . 5
1.6
1.5
2.3
1.8
1.7
1.5
~.1
') <
-I I.J
') ') ......
1.8
HU
HU
1.1)
1.8
1.9
1.3
1.5
2.6
:.5
1.3
2 .7
.7
2.1>
2 .. ;
1 !
1.9
~.0
') , .......
2.1
2.Q
2 .1
? .,
-•'-
~ •i
3.7
2 13
2.6
? . ··"
H f f
I Hlf
Uti
2.3
2.'5
2.9
2.0
1.9
3.4
4.0
3.2
3.0
2.6
262
2!4
070
P.t.7
1;6
000
00 3
316
'!'24
133
109
020
240
330
liH
Hll
Uf
Of!O
099
2Y)
275
08 4
08 5
Q86
OQ2
~57
27 '5
~AX .
G IJ~T P 't!~L MEA~ "-fA~
SPD . D T ~. FH DP
'!'IS ~ DEG C
8 .9 ~NE 5( -6.1
S 7 WSW
). ~ US'4
7 .6 ENF
7 . 0 Nf:
7.6 ~!'if
1 . ~ :m~=:
4,4 N
5 .1 N
8.3 llN~
6. 3 II
8.3 NNf
7 . 0 li N~
7 0 ·~
5 0 7 '41111
0 :s f llf
9 .3 1.1
7 ,6 UN ~
2 ,? ~
HH liH
Hfl H4
**" '** 7, ~ 1.J
?,b N
Vi' ~
10.2 us~
'5.7 (SE
3. 3 II F.
o r c • l
10 .2 E
7 ' ') IJ
13.2 tl
H
H
H
rc
.'.J
54
45
H
litH
H f H
:au !I
-3.9
-5 :
-5 .3
-2.~
-3
-u
-!. 8
t H'H·
-5
-3 ~
HJH
~JH't
UHf
·UHf
-2 .9
-I.:.;
UHf -.. :
' ' ,_. '-
6.5
*~**
-2 0 0
CU~T VE L . ~T MAX.
GU~;T liFL, AT r~AX .
r;1 Jt~T VEl . ~ T i'1A X
r;u 'n tH;:L , A T nAX.
C IJ ST M fN 1.1f.) ?
r ~urn MH J 1Jl:) 1
T NTF I~ lJA I ~:;
fN I'ER ~)A L
I .IJS T P I U'" f N T Ff·'lJAI
G IJ ~=; T P L.l.! ~~; 2 I i'.JT F. R t) fH. ·;
Pl!ECTP
1'111
0.9
/:..6
') •'-
u
n.o
u
0.0
~ ~
o.n
,) . ~
9.0
0.)
0.0
u
? ...
I ? '. ~
HH
&'f ¥4
Hfl
. ~
.6
u
2.8
u
0.0
o.o
n.o
?..b
• c ' ...... '-
9. ·:.~
·~ ,.,
I ...
OAY'5
50i..AR
PlfRGY DAY
WH/SQII
6705
2233
':,448
621B
;on c:
J
7523 s
7'580
6753 8
'5 12 ~ ?
7320 13
7~33 I I
5755 12
5215 13
509S P
55 00 ! :i
55 25 }.~
3960 17
4v63 !q
·~~5.3 ~~
HH4!1 20
H<·HH ":!
UHU 22
1357 23
b990 ?.t
7223 ~5
4630 2t-
47 0t 27
t-90 5 28
442') ?9
.t b90 ;n
41 13 31
!~73 0 4
ti i)'TT : f~E I A r :•,JF ,11Jt1t r\rf'( 11 1 Anf,'f~!: ,Wf :1~11·1 1 "1 J ttf<l F 1.11:r·N w·:tJn '\l'r··-n•: r~1ll I: '";t) f iiAI'J
ONF:~ MI:::T ER t 1 FI< ;;r~C:ON D . ':;1Jf:H IH::':AOI.N f ;!') I·IAVC r-.tr)T BEFN I N f:L_UI)r=:n I.N T HE: DAI I .Y
f1P MnNT H I, Ml=-~1 1'• Flir: pr:-1 f:·Trur-H11Mrn r r y A •IT'I n1 ·1.1 rni ''T
X ·lh( X· SEF Nil TF~c: A r r I II" r.:t\C I( flf' rt I f.) I<F I ' r)I~T :a·H
1 52
lx & i'-1 C Cl N ~:> U 1... TAN T ~:> , :t: NC.
b U ~:> :1: T N A H Y D lx C) E 1. .. E C T lx :t: C P I ~ U :J t::: C T
Mul'iTHLf SUMMAR'( FOR DEVIL CANYON WF.:AT HE R S T~TtON
!.1 1-1 TA T A kEr~ DU R I 1~G SepteMber . 1982
RES. RES. ~IJG. tiAX . KAX . DAY 'S
IIAX . IHN . KEAH \liND WIND \liND GUST GUST p I VAL HEAM tiEAH SOLAR
DAY TEMP. TEMP . TBti'. i>IR. SPD . SPD . DIR. SPD . DIR. i!H DP PRECIP ENERGY DAY
DEC C DEG C DEG C DEG IVS 11/S DEG 11/S l DEG C riH WH/SQK
I 12 .7 4.5 8.o 258 . ~ .9 128 3.2 HHE 4o -3 .2 I . 9 2o78 1
2 II. I 4.3 7.7 Do2 .I !.I tot 3.8 ESE ~9 -2.9 3.4 2358 2
3 8.5 4.9 b.7 093 .3 .7 OOQ 3.2 NH£ 57 -2.2 9.0 to 5i ;)
4 11.2 3.8 7.5 8&9 .3 1.0 157 3.8 ESE 39 -o.o .2 2565 4
5 15 .4 3.1 9.3 09 o 2.4 2.1> 09& 9.5 E 27 -a .o Q,O 2105 5
& 15 .5 7 .I 11.3 040 .& 2. 8 020 8.3 NNE 27 -7.5 u 1&85 &
7 11.7 11.8 9 .3 284 .5 .9 300 4.4 WtlV 44 -2.& 4.o 2118 "!
8 9.2 o.3 7.~ 243 .2 .s 321 2.5 ssw « -3 .8 Q.i 888 8
9 10 .2 4,3 7.3 rn .I .8 291 3.8 SE 54 -1. ~ 7.8 13U 9
10 II. I 3.2 7.2 102 .4 .9 Oo2 2.5 ENE 4o -4 .5 .2 213a 10
11 s.a 2.2 u 07o . 0 .8 297 4.4 sw &2 -2.& 6.4 988 II
12 9.4 -1.4 4.8 107 .b .9 071 4.4 EME 39 -9.4 4.& 2923 12
13 8.9 3 .0 b.& 242 .s .8 2&0 3.2 WSW 57 -.7 31.0 133Q 13
14 8.9 &.4 7.7 \47 .I .& 041 2.5 II bl .9 14.8 IOIQ 14
15 15.5 &.4 11.0 2&& .2 u 341 6.3 IISII 47 -.3 21.8 2391 15
lb 9.i 3.5 b.& 259 1.5 1.9 281 7.& w ~b -7.4 &.8 2583 I&
17 7.2 1.0 4.4 101 .I .9 138 3.2 ESE 72 . I 4.4 1432 17
18 11.1 2.7 &.9 2bl .2 1.0 288 3.2 11511 79 2.9 u 1&28 18
19 8.3 4.3 o.3 158 .2 .7 274 3.2 SE 92 5.4 14.4 775 19
20 7.4 3.9 5.7 070 .I .8 2rr/ 3.8 EiiE 89 3.1 1.4 1213 20
21 11.4 3.2 7.3 188 .3 .9 314 5.1 ESE &7 -I. 7 .6 1285 21
22 o.o -.4 3.1 255 .I I. I 311 4.4 IIHII 78 -2.4 1.2 1530 22
23 8.1 -2 .8 2.7 212 .6 1.0 285 3.8 ssw 47 -10 .2 1.0 2788 23
24 8.& -2 .9 2.9 103 .4 1.1 128 3.2 EliE 75 -1.9 0.0 207~ 24
2S 9.9 -1.1 4.4 203 .2 .9 076 3.2 s 59 -3 .3 Q.O 1825 25
26 &.2 1.8 4.0 158 .I .7 318 3.8 11511 so -7.4 4.2 1120 2b
27 7.3 -1.2 3.1 198 .2 .9 247 3.2 s 2& -16.7 1.8 ISOS 27
28 &.1 -3 .1 1.5 129 .7 .9 1Q9 4.4 ESE 48 -10 .2 5.2 1m 28
29 b.9 1.2 4.1 136 .b .9 112 S.1 Sst 74 1.3 b.b 125Q 29
30 5.5 .b 3.1 321 .2 .7 323 2.5 KHW 47 -&.9 2.2 1190 30
ltOHTH IS.5 -3.1 b.G 139 .1 .7 09o 9.5 ES£ 52 -3.7 ISO.o 51505
GUST VEL . AT MAX . GUST MINUS 2 INTERVALS 5. 1
GUST VEL. AT MAX. GUST MINUS 1 INTERVAL 5.7
GUST VEL. AT MAX. GUS T PLU S INTERVAL 5. 1
GUST VEL . AT MA>.. GUST PLUS 2 INTERVHLS 7.b
1\jO iE : ~E LAT I VE HUMIDITY RE~DINGS ARE UNRELIABLE WHEN WI ND SP EE DS ;.R E LESS TiiA N
ONE METER PER S ECOND. SUCH ~ .::ADI 1-I GS HAVE NOT BEE1~ INCLUDED IN THE OHIL r'
LlR MONTHLY MEAN FOI< RELATIVE HUMIDITY AND DE W P OINT.
AdtA"A· S EE rWTES AT THE BACK OF THIS REPORT ·I( .. Xo ·x-·X·
153
I~ & M C Cl N S U 1 ... T ANT ~:) ;; :J:NC.
S l.J S :t: TN A H Y D I~ C) E 1... E C T I~ :t: C P I~ D ,T E C T
MON THL Y SU MMARY FOR DEVIL CANYON WEATHER STATION
DATA TAKEN DURING Oct o ber, 1 982
~
RES . RES . AIJG . ItA)(. MX . DAY'S
IIAX. IHN. I1EAH WIND WIND WIND CUST CUST p I VAL I'IEAH !'iAN !RA:!
DAY TEitP. TEMP. TEMP . DIR. SPD. SPD . DIR. SPD . DIR. RH DP PREC IP EHERGY DAY
DEC C DEG C DEG C DEG 1'1/S lt/S DEG 11/S % DEG C HI\ WH/SQII
. 1 3.6 ,(, . 2.1 216 0 1 .7 278 2.5 WHW 70 -4.6 lHI 1123 1
2 5.5 -.7 J 2.4 8&9 .3 .8 324 3.8 SE 48 -13.7 "** 1088 2
3 4.7 ~t.5 ; 1.6 113 .6 t.a 117 8.3 HHE 66 -4 .8 HH 1725 3
4 4.1 -4 .2.:' -.1 133 1.0 1.2 117 4.4 SSE &7 -5.3 **** 1855 4
5 3.3 -2.8 ) .3 075 1.3 2.4 030 18 .2 ESE 5& -7.7 HH 1941 5
b 4.5 -&.1 . -.8 14& .9 1.2 02& 4.4 s 58 -8.2 '*** 1790 0
7 .9 -2.9 . -t.e 127 .5 1.1 139 3.8 ESE 48 -14.8 HH 475 7
8 -.5 -4.2. -2 .4 280 .3 t.O 255 4.4 WSW 43 -18.1 IHI 988 a
9 .3 -2.7 ' -1.2 292 ,(, .7 317 2.5 WNW 4 -37.2 HH 375 9
10 -1.3 -5.1 ; -3 .2 388 .9 1.0 323 3.8 HW 71 -11.8 IHf 383 10
11 0.0 -6.3 -3.2 120 .9 1.1 117 5.1 ESE 77 -7.5 IHI 378 11
12 1.8 -1.3 .3 223 .4 .7 314 3.8 sw 23 -25 .1 IHI 395 12
13 -.8 -5.1. -3.1 · 189 .3 .6 343 3.8 s &1 -1 4.7 IIH 428 13
14 -1.3 -9 .2 -5.3 117 1.1 1.1 129 3.2 ESE 78 -7 .2 **** &43 14
IS -3 .1 -13.2 -8.2 109 1.4 1.7 139 4.4 SE 85 -11.8 IIH bBl 15
to -1.8 -8.:) -5.2 103 1.2 1.3 078 3.8 E 82 -7.7 **** ~5 to
17 2.5 ~8 .2 -2.9 137 .6 .9 125 3.2 ssw 2& -29.6 *Ill 478 17
18 .7 -tO.& -5.1 101 .8 1.1 105 3.8 E 55 -17.0 IIlii &38 18
19 -.~ -5.5 -3 .2 058 .& .9 110 2.5 NNE 20 -33.8 IIH 355 19
20 -2.4 -11 .4 -6 .9 117 1.6 1.7 119 5.7 ESE 77 -9.7 IHI 773 20
21 -5.7 -13.3 -9.5 044 1.9 2.7 015 11.4 NNE 65 -14.7 fiH , 928 21
22 -4 .5 -14 .6 -9.6 134 1.3 1.5 116 &.3 ESE 60 -14.8 IHI 889 22
23 -7' 1 -1 2.5 -9 .8 1.'9 2.3 2.4 183 7.0 ESE .'d -1&.2 IIH 755 23
24 -8.0 -13.2 -11.6 189 2.0 2.1 ttl 5.1 ESE 59 -17.0 **** 878 24
25 -7.4 -18.1 -1 2.8 130 1.7 1.8 122 4.4 SE 70 -16.& IIH 788 25
26 -11.3 -19 .4 -15 .4 124 1.4 1.& 100 4.4 ESE 58 -22 .5 **** 720 26
27 -14 .8 -23.4 -19 .t 102 1.& 1.7 102 5.7 E o& -23.4 HH &63 27
28 -11.3 -15.1 -13.2 103 2.0 2.1 184 5. t E 82 -15.8 HH 438 28
29 -7 .4 -19 .2 -13.3 115 .9 1.2 141 4.4 SE 85 -16.2 ***' 631 29
38 -15.3 -22 .9 -19 . t 07& 1.8 1.9 073 4.4 ENE 81 -22.2 IHI 545 30
31 -9 ' 0 -22.7 -15.9 081 2. 0 2.1 06& 4.4 ENE 79 -28 01 HH 585 31
I'IONTH s .s .-23.4 -6.2 104 .9 1.4 015 11.4 ESE os -1 5.7 **** 25252
GUST VEL . AT MA X. GUST MINUS 2 IN TERVALS 9 .5
GUST VEL . AT MAX . GU S T MINUS 1 I NTERVAL 9 "'" ,..,}
GUS T VEL. AT MAX. GUST PLUS 1 INTERVA L 10.8
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 11.4 .
NOTE: REL ATI VE HUMIDITY READING S ARE UNRELIABLE WHEN WIND SPEEDS AR E LESS THAN
ONE ME TE R PER SECO ND. SUCH READINGS HAVE NOT BEEN INCLUDED IN' THE DAILY
OR MON:rHLY ME AN FOR RELATIVE HUMIDITY AN D DEW POINT.
·)(-·X ·X· ·X SEE NOTES AT THE BACI< OF THIS REPORT ·)(-·)(-·)(-·)(-
1 54
I ~ & M C UN~:;; U 1... T A NT S _,. :t: NC .
S U ~:;; :1: T N A H Y D I~ C) E 1... E C T I~ :t: C P I~ 0 .:r E C T
MO NTHLY SU MMARY FO R DEV.:.LL CANYON WEATH ER STATION
DA TA TAKEN DURING NoveMber .· 1982
RES . RES. AVG. 111\X . IIAX. DAY'S
IIAX . KIM . KEAH WIND wnm 1111111 GUST GUST pI VM. ltEAH KEAH SOLAR
DAY mw. TEKP. TEMP . DIR . SPD . SPD. DIR . SPD . DIR . RH DP PRECIP EltERGY DAY 1 DEG C DEG C DEG C DES IVS K/S DEG K/S % DEG C "" lllt/SQII -----
1 .2 -9.1 -4 .5 121 1.5 1.8 113 7.6 ES£ 73 -7 .5 IHI 653 1
2 -.& -9.6 -5.1 121 .6 .9 185 3.2 s 75 -S.B IHI 615 2
3 -2 .7 -12 .9 -7.8 11& .5 .9 178 3.8 filE 78 -14 .5 IHI «I 3
4 -.3 -5.~ -2.9 125 .9 1.1 178 &.3 ESE 75 -7.2 HH 5b8 4
5 -2.& -H .3 -8.5 135 .& .8 132 2.5 SE 89 -8 .7 IHI 685 5
6 -11.7 -18 .1 -14.9 082 1.6 1.7 182 4.4 88 -16.8 HH 423 &
7 -11.9 -18.5 -15.2 094 2.1 2.3 120 5.1 E iE 80 -18.1 IHI 423 7
8 -7.4 -13.6 -u.s 104 1.7 1.8 098 5.7 E iE 82 -11.3 IHI 348 8
9 '5,7 -8 .5 -7.1 194 .1 .5 120 2.5 11)11 13 -38 .1 till 318 9
18 -5.9 -13.7 -9.8 088 1.6 1.7 175 4.4 EX: 79 -10 .3 IHI 385 10
11 -3.& -6.5 -5 .1 100 1.3 1.4 117 3.8 E!'E 41 -24 .3 IHI 318 11
12 -.5 -&.8 -3.7 131 1.1 1.4 137 4.4 Sl 83 -4.3 fiH 493 12
13 -.7 -6 .5 -3 .& 121 1.1 1.3 11~ 4.4 tS£ 88 -4 .2 IHI 541 13
14 -3.2 -9.2 -&.2 876 .7 .9 189 3.8 EltE 28 -34.8 HH 401 14
15 -&.7 -15 .3 -11.1 193 1.6 1.6 D95 4.4 E 71 -13.1 Hlf 3b5 15
tb -13.0 -1&.8 -14.9 087 2.8 2.0 088 4.4 E 9~ -16.5 HH 351 1b
17 -15.7 -21.4 -18.6 088 2.3 2.4 097 5.1 E 87 -19.9 IHI 351 17
18 -15 .9 -22 .2 -19.1 192 2.2 2.3 898 4.4 E 78 -23.0 I I H 390 18
19 -15 .2 -21.4 -18.3 115 2.8 2.8 115 7.1 ES£ 63 -23 .2 IHI 418 19
20 -111.1 -15.3 -12 .7 115 2.9 3.1 123 &.3 ES£ 79 -15 .4 IHI 330 20
21 -5.8 -10.7 -8.3 093 1.5 1.7 125 4.4 ENE 85 -10.4 Hilt 393 21
22 -4 .6 -7 .5 -&.1 103 l.b 1.8 119 ~.1 EME 80 -8.9 Hlf 378 22
23 -.8 -b .O -3 .4 112 1.1 1.3 113 3.8 ESE 84 -4 .4 IHI 348 23
24 -I.Q -4.7 -2.9 13b 1.4 1.4 138 3.8 SE 91 -3 .4 II II 335 24
25 .s -&.7 -3.1 138 1.4 1.5 1 ~9 3.8 SE 79 -5.2 IHI 358 25
2& -4 .9 -7 .3 -6 .1 11& 2.4 2.4 119 5.7 ESE 76 -9.7 IHI 358 2&
27 -3 .8 -11 .8 -7.8 88b 1.5 1.6 11 4 4.4 E 88 -8.5 Hfl 3b3 27
28 -11.3 -14.7 -12 .5 988 2.7 2.7 070 4.4 E 95 -13 .8 IIH 308 28
29 -5.4 -10 .1 -7.8 897 1.1 1.2 131 3.8 EH£ 31 -15.5 IHI 258 29
30 -5 .8 -12 .0 -8.9 259 .4 .7 276 3.8 w b9 -12.2 Hff 273 30
ltOIITH .5 -22 .2 -8 .9 104 1.4 l.b 113 7.6 ESE n -tl.b **** 12060
GUST VEL . AT MA X. GUST MINUS 2 INTE RV ALS 5. 1
GUST VEL. AT MA X. GUST MINUS 1 INTERVAL 5 .7
GU ST t)EL. AT MAX. GUS T PL US 1 INTERVAL 5.7
GUST VEL . AT MA X. GUST PLUS 2 INT ER VAL S 3 .8
NOTE: RELA T IV E HUMIDITY READINGS ARE UNRELIA BLE WHE N WI ND SPEEDS ARE:. LESS THAN
ONE MET ER PER SECO ND. SUCH READINGS HAVE NOT BE EN INCLUDED IN THE DAIL Y
OR MONTHLY MEA N FOR REL AT IVE HUM I DITY AND DEW POINT.
-~·)(-·~'.(· SEE NOTES AT THE BACK J F THIS RE PORT ·)(-·lf<*·~
1 55
1
l x &. M C D N ~:> U L T AN T ~:> > :t:NC.
~:> U ~:> :t: T N A H Y D lx D E 1... E C T l x :t: C P lx U ,T E C T
MO NTHL Y SUM MAP.Y FOR DEV IL CANYON WEATHER STATIO N
DATA TAKEN DURING Dec eMber 1 1982
(
MAX. ~IN. MEAN
DAY TE!f . TO'JI. TEI1P .
DEC C DEC C DEC C
RES.
WIND
DIR.
DEC
RES .
WIND
SPD.
~/S
AVG .
WIND
SPD.
~/S
MAX.
GUST
DIR .
DEC
~AX.
GUST P'VAL 11EAN
SPD . DIR . RH
~IS %
tt£AN
DP PRECIP
DE:G C !ill
DAY'S
S!l.AR
OIERCY Di\Y
WH/SQ" -----------
1 -11.1
2 -15.1
3 -It. 9
4 -13.1
5 -4 .7
b -l.S
7 1.8
8 0.0
9 -.b
10 -4 .3
11 -4.8
12 -2.3
13 -.1
14 -. 9
15 .3
lb -.3
17 -2.6
18 -11.2
19 -b .b
20 -5.6
21 -15.4
22 -16 .0
23 -11.8
24 -8.0
-19 .9
-21.6
-2 1.4
-18.7
-13.1
-7.5
-1.9
-1.8
-14 .4
-19 .I
-8.7
-6.9
-5.1
-9.0
-5 .5
-5.0
-19.5
-13.9
-13.8
-15 .3
-18.9
-20.6
-17.8
-16 .8
25 -7 .8 -1?..7
26 -.8
" .4 28 .9
29 1. 7
:!0 -.1
31 -b .b
11CHTH 1.9
-8.7
-2.9
-.4
-.3
-9.3
-10 .4
-21.6
GU ST
GUST
GUST
GUST
-15.5 117
-18.4 121
-16 .7 107
-15.9 108
-9.9 tea
-4.5 122
-.1 107
-.9 . 134
-7.5 067
-11.7 110
-6.8 129
-4.6 130
-2 .6 145
-5. I 142
-2 .6 130
-2.7 134
-6.6 107
-12.1 089
-9.8 113
-u.s 124
-16.9 083
-18.3 075
-14.8 099
-12.4 105
-10.3 102
-4.8 130
.. o.J
1.5
1.2
2.3
1.3
1.7
2.3
.7
1.0
t.b
?.. 0
1.5
1.3
1.1
1.5
1.4
1.8
1.7
1.1
l.b
2.6
2.6
1.8
2.3
2.1
1.2
.8 280
1.7 133
1.6 !25
2.5 125
1.3 098
1.9 110
2. 4 107
1. 0 305
I. 7 277
1.9 141
2.1 108
1.6 124
1. 5 109
1.2 124
1.7 182
t.S tiS
1.9 117
1.8 on
1.3 122
1.8 123
2.6 071
2. 7 072
2.0 101
2.5 119
2.3 lib
1.4 101
-1.3 143
.3 145
.7 179
.8
.3
.b
1.0 098
.4 097
1.0 252
-4.7 *** Ufl
un
1.4
-8.5 Ul
-8.2 111
1JEL, AT
VEL. AT
VEL. AT
VEL . AT
MAX .
