HomeMy WebLinkAboutSUS484SUSITNA HYDROELECTRIC PROJECT
FLOOD FREQUENCY ANALYSES
FOR
NATURAL AND VITH-PIOJECT CONDITIONS
Report By
Harza-Ebasco Susitna Joint Venture
Prepared for
Alaska Power Authority
Draft Report
April 1985
-1 .. '
TABLE OF CONTERTS
SECTION/TITLE
LIST OF TABLES
LIST OF EXHIBITS
1.0 SUMMARY
2 • 0 BACKGI.OUND
3.0 SCOPE OF THE STUDY
4. 0 INFLOW FLOOD RYDROGRAPHS FOR WATANA
5 • 0 FLOOD FREQUENCY AT GOLD CREEK
5.1 Natural Conditions
5.2 With-Project Conditions
5.2.1
5.2.2
5.2.3
Floods from Intervening Area
Watana Reservoir Releases
Floods at Gold Greek
6.0 FLOOD FREQUENCY AT SUSITNA STATION
6.1 Natural Conditions
6.2 With-Project Conditions
7.0 FLOOD FREQUENCY AT SUNSHINE STATION
7.1 Natural Conditions
7.2 With-Project Conditions
REFERENCE
TABLES
EXHIBITS
-i-
ii
iii
1
2
3
3
4
4
4
4
6
9
9
9
10
10
1 0
11
LIST OF TABLES
No. Title
1 Flood Frequency Data at Watana, Natural Conditions
2 Flood Peak Frequency Data at Gold Creek for Natural and With-Project
Conditions
3
4
5
6
Flood Peak Frequency Data for Intervening Areas
Maximum Outflows at Watana Reservoir
Flood Peak Frequency Data at Susitna Station for Natural and
With-Project Conditions
Flood Peak Frequency Data at Sunshine for Natural and With-Project
Conditions
-ii-
No
1
2
3
4
s
6
7
8
9
10
11
12
13
14
LIST OP EXRIBITS
Title
Location Map
2-Year Flood Hydrographs at Watana
5-Year Flood Hydrographs at Watana
10-Year Flood Hydrographs at Watana
25-year Flood Hydrographs at Watana
SO-year Flood Hydrographs at Watana
Flood Frequency Curves at Gold Creek
Flood Frequency Curves for Intervening Area between Cantwell and Gold
Creek
Annual Flood Peak Discharges, Susitna River at Gold Creek
Flood Peak Frequ.ency Curves for Natural and With-Project Condit ions at
Gold Creek
Flood Frequency Curves at Susitna Station
Flood Peak Freuqency Curves for Natural and With-Project Con~itions at
Susitna Station
Flood Peak Frequency Curves for Intervening Area between Gold Creek and
Susitna Station
Flood Peak Frequency Curves for Natural and With-Project Con d itions at
Sunshine
-iii-
1.0 SUMIWlY
Flood frequency analyses were made for the Susitna River at Gold Creek, Sunshine
and Susitna Station for natural and with-project conditions. Flood frequency
curves were derived for the natural conditions for annual, May-June and
July-September periods using maximum historic floods in each period. Watana
Reservoir inflow flood hydrographs for the 2-, 5-, 1o-, 25-and 50-year recur-
rence intervals and for annual, May-June and July-September periods were derived
by transposing the flood peaks and volumes of corresponding periods and recur-
rence intervals at Gold Creek. These hydrographs were routed through the reser-
voir using criteria discussed under Section 5.2.2 of this report to obtain with-
project outflows from the Watana Reservoir. For the reservoir flood routings,
starting reservoir elevations were derived from the "start of the week reservoir
elevations" obtained from the weekly reservoir operations study for the period
1950 through 1983. They were assumed to be the median values during the June,
May-June, and July-September periods, for annual, May-June and July-September
floods, respectively . The median value for June was taken as the start!ng water
surface elevation of annual floods because this is the month in which the a nnual
flood is most likely to occur.
Median reservoir water surface elevations were computed based on the energy
demands for the ~ears 1996 and 2001 (Watana operation) and for the years 2002 and
2020 (Watana-Devil Canyon operation). Based on these elevations, Watana Reser-
voir outflows were determined for the selected recurrence intervals, for each
flood series and for the energy demands of 1996, 2001, 2002, and 2020. Devil
Canyon Reservoir operation studies indicated that the reservoir will remain at
its normal maximum water surface elevation for essentially the entire flood
season. Therefore, attenuation of flood peaks by the Devil Canyon Reservoir was
assumed to be insignificant.
The Watana Reservoir outflows were combined with the flood flows of the cor-
responding recurrence interval from the intervening areas (between Watana Reser-
voir and the downstream location of interest) to determine with-project flood
peaks at the downstream locations. The resulting flood peak frequency curves for
-1-
Gold Creek, Sunshine and Susitna Station for natural and with-pro ject conditio ns
(corresponding to different levels of energy demand) are sho wn on Exhibits 10, 12
and 14. Tables 2, 5 and 6 also show the flood peaks for the selected recurrence
intervals.
The flood peak frequency data indicate a decrease in the difference between the
floods peaks for natural and with-proejct conditions as the distance increases
downstream from Gold Creek. This is because of the floods from the tributaries
joining the S usitna River downstream from Gold Creek.
The with-project flood-frequency relationships presented in this study, are like-
ly to change in the future if project operation criteria during floods are modi-
fied.
2 • 0 BACKGROUND
Acres American Incorporated (ACRES) developed with-project fr<:!quency curves at
Gold Creek using the results of the weekly Watana /Devil Canyon reservoir opera-
tions based on the energy demands of 2002 and 2010 (ACRES, 1983 ) .ll The pur -
pose of these curves and that for natural conditions was to demonstrate the
decrease in the magnitude of floods because of the project operation. No fre-
quency curves were developed for Sunshine and Susitna Station. Because the
ACRES' with-project curve was based on results of operation studies using weekly
mean flows, the flood peaks likely are underestimated thus, indicating a larger
attenuation of flood by the reservoirs.
Since the ACRES' study, the reservoir operation criteria have been modified. The
assessment of potential pr o ject impacts on the Lauer Susitna River (between the
confluence of the Susitna and Chulitna rivers) also has become necessary. There-
fore, the flood frequency curves for Gold Creek were re-evaluated and simila r
curves for the Sunshine and Susitna Station (see Exhibit 1 for locations) were
derived.
1 / Indicates reference at the end of the text.
-2-
3.0. SCOPE OF THE STUDY
The major work items of the present study include :
1 . Generation of annual, May-June and July-September inflow flood hydro-
graphs of various recurrence intervals for Watana Reservoir;
2. Routing of the above hydrographs through the reservoir using the most
current reservoir operation criteria and starting reservoir elevations
representative for 1996, 2001, 2002 and 2020 energy demands;
3. Estimation of the annual, May-June and July-September flood peaks from
the interverning areas; and
4. Development of annual, May-June and July-September maximum flood peak
frequency curves for Gold Creek, Sunshine and Susitna Station for
natural and with-project conditions .
4 .0 INFLOW FLOOD RYDROGRAPHS lOR WATANA
The annual, May-June and July-September flood peaks and 3-, 7-and 15-day flood
volumes were estimated for the Watana damsite (with a drainage area of about
5,180 square miles) for the recurrence intervals of 2 • 5 • 10, 25 and SO years
(Table 1) using the procedures discussed in a previous Harza-Ebasco's report
(H-E, January 1984). These data were used to develop the flood hydrographs shown
on Exhibits 2 through 6 These hydrographs were shaped after the historic flood
hydrographs recorded at Gold Creek which had flood peaks and volumes comparable
to those shown on Table 1. The selected floods include those of June 1980, Jul y
1981, August 1967, August 1971 and June 1964 which were used to shape the 2-,
S-, 10-, 25-and SO-year floods, respectively.
-3-
5 .0 FLOOD FREQUENCY AT GOLD CREEK
5.1 NA~RAL CONDITIONS
The flood peak frequency curve for Gold Creek (with a drainage area of about
6,160 square miles) are shown on Exhibit 7 for annual, May-June and
July-September periods. The curves were developed using the procedures outlined
by u.s. Water Resources Council (WRC) (WRC, 1981) and the annual, May-June and
July-September maximum instantaneous discharges for the water years from 1949
through 1983. The plotting positions shown on the exhibit were canputed using
the Wei bull' s formula, P•M/ (N+l), where P is the relative frequency, M is the
r ank of the flood event in order of magnitude with the events arranged in decend-
ing order and N is the number of years of record. The resulting flood peaks for
selected recurrence intervals are given in Column 3 of Table 2.
