HomeMy WebLinkAboutSUS251DRAFT
JANUARY 12, 1984
SUSITNA HYDROELECTRIC PROJECT
INSTREAM ICE
CALIBRATION OF COMPUTER MODEL
Prep?red by
HARZA-EBASCO JOINT VENTURE ,.
For
Alaska Power Authority
JANUARY, 1984
TABLE OF C0~TENTS
SECTION/TITLE
LIST OF TABLES
LIST OF EXHIBITS
1.0 INTRODUCTION
1.1 Environmental Work Plan
2.0 DESCRIPTION OF MODEL
3.0 DATA AVAILABLE FOR CALIBRATION
4.0 CALIBRATION OF OPEN-WATER TEMPERATURE
5.0 CALIBRATION OF OPEN-WATER SURFACE PROFILE
6.0 CALIBRATION OF FREEZE-UP PROCESSE~
7.0 DISCUSSION OF RESULTS
8.0 FURTHER STUDIES
REFERENCES
TABLES
EXHIBITS
APPENDICES
No.
1
2
3
4
5
6
7
8
9
No.
1
2
3
4
5
6
7
LIST OF TABLES
Title
Open-water calibration -Q = 3000 cfs.
Open-water calibration -Q = 9700 cfs.
Open-Water calibrated n values.
1982 Freeze-Up data at Gold Creek.
Meteorological data at Devil Canyon.
Meteorological data at Talkeetna.
Observed river stages at freeze-up 1982.
Observed solid ice thicknesss -Winter 1982-83.
Final Calibration Coefficients.
LIST OF EXHIBITS
Title
Map of Susitna River Basin
Environmental Work Plan
Water Surface Profiles for 3000 cfs and
9700 cfs -Computed and Observed
Observed Progression Rates of Ice Leading Edge
Maximum Ice Elevation during 1982 Freeze-Up -
Computed and Observed
Ice cover thicknesses -Computed and Observed
Time history of leading edge progression -
Computed and Observed
1.0 INTRODUCTION
As a part of the on-going environmental studies for the project, we
have completed the first ph~se of tre calibration of the computer
model for instream ice. This report deals with the freeze-up in
the reach from the confluence at Talkeetna to Gold Creek for the
1982-83 season, as shown on Exh~it 1. This reach includes a number
of the more important sloughs, and is expected to experience a
greater change in winter regime than the downstream river reach.
Data has been collected in this reach since 1980 and includes the
most complete data on the river.
Calibration studies will continue and will be reported later.
These further studies will include:
1. Additional simulations for the freeze-up from Talkeetna to Gold
Creek based on 1983-84 data now being collected.
2. Complete winter simulation, including freeze-up, ice cover
thickening and ice cover melting. The break-up of the ice
cover can only be qualitatively estimat.~d since modelling of
this highly complex phenomenon is not presently reliable. Ice
jam stages may be estimated with present analytical techniques,
if the location of jams are known.
1.1 Environmental Work Plan
The sequence of enviromental studies in progress for the river is
shown on Exhibit 2. According to this exhibit, the critical input
data for the instream ice model are the discharge hydrograph and
temperature time history for releases at the dam(s). The instream
hydraulic model (HARZA-EBASCO) and instream temperature model
(AEIDC) will also be required for final instream ice runs.
However, for preliminary runs, the instream ice model will include
4
computations for open-wate r surface and temperature profiles f o r
convenience.
2.0 DESCRIPTION OF MODEL
The basic progr am, !CECAL, has been developed by Darryl Calkins of
the Cold Regi o ~s Research and Engineering Laboratory (CRREL), u .s.
Army Corps of Engineers. The program documentation is i ncluded in
Appendix A. Mr . Calkins provided assistance in installing the
program on the H-E system and continues to provide advice on
assessment of program output.
In summary, the program requires the following daily input data:
Upstream Boundary
Water Discharge
Water Temperature
Frazil Ice Discharge
Within the Reach
Channel Cross-sections
Channel Ro u ghness
Air Temperature
Wind Velocity
Downstream Boundary
Stage Hydro graph
5
Water Discharge
For the first day of the simulation period, the program computes
the open-water surface profile and temperature profile. Duri n g
each day, including the first day, the model determines the total
ic~ produced, evaluates potential ice bridging sites, and advanc e
of the leading ice edge and thickening of the cover. In addition,
the border ice is simulated at various open-water sections in
accordance with calibrated coeffic j ents. After the ice front
advances from one cross-section to the next upstream section, or if
the water discharge changes from one day to the next, the water
surface profile is re-computed.
The ice production in the reach is computed based on open-water
heat exchange using a linear approximation of the heat transfer
coefficient with wind _velocity as the major independent variable.
The ice cover starts at a "bridge" location at the downstream
boundary or an intermediate sectio~. The advance of the leading
edge is based on water velocity at the front and relative thickness
of ice to water depth.
The critical parameters which must come f rom the ice hydraulics
calibration are as follow:
1. Open-water heat transfer coefficients.
2. Cohesion coefficient for frazil slush accumulation thickness .
3. Critical value of Froude No. for progression of the leading
edge.
4. Critical velocity for erosion/deposition under ice cove ~.
5. Lateral ice growth coefficients.
6
<---The model uses the following fundamental equation$for the
ice processes:
1. Ice inflow at upstream boundary:
where
Q. = l.
ice discharge,m3 /s.
c. = surface ice concentration,%. l.
v = /l'lt'd/1 velocity, (m/s).
B =open water width,(m).
t = J7}~311 thickness of the floating :'j;.rC/ntntU ~-17 #!;
2.
e = porosity of the floating slush/ (J.>fttmntd tJ,5)
/
Ice production in open water:
~ (m-'/.s).
where
hi = ice production heat transfer coefficient, w;m 2 -·~
A -open water area, m2 •
T-= air temperature below o•c.
p = density of water, !tJOO ~;p1;.
A = heat of fusion, .J.54 x 10 5 tV-m/Kq
3. Lateral ice growth:
L. = ice growth in m/day.
l.
K = coefficient based on observation.
v = t11~~ 11 flow velocity, m/sec.
N = exp~AfJtl J~rtlttl o" oJ.r~rvdllt;A.
-1-
? ' ,
~ -
· \ n for progression of leading edge:
jtgfr ~Fe
---
uted modified Froude Number.
ical Froude Number.
--_.j.---~ flow velocity, m/sec.
hydraulic depth, m.
If F > Fe, leading edge cannot advance and ice is drawn
under cover for possible deposition downstream.
5. Progression by Hydraulic Thickening:
V =,jig tH (1-p'/ P) (l-t8 /H)
where
V = mean flow velocity just upstream of the leading
edge, m/sec.
H = hydraulic depth just upstream of the leading
edge' m.
t 8 = stable ice thickness required for progression of
front, m.
p' ,p = density of ice cover{a'JTt/mmed t?ZO ~/m~tu~~r (/oti:J q~..i").
6. Progression by Mechanical Thickening:
where
Vu
Hu
B
= mean velocity under ice cover, m/sec.
= mean hydraulic depth under ice cover, m.
che~,,e I width, m. =
~ = coefficient of internal friction for ice cover1 /.?~.
-2-
4. Criterion for progression of leading edge:
F = -F"~ Fe
F = computed modified Froude Number.
Fe = critical Froude Number.
V = mean flow velocity, m/sec.
H = hydraulic depth, m.
If F > Fe, leading edge cannot advance and ice is drawn
under cover for possible deposition downstream.
5. Progression by Hydraulic Thickening:
V = fg tH (1-p'/ P) (1-tH/H)
where
V = mean flow velocity just upstream of the leading
edge, m/sec.
H = hydraulic depth just upstream of the leading
edge' m.
tH = stable ice thickness required for progression of
front, m.
p',p =density of ice cover(.:l>rtlmMed 9?0 ~?/m~tu;'ler (/otf:J q~J').
6. Progression by Mechanical Thickening:
where
Vu
Hu
B
= mean velocity under ice cover, m/sec.
= mean hydraulic depth under ice cover, m.
ch:J,,e/ width, m. =
~ = coefficient of internal friction for ice coverJ /.?~.
-2-
7.
c = Chezy coefficient of friction1 t.d.:e tl o,-, 31'e,~yedtJ ,£
bt'tl /rt'c /711" ~""
p ,p = densit·y of :ce cover,lj-..7,.,e c-'.-S. "Y . ~ tJ,CJ50 -
. .;;j;~~.
R = hydraulic radius under ice cover, m •
.t = cohesion of ice cover, N/m!
ts = stable ice thickness required for shoVing
stability, m.
Under ice Deposition: 6 ~L ,A,;rn ~~~ C~~r
Vu-e = critical velocity]ior deposition of ice
under cover when front cannot advance, m/sec.
T~mp
0° to -7°C
-7 to -19°C
-18 to -30°c
1/u.c
Vu -e
tfv-c /o.95 M/f
llu-c ld-!)()111/j.
t :-1 --~ previous day ice thickness, ~-
bti = incremental ice thickness gro:..·th per day} m.
J<i = t.heiToiel conductivity 1
2-2 3 tV lm--c .
H a surface heat exchange coefJ a
J,() /m z_ ·c .
e
,
p
=porosity of ice cover (~>fvmnreJ (),5).
= heat of fusion of ice J 3 ,34 N-l'h/~g.
= density of ice 1 920 ~9/m3.
3.0 DATA AVAILABLE FOR CALIBRATI ON
The data available for model calibration hds been acc u mu l ated
primarily by R&M Consultants over the past three years. This
information is available i n R&M reports for the past 3 winters (see
reference list}. Observation for the 1983 freeze-up will be
available in early 1984. In addition , channel cross-sections from
Talkeetna to Watana, and open-water stage-discharge observations
are available in R&M 's report on "Hydraulic and Ice Studies ."
The information included in these reports is as follows :
1. Descriptions of the ice processes,
2. Photos of river ice phenomena ,
3. Weather data,
4. Discharge data,
5. Surface ice con ~entration,
6. Water surface profiles,
7. Ice thickness,
8 . I c e front progression,
9. Ice jam locations and effects,
10. Channel cross-sections,
11 . Open-water stage-discharge ratings.
Based on the above information, the freeze-up of 1982-83 was
selected for calibration of the freeze-up portion of the model;
7
since it represents the most useful information require d f o r
calibration. While this data set is not c o mplete, the following
information in the reach from Talkeetna to Geld Creek was
sufficient for preliminary calibration:
1. Progression of the leading edge,
2. Approximate staging,
3. Approximate solid ice thicknesses (slush not included),
4. Estimate of surface ice concentra t ion at Gold Creek.
4.0 CALIBRATION OF OPEN-WATER TEMPERATURE
The open-water temperature profile is not important for the
calibration of the freeze-up portion of the model, since the
simulation period begins after the river has reached 0°C, and air
temperatures are below 0°C. Therefore, no attempt has been made to
calibrate this portion of the model.
However, for post-project production runs, discharges from the
dam(s) will be above freezing and it is very important to determine
the location of the 0°C point in order to estimate the ice
production and limit of ice cover.
Therefore for post-project operation, we plan to use results of the
AEIDC temperature profile model, SNTEMP, which has been calibrated
to the Susitna. Until SNTEMP results are available , however, we
will use the temperature profile as computed by !CECAL, realizing
that adjustments may be necessary when the final SNTEMP data is
available.
8
5.0 CAL IBRATION OF OPEN-WATER SURFACE PROFILE
This portion of the model must be calibrated since velocity and
depth are crucial to the development of an ice cover and the
mechanics of the ice front advance.
Open-water stage data is available on the river for GolC Creek
discharges of 3000 cfs, 9700 cfs, and higher flows. Since the
normal pre-project winter flow during freeze-up is approximately
3000 cfs, and post-project freeze-up flows are expected to be
approximately 10,000 cfs, both discharges were used for calibration
purposes. Tables 1 and 2 show the comparison of computed and
observec water surface elevations. All computed water surface
elevations are within 0.5 feet of the observed values, wh1ch is
considered acceptable for the ice model. Exhibit 3 incl n des
profiles showing the same information. Tables 1 and 2 also show
the water surface elevations computed with the HEC-2 model, as
reported in reference 5. These values demonstrate that the open-
water surface profile computation in !CECAL compares favorably with
HEC-2, which is the standard model for open-water profiles.
The resulting Manning's "n" values for the river bed at the various
c ross-sections are shown on Table 3 and range from 0.022 to 0.065,
with contraction and expansion losses of 0.1 and 0.3, respectively.
This is considered to be a normal range of "n" values for a river
such as the Susitna. These calibrated roughness factors were then
used for the river bed for all succeeding freeze-up simulations.
6.0 CALIBRATION OF FREEZE-UP PROCESSES
The simulation of freeze-up for 1982-83 is based primarily on data
given in the R&M 1982-83 Ice Observation Report. The information
taken from that report is as follows :
9
1. Table 4 contained wa ter discharge, mean dai l y air temperature,
and ice c oncentration at the upstream model boundary. (G o ld
Creek). Since wind velocity was not available at Gold Creek,
the record at Devil Canyo n was used, shown in Table 5. The ice
concentration was converted to ice discharge ba s ed o n esti ma t e d
thickness and porosity.
2. Table 6 provided the downstream boundary conditions
(Talkeetna), mean d~ily air temperature and wind velocity.
3. Table 7 listed the river stage after the ice front passed
various locations in the reach between Ta l keetna and Gold
Creek.
4. Table 8 gave the solid ice thickness following freeze-up at
Gold Creek, Curry, and LRX-3 (did not include slush).
5. Exhibit 4 in this report was used to determine the location of
the leading edge with time.
Results of final simulation trials are shown on Exhibit 5,6, and 7
and Table 9. Exhibit 5 shows a profile of the maximum water
surface elevations computed after the ice front has passed the
various sections i n the reach, along with corresponding observed
i ce elevations at locations reported in Table 7. Exhibit 5 also
shows the open-water stage corresponding to the flow during passage
of the ice front, indicating "staging." Exhibit 6 shows the
computed slush ice thickness in the reach, after the cover has
progressed to Gold Creek, with observed solid ice thickness
included for comparison. As discussed in Section 7, below, the
observed solid ice thicknesses do not include slush deposited
beneath the sol i d ice and will therefore not correspond to the
total slush thicknesses computed by the model. Exhibi t 7 shows the
computed location of the ice front with time, compared to the
observed location. The calibration coefficients resulting from the
10
final simulation for the 1982 freeze-up are shown in Table 9 .
These values are within normal tolerances, as ind1cated.
7.0 DISCUSSION OF RESULTS
Based on the results of the simulations to date, we conclude the
following:
1. The open-water profile calibration yields computed values
within 0.5 foot of observed values for 3000 cfs and 9700 cfs.
This is considered acceptable for ice modelling purposes.
2. The maximum water levels computed and observed "maximum ice
elevations" are in good agreement generally, with the
exceptions of RM 127.0 and 130.9. Here the observed maximum
ice elevation are significantly lower than computed.
We have no explanation for these differences Lther than the
possibility of bad data. In particular, the observation at
RM 127.0 is suspicious because is it very near the open-water
level, indicating little staging (about 1.5 feet). Observed
staging in the remainder of the reach ranges from 4 to 8 feet.
At RM 130.9, the observed staging was about 5 feet, compared to
about 10 feet computed. On the other hand, at RM 103.2, the
observed staging was about 8 feet compared to about 5 feet
computed. It appears that there is no systematic error in the
simulation, but rather possible errors in observation as well
as computation. It also appears that the simulation results
are generally on the conservative side.
3. Ice thickness simulations apparently do not agree with observed
values. However, the observed values of February 4, 1983 are
for "solid ice" only and do not include the "slush ice" which
can be deposited in significant amounts beneath the solid
layer. The simulated thicknesses ~re largely slush which
11
ueposited during passage of the front or slightly thereafter.
Unfortunately, the amount of slush beneath the s o lid ice was
not documented for the 1982 freeze-up, thereby making a di~ect
comparison impossible. The elevations of ·the ice cover
observed are below the top of ice computed because of the
decreased flow and consequent "sagging" of the ice cover in
February.
As with stage simulations, we believe the ice thick~nesses
simulated are conservative and will yield a high estimate of
post-project impact in the middle reach.
The field observations for 19v3 freeze-up should produce a
better estimate of total ice in the cross-section where
measurements are made.
4. The simulation of the leading edge progression rate was in good
agreement with observations for the first 30 miles, as shown on
Exhibit 7. However, where the field observation shows a more
gradual decrease in rate of progression, the computed rate
seems to have a sudden decrease to a slower constant rate at
RM 130. Since the first 30 miles are likely to be the more
important reach for post-project, the upper end near Gold Creek
is not of great concern . Observations note that the continuous
ice cover progression does not extend upstream of Gold Creek,
but is replaced by a series of locali z ed ice bridges separated
by open water.
Again, the simulation is conservative, since the observed rate
of advance at the upper end is slower.
