Loading...
HomeMy WebLinkAboutSUS251DRAFT JANUARY 12, 1984 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE CALIBRATION OF COMPUTER MODEL Prep?red by HARZA-EBASCO JOINT VENTURE ,. For Alaska Power Authority JANUARY, 1984 TABLE OF C0~TENTS SECTION/TITLE LIST OF TABLES LIST OF EXHIBITS 1.0 INTRODUCTION 1.1 Environmental Work Plan 2.0 DESCRIPTION OF MODEL 3.0 DATA AVAILABLE FOR CALIBRATION 4.0 CALIBRATION OF OPEN-WATER TEMPERATURE 5.0 CALIBRATION OF OPEN-WATER SURFACE PROFILE 6.0 CALIBRATION OF FREEZE-UP PROCESSE~ 7.0 DISCUSSION OF RESULTS 8.0 FURTHER STUDIES REFERENCES TABLES EXHIBITS APPENDICES No. 1 2 3 4 5 6 7 8 9 No. 1 2 3 4 5 6 7 LIST OF TABLES Title Open-water calibration -Q = 3000 cfs. Open-water calibration -Q = 9700 cfs. Open-Water calibrated n values. 1982 Freeze-Up data at Gold Creek. Meteorological data at Devil Canyon. Meteorological data at Talkeetna. Observed river stages at freeze-up 1982. Observed solid ice thicknesss -Winter 1982-83. Final Calibration Coefficients. LIST OF EXHIBITS Title Map of Susitna River Basin Environmental Work Plan Water Surface Profiles for 3000 cfs and 9700 cfs -Computed and Observed Observed Progression Rates of Ice Leading Edge Maximum Ice Elevation during 1982 Freeze-Up - Computed and Observed Ice cover thicknesses -Computed and Observed Time history of leading edge progression - Computed and Observed 1.0 INTRODUCTION As a part of the on-going environmental studies for the project, we have completed the first ph~se of tre calibration of the computer model for instream ice. This report deals with the freeze-up in the reach from the confluence at Talkeetna to Gold Creek for the 1982-83 season, as shown on Exh~it 1. This reach includes a number of the more important sloughs, and is expected to experience a greater change in winter regime than the downstream river reach. Data has been collected in this reach since 1980 and includes the most complete data on the river. Calibration studies will continue and will be reported later. These further studies will include: 1. Additional simulations for the freeze-up from Talkeetna to Gold Creek based on 1983-84 data now being collected. 2. Complete winter simulation, including freeze-up, ice cover thickening and ice cover melting. The break-up of the ice cover can only be qualitatively estimat.~d since modelling of this highly complex phenomenon is not presently reliable. Ice jam stages may be estimated with present analytical techniques, if the location of jams are known. 1.1 Environmental Work Plan The sequence of enviromental studies in progress for the river is shown on Exhibit 2. According to this exhibit, the critical input data for the instream ice model are the discharge hydrograph and temperature time history for releases at the dam(s). The instream hydraulic model (HARZA-EBASCO) and instream temperature model (AEIDC) will also be required for final instream ice runs. However, for preliminary runs, the instream ice model will include 4 computations for open-wate r surface and temperature profiles f o r convenience. 2.0 DESCRIPTION OF MODEL The basic progr am, !CECAL, has been developed by Darryl Calkins of the Cold Regi o ~s Research and Engineering Laboratory (CRREL), u .s. Army Corps of Engineers. The program documentation is i ncluded in Appendix A. Mr . Calkins provided assistance in installing the program on the H-E system and continues to provide advice on assessment of program output. In summary, the program requires the following daily input data: Upstream Boundary Water Discharge Water Temperature Frazil Ice Discharge Within the Reach Channel Cross-sections Channel Ro u ghness Air Temperature Wind Velocity Downstream Boundary Stage Hydro graph 5 Water Discharge For the first day of the simulation period, the program computes the open-water surface profile and temperature profile. Duri n g each day, including the first day, the model determines the total ic~ produced, evaluates potential ice bridging sites, and advanc e of the leading ice edge and thickening of the cover. In addition, the border ice is simulated at various open-water sections in accordance with calibrated coeffic j ents. After the ice front advances from one cross-section to the next upstream section, or if the water discharge changes from one day to the next, the water surface profile is re-computed. The ice production in the reach is computed based on open-water heat exchange using a linear approximation of the heat transfer coefficient with wind _velocity as the major independent variable. The ice cover starts at a "bridge" location at the downstream boundary or an intermediate sectio~. The advance of the leading edge is based on water velocity at the front and relative thickness of ice to water depth. The critical parameters which must come f rom the ice hydraulics calibration are as follow: 1. Open-water heat transfer coefficients. 2. Cohesion coefficient for frazil slush accumulation thickness . 3. Critical value of Froude No. for progression of the leading edge. 4. Critical velocity for erosion/deposition under ice cove ~. 5. Lateral ice growth coefficients. 6 <---The model uses the following fundamental equation$for the ice processes: 1. Ice inflow at upstream boundary: where Q. = l. ice discharge,m3 /s. c. = surface ice concentration,%. l. v = /l'lt'd/1 velocity, (m/s). B =open water width,(m). t = J7}~311 thickness of the floating :'j;.rC/ntntU ~-17 #!; 2. e = porosity of the floating slush/ (J.>fttmntd tJ,5) / Ice production in open water: ~ (m-'/.s). where hi = ice production heat transfer coefficient, w;m 2 -·~ A -open water area, m2 • T-= air temperature below o•c. p = density of water, !tJOO ~;p1;. A = heat of fusion, .J.54 x 10 5 tV-m/Kq 3. Lateral ice growth: L. = ice growth in m/day. l. K = coefficient based on observation. v = t11~~ 11 flow velocity, m/sec. N = exp~AfJtl J~rtlttl o" oJ.r~rvdllt;A. -1- ? ' , ~ - · \ n for progression of leading edge: jtgfr ~Fe --- uted modified Froude Number. ical Froude Number. --_.j.---~ flow velocity, m/sec. hydraulic depth, m. If F > Fe, leading edge cannot advance and ice is drawn under cover for possible deposition downstream. 5. Progression by Hydraulic Thickening: V =,jig tH (1-p'/ P) (l-t8 /H) where V = mean flow velocity just upstream of the leading edge, m/sec. H = hydraulic depth just upstream of the leading edge' m. t 8 = stable ice thickness required for progression of front, m. p' ,p = density of ice cover{a'JTt/mmed t?ZO ~/m~tu~~r (/oti:J q~..i"). 6. Progression by Mechanical Thickening: where Vu Hu B = mean velocity under ice cover, m/sec. = mean hydraulic depth under ice cover, m. che~,,e I width, m. = ~ = coefficient of internal friction for ice cover1 /.?~. -2- 4. Criterion for progression of leading edge: F = -F"~ Fe F = computed modified Froude Number. Fe = critical Froude Number. V = mean flow velocity, m/sec. H = hydraulic depth, m. If F > Fe, leading edge cannot advance and ice is drawn under cover for possible deposition downstream. 5. Progression by Hydraulic Thickening: V = fg tH (1-p'/ P) (1-tH/H) where V = mean flow velocity just upstream of the leading edge, m/sec. H = hydraulic depth just upstream of the leading edge' m. tH = stable ice thickness required for progression of front, m. p',p =density of ice cover(.:l>rtlmMed 9?0 ~?/m~tu;'ler (/otf:J q~J'). 6. Progression by Mechanical Thickening: where Vu Hu B = mean velocity under ice cover, m/sec. = mean hydraulic depth under ice cover, m. ch:J,,e/ width, m. = ~ = coefficient of internal friction for ice coverJ /.?~. -2- 7. c = Chezy coefficient of friction1 t.d.:e tl o,-, 31'e,~yedtJ ,£ bt'tl /rt'c /711" ~"" p ,p = densit·y of :ce cover,lj-..7,.,e c-'.-S. "Y . ~ tJ,CJ50 - . .;;j;~~. R = hydraulic radius under ice cover, m • .t = cohesion of ice cover, N/m! ts = stable ice thickness required for shoVing stability, m. Under ice Deposition: 6 ~L ,A,;rn ~~~ C~~r Vu-e = critical velocity]ior deposition of ice under cover when front cannot advance, m/sec. T~mp 0° to -7°C -7 to -19°C -18 to -30°c 1/u.c Vu -e tfv-c /o.95 M/f llu-c ld-!)()111/j. t :-1 --~ previous day ice thickness, ~- bti = incremental ice thickness gro:..·th per day} m. J<i = t.heiToiel conductivity 1 2-2 3 tV lm--c . H a surface heat exchange coefJ a J,() /m z_ ·c . e , p =porosity of ice cover (~>fvmnreJ (),5). = heat of fusion of ice J 3 ,34 N-l'h/~g. = density of ice 1 920 ~9/m3. 3.0 DATA AVAILABLE FOR CALIBRATI ON The data available for model calibration hds been acc u mu l ated primarily by R&M Consultants over the past three years. This information is available i n R&M reports for the past 3 winters (see reference list}. Observation for the 1983 freeze-up will be available in early 1984. In addition , channel cross-sections from Talkeetna to Watana, and open-water stage-discharge observations are available in R&M 's report on "Hydraulic and Ice Studies ." The information included in these reports is as follows : 1. Descriptions of the ice processes, 2. Photos of river ice phenomena , 3. Weather data, 4. Discharge data, 5. Surface ice con ~entration, 6. Water surface profiles, 7. Ice thickness, 8 . I c e front progression, 9. Ice jam locations and effects, 10. Channel cross-sections, 11 . Open-water stage-discharge ratings. Based on the above information, the freeze-up of 1982-83 was selected for calibration of the freeze-up portion of the model; 7 since it represents the most useful information require d f o r calibration. While this data set is not c o mplete, the following information in the reach from Talkeetna to Geld Creek was sufficient for preliminary calibration: 1. Progression of the leading edge, 2. Approximate staging, 3. Approximate solid ice thicknesses (slush not included), 4. Estimate of surface ice concentra t ion at Gold Creek. 4.0 CALIBRATION OF OPEN-WATER TEMPERATURE The open-water temperature profile is not important for the calibration of the freeze-up portion of the model, since the simulation period begins after the river has reached 0°C, and air temperatures are below 0°C. Therefore, no attempt has been made to calibrate this portion of the model. However, for post-project production runs, discharges from the dam(s) will be above freezing and it is very important to determine the location of the 0°C point in order to estimate the ice production and limit of ice cover. Therefore for post-project operation, we plan to use results of the AEIDC temperature profile model, SNTEMP, which has been calibrated to the Susitna. Until SNTEMP results are available , however, we will use the temperature profile as computed by !CECAL, realizing that adjustments may be necessary when the final SNTEMP data is available. 8 5.0 CAL IBRATION OF OPEN-WATER SURFACE PROFILE This portion of the model must be calibrated since velocity and depth are crucial to the development of an ice cover and the mechanics of the ice front advance. Open-water stage data is available on the river for GolC Creek discharges of 3000 cfs, 9700 cfs, and higher flows. Since the normal pre-project winter flow during freeze-up is approximately 3000 cfs, and post-project freeze-up flows are expected to be approximately 10,000 cfs, both discharges were used for calibration purposes. Tables 1 and 2 show the comparison of computed and observec water surface elevations. All computed water surface elevations are within 0.5 feet of the observed values, wh1ch is considered acceptable for the ice model. Exhibit 3 incl n des profiles showing the same information. Tables 1 and 2 also show the water surface elevations computed with the HEC-2 model, as reported in reference 5. These values demonstrate that the open- water surface profile computation in !CECAL compares favorably with HEC-2, which is the standard model for open-water profiles. The resulting Manning's "n" values for the river bed at the various c ross-sections are shown on Table 3 and range from 0.022 to 0.065, with contraction and expansion losses of 0.1 and 0.3, respectively. This is considered to be a normal range of "n" values for a river such as the Susitna. These calibrated roughness factors were then used for the river bed for all succeeding freeze-up simulations. 