Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Snettisham Hydroelectric Project First Stage Development Crater Lake Phase Volume 2 of 2 (revised) 1984
. c-o,.oy t:) ~3 J .-7 I ~U~~T Snettisham Hydroelectric Project ~ First Stage Development v.~ 'CRATER LAKE PHASE DESIGN M -EMORANDUM NO. 26 ( REVISED) FEATURE DESIGN FOR LAKE TAP, GATE STRUCTURE, POWER TUNNEL, SURGE TANK, AND PENSTOCK VOLUME 2 of 2 APPENDICES . A. GEOTECHNICAL DATA B. HYDRAULIC DE N C. PENSTOCK DESIGN REVISED OCTOBER 1984 SNETTISHAM PROJECT ALASKA SECOND STAGE DEVELOPMENT CRATER LAKE PHASE REVISED DESIGN MEMORANDUM NO. 26 VOLUME 2 of 2 APPENDICES SYNOPSIS The Long Lake -Crater Lake Division of the Snettisham Hydroelectric Project was authorized for construction by Congress in 1961. Volume 1 Of Design Memorandum No. 26, Main Report, summarizes the post-authorization studies conducted to date for the Crater Lake phase, and presents the recommended feature design developed as a result of those studies. The feature design level studies included agency and environmental coordination, geotechnical investigations, computer modelling of the power conduit and its appurtenances, design analyses, a detailed quantity takeoff and cost estimate, and preparation of feature level drawings. The next level of effort will be preparation of plans and specifications, during which the design of the features will be refined and detailed. The technlcal appendices contained herein present the geotechnical data from the pertinent explorations, as well as sample calculations for tunnel support; the design criteria, methodology, constraints, and calculations for the hydraulic design of all features of this design memorandum; and the theory for penstock design. This information supplements the general overview presented in the Main Report. ABBREVIATIONS The following is a list of definitions for abbreviations used in this report. acre-ft ave Btu C dc ft ft2 ft3 ft/min ft/s ft3/s ft/s2 ga 1 gal/min gal/yr GWh h hp I, 10 in i n/s in/yr KVA kW kWh lb 1 b/ft 2 1 b/ft 3 lb/hr lb/in 2a lb/in 2g M mi mi/hr mi2 min mo MSL MW MWh pct r/min s V W Wy yd 3 yr of Source: acre-foot average British thermal unit degrees Celsius direct current foot square foot cubic foot foot per minute foot per second cubic foot per second foot per second squared gallon gallons per minute gallons per year gigawatt hour hour horsepower modified Mercalli intensity inch inch per second inch per year kilovoltampere kilowatt kilowatt hour pound pound per square foot pound per cubic foot pounds per hour pounds per square inch absolute pounds per square inch gage Richter magnitude mile miles per hour square mile minute month mean sea level megawatt megawatt hour percent revolutions per minute second volt watt water year cubic yard year degree Fahrenheit U.S. Government Printing Office Style Manual, January 1973 LOCATION: SNETTISHAM PROJECT, ALASKA CRATER LAKE PHASE PERTINENT DATA Near the mouth of Speel River, 28 mi southeast of Juneau, Alaska. AUTHORIZED: Flood Control Act of 1962, providing for design and construction by the Corps of Engineers and for operation and maintenance by the Department of the Interior. PLAN: Construct an underground power conduit from the existing underground powerhouse to Crater Lake. Install an additional turbine and generator in the powerhouse. PROJECT FEATURES: NOTE: All elevations cited in this report are in feet and refer to Project Datum. MSL is 2.9 ft below Project Datum. Elevations of Tide Planes at Speel River with respect to Mean Lower Low Water and Project Datum are as follows: Highest Tide (Estimate) Mean Higher High Water Mean High Water Half Tide Level (MSL) Mean Low Water Mean Lower Low Water Lowest Tide (Estimate) MLLW 22:""5" 15.9 14.8 8.2 1.6 0.0 -5.7 PROJECT DATUM 11.4 4.8 3.7 -2.9 -9.5 -11 .1 -16.8 Tidal Datum Planes are based on 7 mo (1/65 to 8/65) of automatic gage operation by USGS. Drainage area, mi2 Annual runoff, minimum, acre-ft Annual runoff, average, acre-ft Annual runoff, maximum, acre-ft Hydrology 11.4 113,000 145,500 186,750 Reservoir Maximum observed surface elevation, ft Elevation of natural lake outfall, (full-power pool), ft Elevation of minimum operating pool, ft 1,019 1,017 820 81,500 330 145 Initial active storage