8.0 FURTHER STUDIES
Further calibration stud ies will be made to extend the model
simulations into the full winter season. We do not expect that
12
break-up will be modellable. However, locations of maximum ice
thickness and flow velocities during spring thaw may correlate with
portions of the river which are particularly susceptible to
jamming. Maximum jam elevations may be estimated for the jam
susceptible reaches, but probability of occurrence may not be
reliable.
Additional calibration runs will be made as soon as the freeze-up
~~~
data from 1983 ~ available. Following this further calibration of
the mvdel, we will proceed with project production runs as output
from the reservoir simulations become available.
13
REFERENCE S
1. Susitna Hydroelectric Project, Ice Observations, 1980-81,
R Ul Co n s u 1 t a n t , Aug u s t 1 9 81 .
2. Susitna Hydroelectric Project, Ice Observations Report,
W i n t e r 1 9 81 -8 2 , R & tf C o n s u 1 t a n t s , D e c em b e r 1 9 8 2 .
3. Susitna Hydroelectric Project, Susitna River Ice Study,
1982 -83, RU1 Consultants, Preliminary Draft, August 1983.
4. Susitna Hydroelectric Project, Hydraulic and Ice Studies,
R&~ Consultants, March 1982.
5. Susitna Hydroelectric Project, Water Surface Profiles and
Discharge Rating Curves for Middle and Lower Susitna
River, Harza-Ebasco Joint Venture, December, 1983.
1 3
TABLES
786/e .1
HAIZA·fiASCO SUBJECT FILE NO. /5'63./42
DATE //3/a</ ,,
"AGE _/_ O F ..3" PAG ES
SUSITNA JOINT V EN TU RE ~~ C H ECKEO
~.(-3
.?" /' )"-d
hR%-f
LR.-{-Zd
L~X.2b
~_.(-~
.LR~4S
L~%~2
vx-dr8
COM,.UTED
~r~
;f;v&-/o: /ttcde-1
7'8,59 339.7 .340.2 34C/. z
ftJ,S:;9 3 4 71 -34if.8
/03.22 3749 375.1 3 74~
/20.~ 571.2 SI9J! ~/c. 9
124.41 ss-;.~ ---·~ :_ ~ /·,
/?x'J.~7 &,/S:o tt;4. 7 d-;4.:;-
/3r;,,¢ ~5/; tf-81.4 t;6/.C
;_.ft:f,f! g.?;.4 83/.1 E31.4
/~c:J. 11 847.3 -847 I
.t. "Wafer .5t:~rface Prol"t~s one/ Olscl;dty~ ~Ito/ urve;
1-hr.zt¥-£bd'.>co , Oc ltJ!Jer/ /?6'3 . 7.96/e 5
2. '')/yclrdt:~lc and .ICe 5-iv.dtes ': R~M Con~t--lil/lis;
MJrch, 19~2 . T.:?b/e 4 ./8
3 . RltM CtJrre¥¢dence 1\.0. t?5?J'06 , 5¥1 I~ 1!'6'1
--~
WZA ·EIASCO suuECT 0~ W~e~ L'dibrdtm FILE NO. t51P3. L42.
l'ri~e._r (ce Mth1"e{_ DATE t/.J'/.f4
$USITNA JOINT VENTUifE Alw'P
~,
COWVTED CHECK ED PA G E ~ OF 3 PAGES
WSE/. s /P"' ~?a? c-/s !£~ t?c/d' {}eel
5ec~o'J Rtv~,., #drZ# 1 ~~/Vl 2
kd/';!d
/0. ;Yble IIEC-2 ciJ~C'd ~V'-'r k A4oclet
~~,(-3 9a-:s9 3 4 4.1 -..?44.CJ
L~X-~ '19-5B 34&~ 34'~/ 34E .~
L.e,(-9 I C 3 .2Z 378-0 3 7~4 37~.9
~A-z4 /2 0.6;r 5'"2/.Z 52/.3 :;z ;. 6
LR!'-?i /Z441 5544 5 536 ~5'3.6
LR.l'-.5£" /3o,67 tJ1 /7. 4 ~//.3 d/ 7. 4
LR.f-/~ l?e .t}t8 6CJ4.o G841 684:::-
LRA-~2 /4t5.94 83s.4 E .3J.5.4 83S. 9
L~68 /s-o ./9 8s-/.o ~5/.4 e~;.~
~a'~'~,,,,~~~~~~-~.,~,,2~~~2,,•~~~~~•~a~•,,a~,2022»,,,~,~,,22022~,~,.,,~-~~~
~,,~,,~,~,,,,,,,,,,D,,,,,,o,,~,,,,,,,.,,,,.,,,,,,,,,,?,,,,,,,,,o,,,,o,a,,,~,,,
~ ........................................................................... . .. :.,~~,,~~~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~,,,,,,,,,,,,,,,,,,,,,,,0~,~,,,,,~~, .. ~
;>n
:J
~ .z-
-~ ~~~~~,n ~~~r~~~~~~~~~~~~~~~~~~~~~~~ft~~~ft~~~~~~~~~~~~~o~~~~~~~~~~n~~~~~~n~~~~~~n~
-.Z: e e e • e • e I I e e e e e e e • e e I I I 1 I 1 e I 1 I I e e e e e I I I I I e e I e e I I I e I I I I I I I I e I I e I I I I I I I I I I I I I I I
~.,,~,,,,~,,,,,~,,,,0,,,,,,,,,,,~,,,,,,,,,,,,,,,,,,_,,,,~,,,,,,,,,,,,,,,,~,,~,
c -~~,~~~~~~~~~~.,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~-~~1~~~~~~~ft .z
r:
1 ~~~,~,o~~~~~o~~~ooooo,~~•~~~,~~,~~o~o,,,~,,~,=~:ooo~~~o,o ~oo~~~~,,~,~,~~~,~~
~ Qo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r~~~~~~~~,~~~,~~r r ~,~~
~ ~~~~~~~~~~~~~~~~~~~~~~~~r.~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~!~~~:~~!~~~~~~~~
z c •
,,,~,~oooo~ooo:.~oooo~~~,o :o,,~o,~~o~oooo~,~~,,~,D~,~ooo,,~,~,,~,,,~,,,,,o,~,
I
-:o -.. .. ~~~~~~~,~~~~~~~~~~O ~O,~O~OO~~,c,~r~~C£CC~,~LO~C£C,2ft~~D,~~,~~~r~~,:~~~rrr~~r
~,~~~~~~7GC~~~~~~-·~·,···~-~~~~~~~~~~~~~~~2~~~~~~~7~·~·7·~~~~~~~~~T~C C i rrr o•
O~OO~~O~OOO~DOO,O,O,OOOOD~OOD,D,O~O,O,O~D,0,0,030,,,,,~~,,0,,,~,,,~,,,>~>>~>
:OJ>
-
J-::;; .. , .
? ;,
;,
% ...
") ..
~ -.a
~
~ ~
c
7:1
...................................................................
=,,,,,,,,~ooooo,o>o:oooo~~,,,,,,,,,,o,,,~,=:>,,;,,,~,,,,,,~~,,,,~~,,~~~~~,,,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,~~~~~~D~~~~,,,~~~,~~~,~~~~,,~~C~C&C'L ~CI~r••7 1
2~~,,~~,~~~,~~~,,30~~,~~~~~~,~,,~,~3~~~~~~~,,,,~~,~~,~~,,~~~~?P ~~t~t P ?.,~~'t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .
------------------~------~-------------------------------_,,,,,,~,~»,~~~j ~~,
77:~~~c r ~7-,,~~,o ~~~~~r ft•~-cc ~~-~~~r~o~r7c~77-~~~-~~~~•,r-•t•7Y,r •=•~~~-~~ft. ------------------------------------___________ , _____________________ _
'C>~,Y0 ~4~0~~~-''~~,~~~~~,~~o~~~----~o-~--7~~~r~o~~,oc~-~'?'~~,~~,,~,,r r t --l
~~~C~ft~~~~~~·C~ftC~~~,c·~~--·~~~.~~~-~Ct-:~-<>~~-~->~~~-·~•LY-t>-•-c t -•-••~ .................................................................
C~~D ,,,~~-,~WD&?;-~~~~~~4~,~~,--~~-~hC~,,~--~~~~rr~tC=,-~~~,,~-~~~7 -~LI ,,1~
,~~>,?~,,~~,,~;-------------~~,~~~~~~~~~~~~,~~~~-~~~~~~~~~~A·~~·7•7rJt ~l 2 -~r ------------------------------------------------------------·--------
'• \~ ~-b.
'<;J 'q '
'"'I
II
~ \;
'"' .... 'I '• '•
J ' ,, ~
"· 'l..
~· ~ > ~ ' '11 . '
J
• • ...
t -
~ .. ... • ·-:::~ • u ... z
Co-
~ ... su -..... .... _0.
•-j ..... ,. .. _,,
·~:
J "' -~ ....
:>::> .... ... ... ... ... .. •
:~~ u c -· 5 ..
JJ •• .... ... ~ ~!l
c
• • • • • 0 • • • 0 • 0 • • .. • • • • • • • • • • • 0 • • • coeocc------------------------
cc c.cc:e~eecco
-"~.,.:: --.r 6 J/.--"-
~=c:cc:::occec• • •coc:eoeec:ceo
• • • • • • • • 0 • • • • • • --• • • • • • • 0 • • • • •
~-c-c~--~,~---~~~~~=~~JJ-~-•~~•
• ···--·······---.... f\o -t l tt ttt-tl I I t I I I I I
-6S -
7:;;6/e • .. • • -c
c
0
•
" c
• • t' ,. s : .. • ..
I
f
.i
l .. .. •
• I
• •
.. t c ~ I : i ~ • • .. c I • 0 .. .. . ,.
.... 0
~ ; ~
1 ! ~ . .. . .. • .. • •
•
" e ..
~
0 • c
"' ...
• ~
• • .,. .. • ..
c:
0 .. • " .. • • Z>
D
!!
0
~ • .. c • .. • c
i • • A
• ..
I .. • •
! • >
Du.e
Dec. 1
2
J
4
5
6
1
8
9
10
11
12
13
14
1')
16
17
18
19
20
2 1
22
2J
24
25
26
27
28
29
30
31
Pi •charge ( 1)
I cf'i l
3000
2900
2900
29110
2800
2801)
2800
27110
2700
2700
26110
2600
2601)
2600
26110
2500
2500
2500
2400
2111)0
21100
21100
2400
2400
2300
2300
2400
2400
2600
2800
2900
TABLE 4.;,
SUSITNA RIVER AT GOLD CREEK
fREEZE-UP OBSERVATIONS ON THE HAINSTEH
Dece•ber 1982
Gold Creek
Hean Air
Te•pera t.ure ( 2)
I °Cl
-7.8
-16.9
-16 .9
-10.0
-8.3
-1.7
2 .5
3.6
-1.9
-16 . 1
-6. 1
-3 . 1
-1.1
-5 .0 -o. 3
-3.3
-6.7
-10.6
-11 .7
-7.2
-21. 1
-23.1
-15 .6
-11.9
-9.2
-').6
-1.1
0.6
1.7
-0.3
Water
Te•perature (3)
I °Cl
0 . 1()
0.10
0.00
0 . 10
0.20
0.20
0.30
0 .20
0 .20
0 .10
0 .110
0.00
0 .10
0.20
0 .20
0.10 o: 10
0 .00 o.oo
0.00
o.oo
0.00
0 .00
0.00
0 .10 o. 10
0.10
0.10
0 .10
0 .10
Ice tn
Channa• (4)
Ill
JO
55
70
1 ')
75
65
40
15
2'j
60
40
60
40
2'j
10
10
10
50
110
40
50
50
30
30
30
30
35
5
25
5
Border Ice
Thickneu
I rtl
1. 3
1 . 3
1.3
1 . 3
1.3
1. 3
1.3
1 • 1
1 • I
1.2
1.3
1.3
1 .3
1. 2
1 . 2
0.5
0.5
0.5
0.5
0.6
0.(·
0 .6
over fl Ottf
overfl ow
1.3
snow
Depth
1.llL
3.4
3.3
3 .3
3.3
3.3
3.0
3.0
3.8
3.9
3.9
3.9
3.8
3.8
3.8
3 .8
3.7
3.7
3.7
3.1
3 .7
3.7
3.7
3.7
3 .6
3.6
3.5
3.5
5.0
3 . 1
3.2
3.2
weuher
Cloudy
Cloudy
Windy/Sunny
Cloudy
Cloudy
Sunny
Windy/Cloudy
Snow
Cloudy
Sunny
Sunny
Cl o udy
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Sunny
Snow
Snow
Rain
Rain
Sunny
1. Provisional data subject to revision by the u .s. Geological Survey, Water Re•ources Divlalon, Anchorage, Alaska.
2. Average value or the days •tnt•u• and .. xl•u• te•perature.
3. Ba5ed on one lnauntaneou& Ha5ure.ant usually taken at 9 a.•. dally.
4. Vlsu&l estl•at.e based on one lnatantaneous ob•ervatlon, u•ually at 9 a.•. dally .
r.5/ddll
TABLE 11.6
SUSITNA RIV£R AT GOLD CRHK
fREEZ£•UP 08S£RVATIONS ON TH[ MAINST£M
JlnUI ry 1983
Gold Creek
Meen A i r Weter Ice In Border Ice Sncnot
Dlache rge I 1 I T e ~npereture (.:') TeMpereture I 3 I Chennel 14 I Thickness Depth
12• t.! lcfs} I o~l I 0 CI lll I ft. I llt...L Wt•t.her
Jen . 1 2900 ·2 .8 o .oo 8 1. 3 3 .2 Sunny
2 2800 -2 .8 0,1)0 10 1. 3 3 .2 Sunny
3 2800 -3.9 0 .011 30 1 .. 1 3 .5 C I Olldy
II 2 700 -5 .0 li.IIO 60 1 ." 3 .5 Sunny
5 27,.11 -13.9 0 . 10 (;5 1. l 3 .5 Sunny
6 2600 -19 . 1 0. 10 65 1. l 3 .5 Sunny
7 2!:100 0.00 70 1 . 3 3.5 Sunny
8 25110 -?5 .3 n.oo 65 1 . 3 3 . 3 Sunny
9 21100 -22.2 o .oo 60 1 .11 J.l Sunny
10 21100 -20 .6 0 .01} 70 1 .11 3 .0 Hlqh Wlnda
11 211110 -16 .7 O .OCI 8 5 1 ." 3 .0 Sunny
12 2300 -18.6 0 .00 90 1 . 5 3.0 Sunny
1 J 2 ]()I) -16.7 0 .11!1 90 1. 5 3.0 Sunny
111 2200 -13 . 1 0 .00 100 1 . 5 3.0 Sunny •
1. Provlslonel date subj ec t to revlalon by the u .s. Geological Survey , Weter Resource& Division, Ancuore9e, Alaska.
2. Averege velue of the tl11ya lllnl•u• end 111exiiiHIII telllpereture .
3. Based on one lnauntAnoous -•sure111ent, usuAlly taken at 9 1 .111 . dally.
4 . Visual estl••te besed on one Instantaneous observation, usually et 9 a.111 . dally.
• Channe I f r r.zen over .
I~ 1!. M C Cl N ~;; U L T A N T B > :1: NC .