6.0 CALIBRATION OF FREEZE-UP PROCESSES The simulation of freeze-up for 1982-83 is based primarily on data given in the R&M 1982-83 Ice Observation Report. The information taken from that report is as follows : 9 1. Table 4 contained wa ter discharge, mean dai l y air temperature, and ice c oncentration at the upstream model boundary. (G o ld Creek). Since wind velocity was not available at Gold Creek, the record at Devil Canyo n was used, shown in Table 5. The ice concentration was converted to ice discharge ba s ed o n esti ma t e d thickness and porosity. 2. Table 6 provided the downstream boundary conditions (Talkeetna), mean d~ily air temperature and wind velocity. 3. Table 7 listed the river stage after the ice front passed various locations in the reach between Ta l keetna and Gold Creek. 4. Table 8 gave the solid ice thickness following freeze-up at Gold Creek, Curry, and LRX-3 (did not include slush). 5. Exhibit 4 in this report was used to determine the location of the leading edge with time. Results of final simulation trials are shown on Exhibit 5,6, and 7 and Table 9. Exhibit 5 shows a profile of the maximum water surface elevations computed after the ice front has passed the various sections i n the reach, along with corresponding observed i ce elevations at locations reported in Table 7. Exhibit 5 also shows the open-water stage corresponding to the flow during passage of the ice front, indicating "staging." Exhibit 6 shows the computed slush ice thickness in the reach, after the cover has progressed to Gold Creek, with observed solid ice thickness included for comparison. As discussed in Section 7, below, the observed solid ice thicknesses do not include slush deposited beneath the sol i d ice and will therefore not correspond to the total slush thicknesses computed by the model. Exhibi t 7 shows the computed location of the ice front with time, compared to the observed location. The calibration coefficients resulting from the 10 final simulation for the 1982 freeze-up are shown in Table 9 . These values are within normal tolerances, as ind1cated. 7.0 DISCUSSION OF RESULTS Based on the results of the simulations to date, we conclude the following: 1. The open-water profile calibration yields computed values within 0.5 foot of observed values for 3000 cfs and 9700 cfs. This is considered acceptable for ice modelling purposes. 2. The maximum water levels computed and observed "maximum ice elevations" are in good agreement generally, with the exceptions of RM 127.0 and 130.9. Here the observed maximum ice elevation are significantly lower than computed. We have no explanation for these differences Lther than the possibility of bad data. In particular, the observation at RM 127.0 is suspicious because is it very near the open-water level, indicating little staging (about 1.5 feet). Observed staging in the remainder of the reach ranges from 4 to 8 feet. At RM 130.9, the observed staging was about 5 feet, compared to about 10 feet computed. On the other hand, at RM 103.2, the observed staging was about 8 feet compared to about 5 feet computed. It appears that there is no systematic error in the simulation, but rather possible errors in observation as well as computation. It also appears that the simulation results are generally on the conservative side. 3. Ice thickness simulations apparently do not agree with observed values. However, the observed values of February 4, 1983 are for "solid ice" only and do not include the "slush ice" which can be deposited in significant amounts beneath the solid layer. The simulated thicknesses ~re largely slush which 11 ueposited during passage of the front or slightly thereafter. Unfortunately, the amount of slush beneath the s o lid ice was not documented for the 1982 freeze-up, thereby making a di~ect comparison impossible. The elevations of ·the ice cover observed are below the top of ice computed because of the decreased flow and consequent "sagging" of the ice cover in February. As with stage simulations, we believe the ice thick~nesses simulated are conservative and will yield a high estimate of post-project impact in the middle reach. The field observations for 19v3 freeze-up should produce a better estimate of total ice in the cross-section where measurements are made. 4. The simulation of the leading edge progression rate was in good agreement with observations for the first 30 miles, as shown on Exhibit 7. However, where the field observation shows a more gradual decrease in rate of progression, the computed rate seems to have a sudden decrease to a slower constant rate at RM 130. Since the first 30 miles are likely to be the more important reach for post-project, the upper end near Gold Creek is not of great concern . Observations note that the continuous ice cover progression does not extend upstream of Gold Creek, but is replaced by a series of locali z ed ice bridges separated by open water. Again, the simulation is conservative, since the observed rate of advance at the upper end is slower. 8.0 FURTHER STUDIES Further calibration stud ies will be made to extend the model simulations into the full winter season. We do not expect that 12 break-up will be modellable. However, locations of maximum ice thickness and flow velocities during spring thaw may correlate with portions of the river which are particularly susceptible to jamming. Maximum jam elevations may be estimated for the jam susceptible reaches, but probability of occurrence may not be reliable. Additional calibration runs will be made as soon as the freeze-up ~~~ data from 1983 ~ available. Following this further calibration of the mvdel, we will proceed with project production runs as output from the reservoir simulations become available. 13 REFERENCE S 1. Susitna Hydroelectric Project, Ice Observations, 1980-81, R Ul Co n s u 1 t a n t , Aug u s t 1 9 81 . 2. Susitna Hydroelectric Project, Ice Observations Report, W i n t e r 1 9 81 -8 2 , R & tf C o n s u 1 t a n t s , D e c em b e r 1 9 8 2 . 3. Susitna Hydroelectric Project, Susitna River Ice Study, 1982 -83, RU1 Consultants, Preliminary Draft, August 1983. 4. Susitna Hydroelectric Project, Hydraulic and Ice Studies, R&~ Consultants, March 1982. 5. Susitna Hydroelectric Project, Water Surface Profiles and Discharge Rating Curves for Middle and Lower Susitna River, Harza-Ebasco Joint Venture, December, 1983. 1 3 TABLES 786/e .1 HAIZA·fiASCO SUBJECT FILE NO. /5'63./42 DATE //3/a</ ,, "AGE _/_ O F ..3" PAG ES SUSITNA JOINT V EN TU RE ~~ C H ECKEO ~.(-3 .?" /' )"-d hR%-f LR.-{-Zd L~X.2b ~_.(-~ .LR~4S L~%~2 vx-dr8 COM,.UTED ~r~ ;f;v&-/o: /ttcde-1 7'8,59 339.7 .340.2 34C/. z ftJ,S:;9 3 4 71 -34if.8 /03.22 3749 375.1 3 74~ /20.~ 571.2 SI9J! ~/c. 9 124.41 ss-;.~ ---·~ :_ ~ /·, /?x'J.~7 &,/S:o tt;4. 7 d-;4.:;- /3r;,,¢ ~5/; tf-81.4 t;6/.C ;_.ft:f,f! g.?;.4 83/.1 E31.4 /~c:J. 11 847.3 -847 I .t. "Wafer .5t:~rface Prol"t~s one/ Olscl;dty~ ~Ito/ urve; 1-hr.zt¥-£bd'.>co , Oc ltJ!Jer/ /?6'3 . 7.96/e 5 2. '')/yclrdt:~lc and .ICe 5-iv.dtes ': R~M Con~t--lil/lis; MJrch, 19~2 . T.:?b/e 4 ./8 3 . RltM CtJrre¥¢dence 1\.0. t?5?J'06 , 5¥1 I~ 1!'6'1 --~ WZA ·EIASCO suuECT 0~ W~e~ L'dibrdtm FILE NO. t51P3. L42. l'ri~e._r (ce Mth1"e{_ DATE t/.J'/.f4 $USITNA JOINT VENTUifE Alw'P ~, COWVTED CHECK ED PA G E ~ OF 3 PAGES WSE/. s /P"' ~?a? c-/s !£~ t?c/d' {}eel 5ec~o'J Rtv~,., #drZ# 1 ~~/Vl 2 kd/';!d /0. ;Yble IIEC-2 ciJ~C'd ~V'-'r k A4oclet ~~,(-3 9a-:s9 3 4 4.1 -..?44.CJ L~X-~ '19-5B 34&~ 34'~/ 34E .~ L.e,(-9 I C 3 .2Z 378-0 3 7~4 37~.9 ~A-z4 /2 0.6;r 5'"2/.Z 52/.3 :;z ;. 6 LR!'-?i /Z441 5544 5 536 ~5'3.6 LR.l'-.5£" /3o,67 tJ1 /7. 4 ~//.3 d/ 7. 4 LR.f-/~ l?e .t}t8 6CJ4.o G841 684:::- LRA-~2 /4t5.94 83s.4 E .3J.5.4 83S. 9 L~68 /s-o ./9 8s-/.o ~5/.4 e~;.~ ~a'~'~,,,,~~~~~~-~.,~,,2~~~2,,•~~~~~•~a~•,,a~,2022»,,,~,~,,22022~,~,.,,~-~~~ ~,,~,,~,~,,,,,,,,,,D,,,,,,o,,~,,,,,,,.,,,,.,,,,,,,,,,?,,,,,,,,,o,,,,o,a,,,~,,, ~ ........................................................................... . .. :.,~~,,~~~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~,,,,,,,,,,,,,,,,,,,,,,,0~,~,,,,,~~, .. ~ ;>n :J ~ .z- -~ ~­~~~~,n ~~~r~~~~~~~~~~~~~~~~~~~~~~~ft~~~ft~~~~~~~~~~~~~o~~~~~~~~~~n~~~~~~n~~~~~~n~ -.Z: e e e • e • e I I e e e e e e e • e e I I I 1 I 1 e I 1 I I e e e e e I I I I I e e I e e I I I e I I I I I I I I e I I e I I I I I I I I I I I I I I I ~.,,~,,,,~,,,,,~,,,,0,,,,,,,,,,,~,,,,,,,,,,,,,,,,,,_,,,,~,,,,,,,,,,,,,,,,~,,~, c -~~,~~~~~~~~~~.,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~-~~1~~~~~~~ft .z r: 1 ~~~,~,o~~~~~o~~~ooooo,~~•~~~,~~,~~o~o,,,~,,~,=~:ooo~~~o,o ~oo~~~~,,~,~,~~~,~~ ~ Qo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r~~~~~~~~,~~~,~~r r ~,~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~r.~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~!~~~:~~!~~~~~~~~ z c • ,,,~,~oooo~ooo:.~oooo~~~,o :o,,~o,~~o~oooo~,~~,,~,D~,~ooo,,~,~,,~,,,~,,,,,o,~, I -:o -.. .. ~~~~~~~,~~~~~~~~~~O ~O,~O~OO~~,c,~r~~C£CC~,~LO~C£C,2ft~~D,~~,~~~r~~,:~~~rrr~~r ~,~~~~~~7GC~~~~~~-·~·,···~-~~~~~~~~~~~~~~~2~~~~~~~7~·~·7·~~~~~~~~~T~C C i rrr o• O~OO~~O~OOO~DOO,O,O,OOOOD~OOD,D,O~O,O,O~D,0,0,030,,,,,~~,,0,,,~,,,~,,,>~>>~> :OJ> - J-::;; .. , . ? ;, ;, % ... ") .. ~ -.a ~ ~ ~ c 7:1 ................................................................... =,,,,,,,,~ooooo,o>o:oooo~~,,,,,,,,,,o,,,~,=:>,,;,,,~,,,,,,~~,,,,~~,,~~~~~,,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,~~~~~~D~~~~,,,~~~,~~~,~~~~,,~~C~C&C'L ~CI~r••7 1 2~~,,~~,~~~,~~~,,30~~,~~~~~~,~,,~,~3~~~~~~~,,,,~~,~~,~~,,~~~~?P ~~t~t P ?.,~~'t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . ------------------~------~-------------------------------_,,,,,,~,~»,~~~j ~~, 77:~~~c r ~7-,,~~,o ~~~~~r ft•~-cc ~~-~~~r~o~r7c~77-~~~-~~~~•,r-•t•7Y,r •=•~~~-~~ft. ------------------------------------___________ , _____________________ _ 'C>~,Y0 ~4~0~~~-''~~,~~~~~,~~o~~~----~o-~--7~~~r~o~~,oc~-~'?'~~,~~,,~,,r r t --l ~~~C~ft~~~~~~·C~ftC~~~,c·~~--·~~~.~~~-~Ct-:~-<>~~-~->~~~-·~•LY-t>-•-c t -•-••~ ................................................................. C~~D ,,,~~-,~WD&?;-~~~~~~4~,~~,--~~-~hC~,,~--~~~~rr~tC=,-~~~,,~-~~~7 -~LI ,,1~­ ,~~>,?~,,~~,,~;-------------~~,~~~~~~~~~~~~,~~~~-~~~~~~~~~~A·~~·7•7rJt ~l 2 -~r ------------------------------------------------------------·-------- '• \~ ~-b. '<;J 'q ' '"'I II ~ \; '"' .... 'I '• '• J ' ,, ~ "· 'l.. ~· ~ > ~ ' '11 . ' J • • ... t - ~ .. ... • ·-:::~ • u ... z Co- ~ ... su -..... .... _0. •-j ..... ,. .. _,, ·~: J "' -~ .... :>::> .... ... ... ... ... .. • :~~ u c -· 5 .. JJ •• .... ... ~ ~!l c • • • • • 0 • • • 0 • 0 • • .. • • • • • • • • • • • 0 • • • coeocc------------------------ cc c.cc:e~eecco -"~.,.:: --.r 6 J/.--"- ~=c:cc:::occec• • •coc:eoeec:ceo • • • • • • • • 0 • • • • • • --• • • • • • • 0 • • • • • ~-c-c~--~,~---~~~~~=~~JJ-~-•~~• • ···--·······---.... f\o -t l tt ttt-tl I I t I I I I I -6S - 7:;;6/e • .. • • -c c 0 • " c • • t' ,. s : .. • .. I f .i l .. .. • • I • • .. t c ~ I : i ~ • • .. c I • 0 .. .. . ,. .... 0 ~ ; ~ 1 ! ~ . .. . .. • .. • • • " e .. ~ 0 • c "' ... • ~ • • .,. .. • .. c: 0 .. • " .. • • Z> D !! 0 ~ • .. c • .. • c i • • A • .. I .. • • ! • > Du.e Dec. 1 2 J 4 5 6 1 8 9 10 11 12 13 14 1') 16 17 18 19 20 2 1 22 2J 24 25 26 27 28 29 30 31 Pi •charge ( 1) I cf'i l 3000 2900 2900 29110 2800 2801) 2800 27110 2700 2700 26110 2600 2601) 2600 26110 2500 2500 2500 2400 2111)0 21100 21100 2400 2400 2300 2300 2400 2400 2600 2800 2900 TABLE 4.;, SUSITNA RIVER AT GOLD CREEK fREEZE-UP OBSERVATIONS ON THE HAINSTEH Dece•ber 1982 Gold Creek Hean Air Te•pera t.ure ( 2) I °Cl -7.8 -16.9 -16 .9 -10.0 -8.3 -1.7 2 .5 3.6 -1.9 -16 . 1 -6. 1 -3 . 1 -1.1 -5 .0 -o. 3 -3.3 -6.7 -10.6 -11 .7 -7.2 -21. 1 -23.1 -15 .6 -11.9 -9.2 -').6 -1.1 0.6 1.7 -0.3 Water Te•perature (3) I °Cl 0 . 1() 0.10 0.00 0 . 10 0.20 0.20 0.30 0 .20 0 .20 0 .10 0 .110 0.00 0 .10 0.20 0 .20 0.10 o: 10 0 .00 o.oo 0.00 o.oo 0.00 0 .00 0.00 0 .10 o. 10 0.10 0.10 0 .10 0 .10 Ice tn Channa• (4) Ill JO 55 70 1 ') 75 65 40 15 2'j 60 40 60 40 2'j 10 10 10 50 110 40 50 50 30 30 30 30 35 5 25 5 Border Ice Thickneu I rtl 1. 