5.2 WITH-PROJECT CONDITIONS
Floods at a location downstream from a major storage reservoir may be caused
by a large regulated flood release from the reservoir canbined with a relatively
small contribution from the area intervening between the reservoir and the loca-
tion of interest or by a smaller reservoir release canbined with a high flood
flow from the intervening area. However, as the distance between the reservoir
and the downstream location increases, the flood f ran the intervening area
becomes more dominant and the regulation effect of the reservoir becanes less
important. For the purpose of this study, it was assumed that floods of the same
recurrence interval would occur at the same time for the area above the dam and
the intervening area downstream.
5.2.1 Floods from Intervening Area
The flood peak-frequency relationship for the area intervening between the Watana
site and Gold Creek (about 980 square miles) were derived by transposing the
flood-frequency relationship estimated for the area between Cantwell and
-4-
Gold Creek (about 2020 square miles). The relationships, shown on Exhibit 8, was
developed by using the guidelines of WRC (WRC,1981) and the annual, May-June and
July-September maximum daily intervening flows for the water years from 1961
through 1972 and the water years 1981 and 1982. The intervening flows were com-
puted as differences between the observed flows at Cantwell and Gold Creek. No
adjustment was made to the maximum daily intervening flows to obtain the instan-
taneous intervening flows. The maximum daily flows generally occurred on days
other than those when the annual maximum instantaneous flood occurred at the two
stations. For Gold Creek, the ratio between the annual maximum instantaneous
flow and mean flow for the same day varies between 1.01 and 1.08. Thus , the
ratios between the maximum instantaneous flow and the maximum daily flow for the
three series are expected to be smaller. Furthermore, the assumption that floods
of the same recurrence interval occur simulteanously in the intervening area and
the area upstream from the dam is rather conservative and tends to yield a larger
estimate of the combined flood. Therefore, it was decided not to adjust the
maximum daily flows (for the intervening area) upward for the maximum instantane-
ous flows.
Since the 14 years of flood data are not sufficiently long to estimate floods
of large recurrence intervals, the procedure recommended in United States Geo-
logical Survey Publication 78-129 (USGS 78-129) (Lamke, 1979) were used to devel-
op another set of flood-frequency relationships. The procedure essentially in-
volved the derivation of the relationship by using generalized regression equa-
tions. The resulting flood peaks for various recurrence intervals were then
adjusted by using the ratio between the floods of 5-year recurrence interval
taken from the curve based on observed data (Exhibit 8) and from the regression
equation (Lambe, 1979).
The transposition of the resulting flood-frequency data for the area between
Cantwell and Gold Creek to the area between the Watana dam site and Gold Creek
was made by the following relationship:
Q - Q g
A n
A g
••••••••••••••••••••••••••••••••••••••••• ( 1)
-5-
in which
Q • peak discharge from the area intervening between the Watana dam site and
Gold Creek for a given recurrence interval, cfs;
Qg • peak discharge from the area intervening between Cantwell and Gold Creek
for the corresponding recurrence interval, cfs;
A • drainage area between Watana dam site and Gold Creek, square miles;
Ag • drainage area between Cantwell and Gold Creek, square miles; and
n • exponent.
A value of 0. 5 was used for "n" as discussed in "Flood Frequency Analysis" by
Harza-Ebasco (H-E, January 1984). Table 3 shows the resulting flood peak esti-
mates for the selected recurrence intervals.
5.2.2 Watana Reservoir Releases
Flood Hydrographs shown on Exhibits 2 through 6 were routed through the Watana
reservoir. An in-house reservoir routing program was used to determine the
releases from the reseroir. The reserovir was operated using the folowing
criteria :
A. Reservoir Level Constraints:
Active zone is between normal maximum level of 2185 ft and minimum
level of 2065 ft. The environmental surcharge level is 2193 ft which
allows 8 ft surcharge for flood regulation.
B. Cone Valve Release:
Assumed maximum cone valve capacity is 24,000 cfs. Releases from the
cone valves are for satisfying the downstream flow requirement or for
discharging flood flows as prescribed below:
-6-
1. When reservoir level is below 2185:
The release is made to satisfying instream flow requirement at
Gold Creek if the discharge through the turbines for system demand
is insufficient to satisfy the requirement.
2 . When reservoir level is at 2185:
The reservior level is maintained at 2185 by releasing water from
the turbines alone or the turbines and cone valves, depending upon
inflow rates, system demand and instream flow requirements . The
reservoir level will increase if the inflow is greater than the
combined flow through the turbines and cone valves.
3. When reservoir level is higher than 2185:
The discharge through the cone v~lves is assumed to be at the full
capacity of 24,000 cfs. The reservoir level will continue to rise
if the inflow is greater than the discharge capacity (of the
turbines and cone valves) or will fall if the inflow is less than
the capacity. If the reservoir level drops to and below 2185,
follow steps 2 and 1 accordingly.
4. When reservoir level reaches 2193:
The water level will be maintained at 2193 by setting inflow equal
to outflow. The valve discharge will be kept at full capcity.
The inflow in excess of the combined capacity of the cone valves
and turbines will be passed through the spillway.
The reservoir volume-elevation curve used in the reservoir routing was that
obtained from the ACRES's studies (ACRES, February 1983). The starting reservoir
water surface elevations were derived from the "start of the week reservoir ele-
-7-
vations" obtained through the weekly reservoir operation study for the period
from 1950 through 1983 and were assumed to be the medium values during June,
May-June and July-September periods, repectively, for the annual, May-June and
July-September floods . The assumption that the annual flood is most likely to
occur in the month of June is reasonable because about 60 percent of the maximum
annual floods occurred in this month (Exhibit 9).
The median reservoiur water surface elevations (starting elevations) were com-
puted for the Watana operation for 1996 and 2001 energy demands and for the
Watana -Devil Canyon Operation for 2002 and 2020 energy demands. Based on the
respective starting elevations, the maximum outflows from the Watana Reservoir
that c orresponded to the 2-, 5-, 10-, 25-and SQ-year recurrence intervals and
the 1996, 2001, 2002 and 2020 energy demands were determined through the reser-
voir routing as shown in Table 4. These flows are essentially constant for a
number of days and hence were assumed to travel to Gold Creek and Sunshine and
Susitna Station gages without attenuatio n.
The Watana Reservoir outflows (Table 4) indicate that the annual and seasonal 2-,
5-, 1Q-, 25-and 50-year floods occur in Ma y and June would be controlled by the
reservoir and the maximum outflow would not exceed the maximum discharge from
the turbines, estimated to be about 7,000 cfs during the May-J une periods. This
conclusion remains the same for the energy demands of 199 ~, 2001, 2002 and 2020.
During the July-September period, the reservoir elevations at the beginning of
the flood would generally be higher. Therefore, following the operation criteria
prescribed earlier, the use of the cone valves would become necessary during the
50-year flood under the 1996 and 2001 energy demands and during the floods of all
selected recurrence intervals under the 2002 energy demand. The more frequent
use of the cone valves under 2002 energy demand is because Devil Canyon Reservoir
becomes operational, and more water can be stored in Watana Reservoir while
satisfying the system energy demand. At under 2020 energy demand, however,
Watana Reservoir will have to be operated to meet the increased energy demand in
2020, and, thus, resulting in lower reservoir elevations. Under such condi tions,
the floods of all recurrence intervals shown in Table 4 would be controlled and
-8-
the maximum outflow would be the same as the maximum turbine discharge, estimated
to be about 7,400 cfs for the July-September period.
5.2 .3 Floods at Gold Creek
The flood releases from Watana Reservoir for a given recurrence interval, were
combined with the flood of corresponding recurrence interval from the area inter-
vening between Watana and Gold Creek to determine with-project floods at Gold
Creek. Results of the Devil Canyon Reservoir operation studies indicated that
the reservoir water surface elevation will remain essentially at its normal maxi-
mum throughout the flood season. Therefore, attenuation of flood peaks by Devil
Canyon Reservoir was assumed to insignificant. The resulting with-project floods
are given in Columns 4 to 7 of Table 2 . Exhibits 10 shows the frequency curves
for natural and with-project conditions. The with-project frequency curves for
July-September periods are not shown for the 1996 and 2001 energy demands because
of discontinuation in the curves for recurrence intervals above 25-year. The
discontinuation resulted because of the use of cone valves during the SO-year
flood which resulted in a much higher outflow.