S U Ei :J: T N A H Y I> I~ DE: L E C T I~ :1: C P I~ U .T E C T
MONTHLY SUMHAFiY FOR DE V-1L CANYON WEATHER STATION
DATA TAKEN DURING Nov~f"'ber .. 1982
)
IES . IES . •• MX. MX. DI\Y 'S
Ml . IUN. I£AH ill liD III MD "lMD WST QJST p 'IJil !£AN I£Aij SOLAR
DAY mw. T£111 . TEJIP . til. SPD . SPD. til. SPD . III . IH DP PIECIP EMOGY DAY
Ia c IE' t IE'C IE' IVS IVS IE' IVS % D£'t "' llt/SQII
1 .2 -9.1 -4.5 121 1.5 1.8 113 7.6 ES[ 73 -7 .5 tHt 653 1
2 -.11 -9 .6 -5 .1 121 .II .9 185 3.2 s ~ -5 .8 HH 1115 2
3 -2 .7 -12 .9 -7 .1 116 .5 ·' '" 3.8 DE " -14.5 Htl 4-41 3
4 -.3 -5.5 -2.9 125 .9 t.t 171 11.3 E5£ 75 -7.2 HH 5b8 4
5 -2.6 -14.3 -1.5 135 •• .8 132 2.5 SE 89 -1.7 IHI m 5
II -11.7 -18 .1 -14 .9 182 1.6 1.7 182 4.4 E 88 -111.8 1111 423 • 7 -tl . 9 -18 .5 -15 .2 194 2.1 2.3 121 5.1 ESE 81 -18 .1 Hit 423 7
8 -7,, -t3.o -11.5 114 1.7 1.8 191 5.7 ESE 82 -11.3 IHt 341 8
9 -5 .7 -1.5 -7 .I 194 .I .5 121 2.5 IISii 13 -38 .1 IHI 311 9
11 -5 .9 -13 .7 -9.8 188 1.6 1.7 175 4.4 ESE 79 -11.3 Htl 315 10
ll -3 .6 -6.5 -5.1 111 1.3 1.4 tt7 3.8 ESE 41 -24 .3 IHI 318 11
12 -.5 -6.8 -3.7 131 1.1 1.4 137 4.4 SE 83 -...3 .... 493 12
13 -.7 -41 .5 -3.11 121 1.1 1.3 115 4.4 ESE 18 ..... 2 Mil 541 13
14 -3.2 -9 .2 -6.2 176 .7 .9 189 3.8 Ell 21 -34 .8 ... , 411 14
15 -..7 -15.3 -tl.l 191 1.11 1.11 195 4.4 E 71 -13.1 HII lOS 15
16 -13.0 -16 .9 -14.9 187 2.1 2.1 188 4.4 E 92 -111 .5 HII 351 1b
17 -15 .7 -21 .4 -18 .11 188 2.3 2.4 197 5.1 E 87 -19 .9 Hit ~ 17
18 -15 .9 -22 .2 -19 .1 192 2.2 2.3 191 4.4 E 78 -23.1 .... 390 18
19 -15.2 -21.4 -18.3 tl5 2.8 2.8 115 7.1 ESE ~ -23 .2 Mil 418 19
21 -11.1 -15 .3 -12.7 115 2.9 3.1 123 11.3 ESE 79 -15 .4 HII l3Q 20
21 -5.8 -11 .7 -1 .3 193 1.5 1.7 125 4.4 EliE 85 -11 .4 HI• 393 21
22 ..... b -7 .5 -6.1 113 1.6 1.8 119 5.1 DE 81 -1.9 HH 378 22 n -.8 -6 .1 -3.4 ll2 1.1 1.3 11 3 3.8 ESE 84 -4.4 HII l48 23
24 -1.1 -4.7 -2.9 130 1.4 1.4 138 3.8 SE 91 -3 .4 IHI 335 24
25 .5 -41 .7 -3 .1 138 1.4 1.5 159 3.8 SE 79 -5.2 IHI l5l ~
2.11 -4 .9 -7.3 -6.1 116 2.4 2.4 111 5.7 ESE 76 -9 .7 HH ~ 2b
'D -3.8 -11.8 -7 .8 1116 1.5 1.6 114 4.4 E 88 -1 .5 IIH 36J 27
28 -11 .3 -14.7 -12 .5 181 2.7 2.7 171 4.4 E 95 -13 .8 HH 368 28
29 -5 .4 -11 .1 -7 .8 197 t.t 1.2 131 3.8 EJ( 31 -15 .5 Hit 258 29
31 -5 .8 -12.8 -1.9 259 .4 .7 'l1b 3.8 II 69 -12 .2 tilt 'l73 3~
IIOtllH .5 -22.2 -1 .9 114 1.4 1.11 113 7.11 E5£ TJ -13 .11 till 120bQ
GUST VEL. AT MAX . GUST MINUS .,
~ INTERVALS 5 . 1
GUST VEL. AT MAX. GUST MINUS 1 INTERVAL 5 .7
GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 5 .7
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 3.8
NUTE : I<ELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARl LESS THAN
ONE METER PER SECOND . SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR MONTHL Y MEAN FOR RELATIVE HUMIDITY AND DEW POINT .
--·~-~ SEE NOTES AT THE BACK OF THIS REPORT **••·
-159-
I~ ~ M CD N B l.J 1... T ANT S > :r N c .
SUn :t: TN A H Y I) I~ DE 1... E C T F~ :1: C P I~ () ,T E: C T
~· 'LY S UM MARY FOR DE VIL CANYON WEATHER S TATI ON
r~-TAKEN DURING Dece~ber, 1982
(
IIAX • lUll . IIEA.'I
RES .
Ill liD
DII .
DEC
IES .
III MD
SPD .
IVS
~.
Ill liD
SPD.
IVS
MX.
CtJST
DII .
DEG
DAT TE-9 . IDI . TtltP .
DEl: C DEC C DEG C
I -11.1
2 -1~.1
3 -tl . 9
4 -13.1
5 -4.7
It -1.5
7 t.B
a 0.1
9 -.It
11 -4.3
ll -4 .9
12 -2 .3
13 -.I
14 -.9
15 .3
1b -.3
17 -2 .6
18 -11.2
19 -11 .11
28 -~.b
21 -1~.,
22 -1 6.0
23 -11.8
24 -9 .1
2S -7 .8
211 -.8
" .4 28 .9
29 1.7
!D -.1
31 -6 .6
ltCNTH 1. 9
-!9 .9
-21 .11
-21.4
-19.7
-13 .1
-7.5
-u
-1.8
-14 .4
-19. I
-8 .7
-11 .8
-5 .1
-9 .1
-5.5
-~.a
-11 .5
-13.9
-13.1
-15.3
-18.9
-20 .6
-17 .9
-16 .8
-12 .7
-8 .7
-2 .9
-.4
-.3
-9 .3
-11 .4
-21 .6
GU ST
CU ST
GU S T
GUST
-15 .5 117
-18.4 121
-16 .7 117
-15.9 118
-9 .9 109
-4.5 122
-.1 107
-.9 . 134
-7 .5 167
-11 .7 110
-6 .8 ~~
-4.11 131
-2 .6 145
-5 .1 142
-2.6 131
-2.7 134
-6.11 117
-12.1 189
-9 .a 113
-11.5 124
-16.9 083
-ta .3 m
-14 .8 099
-12.4 105
-11 .3 112
-4 .8 131
-1.3 143
.3 145
.7 179
-4.7 Itt
-8.5 Ill
-8.2 11t
~ ,.J
1.5
1.2
2.3
1.3
1. 7
2.3
.7
u
1.6
2.1
1.5
1.3
t.!
1.5
1.4
1.8
1.7
1.1
1.6
2.6
2.6
1.8
2.3
2.1
1.2
.a
.3
.6
1111
IIH
1.4
.a 28t
1. 7 133
1. 6 125
2.5 1~
1.3 198
1. 9 110
2.4 lD7
t. 0 !0~
1.7 277
1. 9 141
2.1 118
1.6 1 2~
1.5 lD9
1.2 124
I. 7 112
1.5 115
1.9 117
1.8 077
1.3 122
1.8 123
2.6 171
2.7 072
2.0 101
2.5 lt9
2.3 l i b
1.4 tit
1.1 198
.4 197
1.0 :?Coil
IIH IH
IIU Ill
I. 7 107
'..IEL . AT MAX .
I.'EL . AT MA X.
VEL . AT MAX .
I.'EL. AT MAX.
GUST
CUST
GU S T
GU ST
MINUS
MINUS
PLUS
PLUS
MX .
!EAH CUST P 'VAL IIEAII
sn . DJI . IH DP PREC!P
IVS I DEGC 11ft
3.2 SE 92 -17 .7 Hll
5.1 SE 86 -21 .I IHI
4.4 ESE 81 -18.9 HH
&.3 ESE ~ -21 .5 utt
4.4 ESE 93 -11 .3 ••••
7.1 SE 81 -?.9 IIH
9 .~ ESE 81 -2 .: IIH
5 .1 SE 11 -!b .5 1111
5. 1 EHE 93 -9 . 1 1111
6.3 ESE S6 -13.3 1111
6.3 ESE 77 -lt.t HH
5.1 ESE n -1 .2 uu
6.3 SSE 83 -5 .1 IHI
4.4 SE 93 -11 .9 1111
5.7 ESE 7l -6 .1 IHI
4.4 SE 74 -&.7 tttt
4.4 ESE ~ -7 .5 1111
4.4 E 78 -13 .0 ttlt
4.4 SE 81 -12 .3 !tHt
5.1 ESE 74 -13.5 Ill!
5. I E 91 -17 .7 IIH
5.7 EME 97 -21 .~ !!t!
4.4 ESE 75 -18 .1 tttt
5.7 ESE 81 -!4 .6 lt!t
6.3 ES£ Bt -13.5 tiH
4.4 ESE 81 -9.4 1111
3.2 SS£ 71 -9.1 1111
1.9 SE t l -~.4 ttlt
3.2 SE 11 -27 .5 !Itt
lilt .et ~ -31 .b Ill!
ltH Ill I -46 . 0 111!1
9.5 ESE ~9 -15 .7 tttt
2 I NT~R 1JALS
1 I NT ER'.':;L
1 INTER'.'AL
2 INTERVALS
7.0
6.3
0 ~ •• ...J
8.9
DAY 'S
nAa
EIIERCY DAY
WH/SQII
2bl
283 :!
293 3
!~3 4
305 5
!...13 6
301 7
~ 8
Z71 9
Z731D m 11
!II 12
328 13
318 14
301 15
!!~ !b
3e3 17
308 18
301 19
31~ 2'
311 21
3~~ 22
328 23
308 24
31
' 25
!GO :!&
253 27
241 ~
268 24?
~! 3C
~· 3~ 9143
f ~· REL~1IV~ HUMIDITY READIN GS ARE UNRELIABLE UHEN WI ~D S?EEDS ARE L~SS Th~N
ONE MET ER PER S ECOND. SUCH READINGS HA VE NOT BEE N I NCLUDED IN T~E ~~I L Y
OR MON THL Y ME AN FOR REL ATIVE HUMIDITY AND DEW POI NT.
•~ SEE NOTE S AT THE BACK OF THIS REPORT **~•
-160-
~ M C D N ~:; U 1... T AN T ~:; " :a:N C.
MO NT~I Y SL~M A~l F OR DE ~~L CAN YO N ~E~T HE~ STAT IO N
v Al A TA KEN D uR1 ~G J •nuar~~ 1983
1 -1.1
2 -1.4
3 -4 .2
4 -1 1.3
:; -li .9
b -lo .3
i -17.2
8 -22 .4
9 -23 .2
10 -2a .2
ll -1&.2
12 .... .
13 .... .
14 ... ..
15 ... ..
1b .... .
17 .... .
18 ... ..
19 -5 .8
21 -~.6
21 -4.4
2.: -a.8
23 1.11
24 -3.8
25 -5.8
Zb -1.9
Zi -~.5
28 -3.9
2; -5.4
3u -4 .u
31 1.9
nut.'iii 1.9
lli li.
TEMP .
~~c
-7.~
-4.2
-11.7
-2 1.0
-24 .9
-21 .1
-2:i .4
-27.0
-26 .4
-26 .2
-31.11 ..... ..... ..... ..... ..... .....
Ill ttl
-7 .4
-12 .3
-1 1.3
-u).~
-i:i.u
-9 .9
-9 .9
-7.3
-a .o
-12 .2
-13 .1
-9.i
-5.3
-31.o
-4.2
-2.8
~.1
-16 .2
-21 .4
-18 .7
-21.3
-24 .7
-24.8
-23 .2
-24 .9
HHI
ttl I I
ttHt
HHI .....
IIIII
Hlfll
-b.b
-9.1
-7 .9
-1'3 .4
·t-.7
-11.9
-7 .9
-4 .6
-8.1
-8.1
-9.7
-b.9
-1.7
-12.1
•~s .
WINi
)iii .
»EG
Ill
114
ll:i
U i
112
112
110
124
133
123
115
Itt ... ... ... ... ... ...
102
119
128
184
"u
~iQ
li4
115
899
119
v9i
:21
1J7
112
RES .
WI H)
SPD .
11/S
HII
2.1
.9
1.3
1.5
2.4
2 .~
1.'
2.3
2.2
1.7 ....
Htt .... .... .... ....
lilt
.6
1.5
l.o
2.11
2.3
2.3
J.c
1.8
z.z
1.9
2. i
l.i
1.1
1.8
AVG .
Will
SPD.
IllS
IHI
2.1
1.1
1.5
1.7
2.5
2.6
1.5
2.4
2.3
2.1
till . ...
Htl .... .... .... ....
.9 ...
1.7
2.6
2.7
2.&
2.3
~-1
z.o
2.1
2 .3
1.9
1.3
1.5
MX .
GUST
III .
liEG
Ill
111
117
192
192
lOb
194
188
109
121
140
• •• ...
Ill
Ill
HI ...
Itt
274
111
124
i89
131
111
112
123
U3
131
124
114
115
tou
GU S T VEL. ~T M ~~. GUST MIN US
GUST Ve L. AI MAA. GuST MI NUS
GuST VEL . AT M A~. Gu S T PLU S
GU ST VEL . AT MA A. GU S T PLuS
MX .
QIST , I VAL lt£AN
S?D . DIR . IH
IVS 4
Hit HI 82
5.1 C:S£ 78
4.4 ESE 71
4.4 ENE ii
4.4 £ i9
B. 9 ESt: b7
i1 .9 Est &7
S.l ESt: oo
5.i sc: 57
5.7 S£ 52
&.3 E fiB
.... ... It
.. ..... It
tilt HI II
.... ••• It
IHI HI H
tttt Ill H
tttt HI H
2.5 S£ s~
5.1 ESE 82
4.4 SE 54
7.1 E ·b3
a.3 Est 'S7
9.5 ESE 33
8.3 ESE 42
7 .& ES£ 59
ca .J Eli 74
. • ESE 61
5 .1 Bi
&.3 ESt. &2
4 .4 S£ 73
9.5 ESE 05
. -~.a
~.9
-11 .4
-18 .&
-2~.D
-Z2.5
-25.4
-29.1
-Jv .4
-29.7
-32.1 ..... ......
Hill .....
IIHI ..... .....
-1o .B
-10 .1
-14 .4
-19.2
-17.2
-20 .S
-18 .8
-11.3
-12 .3
-11 .5
-11 .&
-8 .7
-4 .9
-17.3
~ INT ERV ALS
1 IN TE RVAL
1 INT Ei(v AL
2 Ii-lT ERVA LS
PI£C 1P
"" ....
Hll .... .... ....
lflt ....
till
Ulf .... ....
Hit .... .... .... .... .. .. .. .. .... .... ... ,
Hit .... .... .... ....
IHt .... .... .... .... ....
7.6
8 .Y
7.0
5 . !
DAY S
SOL.:.R
EhtiiGY DA f
w srm
2~
268
253
21a
lia
29 0
34i
30 3
3o:l
I
2
3
'
loS 1G
311 11
.. .... 1 ~
...... 1j
.. .... 14
• ..... 15
• ..... 1o
.. .... 17
• ..... 16
2b9 19
3SB 2u
42& 2:
416 C2
~ ,;,
60 3 ~4
55i 25
so;; 2o
4i i 2i
5Ji 28
4'i it 21
53 3 :;a
573 31
9i l S
~Gf ~: ~£1 ~TIVE n u n iDITY ~E ~~I ~G5 ARE UNRELIA BLE ~~E N ~IND S~EEDS ~~E LE~S 1h~
GNE h[I~R PER S ECOND. SUCH REA DINGS ~A VE NOT BE EN i NC~uDED I~ T n~ u~~L ·
uR MG NT nL1 MEAN F Q ~ RE LA TivE n UMI DI TY AN D ~E~ P O I~T .
~k~• S~E NGTES AT I~E BA CK OF THIS REP ORT ~•••
...
/'f?porl: ;t/S"t '-1,.;; f'/y.c, /rt' _r~4
/9 tJ 2-p _?
•• , ... 2
fiLI((IIl, I LISII
fiLI[(III 1 11'011 LOCAL
CLIMATOLOGICAL DATA
1(1 s•c Cllfi&C f l(f IISI lloatlaly Sammary
-:
' I
2 ,
• ~
• I • • 10
II
12
u u
IS
16
17
II I.
20
21
22
2)
21
2S
26
27 n z•
JO
1111( r• ILISIII
••1 IllS · ••'•• "'u ':' """1111111 :~=1 •I•D SIIS•t ll so• '0'1'1
IISl l~"r 'fK i'tLLl ',_--,.....,,...--fMI~lSSIIli-~::-'',.....'-Mr-I'P'I'I.,..,r.t---~-t-'-;!-'TI•_S-f• .,.__T'"--,.--~-.,.....~--1-.-• .,--!-.S~'llllln '~-II -_. :: ,.!~s • -.. • 0 ••:-ll''.ll.\1 ,.. C-~ ) ~-~!~ I[( II -U..
_. ;~ ; a 1 IU 'fUll S --! i "" "' ~ i_l .,. -_. -a -: S .. IL 11 j (L(' a a "' &
~
i
2
II
)]
21
22
21
I) ,.
21
26
21
JO
))
lS
])
I~
16
21 • 11
21
2S
]I ,.