MA X.
MAX.
MAX.
nn n•
flU fll
1. 7 107
GUST
GUST
GUST
GUST
MI NUS
MI NU S
PLUS
P LUS
3.2 SE 92 -17.7 ***•
5.1 SE 96 -20.1 tltt
4.4 ESE 80 -18 .9 1111
6.3 ESE 75 -20.5 lt!t
4.4 E:SE 83 -10.3 ***'
7.0 sE en -7 .9 •***
9.5 ESE 81 -2.7 tltt
5.1 SE 11 -36.5 '***
5.1 ENE 93 -9.1 ttlt
6.3 ESE 96 -13.3 ****
6.3 ESE 77 -IC.1 ****
5.1 ESE 71 -7.2 !*II
b.3 SSE 83 -5.0 *"*
4.4 SE 93 ·6.9 tl!t
5.7 ESE 73 -b . 1 nu
4.4 SE 74 -6.7 ****
4.4 ESE 92 -7.5 l tlt
4.4 E: 78 -13.0 4111
4.4 SE 86 -12 .3 *'*'
5.1 ESE 74 -13.5 Ill!
5.1 E 91 -17.7 *•**
5.7 ENE 87 -28 .5 ****
4.4 ESE 75 -18.1 ~ttt
5.7 ESE 90 -14.6 tt!t
6.3 ESE 81 -13.5 t t t t
4.4 ESE 80 -9.4 lttt
3.2 SSE 70 -9 .0 1111
1.9 SE 10 -28.4 l tll
3.2 SE 11 -27 .J ~**'
1111 1*1 5 -37.6 I ll!
If. II HI \ -46, 0 HI!!
9.5 E:SE b9 -15.7 tttt
2 INT!::R W'I LS
INTE R1 .. 1AL
1 INTERVAL
2 INTERVALS
7.0
6.3
0 c:-
0 • -.)
8.9
268
283 2
293
343 4
305 5
333 6
301 7
258 8
271 9
273 19
295 11
310 12
328 13
318 14
308 15
315 16
303 17
308 18
301 19
315 29
311 21
305 22
328 23
308 24
318 25
300 26
253 27
240 28
268 29
253 3C
251 31
914 3
NOTE: RELn TI VE HUMID1TY READINGS ARE UNRELIABLE WH EN WI ND SPEEDS ARE LESS THAN
ONE MET ER PER SE COND . SUCH READINGS HAVE NO T BEE N INCLUDED I N THE DAI LY
OR MON THLY ME AN FOR RELATIVE HUMIDITY AND DEW POI NT.
**** SEE NO TES AT THE BAC K OF THIS REPORT ****
156
MONII-t l Y SU MMAK:Y FOR DE \~L CAN f OI'I wEATHER SI Afi ON
DATA lAKEr! D~RI~G J anu ar~: 1 9 83
DAY
liD.
ID\~.
DEG C
1 -1. i
2 -1.4
3 -4.2
4 -I !.3
5 -1 7.9
6 -lid
; -17.2
8 -22 .4
9 -23 .2
10 -2 0.2
11 -Hi.2
12 tfifl
13 IHH
\4 Uht
IS tun
lo HUt
17 UUt
18 .....
19 -5 .8
26 -5.5
21 -4 .4
2.2 -B.8
23 1.11
24 -3 .8
25 -S.B
2b -1 .9
27 -5.5
28 -3.9
2~ -~.4
30 -4 . u
31 i. 9
nGttin 1. 9
tllti.
TEIIP.
DEG C
-7 .2
-4 .2
-11.7
-21.0
-24 .9
-21.1
-25 .4
-27.0
-26 .4
-2b.2
-31.11
*****
tHU
tiUt
dUt
Ullf
Uiiltf
lflfl
-7 .4
-12.3
-1 1.3
-18. ~
-i5.u
-9.9
-9.9
-7.3
-l&.b
-12 .2
-13.Y
-9 .7
-5.3
-31 .o
nEAH
TEIV.
DEG C
-4 .2
-2.8
-8 .1
-16.2
-21.4
-18 .7
-21 .3
-24.7
-24.8
-23.2
-24 .9
tfltl
nut
dill
tllll
11iH*
tltli
IIIII
-b .b
-9 .1
-7.9
-13.4
-6.7
-b.9
-7.9
-4.6
-8 .1
-8.1
-9.7
-b.9
-1.7
-12.0
RES.
<liND
Dix.
DEG
ttl
11 4
115
097
102
112
110
124
133
123
115
11H
H:t ...
tit ...
!ttl
ffl
102
119
128
084
12u
108
164
115
u99
109
u9i
!21
137
112
~ES .
wiHD
SrD.
n/S
uu
2.1
.9
1.3
1.5
2.4
2.5
1.2
2.3
2.2
1.7 ....
tilt
ttli ....
**** ....
11111
.b
1.5
l.b
2.b
2.3
2.3
2.2
1.8
2.2
1.9
2. i
1.7
1.1
1.8
AVG.
Iii liD
SPD.
IllS
11111
2.1
1.0
l.S
1.7
2.5
2.&
1.5
2.4
2.3
2.0
IHI
Utlt
11111
lUI
**** .... ....
.9
l.b
!.7
2.6
2.7
2.b
2.3
2.0
2.6
2.1
2.3
1.9
1.3
1.5
IIAX .
GUST
DIR.
liEG ...
191
107
092
092
lOb
094
088
109
121
140
IH
Ill
fit
til
*** Ut ...
274
111
124
~89
131
10 0
102
123
113
137
124
104
115
100
I'.AX.
GUST pI VAL riEAri r!EAI'I
S?O. OIR . RH DP PRECIP
n/S 4 uEG C ~M
.... tit
5.1 ESE
4.4 ES£
4.4 ENE
4.4 E
8.9 ESE
8 . 9 ESE
5.1 ESE
5.7 SE
5 .7 SE
&.3 E .......
flit tH
.... Ill
lUI Ut
1111 Ill
tlttt !ttl
uu ...
2.5 SE
5 .I ESE
4.4 SE
7. 0 E
8.3 Est
9.5 ESE
8.3 ESE
7.& ESE
o. 3 EN£
4.4 ESE
5.1 t:
&.3 ESE
4.4 SE
9.5 ESE
82 . -'4 .8 lUI
78 -8.9 llil
71 -11.4 ltfl
67 -18 .& 1111
79 -25.0 ....
67 -22.5 lilt
b7 -25.4 an
110 -29.1 ....
57 -30.4 ....
52 -29.7 filii
b8 -32.1 ••••
u Iiiii 1111
It lltltt Hll
u tHtt un
u ltllt "*'
II IIIII 1111
-~ •titt 1*11
111 111111 flit
50 -lb.S ttlt
82 -10 .1 fill
54 -14 .4 f ttt
63 -19.?. 1111
37 -1 l ••••
33 -20.5 ••••
o\2 -18.8 ****
59 -1 1.3 lflt
74 -12.3 ••••
b1 -10.5 ••••
Bi -1 1.8 t.tt•
62 -8.7 ••••
73 -4 .9 till
65 -17.3 111*11
~USI VEL. AT MAX. GUST MIN US
GUST vEL. AI MAX. G~SI MINUS
GUST VEL. AT MAA. GUST PLUS
GU ST VEL. AI MAX . GUST PLUS
2 INTERVALS
1 HH ERVAL
1 INTERV AL
2 I NTERVALS
7.6
8 .9
7.0
5 . 1
DAY 'S
SOLAR
ENt:~GY OAf
llntSQn
205
2&8
253
278
278
290
34i
2
3
4
b
363 8
3113 9
365 10
311 11
ilttiU 12
HUfl \3
...... 14
1111-tit 15
UHII to
HUU 17
t UUI 18
269 19
358 21i
128 2!
418 22
5ijj 23
663 24
55Q 25
503 2&
m 27
530 28
4·iu 29
533 3u
573 3!
9i35
...
]
~8 f E: ~E i~TI V E ri~MIDIIY READINGS ARE UNREL IABLE WH EN ~IND SPEEDS A~E LESS Th~
ONE hEIER PER S ECOND . S UCH REA DI NG S HAVE NOT BEEN INCLUDED IN THE DA I L'
uR riO~THLY MEA!'! FOR RE LATIVE NUMIDITY AND DEW POINT.
lk•* 5E E NOTES AT ThE BACK OF THIS REPORT ••••
157
I~ ~ M C 0 N ~:; l.J 1... T A N T S > :J:NC.
MONTHLY SUM MARY FO R DEVIL CANYON WEATHER STATION
DATA TAKEN DURING February , 1983
RES. RES. AIJG. MX. MX. DAY 'S
KAX. KIN . l£M wnm WIND WIND GUST GUST p I Vlt. HEAII t£Ait SOl.AI
DAY T£liP . TEJIP . rnw. DIR . SPD. SPD. DIR . SPD . DIR. RH DP PRECIP EJDGY DAY
lEG c DEC C DEbC *' IVS lt/S DEC IVS % DEC C "" Iii/Sill
1 3.3 -1.5 .9 133 1.6 1.7 112 5.7 ESE 67 -4.4 "** 595 1
2 1.5 -2.9 -.7 138 1.4 1.6 142 4.4 SE 78 -3.? HH &tl 2
3 .3 -3 .2 -t.S 135 1.5 1.6 115 7.1 ESE 73 -5.3 "** 615 3
4 1.1 -4.8 -1.5 i23 1.7 1.8 199 6.3 SE 69 -6.2 HH b20 4
5 1.1 -6.7 -2.8 119 1.8 2.1 195 7.6 ESE 64 -7 .3 "** 703 5
& 1.3 -9.4 -4 .1 145 .7 1.2 098 5.7 SSE 79 -5.2 HH ~ &
7 -2 .4 -7.5 -5.1 251 .3 .8 314 3.8 IISW 38 -22.6 "** 495 7
8 -3.8 -12.8 -8.3 122 .2 .6 193 3.8 ESE 50 -14.4 HH 448 8
9 -8 .9 -18 .5 -13.7 117 1.1 1.2 113 4.4 ESE 94 -16.2 **** 43.'\ 9
II -8 .4 -21 .1 -14.2 121 .8 1.1 12o 5.1 E 90 -1&.1 HH 58·1 11
11 -18.9 -21 .2 -15.6 191 1.8 1.9 117 4.4 E 84 -18.7 *"* 46S 11
12 -11.9 -22.8 -17.4 189 1.7 1.8 182 5.1 E 83 -21 .5 HH 558 12
13 -i+rS.. -24 .2 -19.4 887 2.1 2.4 116 5.1 El£ 78 -22.2 HH 583 13
14 -12.5 -19.8 -15.8 168 1.5 1.7 158 4.4 EJ£ 74 -19 .8 HH 721 14
15 -5.8 -19.3 -12.6 113 1.9 2.1 123 5.1 ESE 61 -19.2 HH 815 15
16 -6.2 -13.7 -11.1 115 2.3 2.4 199 5.1 ESE 47 -21.8 HH 843 16
17 -7.4 -15.1 -11.3 128 2.5 2.& 128 6.3 SE 45 -21.9 **** 898 17
18 -8.5 -14.7 -tt.6 liB 2.1 2.2 191 6.3 ESE 68 -to.8 HH &28 18
19 -2 .2 -13.1 -7.6 118 1.& 1.7 113 4.4 ESE n -9.6 HH 743 19
28 -1.6 -13.2 -7 .4 115 1.5 1.1 889 5.7 SE 71 -11 .1 HH 1883 28
21 .1 -9 .6 -4.8 195 1.5 1.6 196 5.1 E 67 -9.3 HH 1141 21
22 3.1 -11 .7 -3.8 126 1.4 1.7 114 5.1 SSE n -8.2 **** 1085 22
23 1.7 -8.8 -3.6 121 1.7 1.9 198 7.1 ESE 58 -18.1 **** 1158 23
24 -.8 -7.3 -4.1 109 1.9 1.9 088 5.1 ESE 78 -5.9 HH 9~~ 24
25 h.!}--12 .7 -5.5 122 1.2 1.6 893 7.6 E 47 -16.5 HH 1388. 25
26 .5 -4 .9 -2.2 125 1.7 1.8 111 6.3 ESE 67 -8.3 HH 13bl 26
ZJ 1.1 -9.8 -4.4 117 1.5 1.7 118 5.1 ESE &6 -u.a HH 1598 27
28 -1.1 -7 .1 -4. t 178 1.1 1.3 119 5.1 HE 58 -15.7 **** 1288 28
IIOHTH 3.3 -24.2 -7.5 112 1.4 1.7 895 7.6 ESE &9 -13.8 **** 22418
GUST VEL. AT MAX. GUST MINUS 2 I NTERVALS 3.8
GUST VEL. AT MAX . GUST MINU S 1 INTERVAL 6 .3
GUST VEL . AT MAX. GUST PLU S 1 INTERVAL 6.3
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 5 .7
NOT E: RELATIVE HUM I DITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LE SS TH AN
ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DA IL Y
OR MONTHLY MEAN FOR RELATIVE HUMIDiTY AND DEW POINT .
·lfo ·)(o~·~· SEE NOTES AT THE BACK OF THIS REPORT ·iHHt·-)(o
158
lx ~ M C C) N S U L. T ANT ~:> >
S US :J: TN A H Y D I~ 0 E L. E C T I~ :t: C P I~ D S E C T
MONTHLY SUMMARY FOR DEVIL CANYON WEATHER STATI ON
DATA TAKEN DURING Mar·ch 1 1983
RES. RES. AVG. IIAX. IIAX. DAl 'S
KAX. 111M . I£AH III MD IIIND WIND CUCT GUST P ' Vrt. 11EAN I(AN WR
DAY TElf. TEll'. TEIW . DIR. SPD. SPD. DIR . SPD. DIR . RH DP PRECIP ENERGY DAY
DEGC DEG C DEG C DEG 11/S 11/S DEG 11/S % DEG C ttll WHISQ!t
1 -2.1 -6 .7 -4.4 156 .5 .7 869 2.5 liE 41 -23.3 IHI 813 1
2 -4 .4 -14 .1 -9.3 113. 1.9 2.0 113 5.7 ESE 71 -11 .9 **** 1605 2
3 -8.1 -16 .5 -12.3 188 2.6 2.S 110 7. D E 77 -15.8 IHI 162!1 3
4 -9.0 -16 .7 -12.9 108 2.6 2.9 097 7. 0 E 77 -15.3 **** t27S 4
5 ~.4 -12.1 -8 .3 199 2.2 2.3 121 5.1 ESE 72 -12 .2 *'*' 1893 5
0 -.8 -13 .5 -7.2 194 1.8 2.0 096 5.7 E 69 -12 .1 Hfl 1765 6
1 -1.0 -10.7 -5 .9 096 1.7 2.8 131 5.7 ENE 67 -12 .2 IHI 1828 7
8 . 1 -14.3 -1.1 987 2.1 2.3 984 5.1 EHE 58 -15 .6 **** 2069 a
9 -2.2 -17 .1 -9.1 086 2.3 2.S 898 6.3 ENE 55 -18 .3 ***' 2095 9
10 -6.4 -16.3 -11.4 089 1.7 1.8 105 5.1 EM£ 88 -12.6 IHI tl81 18
tt 1.5 -7 .3 -2 .9 113 1.6 1.8 192 5.7 ESE 88 -6.7 HH 1625 11
12 6.4 -1 .9 -.8 ua 1.1 1.3 130 5.1 E 74 -6.9 **** 1658 12
13 5.1 -9.2 -2.1 089 1.6 1.9 lOb 5.1 ENE 67 -8.3 **** 23711 13
14 2.6 -7 .8 -2.6 894 1..6 1.7 974 5.1 E 67 -7.5 **** 2088 14
15 3.4 -5.1 -.9 195 1.5 1.7 899 5.7 E 71 -5 .9 IIH 2123 15
to 3.5 -8.5 -2 .5 198 1.7 1.9 097 5.7 ESE 69 -7.4 **** 2675 16
17 2.8 -11.8 -4.5 111 1.1 1.4 196 4.4 ESE 67 -8.4 IHI 28711 17
18 2.6 -11.9 -4.7 111 1.6 1.9 114 5.1 E 75 -9.5 **** 2783 18
19 2.1 -13.4 -5.7 087 1.9 2.0 872 5.1 E 71 -11.7 IHI 2871 19
20 1.4 -7.8 -2.8 190 1.9 1.9 084 6.3 E ~; -8.9 **** 2913 20
21 2.7 -7 .5 -2.4 095 1.6 1.7 804 S.l E 56 -11.2 **** 3855 21
22 3.2 -18.6 -3.7 193 1.7 1.9 186 5.7 E 59 -11.2 **** 3050 22
23 1.3 -11.2 -5.0 188 1.7 1.9 875 5.1 E 59 -11.9 IIH 3108 23
24 .7 -11.0 -4 .7 086 L6 1.8 061 5.1 E 64 -9 .9 **** 2575 24
2S 2.2 -6.0 -1.9 130 1.4 1.6 117 5.7 ESE 59 -9.3 ***' 32SI 25
26 1.8 -5.7 -2 .8 115 2.1 2.4 892 8.3 ESE 54 -18.3 **** 3133 26
27 .5 -7.1 -3.3 117 2.1 2.3 108 7.8 ESE 52 -12.0 HH 3325 27
28 2.6 -8.0 -2 .7 107 1.7 1.8 068 5.7 ESE 55 -11.8 HH 3455 28
29 3.3 -11.5 -4.1 094 2.0 2.1 108 6.3 E 67 -9.9 IIH 3568 29
30 3.4 -1 t.8 -3.8 104 1.7 2.8 100 5.7 SE 65 -9.8 **** 3688 30
31 5.3 -7 .4 -1.1 102 1.6 1.9 183 s. 1 E 68 -&.6 ***' 32711 31
110NTH 6.4 -17.1 -4.9 899 1.7 1.9 892 8.3 E 00 -11.0 **** 74842
GU S T VEL. AT MA X. GUST MINUS 2 INTERVALS 5. 1
GUST VEL . AT MA X. GUST MINUS 1 TNTERVAL 6.3
GUST VEL. AT MAX . GUST PLUS 1 INTERVAL 7 .0
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 7.6
NOTE: RELATIVE HUMID ITY READINGS ARE UNRELIABLE WHEN WI ND SPEED S ARE LESS THAN
ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN IN CLUDED IN THE DAILY
OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT.
*·X·'JC··~ SEE NOTES AT THE BACK OF THIS REPORT ****
1 59
I~ & l'-1 CON S ULT A N T S ,. J: N C .
MONTH LY SUMM ARY F OR DEV IL CA NY ON WEA THE R S TATION
DATA TAKEN DURI NG Apr il .· 1983
RES . RES . AVG . MX . MX. DAY'S
MAX. IHit ItEAM wnm WIND WIND GUST GUST P 'VAL HEAH ltEAH SOLM
DAY IDIP . mtP . TOIP . DIR . SPD . SPD . DIR . SPD . DIR . RH DP PRECIP ENERGY DAY
DE&C DE& C DE& C DE& IVS lt/S DEG IVS 1 DEG C "" WK/SOK
I 5.9 -9 .1 -l.b 183 1.7 2.0 113 5.7 SE 71 -&.5 o.o 3718 I
2 o.7 -9.2 -1.3 081 1.7 2.1 870 &.3 EHE &4 -8.0 ••• 39&3 2
3 5.1 -9.0 -1.5 113 1.9 2.2 109 &.3 ESE 62 -7 .3 1.0 4168 3
4 4.6 -2 .5 1.1 123 !.3 2.5 281 10 .2 ESE &8 -4 .6 ••• 1&90 4
s 1.& -3 .1 -.8 084 .8 1.2 196 3.8 E 71 -8.1 .2 2505 5
& 3.5 -5.4 -1.8 128 1.1 1.6 127 5.1 SE 52 -14 .8 .2 4010 6
7 3.6 -5.4 -.9 12'. 1.4 1.8 110 4.4 ESE 67 -7.3 8. Q 4048 7
8 2.6 -5.9 -1.7 352 .5 1.4 328 4.4 1£ 69 -7 .6 8.1 2923 8
9 .5 -11 .8 -5.2 384 .4 1.3 323 5.1 NW 67 -11.7 .2 2888 9
to -1.2 -12 .3 -6.8 075 1.1 1.7 Ill 6.3 ESE :lo -12.7 1.1 4413 10
11 -4.5 -12 .3 -8.4 09& 1.2 t.S 161 b.3 E b8 -13 .3 1.0 2380 11
12 3.4 -5 .9 -1.3 188 .6 1.0 162 4.4 ESE 50 -14.4 3.4 2445 12
13 3.8 -3 .1 .4 105 .9 1.2 102 4.4 ESE 54 -12.5 4.0 3228 13
14 4.4 -2 .3 1.1 338 .s 1.4 329 b.3 IN so -14.0 .a 3470 14
15 3.4 -1.3 1.1 i 27 .4 .7 oos 3.2 N 29 -22.4 6.0 1971 15
16 5.1 -1.8 1.7 en .7 1.2 129 7.6 liME 58 -7 .8 3.2 31GB 16
17 4.b -5 .2 -.3 115 . 0 t.S 251 5.7 " 62 -8 .7 •. 0 lbbl 17
18 5.0 -2 .7 1.2 873 .9 1.3 854 7.1 ESE &7 -3 .& &.2 3.018 18
19 &.1 -1.7 2.2 103 .2 l.b 097 7.8 ES£ b1 -6.3 1.0 4625 19
20 6.8 -3 .1 1.9 097 1.2 l.b 054 7.6 E b3 -4.7 0.1 4503 28
21 7.& -3.3 c.2 894 1.4 1.7 108 5.1 ESE 59 -6.7 •. 0 5301 21
22 7.2 -.6 3.3 282 .3 1.2 287 3.8 IIHW 73 -3 .4 .4 3653 22
23 4.3 0.0 2.2 386 .4 .9 323 4.4 WHII 17 -27.5 3.0 2&81 23
24 12.1 .9 6.5 083 .5 1.3 047 5.7 EME so -4 .3 1 .0 5655 24
25 14.3 .. .J 7.4 152 .7 1.4 099 5.7 s 52 -1.1 0. I ~ 25
26 12.2 -l.b 5.3 245 .4 t.t 317 3.8 SSE 62 -2 .8 1.1 5618 26
27 11.1 -2 .3 4.4 175 .2 1.3 188 5.1 E 57 -4.2 1.0 5788 27
28 9.4 -1.4 4.0 358 .6 1.4 323 5.1 EHE 59 -8 .3 0.0 3845 28
29 6.9 .6 3.8 271 .3 .7 118 3.2 s 56 -18.11 . s.o 2918 29
30 \8 .5 -1.6 4.5 834 1.3 1.8 121 6.3 liME 41 -7.4 1.0 6235 30
IIONTH 14.3 -1 2.3 .8 091 .6 l.S 281 18 .2 ESE 59 -9.0 33.2 11382 1
GU S T VEL . AT MA X. GUST MI NU S 2 INTE RVA LS 5.7
GUST VEL. AT MAX. GUST MIN US 1 IN TERVA L 5 . 1
GUST VEL . AT M ~. GUST PLU S 1 INTERV AL 8.9
GUST VEL . AT MAX . GUST P LUS 2 INT ERV ALS 7.6
NO T!:.: RELAT I VE HUMIDITY REA DINGS ARE UNRELI ABL E WHE N WIND SPEED S ARE LE3 S THA N
ONE METE R PER SECOND. SUCH READI NGS HAVE NOT BEEN INCL UD ED IN TH E DA I LY
OR MO NTH LY MEA N FOR RELATIVE HUMIDIT Y AND DEW PO I NT.
