Loading...
HomeMy WebLinkAboutSUS484SUSITNA HYDROELECTRIC PROJECT FLOOD FREQUENCY ANALYSES FOR NATURAL AND VITH-PIOJECT CONDITIONS Report By Harza-Ebasco Susitna Joint Venture Prepared for Alaska Power Authority Draft Report April 1985 -1 .. ' TABLE OF CONTERTS SECTION/TITLE LIST OF TABLES LIST OF EXHIBITS 1.0 SUMMARY 2 • 0 BACKGI.OUND 3.0 SCOPE OF THE STUDY 4. 0 INFLOW FLOOD RYDROGRAPHS FOR WATANA 5 • 0 FLOOD FREQUENCY AT GOLD CREEK 5.1 Natural Conditions 5.2 With-Project Conditions 5.2.1 5.2.2 5.2.3 Floods from Intervening Area Watana Reservoir Releases Floods at Gold Greek 6.0 FLOOD FREQUENCY AT SUSITNA STATION 6.1 Natural Conditions 6.2 With-Project Conditions 7.0 FLOOD FREQUENCY AT SUNSHINE STATION 7.1 Natural Conditions 7.2 With-Project Conditions REFERENCE TABLES EXHIBITS -i- ii iii 1 2 3 3 4 4 4 4 6 9 9 9 10 10 1 0 11 LIST OF TABLES No. Title 1 Flood Frequency Data at Watana, Natural Conditions 2 Flood Peak Frequency Data at Gold Creek for Natural and With-Project Conditions 3 4 5 6 Flood Peak Frequency Data for Intervening Areas Maximum Outflows at Watana Reservoir Flood Peak Frequency Data at Susitna Station for Natural and With-Project Conditions Flood Peak Frequency Data at Sunshine for Natural and With-Project Conditions -ii- No 1 2 3 4 s 6 7 8 9 10 11 12 13 14 LIST OP EXRIBITS Title Location Map 2-Year Flood Hydrographs at Watana 5-Year Flood Hydrographs at Watana 10-Year Flood Hydrographs at Watana 25-year Flood Hydrographs at Watana SO-year Flood Hydrographs at Watana Flood Frequency Curves at Gold Creek Flood Frequency Curves for Intervening Area between Cantwell and Gold Creek Annual Flood Peak Discharges, Susitna River at Gold Creek Flood Peak Frequ.ency Curves for Natural and With-Project Condit ions at Gold Creek Flood Frequency Curves at Susitna Station Flood Peak Freuqency Curves for Natural and With-Project Con~itions at Susitna Station Flood Peak Frequency Curves for Intervening Area between Gold Creek and Susitna Station Flood Peak Frequency Curves for Natural and With-Project Con d itions at Sunshine -iii- 1.0 SUMIWlY Flood frequency analyses were made for the Susitna River at Gold Creek, Sunshine and Susitna Station for natural and with-project conditions. Flood frequency curves were derived for the natural conditions for annual, May-June and July-September periods using maximum historic floods in each period. Watana Reservoir inflow flood hydrographs for the 2-, 5-, 1o-, 25-and 50-year recur- rence intervals and for annual, May-June and July-September periods were derived by transposing the flood peaks and volumes of corresponding periods and recur- rence intervals at Gold Creek. These hydrographs were routed through the reser- voir using criteria discussed under Section 5.2.2 of this report to obtain with- project outflows from the Watana Reservoir. For the reservoir flood routings, starting reservoir elevations were derived from the "start of the week reservoir elevations" obtained from the weekly reservoir operations study for the period 1950 through 1983. They were assumed to be the median values during the June, May-June, and July-September periods, for annual, May-June and July-September floods, respectively . The median value for June was taken as the start!ng water surface elevation of annual floods because this is the month in which the a nnual flood is most likely to occur. Median reservoir water surface elevations were computed based on the energy demands for the ~ears 1996 and 2001 (Watana operation) and for the years 2002 and 2020 (Watana-Devil Canyon operation). Based on these elevations, Watana Reser- voir outflows were determined for the selected recurrence intervals, for each flood series and for the energy demands of 1996, 2001, 2002, and 2020. Devil Canyon Reservoir operation studies indicated that the reservoir will remain at its normal maximum water surface elevation for essentially the entire flood season. Therefore, attenuation of flood peaks by the Devil Canyon Reservoir was assumed to be insignificant. The Watana Reservoir outflows were combined with the flood flows of the cor- responding recurrence interval from the intervening areas (between Watana Reser- voir and the downstream location of interest) to determine with-project flood peaks at the downstream locations. The resulting flood peak frequency curves for -1- Gold Creek, Sunshine and Susitna Station for natural and with-pro ject conditio ns (corresponding to different levels of energy demand) are sho wn on Exhibits 10, 12 and 14. Tables 2, 5 and 6 also show the flood peaks for the selected recurrence intervals. The flood peak frequency data indicate a decrease in the difference between the floods peaks for natural and with-proejct conditions as the distance increases downstream from Gold Creek. This is because of the floods from the tributaries joining the S usitna River downstream from Gold Creek. The with-project flood-frequency relationships presented in this study, are like- ly to change in the future if project operation criteria during floods are modi- fied. 2 • 0 BACKGROUND Acres American Incorporated (ACRES) developed with-project fr<:!quency curves at Gold Creek using the results of the weekly Watana /Devil Canyon reservoir opera- tions based on the energy demands of 2002 and 2010 (ACRES, 1983 ) .ll The pur - pose of these curves and that for natural conditions was to demonstrate the decrease in the magnitude of floods because of the project operation. No fre- quency curves were developed for Sunshine and Susitna Station. Because the ACRES' with-project curve was based on results of operation studies using weekly mean flows, the flood peaks likely are underestimated thus, indicating a larger attenuation of flood by the reservoirs. Since the ACRES' study, the reservoir operation criteria have been modified. The assessment of potential pr o ject impacts on the Lauer Susitna River (between the confluence of the Susitna and Chulitna rivers) also has become necessary. There- fore, the flood frequency curves for Gold Creek were re-evaluated and simila r curves for the Sunshine and Susitna Station (see Exhibit 1 for locations) were derived. 