capacity, acre-ft Area of reservoir at full pool, acres Area of reservoir at minimum pool, acres Type Size, ft Lake Tap Lake bottom elevation at tap, ft Primary Rock Location Bottom area, ft2 Volume of tap material contained, yd 3 Invert elevation, ft Trap Secondary Rock Trap Open system/wet tunnel 12 (dia.) by 10 799 1 ake tap 1,152 86 753.5 to 761.5 Location Type Si ze, ft Invert elevation, ft 400 ft downstream of lake tap Expanded horseshoe section with excavated invert 20 wide by 11 high by 60 long 776 Gate Structure Location Type Service room floor elevation, ft Invert elevation, ft Maximum operating head, ft 200 ft downstream of sec. rock trap Wet-well in rock 1,040 789 233 Maximum momentary head, ft (during lake tap blast) Service gate, quantity Type Size, ft Bulkhead, quantity Size, ft Type Total length, ft Unlined length, ft 295 Slide 6.8 by 8.5 8.7 by 9.3 Power Tunnel Modified horseshoe Diameter (modified horseshoe), ft Shotcrete lined length, ft 6,020 4,975 11 920 125 Concrete lined length, ft Diameter (circular), ft Final Rock Trap 9 Location Type 5,400 ft downstream of gate structure Expanded horseshoe section with excavated invert Size, ft Storage capacity, yd 3 Invert elevation, ft 15 wide by 15 high by 100 long 96 126 to 109 Surge Tank Location 5, 160 ft downstream of gate structure Type vented vertical shaft Diameter, ft 10 Top elevation, ft 1,080 Bottom elevation, ft 145.3 Power tunnel invert elevation, ft 150.0 Drift tunnel length, ft 60 Penstock Type Underground, unencased steel Length, ft Steel penstock inner diameter, ft Powerhouse Number of additional units 903 6 Type of Turbine Vertical Francis Turbine rated capacity, hp 47,000 (based on rated net head, full gate, and generator rated capacity) Generator nameplate rated capacity, KVA Annual firm output, kWh Average annual non-firm output, kWh Tailwater elevation, ft (1) Maximum net head, ft Discharge at maximum net head, ft3/s Pool elevation at maximum net head, ft (2) Design net head (rated net head), ft Discharge at design net head, ft 3/s Pool elevation at average net head, ft (3) Minimum (critical) net head, ft Discharge at minimum net head, ft 3/s Pool elevation at minimum net head, ft (4) Maximum discharge (hydraulic capacity), ft 3/s (1) Based on generation of 31.05 MW at maximum pool and plant efficiency = 86 pet. (2) Based on generation of 20.70 MW at average pool and plant efficiency = 86 pct. 34,500 105,100,000 16,100,000 11 .0-12.5 990.5 430 1,019 945.5 300 967 788.0 470 820 518 - (3) Based on generation of 27.3 MW (guaranteed output) at minimum pool and plant efficiency = 86 pct. (4) Maximum discharge is based on the Long Lake turbine model with a prototype throat diameter of 51.5 inches, 100 pct wicket gate opening, and generator blocked output of 34.5 KVA. This occurs at a net turbine head of 912 ft. LIST OF APPENDICES A. GEOTECHNICAL DATA Al Geomechanical Analysis A2 Drill Hole Summary Logs B. HYDRAULIC DESIGN Bl Hydraulic Design of Recommended Plan B2 Sample Calculations for Recommended Plan B3 Hydraulic Design of Alternative Plans I and II B4 Hydraulic Design of Alternative Plans III C. PENSTOCK DESIGN Cl Analysis of Confined Penstocks for External Head C2 Stress Analysis of Steel Liners for Penstock Embedded in Rock APPENDIX A GEOTECHNICAL DATA Al GEOMECHANICAL ANALYSIS A2 DRILL HOLE SUMMARY LOGS APPENDIX Al GEOMECHANICAL ANALYSIS GEOMECHANICAL ANALYSIS A. "AVERAGE" FAULT CONDITION. Analysis of rock conditions using both the Bieniawski and NGI systems shows support requirements to be minimal. For the "average" fault condition, the Bieniawski Rock Mass Rating (RMR) is 71.5 (class II, good rock) with a maximum unsupported span of 68 ft and a stand up time of 20 mo. The NGI "Q" system, using an average rock quality designation (RQD) of 85, gives a Q of 34 and an equivalent dimension of 2.1 indicating untensioned roof dowels spotted as necessary. More conservatively, this system gives a maximum unsupported span of 49 ft and a stand up time of approximately 8 yr. B. "WORST" FAULT CONDITION. Another analysis was made using the worst possible situation encountered in explorations and assuming that this represents the condition of the five major faults at tunnel elevation. The Bieniawski rock mass