·)(-·X·~·X· S EE NOTES AT TH E BACK OF THIS REPORT ·X"~**
160
r~ .'\c M C D N S U 1... T A N T ~;~ , T ~··I('~ .
~:> U ~:~ :1: T N A H Y D F~ 0 E 1... E C T F~ :t: C P t=.:: fJ .. ·.r F C T
MONTHLY S UMMAR Y FOR nEVIL CANY ON WFATH FR S TATtON
DATA TAKEN DURr~G M~u 1 983
NIJfF:
·'11<·1\'·X··X·
DAY
MAX.
Tfl!P.
CEG C
IHN.
T81P .
DEG C
!lEAN
TEMP.
DEG C
PES .
WIND
DI R.
DE G
~ES .
~IND
SPD .
11 /S
AVG .
\11~1)
SPD .
11/S
11AX.
GU'>T
DIR.
DEG
~AX.
GUST P'VAL MEAN
SPD. DTR. RH
11/S 4
I£ A~
DP Pl1fCIP
l)EG C r!K
nAY'S
SOLAR
ENERGY DAY
IJH/S911
-----·--·---------------'-·-----·-----·------------------·--·--·------
1 1 I. 0
2 5 .1
3 4,9
4 7.7
5 9,4
6 9.7
7 t 1.3
8 13 .5
9 I!. 9
10 t 1.1
It 12 .8
12 to. 7
13 !3.2
14 12 .9
15 13.7
16 12.7
17 8.1
18 8.6
19 11.4
20 !4.5
21 ! 0. 7
22 11.3
23 10 .s
2.! 12, ~
25 15.4
26 12.7
27 12 .7
2B :6.3
29 20 .1
30 1 Q. 7
31 11.9
140NTH 29 .1
-2.2
.3 -']
-.8
-.B
-1.5
-2' 1
-.3
0.0
1.5
2.5
4.5
4 , t
2.2
.3
2.6
2.6
1.2
4.3
4.3
3.8
3. 0
.9
-,0
'] '] .......
1.1
3.~
5.1
P..S
6.5
-2.2
4.4 083
2.7 30 ~
2.4 305
3.5 ~bb
4.3 oao
4 ,1 0'57
4. b 035
6.4 185
6.0 276
6.3 236
'5.8 219
6.6 076
8.9 291
8 .5 26 1
e. o 212
6.5 070
5.4 326
5 .6 283
~.3 2~6
9.4 2?9
7.5 29 ~
7.6 322
6.8 286
6.7 077
7.3 29 4
7.5 316
6.9 049
9.9 63 6
12 .6 99 4
14' t 105
9,2 2'5 1
6.8 00 4
.B
.5
4
1.3
.6
1.4
1.4
.4 .,
'"' .6
,4
1.0
.2
.6
.b
.4
.2
.5
.3
1.4
1.5
.6
.2
1.2
1.0
.6
.b
.4
1.1
.3
.3
.2
1.5 091
.1 cS 8
.? 315
1. 7 023
1. b 089
2.0 020
1. 9 011,
1.5 2?7
1.3 31 ~
1.1 273
1.3 307
1.6 127
1.2 286
1. 2 303
1.2 300
1.3 056
1.3 325
1.4 320
1. 4 ~~5
1. 9 309
1. 7 330
1.2 325
1.1 013
1. 8 084
1.7 296
1.4 295
1.4 002
1.6 1;10
1.6 OBS
1. 5 095
1. 0 252
t. 4 0?5
5.1 ENE
3.8 Nil
3.8 ~HW
6.3 ENE
0.3 ssw
7.6 ti~E
6.3 NNE
4.4 s
5.7 ssw
5.7 liSW
4.4 ssw
1. 8 IINF.
3.8 !-~Nil
4. 4 s
5.1 WNW
b.3 f
5.1 NW
5.7 )lY
~.7 tSE
7. 0 ~~~
6.3 1111
5.7 NW
5.1 sw
70
67
)6
67
59
5B
/:,3
49
50
59
61
61
~6
42
3i!
66
c-o .•..:
59
?!
n
71
o.3 ENE 59
7.6 WNW b3
6.3 WNII
.~.3 [');:
5.7 s
7.0 ENE
3.9 LISW
4.4 i.JN\1
8.9 ~NW
31
70 ...
~J
57
65
90
62
-4.4
-18 ./
-3 .4
-3 .3
-4 .2
-1.4
-2 .2
-I. 4
-.1
-2.5
-2 .1 .. )
2.1
3.5
'l
-7 .9
-\7 .9
-1 .9
.b
.9
l.tl
-.7
1.?
3.8
3.0
4.8
'] •'-
6.6
~.2
0.0
Q.O
u
u
0.0
n.o
0.0
n.o
0.0
3. 0
1).0
u
'] ·) .... ~
"' . .:
'~
1). 0
0.3
1.4
1.2
'l ....
'] ...
0. ~
n.o
6.6 . u
9.2 o.o
7,5 u
-1 .2 25 .4
GlJ S T VF.L. AT MA X. GUST MTNU S 2 INTFI~\JA I S
GUS T I.Jr.::L. AT MA"x. GU!=)T 11 Il\JI)S 1 f.NTEF?UAL
a::' '7 _, . '
c ....,
•. J.,
Gli S T UE.L. AT t'~r~X . GUST Pl. US 1 Ii\ITF R'J AI
GUST 'WL. AT MAX. GUST PL U!1 2 rNTER \JA LS
,~-,I 3
""') 1'7
l_. I .J
i(ELAfl'JE H UMT JYJ:TY RF.ADINGS ARE UNRFLIABI E ,,J IW N I,.ITNT) Sr 'FI?'n.r~
ONE Mr.::TER PER SFCO ND . S UCH READ I NG S HAVE NOT BEEN IN CLUDED
OR MONTHLY MEA N FOR RE LATIVE HUM IDITY A~D DF W POIN T.
S E C NOT[S AT THF BACK OF THIS REPORT ****
161
5318
2308 2
1499 1
4658 4
4'i91 s
5:23 I,
/)~2B :
6590 8
'}373 ?
.:,m ~~
612e 11
4b88 12
4571 11
44b0 I d
.~~ao 15
3°93 ! 6
2798 17
~253 !!?.
"i0 4Q • c;·
6095 2 ~
3125 :·
.1111 2~
4000 23
5280 2.1
1815 25
400 8 26
432'3 27
5090 29
~790 ~9
3503 ~0
2165 "3 1
!43590
~11~F 1 .1·· ~~~ THA
IN THF~ I)AII ... Y
J
I
I
I
]
T i'.! C .
~:; U ~:; :I: T N ,·~ H Y D 1:.:.: D E 1... C C T I ~ :1: C P H C) :.r L : C ·-r
il o ' i " f I ' ~ :-I D u R I r! c s...: p t !? M ::J e ';
DAY
., ..
3
4
5
b
7
8
9
10
11
12
13
14
IS
16
li
18
19
20
21 .,., ......
23
24
25
26
27
28
29
30
IIDNTH
11'-X .
T~P .
DEG C
lc.o
14.7
11.5
13.8
16 .7
15.3
H .3
11.9
12.9
12.6
7.9
11.9
8.7
IU
17 .0
12.1
8.2
12 . a
9.4
9.5
10.0
!U
11.8
9.9
11.1
8.1
9.9
7.3
9.4
7.2
17 .0
~IN.
T8iP .
DEG C
-0 ~ ..
3.7
5 . 0
1.8
3.1
5.2
7 .5
&.4
5 .&
4.8
-.6
-.4
4.4
7.1
7.3
5. 0
2.5
3.7
b.O .. ..
.J,,J
5.1
-.9
-3 .3
-5 .1
-3 .0
2.2
-1.4
-3.0
2.&
') ..
... ,J
-5.1
IIEAN
TOO .
DEG C
10.3
9 .2
8.3
7 .8
9 .9
10.3
10.9
9.2
9.3
9.7
3.7
5.7
b.&
8.9
12.2
8.6
5.4
7.9
7.7
7.5
7.e
4.7
4.3
2.4
4.i
4.3 ., ., .......
u
4. 9
7.1
RES.
lli ND
DIR .
DEG
045
223
043
202
050
186
214
208
202
037
044
D48
037
047
2~&
223
053
033
20 4
153
1&9
243
054
m
129
64'?
058
063
07 4
\63
RES.
WIND
SPD.
11 /S
; ....
.3
.2
.1
.9
.5
.9
.&
. a
.\
.1
.4
1
.2
.I
1.7
.4
.3
.1
.o
.I ., . ...
.5
. 3
.I
.3
.2
c . .;
.3
1.0
.1
AVG .
WIND
SPD .
~!S
r ..;
.&
.4
.4
1.0
\.1
.9
.7
.3
.3
.6
.3
.8
1.9
• 4
.s
.4
.3
.b
.&
.6 .. . .;
.6 ..
,,J
.7 .. . .;
.9
1.1
.6
II AX .
GUST
D!~.
D£G
186
220
043
187
947
135
.213
208
215
021
232
074
055
213
229
220
0!;5
212
224
243
21 7
214
005
239
2!e
093
207
103
2C8
198
220
MX.
GUST P ' '.'AL !!~AN MEA ~I
SPD . DIR. RH t·P
HI S Z O~G C
3.2 Sil
2.5 t!E
2.5 ssu
5 .1 t<;£
&.3 SSII
4.4 SSiol
3.8 ssw
2.5 ESE
2.5 NE
5.1 ~
2.5 NE
2.5 N!iE
!. 9 N £
5.1 Nt1E
1U SW
3 .2 t!~
3.2 E
3. 8 .Sll
I. 9 ENE
3.2 :I E
5 .7 .. sw
3.~ E
3.2 E
3 .8 ~
2.5 HI~
3.2 NNE
1. 9 NE
U EtiE
5.1 ssw
10.~ EN£
"j.. ~w
27
~0
lb
20
32
40
33
u
u
51
4b
61
H
48
33
~., t ~
52
b2
53
H
0
H
H
H
u
n
H
H
-4 .3
-7.5
-.6
-12.9
-9 . g
-5.7
-3 .7
-4 .6
***** JUH
-3.2
-7.6 .,
***** u
-7.8
-. i
-1.4
.9
.1
thU
•un
HI 'Hi
'****
H Hl
***** HIH
*****
***** IUH
-3.0
GUS T VEL . AT MAX . GUST MIN US 2 INTERVnLS
GU S T 1.1EL. ,; T MAX . GU S T Ml NUS 1 I r!TL"::R•H ,L
GU S T VEL. AT M ~X . GUST PLUS 1 INTERVAL
GU S T VEL . AT MA X . GUS T PL..U S 2 I NTERV ALS
?REC!?
!1.~
u
0.3
u
.2
.s
i.b
3.6
'lO L
~.., ....
19.0
'lO 0 '-••'-'
!1.2
9.4
lU
12.o
&.0
3 .~
5. 0
.2
0.1)
0.3
19 .4
&.2
5.4
7.4
s .~
232.2
C" '1 ...J ••
R o .....
3.9
E .9
S!Jl,;R
£E~~·t %~
!.JH /SC~
25 3~ 2
124~ 3
22!:5 ~
,c -~ . .,J .... ..,
2&!5 7
1275 9
17 19 9
11 90 1:
m.s 12
978 12
91C H
2C93 !5
23i3 ~~
1192 1:-
1488 :s
::s i 9
1291 .: •
33~~ 23
2,!5 .:'
::::o~ ::s
1248 ::,
1m::::-
134 C ~c
! b05 "0
1 -:'E~ ..:v
57! 50
::.:Ji:::.: :(d_, .. T [I,,.'E ~UM I DIT Y RE.;DI NCS ARE UNREL..H)BLE WH EN WIN'C· S~'::::;::;s t ,r;::_ • ... :·::.~ T:-:,-..
C".·C. ME::-:-EF: P E ::; S t::lOr'L . SU Ch RE.~D II'!C S Hll'.'E NOT Fl EE ~~ H .1C!_!JI:·E L' !IJ T :-E ().;:.! ... (
·,·' t~l\j :1 T H ! ... Y :"IEt o~'! F D!~ RE L f'of~'~'( HUM rDIT'i' AriD DEW POU'1 f.
~~~ ~J !E S AT l HE B~C ~ OF THIS REP ORT »*»'
162
I~ & M c;: D N S U 1... T ANT ~:) ~
SU S :1: T NA H Y I> I~ ClELECT I~ :1: C PI~ Cl .T EC T
MONT HLY SUMMARY FOR SHERMAN WE ATH ER STATION
DA TA TAK EN DURING Oc tober , 1982
J
RES. RES. AVG. IIAX . MX . DAY 'S
111\X' "IN . I£M II IN) III MD WINJ) GUST GUST P'VM. l£AM I£Aif SOLAR
Dlf'l TEMP . TEttP , TDf . DIR. SPD . SPD . DIR . SPD. DIR. RH DP PRECIP EHERGY DAY
DE'C DEG C OS C JG IVS "'s DEG "'s I DEG C "" llt/SGM
1 4.5 -.1 2.2 159 .2 .4 211 2.5 EliE H Hill HH 1318 1
2 7.& -1.8 3.3 164 .3 .4 349 2.5 ESE II IHH HII 2088 2
3 7.4 -1.8 2.8 1&7 .9 .7 151 4.4 EM£ H HUt Hit 2351 3
4 7.8 -5 .2 1.3 173 .8 .8 196 3.8 OE II Hilt .... 27l3 4
5 &.1 -5 .9 '1 1&3 1.6 1.7 147 7.& IE II '**" Hit 2751 5
6 5.6 -\.1 2.3 161 1.4 1.5 I?S 6.3 BE H IIHI '"* 19ll 6
7 1.8 -.8 .5 161 .8 1.1 162 4.4 BE II HUt HII 7SS 7
8 1.8 -1.6 '1 148 .4 1.1 127 3.2 OlE H I HII IHI 855 8
9 2.4 -2 .2 .1 216 1.1 .8 212 3.8 ssw H HIH Hit 763 9
1·: -.4 -3.5 -2.1 214 2.3 1.2 219 5.1 ssw It HIH HII 1821 11
H 2.1 -3 .3 -.7 861 1.1 1.1 843 5.7 BE H IHH IHI 7b5 11
12 2.8 .1 t.1 061 .4 .4 047 1.9 ME H Hill IHI 538 12
13 .s -5.2 -2 .4 031 .4 .6 214 3.2 ME H HHI IHI 345 13
14 1.3 -11.5 -5.1 179 1.0 .7 172 3.8 E •• IIHI IHI 623 14
15 1.2 ·14 .3 -&.& 148 .7 .& 028 2.5 £ H HUI HII 15U IS
16 -.8 -7 .5 -4.2 HI IHI .7 Ill IHI HI II IIHI 1111 29'3 16
17 5.1 -8.4 -1.7 126 .3 .4 126 1.9 IIIE H IIIH IHI m 17
18 2.4 -11.8 -4.3 153 .I .4 146 1.9 s H HHI IHI 1541 18
19 .8 -4 .2 -t.7 HI .... .3 IH '"* IH H Hill Hit 243 19
21 .1 -13.8 -6.6 IH till .6 IH IIH IH .. IHH HH 630 21
21 -2.8 -12 .8 -7 .8 167 2.3 2.2 184 7.6 ENE .. IIUI HH 893 21
22 -1.5 -10.6 -6.1 158 2.1 2.3 157 7.0 HE II HHI IIH 1485 22
23 -2.1 -1s .s ~.8 181 1.5 1.6 ass 6.3 E H IHH .... 1241 2l
24 -3 .4 -19 .4 -11.4 176 .6 .7 881 3.8 E H IHH HII 1323 24
25 -4.3 -21.5 -12.9 196 .2 .4 124 1.3 E H I HH HH 1193 25
26 -21.8 -24.6 -22.7 179 .5 .5 177 2.5 EHE If IHH HH lS3 211
" IHH HIH HHt tH HH tHI IH IHI HI H Hill IHI IHIH " 28 IIIH HHI HHf HI IHI HH HI HH HI II litH IHI IIIIH 28
29 litH litH ttHt tH IHI IIH tH IHI IH H HIH .... IIHH 29
30 Hill HHI HtH HI Hit HH IH Hit IH .. HIH . ... ...... 31
31 ..... IIIII IIHI IH IHI IHI Ill HH ... It HHI IHI Ill HI 31
ItO NtH 7.8 -24.6 -3 .5 068 .8 .5 147 7.6 ENE H IIIII Hll 38135
GU ST VEL . AT MA X. GU ST MINUS 2 INTERVALS 5. 1
GUST VEL . AT MA X. GUST MINUS 1 INTERVAL 5 . 1
GUST VEL. AT MAX . GUST PLUS 1 INTERVAL 5.7
GUST VEL . AT MA X. GUST PLUS 2 INTERVALS 5. 1
NOT E : RELATIVE HUMIDIT Y READINGS ARE UNRE LIABLE WHEN WIND SPEEDS ARE LE SS TH AN
ONE METER PER SECOND . SUCH READI NGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR MONTH LY MEAN F OR RELATIVE HUMIDIT Y AND DEW POINT .
*•)(-·)(-·.(-SEE NOT ES AT THE BACK OF THIS REPORT ****
163
·~ & M CDNb l.JL T(~NTS, :1: NC .
~:> U S :1: T N A H Y l) I~ C) E L. E C T I~ :t: C P I ~ D ,T E C T
MONTHLY SUMM ARY FOR SHE RMAN WEATHER STA TION
DATh TAKEN DURING NoveMoer. 1982
DAY
ltAX .
TEKP .
DEi: C
~
ltiit.
mw .
DEG C
ltEAH
TtJ\P .
iiEG C
~ES .
WIND
DIR .
DEG
RES .
WIND
SPD .
lt/S
IWG.
WIND
SPD .
lt/S
IIAX .
GUST
DlR .
DEG
!tAX.
GUST pI VAL ltEAH
SP D. DIR . RH
iVS I
11EAH
DP PREC IP
DtG C 1!t1
DAY'S
SOLAR
ENERGY DAY
lllVSC lt
----------·---------------------
1 litH
2 IIIH
3 tiHI
4 UIH
5 IIIH
6 *****
7 Httl
8 11UH
9 .....
10 "*** 11 HIH
12 0.0
13 -2.1
14 -1.8
15 -10.1
\b HHI
17 IUU
18 .... .
19 .. ...
20 111111
21 .....
22 11111H
23 B.O
24 -.5
25 .8
2b -5.3
27 -7.5
28 -14.6
29 -4.9
30 -7.8
IIOIHH .8
UIH
Hffl .....
IHHIII
HIH
litH
I I HI
IIIH
litH
litH
HIH
-3 .1
-7 .1
-1 0.6
-16 .9
IHff
III II .....
IHH
IIIII .....
IIIII
-3 .2
-10 .7
-11 .9
-10 .5
-16.5
-20.1
-14 .3
-1 3.~
-2 0 .I
GUS T
GUST
GUST
GUST
IHH
fHH
HHt
HHI ..... .....
IHH
HHt
IHH
HHf
HHt
-1.6
-4.6
-&.2
-u .s
HHt
HHI
HHf ..... .....
l fiiH
ffHI
-l.b
-5.&
-5 .1
-7 .9
-12 .0
-17 .4
-9 .&
-10.4
-7.9
VEL.
VE L .
VEL.
VEL .
Ill
Ill
Ill
Ill
Ill
Ill ...
Iff
Ill
Ill
Ill
Q81
035
Ill
192
HI
Ill
HI
Ill
Ill
H4
Ill
038
873
056
~48
075
0&8
Ill
Ill
059
....
1111
HH
fill
HH
lUI
HH
1111
l U I ....
HH
.9
.2
**** .1
1111 .... ....
Uti .... ....
U ll
.6
.5
.7
.9
.b
.3
**** 1111
.b
AT
AT
AT
AT
MA X .
MA X.
MA X .
MA X .
1111
IIH
HH
Hit .... .... .... .... .... .... ....
.7
.3
.2
.2
**** ....
Hit
t ill ....
IIIII
11HI
.6
.5
.a
.9
.b
.3
8.0
'0
.4
GUS T
GUS T
GUST
GU ST
Ill
HI
Ill
HI
IH . ..
Ill
U l
HI
HI ...
078
352
Ill
992
HI
IH ...
ttl ...
I H
Ill
0&1
053
091
844
073
880
07 9
*** 061
MINU S
MINUS
PLU S
P LUS
HH HI
lUI IH
IIH Ill .......
111 1 IH
HH HI
lUI ...
I HI Ill
Hit Ill
.... IH
HH Ill
3.2 E
"!.9 EHE
IIH HI
1.3 E
.... Ill
1111 HI
IIH HI
1111 IH
lllf Ill
IIH HI
HH Ill
3.8 NNE
1.3 EHE
3.2 EN£
3.2 HE
1. 9 El£
l. 9 EHE
.b ...
H it HI
3.8 ENE
..
fl
H ..
H .. ..
II .. .. ..
25
44 ..
H ..
H ..
H .. .. ..
33
H
2&
34
38
22
37
28
32
111111
IIIII
IIIII
UHI .....