1 / Indicates reference at the end of the text. -2- 3.0. SCOPE OF THE STUDY The major work items of the present study include : 1 . Generation of annual, May-June and July-September inflow flood hydro- graphs of various recurrence intervals for Watana Reservoir; 2. Routing of the above hydrographs through the reservoir using the most current reservoir operation criteria and starting reservoir elevations representative for 1996, 2001, 2002 and 2020 energy demands; 3. Estimation of the annual, May-June and July-September flood peaks from the interverning areas; and 4. Development of annual, May-June and July-September maximum flood peak frequency curves for Gold Creek, Sunshine and Susitna Station for natural and with-project conditions . 4 .0 INFLOW FLOOD RYDROGRAPHS lOR WATANA The annual, May-June and July-September flood peaks and 3-, 7-and 15-day flood volumes were estimated for the Watana damsite (with a drainage area of about 5,180 square miles) for the recurrence intervals of 2 • 5 • 10, 25 and SO years (Table 1) using the procedures discussed in a previous Harza-Ebasco's report (H-E, January 1984). These data were used to develop the flood hydrographs shown on Exhibits 2 through 6 These hydrographs were shaped after the historic flood hydrographs recorded at Gold Creek which had flood peaks and volumes comparable to those shown on Table 1. The selected floods include those of June 1980, Jul y 1981, August 1967, August 1971 and June 1964 which were used to shape the 2-, S-, 10-, 25-and SO-year floods, respectively. -3- 5 .0 FLOOD FREQUENCY AT GOLD CREEK 5.1 NA~RAL CONDITIONS The flood peak frequency curve for Gold Creek (with a drainage area of about 6,160 square miles) are shown on Exhibit 7 for annual, May-June and July-September periods. The curves were developed using the procedures outlined by u.s. Water Resources Council (WRC) (WRC, 1981) and the annual, May-June and July-September maximum instantaneous discharges for the water years from 1949 through 1983. The plotting positions shown on the exhibit were canputed using the Wei bull' s formula, P•M/ (N+l), where P is the relative frequency, M is the r ank of the flood event in order of magnitude with the events arranged in decend- ing order and N is the number of years of record. The resulting flood peaks for selected recurrence intervals are given in Column 3 of Table 2. 5.2 WITH-PROJECT CONDITIONS Floods at a location downstream from a major storage reservoir may be caused by a large regulated flood release from the reservoir canbined with a relatively small contribution from the area intervening between the reservoir and the loca- tion of interest or by a smaller reservoir release canbined with a high flood flow from the intervening area. However, as the distance between the reservoir and the downstream location increases, the flood f ran the intervening area becomes more dominant and the regulation effect of the reservoir becanes less important. For the purpose of this study, it was assumed that floods of the same recurrence interval would occur at the same time for the area above the dam and the intervening area downstream. 5.2.1 Floods from Intervening Area The flood peak-frequency relationship for the area intervening between the Watana site and Gold Creek (about 980 square miles) were derived by transposing the flood-frequency relationship estimated for the area between Cantwell and -4- Gold Creek (about 2020 square miles). The relationships, shown on Exhibit 8, was developed by using the guidelines of WRC (WRC,1981) and the annual, May-June and July-September maximum daily intervening flows for the water years from 1961 through 1972 and the water years 1981 and 1982. The intervening flows were com- puted as differences between the observed flows at Cantwell and Gold Creek. No adjustment was made to the maximum daily intervening flows to obtain the instan- taneous intervening flows. The maximum daily flows generally occurred on days other than those when the annual maximum instantaneous flood occurred at the two stations. For Gold Creek, the ratio between the annual maximum instantaneous flow and mean flow for the same day varies between 1.01 and 1.08. Thus , the ratios between the maximum instantaneous flow and the maximum daily flow for the three series are expected to be smaller. Furthermore, the assumption that floods of the same recurrence interval occur simulteanously in the intervening area and the area upstream from the dam is rather conservative and tends to yield a larger estimate of the combined flood. Therefore, it was decided not to adjust the maximum daily flows (for the intervening area) upward for the maximum instantane- ous flows. Since the 14 years of flood data are not sufficiently long to estimate floods of large recurrence intervals, the procedure recommended in United States Geo- logical Survey Publication 78-129 (USGS 78-129) (Lamke, 1979) were used to devel- op another set of flood-frequency relationships. The procedure essentially in- volved the derivation of the relationship by using generalized regression equa- tions. The resulting flood peaks for various recurrence intervals were then adjusted by using the ratio between the floods of 5-year recurrence interval taken from the curve based on observed data (Exhibit 8) and from the regression equation (Lambe, 1979). The transposition of the resulting flood-frequency data for the area between Cantwell and Gold Creek to the area between the Watana dam site and Gold Creek was made by the following relationship: Q - Q g A n A g ••••••••••••••••••••••••••••••••••••••••• ( 1) -5- in which Q • peak discharge from the area intervening between the Watana dam site and Gold Creek for a given recurrence interval, cfs; Qg • peak discharge from the area intervening between Cantwell and Gold Creek for the corresponding recurrence interval, cfs; A • drainage area between Watana dam site and Gold Creek, square miles; Ag • drainage area between Cantwell and Gold Creek, square miles; and n • exponent. A value of 0. 