JJ• ,.
lO
21
10
lJ
20
• • 1
I =
=
,. lf ll: ~ Qllt ltU -~ ~ ~ ]~~ • • :; • "'
!! • .• r -~ -• 1 MISIIII • W • W r(( 1 ., _. .• -. • -• • .. 1; • \11011. •n 1••s = • 1 !_ ••o•E ;: ~ = i: ;: * ~ : • W
71
;; ... 7.~ ' aa
1
rll5 '* . I : " s L ;: ;r • .1"'. •1 ,
S " r• , 10 II 1.2 I) U I § 110 • -• ~ •
1• 2S I 22
II 2C I
1 11 ·• 11
t IS -1 12
C 11 ·I II
-· , ·II • ·11 2 •••••
11 II ·1 ~~
II 22 2
11 21 ] II
2S 21 ~ 26
27 10 II 2C
22 2' II 2 1
• 21 1 26
·I • -11 1
·S 6 -11
J 12 ·S 2
·21 -·· ·21 ·16 ·2S ·I ·21 ·21
10 16 • •
21 ll I II
21 21 12 ,,
2~ 12 II
21 ll• 1. 21
16 2S II 21
16 21 10 16
I II S II
I S •I · I
I 16 I II
I ,. 2
•s
l ~
IS .. .. ..
'I ..
I I
" 1.
20
20
21
22
22
21
2 1
21
21
22
22
22
21
21
20
2~
21 :,
21
12 2 1 p• 2• ~~ 1 , • • ~• 01
02 • • 21 o o 1 1~ ~s : 1 1 1 1 2:
I I I 10 ~~ I I I ll
Cl J ' 21 ~0 0 0 S 01
I I • S l ~~ I I 1 4 ~ II
I 0 ' 6 I ~2 J I I .2 I l IS
2• • 1 • n ~ 1 ' o • • 1 • ,, • I • 02 . o• 1 .I • ,, ~~ 1 s 1 • n 01
20 I I '. II ~2 I 0 I . l 16 16
02 I 'II l • 6 0 .2 11 01
01 .I • 1• 1 s , s .• • 11
OJ I ] ' ll I I I 6 Jl
• I l' ., s 2 1 1 .. • 16
• • 1 ~~
I I ~· 2S 6 I 2 I I 1• 02
0 I ~· .. • ) • ) 1 12 )(
0 0 2' 6o I ~ 0 S 1 I t U2
,, • ~I I 1 2 2 2. li 1.
01 J ~· " s i • J ' .. 01 0 0 II• •• Dl • I I 0 . 2 ,. 0 I
I I •O 1•
I l ~· S I Jl J 1 1 ~ I 2 16
I I ~· 0 I JS 6 • I . 6 11 02
0 I ~~ '! 36 • 0 1 0 S II IS
o t ~~ •s 3S s s • l •• 12 • • ~· ,, ~s 1.• • o , ,, ~ 1 I t ~~ U .S . • ~ ~ I~
.2~ ) I ~ ••
I c I ,, 2
~ )
1C I
10 I s
2 J •
0 I I
10 I
10 •
10 10
10 II
10 10 12
10 • ll
~~ I ' :; I
~ I :~
o I 11
:: I :: ~~ 'I
10 I 22
·~ I n
·: ! I !: I
1! ~ ~:I
10 )0
1 1
1
1 -·., IITS t--'-''R'1H..:n-''"-"l't+----r_,F-''.::;IIII= ... ;.;;""o;"''"T"TI'+'="&I"-i 1 s.• · sL• I __ r_g_ l g 1 _ll_ •• 1
·: • ;~:·~~~·· 11 ·0 ... • ''""'' ... •• • ,,, ' ' ~ ,. ·0
115 . -I If IITS ~: .. 1~1'i,'l ~~ :~.'fLUlS I -II[SI II 11 ~ .. III[S 51(11[51 I(JIM II 6IIUIC or
•tl lfUII l" .11111111 l • I I 0 "'HI•!· I 1.. SIIOI t tl "''I lS I*, ICI 'fLL(IS II ICl M0 0111
In Jll 0 _,, !,·JG I I z,. 10 l' JO
10 10
1 [1111[11( FOil TM( 11011111 -LiST OCCUIIII(IIC[ IF 11011£ 111111 0..
T IliAC[ iiiO\IIIT .
DATI Ill COLS 6 liD 12·15 &I[ .I&S[D 0. 7 01 11011[ ot5E~wl l!OIIS
&T J·MOUII l•f[IWILS II[SULl&I T wt-o IS TM( •ECIDII S~" :r wi•D
S'££DS 110 DII[C TIO.S DIWIOED It TM( IURI£11 or otS£RoA TIO•S
011( or IIIII[( 111110 SI(£DS IS 611[11 Ulll)[ll FiST[SI filL[ :ast[Sl
filL[ -NIGM(Sl I[COI0£0 SPEED FOI WII ICII & fil L[ or 111110 PASSES
ST&TIDII IDII[CTION IN COfiPISS POt•TSI . FASTEST 08S £~vE~ ONE
II I.Ul[ WIND -MIGN[SI ON[ IIINUI[ SP£[0 IOIII[CT ION Ill l ENS or
D£611[[S I . P[ll GUS!· MIGII[SI IN SI AN l iii[OUS WII O SP£[0 II t
&PP[AII S t• IN[ DII[CI ION CO LUIIII I [IIIOAS III LL IE :J RR[tr~C a•o CIIA.GES Ill S~ARI Di l l II ILl IE AIIMQ IAI[O IN 1•£ lllll vl l
'UILI CUIOII
• ALSO 0. [IILI£11 D&T[ISI
M(A" FOG : fiSIIILIIT lit filL[ 011 LESS .
ILilll [IITIIIES 0£.01£ fiiSSI•G OAT&
MOURS or OPS . RAT IE REDUCED 01 A YARIAIL£ SCHEDULE .
I C[I Ti fT T•IT T•IS IS &I IHICIIL PVILICITIOI or Ill( I&TIOiil OCU•IC 110 ITIOSIM(I IC IOI IIISTIITIOI, a•o IS Cl-•'I L[D FIOR
ltcOIOS 011 FILE IT TN( ltTJoaal CLIIII TI C C[.T[I . &Sti£Ul lL 101111 CIIOLII&, 21101
n 0 a a IIIIIIIL ICUIIC Ill /UIIIIIIUIIL 1111 111 /IIIIIIIL Cllllllt C£11(1
IIHS,IIIIt IIIIIISIIUIII/ llflltallll SUIIC! / UI(IILL!. IIIII Clllllll
I ~11,.;/
ItT IIG 0 II[( TOR
IITI O•t l CliRIIIC C[.I[A
DH :nz
·al ct::oa . llHI&
•Ale (; ... I I ~P O R I LOCAL
CLIMATOLOGICAL DATA
•£1 I IC :O I I IIC I A(l OIIT Moathly Summary
111111111 u• 11 • 1 1•11• 1u• n· • (L(Illlll 1 ~1 H\ F((l
I E"PEU IU R[ •r D(U£1 OITS •''"'" '"s ~ "ltl'lllllll :~= 11-0 SUIIM II[ llf COY(I
l iS( .s"t
I '" 'flll IS NS!IIl I ".F H I I f (l l •~r ·-•• l ll(an '" .. :!! I I .. ...1W.:.' -~~ l 1-.:tSIOitf IC( ,_ ~ IQ S --~ ::;l: -~ :;:~ =~ I IC( l(ll(IS ~ ! i ;; ~ ~ --; --= s .. ll u i -[L(f • • ... • ..... -.. ------.. 0
! I = ~¥ -· :& ... .... • lol.l l( OI U -~ lH ~ ~ = -... -· --,... ... -;; = • .... ......
!! .. -... -· -· 7 IUS ISIIII ... r[(l ~ .: --..... -.... -:o ----.. ., _ ... -; "' ~ .. ..... ·-= iii ..... -· =-~ ~~ • 11101( ... ~ IICICS :'lll ·~ liOH ... ... -. ~z ~~ .. .. .. • .. --=· ;r; := " I l ; ; .. . ;; • -o .. .. & .. ..,_ ~-~ llll~· .. "' ... ~ &-...
I 2 l • 5_ ~ 11 71 , 10 " 12 I] .. 15 ~~ 17 I I li 20 2 1 22
I t O . I I ., 0 H 0 I 2' 01 . ' ' It ~I I . I • 0 1 I 0
I
I
2 • • I' ••• ·II -II 11 • 2' 0 0 2' II .I 1 I 2 ' I . 02 0 i
I I •II -~ • I. ·II 10 ~ 2' 0 0 2• o• ~~ I 2 s • 12 a 1 I 0 0 I • I • ·II ·I ·I 2 • 1 •• 0 2' 0 0 ' I) ~~ 12 0 I 2 . S 20 H , • • s a I. 22 " I l I) 0 2' I I ' Sl ~t II S 1t I 20 Ol I 0 :0 s
• l1 27 2' I ' II a 0 21 0 0 ' s• -~ ' I • • .. a l • ' l. H ll 2l l2 0 21 .11 I I I 2 H 10 7
I !I )I ll 2l ll 12 ~ I 21 .5. l . I • 10 ~1 I I I l I . I S 10 ,,
' II " 2S IS 2 1 1 0 0 u 02 I ' 12 ~~ I S I • I. Is ' ' I 0 11 I " I I H 0 25 0 0 ' 5• ~~ s 0 • 0 • 01 5 I I 0
" 21 0 .. s I s Sl I 25 0 0 I H ~~ I , • 2 " )I 10 • II
12 l2 2S 2' 20 21 a 0 21 0 0 I S I ~· 10 2 10 • I. H 10 ' 12
1) l2 22 21 II 20 I I 0 21 0 0 I u ~~ • I ' . I . a 10 I )
11 )I 21 21 " )! 0 21 0 0 I) 02 ' ..
I S ll 20 21 t ' 21 17 0 21 0 0 I Sl ~~ I ' I 2 ,. 02 10 I s
I . ll 22 21 20 21 )! 0 21 0 0 • .. ~2 10 • 10 , I • Ol ' I .
II )I 11 21 I] 21 .. 0 21 I I , 01 ~~ • I •. s 12 ll 10 I II
11 t2 I • 0 • Sl 0 21 0 G ' 20 ~~ I t I 2 • 01 • I t l
1' a I IS I ' so 0 21 0 0 ,
00 ~· ' • 10 2 2l 02 10 I t '
20 21 tO t' 11 II .. 0 21 0 0 , 00 ~I ' I ' s t . 0 1 I 20
2t 10 ·I • ·• .I 0 • 21 0 0 • Ol 2 2 1
12 I ·10 .. ·12 ·11 n 0 21 0 0 I IS ~~ I I s I I ll 0 22
21 I S 1 , I • 2 H 0 21 0 0 • 'I ~~ ' I 10 1 1 s a 2 11
21 22 12 I 1 ' ' I I 0 21 0 0 ' .n ~~ I I I I t2 0 1 I I 21
2S 1l t1 t l 10 t 0 11 0 21 0 0 , )I ~~ I 0 1 . I 11 0 1 10 I 25
21 ll 22 21 20 .. 11 0 21 0 0 ' n ~2 I I I II I 11 01 t O I 0 H
1 1 )I 10 12 21 2' )) 0 I 21 )0 1 s ' II ~~ s • • l I. Ot t O 2 1
21 II l2 lS 11 10 0 n 'I I 12 02 10 11
2! •1• 12 ll• 2' H 11 0 21 01 s , 11 ~1 I ' I 2 I) ,, I 0 2'
l~ n ~~ ~~ ~! 2' )I 0 ~~ I ~ 2: n ~t u • 2 • ~; 1: 10
2t 11 0 0 '~· 10 '0 .1!... ;vo I VO ora IOU 011 ou r I N •o• •· ro a l sv• lu• .. , )II .. , ~ ..c• or a.u 1n I O Ol •• ,.
"' ." .. , 0 I .,, 0(1 Ill. I ~ICI"UIIII II : 1'! ""'·· ... .. ~ .. ~.
~~ ll , , , 10 I • J l 0 • tl IICO 1 o_o, . ~
IUIII(I or ous II I ~0 :~.'llll l\ 1 51(11(11 II ll 1101111 .. DillS .-u1u1 IK"• 01 .-ouao or Oil 10114.
IU&I "U• T "' 010111110 I "' ~. I OUICJIIS i atll 0 •t!C I" I !01 !IIIII. 1C 'f• II 5 .... IC! 'f:ll(ll 01 IC I .. Dllf
' .00 ' lJ• 11" •II' II( I 0(, I(U f .I I ·II I I . I 10 I
0 20 I -~ 1[11 ~ Oil II I C lOUOT I c ' I
I (fl ~(ll( ~OR .I w( IIOIITM ·LAST Q((UAA[IIC ( IF 1101( !Mill 011(.
I TAl(( IIIOUII T
• I LSO 011 (IRLI (A OIIE I SI .
w[IH ~OG : YI SI81LI I T Il l IIIL( OA LESS .
BLnl (IIIA l (S 0(1101£ IIISS IIIG OAil
HOURS OF OPS "AT BE RE DUCED 011 I VARIABLE SCH[DUL£.
OUI I ll COLS ~ 1110 12 ·1~ lA( 115[0 011 I OA IIO A( OIS(AVli i OIIS
AI l·MOUA IIII(AYILS A(SULIAIIT WI IIO IS I H( V(CTOA SUI! Or Wi ll()
SP£[05 1110 OIA((TIOIIS OIVI C:O IT IM[ IIUIII[A or OIS(AYI TI OIIS
011( Of IHII(( Wl-0 SP((OS IS GIY (I UIIO(A r t s .t ST II I LE · fiST(S1
IIIL[ • NIGHEST A£COA0(0 SP((O fQA WMI(M I IIIL( or 111110 PASSES
STillOII I OIA(C TIO II Ill CO"PISS POIIIISI r 1SI£S1 OIS[RV(O 011(
II IIUT ( 111-0 • MIGM[SI 0-E 111-UI( SPEED I OIA(CI IO-I ll 1(11 5 Of
OEGA((S I P[AI GUS T • MIGMES1 IIISUIIIlii(OUS IIIII() SPEED II 1
I PP[AAS Ill IH ( OIAECIIOII COLUIIIII . [AAO AS WI LL IE COA~£(1 [0
All() CHAIIG(S :Ill SUMAAT OAU WILl I£ AIIIIOIAI(O I-TH[ ANNUAL
PUi ll CAll 011
I CEA11rT T"AT THIS IS AI OffiC I AL PUIL ICAT I OI OF IN[ I ATIO IAL OC(AII C &10 ATR OSPN[I IC AORI I IS TIA TIO I , AI O IS COR,IL £0 fAOR
IECOAOS 01 FILE AI IHE UIIOIAL CLllllllC CUIU. ASNEYILL(, I OI TM CAI OLIIA, 2tl01.
I ~1-bJ n 0 a a II II OIIl OUUIC Ill /[II IIOUlllll UTI lii /U flllll CllllllC C(ll[l
IIIOihUIC UAIUII U IIII 1111'11111111 Sl iiiCl / IS I (fiU[. IIIII Cl llliiA
ACTI I& OIA(CIOI
I I IIOIAl CLI"AT I C CEITE I
-1 7 8 -
...
Jll 1 ,.] lH l l
IILI!t'll . I LI \1&
IILI[(I U &IIIOt : LOCAL
CLIMATOLOGICAL DATA
I(& \fC CII1U( I ~[I 01\1 lloathlJ Summary
--I
I
2
) • s
• J • • II
II
12
ll ..
IS
I •
II
" I.
20
}I
22
21
2•
2S
2.
2 J
21
2'
l~
-= '
Llllllll( U 1 II • I LMIIUI( ISO' U • M ILIUIIII 15ltUIOI HS 1111
ll 10
}~ 10
2• n
·I 10
·10 . 0
• I I ·10
• 2 1 • 12
·10• • I••
. 12 ·•
·I 2 ·)
• I
• ) J
• I )
• 10 2
ll 2S
2S JO
II I I
I) 1S
20 21
2 1 2•
] ,.
·I 0
•II 0
. I a •
11 22
n
u
I • • 11
21
22
" II
11
))o
-· .. -:r -· =· •
22 2J
22 2J
'I 22
2
·I ·1 0
• 1 1 • I •
• 20 ·II
• 21 • )0
·II . 11
·II ·II
0
·S ·1 2
·• • I •
• J • '
I o II
21 20
' :I I.
II 2J
II I I
' 1 ·I 0 I
• 10 ,
·S •
II
II
11
I s
2~
~~ I. ,.