IIIII
IIIII I
IIIII
Hilt
IIIII
HIH
-1 9.7
-14 .3
IIIII
IIHI
IIIII
Hill
111111 .. ...
Hilt
H ilt
litH
-t 5.U
litH
-22 .4
-25 .2
-20 .9
-33.3
-21 .9
-26.8
-22 .1
2 I NTERVA LS
1 IN TERVAL
1 IN TERVA L
2 INT ERVAL S
till
lilt
II I I ....
HH
IIIII
HII
ltH
1111
I HI
Ill•
1111
1111
HII
1111
l ilt
lilt
1111
lilt .. ..
1111
Hit
lilt
1111
1111 ....
lin
IHI
IHI
1111
lilt
'1 .3
1 '3
1. 3
1 '3
tttttl I
111111 2
1 11111 3
...... 4
111111 5
111111 6
:tiltH i
lltflt 8
llllfl 9
111111 10
...... 11
178 12
278 13
233 14
171 15
****** 1&
IIHH 17
filtH 18
...... 19
**"** 20
IIHII 21
ltflll 22
275 23
2&8 24
273 25
270 2b
245 27
2&8 28
19Q 29
lbO 30
2799
NOT E : RELATIVE HUM IDI TY ~EADINGS ARE UNRELIAB LE WHEN WI ND S PEEDS ARE LESS THAN
ONE METER PER S EC OND. S UCH R EADI I~G S HAVE NOT BEE N INCLUD ED IN TH E DAI LY
OR MONTHLY MEAN FOR RE LATI VE HUMIDI TY AND DEW POI NT.
***» SEE NO TE S AT THE BAC K OF THIS REPORT ****
164
I ~ & M c; D N ~:> U 1 ... T ANT S ,..
MONTHLY SUMMARY FOR SHE RMAN WEATHER S TATION
DATA TAKEN DURING DeceMber> 1982
(
RES . RES. AVC . HAX. IIAX . DAY 'S
IIAX. 111M. HEAK' WIND WIND WIND GUST GUST p I VAL MEAN MEAN SOLAR
DAY TE!IP . TEtiP . IDIP. DIR . SPD. SPD. DIR. SPD . DIR. RH DP PRECIP ENERG Y DAY
DEC C DEG C DEC C DtG lt/S 11/S DEG 11/S % DEG C Mit WH /SQII
----·-------·--------·-·------------·------
-12 .1 -18.0 -15.1 071 .7 .6 106 3.2 NE u I IIU UH 203
2 -16.9 -21.9 -19.4 047 1.2 1.3 029 4.4 NNE H *'*** !IU! 220 2
3 -14.5 -24.5 -19.5 864 t.O 1.0 030 3.2 ENE II Hilt I Uti 227 3
4 -13.4 -18.2 -15.8 044 1.2 1.2 050 3.8 HE lilt Hill HH !03 4
5 -2 .3 -14 .0 -8.2 057 1.5 1.6 083 4.4 HE II IIHI lUI 275 5
6 .4 -9 .2 -4.4 oss 1.4 1.5 063 5.1 ENE u **"* nu 283 ~
7 4.0 -1.1 1.5 056 u 1.4 046 6.3 t4E u IHII lilt 243 7
8 .9 -.4 .3 Ul 0.0 0. 0 Ill 0.0 liH ll!l Ill HI lllll 200 8
9 1.3 -15.8 -7.3 101 .2 .a 178 6.3 E Ill II HI HH 203 9
10 -5.1 -19.4 -12.3 087 .7 .7 111 3.2 E H Ill Ill HU 258 10
11 -2.4 -8 .7 -5 .6 064 1.5 1.6 030 3.8 EHE II IHU Ulf 231 11
12 . 4 -5.7 -2.7 059 1.4 1.5 042 4.4 ENE H IIIII lUll 270 12
13 1.1 -7 .6 -3.3 063 .B .9 GS2 3.2 EHE II litH IIH 241 13
14 -.2 -8 .9 -4 .6 843 1.0 1.2 335 4.4 EHE II 1!1111 UH 258 14
15 2.2 -8.7 -3.3 663 1.2 1.3 065 3.8 ENE ** IIIH 1111 241 15
16 -.3 -8 .9 -4.& 048 .9 1.0 029 3.2 HE u Hill nn 238 16
17 -2.a -14.1 -8.5 062 .4 .4 oa6 1.9 ENE II IIIII UH 23 1 17
18 -13.4 -18.9 -16.2 055 .3 . 4 075 1.9 ENE Ill Hill I HU 255 18
19 -4 .5 -21.1 -12.8 039 .9 1.0 052 4.4 NNE Ill !!fill lUI 228 19
20 -6 .3 -tb.4 -11.4 056 .9 1.0 012 3.8 EtlE lll tun UH 263 2~
21 -14 .9 -22 .7 -18 .8 oa2 .8 .a oa8 1.9 E H HIH IHI 241 "l1 ~·
22 -19 .9 -2~.6 -23 .3 072 .6 .7 090 2.5 ENE H Ulllll un 2~8 22
23 -11.2 -22. I -16.7 054 .a .a 031 2.5 ENE u ll!fU uu 258 23
24 -8 .0 -19.4 -13.7 069 .a .9 OSe 2.5 ENE H Hill Ul!l 229 2~
25 -a.4 -17 .5 -13 .0 060 .7 .a 020 2.5 ENE u HUI Ull 203 25
2o -1.4 -7.5 -4 .5 oss 1.1 1.2 061 3.a ENE II IHfl un 24a 2&
27 .1 -4.3 -2.1 069 .4 .4 082 1.9 ENE fl IIIII 1111 171 27
28 .4 . I .3 063 .4 .2 092 1.9 NE fl IIIU Hill 173 29
29 .9 .1 .5 092 .2 .~ 102 3.2 HE ** IIIU Ull 173 "lO ~·
30 1 r .. .J -5 .6 -2.1 221 .s .6 22o ') r .... .J sw n IIIU H llf 223 30
31 -2.5 -6.7 -4.6 IU 1!111 uu *** lUI Uf H Hill UlU 165 31
MONTH 4.0 -26.6 -a.7 059 .9 .9 046 6.3 ENE ** HUll HU 7187
GUST 1.JE L. AT MAX. GUST MINUS 2 INT ERV ALS 5 . '7
GUST VEL. AT MAX. GUST MINUS 1 IN TER VA L 5. 1
GU ST VEL. AT MAX. GUS T PL US 1 INTEI~Vf.'lL 4.4
GUST VEL . AT MA X. GUST PLUS 2 IN TER VALS ~ ':l ~ . .:..
NO TE : RELATI'JE HUMIDIT Y REA DI NGS ARE UNRELIABLE WHEN WIN D SPEEDS (',RE L;~:s E THAN
ONE METER PER SECOND . SUCH READit-'GS HAI..1E NOT BE EN I NCLUD ED lN THE DAIL Y
01~ MONTHL Y MEr~N FOR RELATIVE HUMIDITY r~N D DEW POINT.
Y:lHH· SEE NO TES AT THE BACK OF THIS REPOR T ·X··~·X ·~
165
. ~ C U i'-J b U 1... T i::O. N T ~:~ :• :1: NC .
H Y D I ~ C) 1::: 1... E C T I~ :1: C P I~ C .IJEC T
MONr~Li S~MMA~Y FOR S~ERM AN ~EA T~ER STATIOh
DA TA T A~E~ D0R ING January~ l98 3
t
Rt:5.
nAX . IH~. 1\tAH WHi D
DAY m1r . i t!IP. TBIP. OIR .
DEu C. ut:G C utb C DE\.
1
2
3
4
s
0
i
a
9
10
11
12
13
14
15
to
17
16
19
20
21
22
23
24
25
26
27
28
21
-.9
0.6
-3 .9
-6.9
-18 .0
-14 .3
-lid
-lo .B
-20 .5
-17.7
-11.9
-14 .2
-14 .3
-7.9
1.&
.7
-3 .4
2.3
0.0 .....
UUI
UIIU
HtU
"'** ltttU
~uu .....
IOU
3u ~uh
31 uau
nurHH ~.:5
-s .u
-5.8
-7.1
-z u.s
-25 .8
-2u .u
-2 9.5
-32.2
-2 7.u
-2 7.8
-25.9
-1 7.6
-17.9
-29 .7
-13.5
-5 . a
-13.4
-1.4
-&.2
****~
tun
IUifll
tUu
"*** HUll
*****
11-tUt
UUI
-3 .a u•
-2.9 lilt
-5,5 Hit
-13.9 ***
-21 .9 tit
-11.2 oot
-2.2.9 058
-24.5 a&u
-23.8 035
-2.2 .8 u54
-18 .9 062
-15.9 ObB
-1&.1 Ob8
-14.3 m
-6.0 &47
-2 .2 043
-8.4 ~62
-3 .6 aoo
-3.1 m
..... lid
tun ut
..... Itt
HIU Ut
IHill lfll
IHU till
llltU HI
IIIIHI Ut
l tflil ...
AJttt ~lltfll ***
ttttt ttt** tltt
-32 .2 -13 .v u59
Rt:S.
wiNil
SPil .
11 /S
A!JG . IIAX.
wiND GUST
SPD. Dli<.
n/5 Dt:G
tttt Uitlt
UU IIlii
ttU UH
.... ***'
nu tttt:
3.4 3.1
2. 0 2.1
1.8 1.5
1.2 1.3
. 9 1.2
4.2 4.4
2.4 2.5
2.1 2.2
1.1 1.2
1.7 1.8
.8 .9
.3 .b
i.3 1.4
.2 .b
tlltt Ullll
nu uu
Htf 11111
uu .ttlt
11111 ....
tiU tUt
ilffl Hill
HU tiiU
111111 Hllll
Itt ... ...
Hll
Ut
ub2
u51
OS~
04il
653
669
05b
077
071
070
054
215
u&s
227
Ul
ttl ...
Itt
***
Ut
*** IIIII ...
liAX .
GUST pI VAL IlEAl! r!t:Aii
SrD. DlR. KH ilr rRt:Clr
1VS X DEG C I'IH
uu tt:t h
1111111 *" "
Uti IU ill
Utll Itt Ill
Ult Ut It
7.o t.NE **
i . 0 ENE n
&.9 lit ilt
3. 6 Nllt tt
5.7 NE t11
12 .1 EN£ u
8.9 ENE u
7 .b Eilt n
4.4 Ejjt: u
5.7 ENE u
5.1 tl E u
2.5 ENE u
7.0 ENE u
5.7 Eht: u
111111 ... **
111111 lilt ..
fUll ... **
liiiU liH tit
IHll llff U
ttllt *" u
Hill 111111 H
tttl Ut U
.... 11ft 1111
U-H filii
liiiU Ut
12.1 ENE
...
u
d
Utltt !Hit
IIUf HH
tltH tUt
UIIH UU
tlll*t ttd
HUll UH
UUf UU
UHII tift
ltttll ....
sHill Hit
tUtt IH!t
..... 111ft
HUt lUI
tflltll ....
ttttlt Hltt
..... IIHf
Utili UU
**"** tllllll
ttftll ttllll
IIUU llllll
ltiUI Ull*
llllfll11 IIIli
fttll htt
lllltllll iiUI
ttlllli ....
Ut:lll llfllll
lltHI Hfl
..... lUll
~uu u ·u
t'H U Ultlt
HUt Utf
INTERV AL S
INTERv AL
INTERVA L
GuST vEL. AT MAX. GUS T MINU S 2
G0 ST ~EL. AT MA~. G~ST MINUS 1
G0S T VEL. AT MA X . GJ ST PLL iS 1
GuST VEL . AT MA X . GUST P LUS 2 ItHERVAL S
8 .3
8.9
10 .2
7.0
DAY 'S
SOLAR
~E~G·f ilAY
wSiln
2u& 1
220 2
l8d 3
2o6 4
2·i & ;:,
:m i>
323 7
358 a
355 9
348 10
528 11
43a 12
39 3 13
405 14
345 15
333 16
228 17
2i5 18
171 l'i
IUIIltf 2U
I UIIH 21 ...... "
...... 23
...... 24
.. .... 25
tlii.U~ 26
UHH 27
...... 28
n~• 2~
HUh 3u
non 31
599c
N Ul ·~: R£LAT i~E nJ M I~ITY ~E AD INGS ~RE UNRELIABLE WHEN WIND SPEEDS ARE LESS ThAN
~NE METER PER SECON D. SU Crl READINGS HAVE NOT BEE N INCL UDE D I~ ThE DAIL\
OR "O NTnLY MEA~ FOR RELAfiVE nuMID I TY AND D E ~ PO IN T .
~ .. "·"·~: SEE NGTES AT Trit: BACI\ OF T ·~IS REPORT ~a ·X·
1 66
I~ ~ M C ONSUI ... TANT ~::> .:· TNC.
SU~:> :t : T N A HYD I~ DFLEC TI ~ :1: C PI~ D . .TECT
MONTHLY S UMMARY FO R SHFRMAN WF.AT HFR S T ATJ:ON
DATA TAKEN DUR!Nf:; f7ehrllc:trv , 1983
DAY
!tAX .
rnt .
DECC
1 IHH
2 HIH
3 IHH
4 IIIH
5 IHH
b HIH
7 -.1
R -1.9
9 -9.1
t8 -7.5
11 -11 .1
12 -11 .5
13 -24.7
14 IIIH
15 HHI
16 IIHI
17 IHH
18 .....
19 IIHI
21 IHII
21 IIIII
22 .....
23 IIHI
24 IIIH
2S IIIII
26 IIIII
2J '**" 28 HIH
110HTH -.1
II IN .
TtMP .
DEC C
IHH
HHI
IHH
IHH
IHII
Iliff
-8.3
-13 .&
-21.9
-23 .3
-26 . t
-28 .1
-29 .1,
IHII
IHH
Hill
IIIH
HHI
IIIII
IHH
141**
11411
~~n•
""*I
IIIII .....
Hill
''*** -29.1,
l1EAH
Tflf.
DEC C
IHH
IIIII
*Hit
IHH
IHH
IIIII
-4.2
-7 .R
-15.5
-15.4
-18. I
-19 .3
-'lJ.2
IHH .....
IIIII
IIIII
IIIII
IIIII
IHH
IIIII
IIIII
IHH
IHH
IIIII
IHH
IIIII
IHH
-15.3
GUST VF L.
l.lJ GT ~)F.l. .
f.:lJ S T V E L.
GIJ S T lJ r::J...
RES .
WI HI)
DIR.
DEC
IH
IH
I ll
IH
Iff
Ill
099
872
176
178
859
1&1
14~
IH
IH
HI
IH
HI
HI
HI
Ill
HI
Ill
Ill
HI
Ill
Ill
Ill
A6 9
RES . AlJG .
Wltro WIHD
SPD . SPD .
K/S 11/S
.... Hlf
1111 IHI
1111 IH'f
1111 HH
1111 1111
IHI I!!H
.4 .6
.2 .3
.5 ,,
.4 .s
.s ·" .3 .s
.4 .4
1111 HH
1111 HH
1111 HH
1111 IHI
1111 HH
HH Hll
1111 fHI
Hit 1111
Hll HH
IHI ....
HH HH
IHI fill
1111 1111
IHI HH
Hit HH
.4 .~
HAX .
GUST
DIR.
DEG
Ill
Ill ...
Ill
Ill
Ill
073
047
145
095
144
141
127
Ill
HI
Ill
HI
Ill
HI
Ill
Ill
Ill
Ul
Ill
IH
Ill
IH
Ill
847
AT ~lAX .
AT MA X.
AT ~lAX.
AT MA X.
I.UST MTNlJS
f:;IJ ST Ml:NU S
GU ST PI..US
f:;I JST PUIS
!tAX.
GUST pI VAL MEAN I(AM
SPD . DIR. RH DP PREC IP
li /S I DEC C HN
HH IH
Hit Ill
IIH Ill
HH HI
IIH H*
HH IH
2.5 F.
:u E
2.5 E
3.2 F.HE
Vi HE
1. 9 F.H£
I. 3 Elf:
1111 IH
1111 HI
1111 IH
IIH Ill
Hit Ill
IIH HI
HH Ill
1111 IH
HU IH
IHI IH
Ill* '"
1111 Ill
lUI IH
IHI Ill
IHI Ill
3.? ENE
II IHII 1111
H HIH IHI
U IHH HH
H IIIII IIH
H IIIII 1111
H llllf Ill*
II Iliff 1111
H IIIII JHI
H IIIII Hll
H 1HH IHI
H Ill** 1111
II IHH HH
II IIIII ltiH
II IHH 1111
II llllf IHI
H IIIII IHI
II IIIU HH
H IHH 1111
II IIIU HH
H IIIII 1111
II IIIII 1•11
H IHII 1111
H IIIII 1111
II IHH HH
II IHlll 1111
II IIIII Hll
II I liff IIH
H HlfW IHI
II IHfl U ti
2 INTF.RVAI .S
JNTERVAL
HITFR~JAL
2 J:N TERO AL.S
1 . :3
1 . ~
1 . 9
DAY 'S
SOLAR
EHF.RGY DAY
w:v SQII
111111 1
HHII 2
IIHH ~
HHII 4
IIHII 5
'***" b
1,52 7
733 B
tm 9
t 118 10
1215 1 1
1305 12
398 13
111111 14
IIHH I S
111111 16
IIHH 17
'***" 1R
111111 19
'***" 21
11*111 2 1
111111 ?.2
****" 23
IHIH 24
...... 25
I HIU 2h
"***' 27
111111 28
6555
NOTE : REI..A TIVF HUMIJHTY READ"T:NGS ARF UNRFL.JAFII..F" l~HF.:N I.<HNP S F'F.F.:DG ARF l.Fr-S THAN
ONF: MF.TF.R PF.R SECOND. S I H";H REAIHNI.S HAIJE NOT F.IEF.N l:N I';LIJD~D IN fHE DAT.LY
OR MONTHLY M[AN FOR RELATI VE HUM JDITY AND DF"W POINT.
·~-H--~ SF.F. NO T F.S AT THE BACK OF T IHS RFPilRT ~-*·U
167
·~ & M r :~ D N ~:> U L. T A N T ~:> > :t:NC .
BUn:I:TNA H Y l> I~ 0 E 1... E C T I~ :t: C PI ~D ,TEC T
I
MONTHL Y SUMMARY FOR SHERMAN WEA THE R S TATIO N
I DATA TA KEN DURIN G Mar c h , 198 3
I RES . RES. AUG . MX. MX. DAY'S
!tAX . KIN. HEAH wnm WIND WIND GUST GUST P 'IJAI.. !lEAH KEAN SllAR
DAY TEMP . TEMP . TE1tP . DIR. SPD . SPD . DIR . SPD . DIR . RH DP PRECIP ENERGY DAY
DEC C DEG C DEG C DEG 11/S 11/S DEG 11/S % DECC ttl WH/SQI!
I I tfHI llfH llfH IH IIH IHI Iff Hfl IH H II HI IHI HHfl 1
2 ..... Hfll IHff Ill llfl IIH Ill HH HI I! Hlfl Hfl ...... 2
I 3 ..... IIIII lfHI IH 1111 Hit Ill 1111 IH II IIIH 1111 HHH 3
4 IHH lfHI ..... HI 1111 IHI Ill Hll HI .. IIIH HII IHHI 4
s IHH IIIII Iliff IH IHI Hll Ill HII Ill .. IIIH IHI HHH 5
b llfll HHI ..... HI HH .... IH HH Ill •• IHII IIH HIIH b I 7 Iliff IHH lfHI Ill HH HH ... llfl Iff II llfll .... HI HI 7
8 IHtf lfHI lfHI Ill HH HH ... Hf ~ ... H lfHI HH HIHf 8
9 HIH lfiH lfHI IH HII 1111 HI 1111 Ill H IIIH IHI HIIH 9
I tl -2.6 -15 .1 -8.9 Ob1 1.2 t.J 074 4.4 EHE H IIIH HH 255b 18
tt 4.4 -7 .8 -1.7 05b 1.0 1.0 853 3.8 ENE •• IIIH IHI 191J 1 1
12 8.6 -8.3 .2 163 1.1 1.2 Ob2 4.4 ENE H lfHI HH 1991 12
I 13 8.b -11.5 -t.l ObB .9 t.O 07b 4.4 ENE .. IHH Hll 2798 13
14 5.3 -11.2 -3.1 tb9 .9 .9 07S 3.8 fME II Hill Hfl 2278 14
15 8.5 -8 .5 ••• 865 .s .7 010 3.8 E II IIIH IHI 2468 15
1b b.8 -10 .4 -1.8 lb8 .8 .9 076 4.4 ENE .. lfHI .... 3888 16
I 17 6.4 -13 .9 -3.8 87b .8 .a 084 4.4 ENE h ..... **" 3255 17
18 6.1 -15.7 -4.9 169 .9 1.0 069 5.1 E H IIIH Hit 3355 18
19 5.9 -15.8 -5.1 873 .8 .9 0?8 4.4 E ** IIIH .... 3423 19
1
20 IHH Hffl llfH Ill 1111 1111 Ill HH HI H lfHI HH Hflfl 20
21 ?. I -10.3 -1.6 069 1.1 1.1 0?2 4.4 EHE H IIHI lUI 3423 21
22 ?. 1 -15.0 -4.1 17S .b .? 085 3.8 ENE II lfHI .... 3529 22
23 5.9 -14 .8 -4.5 lbB .? .a 8?9 4.4 ENE II ..... IIH 3618 23
24 4.? -11.9 -3.6 052 .8 .9 06? 3.8 ENE II ..... **** 2533 24
25 5.2 -8 .8 -1.4 063 1.4 1.5 081 5.? ENE .. IHII .... 3695 25
2b s. 1 -8.3 -1.6 15C 2 .8 2.0 049 ?.b ME II Hill 1111 3435 26
27 4.3 -7 .9 -1.8 059 1.9 1.9 052 ?.0 ENE H HHI IHI 3663 27
28 5.8 -9 .9 -2.1 065 1.4 1.5 077 5.1 ENE H Hffl Hll 3799 28
29 7.6 -11 .7 -2.1 077 1.1 1.1 071 4.4 E H IIHI I HI 3958 29
30 6.5 -12. I -2 .8 872 1.2 1.2 077 5.1 ENE II lfHI .... 4228 30
31 18.0 -8.0 t.l 865 .7 .8 055 3.8 ENE fl Iliff IHI 3553 31
ltOHTH 18.0 -15.8 -2.b 865 1.0 1.1 049 7.6 ENE II IIIH .... 66524
GU S T VEL . AT MAX. GUS T MI NUS 2 I NTER VAL S 5.7
GU ST VE L . AT MA X . GUST MINUS 1 INTERV AL 5 .7
GUST VEL . AT MAX . GUST PL US 1 INTERVAL 6 .3
GU ST VEL . AT MAX . GU S T PLUS 2 INTERVALS 6 .3
NO TE: RELATIVE HUMI DI TY READING S AR E UNRELIABLE WHEN WI ND SPEEDS ?IRE LE S S THAN
ONE METER PE R SECOND . SUCH READINGS HA VE NOT BEEN IN CLUD ED IN TH E DAI LY
OR MONTHLY MEAN FOR RELAT I VE HUMIDIT Y AN D DEW PO I NT .