6 .0 FLOOD FREQUENCY AT SUSITNA STATI ON
6.1 NATURAL CONDITION
The flood peak data at Susitna Station, with a drainage area of about 19,400
square miles, are available for the water years from 1975 through 1982. These
data are too short to estimate flood peaks of large recurrence intervals. There-
fore, the procedure recommended in USGS 78-129 (Lamke, 1979) was used to develop
the flood frequency curve. The procedure has been discussed briefly under Sub-
section 5.2.1. Exhibit 11 shows the flood frequency curve for annual, May-June
and Jul y-September periods based on observed data . The plotting positions of the
points shown on the curve, were computed using the Weibull's formula. The
adjusted flood frequency curve is shown on Exhibit 12. The flood peaks of
selected recurrence intervals are given in Column 3 of Table 5.
-9 -
6.2 WITH-PROJECT CONDITIONS
The flood peaks for with-project conditions were obtained using the procedu re
adopted for Gold Creek. That is, the constant release from Watana for a giv en
recurrence interval was added to the flood peak of the corresponding recurrence
interval from the area (about 14,220 square miles) intervening between the Watana
dam site and Susitna Station. The flood peak for the area between the Watana dam
site and Susitna Station were derived by transposing the flood frequency rela-
tion ship estimated for the area (about 13,240 square mile) between Gold Creek and
Susitna Station. The relationship was estimated using flood frequency curves
based on observed data (Exhibit 13) and the procedure recommended in USGS 78-129
(Lamke, 1979) because of the short length of record (for water years from 1975
through 1982). The transposition was made using Equation 1 given in Sub-section
5.2.1 with the values of flood peaks and drainage areas replaced by tho se between
Watana and Susitna Station, and Gold Creek and Susitna Station.
The maximum dail y intervening flows used in the frequency analysis were c omputed
by the same metho d used for the area between Cantwell and Gold Creek. The
resulting f reque ncy curves shown on Exhibit 13 , were derived using the gu i delines
of WRC (WRC, 1981).
The with-project flood frequency curve resulting from the analysis are shown on
Exhibit 12. The flood peaks of selected recurrence intervals are given in
Columns 4 to 7 of Table 5. The with-project frequency curves for July-S e ptember
period are not shown for the 1996 and 2001 energy demands becaus e of the same
reasons given in sub-section 5.2.3.
7.0 FLOOD FREQUENCY AT SUNSHINE
7.1 NATURAL CONDITION
There are only about 3 years of flow record, for Sunshine, with a drainage area
of about 11,100 square miles. These are not sufficient to derive a reliable
fl o od frequency relationship. Therefore, the flood peak frequency relations hip
-10-
developed for Susitna Station for annual, Hay-June and July-September periods
were transposed to this site by Equation 1 given in sub-section 5.2.1 using the
appropriate values of flood peaks and drainage areas. A value of 0.5 was used
for the exponent "n". The resulting curves for annual, Hay-June and
July-September periods are shown on Exhibit 14. The flood peaks of selected
recurrence intervals are given in Column 3 of Table 6.
7.2 WITH PROJECT CONDITIONS
The flood peaks for with-project conditions were estimated using the procedures
adopted for Gold Creek and Susitna Station. The intervening area between the
Watana dam site and Sunshine is about 5,920 square miles. The flood data for the
intervening area were estimated by transposing the data for the area between Gold
Creek and Susitna Station. The resulting curves for annual, May-June and
July-September periods are shown on Exhibit 14, and the flood peaks of selected
recurrence intervals are given in Columns 4 to 7 of Table 6. The curves for
July-September period are not shown for the 1996 and 2001 energy demands because
of the same reasons given in sub-section 5.2.3.
-11-
UFEURCES
Acres American Incorporated, February 1983 : Before the Federal Energy Regulatory
Commission, Application for License for Major Project, Susitna Hydroelectric
Project, Volume SA, Exhibit E, Chpater 2, prepared for Alaska Power Authority.
Barza-Ebasco Susitna Joint Venture, January 1984: Flood Frequency Analysis,
Susitna Hydroelectric Project, Federal Energy Regulatory Commission Project No.
7114, Final Report, Document No. 474, prepared for Alaska Power Authority.
Lamke, R.D., Flood Characteristics of Alaskan Streams, 1979: u.s. Geological
Survey, Water Resources Investigations 78-129, Anchorage, Alaska.
U.S. Water Resources Council, 1981: Guidelines for Determining Flood Frequency,
Bulletin# 17B, Washington D.C.
-12-
Table 1
FLOOD FREQUENCY DI\TA AT WATANAlf
NATURAL CONDITIONS
Recurrence Interval (Year)
2 5 10 25 50
Annual Series
Flood Peak, cfs 43,500 57,400 67,000 79,800 89,500
Flood Volume, mean discharge, cfs
3-day 36,028 47,062 54,485 64,027 71,251
7-day 32,297 41,182 46,910 54,015 59,233
15-day 28,529 35,004 39,049 43,950 47,478
May-June Period
Flood Peak, cfs 39,000 51,500 60,800 73,800 84,400
Flood Volume, mean discharge, cfs
3-day 32,188 42,242 49,592 59,732 67,900
7-day 29,114 37,701 43,813 52,043 58,553
15-day 26,036 32,968 37,432 42,969 47,034
July-September Period
Flood Peak, cfs 34,200 45,700 54,500 67,200 77,800
Flood Volume, mean discharge, cfs
3-day 28,013 36,783 43,547 53,233 61,341
7-day 25,766 32,521 37,379 43,970 49,210
15-day 23,840 28.728 31,795 35,530 38,227
1/ Source: Harza-Ebasco Susitna Joint Venture, Final Report January, 1984:
Flood Frequncy Analysis, Susitna Hydroelectric Project No. 7114, Document
No. 474, prepared for Alaska Power Authority.
Table 2
FLOOD PEAK FREQUENCY DATA AT GOLD CREEK
FOR NATURAL AND WITH-PROJECT OONDITIONS
Recurrence Flood Peaks (cfs)
Flood Interval With-Project
Period (Year) Natural.!./ -rr96 2001 2002 2020
(1) (2) (3) (4) (5) (6) (7)
Annual 2 48,000 23,700 23,700 23,700 23,700
5 63,300 31,400 31,400 31,400 31,400
10 73,700 35,800 35,800 35,800 35,800
25 87,300 39.700 39,700 39,700 39.700
50 97,700 44,300 44,300 44,300 44,300
May-June 2 42,500 20,900 20 ,900 20,900 20,900
5 56,200 27,900 27,900 27 ,900 27,900
10 66,300 31,900 31,900 31,900 31,900
25 80,500 35,000 35,000 35,000 35,000
50 92,100 39,000 39,000 39,000 39,000
July-2 37,300 17,300 17,300 41,300 17,300
September 5 49,800 22,900 22,900 46,900 22,900
10 59,400 25,600 25,600 49,600 25,600
25 73,200 28,100 28,100 52,100 28,100
50 84,800 53,600 48,800 55,100 31,100
1/ Natural flood peaks from H-E report, January, 1984.