rating is 22 to 27, Class IV, poor rock. The lower number represents the actual fault, the higher number is for rock surrounding and affected by faulting. The NGI system gives a "Q" of 0.129 to 0.0143, the lower number representing the fault. Indicated support requirements are tensioned bolts spaced 3.3 ft on center and 2 inches of mesh reinforced shotcrete for the surrounding rock. The fault will require 6 inches of mesh reinforced shotcrete. While no roof bolts are indicated, mine ties and bolts will be used as conditions warrant. Since latest research indicates mesh reinforcement has problems, fiber reinforced shotcrete will be specified. C. SAMPLE CALCULATION. This analysis is for the "average" condition in the following faulted areas: Cliffside Hi 1ltop T1 i ngit Tsimshian Penstock Sta. 10+80 Sta. 11+60 to 11+95 Sta. 52+80 to 56+30 Sta. 74+80 1. Bieniawski System The Bieniawski rock mass rating of 71.5, Class II is arrived by: (a) Rock unconfined compression strength of 13,000 to 14,000 lb/in2 results in a RMR of 11. (b) RQD=85 results in a RMR of 18. (c) Joint spacing of generally 1 ft or greater results in a RMR of 20. (d) Joint condition: rough surfaces, little or no separation, and hard joint wall, results in a RMR of 21. (e) Groundwater: nearly dry results in a RMR of 9. The total of factors a-e. yields an unadjusted RMR of 79. Adjustments to RMR: Faults dip between 70 0 and 90 0 and strike sub-parrallel to tunnel axis. This is a fair to unfavorable situation which results in RMR of -7.5. The net RMR is 71.5, Class II, good rock, which means that an unsupported span of 11 ft gives a standup time of approximately 6,000 h (250 d). Support requirements are occasional roof bolts with wire mesh if needed and 2 inches of shotcrete as conditions warrant. 2. NGI ugll S,z:stem The NGI "Q" system is determined by using the formula Q = C:D)(J~r~ fs~~) where: Q = rock quality RQD = the rock quality designation of Deere et. al. I n = the joint set number J r = the joint roughness number J a = the joint alteration number Jw = the joint water reduction factor SRF = the stress reduction factor. For the existing conditions the following values are applicable: ROD = 85 taken as an average of fault affected rocks. I n = 3; one set (the fault) plus random joints. Jr = 3; rough and irregular. Ja = 1; generally unaltered walls with surface staining (iron) only. (Will occasionally increase to 2 where chlorite or seracite are noted.) Jw = 1; dry to very minor inflows. SRF = 2.5; single weakness zones containing clay, etc., depth greater than 165 ft. o = 85 • 3 • 1 = 34 -3--1 2.5 Excavation support ratio (ESR) is 1.6; water tunnel. Equivalent Dimension = Tunnel diameter (meters) ESR Maximum unsupport span = 2 (ESR) 00•4 = 43 ft. O. 1188 a support group of 13 through 16. RQD J r 1 . Span 43 ft 27 ft = 28.33j _ = = = -J-J } ESR 1.6 n n The above indicates intensioned roof bolts at 5 to 6.5 ft centers. APPENDIX A2 DRILL HOLE SUMMARY LOGS SUMMARY ."'OG HOLE Nv. N 93 61':' I SHEET 1 OF 3 DH 98 E 86,377 I SURFACE El.EV. 102':'.7 PROJECT Snettisham (Crater Lak pRILL DATES' START 30 Sept n. COMPo 8 Oct 72 DEPTH OF' HOLE ~~o ft. D€PTH 01 OVERBURDEN 0.85 ft. DIAM. OF HOLE Nx Core ROCK DRILLED : •.. IS f c:. CORE RECOVERED LOO~; ANGLE FROM VERT. 1)0 AZIMUTH FROM NORTH DISTANCES: VERTICAL. ~ HORIZONTAL, ~ EJ..iV. O£PTH LOG l-J;;·~. (). 0 992.7 :"~·'or", tcr ... r .. ' APR: 66 . DESCRIPTION OF MATERIALS Surface / 33.) core showed minor high angle jointin~. Core below 33.9 ft. showed no natural joints I ~ COA! % RECOVERY 100~~ CO""UD BY, DATE Cldvton Rasmussen REMARKS Core lengths 0.1 to ~.D ft. - - 20'-30'; pressure test - water flowing to DH-I02. - - Lost circu~...lti,'n 32 to 33 ft. ::'ack:'L,'", J3 [,)- 35 ft. - II Core lengths 0.2 to J.J Ct. I I Cc)re leni1;ths 1.0 to j.O tt. \~,)r,~ tengths ..:. ,) ~() 5.0 I MOL E NO. J!, eli; - - - - - - - - SUMMARY LOG N 93614 1 ~rrT ? OF " HOLE NO~ nu QQ ~"," .. IA E 86377 I SURFACE ELEV 1024.7 PROJECT DRILL OATES· START 30 SEPT 72 COMP. 8 OCT72 DEPTH OF HOLE 220.0 FT. O€PTH OfF 0YER8URDENO. 85 FT DIAM. (:# HOLENX CORE ROCK DRILLE0 21 9. 15 FT. CORE RECOVERED 219.15 FT. % RECOVERY 100 ANGLE FROM VERT. AZIMUTH FROM NORTH COMPIL.