10
u
21
IS 0 21 0 D ' 2 a I I \ I \ ' I 2 02
]\ 0 2) 0 0 1 0 I ~ • I • S I 0 0 I
!' 0 I 2l H J . I 1 I 0 • I I ' 1 IS 0 I
\S 0 H 0 0 12 02
H 0 H 0 0 ' 10 I I J 7 • U OJ
JS 0 H I I I ~-D I l 2 I 1 1 01
II 0 2• 0 I 2 I II 0 2 I l 1 J l I
I I 0 H 0 0 1 I I ~1 I I l ~ II Ol
I I 0 H 0 0 1 \I ~2 I S ' 1 II 0 I
U 0 H 0 I ~1 U ~I 0 • II & 2 I 0 I
S I 0 2• 0 0
•2 0 2\ 0 0~1,.~)
•2 0 • 2\ 0 0 ' I' ~2 ol o H o o ~' u ~~
I 0 0 l ~ 0 0 ~' I I ~I
1s o 1 2 ~ 12 2 J In •• • •· ' : r 0 1 1 2 ~~ 1• •
10 0 2& I I
)! 0 I 21 I 0 I I 1 I I I
11 0 12 0 0 1 Sl 1
' . ' \ 10 1 I 1 I
) I ) 2
' 2 ' ~
~ 2 J 1
I 0 1 1
2 1 ' '
' I ' s .,
•s .s
H
I )
0 12 0
0 ]0 0
0 10 0
0 '\1 • 1 l I I
o•Hl2 1 2 1
o ' 21 D~ 2 o 2 2
)!
I)
11
II
;~
0 )0 0
0 " 0
0 ' 0. DT I I S '
0
2 1 01
II 02
I J 02
I) Ol
11 IS
. l Ol
• I I
I S OJ
I I IS
II 02
11 B
I 0 l
• 2 1
I l OJ
11 n I. 02
u Ol
' 0 1 I 0 ll
:~ ~~
0 H I : • UO 0 C I I I I LMT ~ CLOIIOt I a
•I•• •as11
\.1 ' :''1' i
t [1 1•\•
·~ I ·o
I~
~
' c
0
I
•
10
~ • 0
' •
,: I
'I '
I ' I
}0 '
I 2' ' o 2: I c 1 J
I ~: .
~ I ~~ !
• ~~ I
1 [Il l("[ fOR I ll[ ftOII!It • LIS! OC CU .. [IC[ II 11()1[ lM&I 011[
l TUCE IIIOU-1
OIU Ill CO\.S. 1110 12·1\ II( lASED 011 I 011 ~A[ otSE IYII IGIIS
AI )·NOUII l ll l(loiLS I(SULI III I MillO IS IM( Y(CIOII Su " or M l ~;)
SPEEDS 1110 011((11 011 5 DI YI 0£0 II I M( 1111111£1 or OI SEi~IIIO-S
OIIE or I IIII[£ WIIID SPHOS IS f.l1[11 U&IOE~ f ASI[SI ~IL £ r a st(S t
IIIL£ • MI511£S I IECOIID£0 S'E£0 rot lll<ICI< l III LE or 11 1110 PISSE S
S i ll! Oil I OIIECIIDII Ill COtiPASS POl IllS I raSI[Sl OIS[iY[D o-r
IIIII UI( WI liD • HlliH[SI 011[ "IIIU!l SPIED I DIA[C I 10-1-I(~S or
DEGAE£5 1 P(Al GUSI • NIGM(SI IIISiliollii[OuS •1110 SPE£~ II
lPP[lAS Ill IH( 011((11011 COLUIIIo l (atOaS •ILL 8( CO~A[(t (O
liiD (M&IIf.[S II SUIIIIlll OliA tiiL L I( AIIIIOi li[O l lo Ttl( UloUI L
PulL I (I II 011
• ALSO 01 [ULI [R Oil[ I s I
ll(lff lOG · YIS I BI LI IT lt 4 II IL [ 011 lESS
ILIIIC [III AJ(S 0(1101( II I SSIIIG 011 UIIII{POIII(D 011&
MOURS or OPS IIA f BE REDUCED 011 A fAAUBLE SLHEDUL[.
I C[ll liT I Nll I MIS IS ll DH ICI AL 'UILIC ll i OI or Ill{ IA II OilL OCUl i( 1110 UIIOS'M{I "
1[(0105 D• rtL( at Ill[ UIIOUL CLIIIAIIC DIU C[lf£1, ISNEYI LL(. 101111 CUOLIII, 2110 1
noaa -~~-Gal( •
·-~~-.. , .. ".
... _
---·-11111.4 111. ala ---~~-... Ill
-t'7Q-
-~~-~-"' .,. QWI(W
-·aut-~1·
IOIIIIISIUilOI, 110 15 CO"P IL (O rtOft
/~1-/rJ
ICIII' DII(C TOI
UIIOIIL CILUIIC nara C£•1(1
a5/rr1
TABLE lt.8
RIVER STAGES AT fRE£ZEU' MEASURED
fROM TO' Of I C[ ALONG BANKS
AT SELECTED LOCATIONS
Open W.t.tr
E IIYIL I on .... I_ Olach1r9t Act.UII
Approxl .. t.t Top or let Correapond I nt DIIChlrgt U
River Dlt.t or Rlvtr 81nk [ IIYil I on• t.o St191 Gold creek
WL Locuton frttziUR l 0. I ' 0.1 lc:ral ( c; [II
11t8 .9 PorUgt Creek 12/21/82 81t1.0 839 .5 27 ,000 2,1t00
11t2 .1 Slough 21, H9 758 .1 755 .5
1110.8 Slough 21, LIU<•!ilt 735 .1 7ll.J
U6.6 Cold Crttk 1/11t/81 687.0 6U.3 16,000 2,200
135.1 llough 11, Mouth 12/6182 671 .5 2 ,100
110 .9 llough 9, lhtrtlln 12/1/82 622 ... 620.1 lO,OOO J ,OOO
128.3 llough 9, Mouth 11/29/82 16.9) J,OOO .
127.0 Slough I, Head 11/22/82 '79.3 3, JOO :
121t., llough 8, LRX-28 11/20/82 556 .2 '59.3 ltfi,OOO (IUftll) 3,1100
I
120 .7 Curry 11/20/82 527.0 ,2 ... 6 28,000 J, .. OO \
116.7 McKenzie Creek 11/18/82 lt91.l 1,500
11]. 7 Lent Crttk 11/15/82 16 .71 1,700
106.2 LRX•11 11/9/82 U .l) 11,100
10l.J LRX•9 11/8/82 1811 .1 lU .9 111 ,000 lt,200
91.5 LRX·1 11/5/82 ~q6 .11 ltl5. 5 11,1100
• V•htea In breckeu 1 1 rtprtatnt. relative tltvet.lona b1atd on 1n 1aau.ed datu. rro. 1 ttllpOrtry btnchMrk
tdjlc tnt to tht altt.
~ ~
~
~
~
::t
~ ~
"' :')
~
"" ' ~ "~ ~
~ ~ "' ~ ~
~ '\
~ I
~
I
01
(I)
I
rebruery If. 1983
Walana
Portage Creek
Go ld C reek
Curry
LRX-3
April 12. 1983
Waten11
Portage Creek
Go ld Creek
Curry
LR)(-l
I AtiLt 'L I
198,......1f~ER .. TIII~S ~EM~
Malnste• Ice
Thlckneues (fl)
_lUn_ 21I1L ~
1.4
'·'· 1.]
1.8
2.0
1 .8
l.O
1 .8
1 . l
2 .0
].6
].4
1.9
2. 1
3.9
4 .2
11 .0
2.9
3.3
3 .8
2.11
2.5
1 . 6
1.CJ
2.9
2.8
If. 1
2.3
2.2
2.6
Hu111ber
of Hotu
2 1
5
5
4
5
19
6
6
1
7
Water Sorrace
E lev u i on
11136 .8
834. 1
684.6
5 22.1
342.8
1436. I
8 33.5
682 .9
521.9
llfl . 5
• Average underlce water velo::lty was Haaured at point or 11101t rtow and conatltutea an average of the vertiCil
velocity profile .
Average •
Undet·l c e
kitll.LYIIIOC I tY
2.6
2.2
4 .2
IMIZA·fJAICO
SU$/TNA JOINT VENTUifE
suBJECT R; lrf, Ire ),1 ~ ~ t' I
!_?1'2-rj.J s;n,~bha ~
FlU NO .IS63, 14 z
DATE?S ~ 8 .?
COMPUTED i/ /A/;? CHECKED
/?u;Jmtte"
1//Jdl 1/:;lu~ 1/v,,,;J R;r1c>
hrJQ'f 5jmc/lc?fu,. ~ f' p lv~e :_
/. Ope/?-vv.1 k,. I; fc)f" -
fr~,f kr (tJ~Ihui!r.l
r /,11Ad Y€'/0(·1;..,
(4" 2 Y/..~) wfml_ ~ 12 -z o ~!t
2. G/Jt:t~/f {tJtffiCt~.nl h, 7t?CJ Al/m '-
(;d l!l ..r/t.~f"
3 . Ut/;r~ I ,t;,pt/p A/1 . f?;, t9·09
,P/df/'tff/~ 1/ ~c1tlt7 eaje
4. uthr;;l 1/~hJ£/Ir, h, 0 ·9 m/r
t1r~t:l'er /t e d fj7 trJ ..>//J d n
tJ.I 1/ -z 8 -
~~J,;.J'r f/e/ac-/,4 ; tn/r
5/vJ) /hr C ~#Pr.f.: t/,5 1
,, /cP ~/'O.t;;ly .: 0 ·~
EXH18!7S
:;~v--
·---_ .... -·------·---· -··-
i
_(' _.,
Fxlub/f I
t
o ,_ ITATIONS -~~ ·-~•• • c:o•n ~ --fiiUNG ·~-~·· ... ..,,-..,. .... :::... ., .. ... ,.. ... """' ....
' .. , .. "_. ... , ..
-ln ...CIUI U
~ .. -..-···--" --~ ove c .. •••
,. --c-.••
f'I G. I -~US ITNA PROJECT
IIYIJHOl.OC IC AND IIYDRAULIC ST UiliP.S
RF.LAT!O TO
ASSf.SS HENT OF PR OJ ECT lHPA CTS
ON
AQUATIC F.COSYSTEH
f.NO P~OOUC T
L7
ACTI VITIES Or
SU BTASK '•
TASl 42
Aa•ua:uHI impActA on w;1te r c h e,.i a try will no t be a ujor iaaue
I
-.-. --·---------.,..-
~~ :. -----·
+ .. -..
------+---~~~ ---~~ -~~f : .:~ --; .----~~"'
. . I . : ·:_:. !-= . ~:
-·: _:...::...-.:-:·1 .. -.~
fUI/. . . j . : : :-.J. . .
~----'----r-----+---'
I .
~--~~~---L----~--4----~---~~-~~-~---~--
1 • --
1 '
..f2L.:__ -
·.: .. : Jh~.t. -··-.
·• ·-----·-
S/JSITNA !riVER P/f'rJF!LES
O?E/1 WATER CON/JI T!OA S
---,R/rE-r Bed Ele.-
----Cl/tnp:;f~d WSE/. fOr 970~ ds
----Com,Pv~o' 14/SE/. i;r 3:J.J/ c~
@ OIJ;;>rt'ed W5EI. "!&r 1'700 ciS
(J) ()!Js nyed ~ISEI lbr 3tJt/tJ ~
I
---·--------·---'T-",-.--r--,-."y-.. ,7 I . : .. :! ·i .. 'iheef_Zp{8 ! ;;4 . --·-~ . ~/ . , :·--y . : :·. . _ _:_--~L-j m~:~ . / i~ ·-·-ii : . ·-· :··; --.·-/'. ·--: ·-··: -.. : .... -.·.--.. · _:l_: __ ._._-1: _· ·-.·_...:_: ~ -. _·_:: __ : __ :l _~._ . , / _·;:r . . . .. ; . : .. I ~; ~: ::: • :.::_. :. : :: --
--· ~~-/ , , I .. ~. ·-.. •-.. . . , . . . . .. -. / .. . . .
: T ·-·-iT//-·-, : :~~~: (:: .. ·_1~~-_--:: ::·:.:· !" : > :~:::/ T: 7 · /: : .. ~: ··---i·-----l ---~ :_/::: .,.,., . . .... 7 . .1. ... . -~ : _, . ······-Pr':--····· ·--··------· ... -····--..... . . 1·--:-z··;· -·::-7.· -.: . l : ·:-: /// : : :. ·:_~-?_~-~·?_:>:::; -~:~ :.·:: =~==:::~=~ ~: :: -~:.Z:.< .. --~-::
~~--~ -
1
--:/: 1 7===:~=: --. ~~~L ~~~~~~-·-=: i ·. ~~sr~~-;0';~::=~
I .. -;:· / . :·/. ~. :.··= _ _:::· -~ :_ _:__-::::_· ·=--::~_:::~ --=--:~:_ =::.r -· ..
__ tltJL : . -· i :·. / j ·/: ·-. :.:·:=-:::· ....... ::::-;,-.-:-:=::....::..:::--:-:-.:-.: · --: ~ : 1-r.:::_-=/-~~::_::
l . I '/. y / ··: :·..:::1-;:..:::..::::: ~-·: ............ ··------· . L .. -/. ~-~-. -~---1---· ~-./; --/·i --:~ .:· .· . ::::=-...::==::: :· . =:-=~~=-:::-:~--=---=--:=-~ ::=:-. ;.':. : 71 -==t::..~~=~::.=: ~ : . -/: _/J i -:-.-:--1 = ::..::-===-r:::=: .··_,;. :: ~~===---=~-=::=~:.1 ~=--:~,/ __ !~_-/===T =~:_.._ =-:=::: ~ 7 : rliU ----~--------1 . / . /. 7 -::: -·-.
. .
I
;------1
._,~: ·--1
-· . . l
f
I
I __ :·:·~~:y.=-·:: ::~ ::·· ;·· -----:=: __ ::.:: --~ --=--------~: :·--:~-.. "":· __ _, ____ ~---:-_-. . . ·---/-.. ------. ----t------------...... ------,-----~ :~~----_.1,/:-. --~ ~: .. ....---. -;·--. --.. . .. . . t--------~ . --1----: ---I ---/---~ -~--·-
·. _ :· ,-1-_~-j ·:.1 : /.:·-Y .:A_ :.: :·· :: If ::··-r=-:-:.: ::. :. : :: ··.::-:.:-::-.-:-.:--·-:-:l ··-:-·7--lf=:-~:£~:~_.:.:.:~== -~.M" F -: ./·.:· ,':· t :\ --: -. :.~=~:~----·.:~-: ··:.:-.:: ~-------~.:;~ ::::J,-::.-;j.::±:=-:1 --f---.....1--=
--~:
I
. ~5Z .
I
. . ~ ..~ ....
---~_:_ __ _
-j
I
' .. . . I ' -··~--. ---r----·-:-----+-----"H
• J ••• . ...... .
·----.--~5L!t?d h e/8, __
I . I .
-I . ~· . . ::/:/. Li ~ 1 L--:----+--~--~ _. -___,..:----..,4 !t · :,• -. j . . I :
5(JS!TNA T.IVER P?-JF/f.FS
O.PEN WATER CONLJI Ti:J/1._'-
---~lrN Bed £let
----Cwnpuled W.SEI. for 9700 ds
----Cotn,P~fetl ~/5E/. -£r 3JJ/ ~
8 tJ6;.crtetl W5EI. '!Gr 970~ ctS
G) 06sn-red yi5EI lOr 3vt/() ct:S
. -. . -... -... -.. ·-.. -
R
l
: I
t
· · -·-· ~-~-~~--1-----1 ----· ---1----:lj-f&-· · -1--r -
1=-=~-: __ - -:·j--:.:.: -_--1--+-t----f-___ -~-_:._ ·::::_ --1:7/-¥. ---·--~ :-:.-=/ ·-tl --:j
--------. . ·------1----.f. 1---.-----.-·-·-1---------1-------.6 . ---~;;.,.,-~J.: . -:-::. t-----·.,..4!'?---· -1-+-··-----·--1--·---1---------r------T------· •J"'t'»7 1 .......J _____ ,___ __ --·
::-:-:.-I · ... -':_ -:--.......:..v .....:...f--fl --__ ::-:-:-:. ::-::: ::~==f--=----=-= =-. ...:. -:+7-~-: =!=7 _:...:.::,..__.::: --..: -=~-::: .:..:~-1 f..:.~-:::L....::---==-i ~~ 1 _ -·: ::. 1 · ·: ·:____,i_J ---"J ::--__ : ~ ·::-:: -------· ---1-,_ ---_ =--=~-:: r ---:::If :~---=----_-.::::.=-:::~J!.-=-=;t:..:!==:-:.7
:::·:::.:f: ·::_::_:j:: ::-:::7'::: T _.__-_:_.:._: ·:: .,_::·· _::.........:_ :..:;.t ·::, ·::#:.: -=-i--.::·: ··:::~~=g;---=--~~~--._::._ ... :~~ i ·····--·-· ---:r..-_.__ __ -·······l-----;4j -f-.::.:--7----::=~-~=7-f---____......__ ... ·---·:?f.? ---· 1-------. • . • . . • . -.. • . . . . -.. -. • . -. -• ---. . f-.. . -!--_____.__ -. -. -• -. T -• -•• !---. . .