Table 3
FLOOD PEAK FREQUENCY DATA
FOR INTERVENING AREAS
Recurrence Interval , (Year)
2 5 10 25 50
Flood Peaks, (cfS)
1. Between Cantwell and Gold Creek
Annual 24,000 35,000 41,300 46,900 53,600
May-June 20,000 30,000 35,400 40,200 45,900
July-September 14,200 22,200 26,200 29,700 34,000
2 . Between Watana and Gold Creek
Annual 16,700 24,400 28,800 32,700 37,300
May-June 13,900 20,900 24,700 28,000 32,000
July-September 9,890 15,500 18,200 20,700 23,700
3. Between Gold Creek and Susitna Station
Annual 149,000 173,000 192,000 212,000 230,000
May-June 115,000 131,000 146,400 161,000 174,000
July-September 147,000 172,200 191,000 211,000 229,000
4. Between Watana and Sunshine
Annual 99,700 116,000 128,000 142,000 154,000
May-June 76,900 87,600 97,700 108,000 116,000
July-September 98,300 115,000 128,000 141,000 153,000
s . Between Watana and Susitna Station
Annual 154,000 180,000 199,000 220,000 239,000
May-June 119 ,000 136,000 151,000 167,000 180,000
July-September 152,000 178,000 198,000 219,000 237,000
Table 4
MAXIMUM OUTFLOWS AT WATANA RESERVOIR
Recurrence Interval, (Year)
Flood Starting 2 5 10 25 50
Year Period Reser. El. Flood Peaks, (cfS)
(ft)
1996 Annual 2112 .a 7,000 7,000 7,000 7,000 7,000
May-June 2096.4 7,000 7,000 7,000 7,000 7,000
July-September 2162.3 7,400 7,400 7,400 7,400 29,900
2001 Annual 2111.0 7,000 7,000 7,000 7,000 7,000
May-June 2094.6 7,000 7,000 7,000 7,000 7,000
July-September 2161.0 7,400 7,400 7,400 7,400 25,100
2002 Annual 2157.4 7,000 7,000 7,000 7,000 7,000
May-June 2138.6 7,000 7,000 7,000 7,000 7,000
July-September 2185.0 31,400 31,400 31,400 31,400 311foo
2020 Annual 2103.7 7,000 7,000 7,000 7,000 7,000
May-June 2085.5 7,000 7,000 7,000 7,000 7,000
July-September 2159.0 7,400 7,400 7,400 7,400 7,400
Flood
Period
(1)
Annual
May-June
July-
Table S
FLOOD PEAK FREQUENCY DATA AT SUSITNA STATION
FOR NATURAL AND WITH-PROJECT CONDITIONS
Recurrence Flood Peaks (cfs)
Interval With-Project
(Year) Natural 1996 2001 2002 2020
(2) (3) (4) (S) (6) (7)
2 189,000 161,000 161,000 161,000 161,000
s 220,000 187,000 187,000 187,000 187,000
10 242,000 206,000 206,000 206,000 206,000
2S 264,000 227,000 227,000 227,000 227,000
so 283,000 246,000 246,000 246,000 246,000
2 1S6,000 126,000 126,000 126,000 126,000
s 179,000 143,000 143,000 143,000 143,000
10 197,000 1S8,000 1S8,000 1S8,000 1S8,000
2S 21S,OOO 174,000 174,000 174,000 174,000
so 230,000 187,000 187,000 187,000 187,000
2 183,000 1S9,000 1S9,000 183,000 1S9,000
s 216,000 18S,OOO 18S,OOO 209,000 18S,OOO
10 238,000 20S,OOO 20S,OOO 229,000 20S,OOO
2S 2S9,000 226,000 226,000 2SO,OOO 226,000
so 278,000 267,000 262,000 269,000 234,000
Flood
Period
(1)
Annual
May-June
July-
September
Table 6
FLOOD PEAK FREQUENCY DATA AT SUSRINE
FOR NATURAL AND WITH-PROJECT CONDITIONS
Recurrence Flood Peaks (cfs)
Interval With-Project
(Year) Natural 1996 2001 2002 2020
(2) (3) (4) (5) (6) (7)
2 143,000 107,000 107,000 107,000 107,000
5 166,000 123,000 123,000 123,000 123,000
10 183,000 135,000 135,000 135,000 135,000
25 200,000 149,000 149,000 149,000 149,000
50 214,000 161,000 161,000 161,000 161,000
2 118,000 83,900 83,900 83,900 83,900
5 135,000 94,600 94,600 94,600 94,600
10 149,000 105,000 105,000 105,000 105,000
25 163,000 115,000 115,000 115,000 115,000
50 174,000 123,000 123,000 123,000 123,000
2 138,000 106,000 106,000 130,000 106,000
5 163,000 122,000 122,000 146,000 122,000
10 180,000 135,000 135,000 159,000 135,000
25 196,000 148,000 148,000 172,000 148,000
50 210,000 183,000 178,000 185,000 160,000
0 ..
0
• '~ JO • .. .,. Ml'-l l
I 1~ ;. ~ • ~ ~ .ILOWI~&,_a
sus;rNA f/YL>ROELEcrRIC /='/?(.)Jrc.r
ID
~ '\
40 I 'I
IJ 1\
~ ~II ~'-,.... ~30
~ ,....~,; "r--I' -I v~ \ t!tiO I
! -0
10
0
z• • 72 Ill till ... .. ·~ 216 2«1 .. -52 S!ll Jio
lit£ -tO.M
PEA< • 4a&ill0 CF&. l~ YOL.LJ£ • 0 .861110•111& ~-FEET R_A6t(A fiOER ~I TY
.. ,._ ""-"' I ......
2-YEM ~
PAC) tU1 fLQ(D HYIJRODRA"H
AT WRT~
~IA6CD ..J)INT ~
[fift-'??A-E8A.f<'o Su.f/7NA JIJ,.N"T J/FI\/71/I?e -.... -... --..........
ID
C)
IJ
I'
1\
"' II l'f\
u.
~30 I ~
,/"' ....
I r--~-"' ,r-
!• v
fool
-0
10
0 • • l2 • 120 144 I. I Ill
TIP£ -tO.ft6
P£AK • a9aXJ CFit. 16-QAY VOLLJ£ • 0. '181110 .. 6 II:AE-FEET
~1/IR?A . E8ASCI9 S(/,!!171-" .L_OtNT vEA/rv/?€
1'\
.........
i'-
~
I'
211 240 2 .. 2111 !l2 311 -
A..A6t<R POWER ~~ TY
.. ,._......a I .._...
2 -YERR ..W-..AH
fA<JfU1 FL(Dl H't~
AT NAT~
tMZA-EIRiilCO ..J) I NT W£Hli.N:
-~-P'-·.l ... w.
~ ~
'1
1\)
C)
" ...
'1
"'
m
«J
Ul ~f' [\ u.
~-v § f\ -...
I
~~ ........ r--:...
-0
10
0
24 .. 7'l • J!o I" lie IW 211 240 254 ail 312 531 1io
T I PtE -tta..R6
P£A< • iW2DO CF&. 16-0AY Ytl.lJtE • 0. 71•10.•6 ~AE-4="E£T R....~ PONEft ~1 TY
II .. ,._.._.,I ~ ~ 2 -YEAR JU..Y-~PTEt1EER ~
t1A)( 1 tU1 F\..IDJ H ftJH\DtA'"tt '1
AT WAT~ lt.i
~IRiim .J)INf VIENTIR: ~
#Arr .A . f~ASC D S~/TA/,11 Jt:JnJT lffHT I/17( -.... _ .,._ •1 e-01..:t1 ....
10
\
I 1\
ID ~ v
II
ut lir--V 1\
u. " ~CJ [\ § v I'-I\ -
I l ...........
...... r--\ ~., i\ I,; ... I--" ! 1/ ~'-r--
Q i\
i\ -II 1\ 0
liD II
10 • .. 1'l • alo a.u aie airl 21 2CJ 2~ :MI sl2 -3110
Tit£ -~6
P£j:l( • 67CJO CF&. l&-DAY VOLLI£ • 1.0 .. 1011116 ~AE~EET fU&<A POER AUTtOtl TY
... ,_--..a-I -...,
5-YE~~
tA<UU1 F\.000 HY~
AT MATFf.IA
~IA&DJ .J)INr WEKliN:
#.A.f'~A-E8.A S~O J//f/,./1/,A Ji}/N '1' VFNTI/R£ --... -...........
ID
flO ~
v ~
) 1\ &.1 ll u.
~· r.,ll ~ § -II 1\
I "~"--~v ~.--~--' 1\ v 1--~ID t--
! 1.-' I' I'-
"r-. -II 1\ 0
10
ID
24 .. 7l • 120 144 I. IIR 211 240 2~ -112 !115 .,
Tit£ -HO..R6
PEA< • G lBlO CF~. lli-DA'f Y0L..U£ • D .911t110.116 R:AE-FEET Fl..~ fi'C»Q AIJTHrltl TY
... ,.~I .._...,
5 -YEAR t1RY -Jl.IE
rA< ltt.11 FLQ(D H'tDRODN¥"M
AT WRT~
IAUA-€IAIID .J»Ittr W0411M[
[,#A/?f A-£/SASCO Su.JirN.A ,JO/Nr 1/bl/dRE --Jrt-·1 .... WI
.,
ID
v ' .. i\ ~40
Q II r\ I/ -I r-ll r\ ~r--
t!j., II
! ~~ ~~---~---vv ~--~--r-r-" ~ ~~--""' r---0 ....
1\
10 7
1-....
ao :. • 7l • liD '" de dz 215 240 .. 21111 32 -!lo
ll t£ -HCLft6
P£A< • 4~ CFS . 16-0Ar VOLLJ£ • 0.8&.10 .. 6 ~-FEET A....Rt!KA POWER AUnllRI TY
u•---..n 1 ._...,
5-YE~ Jl.LY-5EPTEteER
IA<UU1 FLOID HY~
AT WAT~
~IA6t0 .J)INr VEM'TlM
,~-~,.,/?-;~-~8/JSCt.J .)t,l511"A/A ,Jtl.wr f/E A/rt/RE -... -... --........