£D BY. DAT! DISTANCES: VERTlCAL. ~ HOflUZONTAL. CLAYTON RASMUSSO~ ~ ELEV. [)[PTH LOG 1110 DESCRIPTION OF MATERIALS Quartz Diorite-as above Quartz Diorite QUclrtz 13i ori te -.... ' .... :,.- .. '. .. "" CORl REMARKS Core lengths 2.0 to 5.0 ft. Carr lengths 0.3 to 3.5 ft. Core lengths ::J.5 to 5.0 ft. Core lengths J . 5 to 2.:J ft. - - - - - - - - - - - - - - - ~':_·;_~_'_~_~_M __ 1_rr_ •• _;_)_'~_·_· ~P~R~O~J~E~C~T_~~s~n~e~t~ti~s~h~am~(~c~'~~a~t~~'r~L~a~ke~~. __ ·_; __ -__ ·~t~:~~·~~·=L~E~~~O~)~~~~al~Q·_·--Jr SUMMARY LOG N 93614 1 ~H~~T3 Of 3 HOLE NO. nu aQ .~~+. E 86377 -rSURFAC£ ELEV.1024.7 PROJECTSnettisham (Crater Lake DRILL DATES' START 3 0 SEPT 72 COMP.8 OCT 72 DEPTH OF HOLE 2 2 0 • 0 FT. DEPTH ~ OVERBURDEN 0.85 FT DIAM. ~ HOLENX CORE ROCK DRILLED2 19 . 85 FT. CORE RECOVERED 219.15 FT. % RECOVERY 100 ANGLE FROM VERT. AZIMUTH FROM NORTH COMAUD BY, OATE DISTANCE S: VERTICAL, ~ HORIZONTAL. 804.7 , I , - - - - r - 1- - - I -1 i ~ -i ... : -j i ~ "1 J -4 ~ ~ ~ ... ..; -j -j ----. -... I ~ N PA Form 7(T tl APR. 66 .1 , I DESCRIPTION OF MATERIALS Quartz Oiorite-as above Bottom of Hole DEPTH 220.0 FT. OVERBURDEN 0.85 FT. ROCK DRILLED 219.15 :~-I. CORE RECOVERED 219.1) FT. CORE RECOVERED 100 ELEV. OF BOTTOM 804.7 Pressure Test Results I From To K(XlO-S) 20' 30' 333.9 JO' 40 ' 1280.8 40' SO' 138.1 jO' 210' 0.0 PROJECT Snettisnam (Crater Lake) C~AYTON RASMUSSON REMARKS Core 1 engths o .5 to 2.0 ft. Core lengths 0.1 to 2.0 ft I, HOLE NO. n~ 00 - - - - - - - - - - -- - - - - - ltUMMARY L.OG N 95.473 I SHEET 1 OF 4 01 E NO. nh QQ E Q1 t::.n7 I cu·_-El.EV.I063.:5 PROJECT Snettisham (Crate Lake ~ DRILL OATES I START 27 SEP 72 COMPo 9 OCT 72 DEPTH 0' HOLE 350 . 0 FT DEPTH OF 0VER8URO£H 4 . 0 FT. Of A ... OF HOLEt..x CORE ROCK DRILLED 346.0 FT. CORE RECOVERED 346.0 % RECOVERY 100 ANGLE FROM VERT. 0° AZIMUTH FROM NORTH COMPIUD BY. OAT! DISTANCES: vamc~ ~-HOftIZONTAL __ Clayton ~asmussen D£PTH IIUI'MIC ... ELEV. LOG DESCRIPTION OF MATERIALS COR! REMARKS 11063. 00 Surface ~Q59 4.0 Overburden, organic and ooulders Too of Rock -: -I~' -, ,,\ \; \-: I;"~ , Core lengths "' I_~" 10 "1 Quartz Diorite, black and I 0.1 to 1.0 ft. -1"1" \ .jhite, hard and fresh wi th -~,/:;, ---_ .. ,/,1 ..... Sneissic banding and minor ,_ ..... ,-,-i" i"inting --';~\ -L,I,-\ .......... 1- 20 ~,-; ~\ ./, .. -,,1/--,\ ...... ,~ I Core lengths - I--i ..... \ ').1 to 5.0 ft ):-=./' ..... --.;~:.:..'; --:..':,' \.:\-~, 30 -~'-I!, -I ~"\ - f'/ '"/1- 025 ~,/~J; 38 to 40 ft. high angle "'-'1 023 -~.711~ joint -,_ .... , ..... , -,' ; Core lengths 40 ~ 44 to 49 ft high ang 1 e I 0.1 to 1.0 ft --,; jOint - ~ ""2, Qua rtz Di orite I I 019 -\ '-t -, II Core 1 engths , ::.' -0.1 to 1.0 ft 014 50 ... '--~} .. I I I ",I, _ -,-! .I" " .... \">, ; ... / ---k...'/I~/_ ):-~~ 60 ~-'),~---I"~~ - ~:-:";, Core lengths . ..t", ... .... ',,~/, 0.3 to J 5 ft -,,'--68 to 71 ft. hiah angle ~ .... ",/\ ~ joi nt 70 '",\1 Core lengths ----..... -/ i' ,< 0.3 to 0.5 ft . ..J /., ...... -~" /, ..... r -... Q5 \.~ -J'" I' .. 992 -, ~/'//I 80 ' '\' Quartz Diorite --t.:, ...... " -\ ' 1\ t'-/:··..;, , .... , / ,~ ..... / .... ~,.~/,~ ~ -... ,......,. .... I ~ ~-'I Core 1 engths .,;./" -........ qo ~,~ " ) . 1 to .1,J :~ ---:)"'/~ ~..;..~ - ~ \/,"" I -,' i -'-,/ ..... '\ ,---:f_\'v" J -l:# ",-I ~63 .3 ' ,I ,~ . j ,190 ~:.\~~::: . . , -., \"; .. .-,;ePA ,. ~:et; . . ' ... .-, . : .. J HOLE .. . . APR. 66 • . PROJECT ~netti sham (Crater ~dic.e) NO. DH 99 SUMMARY LOG H 0 LEN DH 99 9 1607 95473 ~ROJECTSnettisham (Crater Lak )DRILL DATESI START 27 SEP 72 D€JI'T1of OF HOLE3 50.0 FT. DEPTH 01 OVERBURDEN 4.0 F T DIAM.OI HOLENx CORE ROCK DRILLED 346. OFT. CORE RECOVERED 34('..0 ANGLE FROM VERT. AZIMUTH FROM NORTH 950 944 927 907 906 29::: NPA Fo,,,, 7"' fl' APR. 66 " •• . HORIZONTAL DESCRIPTION 0' MATERIALS Quartz Diorite -as above 113 to 119 ft. 2 high angle joints 136 to 136.5 ft. ~igh angle joint Quartz l:liorite 156 to 157 ft. high angle joint 171 to 172 ft. hiqh angle jOint Juartz 8iorite PROJECT Snettisham (CrHer ~ COR! % RECOVERY Ion CO ..... UD BY. DAT! CL~YTON RASMUSSON REMARKS Core lengths 0.1 to 4.0 ft. Core lengths O.ltoO.5ft. Core lengths 0.3 to 2.0 f t. Core 1 enqths o 05 to 1.2 ft. Core lenqnts 0.2 to 2. Oft. HOL E NO.DH 99 N 95473 t SHEET 30f4 ltU~!r N'cfG DH 99 E 91607 lSURfAC£ El.EV.1063. 