5 was used for "n" as discussed in "Flood Frequency Analysis" by Harza-Ebasco (H-E, January 1984). Table 3 shows the resulting flood peak esti- mates for the selected recurrence intervals. 5.2.2 Watana Reservoir Releases Flood Hydrographs shown on Exhibits 2 through 6 were routed through the Watana reservoir. An in-house reservoir routing program was used to determine the releases from the reseroir. The reserovir was operated using the folowing criteria : A. Reservoir Level Constraints: Active zone is between normal maximum level of 2185 ft and minimum level of 2065 ft. The environmental surcharge level is 2193 ft which allows 8 ft surcharge for flood regulation. B. Cone Valve Release: Assumed maximum cone valve capacity is 24,000 cfs. Releases from the cone valves are for satisfying the downstream flow requirement or for discharging flood flows as prescribed below: -6- 1. When reservoir level is below 2185: The release is made to satisfying instream flow requirement at Gold Creek if the discharge through the turbines for system demand is insufficient to satisfy the requirement. 2 . When reservoir level is at 2185: The reservior level is maintained at 2185 by releasing water from the turbines alone or the turbines and cone valves, depending upon inflow rates, system demand and instream flow requirements . The reservoir level will increase if the inflow is greater than the combined flow through the turbines and cone valves. 3. When reservoir level is higher than 2185: The discharge through the cone v~lves is assumed to be at the full capacity of 24,000 cfs. The reservoir level will continue to rise if the inflow is greater than the discharge capacity (of the turbines and cone valves) or will fall if the inflow is less than the capacity. If the reservoir level drops to and below 2185, follow steps 2 and 1 accordingly. 4. When reservoir level reaches 2193: The water level will be maintained at 2193 by setting inflow equal to outflow. The valve discharge will be kept at full capcity. The inflow in excess of the combined capacity of the cone valves and turbines will be passed through the spillway. The reservoir volume-elevation curve used in the reservoir routing was that obtained from the ACRES's studies (ACRES, February 1983). The starting reservoir water surface elevations were derived from the "start of the week reservoir ele- -7- vations" obtained through the weekly reservoir operation study for the period from 1950 through 1983 and were assumed to be the medium values during June, May-June and July-September periods, repectively, for the annual, May-June and July-September floods . The assumption that the annual flood is most likely to occur in the month of June is reasonable because about 60 percent of the maximum annual floods occurred in this month (Exhibit 9). The median reservoiur water surface elevations (starting elevations) were com- puted for the Watana operation for 1996 and 2001 energy demands and for the Watana -Devil Canyon Operation for 2002 and 2020 energy demands. Based on the respective starting elevations, the maximum outflows from the Watana Reservoir that c orresponded to the 2-, 5-, 10-, 25-and SQ-year recurrence intervals and the 1996, 2001, 2002 and 2020 energy demands were determined through the reser- voir routing as shown in Table 4. These flows are essentially constant for a number of days and hence were assumed to travel to Gold Creek and Sunshine and Susitna Station gages without attenuatio n. The Watana Reservoir outflows (Table 4) indicate that the annual and seasonal 2-, 5-, 1Q-, 25-and 50-year floods occur in Ma y and June would be controlled by the reservoir and the maximum outflow would not exceed the maximum discharge from the turbines, estimated to be about 7,000 cfs during the May-J une periods. This conclusion remains the same for the energy demands of 199 ~, 2001, 2002 and 2020. During the July-September period, the reservoir elevations at the beginning of the flood would generally be higher. Therefore, following the operation criteria prescribed earlier, the use of the cone valves would become necessary during the 50-year flood under the 1996 and 2001 energy demands and during the floods of all selected recurrence intervals under the 2002 energy demand. The more frequent use of the cone valves under 2002 energy demand is because Devil Canyon Reservoir becomes operational, and more water can be stored in Watana Reservoir while satisfying the system energy demand. At under 2020 energy demand, however, Watana Reservoir will have to be operated to meet the increased energy demand in 2020, and, thus, resulting in lower reservoir elevations. Under such condi tions, the floods of all recurrence intervals shown in Table 4 would be controlled and -8- the maximum outflow would be the same as the maximum turbine discharge, estimated to be about 7,400 cfs for the July-September period. 5.2 .3 Floods at Gold Creek The flood releases from Watana Reservoir for a given recurrence interval, were combined with the flood of corresponding recurrence interval from the area inter- vening between Watana and Gold Creek to determine with-project floods at Gold Creek. Results of the Devil Canyon Reservoir operation studies indicated that the reservoir water surface elevation will remain essentially at its normal maxi- mum throughout the flood season. Therefore, attenuation of flood peaks by Devil Canyon Reservoir was assumed to insignificant. The resulting with-project floods are given in Columns 4 to 7 of Table 2 . Exhibits 10 shows the frequency curves for natural and with-project conditions. The with-project frequency curves for July-September periods are not shown for the 1996 and 2001 energy demands because of discontinuation in the curves for recurrence intervals above 25-year. The discontinuation resulted because of the use of cone valves during the SO-year flood which resulted in a much higher outflow. 