.. :·::J :::::::::j::::/=:1 :~. --1---:-::t:.:::: ··.::_<-~=--~~--. -=~~--1 -:.::-:;..--..---j----·: -::·/··:::1:/'·---~{:.:.: -~!----·--t-~:.:.r-. -----.. --.---r~·-v ---:..~:-= ---t--• -----~~:y ---~::··· · ~;_-~--tE~i;--~f-;~:~~~;r :=~:~~~-----~ --_,__---__ ;_ -----~----~~r~~-_ -~ ~~-~::
I~~+--·--' ~-----il---11----1..--t---.., ~-.:~: --~1----. .:..:
~:~=-::-;:-=:f :T ~~t#---t--·--~-~7:~--:-:: :"#=-~=-~ -~f--:~;-+ ·, -----·----~-~~-----1-----+---
t -~: :./'::~j/:~7 ~: :_ :=~~:~~~::~~--= ~::~ ~ _J;t= --~--~ --~= -~:::~~::~k ;;t ::::~~7:=~~~
f.:$. -.: / ·;· .. ------------·-·····---... ~::_7j ::...;t:·---~tt ··-------····j --··---------·/· '· : ::/ ... I -...... f ~:~ >}/ ... ~ :~:~:~ :..:.::~:=:-::::: ~:4 ::=:~_::: ~=:·~~~-~~:-== ~~~= .::~~~=~t~:~~-~:: -~~-:-!:= :~~: ·:. (::::~::! I ~~-::I :.::_1 .:::~ 1--r-·-_::~::::: :·;-':::_j~~gt;~~;nr.f ~;pj~IP~·--;ro~-:-~.:f/Fi ·:l k : -j · .. ::. ·i -;I -' -. ----~ --. . ... --. -l. -(-. --.. ' -. -·-. r. 7.80 . . i--0 •
~ ::·:-(.:: ::f : .. :~·-. . ·-f-·.::..~l ~.::-:-;;r _f---ti----1J>EA7 J fiATrR :Iz:7rrrJV'2t'-n'1:A1J':.:.!j· : ·: j : :: I ll.\.t :f7H : :. ·:;: :.: i-==--=-~-f-_.__::_--=f:-: . .: :--:;~--:;t'::.:-f=---.1 · -~-~~-:---~~~~~Y-L':' .. l.[fV.ff.~: ::· -7~ : -~:-:: --l -----t-·:v· . -------~-~--. .. --.. ---.:;t ~·:-+ -~"' ~....J-~------... y· .'f . -0-----[-=-=--, r=..::.:.;.:.:::-.·: ;_: __ .-·-!-:::-:---: :. -~=-~--+:::-:: ::::f: •. : ----r --~-:..1! '::L::.--:UJ~o~iorl -·~~ ·:.r.:::::: : -: .·: ·.!.::.--:
, .. ~-j--· ......... 1 .... ·-·--·-1---t··---:..:t-=W ·· ... j-~--!N:R-·-·---'t' _ .. ---+-IUJJU~LS. ... ·t . _ __,~ ..... j .. ..
---o--Cf--· -· ... 1 ·---. • -f---.-.i-':.=1 ---+-_,r..-.,,~ ·-·'-... J._.--:i:-Jff'rft;:farj~!,..l,.-----.. ; ... , ...... 1· ..
-:::: :=::.[7 .: :-: ... : ... :. i: :-:: :-:--::.:±:::= . .:-::.::::t:· =~~4 : . ..,.1: :_-::._~~---+:: --. 7. . -__,.::r:::-..:1-':~::.-. .::. -~:: :: -:_: .. -f-.:.::. · -··---lr..>V L.l"".,o,-;;,;..t;_,,n ----+-----;-t--.1'-... :L . ·"·---liJ --~ ... ~~f/-~M_;ft".: -· ·--i7'fli · --· -1-·•· · ::.: -=:~·-.. .::::4:-...!::.'~:ll ~.:!_ ?~-~r~Jf '::::......~;: :J(:: ·~-:: .. .....,---.;.:..::· ll'ia :~:;~,d :~~--;. ~Lz:-:.:_:..:-·!.:: .,: : .. ; :::::::.:f=··:: .. : . .. -........ --·---·--·----r---... ~· ....... -..,..-,.. _________ ~ --~F-'~~FJ'.l ~-------------------1-------· -----··'· .. ·.r:r ·---------~-----............ .... -~---f.------·-~--------------------·-----·"'{--1 ·-·----.... --·!--------
.:::: ;___:__: r= :.::::: ~:..;.-r.:: :: :::.:...::....,;.11 .. .:±:...::: :: L ~: ;_;;t ~:: ::.:: __ !--_ ___:_ :-:UI -i :__,_::: ,..:_:_----. . -.-::..: ;,.,;.tr .:~.: ::.: :. : : ..;,~::::.::
.; :: :t-· r::.:_:: ::'":--:--..: r.:: --:--+~ ~----.;.~~J :n:~.:: :~~------;:~1-2 -. _-.-=-"-·::--:...-.~ --~ -:---· -!~~: ::.: · ·.: i . · :-: · :~:-~-:::::::
. -·-·-----.• lo ·" t.;....o ·• ·--,-f-f ~~~ ;,R;i i1-~b ~M-~---. . .. --· . -~-------f-7--------..
. -·-··----.. -·-· ------c--------l-·-·---··-· -:''-.lfl--. -· -~---.. . ---·---:.·r .. _·--. .--,;;-...... 1-------. :J~-------+--.J..!..... j"-_j-• __ .. --~ .............._ . ---------·---------r---------·
. . . . •--· -.. 0.-.-. -. ·-·. ·---___ ._ __ --. ----.... : .. -1---"-:-·-~ . '---. ->----......__----~1------. --.. ~. tr/D -~ 1---.l ...•
I
+---+--f---7--. ~ ....
n
0 z • c
~ )i z
~ • z
J1
(
I •
I
= • ..
.! • :eoo
• • • I
• .. • • • 400 -• • : • 0
~
4
= 100 _, ..
• ..
&
• .. -
..
' • u •
• .. ..
0 .. • I
• I
:1
.. .. .. • • . .. ..,. . .. _
..
" ..
0 •
• ..
....,.
---,.____ '·-· "-·-· ~·--t·-!
1------·· .. ,. ---·-1. ·---~
\
., _____ I
10 .0 •o
-------,_
\ "---\. ___ _
" IUYitt IIIli
too tiO t40
IUIITNA RIVER ICE LEADING EDGE PROGRESSION RATES (~~tll .. /~eJ) RELATfVE
TO THE THALWEG PROFILE FROM AlYEA MILE 0 (Cook Inlet) TO RIVER MILE 155
teo
.!UP . --__ -__ i
. .R2 --_____ _;
I
b -. . : . ---I -----
·t :
I
0 .
:m. I :=~~::-:.--=: --·: ~: ... -
• • . '·----------. I-
·------··-··· I • •· --·-•-··----.I . -------···--·--
: . : : : : i: : : :::: .
-~-_:: __ :j::.::.:.·.::
-::.:L--=~: -~: :.:-:.~~~~1
·---·. ·-. . . -
i ---------~-----·-.
' WAT16t¥
. t ·
1::.
.
i
i
f
------
f ..... ~/~
4i2
~ 1 ___ .. ___ ,_
. I
/
/· .·-I -:
-/ I .. / l
I _:·
i ·z4' ::::::.. I
:...:.._:: ~ . : :
. -~ .
---l
--+----·--_-~.;_ __ -------
_::1
~r+J
!. ..
------1
·------I -·--·I
I ..
I ·-----I ~ ... I .,
tit.-~
f
r
f
:.·~ .::
I
~ _ _:j__~~~:.: ·_:_ . . . I ...... ----. ~--......... . . . . . ~ ----. . . ... --·-
, '~-----~.-=-~ --·.::-::::<-::.:iT-_.,..::-ryz f-::~~:
1-...., ·: I
z . -+-:..·-:-/i_
--T-I -
.·-
. .:...:
. : .. ::. -·. --,..,loJ. __ ..,_ __ j.,.....C...jl-~....: ~ .. ----:..b---~:.:;(.·::· ___ :::.-.. -. j .· = .. :t .. :·t=-:-. -=~--~. :._ -~ -~3~~ -~r~~~ .. ~r _:.;!: --~_::·. ~---.. :._ J -~i :::
f:--.:=-:-::::_-:.~ . ·-· .... :..:.~:::: __ ::-_:: ::::.~,.....-~.:-::-:=::.:f-::.-~:::·1 -/:~~:._ ·:::~ ... .::1-.. ~:--·-·--~--:.::~--:~...=:::-·.~ .: . I
-·-··-r,;··· ----jl --.. .. .. -----... ______ -:/. .. .. . v .. -~~----. .,.. --.... =t.::::..: .... 1-.. -~ 1 ..... -···-.. .. ....... _ · -----+-1'·-·-·· ·---·· "'tllzr · ..... ·•· · -__ j __ .,,
:_· ·1 ·_: ... ·-:.:r ~: .:_-:::-:-=-~-:: .. :..::..:;;._f1 ~~.£~Ti~/: ::·:!: -: -:::::-:..: ~_::::~~~ 1 .. ~--=r:.:. ~-=: :· ~~: -~ ... :t-.c.r:: :q-::-~F."--.:.. ::::~.=~11 .... 1--.. ;, ................. --·-.. 1{ ----·--....... -..
f
-~·
__ -S!ia_ _. -· --
I
----;---! ~~---------/
; __ ----·-r
! /•
I ;
I
I
---;_ j .
I
-~-
-~---• --. f
. t · ""' : I .
I
----.,.-------------,-------
' :--+-. . . . .. --.-. -------
-.---_,Sflee..t_ Y2_ D.:_ .k___
I
; .
------! --~ : ! --I
. . !
. I . -· _:-+-::-::-1-----
..! . ~ -I -
-.
t -• --t --. J --------------
i
I
-.. --.-1
3U _
~~ ...
~---~ ~-i :. --J
f
_.Jg,.
.. ---· . -,-.-
1
.. '
I
i . j
. -----.. ---_-+-:---.. -.· -~
:·~ ·::-t. :_:
·-r-. "1 . --
a~-~--• ~ ·----------·---
• I
u :_: -_-·l·i _· -~~....:....---:-:~f-__:__:--T--:--~:...~f-LUW
!
·-····· ~--··-· J :::: :::I
---.!112 -
. .
;---~~~---. -..
I
l .
I
-I
--.1--:,~'+--H!t+:.J£-,r----l!U.IOL---:Jt£.---+-~--t------; -----. -: ~~---. -.. -;
I
. -~
"JA?
t ·-
I
---: ---1
Itt . i
> .
i
f
I
.ritz :
:-__ ..At/!_
i
I ___ 1 _____ -~---
.... ~I
; . ·:: j · .
--: : , __ -: -I ···r-· .. . . . . . . ... -· ---·---..... -~ --· ..
,.
I -
j
·I
-r------i-1 . . ' ., . -
. .
--~ ----: _____ . ___ _._ __ ~-71-t-H-ttff-f--++--+-...Ml..;IO:L+-----~---t---+_..:._...;..-F~+--I-V-t=-:------i
s:U ..
. . . 1. J
-... I
---~------. ~ . I
I ·$78 ;·
! .
I
. :: :J
..
-=t ~---:-: .. ------1
-l
"I
. i.. ttV
···-g -· . ···--
••• t ••
L__~f -
' -I I -
'
I
' 1 .
------j --------1---
1
-l
. !
: i
I
l. ~:
i
: ~:
f
I
I I -· ·--·,-.. --. --++++1---1-J~
I
I
.. -·-.. .. . +-.. .
. j: ~ ::
' '
-r------~-----~ ~-1---4-
, .....
! . -
( ..... -(·"·
I
.1 .... ·--------
-------, -------ri?P r -: l -. --~ ......... .
, I j
r -:·
--_j -
-----t·--·---:. -
I
---L------·---------l-----~---: . '
. ! I
I
. '
-+---... .t-.. 1
! . I I
--+---
' : , .. ~ : i 1
' I I -r---~-·-r -· --~----~
.. . ! i . I ~
·j ! -~----:-r --t -~-,
: _J -:·· i -:--: ---i ----"---~ i----i ----~~~ -~--~---~--t nil
• I ' ; I· ' ' . --;---.. _: -------~----....... --~-----t---· --1-... ~-------~ ----~----~-___ :_ __ ,
:___---~---· _·_ ---;_~_j --1-_ _! ..... ! --+-:_ -!-----~
,. I I : I-; ; :
I • 1 --T ---~:--~ --~:r----1-----;--r ~ 11~
. I
0, v '
---i-____ __l __ -~-------t---1---1---1---~----~~~
I ! I · , ~ ....
. , I 1 , ' , j I'-
-~------!-"'-
-I
' .. I -........
I.
I
~-~
INPUT DESCRIPTIONS -!CECAL
A. Five Read Files for Input Data
1. DESCRP -Set-up for 10 lines of 80 characters each,
describing the project.
2. INITIL -Fre e format input data for:
a) No. of days in simulation
b) No. of cross sections
c) No . of stations
....
d) Stationing of meteorological stations
dist. along river in meters , use same
as river cross sectioning).
3. DISAIR -Free format
a) Day
b) Inflow Q (M 3/s)
c) D/S w.s. Elev (m)
d) Inflow Ice Dischar~e (m 3 /day)
e) Inflow Water Temp (°C)
f) Air temp, (°C), up to 10 locations
(i.e .,
base
a) Wind velocity -(m/s) , up to 1n locations
4a. CROSS
a) Stationina of cross section (meters)
b) Number of groun d points in cross section
c) Discharge factor as percentaqe of inf low Q
d) Bed roughness -nb
e) Ice roug hness -n4
-1-
4b. CRO S S
a) Distance, elevation
b) Distance , elevation
II
Repeat 4 a & 4b for each cross section
.) . ICEHCC
a) Ice cover porosity
b) Erosion v elocity (m/s)
c) Cohesion of ice cover (ri/m2 )
d) Heat transfer interce pt (W/~7.-C 0 )]
Heat transfer slop 0 1•?-sec
r1 1 -0c
e)
a + !JV
\V
f) Lateral 1ce qro~th coefficient -J_ : C L/d
slope -t/ L g) Later2l ice growth
-2-
SUB DEPOSI
When the ice cover cannot progress upstr~am, the incominu floatin u
ice must be deposi ted under the ice cover as the lea Di n g ed~e
remnins stationary . This condition can occur befcre 1) a s et of
rapids s uch that the water l evel must rise and drown 011t the
critical or super critical flow depth and then the lead in a edqe
can proceed and 2) whe n the flow velocity beneath the l e actin~ edae
is too high that ice is transported d/s to increase the u/s water
and decrease the velocity below the erosion velocity value.
The ice deposits in a d/s direction, fillina each section until
the critical velccity is reached. Then it proq resscs to the next
d/s section. This process generates what is called a "hanginq
dam ."
The ice discr~rge that comes into the section is distributed within
the downstream reach, and if the reach cannot accept all inconin g
ice, it is transported to the next downstream reach and so on.
SUB VELPRO
This routine calculates the proaression of the ice cover usptream.
The ice cover porosity in the leading edge is assumed to be 0.5.
The porosity is probabl y related to the veloc ity, but a constant
value is normally adequate.
-1 -
SuB HYDTHC
This subroutine determines the ini tia l thickness of the slush
ice cover as it progresses upstream (i.e. prior to any unde ~ice
deposition). Based on "Formation of Ice Covers and Ice Jams
in Rivers" b y Pariset, Hausser and Gagllon, 1966, two possible
mechanisms for ice covet progression are considered;
(1) Hydraulic Progression, applicable to "narrow" rivers,
in which a stable ice thickness is determined by hydraul ic
conditions at the leading edge of the ice cover. The
theoretical governing equation is
v =
Where V, H =Velocity, depth just upstream of ice cover
t = thickness of advancing i ce ,
~ = density of ice cover
It can be shown that a solution exists for the above
equation only when a modified Froude No., V / ~,
is less than a certain maximum value which corresponds
to t /H = l/3. When V/ J2gH1 exceeds the maximum v alue,
incoming slush ice is swept underneath the leading
edge of the ice cover and no progression takes place.
Researchers have 3Uggested that this maximum Froude No.
may v ary from .06 -.11.
-4-
(2) Shoving is applicable to "wide" rivers and is the
mechanical consolidation of an existing ice cover
which has insufficient thickness to resist the river
forces. Successive shoves increase the ice
thickness until it reaches a stable level. The
governing equation for this stable ice thickness
is
.!._'(1-.i.) tz.
J J H'
where Vu = velocity under ice cov er
B = channel width
/A = coefficient of internal friction for ice
c = Chezy coefficient of friction
R hydraulic radius
o(. = cohesion of ice cover
The model pr~vides for the followi n g possibilities in determining
the ice cov er progression :
a. Hydraulic conditions just upstream of the ice
cover show a Froude No. greater than the
maximum. Therefore, no advancement can occur .
b . Froude No. is less than maximum value. Both
Hydraulic Progression and Shoving equations
are then solved for t . The mechanism which
results in the greater t controls.