3 PROJE:C~nettisham (Crater Lak.el. DRILL DATES' START 27 SEP 72 COMPo 9 OCT 72 DU'tM 0' HIOLl350. 0 FT D!P'M OP'~D€N 4.0 FT. OtAM. OP' HOL~x CORE ROCK DRILLED 346.0 FT. CORE: RECOVERED 3Lh.0 ... RECOVERY 100 ANGLE FROM VERT. AZIMUTH FROM NORTH COWtUD BY. DATE "DISTANCES: VERTICAl. i HORIZ0"'TAL~ CLAYTON RASMUSSON EL~. IO£PTH = g 6) . _ 200 DESCRIPTION OF MATERIALS Quartz Diorite -as above Qua rtz Di orite ;::63.5 ft. :,iqil angle joint 275.3 to 276.5 ft. high angle joint Qua rtz Di ori tc " "" ... COA!. I I I I" P,,'Oj"EtT ~~~tti silar'l (.era ter Lake) i REMARKS Core lengths 0.2 to 2.0 ft. Core lenoths 'J. ~ to 3. :: ft. Core lenqtns 0.1 to '1<; ."-" ft. I HOLE NO. O~ 99 - - - - - - - - - - - - - - - - - - I;.L' SUMMARY LOG N 95473 I SWFFT 4 OF 4 HOLE NO~ llH 99 E 916071SURFA~ ~L~V. 1063.3 PROJECT Snettisilam (Crater LakFI1DReLL DATES' START 27 SEPT 72 COMPo 9 OCT 72 DEPTH 0' HOLE 350.0 IT 01:".,. ~ OV£RBURD!N 4.0 FT DeA ... ~ HOLENX CORE ROCK DRILLED 346.0 FT CORE RECOVERED J46 . .J % RECOVERY ion ANGLE FROM VERT. AZiMUTH FROM NORTH COMPtUD BY. DATE DISTANCES' VEfffICAL. ~ HORIZONTAL. CLAYTON RASMUSSEN DESCRIPTION OF MATERIALS ... COA! REMARKS Quartz Diorit~ -as above Core lengths 0.1 to 0.8 ft. - - -740 316 to 313 ft. ilign angle joint 319 to 319.5 ft. high angle crossed jOints - ] j I , i I - '. .-.1 " .. Npj[ Form'· " APR. 66 7f1'lIn ! i 323 to 324 ft. high angle joint 325 to 326 crusned zone DEPTH OF HOLE 350.0 FT JVERBURDEN JR[LLED 4.0 FT. ~OCK CORED 346.0 FT. RECOVERED gg+', ELEV. ~T 30Ti0M 713.3 Pressure Test Kesuits Fro!!! To K(XiO-5) 40' 50' 25.9 50 • 60' 0.0 60' 70 • 69.1 iO' liO' 0.0 1 [I] • 1~0' 11.9 12') • 310' 1).1) il() • L~() I 11.'1 3~() I , I ~h.~ J Fl' ;.:..,"") , I), 'J , . ~ PROJECT -~ost 30 clrculatlon - Core 1 enqtlls -0.1 to 0.3 ft. - - - - - - - - - - r HOL ENO. :JH qg SUMMARY ."'OG HOLE Nu~ DH 100 HNr-__ .,.;.9;;.,;36;.;;;1;;;..1 ____ ' SHEET 1 OF 4 E 86371 LsURFAC£ ELEV. 1019.6 PRO.lECTSnettisna. (Crater Lake~ DRILL DATES' START 11 OCT 72 COMP. 19 OCT 72 OU'TM OF HOll' 3113.0 FT DIAM. fJ' HOLE Nx Core ROCK DRILLED JIO.O FT CO"E RECOVERED 310.0 FT ~ RECOVERY 100 ANGLE FROM VERT. 350 AZIMUTH FROM NORTH 251 0 COWU..£D BY t DAT! DISTANCES: VERncA&.. .. 254.0 i HORIZONTAL,. 177.6 Clavton Rasmussen ~ ELEV. ~~ LOG 1019.i uu L3L...2 .00 DE!eRIPTION 0' MATERIALS Top of Rock Quartz Diorite. black and white. hard and fresh with Gneissic bandinq and. minor jointing 18 to 29 ft. core breaks every 0.3 to 0.5 ft. 26 to 26.5 ft. closely broken low and high angle fracturing 29 to 30 ft. closely broken 34 to 36.5 ft. closely broken (low anqle fracturinq) Qua rtz Di orite 74.7 ft. hiqh anq1e joint 75.0 ft. high angle joint Ouar~z :Jibri't'e ,., COAl f REMARKS Core lenqtns 0.2 to 3. 0 ft. Core lenqths J. 1 to 2. 0 ft. :ore 1enqths 0.05 to 0.5 ft. Some circulation loss 23 to 28 ft. Core lengths 0.05 to 0 3 f~ Core 1 enqths O.S to 2.5 ft. 23 to 60 ft. air bubbles in lake 20+ ft. off- snore Core 1 engths 1.0to4.0ft. Core lengths 0.5 to 3.0 ft. - - - - - - - - - - - - - - - - - f HOLt NO. Dti 1 QQ SUMMARY LOG HOLE N E 93611 86371 Crater Lake DRILL OATES' START 11 O€PTH 0' HOI..! 310.0 IT DEPTH 01 OVERBURDEN 0.0 DIAM. (6 HOLE NX CORE ROCK DRILLED 310.0 FT CORE RECOVERED 310.0 FT % RECOVERY 100 ANGLE FROM VERT. 35° AZIMUTH FROM NORTH .251 0 DISTANCES: VERTlCAL 254.0 FT. HORIZONTAL 177.'1 ,T 11 ~" I t 6 D£SCIilIPTION 0' MATERIALS Ouartz Diorite -as above 143 to 145.5 ft. higll anq1e joint some breakaqe Quartz Diorite Gneiss 155 to 156 ft. crossed high angle joints with chlorite coat ings 162 ft. hiqh angle joint 177 to 136 ft. high angle joints breakage ... CORE CO ..... LED BY, DATE CLAYTON RASMUSSE~ REMARKS Core 1 enatils 0.3 to 5.0 ft. Core leoQths 0.4 to 1.5 ft. Core lengths 0.5 to 2.5 ft. Core lenqths 0.5 to 1.5 ft. = Q r e ell rJ -: t~ 5 "r ~ , • _ 4" ••• -' HOLE NO. DH 1 C;"\ PROJEC~nettisham (Crater Lake' D"ILL DATES' START 11 OCT 72COMP.19 OCT 72 DEPTH OF HOI.! 310.0 IT ~ t::I OWReuttO€M 0.0 FT 01.". r:# HOLE: ~ CORE ROCK DRillED 310.0 FT CORE RECOVERED 310.0 FT % RECOVERY lOO ANGLE FROM VERT. 35 0 AZIMUTH FROM NORTH DISTANCES: VERTICAL. 