3 1 . 3 1.3 1 . 3 1.3 1. 3 1.3 1 • 1 1 • I 1.2 1.3 1.3 1 .3 1. 2 1 . 2 0.5 0.5 0.5 0.5 0.6 0.(· 0 .6 over fl Ottf overfl ow 1.3 snow Depth 1.llL 3.4 3.3 3 .3 3.3 3.3 3.0 3.0 3.8 3.9 3.9 3.9 3.8 3.8 3.8 3 .8 3.7 3.7 3.7 3.1 3 .7 3.7 3.7 3.7 3 .6 3.6 3.5 3.5 5.0 3 . 1 3.2 3.2 weuher Cloudy Cloudy Windy/Sunny Cloudy Cloudy Sunny Windy/Cloudy Snow Cloudy Sunny Sunny Cl o udy Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Snow Snow Rain Rain Sunny 1. Provisional data subject to revision by the u .s. Geological Survey, Water Re•ources Divlalon, Anchorage, Alaska. 2. Average value or the days •tnt•u• and .. xl•u• te•perature. 3. Ba5ed on one lnauntaneou& Ha5ure.ant usually taken at 9 a.•. dally. 4. Vlsu&l estl•at.e based on one lnatantaneous ob•ervatlon, u•ually at 9 a.•. dally . r.5/ddll TABLE 11.6 SUSITNA RIV£R AT GOLD CRHK fREEZ£•UP 08S£RVATIONS ON TH[ MAINST£M JlnUI ry 1983 Gold Creek Meen A i r Weter Ice In Border Ice Sncnot Dlache rge I 1 I T e ~npereture (.:') TeMpereture I 3 I Chennel 14 I Thickness Depth 12• t.! lcfs} I o~l I 0 CI lll I ft. I llt...L Wt•t.her Jen . 1 2900 ·2 .8 o .oo 8 1. 3 3 .2 Sunny 2 2800 -2 .8 0,1)0 10 1. 3 3 .2 Sunny 3 2800 -3.9 0 .011 30 1 .. 1 3 .5 C I Olldy II 2 700 -5 .0 li.IIO 60 1 ." 3 .5 Sunny 5 27,.11 -13.9 0 . 10 (;5 1. l 3 .5 Sunny 6 2600 -19 . 1 0. 10 65 1. l 3 .5 Sunny 7 2!:100 0.00 70 1 . 3 3.5 Sunny 8 25110 -?5 .3 n.oo 65 1 . 3 3 . 3 Sunny 9 21100 -22.2 o .oo 60 1 .11 J.l Sunny 10 21100 -20 .6 0 .01} 70 1 .11 3 .0 Hlqh Wlnda 11 211110 -16 .7 O .OCI 8 5 1 ." 3 .0 Sunny 12 2300 -18.6 0 .00 90 1 . 5 3.0 Sunny 1 J 2 ]()I) -16.7 0 .11!1 90 1. 5 3.0 Sunny 111 2200 -13 . 1 0 .00 100 1 . 5 3.0 Sunny • 1. Provlslonel date subj ec t to revlalon by the u .s. Geological Survey , Weter Resource& Division, Ancuore9e, Alaska. 2. Averege velue of the tl11ya lllnl•u• end 111exiiiHIII telllpereture . 3. Based on one lnauntAnoous -•sure111ent, usuAlly taken at 9 1 .111 . dally. 4 . Visual estl••te besed on one Instantaneous observation, usually et 9 a.111 . dally. • Channe I f r r.zen over . I~ 1!. M C Cl N ~;; U L T A N T B > :1: NC . S U Ei :J: T N A H Y I> I~ DE: L E C T I~ :1: C P I~ U .T E C T MONTHLY SUMHAFiY FOR DE V-1L CANYON WEATHER STATION DATA TAKEN DURING Nov~f"'ber .. 1982 ) IES . IES . •• MX. MX. DI\Y 'S Ml . IUN. I£AH ill liD III MD "lMD WST QJST p 'IJil !£AN I£Aij SOLAR DAY mw. T£111 . TEJIP . til. SPD . SPD. til. SPD . III . IH DP PIECIP EMOGY DAY Ia c IE' t IE'C IE' IVS IVS IE' IVS % D£'t "' llt/SQII 1 .2 -9.1 -4.5 121 1.5 1.8 113 7.6 ES[ 73 -7 .5 tHt 653 1 2 -.11 -9 .6 -5 .1 121 .II .9 185 3.2 s ~ -5 .8 HH 1115 2 3 -2 .7 -12 .9 -7 .1 116 .5 ·' '" 3.8 DE " -14.5 Htl 4-41 3 4 -.3 -5.5 -2.9 125 .9 t.t 171 11.3 E5£ 75 -7.2 HH 5b8 4 5 -2.6 -14.3 -1.5 135 •• .8 132 2.5 SE 89 -1.7 IHI m 5 II -11.7 -18 .1 -14 .9 182 1.6 1.7 182 4.4 E 88 -111.8 1111 423 • 7 -tl . 9 -18 .5 -15 .2 194 2.1 2.3 121 5.1 ESE 81 -18 .1 Hit 423 7 8 -7,, -t3.o -11.5 114 1.7 1.8 191 5.7 ESE 82 -11.3 IHt 341 8 9 -5 .7 -1.5 -7 .I 194 .I .5 121 2.5 IISii 13 -38 .1 IHI 311 9 11 -5 .9 -13 .7 -9.8 188 1.6 1.7 175 4.4 ESE 79 -11.3 Htl 315 10 ll -3 .6 -6.5 -5.1 111 1.3 1.4 tt7 3.8 ESE 41 -24 .3 IHI 318 11 12 -.5 -6.8 -3.7 131 1.1 1.4 137 4.4 SE 83 -...3 .... 493 12 13 -.7 -41 .5 -3.11 121 1.1 1.3 115 4.4 ESE 18 ..... 2 Mil 541 13 14 -3.2 -9 .2 -6.2 176 .7 .9 189 3.8 Ell 21 -34 .8 ... , 411 14 15 -..7 -15.3 -tl.l 191 1.11 1.11 195 4.4 E 71 -13.1 HII lOS 15 16 -13.0 -16 .9 -14.9 187 2.1 2.1 188 4.4 E 92 -111 .5 HII 351 1b 17 -15 .7 -21 .4 -18 .11 188 2.3 2.4 197 5.1 E 87 -19 .9 Hit ~ 17 18 -15 .9 -22 .2 -19 .1 192 2.2 2.3 191 4.4 E 78 -23.1 .... 390 18 19 -15.2 -21.4 -18.3 tl5 2.8 2.8 115 7.1 ESE ~ -23 .2 Mil 418 19 21 -11.1 -15 .3 -12.7 115 2.9 3.1 123 11.3 ESE 79 -15 .4 HII l3Q 20 21 -5.8 -11 .7 -1 .3 193 1.5 1.7 125 4.4 EliE 85 -11 .4 HI• 393 21 22 ..... b -7 .5 -6.1 113 1.6 1.8 119 5.1 DE 81 -1.9 HH 378 22 n -.8 -6 .1 -3.4 ll2 1.1 1.3 11 3 3.8 ESE 84 -4.4 HII l48 23 24 -1.1 -4.7 -2.9 130 1.4 1.4 138 3.8 SE 91 -3 .4 IHI 335 24 25 .5 -41 .7 -3 .1 138 1.4 1.5 159 3.8 SE 79 -5.2 IHI l5l ~ 2.11 -4 .9 -7.3 -6.1 116 2.4 2.4 111 5.7 ESE 76 -9 .7 HH ~ 2b 'D -3.8 -11.8 -7 .8 1116 1.5 1.6 114 4.4 E 88 -1 .5 IIH 36J 27 28 -11 .3 -14.7 -12 .5 181 2.7 2.7 171 4.4 E 95 -13 .8 HH 368 28 29 -5 .4 -11 .1 -7 .8 197 t.t 1.2 131 3.8 EJ( 31 -15 .5 Hit 258 29 31 -5 .8 -12.8 -1.9 259 .4 .7 'l1b 3.8 II 69 -12 .2 tilt 'l73 3~ IIOtllH .5 -22.2 -1 .9 114 1.4 1.11 113 7.11 E5£ TJ -13 .11 till 120bQ GUST VEL. AT MAX . GUST MINUS ., ~ INTERVALS 5 . 1 GUST VEL. AT MAX. GUST MINUS 1 INTERVAL 5 .7 GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 5 .7 GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 3.8 NUTE : I<ELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARl LESS THAN ONE METER PER SECOND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY OR MONTHL Y MEAN FOR RELATIVE HUMIDITY AND DEW POINT . --·~-~ SEE NOTES AT THE BACK OF THIS REPORT **••· -159- I~ ~ M CD N B l.J 1... T ANT S > :r N c . SUn :t: TN A H Y I) I~ DE 1... E C T F~ :1: C P I~ () ,T E: C T ~· 'LY S UM MARY FOR DE VIL CANYON WEATHER S TATI ON r~-TAKEN DURING Dece~ber, 1982 ( IIAX • lUll . IIEA.'I RES . Ill liD DII . DEC IES . III MD SPD . IVS ~. Ill liD SPD. IVS MX. CtJST DII . DEG DAT TE-9 . IDI . TtltP . DEl: C DEC C DEG C I -11.1 2 -1~.1 3 -tl . 9 4 -13.1 5 -4.7 It -1.5 7 t.B a 0.1 9 -.It 11 -4.3 ll -4 .9 12 -2 .3 13 -.I 14 -.9 15 .3 1b -.3 17 -2 .6 18 -11.2 19 -11 .11 28 -~.b 21 -1~., 22 -1 6.0 23 -11.8 24 -9 .1 2S -7 .8 211 -.8 " .4 28 .9 29 1.7 !D -.1 31 -6 .6 ltCNTH 1. 9 -!9 .9 -21 .11 -21.4 -19.7 -13 .1 -7.5 -u -1.8 -14 .4 -19. I -8 .7 -11 .8 -5 .1 -9 .1 -5.5 -~.a -11 .5 -13.9 -13.1 -15.3 -18.9 -20 .6 -17 .9 -16 .8 -12 .7 -8 .7 -2 .9 -.4 -.3 -9 .3 -11 .4 -21 .6 GU ST CU ST GU S T GUST -15 .5 117 -18.4 121 -16 .7 117 -15.9 118 -9 .9 109 -4.5 122 -.1 107 -.9 . 134 -7 .5 167 -11 .7 110 -6 .8 ~~ -4.11 131 -2 .6 145 -5 .1 142 -2.6 131 -2.7 134 -6.11 117 -12.1 189 -9 .a 113 -11.5 124 -16.9 083 -ta .3 m -14 .8 099 -12.4 105 -11 .3 112 -4 .8 131 -1.3 143 .3 145 .7 179 -4.7 Itt -8.5 Ill -8.2 11t ~ ,.J 1.5 1.2 2.3 1.3 1. 7 2.3 .7 u 1.6 2.1 1.5 1.3 t.! 1.5 1.4 1.8 1.7 1.1 1.6 2.6 2.6 1.8 2.3 2.1 1.2 .a .3 .6 1111 IIH 1.4 .a 28t 1. 7 133 1. 6 125 2.5 1~ 1.3 198 1. 9 110 2.4 lD7 t. 0 !0~ 1.7 277 1. 9 141 2.1 118 1.6 1 2~ 1.5 lD9 1.2 124 I. 7 112 1.5 115 1.9 117 1.8 077 1.3 122 1.8 123 2.6 171 2.7 072 2.0 101 2.5 lt9 2.3 l i b 1.4 tit 1.1 198 .4 197 1.0 :?Coil IIH IH IIU Ill I. 7 107 '..IEL . AT MAX . I.'EL . AT MA X. VEL . AT MAX . I.'EL. AT MAX. GUST CUST GU S T GU ST MINUS MINUS PLUS PLUS MX . !EAH CUST P 'VAL IIEAII sn . DJI . IH DP PREC!P IVS I DEGC 11ft 3.2 SE 92 -17 .7 Hll 5.1 SE 86 -21 .I IHI 4.4 ESE 81 -18.9 HH &.3 ESE ~ -21 .5 utt 4.4 ESE 93 -11 .3 •••• 7.1 SE 81 -?.9 IIH 9 .~ ESE 81 -2 .: IIH 5 .1 SE 11 -!b .5 1111 5. 1 EHE 93 -9 . 1 1111 6.3 ESE S6 -13.3 1111 6.3 ESE 77 -lt.t HH 5.1 ESE n -1 .2 uu 6.3 SSE 83 -5 .1 IHI 4.4 SE 93 -11 .9 1111 5.7 ESE 7l -6 .1 IHI 4.4 SE 74 -&.7 tttt 4.4 ESE ~ -7 .5 1111 4.4 E 78 -13 .0 ttlt 4.4 SE 81 -12 .3 !tHt 5.1 ESE 74 -13.5 Ill! 5. I E 91 -17 .7 IIH 5.7 EME 97 -21 .~ !!t! 4.4 ESE 75 -18 .1 tttt 5.7 ESE 81 -!4 .6 lt!t 6.3 ES£ Bt -13.5 tiH 4.4 ESE 81 -9.4 1111 3.2 SS£ 71 -9.1 1111 1.9 SE t l -~.4 ttlt 3.2 SE 11 -27 .5 !Itt lilt .et ~ -31 .b Ill! ltH Ill I -46 . 0 111!1 9.5 ESE ~9 -15 .7 tttt 2 I NT~R 1JALS 1 I NT ER'.':;L 1 INTER'.'AL 2 INTERVALS 7.0 6.3 0 ~ •• ...J 8.9 DAY 'S nAa EIIERCY DAY WH/SQII 2bl 283 :! 293 3 !~3 4 305 5 !...13 6 301 7 ~ 8 Z71 9 Z731D m 11 !II 12 328 13 318 14 301 15 !!~ !b 3e3 17 308 18 301 19 31~ 2' 311 21 3~~ 22 328 23 308 24 31 ' 25 !GO :!& 253 27 241 ~ 268 24? ~! 3C ~· 3~ 9143 f ~· REL~1IV~ HUMIDITY READIN GS ARE UNRELIABLE UHEN WI ~D S?EEDS ARE L~SS Th~N ONE MET ER PER S ECOND. SUCH READINGS HA VE NOT BEE N I NCLUDED IN T~E ~~I L Y OR MON THL Y ME AN FOR REL ATIVE HUMIDITY AND DEW POI NT. •~ SEE NOTE S AT THE BACK OF THIS REPORT **~• -160- ~ M C D N ~:; U 1... T AN T ~:; " :a:N C. MO NT~I Y SL~M A~l F OR DE ~~L CAN YO N ~E~T HE~ STAT IO N v Al A TA KEN D uR1 ~G J •nuar~~ 1983 1 -1.1 2 -1.4 3 -4 .2 4 -1 1.3 :; -li .9 b -lo .3 i -17.2 8 -22 .4 9 -23 .2 10 -2a .2 ll -1&.2 12 .... . 13 .... . 14 ... .. 15 ... .. 1b .... . 17 .... . 18 ... .. 19 -5 .8 21 -~.6 21 -4.4 2.: -a.8 23 1.11 24 -3.8 25 -5.8 Zb -1.9 Zi -~.5 28 -3.9 2; -5.4 3u -4 .u 31 1.9 nut.'iii 1.9 lli li. TEMP . ~~c -7.~ -4.2 -11.7 -2 1.0 -24 .9 -21 .1 -2:i .4 -27.0 -26 .4 -26 .2 -31.11 ..... ..... ..... ..... ..... ..... Ill ttl -7 .4 -12 .3 -1 1.3 -u).~ -i:i.u -9 .9 -9 .9 -7.3 -a .o -12 .2 -13 .1 -9.i -5.3 -31.o -4.2 -2.8 ~.1 -16 .2 -21 .4 -18 .7 -21.3 -24 .7 -24.8 -23 .2 -24 .9 HHI ttl I I ttHt HHI ..... IIIII Hlfll -b.b -9.1 -7 .9 -1'3 .4 ·t-.7 -11.9 -7 .9 -4 .6 -8.1 -8.1 -9.7 -b.9 -1.7 -12.1 •~s . WINi )iii . »EG Ill 114 ll:i U i 112 112 110 124 133 123 115 Itt ... ... ... ... ... ... 102 119 128 184 "u ~iQ li4 115 899 119 v9i :21 1J7 112 RES . WI H) SPD . 11/S HII 2.1 .9 1.3 1.5 2.4 2 .~ 1.' 2.3 2.2 1.7 .... Htt .... .... .... .... lilt .6 1.5 l.o 2.11 2.3 2.3 J.c 1.8 z.z 1.9 2. i l.i 1.1 1.8 AVG . Will SPD. IllS IHI 2.1 1.1 1.5 1.7 2.5 2.6 1.5 2.4 2.3 2.1 till . ... Htl .... .... .... .... .9 ... 1.7 2.6 2.7 2.& 2.3 ~-1 z.o 2.1 2 .3 1.9 1.3 1.5 MX . GUST III . liEG Ill 111 117 192 192 lOb 194 188 109 121 140 • •• ... Ill Ill HI ... Itt 274 111 124 i89 131 111 112 123 U3 131 124 114 115 tou GU S T VEL. ~T M ~~. GUST MIN US GUST Ve L. AI MAA. GuST MI NUS GuST VEL . AT M A~. Gu S T PLU S GU ST VEL . AT MA A. GU S T PLuS MX . QIST , I VAL lt£AN S?D . DIR . IH IVS 4 Hit HI 82 5.1 C:S£ 78 4.4 ESE 71 4.4 ENE ii 4.4 £ i9 B. 9 ESt: b7 i1 .9 Est &7 S.l ESt: oo 5.i sc: 57 5.7 S£ 52 &.3 E fiB .... ... It .. ..... It tilt HI II .... ••• It IHI HI H tttt Ill H tttt HI H 2.5 S£ s~ 5.1 ESE 82 4.4 SE 54 7.1 E ·b3 a.3 Est 'S7 9.5 ESE 33 8.3 ESE 42 7 .& ES£ 59 ca .J Eli 74 . • ESE 61 5 .1 Bi &.3 ESt. &2 4 .4 S£ 73 9.5 ESE 05 . -~.a ~.9 -11 .4 -18 .& -2~.D -Z2.5 -25.4 -29.1 -Jv .4 -29.7 -32.1 ..... ...... Hill ..... IIHI ..... ..... -1o .B -10 .1 -14 .4 -19.2 -17.2 -20 .S -18 .8 -11.3 -12 .3 -11 .5 -11 .& -8 .7 -4 .9 -17.3 ~ INT ERV ALS 1 IN TE RVAL 1 INT Ei(v AL 2 Ii-lT ERVA LS PI£C 1P "" .... Hll .... .... .... lflt .... till Ulf .... .... Hit .... .... .... .... .. .. .. .. .... .... ... , Hit .... .... .... .... IHt .... .... .... .... .... 7.6 8 .Y 7.0 5 . ! DAY S SOL.:.R EhtiiGY DA f w srm 2~ 268 253 21a lia 29 0 34i 30 3 3o:l I 2 3 ' loS 1G 311 11 .. .... 1 ~ ...... 1j .. .... 14 • ..... 15 • ..... 1o .. .... 17 • ..... 16 2b9 19 3SB 2u 42& 2: 416 C2 ~ ,;, 60 3 ~4 55i 25 so;; 2o 4i i 2i 5Ji 28 4'i it 21 53 3 :;a 573 31 9i l S ~Gf ~: ~£1 ~TIVE n u n iDITY ~E ~~I ~G5 ARE UNRELIA BLE ~~E N ~IND S~EEDS ~~E LE~S 1h~ GNE h[I~R PER S ECOND. SUCH REA DINGS ~A VE NOT BE EN i NC~uDED I~ T n~ u~~L · uR MG NT nL1 MEAN F Q ~ RE LA TivE n UMI DI TY AN D ~E~ P O I~T . ~k~• S~E NGTES AT I~E BA CK OF THIS REP ORT ~••• ... /'f?porl: ;t/S"t '-1,.;; f'/y.c, /rt' _r~4 /9 tJ 2-p _? •• , ... 2 fiLI((IIl, I LISII fiLI[(III 1 11'011 LOCAL CLIMATOLOGICAL DATA 1(1 s•c Cllfi&C f l(f IISI lloatlaly Sammary -: ' I 2 , • ~ • I • • 10 II 12 u u IS 16 17 II I. 20 21 22 2) 21 2S 26 27 n z• JO 1111( r• ILISIII ••1 IllS · ••'•• "'u ':' """1111111 :~=1 •I•D SIIS•t ll so• '0'1'1 IISl l~"r 'fK i'tLLl ',_--,.....,,...--fMI~lSSIIli-~::-'',.....'-Mr-I'P'I'I.,..,r.t---~-t-'-;!-'TI•_S-f• .,.__T'"--,.--~-.,.....~--1-.-• .,--!-.S~'llllln '~-II -_. :: ,.!~s • -.. • 0 ••:-ll''.ll.\1 ,.. C-~ ) ~-~!~ I[( II -U.. _. ;~ ; a 1 IU 'fUll S --! i "" "' ~ i_l .,. -_. -a -: S .. IL 11 j (L(' a a "' & ~ i 2 II )] 21 22 21 I) ,. 21 26 21 JO )) lS ]) I~ 16 21 • 11 21 2S ]I ,. JJ• ,. lO 21 10 lJ 20 • • 1 I = = ,. lf ll: ~ Qllt ltU -~ ~ ~ ]~~ • • :; • "' !! • .• r -~ -• 1 MISIIII • W • W r(( 1 ., _. .• -. • -• • .. 1; • \11011. •n 1••s = • 1 !_ ••o•E ;: ~ = i: ;: * ~ : • W 71 ;; ... 7.