·X· .X.·~·~ SE E NOTES AT THE BACK OF THIS REPORT ·~·X··lf ~·
1 68
S l .J S :J: T N A
MONTH LY SU MMAR Y FOR SH FRMAN WEATH ER ST ATIO N
DATA TAKEN DURING Apr1l , 1983
~ES. RES . AVG. MAX. l1 AX. fl AY'S
MX . MIN . "EAM WIND III MD IIIHD bUST GUST P 'VAL ltEAH tiEAH SOLAR
DAY TEltP . IDif'. TiMP . DIR. SPD. SPD. DIR . SPD. DIR. RH DP PRECIP ENERGY DAY
DEGC DECC DEGC DEG "'s "'s DEC ri/S z DEC C l'il WH/S~ -------·-----·----------------
1 9.2 -11 '1 -.5 071 1.0 1.1 082 ~.~ E II ***** 8 '6 42~3 1
2 9.b -8 .8 .~ 0&9 1.0 1.1 082 5.7 EN£ II UIH u.o +US 2
3 8.3 -18 .7 -1.2 0&3 1.2 1.2 1&5 ~.~ ENE H: ..... 1.0 4500 3
~ 7.& -.5 3.& 135 .2 1.9 212 10 .2 N£ ** IIIII 2.2 1903 ~
s s. 1 -2 .~ 1.~ 853 .2 .b 352 3.2 EiiE II Hlllil 2.6 20&5 5
6 2.6 -11.3 -~.4 09& .8 1.1 120 4.4 E .. Hill 2.2 -4948 b
7 i.S -4 .5 1.5 18~ '1 .2 86~ 2.5 ENE ** UIH 0 '0 4528 7
a ~.~ -5 .4 -.s 235 .a .8 223 4.4 Sll .. I Hit u 390a a
9 3.7 -9.5 -2.9 217 .8 1.0 218 3.8 ssw II lit II .b 3155 9
iO 2.& -11.3 -4 .4 09& .a 1.1 120 ~.4 E .. Hill 0.0 4948 10
11 -1.9 -11.7 -&.a 957 1.3 1.4 835 5' 1 ENE H tiiH 0.0 2727 11
12 3.4 -4 .3 -.5 839 .1 .7 038 3.2 HHE H IIIII 8.4 2078 12
13 7.4 -3.8 1.8 ·~ .7 .b 046 3.2 t It IIHI 4.0 4438 13
14 5.1 -.9 2' 1 220 .a .9 229 ~.4 511 .. Ulll 5.0 2715 \4
15 ~.5 a.o 2.3 041 .3 .5 211 2.5 HHE .. ***** 14.2 2:75 15
to 7.b -1.7 3.0 Obb 1.3 1.1 059 5 .'I ENE H Hill 1.8 3900 1b
17 s. 1 -5.3 -' 1 218 .9 1.2 231 . 5.1 SSII H ..... .2 4218 17
18 7 .0 -1.3 2.9 052 .b .8 020 5.1 ENE ** UHI 11.0 jS8t 18
19 7.5 -3 .3 2.1 210 .5 1.2 28& 4.4 ssw ** *"** 8.0 3908 19
20 9.9 -4 .3 2.8 971 .9 1.1 077 5. I E .. Hill 8.0 5030 20
21 10.1 -4 .5 c.a 093 .o .8 031 3.8 ENE H IIIII 0.0 5143 21
22 a.8 -2.2 3.3 214 .2 .5 1&9 4.4 s II Hill 3.4 3503 22
23 7.6 .5 ~.1 268 • I< 212 3.2 511 II IIIII &.4 3148 23 .. o.J
24 15.1 . 1 7.b 023 .5 .9 001 4.4 ENE .. IHII 0.8 6030 24
25 19.4 -1.& 8.9 183 .3 .7 19& 3.8 t H IIIII 0.0 &008 25
2& 14 .3 -3.7 5.3 315 .3 .b 305 3.2 lUI II II Hill o.a &028 2&
27 14.8 -3 .7 5.6 225 '1 .7 1&& 3.2 HE H ..... 0 '0 &113 27
28 1~.5 -2 .9 3.8 2!5 .b .8 212 5.1 5511 It Hit I 0.0 4195 28
29 10.& '1 5.4 15b .1 .4 210 2.5 EME II HHI b.O 4245 29
Ji 13.7 -2.0 5.9 042 1.0 1.2 U7 5.1 ENE II IIIII 8.0 &590 30
nmtTH 19.4 -11.7 1.8 084 ,,) .9 212 18.2 ENE II tltlll 08.0 124388
GUST VEL. AT MAX. GUST MINUS 2 INTERVAL S 9 .5
GUST VEL . AT MAX . GUST MINUS 1 INTERVAL 8 .11
GUST VEL. AT Mf!rX. GUST PLU S INTERVAL 8.9
GUST VEL. AT MAX. GUST P LUS 2 INTERVALS 7.0
NOfE.: REL ATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS -:-HAN
ON E METER PER SECOND. SUCH RE ADINGS HAVE NOT BEEN lNCLUDED I r~ THE DA l LY
OR MONTHLY MEAN FOR REL ATIVE HUMIDIT Y AN D DEW POINT .
·X· ·X, ·X, ·X· SEE NOTES AT THE BACK OF THIS REPORT ·X· ·X· :X· ·Xo
1 69
I~ & M C D N ~;; U 1... T A N T S ;.. :J:Nc.
SUn :J: T N A H Y D I~ C) E 1... E C T I~ :t: C P I~ CJ S E C T
MONTHLY SUM MARY FOR SHERMA N WEATHER STATION
DATA TAKEN DURING May .· 1 9 83
RES. RES. AVG. IIAX. HAl. DAY 'S
111\X. MIN. I£AN WIHD WIND WIND GUST GUST p I VAL ltEitH l'lAH SOLAR
DAY TElV'. lE.JW. lEW. DIR . SPD . SPD . DIR . SPD. DIR. RH Dfl PRECIP EHERGY D.:.Y
DEGC DEG C D£G C DEC lt/S M/S DEG M/S I DEC C "" WH/SOit
1 14.4 -3.7 5.4 127 .3 .8 204 4.4 ENE H HIH .b 5418 1
2 8.2 1.1 4.7 219 1.1 1.2 21& 5.1 Sll ** ***** 5.1 4123 2
3 8.8 -.1 4.4 2&8 1.1 1.3 214 4.4 SSII H tHH .8 4&18 3
4 11.9 -t.b 5.2 056 .7 1.1 128 5.1 ENE II UIH o.o 5821 4
5 12.3 -.8 5.8 043 .s l.B 347 5.7 E H ***** t.O b433 5
b 14.3 -2 .2 b.1 ass .8 .9 351 5.7 ElfE •• tiHI 0.1 7Dt5 b
7 15.4 -2 .2 b.b 041 .b .9 347 5.1 E II IHH 1.0 &853 7
8 1o.9 -2.5 7.2 318 .2 .8 213 3.8 liE H HIH 1.8 b955 8
9 15.8 -.5 7.3 244 .4 .8 263 4.4 ssw II HIH t.O 5983 9
10 14.0 -.8 b.b 233 .s .9 293 5.1 sw If UIH 0.0 o283 11
11 1&.8 -.8 8.0 341 .2 .8 31b 3.8 ESE If **"* 8.0 b7b5 11
12 14.5 2.2 8.4 127 .4 .7 130 3.8 ES£ If UIH Q.l 5783 12
13 1&.4 2.4 9.4 001 .2 .8 017 3.8 ESE H Hill 0. 0 5iB3 13
14 tb .1 .9 8.S 223 .5 1.0 195 5.7 ssw .. UHf .2 4833 \4
15 14.2 .3 7.3 237 .3 .8 234 3.8 E H HIH 0.0 4793 15
16 13.b -.3 b.7 238 .b 1.0 218 5.1 WSW .. ***** t.Q 4183 1b
17 11.8 3.1 7.1 222 .8 1.8 184 7.1 Sll II ..... 7.0 35 28 17
18 11.4 2.7 7.1 222 1.1 1.3 22S b.3 S\1 II ***** .b 4&38 iB
19 12 .7 t.b 7.2 21b .s .9 199 4.4 sw If ..... 0. 0 4285 19
20 18.2 t.B 18 .0 237 1.3 1.5 234 &.3 WSW II HIH ••• boiS 20
21 11.1 4.b 7.9 216 1.3 1.4 25 3 &.3 ssw H ..... 1.4 330~ 21
22 14 .S S.1 9.8 227 .9 1.2 272 5.7 sgj II ***** 2.1 SObS 22
23 14 .4 4.1 9.3 2tb .9 1.2 227 5.1 SSII H HHt .4 4973 23
24 lb.4 -.1 8.2 878 .b 1.8 090 5.1 SE II IIIH 0.0 5889 24
25 1.8 -2 .2 -.2 lOS .2 .2 145 .b ESE H IHH .4 9bl 25
2& IIHf UIH ***** Itt **** HH tit 1111 IH II IHH IIH IHIH 2&
27 !IIHt *"** ...... !Ill Hit litH *** **** IH H HIH Hit IHfH 27
28 *'*** tfftt HIH Ill Hit .... HI IIH IH II ..... IHt ****** 28
29 I Hit tHII ..... IH IHI IIH Ill fill HI II *'*" "** ****" 29
30 IHH !IIIH *"** Ill **" .... Ill **** IH If lfttt 1111 ...... 30
31 HHI IHH ..... Ill fill fHI Ul .... IH H HIH Hll IIIIH 31
IIOlilH 18.2 -3.7 &.9 217 . 3 .I 184 7.0 ssw II Hill 19.4 131075
GUST VEL. AT MA X. GUST MINUS 2 INTERVALS 3 .8
GUST VEL. AT MA'X. GUST MINUS 1 INTERVAL 3.2
GUST VE L. AT MA X. GUST PLUS INTERVAL 5.7
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 3.2
i·WTE.: RELATI VE. HUMIDITY REA DINGS ARE UNRELIAB LE WH EN WIND SP EED S ARE LESS THAN
ONE METER PER SECOND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAIL Y
OR MONT HLY MEAN FOR RELATIVE HUMIDITY AND DEW POIN T .
·X··X··)(o ·X· SEE NOT ES AT THE BACK OF THIS ?EPORT ·~·~·)1 .. )(-
170
S(P 1 q82 2 ~528
l ALlE[t •A. ALASK A
l A L K[(l~A AIRPORt LOCAL
C LIMATOLOGICAL DA T A
W[A SYC CO NtR ACt ~E l 085! Monthl y S u mmary
(L£iAIIG N IG ROUNOI 3 ~5 F£(1
O£GR([ OilS W[AIH[R ll P[S SNOW II[RI6[ WINO SU NSH I K( I so tOV (q I
l["P[RA lUR[ 0 f IC£ oq(CIPIUIIO N SII IIO I SA>£ o5•r I FOG P[LL[IS PA(SS UR[ '" p H I ' I I(~IMS I
I I .. --· l •[AV! FOG OR ~ II Q f A5_1l? I ~ .... ~ ="' =c > I ~U~OE AS I ORM ICE ON .. t•cm '"' (t Q "I L ~ ~~ ~~ -4 I([ O[LL( IS GAOU NO c -Q "' --I c :;::.= v:= ~ a. ~"' %
~-= 5 HAI L u ElEY z -"' .. ="' -•:> ...... "' "' ~;; z Q Q ---"' "' "'C> ~-..., ..., o GLAI£ oe•" ~-lH c c ~ -"' -a. ~.-. :z: :z:l
"' "' ~ -z .... --"' --..., -~ z ..,. .z ~..:~ cl
"' "' '"' c <> ~~ ~~ l OUSISIO Aft '* % • % f([l c 0 ~ ~--::> --
~ -z 0< c"' ""~ --~ ~ '"' ~ :i' ~ ~c ~"' ~~I := I g~ 8 SftOl[, HA 1£ I NCHES 2 ~ ABOVE ..,_ -M a. 0 ~2 c..., -z 0 .. (t .. : -> ~'"' ·~ c-.. -:;r :i' > --~a ~c 1-o c
0 0: c o~ c bo %0> ~~; 1 BLOWING SNOW 2 -"'-ft S L c "' 0 .,., Ia.-2o-12;-;; I 2 3 4 s 'A a , 10 I I I . I) I 4 ·s lb 17 18 I I q
I &2 ~5 5~
· i I
4(, 'I 0 0 0 0 H of • J 5 ~
021 I ~~ ~ I 2 59 t) 51 ~8 I ~ 0 0 ll 0 ~, " a s J q 8 I J : ~ I J SJ •s " 'I ,. 0 0 ~ l I 0 ~, ~8 I 2 0 J I 8 H ) I
~ ,, 41 so u I $ 0 0 ~ "2•S4 to1 2 0 2 , 8 OJ J
s S7 4 1 ., ·1 I •• ,. 0 I ' Jl 0 ;28 ,, f I 5 I s s , 0 I I 10 v s
I I ~ I • 55 0 ., ·1 <1 If, 0 0 I )I I ~ ~8 IS I I J • s 8 I 2 !I I I I I &0 'I 5• s II 0 ~ 's v q II
8 ,. " so I •• I 5 0 0 ) ~, n II J s 4 l 1 I 0 1' 8 I , s ~ t) so I 0 IS 0 0 ..
) ~~ 2S JS 1 s ) • a .J ' I 10 5S •S so 2 ,. 15 0 0 JS ) q JJ 3~ ] I ' 2 9 32 I 0 I 0 10
II ~, 38 " • 4 u 2 I 0 I 0 nl ) ~, ~· ,. 7 1 I 2 IS •• , 1 I I
12 52 }q ~I ·I Jl 2• 0 0 I 2 0 ~, .. r ; I J 0 • 02 I l I 2
13 ~, •2 ~~ ·I •5 1 q 0 I 0 .?S 0 ~q 'I J& .? I ~ • 12 JS 1 J
I ' S2 " •a I 11 0 0 ,. 0 , H I 4
I 5 • J • ~-SS • 8 St 10 0 0 I I ' 0 pq )4 I J s ' 8 I 2 H IS
I & So H so 4 12 1 s 0 0 •• 0 ~, 48 18 I 8 ~ 0 i 8 18 I ~ I
17 ,, 4 1 •s ·I 4) 20 0 0 I 0 0 H &2 l& 4 J 4 s 7 02 I 0 I 0 "I I 8 S2 ~I 4 7 2 44 I 8 0 0 so ~ 2' ;t • , s .? I o 0 I I 0 I 0 18
I q ., ~s 17 2 47 I 9 0 I 0 1 11 1 2' I
I I' 2 I OJ I 0 10 lq
20 ~q .. 47 2 •• I 8 0 o I '. ~ H 5} I J J 4 J I 0 )4 20
2 I so ~I •• 2 I q 0 ' l ~ ~ I 0 I 2 o• I 2 I I 22 ., 32 " ·l •o 2 ~ a 0 c ~~ >2 • 2 J I J s 8 2S 22
23 S2 H 4 1 • 2 '2 I 2• 0 ·l I ) 0 H 1) J! ' ~ 4 J 8 2> I 2)
2 ~ 48 2& )I .. ll 1 29 ~ I ~ I
: 0 2• •• r,s 1 • J J 0 lj Q
I i ,,
25 48 lO J~ ·l JS I 2> J I ~ q •• I I I s 2 0 s JJ , ' is I
20 ~8 )q 44 2 •2 21 0 0 J O 0 q 4 2 ; 2 , 8 ; 2 I 0 IS '0 I 0 2&
21 SJ ]I ~2 I )q 23 ? 0 ) I 0 q 15 27 q ) 8 12 If, 3 I
21 I 28 45 2 ~ J I • . 4 28 0 ' 0 I 5 0 a JJ I 0
I
28
H ., 38 .. J )q 21 0 I 0 I~ 0 }q 24 J • I I s J 8 18 10 2'
30 0 31 ~2 2 ]q 23 0 I 0 . 2 0 }q 2 I 17 • I 0 • 28 10 JO
I i su n sun IO IAL IO IA L N Un B(~ or OAT S 'DI AL 'Oi l L <O~ IH[ •O~I M ! IOilL : s~• :u't
1 sa 1 II 83 $&1 0 7 ,, 0 I 8 18 '" AV G AYG . AI G. ~[P ~'I& OEP . O£P ~A£CI PI UllOM O[P AI[' ,. II\ \I l l( t:.lll hl AYG ,,,
~2 Jq 4!.. I 0 ·• 0 > 01 INCH 2 4 J 02
NUftt[A Of OilS SE ASON 10 OAI[ SNOW, ICE ~[ll[IS GR(AI£S I I N 2' HO URS ANO OAIES GR £ A 1£ S I 0£ P IH ON GROU ND or IOI AL IOI AL ; I 0 INCH 0
ftA I I nun H ft P. •I ~I ~U ~ I(•P 10q ' I HU~OERS I QR ft S 0 ?P(C!PII l iiO H SNOW ICE PHLEIS SNOW, I([ P(lL[lS OA IC [ u o Oll[ I
I qoo ( 32" I 12° ; oo O£P OEP H(AYI FOG 0 I }; I 2 · I l 0 0
0 0 ' 0 ·I 2 -5 CL EAR PIA 1L r CL OUOl CLO UOT
t EXlRE "E fOR rH( HONlH · LAS t OCCURRE NCE If MORE TH ~N ON(
I TRACE AMOU Nt
• ALS O 0~ EA RLIER DATE ISI
HEAVY FOG : V!SIBIL!TT 1/4 HI LE OR LESS
BLA NK ENtRIE S DE NOtE MI SSl ~G DATA
HOURS OF OPS MAT BE QEOUCEO GN A VARIABLE SCHEDULE
DATA I N CDLS b AND 12-IS ARE BASED ON 7 OR MOR E OBSER VAT IO NS
~~ )·"OUR INTERVAL S RE SU LTANt WIN O IS THE VE CTOR SU M Of WI NO
SPEED S AND DIRE CTION ~ DIVIDED BY t HE NUMBER or OBSERVAtiO NS
ONE Of lH REE WI NO SPHOS IS GI'IE N UNDER FASTE SI MIL [: r~s;~S T
MI LE · ~IGHE SI RECORDED SPEED FO R WH IC H A HllE or WINO PASS ES
S 'Ql !ON lO!R(CTIO N I N CO ,PASS POI NTS I FASIEST OBSER VE D OHE
MI~U T E WI NO · HIGHES T ONE MINUTE SPEED !D IRE CTIO N I N TENS OF
~EGRE E SI PEA k GUST· HIGHEST I NSTA NTA NE OUS WI NO SPEE D !A
'PP£ARS I N -~E GI REC I!ON COl "HN I EORORS WILL 8[ ~OR'E CI E ~
'NO C~A HGES I N SU MMA RT OAlA •I•L 9E INH OT ~IEO I, •E !N~U A L
DIJ8ll (~I ( ON
I CERIIFY t H•t !H IS IS ~H OfFICIAL PUBLICAtiON Of TH E NA TIO NA L OCEA NIC ~NO AI"OSPHERI • AO"INISIRATION, AND IS CO "P ILEO fRO M
RECORD S ON fiLE Al THE NAT IO NA L CLI "Al iC CE NtER , ASHEVILLE, NORIH CAROLI NA , 29901
/f4.1-kd-
n 0 a a Uli OU l OCEUIC UO /(MY!ROMft[MliL OAU UDj Ul !O UL Cll ft ATIE C£MIER
moSPHER I£ I Oft!NISlR AI IO N I Mf OR W IO I SERYICE I SHE VILlt . NORtH CAROLI NA
ACli NG DIRECTOR
NAIIOH-L CLI "A liC CENtER
1 71
(
.· c:x: ;;_.:, z
t-1-Uw ow
::::.c::::
_J
( ~
\ .. :--
c:x:
1-
OC I 1982 ISS N 01~8 -0 42 4
I ALKEE I NA , ILA Sl A
I I LKEEIN I IIRPOR I LOCAL
CLIMATOLOGICAL DATA
MEA S'C CQ NIR ACI ~E I 08ST Monthly Summary
Lll I IUD£ &2° 18. N LON&IIUO E I S0° 0&' M lift£ 101£ a t i SKU
OE&AH OU S W(UH(A I!P[S Sl OW UUUE WIN O I U CO ,EA I ("P(RAI UR[ °F BASE &S0 f IC E PR(CI PII U IO N SI I IIOI
'" P H I
SU NSH I N( I ![NIH SI
1 ro& PEllE IS PA[SIUR(
I -2 H[AYI fOG OR ~ II C> ••~rE_sr I I ... -~ . ~
5::~ ~~ l IHU NO[AI I OAR IC E ON " ':: I ~CII(S <X C> ~I L' .z; -... ~ ;~ I IC( PEl lE'S &AOUI O c C> "' --c ~ Q. ... _., -"' ~"' I Mi ll II (LEV --"' z C>"' "' <X"" ~ -'i ~.;; z ! 0 0 ... x z ., ~ ~ ::>0 ~-"' ... & GL I Z£ 0 81ft -~ J S& c ~ -"' -... ~"' => "' -z "'-"'"' ... ., --~ -~ z "'"' "'= "' "' c <X c"' -.. -.. 1 OUS ISIOAft '"'% ~~ FEEl ~ ;; C> ~ -~~ -=> --~ --<X co:: "' ... ::> ~ ~ => ~c <X "' "'"' ~
... 0 I SftOLl. Mi lE INCH( I ~v ABO VE ., .,. ~ .. <X -z = -!! ~ .. c "' g!: -. c c ~ ~"" :a c-~ ~ e; --~ C> => 0 -o c
"' "' "' c C>-,..., ~-' BL OW ~N& Sl OW ~0-ft 152 L ~3 c "' "' ..__ .,_ -=-C>
I 2 3 4 s !. lA 78 q II 14 I S lb II 18 I ~ 20 ' 21 22
I . ) 3S 3, ·I n I & 0 I 0 0 0 2' 4 1 IS I 0 2 & g I 4 I 0 I ; ~ I I
I ., )4 40 • I )I I S 0 0 02 0 ~~ )4 JS I 0 I , 1 0 I I 0 2
) 44 28 l& ·) )4 I, 0 0 04 0 ~~ 21 ~& I , l.O 8 " ~ J • •s 2 ' JS ·l 2' 30 0 0 J 0 2~ 14 I I ' l.l 8 24 • s u 21 33 -I 32 0 0 0 0 11 OJ 0 s
~ 4) 30 31 0 23 28 0 0 0 0 28 8 1 07 I & & . I 11 03 10 &
1 34 2 8 )I -~ 30 )4 0 I 0 42 1 I H .02 18 I 4 I . ~ I 0 0 ~ 10 7
8 JS 30 )) • J 30 31 0 I 8 I 0 2 ~ H H 02 2 s ~ 8 12 l& 10 10 e , )4 JO 32 -4 )I 33 0 I , n ~ H I ' ~~ I 4 I ~ 1 32 10 10 ~
10 32 a 2~ ·& I & l& 0 I 8 I I 2 ~ 4 1 IS 2 , ) ~ 12 '. 10 10 10
11 3 ~ 2£ ) 1 -4 2~ )4 0 8 0 I I ~~ " 3& 8 I ~ 1 17 02 II
12 l' )I 31 I 30 0 1 ~ II I ' JS 10 12
I J )) 23 28 -& 27 31 0 1 • 34 3 8 2' && I 5 ' 3 I I 11 l o 10 I)
I C 32 20 2& -7 IS n 0 I I I 2' ,, ~~ 2 , 3 & 1) JS 10 14
I S 30 10 20 ·I ) 18 ., 0 I s 0 0 30 0 & 8 I . 3 s 1' 2 s IS
" ll 22 l1 -s 2 & 18 0 1 s 24 4 0 2~ 13 3& & 3 1 . 3 I 4 02 I 0 I 0 I &
II l& 18 21 -s 2~ l8 c 2 8 01 0 , 8 1 10 ' ~ & l4 1 & II
18 28 12 20 ·II 22 •s 0 I 8 0 0 30 02 2~ ~ 2 3 ~ 2& 18
" )) 21 11 -· 38 0 I 10 )) 3 I ~ 28 10 I~
zo I )) 22 28 -2 21 J1 0 2 II 0 0 2~ ol ~& s 3 ~ 2 1) )) 1 20
21 I 28 20 2 4 -& 9 4 1 0 II 0 0 2~ 20 3& II & 13 & 23 01 1 21
22 3 I I 0 21 -8 8 " 0 I 0 0 0 28 ~~ l & 10 I 10 s 21 3& & l 22
23 2& s I~ • 12 1 ,, 0 10 0 0 2' 04 )4 & 0 1 I 12 32 0 0 23
2• 2 1 -I 10 ·18 2 ss 0 :0 0 0 2' 10 1)1 2 ) ) s 1 0 I 4 ) 2 4
'' 23 -s ' ·1 8 I S& 3 I 0 0 0 ~~ I 0 ~2 I 8 l I & 2' 2S
H 18 ·1 0 • -23 & I 0 10 0 0 12 l2 0 0 2 &
2 7 1 s -12 2 -2 4 s &3 0 10 I I 2~.53 3& 3 & S . I I 0 35 J 2 1
28 I & ~ I 3 -1 3 ' 52 0 1 10 H 1 2 2 8 '8 3& & 0 1 I 14 02 I 0 28
H 22 -I 0 & -19 s ~~ 0 I & I I 2 8 H ~2 I s 2 2 s OS 1 3 2'
JO 10 ·I & -J • ·2 8 ·10 g 0 1 & 0 0 2, " ~4 u n & 2' 0 I JO
3 I 20 -1 s ) -2 1 -) 0 1& D D 2, 41 01 1 ~ 02 , 1 l I
IUft su n fO U l IO IIl NUft8£R or o•1 s I Dill JOI I l fO R IH[ ftOI IH : 101 l l t SUft SUft
%D 4&1> 12% 0 l. 01 28 ; J 01 ...