6 .0 FLOOD FREQUENCY AT SUSITNA STATI ON 6.1 NATURAL CONDITION The flood peak data at Susitna Station, with a drainage area of about 19,400 square miles, are available for the water years from 1975 through 1982. These data are too short to estimate flood peaks of large recurrence intervals. There- fore, the procedure recommended in USGS 78-129 (Lamke, 1979) was used to develop the flood frequency curve. The procedure has been discussed briefly under Sub- section 5.2.1. Exhibit 11 shows the flood frequency curve for annual, May-June and Jul y-September periods based on observed data . The plotting positions of the points shown on the curve, were computed using the Weibull's formula. The adjusted flood frequency curve is shown on Exhibit 12. The flood peaks of selected recurrence intervals are given in Column 3 of Table 5. -9 - 6.2 WITH-PROJECT CONDITIONS The flood peaks for with-project conditions were obtained using the procedu re adopted for Gold Creek. That is, the constant release from Watana for a giv en recurrence interval was added to the flood peak of the corresponding recurrence interval from the area (about 14,220 square miles) intervening between the Watana dam site and Susitna Station. The flood peak for the area between the Watana dam site and Susitna Station were derived by transposing the flood frequency rela- tion ship estimated for the area (about 13,240 square mile) between Gold Creek and Susitna Station. The relationship was estimated using flood frequency curves based on observed data (Exhibit 13) and the procedure recommended in USGS 78-129 (Lamke, 1979) because of the short length of record (for water years from 1975 through 1982). The transposition was made using Equation 1 given in Sub-section 5.2.1 with the values of flood peaks and drainage areas replaced by tho se between Watana and Susitna Station, and Gold Creek and Susitna Station. The maximum dail y intervening flows used in the frequency analysis were c omputed by the same metho d used for the area between Cantwell and Gold Creek. The resulting f reque ncy curves shown on Exhibit 13 , were derived using the gu i delines of WRC (WRC, 1981). The with-project flood frequency curve resulting from the analysis are shown on Exhibit 12. The flood peaks of selected recurrence intervals are given in Columns 4 to 7 of Table 5. The with-project frequency curves for July-S e ptember period are not shown for the 1996 and 2001 energy demands becaus e of the same reasons given in sub-section 5.2.3. 7.0 FLOOD FREQUENCY AT SUNSHINE 7.1 NATURAL CONDITION There are only about 3 years of flow record, for Sunshine, with a drainage area of about 11,100 square miles. These are not sufficient to derive a reliable fl o od frequency relationship. Therefore, the flood peak frequency relations hip -10- developed for Susitna Station for annual, Hay-June and July-September periods were transposed to this site by Equation 1 given in sub-section 5.2.1 using the appropriate values of flood peaks and drainage areas. A value of 0.5 was used for the exponent "n". The resulting curves for annual, Hay-June and July-September periods are shown on Exhibit 14. The flood peaks of selected recurrence intervals are given in Column 3 of Table 6. 7.2 WITH PROJECT CONDITIONS The flood peaks for with-project conditions were estimated using the procedures adopted for Gold Creek and Susitna Station. The intervening area between the Watana dam site and Sunshine is about 5,920 square miles. The flood data for the intervening area were estimated by transposing the data for the area between Gold Creek and Susitna Station. The resulting curves for annual, May-June and July-September periods are shown on Exhibit 14, and the flood peaks of selected recurrence intervals are given in Columns 4 to 7 of Table 6. The curves for July-September period are not shown for the 1996 and 2001 energy demands because of the same reasons given in sub-section 5.2.3. -11- UFEURCES Acres American Incorporated, February 1983 : Before the Federal Energy Regulatory Commission, Application for License for Major Project, Susitna Hydroelectric Project, Volume SA, Exhibit E, Chpater 2, prepared for Alaska Power Authority. Barza-Ebasco Susitna Joint Venture, January 1984: Flood Frequency Analysis, Susitna Hydroelectric Project, Federal Energy Regulatory Commission Project No. 7114, Final Report, Document No. 474, prepared for Alaska Power Authority. Lamke, R.D., Flood Characteristics of Alaskan Streams, 1979: u.s. Geological Survey, Water Resources Investigations 78-129, Anchorage, Alaska. U.S. Water Resources Council, 1981: Guidelines for Determining Flood Frequency, Bulletin# 17B, Washington D.C. -12- Table 1 FLOOD FREQUENCY DI\TA AT WATANAlf NATURAL CONDITIONS Recurrence Interval (Year) 2 5 10 25 50 Annual Series Flood Peak, cfs 43,500 57,400 67,000 79,800 89,500 Flood Volume, mean discharge, cfs 3-day 36,028 47,062 54,485 64,027 71,251 7-day 32,297 41,182 46,910 54,015 59,233 15-day 28,529 35,004 39,049 43,950 47,478 May-June Period Flood Peak, cfs 39,000 51,500 60,800 73,800 84,400 Flood Volume, mean discharge, cfs 3-day 32,188 42,242 49,592 59,732 67,900 7-day 29,114 37,701 43,813 52,043 58,553 15-day 26,036 32,968 37,432 42,969 47,034 July-September Period Flood Peak, cfs 34,200 45,700 54,500 67,200 77,800 Flood Volume, mean discharge, cfs 3-day 28,013 36,783 43,547 53,233 61,341 7-day 25,766 32,521 37,379 43,970 49,210 15-day 23,840 28.728 31,795 35,530 38,227 1/ Source: Harza-Ebasco Susitna Joint Venture, Final Report January, 1984: Flood Frequncy Analysis, Susitna Hydroelectric Project No. 7114, Document No. 474, prepared for Alaska Power Authority. Table 2 FLOOD PEAK FREQUENCY DATA AT GOLD CREEK FOR NATURAL AND WITH-PROJECT OONDITIONS Recurrence Flood Peaks (cfs) Flood Interval With-Project Period (Year) Natural.!./ -rr96 2001 2002 2020 (1) (2) (3) (4) (5) (6) (7) Annual 2 48,000 23,700 23,700 23,700 23,700 5 63,300 31,400 31,400 31,400 31,400 10 73,700 35,800 35,800 