~ ' aa 1 rll5 '* . I : " s L ;: ;r • .1"'. •1 , S " r• , 10 II 1.2 I) U I § 110 • -• ~ • 1• 2S I 22 II 2C I 1 11 ·• 11 t IS -1 12 C 11 ·I II -· , ·II • ·11 2 ••••• 11 II ·1 ~~ II 22 2 11 21 ] II 2S 21 ~ 26 27 10 II 2C 22 2' II 2 1 • 21 1 26 ·I • -11 1 ·S 6 -11 J 12 ·S 2 ·21 -·· ·21 ·16 ·2S ·I ·21 ·21 10 16 • • 21 ll I II 21 21 12 ,, 2~ 12 II 21 ll• 1. 21 16 2S II 21 16 21 10 16 I II S II I S •I · I I 16 I II I ,. 2 •s l ~ IS .. .. .. 'I .. I I " 1. 20 20 21 22 22 21 2 1 21 21 22 22 22 21 21 20 2~ 21 :, 21 12 2 1 p• 2• ~~ 1 , • • ~• 01 02 • • 21 o o 1 1~ ~s : 1 1 1 1 2: I I I 10 ~~ I I I ll Cl J ' 21 ~0 0 0 S 01 I I • S l ~~ I I 1 4 ~ II I 0 ' 6 I ~2 J I I .2 I l IS 2• • 1 • n ~ 1 ' o • • 1 • ,, • I • 02 . o• 1 .I • ,, ~~ 1 s 1 • n 01 20 I I '. II ~2 I 0 I . l 16 16 02 I 'II l • 6 0 .2 11 01 01 .I • 1• 1 s , s .• • 11 OJ I ] ' ll I I I 6 Jl • I l' ., s 2 1 1 .. • 16 • • 1 ~~ I I ~· 2S 6 I 2 I I 1• 02 0 I ~· .. • ) • ) 1 12 )( 0 0 2' 6o I ~ 0 S 1 I t U2 ,, • ~I I 1 2 2 2. li 1. 01 J ~· " s i • J ' .. 01 0 0 II• •• Dl • I I 0 . 2 ,. 0 I I I •O 1• I l ~· S I Jl J 1 1 ~ I 2 16 I I ~· 0 I JS 6 • I . 6 11 02 0 I ~~ '! 36 • 0 1 0 S II IS o t ~~ •s 3S s s • l •• 12 • • ~· ,, ~s 1.• • o , ,, ~ 1 I t ~~ U .S . • ~ ~ I~ .2~ ) I ~ •• I c I ,, 2 ~ ) 1C I 10 I s 2 J • 0 I I 10 I 10 • 10 10 10 II 10 10 12 10 • ll ~~ I ' :; I ~ I :~ o I 11 :: I :: ~~ 'I 10 I 22 ·~ I n ·: ! I !: I 1! ~ ~:I 10 )0 1 1 1 1 -·., IITS t--'-''R'1H..:n-''"-"l't+----r_,F-''.::;IIII= ... ;.;;""o;"''"T"TI'+'="&I"-i 1 s.• · sL• I __ r_g_ l g 1 _ll_ •• 1 ·: • ;~:·~~~·· 11 ·0 ... • ''""'' ... •• • ,,, ' ' ~ ,. ·0 115 . -I If IITS ~: .. 1~1'i,'l ~~ :~.'fLUlS I -II[SI II 11 ~ .. III[S 51(11[51 I(JIM II 6IIUIC or •tl lfUII l" .11111111 l • I I 0 "'HI•!· I 1.. SIIOI t tl "''I lS I*, ICI 'fLL(IS II ICl M0 0111 In Jll 0 _,, !,·JG I I z,. 10 l' JO 10 10 1 [1111[11( FOil TM( 11011111 -LiST OCCUIIII(IIC[ IF 11011£ 111111 0.. T IliAC[ iiiO\IIIT . DATI Ill COLS 6 liD 12·15 &I[ .I&S[D 0. 7 01 11011[ ot5E~wl l!OIIS &T J·MOUII l•f[IWILS II[SULl&I T wt-o IS TM( •ECIDII S~" :r wi•D S'££DS 110 DII[C TIO.S DIWIOED It TM( IURI£11 or otS£RoA TIO•S 011( or IIIII[( 111110 SI(£DS IS 611[11 Ulll)[ll FiST[SI filL[ :ast[Sl filL[ -NIGM(Sl I[COI0£0 SPEED FOI WII ICII & fil L[ or 111110 PASSES ST&TIDII IDII[CTION IN COfiPISS POt•TSI . FASTEST 08S £~vE~ ONE II I.Ul[ WIND -MIGN[SI ON[ IIINUI[ SP£[0 IOIII[CT ION Ill l ENS or D£611[[S I . P[ll GUS!· MIGII[SI IN SI AN l iii[OUS WII O SP£[0 II t &PP[AII S t• IN[ DII[CI ION CO LUIIII I [IIIOAS III LL IE :J RR[tr~C a•o CIIA.GES Ill S~ARI Di l l II ILl IE AIIMQ IAI[O IN 1•£ lllll vl l 'UILI CUIOII • ALSO 0. [IILI£11 D&T[ISI M(A" FOG : fiSIIILIIT lit filL[ 011 LESS . ILilll [IITIIIES 0£.01£ fiiSSI•G OAT& MOURS or OPS . RAT IE REDUCED 01 A YARIAIL£ SCHEDULE . I C[I Ti fT T•IT T•IS IS &I IHICIIL PVILICITIOI or Ill( I&TIOiil OCU•IC 110 ITIOSIM(I IC IOI IIISTIITIOI, a•o IS Cl-•'I L[D FIOR ltcOIOS 011 FILE IT TN( ltTJoaal CLIIII TI C C[.T[I . &Sti£Ul lL 101111 CIIOLII&, 21101 n 0 a a IIIIIIIL ICUIIC Ill /UIIIIIIUIIL 1111 111 /IIIIIIIL Cllllllt C£11(1 IIHS,IIIIt IIIIIISIIUIII/ llflltallll SUIIC! / UI(IILL!. IIIII Clllllll I ~11,.;/ ItT IIG 0 II[( TOR IITI O•t l CliRIIIC C[.I[A DH :nz ·al ct::oa . llHI& •Ale (; ... I I ~P O R I LOCAL CLIMATOLOGICAL DATA •£1 I IC :O I I IIC I A(l OIIT Moathly Summary 111111111 u• 11 • 1 1•11• 1u• n· • (L(Illlll 1 ~1 H\ F((l I E"PEU IU R[ •r D(U£1 OITS •''"'" '"s ~ "ltl'lllllll :~= 11-0 SUIIM II[ llf COY(I l iS( .s"t I '" 'flll IS NS!IIl I ".F H I I f (l l •~r ·-•• l ll(an '" .. :!! I I .. ...1W.:.' -~~ l 1-.:tSIOitf IC( ,_ ~ IQ S --~ ::;l: -~ :;:~ =~ I IC( l(ll(IS ~ ! i ;; ~ ~ --; --= s .. ll u i -[L(f • • ... • ..... -.. ------.. 0 ! I = ~¥ -· :& ... .... • lol.l l( OI U -~ lH ~ ~ = -... -· --,... ... -;; = • .... ...... !! .. -... -· -· 7 IUS ISIIII ... r[(l ~ .: --..... -.... -:o ----.. ., _ ... -; "' ~ .. ..... ·-= iii ..... -· =-~ ~~ • 11101( ... ~ IICICS :'lll ·~ liOH ... ... -. ~z ~~ .. .. .. • .. --=· ;r; := " I l ; ; .. . ;; • -o .. .. & .. ..,_ ~-~ llll~· .. "' ... ~ &-... I 2 l • 5_ ~ 11 71 , 10 " 12 I] .. 15 ~~ 17 I I li 20 2 1 22 I t O . I I ., 0 H 0 I 2' 01 . ' ' It ~I I . I • 0 1 I 0 I I 2 • • I' ••• ·II -II 11 • 2' 0 0 2' II .I 1 I 2 ' I . 02 0 i I I •II -~ • I. ·II 10 ~ 2' 0 0 2• o• ~~ I 2 s • 12 a 1 I 0 0 I • I • ·II ·I ·I 2 • 1 •• 0 2' 0 0 ' I) ~~ 12 0 I 2 . S 20 H , • • s a I. 22 " I l I) 0 2' I I ' Sl ~t II S 1t I 20 Ol I 0 :0 s • l1 27 2' I ' II a 0 21 0 0 ' s• -~ ' I • • .. a l • ' l. H ll 2l l2 0 21 .11 I I I 2 H 10 7 I !I )I ll 2l ll 12 ~ I 21 .5. l . I • 10 ~1 I I I l I . I S 10 ,, ' II " 2S IS 2 1 1 0 0 u 02 I ' 12 ~~ I S I • I. Is ' ' I 0 11 I " I I H 0 25 0 0 ' 5• ~~ s 0 • 0 • 01 5 I I 0 " 21 0 .. s I s Sl I 25 0 0 I H ~~ I , • 2 " )I 10 • II 12 l2 2S 2' 20 21 a 0 21 0 0 I S I ~· 10 2 10 • I. H 10 ' 12 1) l2 22 21 II 20 I I 0 21 0 0 I u ~~ • I ' . I . a 10 I ) 11 )I 21 21 " )! 0 21 0 0 I) 02 ' .. I S ll 20 21 t ' 21 17 0 21 0 0 I Sl ~~ I ' I 2 ,. 02 10 I s I . ll 22 21 20 21 )! 0 21 0 0 • .. ~2 10 • 10 , I • Ol ' I . II )I 11 21 I] 21 .. 0 21 I I , 01 ~~ • I •. s 12 ll 10 I II 11 t2 I • 0 • Sl 0 21 0 G ' 20 ~~ I t I 2 • 01 • I t l 1' a I IS I ' so 0 21 0 0 , 00 ~· ' • 10 2 2l 02 10 I t ' 20 21 tO t' 11 II .. 0 21 0 0 , 00 ~I ' I ' s t . 0 1 I 20 2t 10 ·I • ·• .I 0 • 21 0 0 • Ol 2 2 1 12 I ·10 .. ·12 ·11 n 0 21 0 0 I IS ~~ I I s I I ll 0 22 21 I S 1 , I • 2 H 0 21 0 0 • 'I ~~ ' I 10 1 1 s a 2 11 21 22 12 I 1 ' ' I I 0 21 0 0 ' .n ~~ I I I I t2 0 1 I I 21 2S 1l t1 t l 10 t 0 11 0 21 0 0 , )I ~~ I 0 1 . I 11 0 1 10 I 25 21 ll 22 21 20 .. 11 0 21 0 0 ' n ~2 I I I II I 11 01 t O I 0 H 1 1 )I 10 12 21 2' )) 0 I 21 )0 1 s ' II ~~ s • • l I. Ot t O 2 1 21 II l2 lS 11 10 0 n 'I I 12 02 10 11 2! •1• 12 ll• 2' H 11 0 21 01 s , 11 ~1 I ' I 2 I) ,, I 0 2' l~ n ~~ ~~ ~! 2' )I 0 ~~ I ~ 2: n ~t u • 2 • ~; 1: 10 2t 11 0 0 '~· 10 '0 .1!... ;vo I VO ora IOU 011 ou r I N •o• •· ro a l sv• lu• .. , )II .. , ~ ..c• or a.u 1n I O Ol •• ,. "' ." .. , 0 I .,, 0(1 Ill. I ~ICI"UIIII II : 1'! ""'·· ... .. ~ .. ~. ~~ ll , , , 10 I • J l 0 • tl IICO 1 o_o, . ~ IUIII(I or ous II I ~0 :~.'llll l\ 1 51(11(11 II ll 1101111 .. DillS .-u1u1 IK"• 01 .-ouao or Oil 10114. IU&I "U• T "' 010111110 I "' ~. I OUICJIIS i atll 0 •t!C I" I !01 !IIIII. 1C 'f• II 5 .... IC! 'f:ll(ll 01 IC I .. Dllf ' .00 ' lJ• 11" •II' II( I 0(, I(U f .I I ·II I I . I 10 I 0 20 I -~ 1[11 ~ Oil II I C lOUOT I c ' I I (fl ~(ll( ~OR .I w( IIOIITM ·LAST Q((UAA[IIC ( IF 1101( !Mill 011(. I TAl(( IIIOUII T • I LSO 011 (IRLI (A OIIE I SI . w[IH ~OG : YI SI81LI I T Il l IIIL( OA LESS . BLnl (IIIA l (S 0(1101£ IIISS IIIG OAil HOURS OF OPS "AT BE RE DUCED 011 I VARIABLE SCH[DUL£. OUI I ll COLS ~ 1110 12 ·1~ lA( 115[0 011 I OA IIO A( OIS(AVli i OIIS AI l·MOUA IIII(AYILS A(SULIAIIT WI IIO IS I H( V(CTOA SUI! Or Wi ll() SP£[05 1110 OIA((TIOIIS OIVI C:O IT IM[ IIUIII[A or OIS(AYI TI OIIS 011( Of IHII(( Wl-0 SP((OS IS GIY (I UIIO(A r t s .t ST II I LE · fiST(S1 IIIL[ • NIGHEST A£COA0(0 SP((O fQA WMI(M I IIIL( or 111110 PASSES STillOII I OIA(C TIO II Ill CO"PISS POIIIISI r 1SI£S1 OIS[RV(O 011( II IIUT ( 111-0 • MIGM[SI 0-E 111-UI( SPEED I OIA(CI IO-I ll 1(11 5 Of OEGA((S I P[AI GUS T • MIGMES1 IIISUIIIlii(OUS IIIII() SPEED II 1 I PP[AAS Ill IH ( OIAECIIOII COLUIIIII . [AAO AS WI LL IE COA~£(1 [0 All() CHAIIG(S :Ill SUMAAT OAU WILl I£ AIIIIOIAI(O I-TH[ ANNUAL PUi ll CAll 011 I CEA11rT T"AT THIS IS AI OffiC I AL PUIL ICAT I OI OF IN[ I ATIO IAL OC(AII C &10 ATR OSPN[I IC AORI I IS TIA TIO I , AI O IS COR,IL £0 fAOR IECOAOS 01 FILE AI IHE UIIOIAL CLllllllC CUIU. ASNEYILL(, I OI TM CAI OLIIA, 2tl01. I ~1-bJ n 0 a a II II OIIl OUUIC Ill /[II IIOUlllll UTI lii /U flllll CllllllC C(ll[l IIIOihUIC UAIUII U IIII 1111'11111111 Sl iiiCl / IS I (fiU[. IIIII Cl llliiA ACTI I& OIA(CIOI I I IIOIAl CLI"AT I C CEITE I -1 7 8 - ... Jll 1 ,.] lH l l IILI!t'll . I LI \1& IILI[(I U &IIIOt : LOCAL CLIMATOLOGICAL DATA I(& \fC CII1U( I ~[I 01\1 lloathlJ Summary --I I 2 ) • s • J • • II II 12 ll .. IS I • II " I. 20 }I 22 21 2• 2S 2. 2 J 21 2' l~ -= ' Llllllll( U 1 II • I LMIIUI( ISO' U • M ILIUIIII 15ltUIOI HS 1111 ll 10 }~ 10 2• n ·I 10 ·10 . 0 • I I ·10 • 2 1 • 12 ·10• • I•• . 12 ·• ·I 2 ·) • I • ) J • I ) • 10 2 ll 2S 2S JO II I I I) 1S 20 21 2 1 2• ] ,. ·I 0 •II 0 . I a • 11 22 n u I • • 11 21 22 " II 11 ))o -· .. -:r -· =· • 22 2J 22 2J 'I 22 2 ·I ·1 0 • 1 1 • I • • 20 ·II • 21 • )0 ·II . 11 ·II ·II 0 ·S ·1 2 ·• • I • • J • ' I o II 21 20 ' :I I. II 2J II I I ' 1 ·I 0 I • 10 , ·S • II II 11 I s 2~ ~~ I. ,. 10 u 21 IS 0 21 0 D ' 2 a I I \ I \ ' I 2 02 ]\ 0 2) 0 0 1 0 I ~ • I • S I 0 0 I !' 0 I 2l H J . I 1 I 0 • I I ' 1 IS 0 I \S 0 H 0 0 12 02 H 0 H 0 0 ' 10 I I J 7 • U OJ JS 0 H I I I ~-D I l 2 I 1 1 01 II 0 2• 0 I 2 I II 0 2 I l 1 J l I I I 0 H 0 0 1 I I ~1 I I l ~ II Ol I I 0 H 0 0 1 \I ~2 I S ' 1 II 0 I U 0 H 0 I ~1 U ~I 0 • II & 2 I 0 I S I 0 2• 0 0 •2 0 2\ 0 0~1,.~) •2 0 • 2\ 0 0 ' I' ~2 ol o H o o ~' u ~~ I 0 0 l ~ 0 0 ~' I I ~I 1s o 1 2 ~ 12 2 J In •• • •· ' : r 0 1 1 2 ~~ 1• • 10 0 2& I I )! 0 I 21 I 0 I I 1 I I I 11 0 12 0 0 1 Sl 1 ' . ' \ 10 1 I 1 I ) I ) 2 ' 2 ' ~ ~ 2 J 1 I 0 1 1 2 1 ' ' ' I ' s ., •s .s H I ) 0 12 0 0 ]0 0 0 10 0 0 '\1 • 1 l I I o•Hl2 1 2 1 o ' 21 D~ 2 o 2 2 )! I) 11 II ;~ 0 )0 0 0 " 0 0 ' 0. DT I I S ' 0 2 1 01 II 02 I J 02 I) Ol 11 IS . l Ol • I I I S OJ I I IS II 02 11 B I 0 l • 2 1 I l OJ 11 n I. 02 u Ol ' 0 1 I 0 ll :~ ~~ 0 H I : • UO 0 C I I I I LMT ~ CLOIIOt I a •I•• •as11 \.1 ' :''1' i t [1 1•\• ·~ I ·o I~ ~ ' c 0 I • 10 ~ • 0 ' • ,: I 'I ' I ' I }0 ' I 2' ' o 2: I c 1 J I ~: . ~ I ~~ ! • ~~ I 1 [Il l("[ fOR I ll[ ftOII!It • LIS! OC CU .. [IC[ II 11()1[ lM&I 011[ l TUCE IIIOU-1 OIU Ill CO\.S. 1110 12·1\ II( lASED 011 I 011 ~A[ otSE IYII IGIIS AI )·NOUII l ll l(loiLS I(SULI III I MillO IS IM( Y(CIOII Su " or M l ~;) SPEEDS 1110 011((11 011 5 DI YI 0£0 II I M( 1111111£1 or OI SEi~IIIO-S OIIE or I IIII[£ WIIID SPHOS IS f.l1[11 U&IOE~ f ASI[SI ~IL £ r a st(S t IIIL£ • MI511£S I IECOIID£0 S'E£0 rot lll<ICI< l III LE or 11 1110 PISSE S S i ll! Oil I OIIECIIDII Ill COtiPASS POl IllS I raSI[Sl OIS[iY[D o-r IIIII UI( WI liD • HlliH[SI 011[ "IIIU!l SPIED I DIA[C I 10-1-I(~S or DEGAE£5 1 P(Al GUSI • NIGM(SI IIISiliollii[OuS •1110 SPE£~ II lPP[lAS Ill IH( 011((11011 COLUIIIo l (atOaS •ILL 8( CO~A[(t (O liiD (M&IIf.[S II SUIIIIlll OliA tiiL L I( AIIIIOi li[O l lo Ttl( UloUI L PulL I (I II 011 • ALSO 01 [ULI [R Oil[ I s I ll(lff lOG · YIS I BI LI IT lt 4 II IL [ 011 lESS ILIIIC [III AJ(S 0(1101( II I SSIIIG 011 UIIII{POIII(D 011& MOURS or OPS IIA f BE REDUCED 011 A fAAUBLE SLHEDUL[. I C[ll liT I Nll I MIS IS ll DH ICI AL 'UILIC ll i OI or Ill{ IA II OilL OCUl i( 1110 UIIOS'M{I " 1[(0105 D• rtL( at Ill[ UIIOUL CLIIIAIIC DIU C[lf£1, ISNEYI LL(. 101111 CUOLIII, 2110 1 noaa -~~-Gal( • ·-~~-.. , .. ". ... _ ---·-11111.4 111. ala ---~~-... Ill -t'7Q- -~~-~-"' .,. QWI(W -·aut-~1· IOIIIIISIUilOI, 110 15 CO"P IL (O rtOft /~1-/rJ ICIII' DII(C TOI UIIOIIL CILUIIC nara C£•1(1 a5/rr1 TABLE lt.8 RIVER STAGES AT fRE£ZEU' MEASURED fROM TO' Of I C[ ALONG BANKS AT SELECTED LOCATIONS Open W.t.tr E IIYIL I on .... I_ Olach1r9t Act.UII Approxl .. t.t Top or let Correapond I nt DIIChlrgt U River Dlt.t or Rlvtr 81nk [ IIYil I on• t.o St191 Gold creek WL Locuton frttziUR l 0. I ' 0.1 lc:ral ( c; [II 11t8 .9 PorUgt Creek 12/21/82 81t1.0 839 .5 27 ,000 2,1t00 11t2 .1 Slough 21, H9 758 .1 755 .5 1110.8 Slough 21, LIU<•!ilt 735 .1 7ll.J U6.6 Cold Crttk 1/11t/81 687.0 6U.3 16,000 2,200 135.1 llough 11, Mouth 12/6182 671 .5 2 ,100 110 .9 llough 9, lhtrtlln 12/1/82 622 ... 620.1 lO,OOO J ,OOO 128.3 llough 9, Mouth 11/29/82 16.9) J,OOO . 127.0 Slough I, Head 11/22/82 '79.3 3, JOO : 121t., llough 8, LRX-28 11/20/82 556 .2 '59.3 ltfi,OOO (IUftll) 3,1100 I 120 .7 Curry 11/20/82 527.0 ,2 ... 6 28,000 J, .. OO \ 116.7 McKenzie Creek 11/18/82 lt91.l 1,500 11]. 7 Lent Crttk 11/15/82 16 .71 1,700 106.2 LRX•11 11/9/82 U .l) 11,100 10l.J LRX•9 11/8/82 1811 .1 lU .9 111 ,000 lt,200 91.5 LRX·1 11/5/82 ~q6 .11 ltl5. 5 11,1100 • V•htea In breckeu 1 1 rtprtatnt. relative tltvet.lona b1atd on 1n 1aau.ed datu. rro. 1 ttllpOrtry btnchMrk tdjlc tnt to tht altt. ~ ~ ~ ~ ~ ::t ~ ~ "' :') ~ "" ' ~ "~ ~ ~ ~ "' ~ ~ ~ '\ ~ I ~ I 01 (I) I rebruery If. 1983 Walana Portage Creek Go ld C reek Curry LRX-3 April 12. 