IYG . IYG IIG DEP IVG OE P O(P ~A(CI PIIIIIOM OEP II(: 1 •lUI I Ll ..... IY & IYG
)1 I; 3 .0 -, 1 " D ' 01 INCH . 12 -D •
MUfti( A Of DAI I SE l lO N 10 DUE SIOM. IC E PEll E IS &alliES I I I 2 4 HOURS AND DAl ES GREAIESI D(PIH ON &ROUND Of IOI I L lO ill ; 1.0 INCH ~
m l ft Uft I(~P ft i Ni ftUft IERP . 2)q J 1 IMU NOERSIORRS 0 PAEC IPIIAIIO N SNOW ICE PEL't~ SNOW, I([ P(LL£1S OR ICE INO Oll(
5 ,00 1 n• I 3r' 1 o• OEP OEP H(IYI fOG ) 4& -8 8 J -8 I & J l •
0 1& , 1 &• -5 ClE AR PIAI LI ClOUD! CLOUD!
i EX I RE ME FOR IHE MONIH -LASI OCCURRENCE I F KOR( I HAN ONE
I IRt.CE AM OU NT
• ALSO ON EAR LI ER OAIEISI
HEAVY FOG: VIS!BILIIT 11 4 MILE OR LESS
BLA NK ENIRI ES CEN OIE KISSI NG OdlA
HOURS OF OPS . ~A T BE REOUf[C 0~ A VARIABLE SCHEDULE
OAIA I N COLS b ANO 12 ·15 ARE BASE D ON 1 OR MORE OBSERVA IIONS
AI 3-HOUR I NIE RVALS RESULI ANI WI NO IS THE VECTOR SU M OF WI NO
SPEEDS AND DI RE CTIONS DIV I DED BY THE NUMBER OF OBSER VAI IO NS
ONE OF I HREE WINO SP EEDS IS GIVEN UNDER FASTE ST "ILE : FASIE SI
MI LE -HIGH ESI RECO RDED SPEED FO R WH ICH A MI LE OF WINO PASSE S
SI AIIO N I OIRE CIION I N CO MPAS S POINIS I . FASTE ST OBS ERVED ONE
"I NU IE WI NO -HIGHESI ONE MIN UIE SOE EO !DIRECTION I N lENS OF
DEGREES ! PEAK GUSI -HIGHEST I NSIA NI ANE OUS WINO S~EEO l A 1
APP EA RS I N IH E DIPECI IO N COLU MN ! ER ROR S WILL BE 'ORR(CI EO
ANO CHANGE S I N SU ""ARY OAI A WILL 8£ AN NOIArEO I N HE ~N NU A L
PUBL! CA I iO N
I CE RT IFY I HAI THI S IS AN OFFICIAL PUBLICAIIO N OF THE NAI IO NA L OC EA NI C AND AIHOS PH(R I C AO"INI STR AIION. AND IS CO "PIL£J FRO "
R(C OROS ON FILE AI I Ht NA IIONA L CLI "A IIC CENTER, ASHEV ILLE, NORIH CAR OLI NA , lBB01
n 0 a a U IIO U L OC EUI C IMO /(UIROMftEIIAL 01 11 U O'jMA IIOU L CLIR AIIC CWER
llftOSPM{RI C I OmiS IR AIIO N UfGRWION S[RI IC£ I SMEYILL£. NORIM CU OLI U
I f4-1ki-
AC II NG OIA(CTOR
NATI ONA L CLI MA TI C C(NIER
172
G> ~
(_ ..
>l-
O w
Zw
·-,
:::.:::
_J
c::x: .......
~o v 1~81 }!.518
t ALH ET HA. HASH
t A l ~([T N A AIRPO q f LO C AL
CL I MATOLOGICAL DATA
W(A SYC CO NTRAC T ft [l 08S T Monthly Summar y
LA! I TVO£ &2° 18. ~ LO NG! TUO[ 1 S0° Of.. ~ [L[V l i!O N 16AOV N01 )45 f£[1
o[AIHER PP(S SNO W ilEAIG[ WI NO S<• CO Y[P t [~PERA tUR[ 0 f OEGRH DAIS IC E OR[CIPII I IIO M I SIIIION SU NSH I N£ SI S£ os•r '"·p H I -~"' r .. s' 1 '0G PEllE TS PI( I SUP[
l ! z ~ ~= 2 H[A YJ fOG OR ~ I I I
0 A~l[S I ~
I .. ~
~ ~~ 1 IHVHOEAS IORft I([ ON ~ '~CH[S "' ~ 0 MIL-[ .;; ~~ --~~I I 0([ P[ll£ IS GROU ND c 0 ~ --~= e; ~"' "' S Hi l l I T Q. ' [l('l -z 0"" -"' "'"" "' "' ~ ~;;;I m z z 0
"" ';!~ ~;;:; "'z "' ~ :> 0 ~"' "' .., f. GL AIE 081ft "'-c c -:> "' -z: .,-"' "" "'"' ~~ --"' ~ ""z <!>0
"' c "" c e> -z -z 1 OUSISTOR ft .. % '" f[[t 5 5 c 0 .... -~~ -::> z"' ~ - -"" c"' ..... --~-"" ~ ~ :> u c """" ~
8 SMIE. Hll( ~w ~~ ~BOY[ :z cz-z 0 M .!: ~ 0..0 ~,. c "' ~~ INCHES -"' "" "' ~ "" c -c -~"" =~ c -~ ~ > 0.. --..... 0 ::>0 -0 = "' "' c =~ %~ q BlOWING SNOW 2 -" s l "' ;; ~ = "' o..-.,._ z:-0
1 _{_ _) 4 ~ 0 ]A 78 8 'l 10 11 1-2 13 14 11 18 1'l .iO J 1 22
I ) 1 1, 1S 1 22 •o 0 . s
I} I 2 1 1• 1'l Ia 1 8 1 , r. 1b 0 I I 0 I
1 ) 3 I I 2• I 4 1 0 I • • 01 • • 28 10 1
) 11 1 II ·'l II S I 0 1 s 0 0 18 If. OS 1 a l 1 8 1: q l
4 22 8 15 -1 11 so 0 l 4 r I 18 ao 3J 4 • 4 )) 1 c 4
s 13 4 14 . 8 11 S I 0 l 14 03 l1'l2 •oo 0 0 s 0 I 10 9 ;
r. 13 ·8 ) . , 8 0 o2 0 I 14 0 ? 1'l 5 I ~ 1 1 4 1 4 s 0 4 2 J b
1 11 ·II 2 ·l 'l . r. f.) 0 14 0 0 ~~ f.l ~2 3.8 4 2 1) JS 0 1 7
8 21 14 18 ·l IS 4] 0 l l l 2'l 4 4 ~q 28 ~1 I 0 q • •• Jr. 10 8
q 2b 18 22 2 4 ) 0 I II 0 0 1 02 10 q
1 0 11 18 23 J 17 42 0 1 17 Of. I 82')7)0) 8 s 8 q II 01 10 10
II 30 2S 28 q 2!. Jl 0 l • I 'l 20 l 8 ~q 18 ~2 1 0 I J I f. )b 10 II
I 2 )) 11 JO 11 2• lS 0 20 02 1 2'l 48 ~2 , • 10 2 II 03 10 10 12
I 3 35 2 2 ~~ II 11 )b 0 20 0 3 8~'l l o34 s 3 s q , 0 4 10 , 13
" 3J q 2 I l 20 u 0 I 21 0 I I 32~28~1 4 4 • 3 I I 0 8 14
I 5 IS -· • ·II 1 ;q 0 22 0 o 2, '' ~s 2 I ) • • Jb 0 1 s
I •b 1!. ·S • ·II sq 0 22 0 0 I JS 0 1f.
17 2 I 3 12 . s 2 Sl 0 2 I 0 0 2'l 2S 3& a 2 8 8 lb 02 0 II
I~ r. • 2 I ·8 • ·14 . I b IJ 0 21 0 0 ~:' 41 ~· 3 r. 3 1 I 2 3C 0 18
I q II ·2S ·I ·13 · 2 I 11 0 21 0 0 q .. ~) s 0 s ) 14 02 I
I
• I q
2~ }I 10 1b 0 8 ., 0 1 21 03 , ~q 8 1 I 12 2 12 q II Jb I 0 1 0 20
21 2S 21 23 B 11 42 0 I 22 0 I ; 2'l l 'l JS I 4 1 ~ 14 0 I :o 10 21
22 3 I 23 21 12 I 8 38 0 22 0 0 H .. 1 q 8 I 0 . 2 I b 0 I ; 0 22
23 )4 2'l 32 18 JJ 0 22 r r 1 0 l& I 0 I 23
2 4 )) 28 )3 I I 'l 21 32 0 21 r r q 51 34 1 I 1 s '2 l& ' 24
25 )4 I& 25 II 20 •o 0 21 0 0 H 07 JS b.'l I b 11 02 '0 25
2& JO I& 23 10 l b 42 o ' 20 0 0 8 q ~ 3!. I 0 J 10 s 11 lS • ) 2!.
2 1 28 1 1 8 s 11 41 0 20 0 0 28 'lS 35 s 5 • 3 10 32 9 s 21
2 8 10 0 s ·8 I f.O 0 20 0 0 18 14 OS ) q 4 0 • OJ I 3 28
2'l 23 8 I & 4 11 4') 0 20 S I 1 4 28 &S OS q , s OS I 0 2'l
30 20 8 I 4 2 51 0 28 1S ) I s I q I 0 30
SU ft SU" fOUL lOUt NU"BEA Of OilS IO IIL IO !Al fOR tH E "OMT H: IOIIL : s~• 1 sv ~
1 4 80 l U I 0 I 70 21.0 17 3S "' 112
I YG. AVG AY6 . OEP AYG. OEP . OEP PRECIPIT~liO N O[P I I[: 2& ll fS\II l ( U11• IY G. I YG .
24 I , l b . ·0. I b 0 ) .01 INCH 13 ·O.O 'l 7.1
MUft8E R Of OATS SE ASON 10 OAIE SNOW, IC E PELLHS GR[IT [ST I N 11 HOU RS UO QIT[S GREITEST DEP TH ON GROU ND or I Dill fOUl ) 1.0 INCH 1
"All ft Vft IE"P . "I NI"V" IE "P J8J4 I IHUNO[RSIO N"S 0 PRECIPJIITIO N s~ow ICE PELL£ IS SNOW , ICE PELLE IS OR ICE ~N O OIIE
; 'lO• { J]O l )20 l o• OEP OEP H[AYT fO G 0 &1 l'l· 30 B. 1 lq-JO l' JO
0 13 30 1 280 ·S CL EIR 8 Pl Ai t r CLOUOT 1 ClOUOI 20
~ EXTRE ME FOR THE MO N'H · LAST OCCURRENCE IF MORE TH AN ONE .
I tRACE AMOU Nt .
• ALSO ON EARLI ER OAtE ISI
HEA VY FOG: VI SI BILITY 1/4 MI LE OR LES S.
BL AN K ENTRIES OEN OTE ~ISS IN G DATA
~OURS OF OPS . ~AY BE REDUCED ON A VARIABLE SCH EDULE
DATA I N CO LS b AN D 12-IS ARE BASED ON 1 OR MORE O BSE ~VAIIO NS
AT )-HOUR I NtE RVAL S . RESU LtANt WI NO IS THE VEC tO R SU ~ OF WI NO
SPE EDS AND DIR ECT I ONS OI VIO EO 8T tHE NU~BE R OF OBSEQYA I IO NS
ONE OF t HR EE WI NO SPEE DS IS GIVE N UNDER HSIESI MIL(: ;ASI ES I
MILE • HIGH ESt RECO RDED SPEED FOR WHI CH A MI L£ Of WI NO P ~SS E S
StATION I DIR ECTIO N I N COMPA SS POI NTS I . FASTEST OBSE 'VEO ONE
MI NUtE WI NO • HI GHE ST ONE MI NUTE SPEE D IO IR ECIION I N TE NS OF
OEGRE ESJ. PEAK GUSI • HIGHESt I NST AN tA NE OUS WIN O SPEED lA t
APPE AR S I N THE DIR ECTIO N COLU MN! ERRORS WILL BE :uRREC EO
ANO CH ANGES I N SU MMA RY DAt A Will BE ~NNOtAIEO I N lH[ .NNUAL
PUBll CA I I 011
I CERTIFY TH AT THIS IS AN OFFICIAL PUBL IC AT IO N OF tH E NA TION AL OC EANI C AND AT KOSP HERI C AD~IN I STR A TIO N , AND IS CC.IP ILEO FROK
RE CO RDS ON F IL E AI IH[ NATIO NA L CLI ~A TIC CEN TER, AS HEV ILL E, NO RT H CAROLINA, 288 01 .
I ~:JkJ-
ACTJN(j DI RECTOR
NA T IO ~AL CLI KATIC CENTE R
173
l
(~-~ c::x::: . z
U f-
Ww ow
~
_J
c::x:::
f-
I
I
I
DEt 1~8 2
illl[E'~I . l l i SU
'U <H 'HI ~IRP ORI LOCAL
CLIMATOLOGICAL DATA
W[l SYC COHIR l CI "[I 0 9ST Mon t hly Summary
La!IIU O£ !.2° 19. N lOMGIIUO[ 1S0 ° 0!.' W [l[Yl l iO M IGROUNOI HS f [£1
DE&RH OAT S W[AI H[R IIP!S SNOW "£1"[ WI ND Sll COYER I E"PERAI URE °F a•sr >s'r IC E ~R[CI P I UI IOM I II II OM I " P H I s•J NSH r ~£ l l(NIH S I I fO G P[ll[ll PR[II UI[
I I z ~ a z 1 H[lll fO G OR ~ II ~ • A_5_n_s ~ ~~ ~~ l IHURO[R IIO Rft I C[ ON ,. ::; II (M[I "' :.: .. "I ' iD -4 IC£ P[LL[IS GROU ND . .. "' ---:;;.= ~ :::; ~"' "' I Hi ll II [L[Y - -
z "'"' -... ~~ -2 :; z z ... ..
"' "' ~ :>"' ~-"' !. 6LAI£ 0 8A ft ~~ .... -Jib .. .. :;; -"' -a. ~"' "'z ::> ::> ~ ;;;z ... -~"' ~ ... -.,. - -;:; ~ z "'"" .....
"' "'
_ ..
-z -z I OUIISI ORn .. % i ~ F[[l ~ ~ : .. -~~ -:> --c"' "'" .;: ~ "' u c "'"' """' ~ --:;;; g~ 8 SnOl [. Hl l[ I NCH[ I ABO VE .. =-z .. ---Q. c> ~,. .... -,. c c ~ ... ~=
... _ . -~-= ~ ~ ... ... -~ ~"' :> c> -e> c
c> "' . C> ~ -.:~ X <D .... <D , BlOWIM G SNOW "'-" s l "' c "' C> ... ---;; -;;-C>
I 'l 3 4 s lA 78 8 q !.Q. II 12 13 14 IS l b 17 18 lq 22
I I 0 -4 ) . , 0 !.2 0 I 2 ' 0 4 q ~, 11 I • 4 4 0 I I 0 I
2 8 ·1, -·· ·11 ·II I I 0 2, 0 0 ~, I 3 1 2 9 2 ., I. 02 0 2
) B ·II ·S . 1!. ·II 10 J 2' 0 0 i?' 0 !. I 4 2 s ' I 2 01 0 0 J • ,, ·II ·I • 12 7 •• 0 2' 0 0 i?' C) I I 2 0 12 5 20 )!. , • 4
I 28 1!. 22 \1 I) 4) 0 2 ' I I H 1 4 I 11 s I I 8 20 OJ I 0 • 0 I
' 1 I 27 2' 1, I 8 H 0 28 0 0 ~, , I q 8 , , \4 lo I l • I 36 2' )) 23 32 0 21 11 I I 12 )!. I 0 I
8 H 31 )) 23 ll )2 0 I 21 ,, ) l j?UO 1 l l I ) " I S I 0 8
q )) II 1C, Is 21 •o 0 26 02 8 i?' 8 2 4 3 s 8 ' I. Is q ,
I 0 11 4 11 I 4 S 4 0 2S 0 0 J2 ' % I s 0 ' 0 8 0) I 3 10
11 29
2f I 14 I I I I I 0 2S 0 0~8 .,235 8 ., , 2 11 )4 I 0 • \1
12 32 2, 20 21 )!. 0 24 0 ol28 17 3o I 0 2 10 8 l o )!. I 0 , I 2
I ) 32 21 21 18 20 )8 0 2 4 0 op so1 ~1 , . , • l o H 10 I)
14 )4 2 I 28 1, ll 0 24 0 0 13 0 2 q I 4
I I 1 I 20 28 I , 21 )7 0 24 0 0 p 8 I I ~I I , 8 2 " 0 2 I 0 I 5
I o 1) 22 29 20 21 )71 0 24 0 0 2o !.4 ~2 10 • 10 , 16 0 3 , " 1 7 )I II ll I I l 21 " 0 24 I I H .0 4 35 • 3 o .5 I 2 33 I 0 1 II
I 8 I 2 l . ' 4 17 0 24 0 o IH 20 ~4 4 I 4 2 ' 0 4 ' 4 I 8
I , H l '5 , so 0 24 0 o IH oo 3o q a 10 2 23 02 10 I " 20 28 10 1 ~ I) 4!. 0 24 0 ot2 q o o ~1 , 3 , ; lo 01 1 20
2 I I 0 ·) 4
· 121-' I
• I 0 2 4 0 0 • 0 ) 2 2 I
22 ) • 10 -4 ,, 0 ,.1 0 o j?8 as I ) 8 s ) I 3l 0 22
2l Is 2 , 1 . 2 " 0 2• 0 0 ~8 q ) ~I , 8 10 .2 IS lb 2 23
24 22 I 2 II , , 48 0 2 4 0 0 ~, o q 35 I 1 I 8 I 2 01 I I 2 4
2S 2 ) I 2 I 8 I 0 I 0 41 0 24 0 0 ~, )1 I 1 0 I l I 4 01 10 8 21
2!. l) 22 28 20 I. )I 0 2 4 0 0 i?' )q 2 13 1 1 ).4 II 01 10 10 2!.
21 )4 30 32 24 2, 33 0 I 2• )0 2 S H 4 8 I I 4 6 .3 16 0 I I 0 21
28 38 32 31 27 30 0 21 !.4 8 I 2 0 2 I 0 28
" 42 32 37 • 2' )4 28 0 2 4 0 4 I j?q <1 ~ 1 1 , 4 . 2 13 " 10 " 30 11 2!. )1 23 " )C 0 2 3 I I j?q IS ~~ 2 . 2 4 2 , 0 1 10 30
l l 31 21 28 20 21 37 0 2 3 0 0 2q .52 35 I 0 I ~ 10 )) 8 10 )I
sun su n IOU l !O lll NUn8[R Of Olll fO U l IO IIL fO R IH[ nONIH : IO lll t su n sun
1'8 384 14" 0 I 80 I 0 .) .1.3 Q1_ "' 2 3!.
IV G I YG IYG OEP IYG O[P O£P PI[CIPI fi liON O[P II[: " •tstlt l( .. Ill I~G I~G .
5 I "' 10 I ·317 0 ) .01 INCH . 7 o o q I •
~U"I[R or 0111 I [I IOM 10 OIIE SNOW, IC[ PEl lE II GRE AI ESI I N 24 HOURS IM O Di lES &RE IIESI OEPIH ON GRO UND Of IO IIl IO IIl ) 1 0 II CH 3
,U i nU" l[nP "IMinon l(nP 'll'll I IHUNOERSIOR ftS 0 PR[C I P I I Al l ON SMOU IC £ PEll E IS SNOW. ICE P[ll£1S OR IC [ ANO OAf[
; ~o· l 32• l ]2• 1 o• OEP OEP H[nr r o& 0 8 1 2 -8 • 4 1 -a )0 I
0 20 )I I ·JI ·S (l(IR • PU Il l CLOUOI • CL OUO I 2 I
• EX TREIIE r OR.THE HONIH • LAST OCCU RRE NCE IF HORE !H AN ONE.