SUB UNDAVC
This subroutine determines whether erosion or deposition is
occurring b e nea th the ice cover. The critical velc ~ity is read
in as input. Typical values reported in literature range from
0.6 m/s to 1.4 m/s. The high values for the velocity are when
the frazil ice is very active and the low values are for inactive
frazil ice. The air temperature is sometimes used as a basis
for the correct ion fa c tor to account for this spread in erosion
v elocities.
00
-7
-18
Temg
to -7° C
to -19°C
to -30°C
SUB ICEPRO
0.9 m/s
a9/o.95 M/.Y
().9/ ~9 Iff /J
Computes the frazil ice production in the open water reaches. Uses
the heat transfer coeffic ient a ppro ach to determine the heat loss
from the water surface. The ice discharge (daily) for a reach is
comput ed an d printed in the d /s section out put.
Qi = -h,., B( t1X) Ta * 86,400 fto~
hw = a+b V w lheat transfer coeffic i ent)
V = av ~r age w ind speed w
a = 3 (input)
b = 4 (inFut)
B = average open water wid t h between c ross sections
p ' = de'lsi ty of ice
A = heat of fusion for ice
T a verage air temperature (below 0°C) a
Llx = a',.r f.;J-4. (e btf/I.J~o( a·'p.r.r-st'cr;o">·
-6-
Sl!E LATICE
Lateral icc cover g rowth. Empirical reia tionship developed frorr
Newbury 's fiel.d da ta for river flowing with a heavy concentration
of slush ice and a1r tempe ratures -10°C.
Latic = a~
Latic = i c~ gro~th fro~ bot h shores
a= constant 0.1
b = constant 2.8
V = oper. water velocity at the cross section
Subroutine keeps track of ice discharge in the downstream direction,
i.e., a summation routine for ice continuity.
SUB LCMELT
'I'his s u broutine allows for lateral ice cover melting in accordance
with Ashton (1979).
-7-
SUB lCEGRO
Cor..putes the solid ice growth at each cross sect i on 0 n ice cover
fo rms . ~~en the solid ice growth overtakes the initial cove r
thickness, the initial cover thickness ~·"lues are set equal to the
solid ice cover value for printout purposes. The ice thickness
equation is
~-= predicted ice thickness, ~-
t :-1 ~ = previous day ice thickness ,~.
IJ. t,· = incremental i c e thickness grO'Io>'th per day J m .
T a = r each ave. air terr.p b~ltJ IAI o•c.
K .
l = thermal c o nductivity 1 liJ/m-c..
• I
H = surface heat exchange coef 1
,~u 177 2 _ De . a
e = porosity of ice cover
). = heat of fusion of ice )
J/kg.
, density of ice llg /m3_ 0 = )
SUB ICW'l'IJK
Computes the water temperature decay beneath an i ce cover and
melts the ice cove r thickness a~cordingly. The computation
begins a t the U/S b oundary and progre sses downstream . Reach
averaged values are used for the hydraulic and meteorolog ical
variables.
The equation from Ashton (1379) and Calkins (1983):
1
2 = 2 * k w
exp (h . ll'il X/t!C Vuh) w1. r p
* f * Re * Pr / x(8*D*(l.07 + 12.7 f/8 Pr·667 -1))
Two = wa t er temperature at upstream section
Twl = water temperature at downstream section
h . = heat transfer coefficient at ice/water int~~face
Wl.
4:l X = distance between reaches
h = average depth
v u = average ve l ocity beneath ice cover
R = Reynolds Number = Vuh (reach!_ e 2JI
f = Darcys fr i ction factor for the ice cover (reach)
.K = thermal conductivity of water w
p = r Prandtl Number =P C /K p w
-9-
SUB mVTDK
Computes the water temperature in an open water condition beqinni.nq
at the most u/s s ection. The u/s bou~dary condition is a water
temperature value.
The temperature p r~duction at the next d /s cross s ection is basej
on the reach a verage of the hydraulic and meteoroloqical variables.
The equation is from Ashton (1979):
Twl = (Two -Tal * exp (h; ~X/ p C y H) + Ta p
T a = reach a verage air teMperature
T WO = water temperature at upstream section
T wl = water temperature at downstreaM section
h w = reach avP.rage heat trunsfer coef fi cient
~X = distance between cross s ecti ons
~ = den sity of ':later
c p = s pecific heat capacity ~f IAI;rhr
H, v = reach average depth , 11eloc.iiy
h ., = a + b V w
a = constant = 3
b constant = 4
v = w average wind s peed
-10-
SUB TRAVEL
Computes the travel time from 0ne cross section to another for
either open water or ice covered conditions.
SUB AIRDIS
Computes the air temperature ann wind speed at every cross s e c-
tion location on a daily basis . The dai ly air temperature ann
wind velocity may b e input at up to 10 sites along the river.
The location along the ri ver for each meteorological site
must be input, measured fron the downstream cross section. A
linear interpoloation between met sites is used to determine
intermediate values.
SUB CO:IlVEY
Cor.putes the flow conveyance for each sectLon. The p rogra m
tests for the ice cover to decide which conveyance will b e
used, i.e ., open water, lat eral ice + open water, or fully
ice covered.
SUB CHNGEO
CoMputes the geometric elements for the cross sect ion with or
without the ice cover. The intersection ~ts of t h e water level
with the banks is solved using the surveying procedure of
latitude s and departures. The area is solved using the
tra pe zoidal rule beth in the open wate r a n d b eneath the
lateral ice cover .
-11-
SUBROUTINE BKWTR
Conpute s a backwater profile usinq the orocedure followed by
the HEC -2 program. The prcgram tests if an ice cover is pre-
sent and computes the profi l e with or without ice at a particu-
lar section.
The p rogram checks for critical depth using the same test as
HEC-2 (V 2 /2g > 0.95 A/2 x Top width). If the test is positi ve ,
the program computes critical depth !or that section and rroceeds
upstreaM.
An ice cover cannot exist with critical or super critical f low.
The downstream water levels l1a ve to rise to drown out the
critical depth section before the leading edqe can progress
upstream.
During the deposition of ice beneath the cover the pro~ran may
thicken the ice cover to where the flow hydraulic• indicates
critical depth. When this occurs, the prog ram reduces the ice
thickness at the section until the test for critical depth
~asses.
-1 2-
BYDIWT' .. ICS, HE:CHANICS AND IIE.AT TRANSFEK FOR
WINTER FREEZE-UP RIVER CONDITIONS
by
--Darryl J. Calkins
Research Hydraulic Engineer
USACRREL-Banover, NB
Class notes : Ice Engineering for Rivers a nd Lakes
Feb. 1-2, 1982, Da.iv. of Viscoa.ain, MAdi..son, VI
~Evrsn 7'~#3
ICE MECHANICS AND BU.T TllANSFEB.
~e ~dy, analysia or prediction of ~ter levels ~ rivera during the
v1t1ter requires a knowledge of the flov hydraulics, ~he i c e •echanic.s and
the heat transfer processes in the river ay&tem. All three occur simul-
taneoualy and to properly analyze or predict a certain quantity s uch as
riv er atage .eans they have to be undera tood to aome degree. Figure 1 is a
flow ~art representing the poasible phas~ a river aight follow during the
free:e-up condition. See Appendix 11 for a list of selected reference .
Conditions Leading to lee Bridging
l&aically the river flow .ust cool to its freezing temperature , .0.0°C
before any ice production can be aignific:ant . Once the river hal cooled to
its free:ing p oi nt ice generation beg ins aod the lateral ice cover rr ows
from the shore (ahore ice), anchor ice aay form on the bed and ice is
traciported downstream. Theae processes continue until a ae c tioo is
reached where the ice c:ov~r fully bridges the river (a lso known as ice
arching).
The ice cover now can begic to progress upstream as well as continuing
to grow laterally in t !1e open water reaches. The rate of up,;tream progres-
aion is a function of the flow hydraulics , and the 8echanical propertie• of
the incoming ice and downstream cover. The air temperature has an effect
on the physical and .echanical properties of the aoving aod atationary ice,
although it 1a DOt well doc:u8ented.
The f o llowing analysis assumes the river flow has been cooled to the
freezing te~e r ature. The procedures and analytical developments gi ven by
Aahton (1979) can be applied to determine the ti.e at which the river flow
ruche& 32•r (o•c), or one can develop b1s ovn beat lou .odel.
The fo llowing physical processes are occurring eimultaneously in a
Ti~eT Yeaeh during the fre&:e~ periDd.
la lee Production : Tbe equation for predicting the volume of ice
3 (~ ) ( 7]
vhere b1va -ice production beat tranafer coefficient W/a 2-•c
Ao -open vater area .2
I a -Air L&aperuure ~&low o•c
" -density of vater l.g/a 3 (1000)
). -heat of fusion J /'q (3 .34 z 10 5)
lb lee Floe Growth, (flocuation): Tbe crovth of ice floe& traveling
downstream il often viewed &I a flocuation pr~ceas, but it 1a one
that is not well understood. Tbe arovtb of tbe floea reault in
larger floe ai&es an~ increa&ed th1ckne11. It is auapected tbat
the flocuatio n process depend& upon the ice discharg e (espe ci ally
at the aurf•ce ), flaw velocity, air temperature and the channel
characteriiticl .
lc Lateral lee Cover Growth (ahore ice): The shore ice o r lateral
e~irical relationship relating the lateral growth (Li) to the
aean flov velocity (V, a/s) f o r a Northern Ca na di an river
(Newbury 1968 ) y i elded
L • 1.8 v-2 •85
1 a/d.ay (8]
vb&re tbe aurfac.e ice concentration vas nearly 100% and the thickness of
the aluah ice cover .avin& dovnstreaa wa£ esti .. ted at 15 ca. Alao, tb~
air teaperature vas leal than -2o•c . For lover ice con centrAtions and
var.er air teaperaturea the intercept value vill decrease and the negative
elope vill &lao decreaae in .. gnitude, i.e. (-2 ). aecently a atudy on a
small New tngland atream shoved tbe overall lateral arovth rate ranged fro=
0.1 to 0.2 eeters per •c day, vbere the avera&e freere-up flov velocity vas
rou&hly 0.7 to 0.8 a/a vitb lov aurfaee ice concentrations.
ld Flov Hydraulics vith Laterally Growing lee Cover; Ibe flow
velocity di1tribution in a partially ice covered etream bas been
evaluated analytically, docuaeoted in the field, and ezperi-
aeotally aeasured in a flume. The flov velocity concentrates io
the open vater portion and can be described &I a ratio
v2
0.63
Db [ ... ] (91 --1.0 ---v.t, D p y 1 c
vhere v2 -flow velocity beneath ice cover segment
vl -flow velocity 1D open vater aegment
Yl flow depth in open vater 1epent and
t • ice cover thickness.
I'he pape1 b,y C•lki D4 u al. (1982) CDD.taiaa tbe derh'ation far ~be
above equation plus additional inforaation on the &~suaptions uaed t o
derive the expression.
Soaewh ~re along the river reach the ice eover vill coapletely bridge
from a bore to ahore. Determinina the location of thia brid&ing aay be the
location of a natural construction ; i.e. a vide river bend il a claasical
aite. The a ayaetric flov cU.tribution la.ada to a rapid lateral 1c.e eover
11·o~b in the bend vhieh causes ~he open vater width to decrease . This in
turn createa a aurface conatriction for the ice floes traveling dowostr~am,
where tbe floe aize aay be increased which aignifica~tly enhances their
arching capabiltiea. Pred!cting the ice bridging location& from an
analytical atandpoiot 1a not possible at this ti.e with aoy confidence.
Once the ice cover ~idges, progression upatreaa of the leading edge
is 1overoed by the iDCOl&iQ& ice diachar&e, flow hydraulic•, ice aechaoics
&Ad the air taaperature.
lee Cover Progrelaioo and Tbickeoing
Tbe ~•t lo&ical atep to 4eteraine the progreaaion and thickening of
the ice cover would be to write down the continuity eQuation for ice dis-
charge. The ice inflow to a river reach or to tbe leading edge of the ice
c:over i&
{10)
•there Qi • ice diacharge a 3/s
ci • 1urface ice concentration 1
v, • aurface flow (a/a)
.l • ope..n water Width (a)
t, • equivalent thiclr.neu of t.he floating ice (a)
Ea • poroaity of the floating aluah.
The a.ount of ice that ia DOt floating at the water aurface il a saall
quantity and 11 conaidered negligible for aub critical flows in channel
alope1 of 0.002 or ~lder. Tb&re are four possible condition• for the
proareaaion of the leadio& edge, Vp•
1. Ptogreeeioo ~ eimple juxtapoa1tion or the arrivin ~ floes With DO thickening.
-v
NY MJ Xt7
2. Progression, but the arriving floes thicken to values Jreater
than the initial t hiclr.oess of the arri viog ice, tJ /H < 0.33, or tj/B > .33.
Vp _.
:1 'Q z·,-• 3 z I I /
v
'*•
3. Proar~asion with ice cover thickening and ic~ also being trans-
ported ben eath the cover.
v, .. ---< 17~_,'
-:.::...=:::::>
--v
4. No progressing of the cov ~r. all ic~ ic transported beneath the
cover .
[r 7 7 :J --------------~====)~-~
7YY'
the floes, the ~chanica of the ice &ccugulaticc and th~ •ir temperature.
ups tream of the cov er or beneath the cover, the ice diacharae and aize of
7he type of condition encounted above depends upon the flow hydrau lic s
Juxtaposition:
The progressing of the leading edge b7 ice fl~ juxtaposition resu l ts
1o a rapid cover devel'op11ent. Analytical fonrulations have been put forth
and experience uaually dictates the choice. If the thickness and planar
di11eosion of the arriving floes can be p~edicted, their stability can be
analyzed. If the flow velocity just upstream of the leadi ng edge is less
th&:l •o• c:.riUc.a.l ve.loc.ity for the ice floe to underturn, cbve or be
entrained ; the arriving ice floe vill re~in stable and co~ to rest
against the leading edge. Ashton (1978) presents this equation
v c [ 11)
When the river flow velocity V > Vc• the aolid ice floes (not frazil
slush floes) vill go under the cover; B • flow depth just upstream of the
leading edge.
Progression, Thickening and No Undercover Transport
1. Die equatioa de.ac:.ribinj the equ.ilibriua tbickoess of tbe ice cover
(tj) vheo the value of tj/B is less than 0.33 is related to the flow
velocity upstream of the cover (Pariaet et al., 196 1)
t [ ~ ~1/2 v -( l --=t ) 2gt j ( 1 --;-~ ( 12)
The use of tbis equation i~liea tbe forcu along tbe bank are eu.ffic.ient
to withstand the intero&l force& within the ice cover which are (t'e&ter
~han the driving forces auch that no ahoviog or further thickening ean take
place . In ocher vorda, the thickness at the leading edge il aufficient to
transait the forcea to the bank, even when the leading edge at a new time
baa progr esaed upstreaa. The driving force& of vater shear atreas and the
cover weilht component are ... 11. The liaitation of tj/H • 0.33 auat be
checked becauae a different aode of thickening vill occur at tj/B >
0 .33 . The uae of thia relationship vill be for long backwater reaches
and Hausser (1961, 1966) for further detaila.
2. ~ aajority of ice cover thickenin& occurs as a reault of crush~ng or
ahoving of an ice cover aoae t imes c.lled ataging. The cover aay initially
progress upstream according to equation {12) just presented, but in order
for the leadin& edge to progress further upstreaa the ice cover baa to
thicken by above& to vHbatand the lar1er forces, which creatu a larger
head loss and in turn higher water levels upstream and lower flow
velocitiea.
There have been aeveral formulations (aee references 3, 14, 19, 20,
23) presented to calculat e the equilibriua thickneas of a cover vhen the
weight coaponent in the dovnatreaa d i rection) require a cover thicknesa
&reater thaG .338, to vithatand the forces. The bas i c formu l ation is
(131
when 11 • lee oo lee in~et·Dal friction type coefficient • 1.3
c • cohuion of the .1u cover 1/r
Tv • shear atress on the ice cover underside N/m2
•••~ the other quantitiea have been previoualy defined .
The applic•tion of tbia equation requir~a a knowledge of 1W (wa te r
ahear atreas ) aDd c (cohesive force within the ice cover ). Tbe val~e• of
the abear atreaa .. y range from 1 to 20 N/a 2 and c couid vary froa a low of
100 R/a~to .. ybe aa high u 2000 N/a~ The value of c: has DOt beeo well
docu.ented 1. the field although a c:ooaervatively low value (10Q-200) will
yield thick lee co vera and produce bieber water le .. ela. Bich values of
c:oheaioo will occur durloa the freeze-up when tbe air teaperatures are
low. • eoaposite lee aheet of fragaented ice with a thin upper aolid ice
cover ia very atrong ln abear while the aa.e cover thickness without the
thin aolid abeet will be .uc:b weaker. For ice jam analyaes, c ia a low
value because of this non-free%iog condition Guring the br eak-up and
jaaaing process.