"W
V1\
ID v i\ ~
&a \
u. 1/ ~~~~
"~-. § I) " -
I ~ " 1\
~40 f\
! ll " II ~"r---1-1,... ~ ,... 0
~
ao 'I 1-v \
ZD
24 .. . • llo ... •• 1112 216 240 ae 281 32 ,. !1110
TIP£-~
PEA< • &'7(J)Q CF&. l6-Dm VOLI.J1E • l . IG•JO•Mi R:AE-FEET ~AQ(R POWER AUT .uti TY
.. ,........., I ..........
JO -YEAR ANNJAL
tA<J tU1 FLCDl H'tc:RlOHA"ti
AT WAT~
~IAiim ..DIMr VDnllll
#;11.17?/t-E8A5t"O SUfN~•n' JtJN•I r Y'EIVTV ,.E -~-1"-•f «-GeNt
1U
ID
II\
ut u.
v " 'i:ID I' § lj 1\ ....
I
~CI II r-
1'1
Q ~ 1\1'
I--1'--v I'-0
ao
II "
m
:• • 12 • tkl ..... • • 1112 211 240 2M 2. Sl2 -tlo
TU£ -HOl.R6
PEJI< • liC8Xl ~G. LG-OR't' VOLLK • l. I 1•10•116 R:AE-FEET R.A6t<R POWER AUTHIJU TY
...... __., --r --L~YERR MY--AM
tAC IIU'1 F\..OIIl HTl:JUJNOPti
AT WAT~
~ ...,,..,. \'INT"'l ,,,
,>-IAR?A. EBA SCO SU.SI'T ;v,/1 Jt!J•w r v r N''T'UA'c --1"-•1 .......
10
10
1.1 I\ LL \liD
~ -J r\
I I \
a-
I
v r"-r--
r---~ r--0
'I' t--
ao
~--~
1-'
10
• • 12 • 1210 '" •• •! z• 2410 .. 211 Sl2 J. !liD
lUtE -tO.R6
P£AC • ~ CF&. 16-0A\' YOL.I.J£ • 0 .951110.116 R:ti£-F'EET R..Aii"A POWER Al.ITlD I TY
... .___,I --10-YEM ..ALY-SEPTD&:R
~1tU1 FLIDl HfDIURPtt
AT MAT~
~IIBD .J»INr .offtJIE
,1/AR<A -E(J..f)J <:O SU,["/7-f/A .Ja .-"'r t/EN'Tl//7£ -~-_ .. ••__t ........
.,
1\
"JD
~
!'-..
~
... -1/ r\ t&.
~
§ II ' 1'\ -..
"I' I ll
1!1
,....
II !· v "
vv ... r-. -0
f..-
......... 'r-.""
ID
~ ~
ZID
2• .. 'J2 • 1!0 14<1 Iii I irz 2~ 24l .. :Iii 112 Dl Jia
Til'£ -HO..R6
P£AK • 79&00 CFS. l~OAr VOLI..t£ • l.3t•J0•11& ~-FEET A..Rii"R POWER ~I TY
..,,.~ I .......,
25-Y£~ fMUI..
I'ACJ tu1 FLOCJJ HYCIQJNPH
AT WAT~
~ .J)IIff VDn"'l
.w~'~2_A -F8~,s~o .<"ar,-rN'.,#' ./c""'r vrA.Irt'A"r -.... -................
80
'JU 1\
'
I\.._ r-.
c.e• 1\ &&. u • § 1/ f\ -.,
I ll ~I\
!~ ""' ~v ~'-r-. 1--r-. Ll
Ll ..... " -" a
~
~~ t'--r-.r-. .,
~V'
10
i 4 .. 12 • tlu . ... •• UR 211 240 21A -512 35 -lit£ -HOlR5
P£~ • 73BDO CF&. 16-0AY V(Lll£ • 1.281110.116 ,:CAE-FEET A...~ POWER ~1TY
........... -r ..._....
25-YEAR HAY-..u£
tA<IfU't FLCDl .. nRlOMPH
AT WATII4A
~BI&D .~»ucr VI>Olll£
PAK-24 -F"P../.I.":rr. SU..f/rNA _/t'INI/7 vr.v?tiA"£ --~--·· .........
.,
.,.,
\ ... .,
t-. '-L u ' § f\
r-. -.. ~ 1\ I
t!t
!40 ~ 1\
~.Y r-. -1-0
..... ~~f--' .,
~~ ~ '
I--~ r--
~
m
2• 4 72 • I!IJ '" lie 1 irz z• 2«) .. :~~ill Jt !ill .,
T It'£ -tO.R6
Ps:JI< • 67200 CFS. 16-CA'f VOLutE • 1.061110•116 ACRE-FEET R..~ POER IUT~I TY
..... ....., I -...
2S-YEM ..J.L Y -6EPTD1BER
fA<J PU1 fL[D) HYDRCilRR"ti
AT WAT~
~..:0 ..J)INI' WMT&N:
""-'Wi'A -r BASc-o .SU .. OU\JA Jr.n/r _f/f"II/'71/.V£. -.... -....... ........
.,
.,
IJ Ill\
'JD
I' 1\ to u.
J u ['\, §., l [\ 1\ -
I l'r-v '\
~liD '
! r-~ \
v ~'r--c;«» v r-r-
v "" ~~ ~ 10
liD l
• • .. "?2 • llio l.. I il I~ 218 2«1 2~ ... 112 -.,
TU£ -tn.ft6
P£A< • l!:liDO CFS . \lr-Om VOLLI£ • l."'i•Ja-6 A;AE-FEET Fl..~ f"'WEJt AUTHC.RI TY
__ ...,_j ._...
SD-YEM ANNJAt...
fAC:II'U1 FLOOO H~
~T HAT'"'
~IAIID ..,, .... wen.-
Vhi~~A -f6'.;1Sco s__u s""N'J\ J tvNr v fl/7oA'r --1"-·1 ... ...,
..
ID
ID ~
'JID
1/ t"-I'
c.e
"" I' I· ,... 1\ -I\
I r 1".
v 'r--~II
v Ci C") v
ID ~
liD
:~ • 12 • tlo '" .. ·~ Tl f1E -tO..ft6
P£A< • 8"4XJ CF&. l._DAV vtl.LIE • l • .-0.10.116 RCA£-FEET
l#fi..t-'r'A E !?.PSCD .5U.S/'TNA ~Nr 4/F'I/TUKF
1'\
1\
'r---
r"t--~
21 240 U4
r--, ~ I--.... ~t--
31 Sl2 sill SID
R...A&t<A POWER AUTHrAl TY
..... ~ _l ........
50-YEAR "AY-.JU£
tA<ltU1 FLIXJl H'fDIQRHt
AT WAT~
~ .J)INf VENTIN. --... --... __....
~ ~
'"'i ~ "' ~ ' ~ "'
I)
" G\ w
..
•
lD " ca ,....
~
I"' I" u §•
I' ...
I \ ~m I 1\ ! ' IV 1\ c;«» v I' ' II!\
ll 1\ I'
8D ~~ ~'r-. 'r--I'
r-t"" r-.
ZD • .. 12 • 1210 I" I. t! 211 2C» ac 21111 112 Dl Jio
T ll'£ -HO..R6
PEA< • 77&00 CFSi. t&-DA\' Vl::l..ll£ • 1.14•10•116 ~-FEET FL.Aiii<A POER AUTtOtJ TY
_ ... ..., .l .._....,
50-YEAR ..U..Y -&EPTDa:R
tA<lfU1 FLOOO HltlRUJIWAt
AT WATft.IA
ttiUA-EIAIID ..JJ Iter WDniN:
H .P/c? A -E ~Sc_a_ Su~ r .v-"'!_ ./0 "" r vE/V7VR £ --1"-·1 ·--~
9 9 9 9
3
I
7
6
r ? 7 119 1 '' \ t9 91
'
.. 1 .
'
I ,
--1'· .•. -·-t -.
I.. I l . k .. I : .
I :
. i .,
I
I .,
I
I
I
I
I
I ' -
I '
1•)'. 1 n ·•
' I.
' ' I
i
I I I .. '
1
I·<
.,. ' ' .. -: .-.
i.
I
90 10
' '
liJ 11)
70 60 50 ~
.
' '
: •t•
--' I ' ·'
:VJ
I; ., . . '
:.o 60
JO 20 10
AO 90
.5 2 0 2 0 1 0 .0.5
9 .~ ,,
001
' •
7
6
3
-2
' •
7
6
.5
J
99 99
• • Iii
., • ?9 \)\•? 9911 9\1 l 99 91 91 90 10 70 60 -'0 40 30 20 10 5 2 Ol 02 0 I 0 OS 001
I ' !