I TRA CE AHOU NI
• ALSO ON EAR LIER OAT£15 1
~E A V T F()G: VI SI BILITY 11 4 HIL E OR ~£55
BL ANK [~T RIE S DENOTE III SSI NG DATA
~OURS Of OPS KAY BE R£0UCED ON A VAR IABLE SCHEDULE
DATA I N COLS (, AN D 12 ·1 5 AR[ BASE D ON 7 OR II ORE OBSERVATIO NS
AI )·HOUR I NTERVA LS RE SULT AN T WI NO I S !HE VE CTOR SU II OF WI NO
SPEED S AND DIR ECTIO NS OI YIO EO BY THE NU118ER o r OBSERVA TIO NS
ONE OF THR EE WINO SPE EDS IS GI VEN UNDER FAST EST ti l L(: FAS TES T
II ILE • HIGH ES T RECORDE D SPEED FOR WH I CH A KILE o r WIN O PAS ~£5
ST ATIO N IOI REC TIO N I N CO IIP ASS POI NT S ! FAS TEST 0 8SE RYE O ONE
HI NU TE WI NO· HIG HE ST ONE II I NUT E SPEE D !D IRE CTIO N I N lE NS OF
DEG REE S! PEAk GUS T • HI GHE S T INS I ANIA N(OUS WIN O SPEE D f A I
APP EAR S I N THE DI RECT I ON CO LUII NI ER ROR S WI LL BE COR~ECI £0
AND CHANGES I N SU IIII ART DATA wiLL BE AN NOT AI£0 I N !HE ANN UAL
PUBLIC A I IO N
I CERflrY THA T THIS IS AN OFF IC IAL PU BL I CATIO N or !HE NA TIO NA L OCE AN IC AND AT"OSP HER IC AO"IN IST RAI IO N, AN D I S CO"PI LE D rRO"
RECORDS ON r rLE AI THE NAT IO NA L CLI KA II C CENTER, ASHEV I LLE . NORTH CAROLI NA, 2880 1 .
1"4~ n 0 a a U II OIA L OC[U IC U O j ENY IAOlft[IIA L OAIA UO /U II OUL Clf fti!IC C£M l[A
II NOSPH [RIC I Oft i MI SIRAI IO I I Mr OA ftAI IO N SE RY f(( /ASHEVIL LE. IORIH CA ROLI U
ACTIN G DI RECTOR
NA TIO NA L CLI "A IIC C£N I£R
174
I
.u 'Hl
-~l(((!NA, l l ~S O
'l l C (!I ~A ~J-0001 LOCAL
CLIMATOLOGICAL DATA
o [A SvC CO NIR l(l ~[! uSSr Monthly Summary
c
0
I
2
)
4
5
Ll lllUO£ o2° 18 • N lO NGilUO( 1';0° 0 ~. W
IE HPER AIURE 0 f
ll 21 Jo 22 23 3S o 23 o o ~ 2• 1 s a s ~ 12 o2l 1 ·Q I ~
~; ~~ ~~ ~~ ~~ l~ ~ I g 1~ J ~ 2~ ~~ l~ ; ; ~ 1 :~ ~: 1 ·~, 1
1
1
10 ~. n 'I ·o 2 ss o 2~ o o r2 02 1 • •
10 .;0 C ·B ·10 ~S 0 2b 0 0 2~ 10 01 ! 3 1 b '4 OJ I ? S
I
I
~
I
8
~
10
11
12
13
I L
IS
:~ :;~ -:~ :;~I ::~ :; ~ ~~ o: ; ~: ~; ~~ ~ ~ l ~ ; ~: I ~ I 'I ~
·2 ·30 • ·lb •l ·24 ·30 81 0 2> 0 0 2~ 18 ~2 ) I ) s I I 03 ~ I 0 8
~ ::~ :; :::I :~: ~~ ~ ~~ ~ ~ ~~ ~: ~~ 1~ ~ 1~ ~ ;: ~: ~ I 0 -5 I 1 ~ .; ~ -~ ·12 ~~ ~ ~~ ~ ~ ~8 ~8 ~) ~ 4 ~ s ~: ~~ I ~ I:; I
~ ·I 3 b · 1o ~2 0 25 0 0 ~~ I ~ ~2 I 0 ~ 11 C II 02 ' I )
l o
17
18
I ~
20
21
22
23
24
25
20
27
28
" JO
)I
~~ -:~ 2~ ;~·I; ~~ ~ ~~ ~ ~~~::~: ~~ ~~ :: ~~ I~ I ~ :~1
34 25 lO 21 20 35 011 25 12 2l28 8o lo s2 1213 o• ·o 10 ••
25 11 18 1 · 1 o ~ 1 21 01 1 2 8 8• lb 1 o 1 2 • J ~ 1 •o 11
3o 13 25 l o 40 0 28 I 1 l 'i 0 3 10 '8 [
JS 20 29 18 23 37 0 I 29 10 4 4 ~ 13 11 2 2 b o I ) IS 10 I ~
H 21 24 ,. II 41 0 32 0 0 ~ Sl 1 ~ I ~ s 14 02 q 20 I
2: .: 1 ~ ·10 ~ ~~ ~ l~ ~ ~ 2: ~~ o~ ~ ~ ~ ~ ~~ n 1. ~
1
~ g I
II ·II 0 ·10 1 oS 0 30 0 0 ~ 21 05 2 0 2 2 o 21 0 0 2)
25 ·1 4 • -s • s~ o 10 o o ~ o• 01 4 a s ~ 11 ol • 2•
ts . ~ 22 11 , l o 2q o o 11 H • I 2>
)I 25 28 II 15 Jl 0 2~ 0 0 8 So 01 II 4 II 9 lo 02 10 2o l
2q 14 22 II l o ll 0 2~ 0 0 8 15 JS 4 l 4 ~ 1l 03 q 21
2 ~ 1 18 7 l b t7 0 2~ 0 0 2~ II H 4 I 4 S q 01 o o 29
2 ~ • II 5 10 48 0 2 ~ D 0 28 ~) 35 s I 5 ) 10 33 0 I 0 2 ~
2 ~ C 17
2
5
1
I I 48 0 2q 0 0 28%01 I I S II 7 l o 01 ~ o 30
38 • 21 33 • 21 32 o 2~ o o 2~ n l > b s 1 s 14 02 ~ 11
SU~ SUft I DIAl ;o u t NUftB ER Of DAI S I DI Al IOI Al fO R IH E ft ONIH' {I O) IO lll : SU• ;.~
[j:~v1~o ~~~=~~~~l:~j=~·~v[o ~+Jc~EP[JJ•~v[o ~=~~;E~~~~ +::§loE~P 0~hP··"'RE"c0"11 P;;l1 ."uc:o", '"r o:o• --+--;;;oEi:..!!.~-+:::1::'=:::q +===+=1'==1'==-ln:a~r7-r ,l...f1 f-, _t-;.,;;-";-;:"~";-1 ,;::. 1 ~;G AYG
' 0 . J 12 s • ; -10) 0 • s ·0 ~~ ' '
SE ASON IO OI H I MOW , ICE P£lLEIS GA{AIES I I ~ l C HOURS lNO o•l(S GR{Al{Sl Q{PlH ON GROU ND ~~ IO !Al !D ill j I 0 INCH 4
1---"'•a"'J""I •"'u"'n ...,.I"'E n"'P-...--::"-:-:1 N"'J •"'u"'n""'l"'E ~""t'.----t...;&-;8~1 ~4 +..!.~O~..;l,:HU:,M:,OE,.[-AS"I"'OR;;:ft~I ----;O:-+-""oA""£~( J"'P"'JT""A""'li"'O:::-N -r-;I"'Mo"'w--;-J~C{"'""'P £"'ll"'£"'ll,---l I NOW • I ([ PEllE II OR I ([ lMO OAT {
~UftB ER Of ~IT S
; ~Go i 32o I l2o I oo O£P , D{P H(lll FOG 0 I~ l o ·II 4 4 I ~ l l
0 24 11 'l ·140 0 (L {AA I PU l l T ClO UO T 5 CL OUO T 14
• (X I R[II[ fOR II'[ MONTH · l .l ST OCCUR REN CE IF MORE l H~N ONE
1 TRACE AHOUN T
OAT A IN COLS b AN D 12-IS ARE BASE D ON 7 OR HORE OBSER VATI ONS
AI )·HOU R I NTERVALS RES Ul'ANl WINO IS IH E VEC 'OR SU M OF WI NO
SPEEDS AND DIRECTIO NS OIVIOEO BY IHE NUHBER Of O BSE~V A IION S
ON[ OF THREE WINO SPEEDS IS GIV EN UN O [~ FASIESI HIL £' FAS IES I
HllE · HIG HEST P.EC OROEO SPEE D fOR WHI CH A MIL( or WINO PA SSES
STATIO N I OIRE CTION IN CO IIPA SS POI NI SI FAS TEST OBSERVED ONE
HIN UIE ~I N O · HIGHE ST ONE ~!NUl [ SPEED I OIR[CIIO N I N l EN S OF
• ~LSD ON E~R LI [R DATE t SI
~[AV T FOG: VISI BILITY l/4 ~llE a R LESS
BLA NK ENTRIES OENOIE MISSI NG OR UNREP ORTED DATA
HO URS OF OPS MA Y BE REOU CEO ON A VARIAB LE SCHEDULE
DEGREES! P EA~ GUS! -HIGH EST I NSI AN I ANE OUS WINO SPEED l A
APPEARS IN IH[ DIRECTIO N COLU HN I E~R OR S ~IlL BE CO GREC I(Q
A~D CH AN GES I ~ SU HIIAR T OAIA WilL BE ANN01Al[0 I ~ IH( ANN UAl oueuo r IO N
I CERT IFY IHAI !H IS IS AN OFf iCI AL PU BL IC ATI ON or IH E NATIONAL OC EANI C AND AIIIOSPHER IC AOIIINISIRAIIO N, AND IS COIIP IL ED FROII
RECORDS ON FILE AI TH E NA TIO NAL CLI IIA IIC DATA CE NTER, ASH EVI LL E, NORTH CAROLINA, 28801
noaa MA IIOIIAl
OC EANIC ANO
<l!OQ?JOIC AOIIIMI II RIJI(IIO
MAII OIIAl
(MY I-Nfa!. II!ELll l(, Oltl
AN0 IWOI!I!I IIOIO I(RYICC
"""-CLIMIIC 0111 t(MI[R
&IH(YILL ( !01111 CMQ.INA
/~Ned
ACTING DIRECTOR
NATIONAL CI LIIAI IC DATA CENTER
175
J
FEB 1,8 3
fAl l EEJ NA , HASU
f A L l ((J ~A AI RP ORJ LOCAL
CLIMATOLOGICAL DATA
W(A SYC CONJR ACI "(J OSS! Monthly Summary
lAI !1~0( ~2° 18' N lO N&I!UO£ I S0° 0 ~. W (l(U !ION I&ROUl OI ]4S f £(1 II~( lO NE AL'SUH J 8AH 1 2 ~52 8
OE&R(( OU S ~£AlMER t !PES 1 s1~oc" II(U&~J WI NO I O CO Y£0 I
I
IE "P(RA l URE °F BASE ~s•r PRECIPIIUION Si ll 101 I " p H I SU NSH I N( I T£'CIWi1 '
1 ro& IPEll£11 PIEIIU R(
,. -~~ 1 M(AII 10& OR ~ I I 0 r:s
1
t<yr :
==' I ! ~ ~~ l I.<U NO[RSIOR " ICE ON . -:: IOICIIE S "' 0 -.... -~ :;;1 I =I ~ :;:;~ :;;: I ICE PEU£11 &ROU NO c 0 "' ~ . ~ ~a: S MAIL II ElEY z -.. OV'I -\.:1
"'"' -::11 "' ,. .. 0 0 ---· a: a: ~ .e ~ ~-"' ... L GL Al£ 0 81" ~;; ... -lSr. • • ... -"' -Q. "-'"""'::; Zl ,. ::> ..,-"'"' ,. .,. ----"' -... z V'l z ~Q a: a: "' c <> -,. -,. 1 OUSIIJOR " m" . " FE£1 ~ ~ c 0 ..... -~ ~ -,. --... --"' c a: "'~ 8 S"Or(. MA lE INC HES ,. ~ ABOVE ::> "' ... ::> vc "'"' .. a: ~ -.. ~~ ... 2 c "' C>"' -X C> • .,. . ... "' z a:-.. 0 -.. c -~ :a ... ~ C> ... ~ BlOW ~NG SNOW c -. -" s l
... ;: e; ;; -... C> ::> C> -C> c
0 a: a: c C> ~ ""' --;; '"~o-.,. -"' ;; ;a a.-vo -a:-0
I 2 ) 4 s & 1l , II 1-2 , ) , 4 1& 17 ~~ 20 'I 22
I •2 28 J S I 21 10 0 28 0 0 14 02 , I ~ I 2 l7 21 )0 18 2• JS 0 28 0 0 , 20 01 ~ 2 ·1 I IS OS '0 I J l S 21 )I I , 2l ]4 0 2 8 0 0 , 20 1 ~ I ~ 8 15 OS ,
4 3~ 2 2 2' 17 21 JL 0 21 0 0 , 0 4 I 8 ~ 8 L II 02 10 I 0 s H 27 J] 20 2!. 32 0 21 ~~ 8 8 78 1 • I • 0 12 01 10 , i I L 32 a 2, 1 L 23 H 0 -21 OS 1 ] 8 70 0 4 I I 5 s 12 02 10 ,
I 32 20 ~~ l l IS l' 0 1 H 11 2 J 28 ,s 01 I J L • 17 ,
8 H I I I I S I 0 1 JO OJ 1 2 L I a • , 22 ·I a ·L J Sl 0 )1 0 0 , I L o 4 J 8 • 0 7 02 0 I '~ I 10 • ·IS ·L ·20 ·I I il 0 )I 0 0 , ,. 02 I • I • s 02 • I 11 8 . 1, -it • 20 • 1 L II 0 )I 0 0 28 ,2 Jo , J 2 5 o) I 2 I I Il l 12 :; ·12 . , I • 2 J I -1 a ,. 0 )I 0 0 ~a '0 JJ 1 , 5 0 1 I 0 12
1 ) 12 ·21 . L ·10 ·1) 7 1 0 )I 0 0 ~, H ~~ ] 1 J , 7 l2 0 2
'J I 11 20 ·10 5 ·I 0 1 &0 ~ .I 0 0 ~, ., JS s 0 s s , 0 1 J
I
14
IS 2 S • 12 1 ·8 sa 0 JO 0 0 I l 02 I 1 s
1 & 11 tl 1, ' • •• Q JO 0 0 ~, I , ~I , ~ , • 11 OJ 0 1& i
11 17 3 IS J 1 0 J JO 0 0 ~8 81 ~I , b , , 1 & OJ 0 17 1
18 n a I 5 0 5 :;o 0 1 H t 1 ) 1 ~8 a& ~I 10 5 I 0 , I S OJ I 0 I I 13 1
I, 12 10 21 b I b u 0 12 r r ~8 q] JL a L I 3 , I L 02 )
I • I q
20 JS 10 2l a I 'I l l J I )I r J '8 a~ Jo I 1 1 > 1 L 01 ~ ~ 10 I
2' I )I IS )I 1 s 1/ )I J )1 ~ 0 ~, 11 ~I I 'I a 1 '. 01 I 0 1' I
22 1 4 1 I I 2 9 . 1 31 0 JO 0 0 12 02 1 I I 22 1 21 1 )I I) IS 'I II •o 0 JO 0 0 ~9 b1 ~I i I , s II OJ 1 21
2 4 JS 18 11 II 24 )8 ' I 2'1 0 4 a ~8 '10 1 4 5 • a ll OJ I 0
I
2 4 I
2S l& 1 I q J 12 •• 0 JO 0 o a 'l 2 4 I 4 J 12 02 I J 25 I
2L J l 18 2 8 12 I q ]I 0 JO 0 0 8 H )!, 8 , q I I S 02 10 '! 2o
11 JS I) 2 1 a ,. 4 1 ~ I 2, 0 0 , l o ' • 1 • 2 12 02 10 '0 11
18 32 12 21 & 25 n 2, 0'1 I I , 4 1 32 1 'I 1 ] I JJ 10
I
28
'iU" SJ N I IO !Al IOIAl NUNBER or o•t s TO TAl IO IAl fOR IN[ N~N I M : IO II l : iU , i~" aoa U8 I 1 JOO 0 4L 11 0 11 OJ '" a ;
'VG ,,, l .G '£~ "' JEP ~EP ~REt IP I I &II ON QfP AI£' I L • 'I t\ lilt ... ,. "' "' '8 ' ~ 1 '8 ; • 1 . '2 1 . 01 I ~CM I ·' 0 I • J
•u•BIR or ou s SE ASO N 10 OAT £ S~Ow . IC E PEllEIS GA(Af(SI I N 11 HOURS AO O OAT!I GREA I(SI OEPIM 0~ GROU ND 11 I IO I&l IOI &l ; I 0 IN(M s
"II I 'IU" II 1P ~l"ti J!IJ " I[•P q 1/4 J IMU NO[ASIOA"S 0 PA[CIPI !A I IO N SNOW IC £ PHi l IS SNOW. IC E PEllUS OR It( >NO 011£ I
10° J:• 1~(,1 , u• O[P DIP H[&V 1 l OG 0 12 18 ) ~ 13 12 I'!•
•) 1 ~ .8 I 2l 0 Cl EAR 11 OAklll ClO UD ! 2 ClOUD ! IS
'[t!R["[ f OR !"[ ,ONJM ·L AST Q((U RR(~(( If "ORE !H AN ONE
i IR A(( ~,OU N l
• ALSO ON EARLIE ~ DATE I$1
H[Ait fOG : l l'iiBIL I; t 11 4 "llE OR l ES S
eL:Nr E ~IR I(S GENOI[ M I~S!~G OR UNR(P0RI(0 ~AlA
"OURS or QPS ~~~ iE ?[OUCEO 0, a IARIABLE StHEOULE
OAI A I N COLS b AND 12·1 S ARE BASED ON I OR "OR E O B S[~Y~II ON S
Al ]·~OUR I NI(RYALS RESUL I~Nf ~I N D :s 1M( V(CIOR SU M J F •lllO
SPEED S AND OI RECIIO NS 01YIOEO BY !H( NU"BER o r OBS ERVATIONS
ON( OF IH R[[ WI NO SPEEOS I~ GI VEN UNDER r~SI (S I "llE r •S f(S!
MILE • HI GHES t RECOHOEO SP EED FO R WHI CH ~ "I L[ OF WI NO P ~SSES
S IAl iO N IO IRE CIION I ~ CO "PASS POI NISI fiSl[SJ OBSE RvED ONE
"INUJ[_WI NO • HIGMESI ON£ "I NUl[ SPEE D IOIR EC II ON I ~ TENS o r
OEGREESI P(AK GUST • HIGH (SJ I NSIANJANEOUS WINO S~EEO i J •
~PP[ARS I N I H( OI RE CIIO N (OlU~N I ERRORS WILL aE CJ RR(CiEO
a NQ CHANGES I N iU"MARl 0 4 14 ~Ill BE JNN OI AJ (O I N IH [ J NN UAl
PIIBLI C A I I ON
I C(R IIfT I HAI !HIS IS AN O FF ICI ~l PUBLICAIION OF IH( NA IIONAl OC EANI C AHO AlftOSPH(RI C AO ft i NISTR AI I ON. ANO IS CO ftPILE~ FRO ft
R(CO AOS QN FI LE AI TH E ~A II O ~Al CLI "A'I C "Al A CE NI[R, A SHE ~Ill E. NORT H CAROLI NA , l8801
noaa -.A fiOtUl
Q((,.IC lf10
IIIII)SI'1<(0 1t 401!1 ~1\111 '1011
U tiOIIAl
[Jn i -..MI &l ~II(Ltlt £. CIU
•oo 1'"'00'"11 00 ~~¥tct
176
.. II_
CliMII( CA ll ((.1(1
&S;€'r llt( IIO'IN CI~IM
/ ~1-/od-
A(II NG OIREC IO R
NA I IO NA L C l l ~A f i C OAIA CE ~IE R
Ul 1,83
I AL<[("~~. ~l ~S O
I ALCH'U ~IRPORI LOCAL
CLIMATOLOGICAL DATA
W(A SVC COMIR ACI ~[I OBSI Monthly Summary
[l (V II IC~ r t;R OU~DI )45 1£[1
I
2
) •
' r.
1
9
l
I 10
I I
12
:3
I C
I';
1& I
11
18
~~
20 I 21
22 1 23
2 4 I
25
2r.
21
28 .,
i~ i
)]
H
2io
20
)I
)I
Jr.
37
)~ n
8
·S
·10 •
8 I,
IS s -s
I
-2
I 8
21
I J
l2
21
1 q ,
I
r.
~; I
::I
n
2:
2S
22 s
•r.
~I
20
:2
B•
II
2S
2S
21
l r.
O£,R(( Ol!S
9AS£ •s•r
\[~S O , 10 OAI£ SNOW. I([ >[U[1S I IO IAl lOl l [ ; 1 O I,CII O ~R[li[S I IM !' ·~uRS INO :> [; ~R[A I[S I O[PIM OM (RO U,) ~~
r -:.-;-:,:-;1 :-,::,-;,;;[~•o;--"'T"-:-. ;:-:,-;:,.;::-, -:,-:,..,., .:;,;--+;::, 1l'l8i'-l1+="i,H-~; H:;iu;::•O~(,;.R~; I~Q;;,Q~;<S--:;-~ -+-;,;:;.~[ t"t"~;;l ,-;-1;;1 1-:;~~::--;-1 ""':"''"'~·---,i"'('£ "":"'"; .-."'"; "Is-~ S MOW , I ([ 'Hl [ IS CR I C! ,,0 OA If I
l O ;.
-•1 J 0 Cl(IR PU ll r flOU Or ClOU~·
• E•I"E ~E 'OR I ~E ~O tllw • t l Si ',C (~RR('l ([ I f •oq( ~~~14 O'lE -·acE ;~ouu 1
• ;LSO ~N E •~L I~R O l lEr~•
t-~.lVT :,:r,: li S i8 It!•r I : ""!.: ~~ :..~SS
~.;~< f ~l>;<~ J E•Otf •;:::~~ .~ ~~PEOQQ I[O CAl;
··'~ ,;) ~: :': •;• :E ~: •• :::: _', " .~P 1 '9Li: ~C ri£0UI ::
QAIA i N (0LS b ;~0 1~-1< lRE BASED ON 1 ,JR 110 R( ~:;[~V H iC '.)