1983 Waten11 Portage Creek Go ld Creek Curry LR)(-l I AtiLt 'L I 198,......1f~ER .. TIII~S ~EM~ Malnste• Ice Thlckneues (fl) _lUn_ 21I1L ~ 1.4 '·'· 1.] 1.8 2.0 1 .8 l.O 1 .8 1 . l 2 .0 ].6 ].4 1.9 2. 1 3.9 4 .2 11 .0 2.9 3.3 3 .8 2.11 2.5 1 . 6 1.CJ 2.9 2.8 If. 1 2.3 2.2 2.6 Hu111ber of Hotu 2 1 5 5 4 5 19 6 6 1 7 Water Sorrace E lev u i on 11136 .8 834. 1 684.6 5 22.1 342.8 1436. I 8 33.5 682 .9 521.9 llfl . 5 • Average underlce water velo::lty was Haaured at point or 11101t rtow and conatltutea an average of the vertiCil velocity profile . Average • Undet·l c e kitll.LYIIIOC I tY 2.6 2.2 4 .2 IMIZA·fJAICO SU$/TNA JOINT VENTUifE suBJECT R; lrf, Ire ),1 ~ ~ t' I !_?1'2-rj.J s;n,~bha ~ FlU NO .IS63, 14 z DATE?S ~ 8 .? COMPUTED i/ /A/;? CHECKED /?u;Jmtte" 1//Jdl 1/:;lu~ 1/v,,,;J R;r1c> hrJQ'f 5jmc/lc?fu,. ~ f' p lv~e :_ /. Ope/?-vv.1 k,. I; fc)f" - fr~,f kr (tJ~Ihui!r.l r /,11Ad Y€'/0(·1;.., (4" 2 Y/..~) wfml_ ~ 12 -z o ~!t 2. G/Jt:t~/f {tJtffiCt~.nl h, 7t?CJ Al/m '- (;d l!l ..r/t.~f" 3 . Ut/;r~ I ,t;,pt/p A/1 . f?;, t9·09 ,P/df/'tff/~ 1/ ~c1tlt7 eaje 4. uthr;;l 1/~hJ£/Ir, h, 0 ·9 m/r t1r~t:l'er /t e d fj7 trJ ..>//J d n tJ.I 1/ -z 8 - ~~J,;.J'r f/e/ac-/,4 ; tn/r 5/vJ) /hr C ~#Pr.f.: t/,5 1 ,, /cP ~/'O.t;;ly .: 0 ·~ EXH18!7S :;~v-- ·---_ .... -·------·---· -··- i _(' _., Fxlub/f I t o ,_ ITATIONS -~~ ·-~•• • c:o•n ~ --fiiUNG ·~-~·· ... ..,,-..,. .... :::... ., .. ... ,.. ... """' .... ' .. , .. "_. ... , .. -ln ...CIUI U ~ .. -..-···--" --~ ove c .. ••• ,. --c-.•• f'I G. I -~US ITNA PROJECT IIYIJHOl.OC IC AND IIYDRAULIC ST UiliP.S RF.LAT!O TO ASSf.SS HENT OF PR OJ ECT lHPA CTS ON AQUATIC F.COSYSTEH f.NO P~OOUC T L7 ACTI VITIES Or SU BTASK '• TASl 42 Aa•ua:uHI impActA on w;1te r c h e,.i a try will no t be a ujor iaaue I -.-. --·---------.,..- ~~ :. -----· + .. -.. ------+---~~~ ---~~ -~~f : .:~ --; .----~~"' . . I . : ·:_:. !-= . ~: -·: _:...::...-.:-:·1 .. -.~ fUI/. . . j . : : :-.J. . . ~----'----r-----+---' I . ~--~~~---L----~--4----~---~~-~~-~---~-- 1 • -- 1 ' ..f2L.:__ - ·.: .. : Jh~.t. -··-. ·• ·-----·- S/JSITNA !riVER P/f'rJF!LES O?E/1 WATER CON/JI T!OA S ---,R/rE-r Bed Ele.- ----Cl/tnp:;f~d WSE/. fOr 970~ ds ----Com,Pv~o' 14/SE/. i;r 3:J.J/ c~ @ OIJ;;>rt'ed W5EI. "!&r 1'700 ciS (J) ()!Js nyed ~ISEI lbr 3tJt/tJ ~ I ---·--------·---'T-",-.--r--,-."y-.. ,7 I . : .. :! ·i .. 'iheef_Zp{8 ! ;;4 . --·-~ . ~/ . , :·--y . : :·. . _ _:_--~L-j m~:~ . / i~ ·-·-ii : . ·-· :··; --.·-/'. ·--: ·-··: -.. : .... -.·.--.. · _:l_: __ ._._-1: _· ·-.·_...:_: ~ -. _·_:: __ : __ :l _~._ . , / _·;:r . . . .. ; . : .. I ~; ~: ::: • :.::_. :. : :: -- --· ~~-/ , , I .. ~. ·-.. •-.. . . , . . . . .. -. / .. . . . : T ·-·-iT//-·-, : :~~~: (:: .. ·_1~~-_--:: ::·:.:· !" : > :~:::/ T: 7 · /: : .. ~: ··---i·-----l ---~ :_/::: .,.,., . . .... 7 . .1. ... . -~ : _, . ······-Pr':--····· ·--··------· ... -····--..... . . 1·--:-z··;· -·::-7.· -.: . l : ·:-: /// : : :. ·:_~-?_~-~·?_:>:::; -~:~ :.·:: =~==:::~=~ ~: :: -~:.Z:.< .. --~-:: ~~--~ - 1 --:/: 1 7===:~=: --. ~~~L ~~~~~~-·-=: i ·. ~~sr~~-;0';~::=~ I .. -;:· / . :·/. ~. :.··= _ _:::· -~ :_ _:__-::::_· ·=--::~_:::~ --=--:~:_ =::.r -· .. __ tltJL : . -· i :·. / j ·/: ·-. :.:·:=-:::· ....... ::::-;,-.-:-:=::....::..:::--:-:-.:-.: · --: ~ : 1-r.:::_-=/-~~::_:: l . I '/. y / ··: :·..:::1-;:..:::..::::: ~-·: ............ ··------· . L .. -/. ~-~-. -~---1---· ~-./; --/·i --:~ .:· .· . ::::=-...::==::: :· . =:-=~~=-:::-:~--=---=--:=-~ ::=:-. ;.':. : 71 -==t::..~~=~::.=: ~ : . -/: _/J i -:-.-:--1 = ::..::-===-r:::=: .··_,;. :: ~~===---=~-=::=~:.1 ~=--:~,/ __ !~_-/===T =~:_.._ =-:=::: ~ 7 : rliU ----~--------1 . / . /. 7 -::: -·-. . . I ;------1 ._,~: ·--1 -· . . l f I I __ :·:·~~:y.=-·:: ::~ ::·· ;·· -----:=: __ ::.:: --~ --=--------~: :·--:~-.. "":· __ _, ____ ~---:-_-. . . ·---/-.. ------. ----t------------...... ------,-----~ :~~----_.1,/:-. --~ ~: .. ....---. -;·--. --.. . .. . . t--------~ . --1----: ---I ---/---~ -~--·- ·. _ :· ,-1-_~-j ·:.1 : /.:·-Y .:A_ :.: :·· :: If ::··-r=-:-:.: ::. :. : :: ··.::-:.:-::-.-:-.:--·-:-:l ··-:-·7--lf=:-~:£~:~_.:.:.:~== -~.M" F -: ./·.:· ,':· t :\ --: -. :.~=~:~----·.:~-: ··:.:-.:: ~-------~.:;~ ::::J,-::.-;j.::±:=-:1 --f---.....1--= --~: I . ~5Z . I . . ~ ..~ .... ---~_:_ __ _ -j I ' .. . . I ' -··~--. ---r----·-:-----+-----"H • J ••• . ...... . ·----.--~5L!t?d h e/8, __ I . I . -I . ~· . . ::/:/. Li ~ 1 L--:----+--~--~ _. -___,..:----..,4 !t · :,• -. j . . I : 5(JS!TNA T.IVER P?-JF/f.FS O.PEN WATER CONLJI Ti:J/1._'- ---~lrN Bed £let ----Cwnpuled W.SEI. for 9700 ds ----Cotn,P~fetl ~/5E/. -£r 3JJ/ ~ 8 tJ6;.crtetl W5EI. '!Gr 970~ ctS G) 06sn-red yi5EI lOr 3vt/() ct:S . -. . -... -... -.. ·-.. - R l : I t · · -·-· ~-~-~~--1-----1 ----· ---1----:lj-f&-· · -1--r - 1=-=~-: __ - -:·j--:.:.: -_--1--+-t----f-___ -~-_:._ ·::::_ --1:7/-¥. ---·--~ :-:.-=/ ·-tl --:j --------. . ·------1----.f. 1---.-----.-·-·-1---------1-------.6 . ---~;;.,.,-~J.: . -:-::. t-----·.,..4!'?---· -1-+-··-----·--1--·---1---------r------T------· •J"'t'»7 1 .......J _____ ,___ __ --· ::-:-:.-I · ... -':_ -:--.......:..v .....:...f--fl --__ ::-:-:-:. ::-::: ::~==f--=----=-= =-. ...:. -:+7-~-: =!=7 _:...:.::,..__.::: --..: -=~-::: .:..:~-1 f..:.~-:::L....::---==-i ~~ 1 _ -·: ::. 1 · ·: ·:____,i_J ---"J ::--__ : ~ ·::-:: -------· ---1-,_ ---_ =--=~-:: r ---:::If :~---=----_-.::::.=-:::~J!.-=-=;t:..:!==:-:.7 :::·:::.:f: ·::_::_:j:: ::-:::7'::: T _.__-_:_.:._: ·:: .,_::·· _::.........:_ :..:;.t ·::, ·::#:.: -=-i--.::·: ··:::~~=g;---=--~~~--._::._ ... :~~ i ·····--·-· ---:r..-_.__ __ -·······l-----;4j -f-.::.:--7----::=~-~=7-f---____......__ ... ·---·:?f.? ---· 1-------. • . • . . • . -.. • . . . . -.. -. • . -. -• ---. . f-.. . -!--_____.__ -. -. -• -. T -• -•• !---. . . .. :·::J :::::::::j::::/=:1 :~. --1---:-::t:.:::: ··.::_<-~=--~~--. -=~~--1 -:.::-:;..--..---j----·: -::·/··:::1:/'·---~{:.:.: -~!----·--t-~:.:.r-. -----.. --.---r~·-v ---:..~:-= ---t--• -----~~:y ---~::··· · ~;_-~--tE~i;--~f-;~:~~~;r :=~:~~~-----~ --_,__---__ ;_ -----~----~~r~~-_ -~ ~~-~:: I~~+--·--' ~-----il---11----1..--t---.., ~-.:~: --~1----. .:..: ~:~=-::-;:-=:f :T ~~t#---t--·--~-~7:~--:-:: :"#=-~=-~ -~f--:~;-+ ·, -----·----~-~~-----1-----+--- t -~: :./'::~j/:~7 ~: :_ :=~~:~~~::~~--= ~::~ ~ _J;t= --~--~ --~= -~:::~~::~k ;;t ::::~~7:=~~~ f.:$. -.: / ·;· .. ------------·-·····---... ~::_7j ::...;t:·---~tt ··-------····j --··---------·/· '· : ::/ ... I -...... f ~:~ >}/ ... ~ :~:~:~ :..:.::~:=:-::::: ~:4 ::=:~_::: ~=:·~~~-~~:-== ~~~= .::~~~=~t~:~~-~:: -~~-:-!:= :~~: ·:. (::::~::! I ~~-::I :.::_1 .:::~ 1--r-·-_::~::::: :·;-':::_j~~gt;~~;nr.f ~;pj~IP~·--;ro~-:-~.:f/Fi ·:l k : -j · .. ::. ·i -;I -' -. ----~ --. . ... --. -l. -(-. --.. ' -. -·-. r. 7.80 . . i--0 • ~ ::·:-(.:: ::f : .. :~·-. . ·-f-·.::..~l ~.::-:-;;r _f---ti----1J>EA7 J fiATrR :Iz:7rrrJV'2t'-n'1:A1J':.:.!j· : ·: j : :: I ll.\.t :f7H : :. ·:;: :.: i-==--=-~-f-_.__::_--=f:-: . .: :--:;~--:;t'::.:-f=---.1 · -~-~~-:---~~~~~Y-L':' .. l.[fV.ff.~: ::· -7~ : -~:-:: --l -----t-·:v· . -------~-~--. .. --.. ---.:;t ~·:-+ -~"' ~....J-~------... y· .'f . -0-----[-=-=--, r=..::.:.;.:.:::-.·: ;_: __ .-·-!-:::-:---: :. -~=-~--+:::-:: ::::f: •. : ----r --~-:..1! '::L::.--:UJ~o~iorl -·~~ ·:.r.:::::: : -: .·: ·.!.::.--: , .. ~-j--· ......... 1 .... ·-·--·-1---t··---:..:t-=W ·· ... j-~--!N:R-·-·---'t' _ .. ---+-IUJJU~LS. ... ·t . _ __,~ ..... j .. .. ---o--Cf--· -· ... 1 ·---. • -f---.-.i-':.=1 ---+-_,r..-.,,~ ·-·'-... J._.--:i:-Jff'rft;:farj~!,..l,.-----.. ; ... , ...... 1· .. -:::: :=::.[7 .: :-: ... : ... :. i: :-:: :-:--::.:±:::= . .:-::.::::t:· =~~4 : . ..,.1: :_-::._~~---+:: --. 7. . -__,.::r:::-..:1-':~::.-. .::. -~:: :: -:_: .. -f-.:.::. · -··---lr..>V L.l"".,o,-;;,;..t;_,,n ----+-----;-t--.1'-... :L . ·"·---liJ --~ ... ~~f/-~M_;ft".: -· ·--i7'fli · --· -1-·•· · ::.: -=:~·-.. .::::4:-...!::.'~:ll ~.:!_ ?~-~r~Jf '::::......~;: :J(:: ·~-:: .. .....,---.;.:..::· ll'ia :~:;~,d :~~--;. ~Lz:-:.:_:..:-·!.:: .,: : .. ; :::::::.:f=··:: .. : . .. -........ --·---·--·----r---... ~· ....... -..,..-,.. _________ ~ --~F-'~~FJ'.l ~-------------------1-------· -----··'· .. ·.r:r ·---------~-----............ .... -~---f.------·-~--------------------·-----·"'{--1 ·-·----.... --·!-------- .:::: ;___:__: r= :.::::: ~:..;.-r.:: :: :::.:...::....,;.11 .. .:±:...::: :: L ~: ;_;;t ~:: ::.:: __ !--_ ___:_ :-:UI -i :__,_::: ,..:_:_----. . -.-::..: ;,.,;.tr .:~.: ::.: :. : : ..;,~::::.:: .; :: :t-· r::.:_:: ::'":--:--..: r.:: --:--+~ ~----.;.~~J :n:~.:: :~~------;:~1-2 -. _-.-=-"-·::--:...-.~ --~ -:---· -!~~: ::.: · ·.: i . · :-: · :~:-~-::::::: . -·-·-----.• lo ·" t.;....o ·• ·--,-f-f ~~~ ;,R;i i1-~b ~M-~---. . .. --· . -~-------f-7--------.. . -·-··----.. -·-· ------c--------l-·-·---··-· -:''-.lfl--. -· -~---.. . ---·---:.·r .. _·--. .--,;;-...... 1-------. :J~-------+--.J..!..... j"-_j-• __ .. --~ .............._ . ---------·---------r---------· . . . . •--· -.. 0.-.-. -. ·-·. ·---___ ._ __ --. ----.... : .. -1---"-:-·-~ . '---. ->----......__----~1------. --.. ~. tr/D -~ 1---.l ...• I +---+--f---7--. ~ .... n 0 z • c ~ )i z ~ • z J1 ( I • I = • .. .! • :eoo • • • I • .. • • • 400 -• • : • 0 ~ 4 = 100 _, .. • .. & • .. - .. ' • u • • .. .. 0 .. • I • I :1 .. .. .. • • . .. ..,. . .. _ .. " .. 0 • • .. ....,. ---,.____ '·-· "-·-· ~·--t·-! 1------·· .. ,. ---·-1. ·---~ \ ., _____ I 10 .0 •o -------,_ \ "---\. ___ _ " IUYitt IIIli too tiO t40 IUIITNA RIVER ICE LEADING EDGE PROGRESSION RATES (~~tll .. /~eJ) RELATfVE TO THE THALWEG PROFILE FROM AlYEA MILE 0 (Cook Inlet) TO RIVER MILE 155 teo .!UP . --__ -__ i . .R2 --_____ _; I b -. . : . ---I ----- ·t : I 0 . :m. I :=~~::-:.--=: --·: ~: ... - • • . '·----------. I- ·------··-··· I • •· --·-•-··----.I . -------···--·-- : . : : : : i: : : :::: . -~-_:: __ :j::.::.:.·.:: -::.:L--=~: -~: :.:-:.~~~~1 ·---·. ·-. . . - i ---------~-----·-. ' WAT16t¥ . t · 1::. . i i f ------ f ..... ~/~ 4i2 ~ 1 ___ .. ___ ,_ . I / /· .·-I -: -/ I .. / l I _:· i ·z4' ::::::.. I :...:.._:: ~ . : : . -~ . ---l --+----·--_-~.;_ __ ------- _::1 ~r+J !. .. ------1 ·------I -·--·I I .. I ·-----I ~ ... I ., tit.-~ f r f :.·~ .:: I ~ _ _:j__~~~:.: ·_:_ . . . I ...... ----. ~--......... . . . . . ~ ----. . . ... --·- , '~-----~.-=-~ --·.::-::::<-::.:iT-_.,..::-ryz f-::~~: 1-...., ·: I z . -+-:..·-:-/i_ --T-I - .·- . .:...: . : .. ::. -·. --,..,loJ. __ ..,_ __ j.,.....C...jl-~....: ~ .. ----:..b---~:.:;(.·::· ___ :::.-.. -. j .· = .. :t .. :·t=-:-. -=~--~. :._ -~ -~3~~ -~r~~~ .. ~r _:.;!: --~_::·. ~---.. :._ J -~i ::: f:--.:=-:-::::_-:.~ . ·-· .... :..:.~:::: __ ::-_:: ::::.~,.....-~.:-::-:=::.:f-::.-~:::·1 -/:~~:._ ·:::~ ... .::1-.. ~:--·-·--~--:.::~--:~...=:::-·.~ .: . I -·-··-r,;··· ----jl --.. .. .. -----... ______ -:/. .. .. . v .. -~~----. .,.. --.... =t.::::..: .... 1-.. -~ 1 ..... -···-.. .. ....... _ · -----+-1'·-·-·· ·---·· "'tllzr · ..... ·•· · -__ j __ .,, :_· ·1 ·_: ... ·-:.:r ~: .:_-:::-:-=-~-:: .. :..::..:;;._f1 ~~.£~Ti~/: ::·:!: -: -:::::-:..: ~_::::~~~ 1 .. ~--=r:.:. ~-=: :· ~~: -~ ... :t-.c.r:: :q-::-~F."--.:.. ::::~.=~11 .... 1--.. ;, ................. --·-.. 1{ ----·--....... -.. f -~· __ -S!ia_ _. -· -- I ----;---! ~~---------/ ; __ ----·-r ! /• I ; I I ---;_ j . I -~- -~---• --. f . t · ""' : I . I ----.,.-------------,------- ' :--+-. . . . .. --.-. ------- -.---_,Sflee..t_ Y2_ D.:_ .k___ I ; . ------! --~ : ! --I . . ! . I . -· _:-+-::-::-1----- ..! . ~ -I - -. t -• --t --. J -------------- i I -.. --.-1 3U _ ~~ ... ~---~ ~-i :. --J f _.Jg,. .. ---· . -,-.- 1 .. ' I i . j . -----.. ---_-+-:---.. -.· -~ :·~ ·::-t. :_: ·-r-. "1 . -- a~-~--• ~ ·----------·--- • I u :_: -_-·l·i _· -~~....:....---:-:~f-__:__:--T--:--~:...~f-LUW ! ·-····· ~--··-· J :::: :::I ---.!112 - . . ;---~~~---. -.. I l . I -I --.1--:,~'+--H!t+:.J£-,r----l!U.IOL---:Jt£.---+-~--t------; -----. -: ~~---. -.. -; I . -~ "JA? t ·- I ---: ---1 Itt . i > . i f I .ritz : :-__ ..At/!_ i I ___ 1 _____ -~--- .... ~I ; . ·:: j · . --: : , __ -: -I ···r-· .. . . . . . . ... -· ---·---..... -~ --· .. ,. I - j ·I -r------i-1 . . ' ., . - . . --~ ----: _____ . ___ _._ __ ~-71-t-H-ttff-f--++--+-...Ml..;IO:L+-----~---t---+_..:._...;..