35,800 35,800 25 87,300 39.700 39,700 39,700 39.700 50 97,700 44,300 44,300 44,300 44,300 May-June 2 42,500 20,900 20 ,900 20,900 20,900 5 56,200 27,900 27,900 27 ,900 27,900 10 66,300 31,900 31,900 31,900 31,900 25 80,500 35,000 35,000 35,000 35,000 50 92,100 39,000 39,000 39,000 39,000 July-2 37,300 17,300 17,300 41,300 17,300 September 5 49,800 22,900 22,900 46,900 22,900 10 59,400 25,600 25,600 49,600 25,600 25 73,200 28,100 28,100 52,100 28,100 50 84,800 53,600 48,800 55,100 31,100 1/ Natural flood peaks from H-E report, January, 1984. Table 3 FLOOD PEAK FREQUENCY DATA FOR INTERVENING AREAS Recurrence Interval , (Year) 2 5 10 25 50 Flood Peaks, (cfS) 1. Between Cantwell and Gold Creek Annual 24,000 35,000 41,300 46,900 53,600 May-June 20,000 30,000 35,400 40,200 45,900 July-September 14,200 22,200 26,200 29,700 34,000 2 . Between Watana and Gold Creek Annual 16,700 24,400 28,800 32,700 37,300 May-June 13,900 20,900 24,700 28,000 32,000 July-September 9,890 15,500 18,200 20,700 23,700 3. Between Gold Creek and Susitna Station Annual 149,000 173,000 192,000 212,000 230,000 May-June 115,000 131,000 146,400 161,000 174,000 July-September 147,000 172,200 191,000 211,000 229,000 4. Between Watana and Sunshine Annual 99,700 116,000 128,000 142,000 154,000 May-June 76,900 87,600 97,700 108,000 116,000 July-September 98,300 115,000 128,000 141,000 153,000 s . Between Watana and Susitna Station Annual 154,000 180,000 199,000 220,000 239,000 May-June 119 ,000 136,000 151,000 167,000 180,000 July-September 152,000 178,000 198,000 219,000 237,000 Table 4 MAXIMUM OUTFLOWS AT WATANA RESERVOIR Recurrence Interval, (Year) Flood Starting 2 5 10 25 50 Year Period Reser. El. Flood Peaks, (cfS) (ft) 1996 Annual 2112 .a 7,000 7,000 7,000 7,000 7,000 May-June 2096.4 7,000 7,000 7,000 7,000 7,000 July-September 2162.3 7,400 7,400 7,400 7,400 29,900 2001 Annual 2111.0 7,000 7,000 7,000 7,000 7,000 May-June 2094.6 7,000 7,000 7,000 7,000 7,000 July-September 2161.0 7,400 7,400 7,400 7,400 25,100 2002 Annual 2157.4 7,000 7,000 7,000 7,000 7,000 May-June 2138.6 7,000 7,000 7,000 7,000 7,000 July-September 2185.0 31,400 31,400 31,400 31,400 311foo 2020 Annual 2103.7 7,000 7,000 7,000 7,000 7,000 May-June 2085.5 7,000 7,000 7,000 7,000 7,000 July-September 2159.0 7,400 7,400 7,400 7,400 7,400 Flood Period (1) Annual May-June July- Table S FLOOD PEAK FREQUENCY DATA AT SUSITNA STATION FOR NATURAL AND WITH-PROJECT CONDITIONS Recurrence Flood Peaks (cfs) Interval With-Project (Year) Natural 1996 2001 2002 2020 (2) (3) (4) (S) (6) (7) 2 189,000 161,000 161,000 161,000 161,000 s 220,000 187,000 187,000 187,000 187,000 10 242,000 206,000 206,000 206,000 206,000 2S 264,000 227,000 227,000 227,000 227,000 so 283,000 246,000 246,000 246,000 246,000 2 1S6,000 126,000 126,000 126,000 126,000 s 179,000 143,000 143,000 143,000 143,000 10 197,000 1S8,000 1S8,000 1S8,000 1S8,000 2S 21S,OOO 174,000 174,000 174,000 174,000 so 230,000 187,000 187,000 187,000 187,000 2 183,000 1S9,000 1S9,000 183,000 1S9,000 s 216,000 18S,OOO 18S,OOO 209,000 18S,OOO 10 238,000 20S,OOO 20S,OOO 229,000 20S,OOO 2S 2S9,000 226,000 226,000 2SO,OOO 226,000 so 278,000 267,000 262,000 269,000 234,000 Flood Period (1) Annual May-June July- September Table 6 FLOOD PEAK FREQUENCY DATA AT SUSRINE FOR NATURAL AND WITH-PROJECT CONDITIONS Recurrence Flood Peaks (cfs) Interval With-Project (Year) Natural 1996 2001 2002 2020 (2) (3) (4) (5) (6) (7) 2 143,000 107,000 107,000 107,000 107,000 5 166,000 123,000 123,000 123,000 123,000 10 183,000 135,000 135,000 135,000 135,000 25 200,000 149,000 149,000 149,000 149,000 50 214,000 161,000 161,000 161,000 161,000 2 118,000 83,900 83,900 83,900 83,900 5 135,000 94,600 94,600 94,600 94,600 10 149,000 105,000 105,000 105,000 105,000 25 163,000 115,000 115,000 115,000 115,000 50 174,000 123,000 123,000 123,000 123,000 2 138,000 106,000 106,000 130,000 106,000 5 163,000 122,000 122,000 146,000 122,000 10 180,000 135,000 135,000 159,000 135,000 25 196,000 148,000 148,000 172,000 148,000 50 210,000 183,000 178,000 185,000 160,000 0 .. 0 • '~ JO • .. .,. Ml'-l l I 1~ ;. ~ • ~ ~ .ILOWI~&,_a sus;rNA f/YL>ROELEcrRIC /='/?(.)Jrc.r ID ~ '\ 40 I 'I IJ 1\ ~ ~II ~'-,.... ~30 ~ ,....~,; "r--I' -I v~ \ t!tiO I ! -0 10 0 z• • 72 Ill till ... .. ·~ 216 2«1 .. -52 S!ll Jio lit£ -tO.M PEA< • 4a&ill0 CF&. l~ YOL.LJ£ • 0 .861110•111& ~-FEET R_A6t(A fiOER ~I TY .. ,._ ""-"' I ...... 2-YEM ~ PAC) tU1 fLQ(D HYIJRODRA"H AT WRT~ ~IA6CD ..J)INT ~ [fift-'??A-E8A.f<'o Su.f/7NA JIJ,.N"T J/FI\/71/I?e -.... -... --.......... ID C) IJ I' 1\ "' II l'f\ u. ~30 I ~ ,/"' .... I r--~-"' ,r- !• v fool -0 10 0 • • l2 • 120 144 I. I Ill TIP£ -tO.ft6 P£AK • a9aXJ CFit. 16-QAY VOLLJ£ • 0. '181110 .. 6 II:AE-FEET ~1/IR?A . E8ASCI9 S(/,!!171-" .L_OtNT vEA/rv/?€ 1'\ ......... i'- ~ I' 211 240 2 .. 2111 !l2 311 - A..A6t<R POWER ~~ TY .. ,._......a I .._... 2 -YERR ..W-..AH fA<JfU1 FL(Dl H't~ AT NAT~ tMZA-EIRiilCO ..J) I NT W£Hli.N: -~-P'-·.l ... w. ~ ~ '1 1\) C) " ... '1 "' m «J Ul ~f' [\ u. ~-v § f\ -... I ~~ ........ r--:... -0 10 0 24 .. 7'l • J!o I" lie IW 211 240 254 ail 312 531 1io T I PtE -tta..R6 P£A< • iW2DO CF&. 16-0AY Ytl.lJtE • 0. 71•10.•6 ~AE-4="E£T R....~ PONEft ~1 TY II .. ,._.._.,I ~ ~ 2 -YEAR JU..Y-~PTEt1EER ~ t1A)( 1 tU1 F\..IDJ H ftJH\DtA'"tt '1 AT WAT~ lt.i ~IRiim .J)INf VIENTIR: ~ #Arr .A . f~ASC D S~/TA/,11 Jt:JnJT lffHT I/17( -.... _ .,._ •1 e-01..:t1 .... 10 \ I 1\ ID ~ v II ut lir--V 1\ u. " ~CJ [\ § v I'-I\ - I l ........... ...... r--\ ~., i\ I,; ... I--" ! 1/ ~'-r-- Q i\ i\ -II 1\ 0 liD II 10 • .. 1'l • alo a.u aie airl 21 2CJ 2~ :MI sl2 -3110 Tit£ -~6 P£j:l( • 67CJO CF&. l&-DAY VOLLI£ • 1.0 .. 1011116 ~AE~EET fU&<A POER AUTtOtl TY ... ,_--..a-I -..., 5-YE~~ tA<UU1 F\.000 HY~ AT MATFf.IA ~IA&DJ .J)INr WEKliN: #.A.f'~A-E8.A S~O J//f/,./1/,A Ji}/N '1' VFNTI/R£ --... -........... ID flO ~ v ~ ) 1\ &.1 ll u. ~· r.,ll ~ § -II 1\ I "~"--~v ~.--~--' 1\ v 1--~ID t-- ! 1.-' I' I'- "r-. -II 1\ 0 10 ID 24 .. 7l • 120 144 I. IIR 211 240 2~ -112 !115 ., Tit£ -HO..R6 PEA< • G lBlO CF~. lli-DA'f Y0L..U£ • D .911t110.116 R:AE-FEET Fl..