AI J-~.J L,4 :~l£q ,:,, ;;E'.•LilNI o i~O !S I H[ vE Cl:~ !_, J < ~;•,)
SPEEDS ~NO OIQELIIO NS ::.t OED 3T IHE •unSE R Of ~BS~=IAII C•S
d ~( C' ;"REE w t ~O 5 PEE~S ;s GIVEN UNO(R raSIESI MI L£: fA ST !il
MI L[ • •lGHESI 0 [CO ROE O i~(E O FO R WH I(" l MILE O• o l \0 P ~SS E'i
Sl l l!l• ']IP[CI!~~ t • :•PAS 5 PQl ,ISl •ASIESI C5i E•v(O :-.E
~!~hit .!NO • •IG HES I ;,f ~!NUl[ ~PEED !Ol qECII)tl i , IE 'l$ :·
O E ~RE't-i i ;:p , ~US ! • .;.;.;ESI llrSIANI AN[OUS .;iN ,) !'EED , •.
4PPp ;;~ !k ;-, )!qu·::• ,J.UMNI (Q POR) ~llL :; ::~P(C'£:
:NO c .:-.~[S ;\ s.·M~P· ."~1~ .;I .~ UE :•N 01 '1EO .~ ·-: =~~t :.
CiJ SL (::' ; C'l
i C (~IIF • •u•r ! 'iS:~ :•l ::ri:I AL DIJSLICAI!O N OF ;~[ SA I!ONA L OCEANIC ~N O AI •OS P ~EAI C :i)~I N ISIRA IION, .INO IS CO "PILEO fRO~
~E CC~05 :N '!L E :; '·! ~~:;:\l L C~I "A I;C Cl i A CENtER , aSH EVI LLE , N OA I~ C AAOL I N~. :8801
noaa --·~~~ ;;[h iC '-"0
U-Q\,oo(l t{ 1:JtU•I SI •A tl 31t
'-'II~
("'t l"~"''l \I .(U.II(. Dl fl
•00 I"'C-IIQio IE••IC[
177
"tU I OUt,
C .. i.lti"I C ;au (('I l l'
•Wif lu£ ...-r.. cuc.-.t..a
/ ~1/oxii~
ACI!NG OIAECIO A
NA ti ONA L (li "AII C ~~1 1 CE NTER
l
-....... .. '·~: ;.• .... _, ... ......
....,.,,.woe
62 •
u. 1.. otru, ..... , 011 c .... Kt ••••.,.
_T,.....,. OC'U...C a-o a ........... -..c a a..-tS:T•at!ON _,......, ....... , ...... ...,ec•
-otiTN
P'II!L.UIIMAII'I' 1..DCAL CUM TOLOCICA&. DATA
t..~Tuoe AOUMI Cl,..&va 'tiO'I Iott
1!, • lSO . o6 , .
vsa.o,
~nn.
~~
~"uac--.e-.Ta•~lla • • --i -• • ~" ....... ., .... I ... -.. " ,. ..... . , :: . _ .... -. ..... .... ,_.,., . ..... -•c• ·----.... --..... -· ~" ~-. --... ·-...... -.... ., -'" ~ -· ._.,. iii -·----... ... .... ,..." -.. ·-.....
' • . . . .. .. . . . .. .. .. .. . . .. . ~~ ,, +f' ="."t 0 0 Q 11'11. 7 """7 : "t
• '11 I ll "!.'".!. ~7 :u. 0 0 0 ,-, z .r 1.. IQ)Q~ 0
• ~ 1 1 1 J...l IH'' ~" 0 0 0 II.. L1 I~ ~ .... .:l. . '...,, .c ~9 L.:l ~ 0 .Ia l/.o I_>, I ' I.J ,,,.;;n M
•.31 l ..J~ ,c IH ~~ 0 • .;;I .:I. I <;. JL+ 1. L 0~-' I '.it IM
• "t.J. 1 -J~ ~ ~7 3.0 0 ~-_"T" ,, ~.z. ...., 0 .i"il l.,;j.::!l l M .. ~ ~ .:lJ. \ +'f 3 ,-. 0 0 0 I I.. .\ t .... .JJI.:.I. i~\ tv\ . !. .l 5. ~.;, ~1. .1'3. 0 T I 11.. llf l ...., 1 ~.'1. 't . ll.. I ..J<i 0 0 2.S: 0 01 0 .'/ II.:. . ,9 7 l..,;j /"' '1 .. ~ _'i . ·'I' 3.1 .0 .,.... ~ s: .Y '
"o..:l la 1-J l• .. h .' •I/ '-5. 0 -~"! .,S". ~ 15. ~2. IO .:l ~~-"" .. _'? ~ [~..; I 'I ·1 ~l 0 .~Y !{ ., ., .;J /+ H X l o r I X M
" I '1.1 .;J .~ +-J IC 0 -r -r :J O ll 1./ , ~~~-.;}1, I M
.. LJ O ..1 .I.. ~I' ;!'t 0 .~.::;. I '1 1 )/ :...Z.2 (.,. [~:.1 ,~..., LM .. <.t l, ~, ~l. l -c . "\ .... .I I "/ _1.z. ""] I.J l I /0 . .,., .3 1 _\1 H' -=:1 1 0 C 'l [( _:;: /3 --~ I S l o ~ /0
u["f_O .:l::l. 1.1 -3 .1'L 0 -'lO '-·-+ I i .o ..::l. I 1 lt' .. (f _\ -.1 o .\1 1<-f ..;!l 0 '.f I I .-, I :1.~ .l 3,"1,~ .. 1'-\ .. ..,.., 3 o '1 fr 2 ~~ l o .o..J. 'c_, ..:1' I I• ~3,7 ...., ~_s · I X M
.. 'i 'll .:l 't _-:.." •I( ..;) I a Q Q I II, "1 0 ~ 1-M .. [-., ~, .11 l. .;n 0 0 0 l ·z.~ I -"" .. • 'i ~ , ~r 1 ,.\-~.., 0 . JQ 0 I"' ~. ' '7 0 1.:.0 10
u l-:t__1 ' .3 ., t-1 ..J.I.. _0_ IL 0 1 "\ .1..111 I .3~ I ~ .. ;--, ,~ '-IS" ,y .;Jo G c 0 I .::L y ;/ i l~:lt .:1 "\ ""' • .., <; ., 0 0 () 10 ''10' ll ~ ..;1 M .. -"~ ~-. ., 'rf''l ~~ 0 •u 0 -,_ 1.1 _s I...J -:t : 1 '1 M .. ,.., .:1 ... ~¥ (') 0 () 5 1. Y. 1 ~3 M
•IY:J 110 l "l 7 1-/ ,.~ D I I 0 _7 1.-0 ("' 2.0 1._1 A1
• I YY 12. I ~ u ~I l.f"' " .11 0 2. 0.7 r Z.i'J.< 10
.. ~y I ~ 'i I II 'I . .; '1_/ , . 0 n I 1 ,7 /0 0 2. I ..
~l11lf 7W ~Q 6 2.. ~i' U..7 110119 .M
... ,l/!!.4f IU..r" -11. !I ...... lll'etC "' ... .
/J-0-2.. ..... jtt .-
N1CI II"tT .t. f"60111 eaT .t.
... _ ..-.... ____ 1 ... .S:"""l''=-'fO'tAt.. "'0A TMC ........ ~' Cf: ••· ~~~ 01111' oa•• ..
tli.UIItll, AWIU
......... "
198) .. ., ....... .,_
.lUSIU
• • --· ~JC.U
·~ .. .. ..
I 0 Jl
I
I
I 0 X
I
_I I
I
I
0 ~
I
I
I
a X
I
I
----
I •111100
OC __ 'f..,.. ~IIIia. ......... ...;t;o::.___..,2.,. • ...,,:.._
-·~ .. ___ __...:~ ....... c_
oc •aw---.,_ ~ + /• l. :2. • c..a•• ,._,. ....,. _____ _.b!ra_
....... .,UTUI ....... 0 L' -~'--·t..•CI..OVO"f'~._,, __ ~....,=-
J. ... oo .._wo•o vt • .. ~o.~•• f"O t •~o.a o-t t..t;ts:
·-" _J_L .. ___ _.1'-L.-J
~ ......... ,_., .. _
.............. __ ._,41_
... .Z.".:-------:"0~
-• U'"OAM1,a-______ 2..._..f'_
...... -..... -______ D...__
•o ra~o. '"'"'-ot~'• 1'-!j'O
o•..,."~ .,._ ttOMMt.. -5' 2,
u:a.o-~o.rour. J Q 4-' 1
oc•uYu ... I'AOII ._.::,.. -\-Q "
, ... _,_,. ..
..._..,.. .... '" " ... .., .• .,. c'-ov~ ,_.. ... ,_. M • • ec:a ...ct..t..an
f O'f'fla, ... 'f'HC .._... 2 ,, 7 1011 _.'f'H ... , .-c:N OIII .... ..-..CJ~. ~ I •••"·
GAC.flf C."'T ••n...... 9, 7 OM I.J..=j'L. .. 'f' .. e .le .C...O'I .... ~CJ~~ ••OI.-f~IC.OI' ....
o•a'YC:I 'Y 041 ..... -.....,., ~ 0"' .,~,.;.. ..... eM I..CW-......... Ct•. _____/2__ ' I :::::=.!!. ... ~o:;.-o ..... t. •NC.OII o-...o-C HMIC •• ~ • e ~::: !":::
6 r ·•-•
178
I
•• ..._c--o ....
!••o-t•AOO
.
........ _ V. L D .... ,. ... , Of' (.o-.f~l ., ... .,.01'1
l/
"· .. _.,.....,.."' oc -.....c •-o "'"-o4-~c ~•r••T •o-
••1'-.o-.a\, ..._..,.,..._ ... .,oc:. wsc:ao, T.U.rE~.l, AIA!>Itl
.., .. ,. ., ...
l'llfLUIIIIAIIT UlC.U. CUMTOLOGICAL DATA l!Ar 115)
\..&1'1TWOC "'~"voe • r•uva r oo-1•1
Jtir; .. 1'"-·:~SUll -{j 62• l.a · . 1~· ~ .
.,..._....," .... etltCC~T4f't01t/~) • ·-· --u l ~ -: ... • ..... _.,__. • i . ... i-.......... ~.~yt
I 'Oft.t. :! .........
J'J
. ....... -ave ... ... f ... .,., ,.,M. -•U ......... ~~ '""' .... -.. ..-co -· cc•• •c:-oc.c~o<a • . ---._ -...... -· -· .,.._ .. _ .. .. ~~ r~ I -.... c .... -· ... ~ ........ -··t -· ... ---... ... ,. . ·--.. iit: 0 ~<J
I I . . .. .. ' . . .. " .. •I .. .. .. I .. .. ..
•151. ~, 'I~ I+~ ~ 0 ()I. 0 .() .L~ 1 f<,Jl..i 11' ~ ' I ' 11'1"1 31. "1 0 0 J~ 0 . ..JI. 0 0 ~-::. ..., 1-JC ~.) M I I j . "ilt ~I '10 v ~.a.--v .Ql 0 0 + ..).\... I I ~ I I M ' I ~ I . ..i ~ 1 -t · • ..., ,_ v . 0 0 .) I I -' ...;J M I . ' _;~ -t..J 'I ·:; . J :::l 0 0 .i~l 1 L l.· ...;).l 1'-\ I I . >l .... J'f .. , .. .,J h.J..;) 0 (.' 0 c. lo..;) i Ia ., .. I
•I L .~ ..Ji. .,_s '1~ .... <. ~ 0 Q l ~ 1 , I -I . ' ..) J, ., '-.... , I"' 0 ~ 0 0 -\ I 1 I j . • J -I .. , ' ~I.. I l :;:, T 0 () ~-::-.... I .j .J .,j:) ~ J I .. I. ..:I -' . ., , • .!. .. '-' 0 0 .. .. , s ? I 1 I I M I ~ i t
" l -.. , ·olf. ·..i I -, \)
,. 0 c "1 . 1 t ..:. I i. ...;;) ; ....... I I I .... .. ~.:> 'II 5 1 .. ~ I '/ <.: (., 0 0
-J
I ll.."" ~ IM ' I I .. I.,. I '·IV ..il •I I'( G 0 0 0 ..,, /0 '"-J. I I j 10 1.,...;. '1'1 -~ ... t ' .... ...... . c \ 0 0 'I I. /I, llo I "-' .. -i'., ., ~ 5~:~ ~lo.l l5 (; • 1.1 1 0 () 4.1 ~ n I '/ ' '1 I
• .S'I ~ll 'flo i-1 '" l .~-. c v .3 l .., \.. 1o I...:J .> M I I
17 ..l ~ ..>1 'II. ., I 1 '-• /Ia. O + _i.~ I ... I 't I t ,...., 'C: l I .. -~ '·.., 'II 1-.l I & . \ ...,..-c 0 .. ,, .. , ~ I 1 J....l ~ I ~"\ I I .. ,;i_l 31 ., ! ~~ ll \.. 0 u 0 'II. I ~ I I I~..) I M ! I
., L.6. 'tl.. _:,·L 10 '1 I..: 0 c 0 I :J . I ...;ol Ill I ...l I I T .. .. _\ ., 'I . '-1 '1 f.j /t. u r.t.. 0 0 Sl. ·~ I 1 /\J ' I .. .:i\, '; J ...3v • J. IS c... I\ 0 0 'f 1 I l_j lo..
11 .. .. ' ...3_'1_ "L) u I k -" c u .:1 1. 'J ~ .... ,....,...I 1'"\ ' .. !I.._), " I ..l.J •> 1.} ~ ,\.' 0 o• '1-.J , .. , '-I I t I M I U 't.. .. •• .)~ ~I! 0 •1 c c 0 0 '7 1 .5 I ..J~ 1'-\ I
• :~oo ..li So ,_;;j 1S l · . 0 0 ~-~ I:;, n ... ~ ..... .::. M I ... :I .5 .. I ..,J t X ·-u u \) ., .. , X ...l , ... X I .) I
• I!., I J"i _;il .... l"'t ~ w u v '1 ., I I.. ..;1 i... I
.. 'C..· ... 4f <f ..;.J lo '"' (.. ...:.4 0 1.) I l. 't ll~ I(... I .. .s o .... ,, ' . ' .. €'.'1 c 0 ~-~ ·~ /..) '" ..... M .. I .J . , ,-.s 'I • I I I 1... 1"1 1.)~ ..1· ~ I .... ...~ I I '"' I 1 (.· '){
..,._~f.L'f 111.0 -.J(. L /.~, u /¥() i'-\ --J ·-n-:s-:n'1 _II.']_ .. ""'' .... ,. --' --I .... ...... M -~I ,g
,...,. .. ~ .. ,. HICt,..U,._.eUA . .... , .... U ••ou V\fO ... CCUt oofl ~ . ,. ..... ~., 't J .o •• , ... "Ool' .............. l-...J) .. ~-04"0•T'I-I • 'OO 1 oc...,..,..,.. "Ito-~"'
.... ~-'1 oc_.,..,.,...,._~ -.1 .... .. c~··,.,........_,J M I ' ~~ &CI'I'IotCI .;Q \09 .... t...,
..oQooool \f~ .. .JO . .J;) ... ~· -••t.•Ct..OII.IO".,._._,, M •o ...... c oe "'-'--M ........ .,. ........ ,.,"""~--
~OHtf~ ... I ...., .... ~.a..._-..t.An c~• ............ J., M • • oec ...... \.c r •
......... 01' ....... ,. ... fqf'&lr. •a-,. .. ..o-1'• 0 .. ._,. • •• 1.C:oo 0'1...,.... ..-.:c •_. ____!..;:::.... , ........
-• u•o-ec~r.o-0 a ..... ,,,.,.,.. .... -... __ _, •• ,.-c ............ c... __ ..l __ & • Cl\,.,.IC a• ...._ .I -· '-;:tqa ·~vt I ~ .. ,.,, oc ••·o-~~ o-~ c. .... ~ Olll f o-•~r.o-• .. \o
.. ., •• M ,tfCMO'I -.QIIIIC-cC •P ---'• , .... :t .,""VC.. ... , "'--•'" ro
t -•··••.C•OIIt.-c-..cc•• ~ I ••"' ~· .. en -• u ·c>a .... a.. •"ttjl Oaf• () • .. -.::.•• e• ... _,c
--.. a-••~r.o-\,; ...... " ............. "' ~ 7, .. -k_ I • a t..o-1 .. 0 1---o-
•l a r • ... N...CIO_.,,,..,_ • .J.) lr.o-..:&• ..... e lr..lVCir. ~::!-.l.!:' ...... :!.·'~··•oo
'Gf•t. ,_, -o--~-~lj
I -I v :t •••~ ,..,c'"''"'._ o•••-w.,. • ..,. o.o--a\. 6o -· ' .. .. " .. .. .. .. .• .,, lUI~! . ., ... " ....... " , .. , .... ....':;'=:.~;to-I I I ; .:_lq_!_.:L_ oc ••••wec • .._ •o--•~r.
.... D4f'C J
'00\.~ C-I~C O••' ,,_ u •r
·-I ! I i ;:-1 .. , ....... _oeooe·r• u
• ben,e wlnoi .__. 1• baae4 eft t~~·n •nlaaa ot~se inJ~e ·J (..
:C:•···~ ··~·o--.. ·---it.n\.-oae ilnata v11111 a~a.W 1\8 dlnciUoD. ----· ............. . ., ..... -·---'-noW dati b Ob£iilliti at 0: waa-1nd.1aW •
#·-··~ .... ....-... ~ r..a-..-~f'"iiieni iCcvnnc:.a.
~ .. -............. ~~~--~:~~ .. ~:.~.:::. •• :.~"-w:aa.-~~:v~~-lnJ~~te:r."~~ ........... .. ....... ~. . . . .. ~-~
179
sl6/y5
APPENDIX B
Susitna River Maps (Aerial Photo Mosaics)
from Goose Creek to Devil Canyon
180
"
•
.
. •l AU,,SXA ~-AUTI'I(),IIITY
' • ••t. •• • f r :-;-;::-... ,
L j R= ........... -
'
~-
:
I
H. ill .__, --
• 1 . "'
z-£.~··· ·~: !'"""---
• t . 7
---------._!_·_
f • I • ' . /-
.... -·-· • t • I
.
=:::. ------------t
.I ee ... A -
Wl•i) ,U, !PtCT CA'OU ~(Cf (;\
'l'(•;t~\A\' !t. ... C~o\:-.xS ARE LOCAt[O
A: £AC11 ·~t;t Vf r .. :(A\' .CIIlOSS Uc• 0"
,l.o ... tf\.5 RU:(A. TO f!-1£ lit'\ DES G\.,U (!'
,.,
•
•
0
0
c
.. ....
l f .. £
•
,
•
"'..,fS •.. ,.
'SO( 0 l•illl(~ OC~ICT c.aoss S(CftO"-
fi._,PCM.-,tl.., ¥' .. ""'"""'~ .Ut£ LCICATtO
AT [4Gtt f',-, Of ("' .. IU CROS\ ~f(.f ()<tr.l
>0 • •
I
0
c
•
0
c
1'1'' 'O•Ath .-r, ........... "~All Ot'Joi[O
o\l 4C.H .,D OJ [\lA" CRIX\ t ' •
'~~fHA). llfl(tl ro !~f J'l' DES ti'Af e~.
10 • •
ff""''•AolllY l'lf..CtNAAil.) A.OI.( OC" tO
41 (4C:•• l'D • (Viii~ R ~~ • '
'4.\119.Ut~ 14[ fA T f 11r lilt\. 0{\1(.'•" Y '
•
ll\.tf'OA:41o\" lttV.H!YAtll""\ \a( Lotio' 0
.a.t (4 H P~O 01 f:.,.1•'t 'AOS\> UCT '-'
' veu' llHE'' "> ·Ht. t•" Q(s , .. r 0"
10 •
•
I .,
Iii ~~ UCTII.)<'..
..,1.-'-•8("!. lUff~ lO tH( I" Of.~ ·.A" •.
•
0
c
•
1=--------
0
c:
•
. ' .
~Ot D l''(' Ol,ICT (.flOSS !>t,CT 0 '
•t""'JIIA_.,) 8£'r ~\C.-'"'"'S •Rt UK..A.1(0
A. T E •<.H l '0 Q( [\.ER-. CRC~S> StCT v'
tO I ,.-
0
"
•
·I \OLIO L 'U !l[.Pl(.T (."0'$ ,.,.Cf (l'
rt.....-oAA~'f tf:,C:UWAR"~ ARt 'LIXA.a[O
AT (ACH l:.,_O Ol (' .. (~~ Clt.r..S\ UCT'O'
u •• , ..
'·IJU&fRi IHHA ro fME Llh •t'ioli';."-.\ TIO'
10
c
0
c
•
1'(\~~tWAft-. !h• H\U.""S 4,..£ OC•t(O
• ,. (.lCH [,0 Of hUt\ CRI~U-(.!CHC ~
tO
,.
0
c
•
.. I
• 6
H\~f"Coi \II.~ Ol~t.VARIC\ "Ar lOCi.TFD
\t [A'"t-1 l*""t'J or("'"'" r~tcs') Htruv.
··/
==~~--~.=0--------~-------.--------~---------
Q
0
c
•
0
c
• •
•
G
0
•I l\.f .. i>fC\ ... I('(.:W'-'AA ·S AR.f. 4.UC'.A.HD
At (.A. l ':l Of l·lA'I (ft.:>S!t \[~ 1~
'V'ItlA.\. '-lH:::t TO "t1£ R'\ OU, "'AT •. •
I
IT ~=-r-r
·I
! '
SOL 0 L "otc OVICf ( RO$~ S ,. '
Tt-.t'¢Jt4tt)'" llt ..,t"ritotA._-:~ ,_.._{ LfY.:'AHO
AT EA.C.H ('('1, O~ fvt:R'f Ci\ !lo UC'TI '
•o
.. ,, r •'
e
0
c
,.
A
••
. .
~" '.
• ~ .. , .... Bl · .... Mv .t.a:"\ t.•f "r£o
...-J.& .. ·~ or • ...,,.h ll.o~J\ n • ,
' .._.,-.IJ:\ AfH"' fO T.-r A · OES•r.•.t.-. t.'
10
•
..
"
• •
10 • •
• •t.vi'OKAII.' &L' ,..._..., t.:S "'"'£ •r 0
a.• r..•c tot t ... :l r l\1.11' "~O~\ l'? ••
l "f ~Cft:l A .l II· U
•
• •
10
•
' f
~
SOl 0 L 1\(~ OVIC. T Ck~" 5£C J o-.
T[\.1,0RAit"\o 8(~,Ctf>JAR..._J -'qE OC." ftD
"r tA H t..trae» or t:'-'["v t:~C.'\S. Ut;f "
" "·'Bit\~ ~Erfllt !0 T .. f &.fh :;f\IGI\AlH)"
•o
..
D
•
t __