'· , I •
1 l . l
i . ' '
' I ' l ... 6
' I I I ' I I
I I
4
I .. , .. . ,
I
'I II
I'.
~· ·.-t
I• .... -· -· -· J ••• 2
I'
\J I '
I . ' . ' ' j ,• t
~ I 'I I j ••
j i l l
, •• !
~ f I I I
/D -. I·: .. \I ,. 11 i ... j ' e ~ I .. I
I I ' ., ::.: I .. -· 7
¢ : ... I !
..... ·-6 ' . i. ; . ' I ,.. :. :::·:r :·; I;-i
,, 0. • r r· l-' ,;
I , .. ; . ~~-t I
. i. :
. t r ' I 4
I ! ,-! I I • • ' o
I I I . ' I .
I ·-I ·~·--"---.. J 3 I ' ' I I 0 ' I 'I. I • I ' I
I :_,~-,;...,~AL ! I
·I
; I I
.J I -~ 1)) ... ,. I ' t• I )( . I ~ ~ I
i I I . ! . '1 ~ .. I . ..
I I 11.1 ' ! I . I '\
4 . I I I I ~ "
NARi!A-,:Q.f!S~td.!L ~: ~!'"",; ~--c.t~~-10 ...
,, 'J\ " . 1 0~ ~ 10 10 30 4 0 ~0 60 10 80 90 9~ 91 99 "' 99. 990 ""
• • •
··~ 9 99 8 99 ~ " " 10 70 60 50 ~ 20
--·-~~
. I ~
·I l
' '
i
I
,,
I
'V~L~fl'.vr:._ ~t¥-
...... t)" ') ' 1 If) 30 •0
II
10 '
90
2 0 .$
II
0 2 0 I 0 0' 001
' •
7
•
'
,
2
t -' ··' i ,_ -• ''I! ! . I -7 . ; :-H ·-·· ,_:,._
. ' . : i
.m-·~l·
6
' •·!: • I
• -1-w -· i ....J_ •
'lj
"i ' t I
I ' '
:1fT ...;_ -+-,
1: 1 :
1 I
91 9Y 99 3 99 8 99 9 99 99
II
09 99 9 9 9 99 I 99, 99 " 95 90 80 70 60 50 4() 30 10 10 .5 1 05 0 .2 0 .1 005 001 -,-r -~
9 I
.I
I 9
8 . I I
I
I .
I
7 . t 7
6 n~}o.Dj !t 6
i i· i . I ,
! 'l 4 4
I II' I•
I ' . I I 1:· ..
I . I I:
) ., ... '-'·· ... 3
I
i . I i i:. , ..
I
l I I•' •
-tl
, .. ;
2 r J ,
v I .., ... ' . .. '. ~ o I
i' I
4 ~ I
/tJ u·
0 ~ ' II ~ .I.!: I
I
I 7
I : -1-: 6 . I .. 6
1 : . '., t 1·-: ' • ' I ' . I ! : .
' ~ 'l I r ! 4 .,.:. ' I i
I
3 : -! . ; . -. .. I -I l
: I ' I
.!
,I
~ l
~ ·~ ' ~ )(
I 1 1 U_ ~ "' 3 ' . '' ...... ' I', ' I Q ~ /0 #.4,e2A-.F-5A.SC() -~c/_.f.I~A(. .. _~p/.v -~~.'.~..f: "' Ill ~
fl (• I' r.l 0 z 0~ 2 10 2'J JO 40 50 60 70 80 90 9\ 98 99 99 5 '191 "' 99'19
99 9 9 ,~ ?9 8 995 99
·----' I
9
8
7
6
3
7
6
I
I
: I .I ......
I
i
I
., .. .... :·:
.I
. ' ..... I ..
I
j
... , ..
I . I.: I
. I . i .. . i ,.
I
I ''
I
' '
.... :
i ' I ....
I .
"
' ''' ..
I
9'
I
I I
3 I
/0 HA/?l.A-Fe';l'l.,st::Q ·..J:u.NrNJ:! d~""!.t:._V.~--
r n ·• (,
10 70 60 so ..0 30 20 10 '
1(1 10 70 8() 90
0 ,, 0 2 0 I 0 ,0,
98
001
9
•
7
1
,
I
' •
7
'
'
,
,
9999
t:; 19 ?';' ') '19 ~ V9 \ \19 91 9.5 90 80 70 60 .50 40 30 20 10 2 0.5 01 0 I oos 001
r ---·r ! ! ~ -,-.-
I 9
I 1.
j, . · i r ·: -1 I
~ 1. I l oo I . ! ! ··•••40 j::' 1 . ·j ·
! I !. I '.:
6 .. '"] ... i .. : 6 . . .
, , I '! •
.5 ... : . i :: ! .. ! . .5 •:i':l t I •
· .I. ,1 ·I • · 1
4 . :.. I ~ .. : . 4
' ... ' II 1·. I
3 -t -,:; .. 1 --
3 . .
• I ..
• • j , ...
• I ' . +·j I
2 ~
r
2
'
v ·I :::: ~": ~ I · ,. I
4 ' !
j(f) ~-;
9 ~ ' 8 'I:
"l .. I
7 1
b •
s -I r ·; ' I -1
• I
I . . -· ..
': .,.
I I 3 I .. -,
. I I ,.
I
.. ' ..I
I
I I . I -. ! ...• ... .. . .. "~l ··· 2
• . '
I
. . . " ~ 't .. 11·'· ~ ~
1 • '1 r-.
. ''=j._./.0<~,._..-~ l .l '
3 c.. ...,
10 v'f'.ll/?ofA-~B-9~.cP... .. :S' 0 ~ "" ., I l)f\ ·;I (' 1 1 40 80 998 99 ., 99 ." w
05 10 20 30 so 60 10
l~NUA~Y <rO~UAIIV OUII r.W AP~Il M~Y IIIN£ lillY AllllU T 'fPT(MH'ft 0 C:T08[11 NOVlOOUII 0F r.£MII(II
) lti IS 10 1'\ ) 10 U 10 1 .\ S tO IS 10 :U S 10 ,, 10 1J S tn I) 10 ::0 \ $ 10 I \ 10 1) •, 111 1\ 1U 1\ S Ill I) /rJ l $ 5 I U I) 1U $ I tO I) 70 U S 10 IS 10 lS ) tO I) 10 H
'• lo I I .'\ 't It 011 'o I ll l 'o •I -; :, Ill l 'o )•' '0 '1 I ll 1'. ."•1 \ 't Ill l'o ,•1 :'i !lo Ill t .'II \ 'I !It 1\ 11° '1 ' Ill I o Jlt ..... \ tit t ); II "
J '•I 1 1'' II ltfiUAI'-' t.~•Jtt tl "''''" .. ,lt,U'I !«oiPIII\t U ft l l tl luHru NO~f¥1Htt OllfiiiiRttt
99 99 U '/ '1 Y9 8 9? ~ 99 98
0
II
1
6 J
i
I . I .. :-
1:/1
3
. '··
2 ! .: .. 1
I
I
.I
. I
~ I
4 u I I
f(J ~ ·:-t ·-j
9 q ·····I
.. :I •
7
6
3
?
;. J
• I
I .
l . i i I I
I ..
. :::,
: j:
. : ,.l ... ,
:.,·J
. I i !!:
.1 . ~· ..
: ;: !
. I .. ' .. --·
' I I ,.,
'I
-~-f
I
I
!
J l ..
90 80
I
I · ,I
'· . :.~.
'• I
I
I
I I.
70 flO
10 :"(A-ezA .,£.JAs~p . .st.d.~ ~ ... ..D.!..~..!':....lt~~es:..L--...L..J.--1...--...L
t •)' ' I 0 :' 7 10 20 JO 40
JO 10 10
m-,
II
70 80 90 9S
2 0 2 0 .1 005
91 99 99 s 99.1 99 9
0.01
•
I
7
•
'
..
2
•
'
..
)
~---.. -...
"'.·, ,. \ < 'I .,., B 995 99 91 9S tO 10 70 60 ~0 40 JO 20 10 s 2 OS 0 .2 0 .1 005 001
• I ~ • ,-.. r ·-..
. ·i I ' I ..
! ~ . . . :.-I ~ 1 ' . ! . :I
-: i :--: : :;
L. I 7
I
" .. .. : ., :. I ~ : , ... : .. .. ' I I . ..
~ . I I I 1 ~ • I .. 1 . -... 1 .. ., '1: -l i -. i I • ' . I I : ! • ! I:!" ! ! I
I J o ,
I . : I .