-F~+--I-V-t=-:------i s:U .. . . . 1. J -... I ---~------. ~ . I I ·$78 ;· ! . I . :: :J .. -=t ~---:-: .. ------1 -l "I . i.. ttV ···-g -· . ···-- ••• t •• L__~f - ' -I I - ' I ' 1 . ------j --------1--- 1 -l . ! : i I l. ~: i : ~: f I I I -· ·--·,-.. --. --++++1---1-J~ I I .. -·-.. .. . +-.. . . j: ~ :: ' ' -r------~-----~ ~-1---4- , ..... ! . - ( ..... -(·"· I .1 .... ·-------- -------, -------ri?P r -: l -. --~ ......... . , I j r -:· --_j - -----t·--·---:. - I ---L------·---------l-----~---: . ' . ! I I . ' -+---... .t-.. 1 ! . I I --+--- ' : , .. ~ : i 1 ' I I -r---~-·-r -· --~----~ .. . ! i . I ~ ·j ! -~----:-r --t -~-, : _J -:·· i -:--: ---i ----"---~ i----i ----~~~ -~--~---~--t nil • I ' ; I· ' ' . --;---.. _: -------~----....... --~-----t---· --1-... ~-------~ ----~----~-___ :_ __ , :___---~---· _·_ ---;_~_j --1-_ _! ..... ! --+-:_ -!-----~ ,. I I : I-; ; : I • 1 --T ---~:--~ --~:r----1-----;--r ~ 11~ . I 0, v ' ---i-____ __l __ -~-------t---1---1---1---~----~~~ I ! I · , ~ .... . , I 1 , ' , j I'- -~------!-"'- -I ' .. I -........ I. I ~-~ INPUT DESCRIPTIONS -!CECAL A. Five Read Files for Input Data 1. DESCRP -Set-up for 10 lines of 80 characters each, describing the project. 2. INITIL -Fre e format input data for: a) No. of days in simulation b) No. of cross sections c) No . of stations .... d) Stationing of meteorological stations dist. along river in meters , use same as river cross sectioning). 3. DISAIR -Free format a) Day b) Inflow Q (M 3/s) c) D/S w.s. Elev (m) d) Inflow Ice Dischar~e (m 3 /day) e) Inflow Water Temp (°C) f) Air temp, (°C), up to 10 locations (i.e ., base a) Wind velocity -(m/s) , up to 1n locations 4a. CROSS a) Stationina of cross section (meters) b) Number of groun d points in cross section c) Discharge factor as percentaqe of inf low Q d) Bed roughness -nb e) Ice roug hness -n4 -1- 4b. CRO S S a) Distance, elevation b) Distance , elevation II Repeat 4 a & 4b for each cross section .) . ICEHCC a) Ice cover porosity b) Erosion v elocity (m/s) c) Cohesion of ice cover (ri/m2 ) d) Heat transfer interce pt (W/~7.-C 0 )] Heat transfer slop 0 1•?-sec r1 1 -0c e) a + !JV \V f) Lateral 1ce qro~th coefficient -J_ : C L/d slope -t/ L g) Later2l ice growth -2- SUB DEPOSI When the ice cover cannot progress upstr~am, the incominu floatin u ice must be deposi ted under the ice cover as the lea Di n g ed~e remnins stationary . This condition can occur befcre 1) a s et of rapids s uch that the water l evel must rise and drown 011t the critical or super critical flow depth and then the lead in a edqe can proceed and 2) whe n the flow velocity beneath the l e actin~ edae is too high that ice is transported d/s to increase the u/s water and decrease the velocity below the erosion velocity value. The ice deposits in a d/s direction, fillina each section until the critical velccity is reached. Then it proq resscs to the next d/s section. This process generates what is called a "hanginq dam ." The ice discr~rge that comes into the section is distributed within the downstream reach, and if the reach cannot accept all inconin g ice, it is transported to the next downstream reach and so on. SUB VELPRO This routine calculates the proaression of the ice cover usptream. The ice cover porosity in the leading edge is assumed to be 0.5. The porosity is probabl y related to the veloc ity, but a constant value is normally adequate. -1 - SuB HYDTHC This subroutine determines the ini tia l thickness of the slush ice cover as it progresses upstream (i.e. prior to any unde ~ice deposition). Based on "Formation of Ice Covers and Ice Jams in Rivers" b y Pariset, Hausser and Gagllon, 1966, two possible mechanisms for ice covet progression are considered; (1) Hydraulic Progression, applicable to "narrow" rivers, in which a stable ice thickness is determined by hydraul ic conditions at the leading edge of the ice cover. The theoretical governing equation is v = Where V, H =Velocity, depth just upstream of ice cover t = thickness of advancing i ce , ~ = density of ice cover It can be shown that a solution exists for the above equation only when a modified Froude No., V / ~, is less than a certain maximum value which corresponds to t /H = l/3. When V/ J2gH1 exceeds the maximum v alue, incoming slush ice is swept underneath the leading edge of the ice cover and no progression takes place. Researchers have 3Uggested that this maximum Froude No. may v ary from .06 -.11. -4- (2) Shoving is applicable to "wide" rivers and is the mechanical consolidation of an existing ice cover which has insufficient thickness to resist the river forces. Successive shoves increase the ice thickness until it reaches a stable level. The governing equation for this stable ice thickness is .!._'(1-.i.) tz. J J H' where Vu = velocity under ice cov er B = channel width /A = coefficient of internal friction for ice c = Chezy coefficient of friction R hydraulic radius o(. = cohesion of ice cover The model pr~vides for the followi n g possibilities in determining the ice cov er progression : a. Hydraulic conditions just upstream of the ice cover show a Froude No. greater than the maximum. Therefore, no advancement can occur . b . Froude No. is less than maximum value. Both Hydraulic Progression and Shoving equations are then solved for t . The mechanism which results in the greater t controls. SUB UNDAVC This subroutine determines whether erosion or deposition is occurring b e nea th the ice cover. The critical velc ~ity is read in as input. Typical values reported in literature range from 0.6 m/s to 1.4 m/s. The high values for the velocity are when the frazil ice is very active and the low values are for inactive frazil ice. The air temperature is sometimes used as a basis for the correct ion fa c tor to account for this spread in erosion v elocities. 00 -7 -18 Temg to -7° C to -19°C to -30°C SUB ICEPRO 0.9 m/s a9/o.95 M/.Y ().9/ ~9 Iff /J Computes the frazil ice production in the open water reaches. Uses the heat transfer coeffic ient a ppro ach to determine the heat loss from the water surface. The ice discharge (daily) for a reach is comput ed an d printed in the d /s section out put. Qi = -h,., B( t1X) Ta * 86,400 fto~ hw = a+b V w lheat transfer coeffic i ent) V = av ~r age w ind speed w a = 3 (input) b = 4 (inFut) B = average open water wid t h between c ross sections p ' = de'lsi ty of ice A = heat of fusion for ice T a verage air temperature (below 0°C) a Llx = a',.r f.;J-4. (e btf/I.J~o( a·'p.r.r-st'cr;o">· -6- Sl!E LATICE Lateral icc cover g rowth. Empirical reia tionship developed frorr Newbury 's fiel.d da ta for river flowing with a heavy concentration of slush ice and a1r tempe ratures -10°C. Latic = a~ Latic = i c~ gro~th fro~ bot h shores a= constant 0.1 b = constant 2.8 V = oper. water velocity at the cross section Subroutine keeps track of ice discharge in the downstream direction, i.e., a summation routine for ice continuity. SUB LCMELT 'I'his s u broutine allows for lateral ice cover melting in accordance with Ashton (1979). -7- SUB lCEGRO Cor..putes the solid ice growth at each cross sect i on 0 n ice cover fo rms . ~~en the solid ice growth overtakes the initial cove r thickness, the initial cover thickness ~·"lues are set equal to the solid ice cover value for printout purposes. The ice thickness equation is ~-= predicted ice thickness, ~- t :-1 ~ = previous day ice thickness ,~. IJ. t,· = incremental i c e thickness grO'Io>'th per day J m . T a = r each ave. air terr.p b~ltJ IAI o•c. K . l = thermal c o nductivity 1 liJ/m-c.. • I H = surface heat exchange coef 1 ,~u 177 2 _ De . a e = porosity of ice cover ). = heat of fusion of ice ) J/kg. , density of ice llg /m3_ 0 = ) SUB ICW'l'IJK Computes the water temperature decay beneath an i ce cover and melts the ice cove r thickness a~cordingly. The computation begins a t the U/S b oundary and progre sses downstream . Reach averaged values are used for the hydraulic and meteorolog ical variables. The equation from Ashton (1379) and Calkins (1983): 1 2 = 2 * k w exp (h . ll'il X/t!C Vuh) w1. r p * f * Re * Pr / x(8*D*(l.07 + 12.7 f/8 Pr·667 -1)) Two = wa t er temperature at upstream section Twl = water temperature at downstream section h . = heat transfer coefficient at ice/water int~~face Wl. 4:l X = distance between reaches h = average depth v u = average ve l ocity beneath ice cover R = Reynolds Number = Vuh (reach!_ e 2JI f = Darcys fr i ction factor for the ice cover (reach) .K = thermal conductivity of water w p = r Prandtl Number =P C /K p w -9- SUB mVTDK Computes the water temperature in an open water condition beqinni.nq at the most u/s s ection. The u/s bou~dary condition is a water temperature value. The temperature p r~duction at the next d /s cross s ection is basej on the reach a verage of the hydraulic and meteoroloqical variables. The equation is from Ashton (1979): Twl = (Two -Tal * exp (h; ~X/ p C y H) + Ta p T a = reach a verage air teMperature T WO = water temperature at upstream section T wl = water temperature at downstreaM section h w = reach avP.rage heat trunsfer coef fi cient ~X = distance between cross s ecti ons ~ = den sity of ':later c p = s pecific heat capacity ~f IAI;rhr H, v = reach average depth , 11eloc.iiy h ., = a + b V w a = constant = 3 b constant = 4 v = w average wind s peed -10- SUB TRAVEL Computes the travel time from 0ne cross section to another for either open water or ice covered conditions. SUB AIRDIS Computes the air temperature ann wind speed at every cross s e c- tion location on a daily basis . The dai ly air temperature ann wind velocity may b e input at up to 10 sites along the river. The location along the ri ver for each meteorological site must be input, measured fron the downstream cross section. A linear interpoloation between met sites is used to determine intermediate values. SUB CO:IlVEY Cor.putes the flow conveyance for each sectLon. The p rogra m tests for the ice cover to decide which conveyance will b e used, i.e ., open water, lat eral ice + open water, or fully ice covered. SUB CHNGEO CoMputes the geometric elements for the cross sect ion with or without the ice cover. The intersection ~ts of t h e water level with the banks is solved using the surveying procedure of latitude s and departures. The area is solved using the tra pe zoidal rule beth in the open wate r a n d b eneath the lateral ice cover . -11- SUBROUTINE BKWTR Conpute s a backwater profile usinq the orocedure followed by the HEC -2 program. The prcgram tests if an ice cover is pre- sent and computes the profi l e with or without ice at a particu- lar section. The p rogram checks for critical depth using the same test as HEC-2 (V 2 /2g > 0.95 A/2 x Top width). If the test is positi ve , the program computes critical depth !or that section and rroceeds upstreaM. An ice cover cannot exist with critical or super critical f low. The downstream water levels l1a ve to rise to drown out the critical depth section before the leading edqe can progress upstream. During the deposition of ice beneath the cover the pro~ran may thicken the ice cover to where the flow hydraulic• indicates critical depth. When this occurs, the prog ram reduces the ice thickness at the section until the test for critical depth ~asses. -1 2- BYDIWT' .. ICS, HE:CHANICS AND IIE.AT TRANSFEK FOR WINTER FREEZE-UP RIVER CONDITIONS by --Darryl J. Calkins Research Hydraulic Engineer USACRREL-Banover, NB Class notes : Ice Engineering for Rivers a nd Lakes Feb. 1-2, 1982, Da.iv. of Viscoa.ain, MAdi..son, VI ~Evrsn 7'~#3 ICE MECHANICS AND BU.T TllANSFEB. ~e ~dy, analysia or prediction of ~ter levels ~ rivera during the v1t1ter requires a knowledge of the flov hydraulics, ~he i c e •echanic.s and the heat transfer processes in the river ay&tem. All three occur simul- taneoualy and to properly analyze or predict a certain quantity s uch as riv er atage .eans they have to be undera tood to aome degree. Figure 1 is a flow ~art representing the poasible phas~ a river aight follow during the free:e-up condition. See Appendix 