254.0 ; ...,..IZONnL EL.fV O!PTH ~ DESCRIPTION OF ... ATEfUALS 35:J.il 200 LOG Quartz Diorite -as above 220 ft. high angle jOint fracture. sericite coatings 240 to 241.5 crossed high angle fractures r~o fractures or jOi nts from 241.5 to 310.0 ft. Ouartz Diorite ~uar~Z =i Jr; te. :.) l.l!.'k '-"' ·.·.,.11 i t~-' ~ ~llci~."'il· t('xttlrl' . " '. .. " I .1 177.6 i PROJECTSnetti sham • :rater i..ake) COMPIUD BY. DAT! CLAYTON RASMUSSEN REMARKS Core lengths 0.5 to 2.5 ft. Core lenqths 0.3 to 2.5 ft. - - Core lenoths 0.3 to ~.j ft. - - - Core 1el"oths a . 5 to' 5 . Oft. - - - - - ------------------- :ore 1 enotrls 1.0 to s.n ft. - - - - T HOl E NO. DH 100 SUMMARY LOG N 93611 I SHEET 4 OF 4 HOL-E NO~ DH 100 E 86371 [SURFACE ~L~V. 1019.6 PROJECTSnettisham (Crater LakE> DRILL OATES' START 11 OCT 72 COMP. 19 OCT 72 DEPTH 0' HOLE_ 310.0 IT O€PTH (# OY£RIU"O€N 0.0 DIAM. Of HOLE ~x CORE ROCK D"ILLED 310.0 FT CORE RECOV£"ED 310.0 FT "" RECOVE"Y 100 ANGLE FROM VERT. 35° AZIMUTH FROM NORTH DAT! DISTANCES: VERTICAL.2s4.0 FT~ HORIZONTAL. 177.6 FT CLAYTON RASMUSSEN REMAJltKS . \, '" ~\ ... ,- , .... ,!, ..... , _ i~l~ ... ~, ~;, I Quartz Diorite -as above Core lengths 10. to 5.0 ft. ~'" -" , ~6S. 7 310 ,,-, ------=-:::::=F::::==t~:==,~=========--=--:::-c-=-,-,--l==-i=====.:---=---c-___ ---c--=; - - - - I -I - - - - - - -~ i ---l - - ~ I , I ... 1 I ... ----< , ! ... .. ~ .. , ~ r J i ~ NP~ Form APR_ 66 m.ltl BOTTOM OF HOLE DEPTH 310.0 FT OVERBURDEN 0.0 IT ROCK CORED 310.0 FT CORE RECOVERED 310.0 FT % CORE RECOVERED-100 ELEV OF BOT~OH 765.7 FT From 30' 40' 70' 80' 90' 140' ISO' 160' Pressure Test Results To 40' 70' 80' 90' 140' 150' 160 ' 307' K(X10-s ) 887.3 0.0 640.9 932.3 0.0 28.9 20.1i 0.0 PROJECT Sr:et'"; sham (rr;;tpr I ilkp) - - - - - - - - - - - - - - - - r HOLE NO. DH 100 ; ; PROJECTSnettisham (Crater Lake DRILL DATESI START DEPTH OF HOLE ·DEPTH OTF OVERBURDEN ROCK DRILLED CORE RECOVERED ANGLE FROM VERT. 0° DISTANCES: VERTICAL . HORIZONTAL 10 o 70 80 __ a-~ 90 NPA Fo,,,, 1('1': t) APR. ,. " DESCRIPTION OF' MATERIALS Surface Quartz Diorite, black and white, hard and fresh (locally altered) with Gneissic banding and minor jointing Quartz Diorite High angle joints chemically highly altered 2 high angle joints low angle joint low angle joint Chemically highly altered fragile core iron stained Pink/Green PROJECT ~ CORE 99.8 DAT! layton Rasmussen REMARKS casin set to 5.0 feet Core lengths 0.1 to 3.0 ft Core 1 engths 0.3 to 1.0 ft -------1 Core lengths 0.8 to 2.0 ft Core lengths 0.5 to 1.0 ft Core lengths 0.1 to 0.7 ft HOLE NO. 94116 88088 SUMMARY LOG HOLE N DH 101 cont'd 3 DRILL DATES' START 13 OCT 72 DEPTH OF HOLE 232.0 IT D€PTH aF OVERBURDEN 4.5 FT DIAM. OF HOLE NX CORE ROCK DRILLED 227.5 FT CORE RECOVERED 227.1 IT ... RECOVERY 99.8 ANGLE FROM VERT. DISTANCE S: VERTICAL AZIMUTH FRO" NORTH CO"'U.ED BY. OAT! 901 897 866.4 361 48 47 27 . .1 120 15 160 170 N PA Form 1(T •• U APR. 66 . HORIZONTAL CLAYTON RASMUSSEN Pink and green Granodiorite chemically altered locally soft and weak 110.5 ft. hiah angle joint 113.5 ft. 45° jOint Quartz Diorite, gneissic Pinkish fine grained Granodiorite, gneissic 123 ft .. low angle fracture 126 ft. high angle fracture 130.5 ft. joint 133 to 135 ft. low angle j 0 i nt, iron stained 145 ft. high angle fracture 149 ft. high anq1e fracture Quartz Diorite, gneissic Pink and green Granodiorite CheMically altered I ---~ Hign angle fracturing.pi~k and green Granod i ori te. s trongl y I altered, soft. friable Pink Granodiorite. gneiss 137 to 138 ft. closely broken. iron stained .. COM PROJECT Snettisham Crater Lake REMARKS Core lenoths 0.1 to').7 ft. Core lengtns 0.2 to 2. 'J f t. Core lengths 0.5 to 2.0 ft. Core 1enaths i).05 to 0.5 ft Core lenaths O. 2 to 1.0 ft. Core 1 ena ths 0.02 to O.J ft. Core-Teng tn·-s-----J 0.3 to 1.') ft. HOLE NO. tUMMARY LOG . N 941I6 I ::51'U:.~ .1 OF1 . OLE NO: 1Jf'101 E 88088 ISURfACE EL.EV. 1015.4 PRO" ECT Sne.t..tis.haa (t': .. a1' .. lair .. DRILL DATES' START 13 OCT 72 COMPo 19 OCT 72 D!P'rM' 0" HOU' 232·. () PT . 09'TH f1' 0YPeU1t0Dt 4.5 PT 0tAM; (# HOt.ENX CORE ROCK DRILLED 227.5 IT CORE RECOVERED 227.1 FT ... RECOVERY 99.8 ANGLE FROM VERT. AZIMUTH FROM NORTH cOW'! LED BY, DAT! DISTANCES: VERTICAl. i. HORlZC*TAL. CLAYTON RASMUSSEN :tfV4 ~ ...... O[5C""TIO. l.OG 0' IMTE"IALS ... CORI REMARKS .. r;.~ ..... ~ , ....... -=..' Quartz Diorit~ -as above Core 1 engths ,,::.,,:.