~ fi'C»Q AIJTHrltl TY ... ,.~I .._..., 5 -YEAR t1RY -Jl.IE rA< ltt.11 FLQ(D H'tDRODN¥"M AT WRT~ IAUA-€IAIID .J»Ittr W0411M[ [,#A/?f A-£/SASCO Su.JirN.A ,JO/Nr 1/bl/dRE --Jrt-·1 .... WI ., ID v ' .. i\ ~40 Q II r\ I/ -I r-ll r\ ~r-- t!j., II ! ~~ ~~---~---vv ~--~--r-r-" ~ ~~--""' r---0 .... 1\ 10 7 1-.... ao :. • 7l • liD '" de dz 215 240 .. 21111 32 -!lo ll t£ -HCLft6 P£A< • 4~ CFS . 16-0Ar VOLLJ£ • 0.8&.10 .. 6 ~-FEET A....Rt!KA POWER AUnllRI TY u•---..n 1 ._..., 5-YE~ Jl.LY-5EPTEteER IA<UU1 FLOID HY~ AT WAT~ ~IA6t0 .J)INr VEM'TlM ,~-~,.,/?-;~-~8/JSCt.J .)t,l511"A/A ,Jtl.wr f/E A/rt/RE -... -... --........ "W V1\ ID v i\ ~ &a \ u. 1/ ~~~~ "~-. § I) " - I ~ " 1\ ~40 f\ ! ll " II ~"r---1-1,... ~ ,... 0 ~ ao 'I 1-v \ ZD 24 .. . • llo ... •• 1112 216 240 ae 281 32 ,. !1110 TIP£-~ PEA< • &'7(J)Q CF&. l6-Dm VOLI.J1E • l . IG•JO•Mi R:AE-FEET ~AQ(R POWER AUT .uti TY .. ,........., I .......... JO -YEAR ANNJAL tA<J tU1 FLCDl H'tc:RlOHA"ti AT WAT~ ~IAiim ..DIMr VDnllll #;11.17?/t-E8A5t"O SUfN~•n' JtJN•I r Y'EIVTV ,.E -~-1"-•f «-GeNt 1U ID II\ ut u. v " 'i:ID I' § lj 1\ .... I ~CI II r- 1'1 Q ~ 1\1' I--1'--v I'-0 ao II " m :• • 12 • tkl ..... • • 1112 211 240 2M 2. Sl2 -tlo TU£ -HOl.R6 PEJI< • liC8Xl ~G. LG-OR't' VOLLK • l. I 1•10•116 R:AE-FEET R.A6t<R POWER AUTHIJU TY ...... __., --r --L~YERR MY--AM tAC IIU'1 F\..OIIl HTl:JUJNOPti AT WAT~ ~ ...,,..,. \'INT"'l ,,, ,>-IAR?A. EBA SCO SU.SI'T ;v,/1 Jt!J•w r v r N''T'UA'c --1"-•1 ....... 10 10 1.1 I\ LL \liD ~ -J r\ I I \ a- I v r"-r-- r---~ r--0 'I' t-- ao ~--~ 1-' 10 • • 12 • 1210 '" •• •! z• 2410 .. 211 Sl2 J. !liD lUtE -tO.R6 P£AC • ~ CF&. 16-0A\' YOL.I.J£ • 0 .951110.116 R:ti£-F'EET R..Aii"A POWER Al.ITlD I TY ... .___,I --10-YEM ..ALY-SEPTD&:R ~1tU1 FLIDl HfDIURPtt AT MAT~ ~IIBD .J»INr .offtJIE ,1/AR<A -E(J..f)J <:O SU,["/7-f/A .Ja .-"'r t/EN'Tl//7£ -~-_ .. ••__t ........ ., 1\ "JD ~ !'-.. ~ ... -1/ r\ t&. ~ § II ' 1'\ -.. "I' I ll 1!1 ,.... II !· v " vv ... r-. -0 f..- ......... 'r-."" ID ~ ~ ZID 2• .. 'J2 • 1!0 14<1 Iii I irz 2~ 24l .. :Iii 112 Dl Jia Til'£ -HO..R6 P£AK • 79&00 CFS. l~OAr VOLI..t£ • l.3t•J0•11& ~-FEET A..Rii"R POWER ~I TY ..,,.~ I ......., 25-Y£~ fMUI.. I'ACJ tu1 FLOCJJ HYCIQJNPH AT WAT~ ~ .J)IIff VDn"'l .w~'~2_A -F8~,s~o .<"ar,-rN'.,#' ./c""'r vrA.Irt'A"r -.... -................ 80 'JU 1\ ' I\.._ r-. c.e• 1\ &&. u • § 1/ f\ -., I ll ~I\ !~ ""' ~v ~'-r-. 1--r-. Ll Ll ..... " -" a ~ ~~ t'--r-.r-. ., ~V' 10 i 4 .. 12 • tlu . ... •• UR 211 240 21A -512 35 -lit£ -HOlR5 P£~ • 73BDO CF&. 16-0AY V(Lll£ • 1.281110.116 ,:CAE-FEET A...~ POWER ~1TY ........... -r ..._.... 25-YEAR HAY-..u£ tA<IfU't FLCDl .. nRlOMPH AT WATII4A ~BI&D .~»ucr VI>Olll£ PAK-24 -F"P../.I.":rr. SU..f/rNA _/t'INI/7 vr.v?tiA"£ --~--·· ......... ., .,., \ ... ., t-. '-L u ' § f\ r-. -.. ~ 1\ I t!t !40 ~ 1\ ~.Y r-. -1-0 ..... ~~f--' ., ~~ ~ ' I--~ r-- ~ m 2• 4 72 • I!IJ '" lie 1 irz z• 2«) .. :~~ill Jt !ill ., T It'£ -tO.R6 Ps:JI< • 67200 CFS. 16-CA'f VOLutE • 1.061110•116 ACRE-FEET R..~ POER IUT~I TY ..... ....., I -... 2S-YEM ..J.L Y -6EPTD1BER fA<J PU1 fL[D) HYDRCilRR"ti AT WAT~ ~..:0 ..J)INI' WMT&N: ""-'Wi'A -r BASc-o .SU .. OU\JA Jr.n/r _f/f"II/'71/.V£. -.... -....... ........ ., ., IJ Ill\ 'JD I' 1\ to u. J u ['\, §., l [\ 1\ - I l'r-v '\ ~liD ' ! r-~ \ v ~'r--c;«» v r-r- v "" ~~ ~ 10 liD l • • .. "?2 • llio l.. I il I~ 218 2«1 2~ ... 112 -., TU£ -tn.ft6 P£A< • l!:liDO CFS . \lr-Om VOLLI£ • l."'i•Ja-6 A;AE-FEET Fl..~ f"'WEJt AUTHC.RI TY __ ...,_j ._... SD-YEM ANNJAt... fAC:II'U1 FLOOO H~ ~T HAT'"' ~IAIID ..,, .... wen.- Vhi~~A -f6'.;1Sco s__u s""N'J\ J tvNr v fl/7oA'r --1"-·1 ... ..., .. ID ID ~ 'JID 1/ t"-I' c.e "" I' I· ,... 1\ -I\ I r 1". v 'r--~II v Ci C") v ID ~ liD :~ • 12 • tlo '" .. ·~ Tl f1E -tO..ft6 P£A< • 8"4XJ CF&. l._DAV vtl.LIE • l • .-0.10.116 RCA£-FEET l#fi..t-'r'A E !?.PSCD .5U.S/'TNA ~Nr 4/F'I/TUKF 1'\ 1\ 'r--- r"t--~ 21 240 U4 r--, ~ I--.... ~t-- 31 Sl2 sill SID R...A&t<A POWER AUTHrAl TY ..... ~ _l ........ 50-YEAR "AY-.JU£ tA<ltU1 FLIXJl H'fDIQRHt AT WAT~ ~ .J)INf VENTIN. --... --... __.... ~ ~ '"'i ~ "' ~ ' ~ "' I) " G\ w .. • lD " ca ,.... ~ I"' I" u §• I' ... I \ ~m I 1\ ! ' IV 1\ c;«» v I' ' II!\ ll 1\ I' 8D ~~ ~'r-. 'r--I' r-t"" r-. ZD • .. 12 • 1210 I" I. t! 211 2C» ac 21111 112 Dl Jio T ll'£ -HO..R6 PEA< • 77&00 CFSi. t&-DA\' Vl::l..ll£ • 1.14•10•116 ~-FEET FL.Aiii<A POER AUTtOtJ TY _ ... ..., .l .._...., 50-YEAR ..U..Y -&EPTDa:R tA<lfU1 FLOOO HltlRUJIWAt AT WATft.IA ttiUA-EIAIID ..JJ Iter WDniN: H .P/c? A -E ~Sc_a_ Su~ r .v-"'!_ ./0 "" r vE/V7VR £ --1"-·1 ·--~ 9 9 9 9 3 I 7 6 r ? 7 119 1 '' \ t9 91 ' .. 1 . ' I , --1'· .•. -·-t -. I.. I l . k .. I : . I : . i ., I I ., I I I I I I ' - I ' 1•)'. 1 n ·• ' I. ' ' I i I I I .. ' 1 I·< .,. ' ' .. -: .-. i. I 90 10 ' ' liJ 11) 70 60 50 ~ . ' ' : •t• --' I ' ·' :VJ I; ., . . ' :.o 60 JO 20 10 AO 90 .5 2 0 2 0 1 0 .0.5 9 .~ ,, 001 ' • 7 6 3 -2 ' • 7 6 .5 J 99 99 • • Iii ., • ?9 \)\•? 9911 9\1 l 99 91 91 90 10 70 60 -'0 40 30 20 10 5 2 Ol 02 0 I 0 OS 001 I ' ! '· , I • 1 l . l i . ' ' ' I ' l ... 6 ' I I I ' I I I I 4 I .. , .. . , I 'I II I'. ~· ·.-t I• .... -· -· -· J ••• 2 I' \J I ' I . ' . ' ' j ,• t ~ I 'I I j •• j i l l , •• ! ~ f I I I /D -. I·: .. \I ,. 11 i ... j ' e ~ I .. I I I ' ., ::.: I .. -· 7 ¢ : ... I ! ..... ·-6 ' . i. ; . ' I ,.. :. :::·:r :·; I;-i ,, 0. • r r· l-' ,; I , .. ; . ~~-t I . i. : . t r ' I 4 I ! ,-! I I • • ' o I I I . ' I . I ·-I ·~·--"---.. J 3 I ' ' I I 0 ' I 'I. I • I ' I I :_,~-,;...,~AL ! I ·I ; I I .J I -~ 1)) ... ,. I ' t• I )( . I ~ ~ I i I I . ! . '1 ~ .. I . .. I I 11.1 ' ! I . I '\ 4 . I I I I ~ " NARi!A-,:Q.f!S~td.!L ~: ~!'"",; ~--c.t~~-10 ... ,, 'J\ " . 1 0~ ~ 10 10 30 4 0 ~0 60 10 80 90 9~ 91 99 "' 99. 990 "" • • • ··~ 9 99 8 99 ~ " " 10 70 60 50 ~ 20 --·-~~ . I ~ ·I l ' ' i I ,, I 'V~L~fl'.vr:._ ~t¥- ...... t)" ') ' 1 If) 30 •0 II 10 ' 90 2 0 .$ II 0 2 0 I 0 0' 001 ' • 7 • ' , 2 t -' ··' i ,_ -• ''I! ! . I -7 . ; :-H ·-·· ,_:,._ . ' . : i .m-·~l· 6 ' •·!: • I • -1-w -· i ....J_ • 'lj "i ' t I I ' ' :1fT ...;_ -+-, 1: 1 : 1 I 91 9Y 99 3 99 8 99 9 99 99 II 09 99 9 9 9 99 I 99, 99 " 95 90 80 70 60 50 4() 30 10 10 .5 1 05 0 .2 0 .1 005 001 -,-r -~ 9 I .I I 9 8 . I I I I . I 7 . t 7 6 n~}o.Dj !t 6 i i· i . I , ! 