11 for a list of selected reference . Conditions Leading to lee Bridging l&aically the river flow .ust cool to its freezing temperature , .0.0°C before any ice production can be aignific:ant . Once the river hal cooled to its free:ing p oi nt ice generation beg ins aod the lateral ice cover rr ows from the shore (ahore ice), anchor ice aay form on the bed and ice is traciported downstream. Theae processes continue until a ae c tioo is reached where the ice c:ov~r fully bridges the river (a lso known as ice arching). The ice cover now can begic to progress upstream as well as continuing to grow laterally in t !1e open water reaches. The rate of up,;tream progres- aion is a function of the flow hydraulics , and the 8echanical propertie• of the incoming ice and downstream cover. The air temperature has an effect on the physical and .echanical properties of the aoving aod atationary ice, although it 1a DOt well doc:u8ented. The f o llowing analysis assumes the river flow has been cooled to the freezing te~e r ature. The procedures and analytical developments gi ven by Aahton (1979) can be applied to determine the ti.e at which the river flow ruche& 32•r (o•c), or one can develop b1s ovn beat lou .odel. The fo llowing physical processes are occurring eimultaneously in a Ti~eT Yeaeh during the fre&:e~ periDd. la lee Production : Tbe equation for predicting the volume of ice 3 (~ ) ( 7] vhere b1va -ice production beat tranafer coefficient W/a 2-•c Ao -open vater area .2 I a -Air L&aperuure ~&low o•c " -density of vater l.g/a 3 (1000) ). -heat of fusion J /'q (3 .34 z 10 5) lb lee Floe Growth, (flocuation): Tbe crovth of ice floe& traveling downstream il often viewed &I a flocuation pr~ceas, but it 1a one that is not well understood. Tbe arovtb of tbe floea reault in larger floe ai&es an~ increa&ed th1ckne11. It is auapected tbat the flocuatio n process depend& upon the ice discharg e (espe ci ally at the aurf•ce ), flaw velocity, air temperature and the channel characteriiticl . lc Lateral lee Cover Growth (ahore ice): The shore ice o r lateral e~irical relationship relating the lateral growth (Li) to the aean flov velocity (V, a/s) f o r a Northern Ca na di an river (Newbury 1968 ) y i elded L • 1.8 v-2 •85 1 a/d.ay (8] vb&re tbe aurfac.e ice concentration vas nearly 100% and the thickness of the aluah ice cover .avin& dovnstreaa wa£ esti .. ted at 15 ca. Alao, tb~ air teaperature vas leal than -2o•c . For lover ice con centrAtions and var.er air teaperaturea the intercept value vill decrease and the negative elope vill &lao decreaae in .. gnitude, i.e. (-2 ). aecently a atudy on a small New tngland atream shoved tbe overall lateral arovth rate ranged fro= 0.1 to 0.2 eeters per •c day, vbere the avera&e freere-up flov velocity vas rou&hly 0.7 to 0.8 a/a vitb lov aurfaee ice concentrations. ld Flov Hydraulics vith Laterally Growing lee Cover; Ibe flow velocity di1tribution in a partially ice covered etream bas been evaluated analytically, docuaeoted in the field, and ezperi- aeotally aeasured in a flume. The flov velocity concentrates io the open vater portion and can be described &I a ratio v2 0.63 Db [ ... ] (91 --1.0 ---v.t, D p y 1 c vhere v2 -flow velocity beneath ice cover segment vl -flow velocity 1D open vater aegment Yl flow depth in open vater 1epent and t • ice cover thickness. I'he pape1 b,y C•lki D4 u al. (1982) CDD.taiaa tbe derh'ation far ~be above equation plus additional inforaation on the &~suaptions uaed t o derive the expression. Soaewh ~re along the river reach the ice eover vill coapletely bridge from a bore to ahore. Determinina the location of thia brid&ing aay be the location of a natural construction ; i.e. a vide river bend il a claasical aite. The a ayaetric flov cU.tribution la.ada to a rapid lateral 1c.e eover 11·o~b in the bend vhieh causes ~he open vater width to decrease . This in turn createa a aurface conatriction for the ice floes traveling dowostr~am, where tbe floe aize aay be increased which aignifica~tly enhances their arching capabiltiea. Pred!cting the ice bridging location& from an analytical atandpoiot 1a not possible at this ti.e with aoy confidence. Once the ice cover ~idges, progression upatreaa of the leading edge is 1overoed by the iDCOl&iQ& ice diachar&e, flow hydraulic•, ice aechaoics &Ad the air taaperature. lee Cover Progrelaioo and Tbickeoing Tbe ~•t lo&ical atep to 4eteraine the progreaaion and thickening of the ice cover would be to write down the continuity eQuation for ice dis- charge. The ice inflow to a river reach or to tbe leading edge of the ice c:over i& {10) •there Qi • ice diacharge a 3/s ci • 1urface ice concentration 1 v, • aurface flow (a/a) .l • ope..n water Width (a) t, • equivalent thiclr.neu of t.he floating ice (a) Ea • poroaity of the floating aluah. The a.ount of ice that ia DOt floating at the water aurface il a saall quantity and 11 conaidered negligible for aub critical flows in channel alope1 of 0.002 or ~lder. Tb&re are four possible condition• for the proareaaion of the leadio& edge, Vp• 1. Ptogreeeioo ~ eimple juxtapoa1tion or the arrivin ~ floes With DO thickening. -v NY MJ Xt7 2. Progression, but the arriving floes thicken to values Jreater than the initial t hiclr.oess of the arri viog ice, tJ /H < 0.33, or tj/B > .33. Vp _. :1 'Q z·,-• 3 z I I / v '*• 3. Proar~asion with ice cover thickening and ic~ also being trans- ported ben eath the cover. v, .. ---< 17~_,' -:.::...=:::::> --v 4. No progressing of the cov ~r. all ic~ ic transported beneath the cover . [r 7 7 :J --------------~====)~-~ 7YY' the floes, the ~chanica of the ice &ccugulaticc and th~ •ir temperature. ups tream of the cov er or beneath the cover, the ice diacharae and aize of 7he type of condition encounted above depends upon the flow hydrau lic s Juxtaposition: The progressing of the leading edge b7 ice fl~ juxtaposition resu l ts 1o a rapid cover devel'op11ent. Analytical fonrulations have been put forth and experience uaually dictates the choice. If the thickness and planar di11eosion of the arriving floes can be p~edicted, their stability can be analyzed. If the flow velocity just upstream of the leadi ng edge is less th&:l •o• c:.riUc.a.l ve.loc.ity for the ice floe to underturn, cbve or be entrained ; the arriving ice floe vill re~in stable and co~ to rest against the leading edge. Ashton (1978) presents this equation v c [ 11) When the river flow velocity V > Vc• the aolid ice floes (not frazil slush floes) vill go under the cover; B • flow depth just upstream of the leading edge. Progression, Thickening and No Undercover Transport 1. Die equatioa de.ac:.ribinj the equ.ilibriua tbickoess of tbe ice cover (tj) vheo the value of tj/B is less than 0.33 is related to the flow velocity upstream of the cover (Pariaet et al., 196 1) t [ ~ ~1/2 v -( l --=t ) 2gt j ( 1 --;-~ ( 12) The use of tbis equation i~liea tbe forcu along tbe bank are eu.ffic.ient to withstand the intero&l force& within the ice cover which are (t'e&ter ~han the driving forces auch that no ahoviog or further thickening ean take place . In ocher vorda, the thickness at the leading edge il aufficient to transait the forcea to the bank, even when the leading edge at a new time baa progr esaed upstreaa. The driving force& of vater shear atreas and the cover weilht component are ... 11. The liaitation of tj/H • 0.33 auat be checked becauae a different aode of thickening vill occur at tj/B > 0 .33 . The uae of thia relationship vill be for long backwater reaches and Hausser (1961, 1966) for further detaila. 2. ~ aajority of ice cover thickenin& occurs as a reault of crush~ng or ahoving of an ice cover aoae t imes c.lled ataging. The cover aay initially progress upstream according to equation {12) just presented, but in order for the leadin& edge to progress further upstreaa the ice cover baa to thicken by above& to vHbatand the lar1er forces, which creatu a larger head loss and in turn higher water levels upstream and lower flow velocitiea. There have been aeveral formulations (aee references 3, 14, 19, 20, 23) presented to calculat e the equilibriua thickneas of a cover vhen the weight coaponent in the dovnatreaa d i rection) require a cover thicknesa &reater thaG .338, to vithatand the forces. The bas i c formu l ation is (131 when 11 • lee oo lee in~et·Dal friction type coefficient • 1.3 c • cohuion of the .1u cover 1/r Tv • shear atress on the ice cover underside N/m2 •••~ the other quantitiea have been previoualy defined . The applic•tion of tbia equation requir~a a knowledge of 1W (wa te r ahear atreas ) aDd c (cohesive force within the ice cover ). Tbe val~e• of the abear atreaa .. y range from 1 to 20 N/a 2 and c couid vary froa a low of 100 R/a~to .. ybe aa high u 2000 N/a~ The value of c: has DOt beeo well docu.ented 1. the field although a c:ooaervatively low value (10Q-200) will yield thick lee co vera and produce bieber water le .. ela. Bich values of c:oheaioo will occur durloa the freeze-up when tbe air teaperatures are low. • eoaposite lee aheet of fragaented ice with a thin upper aolid ice cover ia very atrong ln abear while the aa.e cover thickness without the thin aolid abeet will be .uc:b weaker. For ice jam analyaes, c ia a low value because of this non-free%iog condition Guring the br eak-up and jaaaing process. 3. Thickening and Undercover Tranaport This eoabined process ia DOt vell documented analytically, but bas been observed in the field. Tbe atate of tbe art has not advanced auffic:iently to properly addreaa tbia eoabined topic. 4. Unde~cover Transport and No Thickening Tbue ia ftry little field data to aubatantiate tM ooly equation put ~o rtb to estiaate tbe ice discharge beneath a cover. Pariset and Bausaer (1961) u.ed the Peter-Meyer 19 ~7 equation. Recently researchers at the Univ. of Iowa have looked at the individual ice block atability beneath ice eovera, liut applic:.ation to field c:onditiona has DOt been attempted. The .. in reaaon ia lack of field data. There 1a ao.e field data on the transport of aaall fraT.11 floc& beneath ice cover$ in ahallow atream5 and the criteria b&& been ge~erally related to' ain1aum flow velocity 0.7 to 1.0 a/s. The value .. y be eve r. l.S a/a. KAME : DATE PREPARED : DATE OF BIRTH : EDUCATION: POSITION: RESUME Darryl J. Calkins 16 November 1982 16 November 1946 St. Johnsbury, VT Danville High School Danville, VT, 1964 University of Maine. Orono, Me. BS in Civil Engineering , 1969 Major in Sanitary Engineering University of New Brunswick, Fredericton, NB MS in Civil Engineering, 1970 Major Field: Hydraulic and Water Resources Engineering University of Iowa, Iowa City, Iowa Depart.ent of Mechanica and Hydraulics Energy Engineering Division August 1976 -August 1977 1. Research Hydraulic Engineer, Ice Engineering Research Branch, Experiaental Engineering Division, o. s. Aray Cold Regions Research and Engineering Laborabory • B.aoover • NB. 2. Instructor for course •tee Engineering for Rivers and Lakea,· Univ. of Viaconsin, 1980, 81, 82. Subject -Bydraulica of Ice Covered Rivera. 3. Instructor for course ·River Ice Bydraulica· Environment Canada-Inland Waters Directorate Ottawa, Ontario, June 1982. 4. Adjunct Professor. Antioch College-New England, Keene, JIB. Instructor in Environmental Science Progr .. -Fundaaentala of Meteorology and Hydrology. 3 credit course, Spring 1979. 1 PROFESS lOti AI. ACTIVITI FS: EXPERIENCE: 1. Secretary. Executive Committee ASCE Hydraulics Division . 1981-83. 2. Member. ASCE Upper Valley Brauch. 3. Newsletter Editor. ASCE Hydraulic& Division. 1979-1981. 4. Registered Professional Engineer. 