. t 1 ! . I ~ 'I ' I , ... ... . i ... ., . . 4
0 i ·. I • ~ .. I • ·~ , . I .. I
• I .. ~ : ~; . -:
3 . . . I ! . • ... 0 ··--:0 -: T i 3
·J I . . , • I .,
! I I I I
I i. ·I . ' I: i 1 o I,
~ , .. , .
' I I ' '-. i
I _J .. I .
2 . ..,.. . . -· . 2 . ..,.
~ • I ••o ~: I' '' ~-
4 \J
I(J II)' -.--· -· I
9
q ! ·!·!.: ' • . i ·:: I
7 ! . . .. 7
I
6 ' : . . • I
' ' i
I .. '. : ,--4
I ..
' ) I r . :J
I ~ ~ '
I.
I ' ~ I I I • I 'I " I "'1 "' I . ! , 1 ....
N '1
. . I . 1:) ~ 3 1 ! 1 , 1 I
~
/0 : f-1,<111 trA -£dA·H-.Q .• ..S,,JlTI.VA ..Ltflt~'-t'r.~. -~~ __ _1 __ -·-I ~
. ' ,· ·! •, ... ,, 7 n' ~ 10 7') JO 40 )0 60 70 ~0 90 95 98 09 99 .S 991 99.9 99 99
9
'
3
1
99 9 99 • 9 ? ' 99 YB 9S
:·I . . : '
I
:l ·
1·.:
' .. : I ! ... I
'I I I . I
-\ "I
1·: I ! .. I
'I
I
I '''
. ! .
i ..
..
'
j I
I . ' ! • .... .. ~· • . •
I I' I . . . I I . i
I 0 • •' . ': ..... .
' ! ' I '
'I
I :
, l I ~· '.!
··-. ,·--:-··-·~--·-:-: :
• ; j :. f .. ~., I . .
I •
I
I
.
• I I I I .•
. • II 0 .... ! j
' I I I . I I'
·I
I
~-· •• J .,
. ~: .. j.
•. : ,j
; I I
I" -I .. ;, . . '
I. .: ! -... -·r---_: .
I I I I
' ' I
I
90
I
•I '·· I
RO 70 ~0
~.J_..____ ..
10 20 30 40
~0 ~0 J O 10
so 60 70 80
10 1
• . I . ~· ~-... ·--,-··-. '~1 ..-of"", --:1 I I, I
I l j' • It
I WI
I
I
I
I I
.. : ;-:·I
l ;
. :' '!' i . l
OS 0 7 0 .1 005
90 9 S 91 99 "' "'"'
i
001
' •
7
•
5
..
l
2
I • ' •
7
'
..
,
119"
9 ? 9? o~? 91' a 99 3 99 95 90 10 70 60
l
, ...
I I''
I
' 2 --1--..
' I
·:r -;--..
~ i. I : i .. ; :.'!
~ I . -; : "i
~ : I ' I 1·, : ~ 1 • l I .. • ; .1
,J --~-,~~---t --L.· +-tl .· . : : . : ::·1: : q~ . 1 , I ~~ • ,·;;·!--, --r -h~TT .;.-
0 . • : i .:.. 1' --:. I I .. l --r . r I 'L l : ! . I i ::,I
.• I . . . ;·I ! I i . i:: .. I ~
8 : . I . : . i I : : .. 1 : I . ; : I -. -+ 1_[-.J I I . " . II
! : : . · i: ; i :: ! ! : i J, ; j I 1.:.: . , 1 .-• • • • • • • -" J •t --..-• • t -· .. I ' •. J • • • • • I •
I ' • I: :: !i ! I . I: I Ill :. .
6 ·~··I ··~· :j :!-:_.I ....•. 1 1 _.: '!..
• : I . : 1 : .. j i ; I • ; ••• ; ' • . I
I .. :; ·~:n . I {;"~::~I
5
.. 1· .. ·-:·~--"j""i ~T r,J! i]! ;·r:_:-~< ~~;·
~ 1.:,: --; t ; -~-· ~-~: ~~l-j-. ·:·-1-l: ~-i ~ ~;:; -~> ... . ' . .. . i . '
' I
; .. ·j· I I ' I . • : : --.. i . ' .
I 'I i ~ : . . : ~ . . I . . . i : !
1 .. ! -:.I l ... : . ------~J -: ' . . . --· ~ I ' 1-l i .. ' I ' I . . I : • I· ' . . ... , : '
i ! ,·. j····: I il. ':jT' J: i . : J . ' . I I . , ..
/0 •.I-IA.f'"tA-_E;.II.f<"._~ _ _.r.().f,r; 1/. _o:!D/~-~X~'Y-~-----j ____ _;_ __ _l___ __
, I .
I ' : i . '.
·.I li •', "' 1 0; 0' 1v )f) 60
lO 20 10 2
II
I 'I
70 8(l 90 0\ 98
0 .5 0 .2 0 I 0 05
99 995 998 999
001
' •
1
6
'
l
2
' I
7
6
'
..
,
9999
,,.. ·'·' Y9 9 99 I 99 . .5 99 " 9.5 90
s
/{j)
9
II
(,
~ i \i
I
i ;
i : ..
. ! ...
' I ..
i .... ·I
-r~:·
I . I: ...
. I'
. I
, I
I
I . i .
..
... I
I
I. . . . ,
I , I .
: --·. -1 --·--+t-<
: .• , :· :: .. I ! I .,:·
I • I '' i
I ! I ; • .. • I .. I f I
10 10 60 50 ~
, :I .
I;, .
'I --_.._ __ ·-·r
I I j
',I
; I . . ,
0 I I
I '
II
! I I .
: l o
I
I •II
30
. i : ' .. :: ..... ; : :; . ';1 ... , ..
-1 : L I . I . ' . ' : ' ' I . • i
I 0 h'AR rA-. !f8~~~( ... ~.A ..J/...Q!aLL .. ~~-!f.~-· --..JL---1--.-J..-__~...___~.._.L--..-:.-~J
'),' Cl •""'' ft i 0 7 o.s 1 10 30 .50 60 70 80
10 .5
90
2 0 .5 0 .2 01 005
,I
,,I,
91 99 99 .5 99.1 99'
' I
001
' I
7
•
3
2
' I
7
•
5
3
99 99
... '.1 0 ? 99 8 99 .5 99 ,. 9.5 90 10 70 60 50 40 JO 20 10 , 2 0 .5 02 01 005 001
r • --;---,-·
' ' : : ·~~ 9
• t , I . . : .. J ; •
I :! .. , . i ~ . I''' I 7 i :·:··,::.: I : : I .. : . . I:::: 6
. ! . '• -,-! r .... ' . ..
: ! ·':
: -" 4
: :
I' " I
' ' I J ·-... ,.. : ........
'I I · :
'I ' . ' ..
~ ~ ·I 2 v ' I I. i I •' I ' ~· j . . ' " -~ : I
' s ~
\J /O ~ y ~
P. •
7
' -.,...l ' i
' I I j · I
I . I • 1 1 r
I . I r:
• I I ~-:_~ ; ,
~ ~ I : .. I : ' I ... :
)~ u I 0 o I
! I • l o
' r -2
""
. . . . I :. :.I . "' I. I . .. I t ~ .. .. "' ~ ... , . .. I :. ~ ~ I I . I I I I ·~~t ~ I
... I I I ~ ....
A H-R/??~ r E8~ ... ~.f! I) ~ ' . ~ /0 _'¥.,!J,~":!_r::,_~#.;--~~a: . I t.. .. ,, :'\ ~ I; l 1'>1 0 ~ 1 '" 10 )0 ~I} 50 60 70 80 oo '1~ 91 99 1'95 998 999 99 99
10
6
99 9 99 I 99., 99 91
...
\t
~
···-·~r
I '
I
! l····l ...
l ::·I
I . I
I
I I
I
• I •
.. 1
I
~-····~
~ : l·. q .. :.:.
i . i ::··
I
I.:..
! ..
•·· I .:··
I ··
I ··· I.
I
I I
I
1-.
i
!
• j• '
C)'-'' '' I 0 7 o.s 1
10 70 60 50 30 20 10
10 10 30 ~0 6 0 70 80
0 .2 0 .1 0 05
95 91 " "·' 99.1 "'
,-
1
001
'
I
.. 7
6
l
I
' I
7
•
5
..
,
9
6
J
9 Q 9? Q? Q 99 8 99' "
i
.I.