'l 4 4 I II' I• I ' . I I 1:· .. I . I I: ) ., ... '-'·· ... 3 I i . I i i:. , .. I l I I•' • -tl , .. ; 2 r J , v I .., ... ' . .. '. ~ o I i' I 4 ~ I /tJ u· 0 ~ ' II ~ .I.!: I I I 7 I : -1-: 6 . I .. 6 1 : . '., t 1·-: ' • ' I ' . I ! : . ' ~ 'l I r ! 4 .,.:. ' I i I 3 : -! . ; . -. .. I -I l : I ' I .! ,I ~ l ~ ·~ ' ~ )( I 1 1 U_ ~ "' 3 ' . '' ...... ' I', ' I Q ~ /0 #.4,e2A-.F-5A.SC() -~c/_.f.I~A(. .. _~p/.v -~~.'.~..f: "' Ill ~ fl (• I' r.l 0 z 0~ 2 10 2'J JO 40 50 60 70 80 90 9\ 98 99 99 5 '191 "' 99'19 99 9 9 ,~ ?9 8 995 99 ·----' I 9 8 7 6 3 7 6 I I : I .I ...... I i I ., .. .... :·: .I . ' ..... I .. I j ... , .. I . I.: I . I . i .. . i ,. I I '' I ' ' .... : i ' I .... I . " ' ''' .. I 9' I I I 3 I /0 HA/?l.A-Fe';l'l.,st::Q ·..J:u.NrNJ:! d~""!.t:._V.~-- r n ·• (, 10 70 60 so ..0 30 20 10 ' 1(1 10 70 8() 90 0 ,, 0 2 0 I 0 ,0, 98 001 9 • 7 1 , I ' • 7 ' ' , , 9999 t:; 19 ?';' ') '19 ~ V9 \ \19 91 9.5 90 80 70 60 .50 40 30 20 10 2 0.5 01 0 I oos 001 r ---·r ! ! ~ -,-.- I 9 I 1. j, . · i r ·: -1 I ~ 1. I l oo I . ! ! ··•••40 j::' 1 . ·j · ! I !. I '.: 6 .. '"] ... i .. : 6 . . . , , I '! • .5 ... : . i :: ! .. ! . .5 •:i':l t I • · .I. ,1 ·I • · 1 4 . :.. I ~ .. : . 4 ' ... ' II 1·. I 3 -t -,:; .. 1 -- 3 . . • I .. • • j , ... • I ' . +·j I 2 ~ r 2 ' v ·I :::: ~": ~ I · ,. I 4 ' ! j(f) ~-; 9 ~ ' 8 'I: "l .. I 7 1 b • s -I r ·; ' I -1 • I I . . -· .. ': .,. I I 3 I .. -, . I I ,. I .. ' ..I I I I . I -. ! ...• ... .. . .. "~l ··· 2 • . ' I . . . " ~ 't .. 11·'· ~ ~ 1 • '1 r-. . ''=j._./.0<~,._..-~ l .l ' 3 c.. ..., 10 v'f'.ll/?ofA-~B-9~.cP... .. :S' 0 ~ "" ., I l)f\ ·;I (' 1 1 40 80 998 99 ., 99 ." w 05 10 20 30 so 60 10 l~NUA~Y <rO~UAIIV OUII r.W AP~Il M~Y IIIN£ lillY AllllU T 'fPT(MH'ft 0 C:T08[11 NOVlOOUII 0F r.£MII(II ) lti IS 10 1'\ ) 10 U 10 1 .\ S tO IS 10 :U S 10 ,, 10 1J S tn I) 10 ::0 \ $ 10 I \ 10 1) •, 111 1\ 1U 1\ S Ill I) /rJ l $ 5 I U I) 1U $ I tO I) 70 U S 10 IS 10 lS ) tO I) 10 H '• lo I I .'\ 't It 011 'o I ll l 'o •I -; :, Ill l 'o )•' '0 '1 I ll 1'. ."•1 \ 't Ill l'o ,•1 :'i !lo Ill t .'II \ 'I !It 1\ 11° '1 ' Ill I o Jlt ..... \ tit t ); II " J '•I 1 1'' II ltfiUAI'-' t.~•Jtt tl "''''" .. ,lt,U'I !«oiPIII\t U ft l l tl luHru NO~f¥1Htt OllfiiiiRttt 99 99 U '/ '1 Y9 8 9? ~ 99 98 0 II 1 6 J i I . I .. :- 1:/1 3 . '·· 2 ! .: .. 1 I I .I . I ~ I 4 u I I f(J ~ ·:-t ·-j 9 q ·····I .. :I • 7 6 3 ? ;. J • I I . l . i i I I I .. . :::, : j: . : ,.l ... , :.,·J . I i !!: .1 . ~· .. : ;: ! . I .. ' .. --· ' I I ,., 'I -~-f I I ! J l .. 90 80 I I · ,I '· . :.~. '• I I I I I. 70 flO 10 :"(A-ezA .,£.JAs~p . .st.d.~ ~ ... ..D.!..~..!':....lt~~es:..L--...L..J.--1...--...L t •)' ' I 0 :' 7 10 20 JO 40 JO 10 10 m-, II 70 80 90 9S 2 0 2 0 .1 005 91 99 99 s 99.1 99 9 0.01 • I 7 • ' .. 2 • ' .. ) ~---.. -... "'.·, ,. \ < 'I .,., B 995 99 91 9S tO 10 70 60 ~0 40 JO 20 10 s 2 OS 0 .2 0 .1 005 001 • I ~ • ,-.. r ·-.. . ·i I ' I .. ! ~ . . . :.-I ~ 1 ' . ! . :I -: i :--: : :; L. I 7 I " .. .. : ., :. I ~ : , ... : .. .. ' I I . .. ~ . I I I 1 ~ • I .. 1 . -... 1 .. ., '1: -l i -. i I • ' . I I : ! • ! I:!" ! ! I I J o , I . : I . . t 1 ! . I ~ 'I ' I , ... ... . i ... ., . . 4 0 i ·. I • ~ .. I • ·~ , . I .. I • I .. ~ : ~; . -: 3 . . . I ! . • ... 0 ··--:0 -: T i 3 ·J I . . , • I ., ! I I I I I i. ·I . ' I: i 1 o I, ~ , .. , . ' I I ' '-. i I _J .. I . 2 . ..,.. . . -· . 2 . ..,. ~ • I ••o ~: I' '' ~- 4 \J I(J II)' -.--· -· I 9 q ! ·!·!.: ' • . i ·:: I 7 ! . . .. 7 I 6 ' : . . • I ' ' i I .. '. : ,--4 I .. ' ) I r . :J I ~ ~ ' I. I ' ~ I I I • I 'I " I "'1 "' I . ! , 1 .... N '1 . . I . 1:) ~ 3 1 ! 1 , 1 I ~ /0 : f-1,<111 trA -£dA·H-.Q .• ..S,,JlTI.VA ..Ltflt~'-t'r.~. -~~ __ _1 __ -·-I ~ . ' ,· ·! •, ... ,, 7 n' ~ 10 7') JO 40 )0 60 70 ~0 90 95 98 09 99 .S 991 99.9 99 99 9 ' 3 1 99 9 99 • 9 ? ' 99 YB 9S :·I . . : ' I :l · 1·.: ' .. : I ! ... I 'I I I . I -\ "I 1·: I ! .. I 'I I I ''' . ! . i .. .. ' j I I . ' ! • .... .. ~· • . • I I' I . . . I I . i I 0 • •' . ': ..... . ' ! ' I ' 'I I : , l I ~· '.! ··-. ,·--:-··-·~--·-:-: : • ; j :. f .. ~., I . . I • I I . • I I I I .• . • II 0 .... ! j ' I I I . I I' ·I I ~-· •• J ., . ~: .. j. •. : ,j ; I I I" -I .. ;, . . ' I. .: ! -... -·r---_: . I I I I ' ' I I 90 I •I '·· I RO 70 ~0 ~.J_..____ .. 10 20 30 40 ~0 ~0 J O 10 so 60 70 80 10 1 • . I . ~· ~-... ·--,-··-. '~1 ..-of"", --:1 I I, I I l j' • It I WI I I I I I .. : ;-:·I l ; . :' '!' i . l OS 0 7 0 .1 005 90 9 S 91 99 "' "'"' i 001 ' • 7 • 5 .. l 2 I • ' • 7 ' .. , 119" 9 ? 9? o~? 91' a 99 3 99 95 90 10 70 60 l , ... I I'' I ' 2 --1--.. ' I ·:r -;--.. ~ i. I : i .. ; :.'! ~ I . -; : "i ~ : I ' I 1·, : ~ 1 • l I .. • ; .1 ,J --~-,~~---t --L.· +-tl .· . : : . : ::·1: : q~ . 1 , I ~~ • ,·;;·!--, --r -h~TT .;.- 0 . • : i .:.. 1' --:. I I .. l --r . r I 'L l : ! . I i ::,I .• I . . . ;·I ! I i . i:: .. I ~ 8 : . I . : . i I : : .. 1 : I . ; : I -. -+ 1_[-.J I I . " . II ! : : . · i: ; i :: ! ! : i J, ; j I 1.:.: . , 1 .-• • • • • • • -" J •t --..-• • t -· .. I ' •. J • • • • • I • I ' • I: :: !i ! I . I: I Ill :. . 6 ·~··I ··~· :j :!-:_.I ....•. 1 1 _.: '!.. • : I . : 1 : .. j i ; I • ; ••• ; ' • . I I .. :; ·~:n . I {;"~::~I 5 .. 1· .. ·-:·~--"j""i ~T r,J! i]! ;·r:_:-~< ~~;· ~ 1.:,: --; t ; -~-· ~-~: ~~l-j-. ·:·-1-l: ~-i ~ ~;:; -~> ... . ' . .. . i . ' ' I ; .. ·j· I I ' I . • : : --.. i . ' . I 'I i ~ : . . : ~ . . I . . . i : ! 1 .. ! -:.I l ... : . ------~J -: ' . . . --· ~ I ' 1-l i .. ' I ' I . . I : • I· ' . . ... , : ' i ! ,·. j····: I il. ':jT' J: i . : J . ' . I I . , .. /0 •.I-IA.f'"tA-_E;.II.f<"._~ _ _.r.().f,r; 1/. _o:!D/~-~X~'Y-~-----j ____ _;_ __ _l___ __ , I . I ' : i . '. ·.I li •', "' 1 0; 0' 1v )f) 60 lO 20 10 2 II I 'I 70 8(l 90 0\ 98 0 .5 0 .2 0 I 0 05 99 995 998 999 001 ' • 1 6 ' l 2 ' I 7 6 ' .. , 9999 ,,.. ·'·' Y9 9 99 I 99 . .5 99 " 9.5 90 s /{j) 9 II (, ~ i \i I i ; i : .. . ! ... ' I .. i .... ·I -r~:· I . I: ... . I' . I , I I I . i . .. ... I I I. . . . , I , I . : --·. -1 --·--+t-< : .