- t,o.':'"~,~ .. 14 0.3 to 1.0 ft. -~;.,\-~ ~ ,~\ \ I ~ .... :-, 21 e---: -\',. 1,---.... _1 .... , 212.5 ft. high angle fracture , 802.4 '" \ ,., !--,,':;:"..:. -~ Granodiorite, pink I 15 - 798.4 .. \:~ ... ~ \ 220--: ,I'~I Quartz Diorite -,\" :;:" -... , ':!.' '_'1 1 '--:, ,/~ -..... , -'\ 788.4 ~~'~ , 23e---: ~2 Granodi ori te, pink, gneissic I 16 783.4 strong - - -80n~ OF HOLE - DEPTH OF HOLE 232.0 IT -OVERBURDEN 4.5 IT - ROCK CORED 227.5 IT CORE RECOVERED 227.1 IT -% COR! IECOVEIED 99.8 - ELEV 0' BOTTOM 783.4 -- -Pressure Test -Results From To K(XlO-S) -20' 70' 0.0 - I .. 70 ' 80 ' 32.8 80' 110' 0.0 -110' 120 ' 3.5 I 120' 130' 14.7 130' 140 ' 50.1 -140 ' 150' 11.2 - 150' 160' 39.7 160' 170 ' 49.2 -170' 180' 60.5 180' 190' 22.5 190' 230' 0.0 -- ~ - j I -; I ~ - J ··:l·· . .. . , ' . . .. " .. .. . '. . . .. ' . ' ... ", •. :. ... ," .. "'i, '. .' N PA For", 1~ tI APR. 66 " PROJECT Snettisham (Crater Lake) I HOLE NO. DH 101 N 93.616 lSME£T 1 OF4 SUMMARY LOG HOLE NO. DH 102 E 86,380 I SURFACE n.EV. 1025.5 PROJECTSnettisham (Crater Lake DRILL DATES· START 2l Oct 72 COMPo 270CT 72 DEPlH OF HOL£ 334 ft. D!PTH. OfF OYERBU"OIN 0.0 FT ClAM. fY HOLENx Core ROCK DRILLED 33-+ ft. CORE RECOVERED 319.4 FT % RECOVERY 95.6 ANGLE FROM VER·T. 4Sa AZIMUTH FROM NORTH 060" COMPIL.£D BY. OAn OISTANCtS: VEJn'tC'AL .. 2:36.2 FT ~ HORIZON·TAL. DE5eRIPTION OF MATERIALS Top of Rock Qua.rtz Diorite, black and "Illite hard and fresh ~ith Gneissic banding and minor jointing, locally some granitic texture U.O to 167.S ft. only fresh breaks due to coring show in core 236.2 FT "- COA! Clayton Rasmussen REMARKS Core 1 enq ths 0.1 to 0.3 ft. Core 1 engths 'J. 1 ~o 0.6 f':. , , ~:;re I ~!~at'ls J.~5 :0 1.J ~:. Core lenqths 0.2 to 5 0 ft. Quartz Diorite Core lenqths 0.2 to 2.5 ft. ~. N FlA Form 7(T tl AFiR. 66 .. PROJECT jnettisiiam (Crater L""e, I HOLE NO. JH lIJ2 - - - - - - - - - - - - - - - -- - SUMMARY I~OG HOLE Nu. DH 102 ~N"--__ .... 9..;;.3_61;;...6 ____ -T SHEE.T 2 OF.4 E 86380 I SURFA~ ~LEV 1025.5 PROJECSnettisham (Crater Lake\ DRILL DATES' START 21 OCT 72 COMPo 27 OCT 7'2 DEPTH OF HOLE 334.0 FT DEPTH OF OVERBURDEN 0.0 FT DIAM. OF HOLE ~G r:ORE ROCK DRILLED 334.0 FT CORE RECOVERED 319.4 FT % RECOVERY 95.6 ANGLE FROM VERT. 45 0 AZIMUTH FROM NORTH DISTANCES: VERTICAL.236 •2 FT ~ HORIZONTAL. ~he::'8 ~~ ~ DESCRIPTION OF MATERIALS Quartz Diorite -as above Quartz Diorite 167.5 high angle fracture with high alteration 1-..,;7.5 'liIJIl -)1~'11e ;r1ctJr"'r? _,cs~ oreakaqe and alteration 196.J ft. high anqle fracture Qua rtz 0; or; te 236.2 FT , , ~ COR! N'PA Form 7eT tl' APR, 66 .1 PROJECT Snet:isnam :::rater _ake DAT! CLAYTON RASMUSSEN REMARKS Core lengths O~.2~t~o~1.~O~f~t~. _____ _ Core lengths --o W' 3L-.1ot",-o _' l!..o.,-",5---Lft~.~ ____ _ Core 1 ength5. - :") • j to 2. 'J "" ~ . - - - - - - ------------------ Core lengths n.:: to 3.0 f t. Core 1 enot tls Core 1 ~n(]~,';s 2. J,:O W.JL, Core ;enqtns Q.: :0 l.7 ft. .., .;- ..... -.J .... - - - - ----- - - - 1 HOLE NO. :H 93616 86380 DRILL OATES· START 21 OCT 72 DEPTH OF HOLE DEPTH OF OVERBURDEN o. a IT ROCK DRILLED 334.0 FT CORE RECOVERED 319.4 FT ANGLE FROM VERT. 45° AZIMUTH FROM NORTH DISTANCES' VERTICAl. 236.2 FT-HORIZONTAl. 21 373 .C) 868.9 22 i i 660.0 I I I,.,· r~ I DESCRIPTION Of MATERIALS Quartz Diorite -as above Basalt, black, fine qrained dense, frestl 214.5 to 216 ft. closely broken Quartz, gray w pyrite Qua rtz Di orite Quartz veined 234 to 235 ft. high angle fractur 24D to 242.6 ft. closely broken 248.5 to 249 ft. closely broken 060 0 236.2 IT "- CORE 42.71 1 25 ,L I Ouartz, gray, Pyritized I' "" . , -..jX':>:....::::t!=4rr-----------------j, ~-., l' .. x X 1 . Sr3~~OGior;te, highly 31 :e"-ed, :~-~ :Xx 'soft f"iilD~e, c10seh ,YOKen, !~/jx XI. 10cally Quartz veine:j i ~2~ I ~ 'Hiqnlyaltererl 23~)<X JX '< Partially altered i "':::x '<.: 1129n-~'~x~ i ~ P~rtial1y altered ~XX ' X Xx Granod; or; te NPA Form 1fT tl APR. 66 .. DIAM. OF HOLE NX CORE % RECOVERY 95.6 COMPIUD BY. DATE CLAYTON RASMUSSEN REMARKS ~ore 1 eng ths D.7 to 4.D ft. Core 1 enqths 'J.':: to 1. Q ft. Core 1 enqths o . 4 to l. 5 ft. Core 1 enaths O. 1 to ::. 0 .:-t . ~Qre 1 "nC) ths D. 7 to 2. '] ft. Core lenaths ().-ltoO:3 ft. Core . !"a~hs 0.3 ~o 2.0 ft. Core 'engttls O.2tol.Oft. Core 1 enq ~hs :; . 