. ''
.I
I .. I
I
.,
-·-t-..... ,-. '-
i
I
I
1 ..
i • I
I •
I
~
" I ~ -·-: --
' .p :
. ~ j···
~
I
~
I ..
I
: ..
i
I ' i ·· I
! i
I
.I . . I ..
o I
I .. ,
! :
95
4 i ' . .
90
/0 t~ARi~'-.FB-!'.f~Q~U.St. -· '.I!_J~~~.!:_I!.f".lf.1:f/..
rl •., 0' 10
10 70 10
1 ..
I . _L_.I __ _
1') 1 0 •I ) l O f.O 10 80 9 (\
' 2
I'
' I
05 0 2 0 I 0 OS
.. .
_: ___ _j _: ___..~_.._ _ _._ _ _.. __ _
9\ 98
001
' •
7
6
2
' I
7
6
'
Q9 9 9
99 99
.'
J
2
~9 9 99 8 9 ? 5 99 "
I
I
••• 0 ,. . : . .
. : l:: .1' .. ·. 1·
. :I . .. . I
: : j ~!. ·I . .
i ... ' I .
;: .I .·
I .... , ..
: -·1 .. :
(: :' :1 ' 01 05
95 90 10
• • J
'I
.... 1.: .. . .
I
I '
70 60 50 40 JO 2 0 .5 0.2 0 I 005 0.01
9
I
7
6
5
4
,
9
I
; 'I . ! . ~ 0 7
; I' •
'
4
,
t : I
.. ' ••
50 60 70 10 90 91 " 99., 991 999 9999
, (.• 'l
.,
r. I
...
7 ...
\9
\
~
\J
'<!I~ . I
It I
I -,
I
v 9 ., 99 II 99 \ " 91
·--or ·';''''"
I :
i :
I
!
:·
I
l ;-i .. :
j. ~ '
o : I
I i l
I I
.. ·t -~
I
I
1 -·-i .
I
I
I , .. '
I i
4 ; I ·: t
/0 JIARi~~ €8AS.C.P...J~l.!~ .. '4.d..~~_r_lt'Jt.~!'U.
J ': 0 .5 1
90
10
10 70 60 50
.,!: l I • II ..
I • . . . ' I .. I
I • I I ,. ,
0 • I :··
. ......
: I j': I • I ~ l j I
. : i: 'I . l : ' I I' ; • .. _,. • •' ; : • I '
~;.:I :.::: ;: ~: ! I
II :' ': ' . ".·I.. . : --/1 :
, ·I . , . , I
0 '.
' .. I
I
! 'I
I
' I , _ _;___,__ ---1--L-_1_-
,'') JO 40 :.u t-0
2 0 .5 0 2 0' 0 05
10 80 90 91 99 99 8 99 9
L.:
I
i L
I
0 .01
•
I ·--7
6
5
2
' •
6
'
)
9
II
99 .,9
4 I
3
1
6
J
1•11'
·~o o 99 I 99 .5 99 91 95
i·
I --. j . -..
I
·I····.
I ·:~
' ~ 0 . ~-···
I
I . ......
'
I
j
I I ' '
: I • •• ' I
-i -~· j ··1· :1i -~n r ~--r r
1 • • ' : ' !.I I 'I ' : j T••:., : : '! "1 ,,_ , •• o • I I
i :: ~ 1; ·1· ! : I
--·.;I . ·,i
I o .:
:.:' J I
I
I . -· .
·'
":J ~ r, 1 o 1
90 1 (\ 70 60 30 20
I I
'.
I I
10 20 JO 40 50 60 70 80
10 2 OS 0 1 0 I 0 OS
90 .. " "·' 991 99 .9
0 .01
' •
7
•
1
' •
1
•
'
"·"
9 11 99 VY ? o q I 99 5 " 91 '' 90 10 70 60 -'0 40 30
9
8
7
fo
5
..
J
2
f('j)
.,
•
7
6
1
7
-
"i
" ~
...
"' \3
~
' ~ I. -V:-1-r l-, "J . . . . ' -. , .... ~ i·l ·.· .. i
. !
• I
I
. I ": I •
I
I
. i
I
--j -· ..
I(
I ! : -~
'
0)
.; .
! ,I .
...
I ';; ' i . :
I' I
I ' ; I ;.
:I I i·· I •
:I i --·1 -~ -.. -r· _ _: ~.
I . . .. . I . . .
I :I i . I . I .:
I I
I, I
. I I I ,. . '.
I
I I
)N '1' • I .
I I
I I
: I
-~(!eff.-Wt"(.?:Y" _!_.~.. __ ,.~__..JL__......L--L-
7 10 20 J O 40 so 6 0 70
20 10 s
I ' : ' I
I
RO 90
2 o.s 0 2 0 I 0 OS
:::t
•I'' , ...
• ol
001
' •
7
6
:-:t+-·---~ 2
~ I
tl t I . I
': Tl ·-•-
'1 :1 . I I
.::.j~-t -,-
1; :I
:n ~ ~-. ,."tn i'. ! l ~!r~-:-i .. ,1 -1 -L
::II I
!i:. --·
. I
' • I .......
' I
7
6
'
,
. )' ! : .... f-~;-2
98 99 99 ' 99 • 99 9 9999
~~
~ ~ ~
CoJ ' 0 ....
""'' (Ill"-!
99 9?
8
7
6
3
7
s
I~
6
..
I
99 9 99 8 99 ~ 99 98 95
4 ! ' .
10 NAR ?A -: Fc:9A",.fc:;:a._,r~.J").r.-..yA ./9'"' ,-;
·' '·' n' u J 0 ' 1
90
t ·'·
I
I
10 10 60
U41Virwt&!.__.__...L-
10 2 0
40
,,
. '
50 60
JO
70 80 90
. '
j
_1_1_
2 05 0 2 0 I 0 05
I·' .. I ·· d .,
99 99.5 99 a 99 9
0 01
•
7
6
'
J
2
' •
7
6
9999
09 ? 99 8 99 3 99
• 6
3
~
\J-. '
"" . I
" . i s ~ ~.
10 -~-.. r'~-
~ : l ·o ··
8 \1 c i ~:.
~ : ., :~:. . .., '
1 ••
i
'• I ,• \
9.5 90 10
10 10
70 60 30 40
p .j : I
'·r!
r!·l :
I i' I f ' I •
I I ' I;!
• I • '• : :: : ~: ., .. L; • •
::.: :+· i 1: .. -:;-r ! n i :1 :
I I I I " I " .J, '1" , ... ! ::: i I ' . ; :
t-.; i ~ i ~ :-.1.!
! :' :! f I I ''
. i ~ : I l ; : • : : I ! t;! I !:.
1-;-.. i :.J !~
I '
30
, , 'I
. 'I '
I ' • •
! ·I·
. '
'
:! :
. I
t .. 1
I ' I •• . :
I
J! ;·
' ..
'!'I
~0
30
.. I
; . I ~
' I . ! .
, I,
70
20 10
1 ..
I i: : r:, [; l l : ..
1.1 ..... I ·.
; j i ~ I ! :
:. I ..... I . .
........ ' .
._!-_.;..:~ ! ....
80 oo
2
~\ 98
OJ
I
i .:
:: I ~-i
' I
0 2 0.1 003
·~ i
! I t
: 1.
. I •' :.~.
I
9 9 993 998 99 9
001
9
•
7
3
2
' •
7
6
'
3
2~
~ ... ...
Ill
0
" c..
99 99
~
~ ~
' 'i
' ~
99.99
9
I
7
6
3
s
/0
3
4
/{)
001
.. :
I
I
1 .
:I
I
I
V'' : Y-1 o Y\0 5 'N ..
I
··j
:
.....
0 .0~ 0 l (11 o . .s
'" t J i o ou
j I;
I i
l ...
I •
10 20 30 40
~c 40 20 h l 0-' ,.; 1 , ... ) \,I
I .. -
I
I : ' ':·! •' ;·:.·I::.: 1: :. : ::i: I ..
.. I . . . : -. . I·:_ . _; ~ , .. i.
.: I . . . :i 'l : .~: .. I ;-~ I , __ ..!!..,. ·-· -0
1 • I I
I • ' ,·: •I : . • • I I .
7
::: ;·:: I!: ·.::r~
' :·:-j : .-:_ ·j· Tj::l: i . : -
. ; :.!:I . :
.. r ,··-.. ~-.. ---:.,, . ·.:;.:'.
; ~ . . I . . . I
•• · --·r-t ----• 2
I ·.::I .
···I .... '.
)0 60 10 110 90 91 \19 9\1 .~ 99 8 9Y 9 99 .,.y