• , :· :: .. I ! I .,:· I • I '' i I ! I ; • .. • I .. I f I 10 10 60 50 ~ , :I . I;, . 'I --_.._ __ ·-·r I I j ',I ; I . . , 0 I I I ' II ! I I . : l o I I •II 30 . i : ' .. :: ..... ; : :; . ';1 ... , .. -1 : L I . I . ' . ' : ' ' I . • i I 0 h'AR rA-. !f8~~~( ... ~.A ..J/...Q!aLL .. ~~-!f.~-· --..JL---1--.-J..-__~...___~.._.L--..-:.-~J '),' Cl •""'' ft i 0 7 o.s 1 10 30 .50 60 70 80 10 .5 90 2 0 .5 0 .2 01 005 ,I ,,I, 91 99 99 .5 99.1 99' ' I 001 ' I 7 • 3 2 ' I 7 • 5 3 99 99 ... '.1 0 ? 99 8 99 .5 99 ,. 9.5 90 10 70 60 50 40 JO 20 10 , 2 0 .5 02 01 005 001 r • --;---,-· ' ' : : ·~~ 9 • t , I . . : .. J ; • I :! .. , . i ~ . I''' I 7 i :·:··,::.: I : : I .. : . . I:::: 6 . ! . '• -,-! r .... ' . .. : ! ·': : -" 4 : : I' " I ' ' I J ·-... ,.. : ........ 'I I · : 'I ' . ' .. ~ ~ ·I 2 v ' I I. i I •' I ' ~· j . . ' " -~ : I ' s ~ \J /O ~ y ~ P. • 7 ' -.,...l ' i ' I I j · I I . I • 1 1 r I . I r: • I I ~-:_~ ; , ~ ~ I : .. I : ' I ... : )~ u I 0 o I ! I • l o ' r -2 "" . . . . I :. :.I . "' I. I . .. I t ~ .. .. "' ~ ... , . .. I :. ~ ~ I I . I I I I ·~~t ~ I ... I I I ~ .... A H-R/??~ r E8~ ... ~.f! I) ~ ' . ~ /0 _'¥.,!J,~":!_r::,_~#.;--~~a: . I t.. .. ,, :'\ ~ I; l 1'>1 0 ~ 1 '" 10 )0 ~I} 50 60 70 80 oo '1~ 91 99 1'95 998 999 99 99 10 6 99 9 99 I 99., 99 91 ... \t ~ ···-·~r I ' I ! l····l ... l ::·I I . I I I I I • I • .. 1 I ~-····~ ~ : l·. q .. :.:. i . i ::·· I I.:.. ! .. •·· I .:·· I ·· I ··· I. I I I I 1-. i ! • j• ' C)'-'' '' I 0 7 o.s 1 10 70 60 50 30 20 10 10 10 30 ~0 6 0 70 80 0 .2 0 .1 0 05 95 91 " "·' 99.1 "' ,- 1 001 ' I .. 7 6 l I ' I 7 • 5 .. , 9 6 J 9 Q 9? Q? Q 99 8 99' " i .I. . '' .I I .. I I ., -·-t-..... ,-. '- i I I 1 .. i • I I • I ~ " I ~ -·-: -- ' .p : . ~ j··· ~ I ~ I .. I : .. i I ' i ·· I ! i I .I . . I .. o I I .. , ! : 95 4 i ' . . 90 /0 t~ARi~'-.FB-!'.f~Q~U.St. -· '.I!_J~~~.!:_I!.f".lf.1:f/.. rl •., 0' 10 10 70 10 1 .. I . _L_.I __ _ 1') 1 0 •I ) l O f.O 10 80 9 (\ ' 2 I' ' I 05 0 2 0 I 0 OS .. . _: ___ _j _: ___..~_.._ _ _._ _ _.. __ _ 9\ 98 001 ' • 7 6 2 ' I 7 6 ' Q9 9 9 99 99 .' J 2 ~9 9 99 8 9 ? 5 99 " I I ••• 0 ,. . : . . . : l:: .1' .. ·. 1· . :I . .. . I : : j ~!. ·I . . i ... ' I . ;: .I .· I .... , .. : -·1 .. : (: :' :1 ' 01 05 95 90 10 • • J 'I .... 1.: .. . . I I ' 70 60 50 40 JO 2 0 .5 0.2 0 I 005 0.01 9 I 7 6 5 4 , 9 I ; 'I . ! . ~ 0 7 ; I' • ' 4 , t : I .. ' •• 50 60 70 10 90 91 " 99., 991 999 9999 , (.• 'l ., r. I ... 7 ... \9 \ ~ \J '<!I~ . I It I I -, I v 9 ., 99 II 99 \ " 91 ·--or ·';''''" I : i : I ! :· I l ;-i .. : j. ~ ' o : I I i l I I .. ·t -~ I I 1 -·-i . I I I , .. ' I i 4 ; I ·: t /0 JIARi~~ €8AS.C.P...J~l.!~ .. '4.d..~~_r_lt'Jt.~!'U. J ': 0 .5 1 90 10 10 70 60 50 .,!: l I • II .. I • . . . ' I .. I I • I I ,. , 0 • I :·· . ...... : I j': I • I ~ l j I . : i: 'I . l : ' I I' ; • .. _,. • •' ; : • I ' ~;.:I :.::: ;: ~: ! I II :' ': ' . ".·I.. . : --/1 : , ·I . , . , I 0 '. ' .. I I ! 'I I ' I , _ _;___,__ ---1--L-_1_- ,'') JO 40 :.u t-0 2 0 .5 0 2 0' 0 05 10 80 90 91 99 99 8 99 9 L.: I i L I 0 .01 • I ·--7 6 5 2 ' • 6 ' ) 9 II 99 .,9 4 I 3 1 6 J 1•11' ·~o o 99 I 99 .5 99 91 95 i· I --. j . -.. I ·I····. I ·:~ ' ~ 0 . ~-··· I I . ...... ' I j I I ' ' : I • •• ' I -i -~· j ··1· :1i -~n r ~--r r 1 • • ' : ' !.I I 'I ' : j T••:., : : '! "1 ,,_ , •• o • I I i :: ~ 1; ·1· ! : I --·.;I . ·,i I o .: :.:' J I I I . -· . ·' ":J ~ r, 1 o 1 90 1 (\ 70 60 30 20 I I '. I I 10 20 JO 40 50 60 70 80 10 2 OS 0 1 0 I 0 OS 90 .. " "·' 991 99 .9 0 .01 ' • 7 • 1 ' • 1 • ' "·" 9 11 99 VY ? o q I 99 5 " 91 '' 90 10 70 60 -'0 40 30 9 8 7 fo 5 .. J 2 f('j) ., • 7 6 1 7 - "i " ~ ... "' \3 ~ ' ~ I. -V:-1-r l-, "J . . . . ' -. , .... ~ i·l ·.· .. i . ! • I I . I ": I • I I . i I --j -· .. I( I ! : -~ ' 0) .; . ! ,I . ... I ';; ' i . : I' I I ' ; I ;. :I I i·· I • :I i --·1 -~ -.. -r· _ _: ~. I . . .. . I . . . I :I i . I . I .: I I I, I . I I I ,. . '. I I I )N '1' • I . I I I I : I -~(!eff.-Wt"(.?:Y" _!_.~.. __ ,.~__..JL__......L--L- 7 10 20 J O 40 so 6 0 70 20 10 s I ' : ' I I RO 90 2 o.s 0 2 0 I 0 OS :::t •I'' , ... • ol 001 ' • 7 6 :-:t+-·---~ 2 ~ I tl t I . I ': Tl ·-•- '1 :1 . I I .::.j~-t -,- 1; :I :n ~ ~-. ,."tn i'. ! l ~!r~-:-i .. ,1 -1 -L ::II I !i:. --· . I ' • I ....... ' I 7 6 ' , . )' ! : .... f-~;-2 98 99 99 ' 99 • 99 9 9999 ~~ ~ ~ ~ CoJ ' 0 .... ""'' (Ill"-! 99 9? 8 7 6 3 7 s I~ 6 .. I 99 9 99 8 99 ~ 99 98 95 4 ! ' . 10 NAR ?A -: Fc:9A",.fc:;:a._,r~.J").r.-..yA ./9'"' ,-; ·' '·' n' u J 0 ' 1 90 t ·'· I I 10 10 60 U41Virwt&!.__.__...L- 10 2 0 40 ,, . ' 50 60 JO 70 80 90 . ' j _1_1_ 2 05 0 2 0 I 0 05 I·' .. I ·· d ., 99 99.5 99 a 99 9 0 01 • 7 6 ' J 2 ' • 7 6 9999 09 ? 99 8 99 3 99 • 6 3 ~ \J-. ' "" . I " . i s ~ ~. 10 -~-.. r'~- ~ : l ·o ·· 8 \1 c i ~:. ~ : ., :~:. . .., ' 1 •• i '• I ,• \ 9.5 90 10 10 10 70 60 30 40 p .j : I '·r! r!·l : I i' I f ' I • I I ' I;! • I • '• : :: : ~: ., .. L; • • ::.: :+· i 1: .. -:;-r ! n i :1 : I I I I " I " .J, '1" , ... ! ::: i I ' . ; : t-.; i ~ i ~ :-.1.! ! :' :! f I I '' . i ~ : I l ; : • : : I ! t;! I !:. 1-;-.. i :.J !~ I ' 30 , , 'I . 'I ' I ' • • ! ·I· . ' ' :! : . I t .. 1 I ' I •• . : I J! ;· ' .. '!'I ~0 30 .. I ; . I ~ ' I . ! . , I, 70 20 10 1 .. I i: : r:, [; l l : .. 1.1 ..... I ·. ; j i ~ I ! : :. I ..... I . . ........ ' . ._!-_.;..:~ ! .... 80 oo 2 ~\ 98 OJ I i .: :: I ~-i ' I 0 2 0.1 003 ·~ i ! I t : 1. . I •' :.~. I 9 9 993 998 99 9 001 9 • 7 3 2 ' • 7 6 ' 3 2~ ~ ... ... Ill 0 " c.. 99 99 ~ ~ ~ ' 'i ' ~ 99.99 9 I 7 6 3 s /0 3 4 /{) 001 .. : I I 1 . :I I I V'' : Y-1 o Y\0 5 'N .. I ··j : ..... 0 .0~ 0 l (11 o . .s '" t J i o ou j I; I i l ... I • 10 20 30 40 ~c 40 20 h l 0-' ,.; 1 , ... ) \,I I .. - I I : ' ':·! •' ;·:.·I::.: 1: :. : ::i: I .. .. I . . . : -. . I·:_ . _; ~ , .. i. .: I . . . :i 'l : .~: .. I ;-~ I , __ ..!!..,. ·-· -0 1 • I I I • ' ,·: •I : . • • I I . 7 ::: ;·:: I!: ·.::r~ ' :·:-j : .-:_ ·j· Tj::l: i . : - . ; :.!:I . : .. r ,··-.. ~-.. ---:.,, . ·.:;.:'. ; ~ . . I . . . I •• · --·r-t ----• 2 I ·.::I . ···I .... '. )0 60 10 110 90 91 \19 9\1 .~ 99 8 9Y 9 99 .,.y