5. Member • New England Junior Science and Humanities Symposium Executive Committee. July 1980 -Present Project engineer conducting hydraulic .odeling studies. investigating the basic aechanios of ice j~ formation, and conducting field studies of ice/hydraulics. frazil ice foi'lllation and ice jams. The aodeling work bas evolved around laboratory tests in Which the basic understanding of ice jam formation is being fot~u­ lated. To complement the laboratory work an extensive in-depth field observatio~ program on ice jams bas been implemented and instrumentation bas been installed to help gather the necessary field data that is being used in the refrigerated physical model simulations. Several preliminary •tudies have been completed on ice jam conditions in the field. September 1978 -June 1980 Project engineer responsible for the Port Huron Ice Control Hodel Study conducted for the Detroit District COE under the Winter Navigation Demonstration Program. This project was the first time a hydraulic .odel has been designed to operated in a refrigerated rooa. I was responsible for the design. construction, cali- bration and testing of the physical aodel and shared the responsibility f.or the development of the wind stress modelling concept. I was responsible for all field data collected during the winter season to be used for eodel.calibration, as well as for the back- ground and auppo 7ting data on general ice conditions to the area. This involved coordination with the Detroit District COE for ground control and the U.S. Coast Guard Station, Detroit for transportation by heli- copters to the ice sheet. 2 Autust 1976 -Aucust 1977 Attended the University of Iowa under the D~pt. of Army Long Tera Training Program in the Department of Mechanics and Byt1raul1cs and the Iowa Institute of Hydraulic Research. The year vas devoted to taking auch typical courses as fluid mechanics, advanced engineering .athematic•, numerical .ethods, beat transfer and other hydraulic engineering courses . I bad an excellent opportunity to observe and discuss the various hydraulic projects under study. These included aediment transport, fixed bed hydraulic JDOdels as well as tbe ice-hydraulic related studies. November 1973 -August 1976 Project engineer conducting hydraulic .odeling studies investigating the fundamental aechanics of ice jam formation. Field activities have ~ncluded the gather- ing of channel cross section data, flow profiles aod ice characteristics to complement the hydraulic .odel studies. A continuing study that has been under investigation is the simulation of drifting snow using the sand-water analog to replicate blowing snow condi- tions. November 1975 -April 1976 Project supervisor on a s~all task of the lock-vall de-icing program devoted to water jet-cutting·of ice off lock valls. Janua~ 1971 -Novem~er ~~73 Assistant Civil Engineer -active duty U.S. Army. Assisting proje~t personnel on studies of lightweight snowfence aateri: s. Design and fabrication af full- scale .odels of aissile cell covers for field tests on drifting snow in North Dakota. Design, construction and calibration of a hydraulic sedimentation flume including the necessary laboratory equipment for conducting research in auch a facility. The flume vas designed to aulti-purpose aodel experi- aents; (a) sediment transport (simulation of drifting snow), (b) ice jaa aechanics at retention facilities, ice booms, bridge piers, etc., and other apecial pro- jects where hydraulic phenomena can be aimulated. June 1969 -October 1970 Conducted and coord.inated research involving aediaenta- tion, water quality, soil •oisture and aurface runoff in an experimental watershed in central New Brunswick for the International Hydrologic Decade (IHD) program in Canada. Layout of hydraulic fluem facility for the Dept. of Civil Engineering. 3 Summtr 1968 Assistant Civil Engtneer, U.S. Dept. of Agriculture, Agriculture Research Service, Sleepers River Research Watershed in Danville , VT. Developed a field procedure for aeasuring channel velocitie~ in small streams using a portable pH .eter using a sodium ion probe and injecting salt solutions upstre... Supervisor for all surveying activities and drilling operations in the watershed. Summers 1967, 1966, 1965 USDA -ARS in Danville, Vl'. Engineering Aide -Hydrographic and topographic survey- ing, assisting engineers and scientists in their field vork on water quality, sedimentation and stream runoff projects. PUBLICATIONS: Journal Articles and Conference Proceedings 1. Calkins, D.J., R. Bayes, S.F. Daly and A. Montalvo, ·Application of HEC-2 for ice-covered waterways,· Journal of Technical Councils of ASCE -Cold Regions Council, November 1~~2. 2. Calkins, D.J., ·Ice Jams in Shallow Rivers vitb Floodplain Flow,• Submitted to Canadian Journal of Civil Engineering, September 29, 1982. 3. Calkina, D.J." and G. Gooch, •ottauquechee Iliver - Analysis of Freeze-up Processes,. • presented at Workshop on Hydraulios of Ice Covered Rivers, Edmonton, Alberta, June 1-2, 1982. 4. Calkins, D.J., D.S. Deck and Carl R. Martinson,• ·Resistance coefficients from velocity profiles in ice covered aballov s t reams,· Canadian Journal of Civil Engineering, Vol. 9, No. 2, June 1982, pp. 236-247. 5. Calkins, D.J., R. Bayes, S.F. Daly and A. Montalvo, •Determining water surface profiles in navigation channels under various lee conditions using HEC-2,· present at ASCE Nationa~ Conference, St. Louis, MO, 28 October 1981. 6. Calkins, D.J. D.S. Sodhi and D.S. Deck, •port Huron ice control studies,· lARR International Symposium on Ice, Quebec, Canada, July 27-31, 1981. 4 7. Calkins, D.J., D.S. Deck and C.~. Martinson, ·Analysis of velocity prolilea under ice in :~2 1 Jow st r e ams,· Proceedings of Workshop on Hydraulic h .; • .. """Ce of River Ice, National Water Research Institute, l ·~ada Center for Inland Watera, September 23-24, 1980, edi -.e d by C. Taaog and s. Beltaoa . 8. Calkins, D.J., •Arching of Model Ice Floes at Bridge Piera,· lAHR Symposiua on Ice Problems, August 7-9, 1978, Lulea, Sweden. 9. Muller, A. and D.J . Calkina, ·rrazil Ice Forgation in Turbulent Flow,· IAHR Symposiua on Ice ProbleiiS, Auguat 7-9, 1978, Lulea , Sve d~n . 10. C&lkina, D.J. •pbyaical Measurements of Ice JAils,· Vater lesourcea Research, Vol. 14, No. 4, AGO, August 1978. 11. Calkins, D.J. and C.D. Ashton, •passage of Ice at Hydraulic Structures,· Rivers 76, Symposium on Inland Waterways for Navigation Flood Control and Water Diversions, Vol. I!, August 10-12, 1976. 12. Calkins, D.J. and K. Mellor, ·Investigation of Water Jete for Lock Wall Deici~g,· Paper presented at Third International Jet Cutting Symposhm, Kay 1976, Chicago. 13. Calkins, D.J. and C.D. Ashton, ·Arching of Fragmented Ice Cover,· Caucsdiad Journal of Civil Engineering, Vol. 2 , No. 4, December 1975. 14. Calkins, D.J. and K. Mellor, ·cost Comparisons for Lock Wall Deicing,• Third International Symposiu. on Ice Problems, International Association for Hydraulic Res e arch, Hanover, NH , August 18-21, 1975. 15. Calkins, D.J. and C.D. Ashton, ·Arching of Fragmented Ice Cover a,· present·ed at 2nd Canadian Geotechnical Conference, Hay 1975, Burlington, Oat. 16. Davar, ~.S. and D.J. Calkins, ·Evoluation of Soil Moisture legt.e in a Watershed ,· A paper presented at the International Syaosiua on Water Resourcea Planning, Mexico City, llexico, 4-8 Dec 1972. 17. Calkins, D.J. and T. Dunne, •A Salt Tracing Technique for Measuring Channel Velocities in S.all Mountain Streams,· Journal of Hydrology, Amsterdam, Vol. 11, No. 2, November 1970. 18. HS Thesis, iEvaluation of Soil Moisture in Watershed Respon se,~ University of Nc v Brunswick, Oc tober 1970. DISCUSSIONS: 1. Calkins, D.J. and G.D. Ashton, 1982 , Discussion of paper on Resistance of Beauharnois Canal in Winter, ASCE J. of Hydraulics Division. USACRREL REPORTS: 1. Calkins, D.J. D.S. Deck and D.S. Sodhi, ~Hydraulic Model Study of Port Huron Ice Control Structure ,~ CRREL Report 82-34, November 1982, 68 p. 2. Sodhi, D.S., D.J. Calkins and D.S. Deck, ·Hodel Study of Port Huron Ice Control Structure -Wind Stress Simula~ion,· CRREL Report 82-9, April 1982. 3. Calkins, D.J. and A. Mueller, •Measurement of the shear stress on the underside of simulated ice covers,~ CRREL Report 80-24, October 1980. 4. Calkins, D.J., ·Accelerat~ Ice Growth 1n Rivers,· CRREL 79-14, May 1979. 5. Calkins, D.J. and G.D. Ashton, ·Arching of Model Ice Floes: Effect of Mixture Variation 1n Two Block Sizes,· CRREL 76-42, November 1976. 6. Calkins , D.J., H. Hutton, and T. Marlar, ·Analysis of Potential lee Jam Sites on the Connecticut River at Windsor, vt,• CRREL 76-31, Sept. 1976. USACRREL SPECIAL REPORTS: 1. Brierly, W., D.J. Calkins, et a., ·Lock Wall Deicing with Water Jets, Field Tests at Ship Lo~~• in Montreal and Sault Ste. Marie,· USACRREL Special Report. 2. Calkins, D.J., H. Button, and T. Marlar, •Analysis of Potential lee Jam Sites -Connecticut River at Windsor, VT, • report submitted to the Rev England Division, Corps of Engineers, Valtham, HA, Sept. 1975. 3. Calkins, D.J. and H. Mellor, ·Preliminary Economic AnalysiR of Lock Wall Deicing Methods,~ USACRREL Internal Report 444, April 1975. 6 4. Calkins, D.J . and G.D. Asht on, ·Arching of Frag~e nted lee Covers,· USACRREL Special Report 222, Kay J97S. 5 . Calkins. D.J., ·simulated Snow Drlft Pa t terns: Evalua- tion of Geometric Modeling Criteria for a Three- di•ensional Structure,· USACRREL Special Report 219 , January 1975. 6. C.lkins, D.J., ~odel StuJies of ~ifting Soov Patterns at Safeguard Facilities i .n North Dakota,· USACRREL Technical leport 256, Nov. 1974. 7. Calkins, D., •A Research Hydraulic Pluae for Modeling Drifting Snow-Design, Construction and Calibration.· USACRREL Technical Report 251, June 1974. USACRREL TECHNICAL NOTES: 1. Calkins, D.J., ·rield Measurements of the Hydraulic Transients during the Ice Cover Formation and Break-up: Ottauquechee River 1980-81,• Technical Note, April 1981. 2. Calkins, D.J., ·Ice Jam Flood Levels -Measure•enta oo the Ottauquechee liver 1977-1~81,· Technical Note. April 1981. 3. Calkins. D.J., ·crovth of Brash Ice in Ship Tracks and liver Ice Closure Rates,· Technical Note, Dece.aber 1980. 4. Calkins, D.J., ·Frazil Production in Shallow Streams and Laboratory Modeling Concepts,· Technical Note, October 1980. 5. Calkins, D.J •• ·Ice Jam Measurements and Undercover Roughness Calculationa.· Internal Report 629 , March 1980. 6 . Calkins. D.J •• ·Ice Jam Flood Levela -Measure.ents oo the Ottauquechee liver 1977-1981.· April 1981. 7. Calkin., D.P., •Field Measure.ents of the Hydraulic Transient during the Ice Cover For.ation and Brealt-u~: Ottauquechee liver 1980-1981,· April 1981. 8. Calkins, D.J •• ""Methodology for lee Ja A.nalyaia, • February 1981. 9. Calkins, D.J., ·crovtb of Bra sh Ice in Ship Tracks and River Ice Closure Rates,· Dece~ber 1980. 7 10. Calkins, D.J., ·rrazil Production in Shallow Stt••a11s and Laboratory Modeling Concepts,· October 1980. 11. Calkins, D.J., ·rce Jam Measurements and Undercover Roughness Calculations,· Karch 1977. 12. Calkins, D.J., ·observation of Hid-winter Ice Jams - White, Ottauquechee aud Connecticut Rivera,· Karch 1976. 13. Calkins, D.J., -water Surface Profiles -Connecticut River,· USACRREL Internal Report 423, Hay 1975. 14. Calkins, D.J. and J. Ingersoll, ·Laboratory Ice Adhesion Studies-Shearing Testa,· Karch 1975. 15. Brie rly, v., D.J. Calkins, S. DenHartog, K. Mellor and H. Ueda, •tee Cutting Testa at Soo Locka,· Karch 1975. 16. Brierly, V., D.J. Calkins, S. DenHartog, K. Mellor and B. Ueda, ·Jet Cutting Testa at St. Lambert,• December 1974. 17. Horse and D.J. Calkins, ·construction Techniques for Underwater Model Construction,· December 1974. 18. Calkins, D.J., ·simulated Snow Drifts Around Three Proposed Air Transportable Buildings Using a Hydraulic Model Technique -Preliminary Study,· June 1974 • . 19. Calkins , D.J., ·scale Models for Drifting Snow,· Kay 1971. AVARDS: USA~L Recognitions: Successful project completion of worlds first refrigerated hydraulic aodel study, 1980. VSACRREL Award for Outstanding Engineering Achievement for Enlisted Personnel, 1973. Student paper presentation, ASCE New England Meeting, 2nd prize, 1969. NRC Scholarship froa the Canadian government for support of researdh in experimental watershed as published in K.S. 1'hes!a, 1969. 8 COl\'TINUING EDUCATION : Institute on Unstendy Flow Analysis 1.1 Open Channels. Colorado State University, Juoe 1974. Awarded 4 quarter credits on pass fall grading system. 9