3. Thickening and Undercover Tranaport
This eoabined process ia DOt vell documented analytically, but bas
been observed in the field. Tbe atate of tbe art has not advanced
auffic:iently to properly addreaa tbia eoabined topic.
4. Unde~cover Transport and No Thickening
Tbue ia ftry little field data to aubatantiate tM ooly equation put
~o rtb to estiaate tbe ice discharge beneath a cover. Pariset and Bausaer
(1961) u.ed the Peter-Meyer 19 ~7 equation. Recently researchers at the
Univ. of Iowa have looked at the individual ice block atability beneath ice
eovera, liut applic:.ation to field c:onditiona has DOt been attempted. The
.. in reaaon ia lack of field data.
There 1a ao.e field data on the transport of aaall fraT.11 floc&
beneath ice cover$ in ahallow atream5 and the criteria b&& been ge~erally
related to' ain1aum flow velocity 0.7 to 1.0 a/s. The value .. y be eve r.
l.S a/a.
KAME :
DATE PREPARED :
DATE OF BIRTH :
EDUCATION:
POSITION:
RESUME
Darryl J. Calkins
16 November 1982
16 November 1946
St. Johnsbury, VT
Danville High School
Danville, VT, 1964
University of Maine. Orono, Me.
BS in Civil Engineering , 1969
Major in Sanitary Engineering
University of New Brunswick, Fredericton, NB
MS in Civil Engineering, 1970
Major Field: Hydraulic and Water Resources Engineering
University of Iowa, Iowa City, Iowa
Depart.ent of Mechanica and Hydraulics
Energy Engineering Division
August 1976 -August 1977
1. Research Hydraulic Engineer, Ice Engineering
Research Branch, Experiaental Engineering Division,
o. s. Aray Cold Regions Research and Engineering
Laborabory • B.aoover • NB.
2. Instructor for course •tee Engineering for Rivers
and Lakea,· Univ. of Viaconsin, 1980, 81, 82.
Subject -Bydraulica of Ice Covered Rivera.
3. Instructor for course ·River Ice Bydraulica·
Environment Canada-Inland Waters Directorate
Ottawa, Ontario, June 1982.
4. Adjunct Professor. Antioch College-New England,
Keene, JIB. Instructor in Environmental Science
Progr .. -Fundaaentala of Meteorology and Hydrology.
3 credit course, Spring 1979.
1
PROFESS lOti AI.
ACTIVITI FS:
EXPERIENCE:
1. Secretary. Executive Committee ASCE Hydraulics
Division . 1981-83.
2. Member. ASCE Upper Valley Brauch.
3. Newsletter Editor. ASCE Hydraulic& Division.
1979-1981.
4. Registered Professional Engineer.
5. Member • New England Junior Science and Humanities
Symposium Executive Committee.
July 1980 -Present
Project engineer conducting hydraulic .odeling studies.
investigating the basic aechanios of ice j~ formation,
and conducting field studies of ice/hydraulics. frazil
ice foi'lllation and ice jams. The aodeling work bas
evolved around laboratory tests in Which the basic
understanding of ice jam formation is being fot~u
lated. To complement the laboratory work an extensive
in-depth field observatio~ program on ice jams bas been
implemented and instrumentation bas been installed to
help gather the necessary field data that is being used
in the refrigerated physical model simulations.
Several preliminary •tudies have been completed on ice
jam conditions in the field.
September 1978 -June 1980
Project engineer responsible for the Port Huron Ice
Control Hodel Study conducted for the Detroit District
COE under the Winter Navigation Demonstration Program.
This project was the first time a hydraulic .odel has
been designed to operated in a refrigerated rooa. I
was responsible for the design. construction, cali-
bration and testing of the physical aodel and shared
the responsibility f.or the development of the wind
stress modelling concept. I was responsible for all
field data collected during the winter season to be
used for eodel.calibration, as well as for the back-
ground and auppo 7ting data on general ice conditions to
the area. This involved coordination with the Detroit
District COE for ground control and the U.S. Coast
Guard Station, Detroit for transportation by heli-
copters to the ice sheet.
2
Autust 1976 -Aucust 1977
Attended the University of Iowa under the D~pt. of Army
Long Tera Training Program in the Department of
Mechanics and Byt1raul1cs and the Iowa Institute of
Hydraulic Research. The year vas devoted to taking
auch typical courses as fluid mechanics, advanced
engineering .athematic•, numerical .ethods, beat
transfer and other hydraulic engineering courses . I
bad an excellent opportunity to observe and discuss the
various hydraulic projects under study. These included
aediment transport, fixed bed hydraulic JDOdels as well
as tbe ice-hydraulic related studies.
November 1973 -August 1976
Project engineer conducting hydraulic .odeling studies
investigating the fundamental aechanics of ice jam
formation. Field activities have ~ncluded the gather-
ing of channel cross section data, flow profiles aod
ice characteristics to complement the hydraulic .odel
studies. A continuing study that has been under
investigation is the simulation of drifting snow using
the sand-water analog to replicate blowing snow condi-
tions.
November 1975 -April 1976
Project supervisor on a s~all task of the lock-vall
de-icing program devoted to water jet-cutting·of ice
off lock valls.
Janua~ 1971 -Novem~er ~~73
Assistant Civil Engineer -active duty U.S. Army.
Assisting proje~t personnel on studies of lightweight
snowfence aateri: s. Design and fabrication af full-
scale .odels of aissile cell covers for field tests on
drifting snow in North Dakota.
Design, construction and calibration of a hydraulic
sedimentation flume including the necessary laboratory
equipment for conducting research in auch a facility.
The flume vas designed to aulti-purpose aodel experi-
aents; (a) sediment transport (simulation of drifting
snow), (b) ice jaa aechanics at retention facilities,
ice booms, bridge piers, etc., and other apecial pro-
jects where hydraulic phenomena can be aimulated.
June 1969 -October 1970
Conducted and coord.inated research involving aediaenta-
tion, water quality, soil •oisture and aurface runoff
in an experimental watershed in central New Brunswick
for the International Hydrologic Decade (IHD) program
in Canada. Layout of hydraulic fluem facility for the
Dept. of Civil Engineering.
3
Summtr 1968
Assistant Civil Engtneer, U.S. Dept. of Agriculture,
Agriculture Research Service, Sleepers River Research
Watershed in Danville , VT.
Developed a field procedure for aeasuring channel
velocitie~ in small streams using a portable pH .eter
using a sodium ion probe and injecting salt solutions
upstre... Supervisor for all surveying activities and
drilling operations in the watershed.
Summers 1967, 1966, 1965
USDA -ARS in Danville, Vl'.
Engineering Aide -Hydrographic and topographic survey-
ing, assisting engineers and scientists in their field
vork on water quality, sedimentation and stream runoff
projects.
PUBLICATIONS: Journal Articles and Conference Proceedings
1. Calkins, D.J., R. Bayes, S.F. Daly and A. Montalvo,
·Application of HEC-2 for ice-covered waterways,·
Journal of Technical Councils of ASCE -Cold Regions
Council, November 1~~2.
2. Calkins, D.J., ·Ice Jams in Shallow Rivers vitb
Floodplain Flow,• Submitted to Canadian Journal of
Civil Engineering, September 29, 1982.
3. Calkina, D.J." and G. Gooch, •ottauquechee Iliver -
Analysis of Freeze-up Processes,. • presented at Workshop
on Hydraulios of Ice Covered Rivers, Edmonton, Alberta,
June 1-2, 1982.
4. Calkins, D.J., D.S. Deck and Carl R. Martinson,•
·Resistance coefficients from velocity profiles in ice
covered aballov s t reams,· Canadian Journal of Civil
Engineering, Vol. 9, No. 2, June 1982, pp. 236-247.
5. Calkins, D.J., R. Bayes, S.F. Daly and A. Montalvo,
•Determining water surface profiles in navigation
channels under various lee conditions using HEC-2,·
present at ASCE Nationa~ Conference, St. Louis, MO, 28
October 1981.
6. Calkins, D.J. D.S. Sodhi and D.S. Deck, •port Huron ice
control studies,· lARR International Symposium on Ice,
Quebec, Canada, July 27-31, 1981.
4
7. Calkins, D.J., D.S. Deck and C.~. Martinson, ·Analysis
of velocity prolilea under ice in :~2 1 Jow st r e ams,·
Proceedings of Workshop on Hydraulic h .; • .. """Ce of
River Ice, National Water Research Institute, l ·~ada
Center for Inland Watera, September 23-24, 1980, edi -.e d
by C. Taaog and s. Beltaoa .
8. Calkins, D.J., •Arching of Model Ice Floes at
Bridge Piera,· lAHR Symposiua on Ice Problems, August
7-9, 1978, Lulea, Sweden.
9. Muller, A. and D.J . Calkina, ·rrazil Ice Forgation
in Turbulent Flow,· IAHR Symposiua on Ice ProbleiiS,
Auguat 7-9, 1978, Lulea , Sve d~n .
10. C&lkina, D.J. •pbyaical Measurements of Ice
JAils,· Vater lesourcea Research, Vol. 14, No. 4, AGO,
August 1978.
11. Calkins, D.J. and C.D. Ashton, •passage of Ice at
Hydraulic Structures,· Rivers 76, Symposium on Inland
Waterways for Navigation Flood Control and Water
Diversions, Vol. I!, August 10-12, 1976.
12. Calkins, D.J. and K. Mellor, ·Investigation of Water
Jete for Lock Wall Deici~g,· Paper presented at Third
International Jet Cutting Symposhm, Kay 1976, Chicago.
13. Calkins, D.J. and C.D. Ashton, ·Arching of Fragmented
Ice Cover,· Caucsdiad Journal of Civil Engineering,
Vol. 2 , No. 4, December 1975.
14. Calkins, D.J. and K. Mellor, ·cost Comparisons for Lock
Wall Deicing,• Third International Symposiu. on Ice
Problems, International Association for Hydraulic
Res e arch, Hanover, NH , August 18-21, 1975.
15. Calkins, D.J. and C.D. Ashton, ·Arching of Fragmented
Ice Cover a,· present·ed at 2nd Canadian Geotechnical
Conference, Hay 1975, Burlington, Oat.
16. Davar, ~.S. and D.J. Calkins, ·Evoluation of Soil
Moisture legt.e in a Watershed ,· A paper presented at
the International Syaosiua on Water Resourcea Planning,
Mexico City, llexico, 4-8 Dec 1972.
17. Calkins, D.J. and T. Dunne, •A Salt Tracing Technique
for Measuring Channel Velocities in S.all Mountain
Streams,· Journal of Hydrology, Amsterdam, Vol. 11,
No. 2, November 1970.
18. HS Thesis, iEvaluation of Soil Moisture in Watershed
Respon se,~ University of Nc v Brunswick, Oc tober 1970.
DISCUSSIONS:
1. Calkins, D.J. and G.D. Ashton, 1982 , Discussion of
paper on Resistance of Beauharnois Canal in Winter,
ASCE J. of Hydraulics Division.
USACRREL REPORTS:
1. Calkins, D.J. D.S. Deck and D.S. Sodhi, ~Hydraulic
Model Study of Port Huron Ice Control Structure ,~ CRREL
Report 82-34, November 1982, 68 p.
2. Sodhi, D.S., D.J. Calkins and D.S. Deck, ·Hodel Study
of Port Huron Ice Control Structure -Wind Stress
Simula~ion,· CRREL Report 82-9, April 1982.
3. Calkins, D.J. and A. Mueller, •Measurement of the shear
stress on the underside of simulated ice covers,~ CRREL
Report 80-24, October 1980.
4. Calkins, D.J., ·Accelerat~ Ice Growth 1n Rivers,·
CRREL 79-14, May 1979.
5. Calkins, D.J. and G.D. Ashton, ·Arching of Model Ice
Floes: Effect of Mixture Variation 1n Two Block
Sizes,· CRREL 76-42, November 1976.
6. Calkins , D.J., H. Hutton, and T. Marlar, ·Analysis of
Potential lee Jam Sites on the Connecticut River at
Windsor, vt,• CRREL 76-31, Sept. 1976.
USACRREL SPECIAL REPORTS:
1. Brierly, W., D.J. Calkins, et a., ·Lock Wall Deicing
with Water Jets, Field Tests at Ship Lo~~• in Montreal
and Sault Ste. Marie,· USACRREL Special Report.
2. Calkins, D.J., H. Button, and T. Marlar, •Analysis of
Potential lee Jam Sites -Connecticut River at Windsor,
VT, • report submitted to the Rev England Division,
Corps of Engineers, Valtham, HA, Sept. 1975.
3. Calkins, D.J. and H. Mellor, ·Preliminary Economic
AnalysiR of Lock Wall Deicing Methods,~ USACRREL
Internal Report 444, April 1975.
6
4. Calkins, D.J . and G.D. Asht on, ·Arching of Frag~e nted
lee Covers,· USACRREL Special Report 222, Kay J97S.
5 . Calkins. D.J., ·simulated Snow Drlft Pa t terns: Evalua-
tion of Geometric Modeling Criteria for a Three-
di•ensional Structure,· USACRREL Special Report 219 ,
January 1975.
6. C.lkins, D.J., ~odel StuJies of ~ifting Soov Patterns
at Safeguard Facilities i .n North Dakota,· USACRREL
Technical leport 256, Nov. 1974.
7. Calkins, D., •A Research Hydraulic Pluae for Modeling
Drifting Snow-Design, Construction and Calibration.·
USACRREL Technical Report 251, June 1974.
USACRREL TECHNICAL NOTES:
1. Calkins, D.J., ·rield Measurements of the Hydraulic
Transients during the Ice Cover Formation and Break-up:
Ottauquechee River 1980-81,• Technical Note, April
1981.
2. Calkins, D.J., ·Ice Jam Flood Levels -Measure•enta oo
the Ottauquechee liver 1977-1~81,· Technical Note.
April 1981.
3. Calkins. D.J., ·crovth of Brash Ice in Ship Tracks and
liver Ice Closure Rates,· Technical Note, Dece.aber
1980.
4. Calkins, D.J., ·Frazil Production in Shallow Streams
and Laboratory Modeling Concepts,· Technical Note,
October 1980.
5. Calkins, D.J •• ·Ice Jam Measurements and Undercover
Roughness Calculationa.· Internal Report 629 , March
1980.
6 . Calkins. D.J •• ·Ice Jam Flood Levela -Measure.ents oo
the Ottauquechee liver 1977-1981.· April 1981.
7. Calkin., D.P., •Field Measure.ents of the Hydraulic
Transient during the Ice Cover For.ation and Brealt-u~:
Ottauquechee liver 1980-1981,· April 1981.
8. Calkins, D.J •• ""Methodology for lee Ja A.nalyaia, •
February 1981.
9. Calkins, D.J., ·crovtb of Bra sh Ice in Ship Tracks and
River Ice Closure Rates,· Dece~ber 1980.
7
10. Calkins, D.J., ·rrazil Production in Shallow Stt••a11s
and Laboratory Modeling Concepts,· October 1980.
11. Calkins, D.J., ·rce Jam Measurements and Undercover
Roughness Calculations,· Karch 1977.
12. Calkins, D.J., ·observation of Hid-winter Ice Jams -
White, Ottauquechee aud Connecticut Rivera,· Karch
1976.
13. Calkins, D.J., -water Surface Profiles -Connecticut
River,· USACRREL Internal Report 423, Hay 1975.
14. Calkins, D.J. and J. Ingersoll, ·Laboratory Ice
Adhesion Studies-Shearing Testa,· Karch 1975.
15. Brie rly, v., D.J. Calkins, S. DenHartog, K. Mellor and
H. Ueda, •tee Cutting Testa at Soo Locka,· Karch 1975.
16. Brierly, V., D.J. Calkins, S. DenHartog, K. Mellor and
B. Ueda, ·Jet Cutting Testa at St. Lambert,• December
1974.
17. Horse and D.J. Calkins, ·construction Techniques for
Underwater Model Construction,· December 1974.
18. Calkins, D.J., ·simulated Snow Drifts Around Three
Proposed Air Transportable Buildings Using a Hydraulic
Model Technique -Preliminary Study,· June 1974 • .
19. Calkins , D.J., ·scale Models for Drifting Snow,· Kay
1971.
AVARDS: USA~L Recognitions: Successful project completion
of worlds first refrigerated hydraulic aodel study,
1980.
VSACRREL Award for Outstanding Engineering Achievement
for Enlisted Personnel, 1973.
Student paper presentation, ASCE New England Meeting,
2nd prize, 1969.
NRC Scholarship froa the Canadian government for
support of researdh in experimental watershed as
published in K.S. 1'hes!a, 1969.
8
COl\'TINUING EDUCATION :
Institute on Unstendy Flow Analysis 1.1 Open Channels.
Colorado State University, Juoe 1974. Awarded 4 quarter
credits on pass fall grading system.
9