1 :0 :'. 6 ft. ~~rg~~r~ 10S5 259.6 to 264.6 ft. :::ore l"~r'1tns 0.-: to ).5 f~ "4~; te ,~a tel'" °et-....t~· White ~ater Peturn White Water Return Co re IeilgTh 5 0.1 to 1.5 ft. SUMMARY LOG N 93&16 1 SHEE.T 4 Of4 H 0 L E NO~ DH 102 E 86380 I SURFACE EI.EV. 1025.5 PROJECTsnettisha. (eratA,. Lalc~ DRILL DATES' START 21 OCT 72 COMPo 27 Oct 72 DEI'TH Of HOLE 334.0 PT oornt OF OV£R8URoat 0.0 FT DIAM. OF HOLE NX CORE ROCK DRILLED 334.0 FT CORE RECOVERED 319.4 FT ~ RECOVERY 95.6 DATE ANGLE FROM VERT. 45 0 AZIMUTH FROM NORTH 060 0 COWIUD BY. ~------------------~------------------------~ 236.2 IT DlSC,,"tTION 0' IllAT!"IALS 1?5 ~ ~ Granodiori te, partially al tered, r.-X-X ) very closely broken, extensive -X)C chloritization 31~1>< x~ gouge x x ~x~ x 306 to 307 ft. soft Chloritic 305.2 X" 789.4 - - - -- - --- Quartz Diorite, fresh 313 to 317 ft. closely broken 322 ft. high angle joint Chloritized 326 to 327.5 ft. chloritized close 1 y broken 328 to 334 ft. high angle joint moderately to closely broken BOTTOM OF HOLE DEPTH OF HOLE 334.0 FT OVERBURDEN O. 0 FT ROCK CORED 334.0 FT CORE RECOVERED 319.4 FT % COU IlECOVERMD 95.6 ELEV OF 8OTTO" 789.4 FT Pressure Test Results From To K(XIO-5) lO' 20' 830.8 *1 20' 30 ' 2450.9 *1 30 ' 40 ' 2623.2 *1 40 ' 50' 0.0 *1? 50' 60 ' 8.6 * ? I 60' 70 ' 106.2 *1? 70 ' 80' O.R -I -80' 100 ' 0.0 I 100' 110 ' O.S I 110 ' 120 ' 0.0 -120 ' 130 ' 37.1 *~ 130 ' 140 ' 0.8 140 ' 150 ' 52.3 *~ -150' 170 ' 0.0 170 ' 180' 1598.1 *~ lS0' 190 ' 1 18 _ 1 ", -19n' 2 lO' n.1l 230' 240' 11. () 240' 250' 13.8 250' 260' n.7 260' 2S0' 0.0 - ... COM [I ~ ~ ~ ~ N PA Form 7(Tllt) API'. " PROJECT Snetti snam: Crater Lake) CLAYTON RASMUSSEN "EMARKS Core 1 engths 0.02 to n.s ft. ~hite Water Return - - ------- Core lengths -0.2 to 2.0 ft. - - *1: tests not valid; _ test pressure too hi~n_ See log -no natural breaks 0.0' to 167.j' - *2: possible slippin~ _ packer. See log. - - - - - - - r HOLE NO. JH 1 J2 SUMMARY LOG I SHEF:T 1 OF' 4 H 0 L E NO. DDH-103 I SURFACE ELEY. lOSG.O PROJECT S~:ETT. (CRATER LAKE' \ DRILL CATESl ST~RT 10/30/73 COMPo 11/7/73 DEPTH OF HOLE 361;i.0 DEPTH OF OVERBUROEN 1.5 OIAM: OF HOLE NX ROCK DRIL:.LED 365.3 CORE RECOVEREO 365.3 ':'0 RECOVERY 100 ~~~~~~~~~~~--~~~~~~~~~----~~~~~~~~~~~.- ANGLE FRO"' VERT. 0° AZli'IIUTH FROM NORTH 0° CO~PtLEO ey, DATe: ~----------------~--~--------------------~~ AREA PO~:::P Tu~:r;EL C. Rasmussen 12/6/73 ~ ELEV.( DEPTH L.OG D£5CltfPTIOH~' "~TERI.AL.S 1086., 0.0 Sur ace . --' "- -' " \ ' --- /' -- , ' "--'~ -",~ . / -~'-' -, ~ , ( -... " /' \ --; -'I' 986.0 100 <~~,,~. Quartz Diorite. black and white. gneissic 0 joint. ti ght. 35 joint. tight. 35' j 0 i n t. t i gh t. 30 0 joint. tignt. 35 ' joi nt. ti ght • 35 0 : ') 1 nt. t: i r;n ~ ~ Ie:, -, N joint. ti ght. 45 0 joint. ti ght, rusty, 35 0 '/leather-·ed. 91. 5' to 92.0' , ("us t; greenstone band, 92.3' to 93.2' R£MARKS , I I I I i 3 1 - - - i j ~ ---j ~ ~ ~ -I ~ -j -l 1 i I ~OLE NO.:) "-~r'J HPJ. r~'m APR. 66 7Q'e't) PROJECT S~;::TT: s-';.··· --.' , ~------~~--~------------------------~-.--~--------- SUMMARY LOG N 94271.49 [ SHEET 2 OF 4 H0LE NO. DDH-I03 E ~R??8.l2 ISURFACE ElEV.1086.0· PROdECT SNETT. (CRATER LAKE) DRILL OATES' START 10/30173 COMPo 1117173 CU'TH'OFHOI,.E .3ti6.8 PE:PTH OF OVER6UROElt 1.5 OIAM. OF HOLE ~x ROCK DR1LL£O 365.3 COR! R!COVEAEO 365.3 % RECOVERY 100 I-.;..;..;:;..::..:..:........::......:..;.;:;;..;;;..~-..;...;...;...;..;;..-~~~.....;;~~::..-:.~--~.;;..;..;:~+---....;..:=..=...:.........::::.-:...:....~~.- .ANGLE FROM V ERT. 00 AZlhcaUTH FROM NORTH 00 CO/l.Ul1l.EO BY. CAT£. ~------------------------~----------------------~----4 AREA PD\-JER TUrmEL 12/6/73 D[Sc'n"T~ 0' JllAT[RIALS Quartz Diorite, as above joint, tight, 35· joint, sericite coated, 35° joint, sericite ~oated~ 40~ REMARkS core lengths O. 2 to 1. S ft. core lengths O. 3 to 1.:' ft. ,'ore lengths to loh ft. core lengths 0.2 to 1.3 ft. 1 J ~ :1 I I ·:1 ~ I :j . ! -I - - j J j J 1 ~ -j 1 4 PROJECT I HOll:: NO. 'n' I -,-- ....." , SUMMARY LOG HOLE NO. I N 9L271.~9 I SHF=:ET:\ OF 4 DDlj-103 I SURFACE ELEY. 10[16.0 PROJECT sr;ETT. (CRATER L.r..KE) I DRILL CATES: START 10/30/73 COMPo 11/7/73 C€PTH OF HOLE 366.8 OEPTH OF OVERBURDEN L 5 OlAM. OF HOLE riX ROCK DRILLED 365.3 CORE RECOVERED 365.3 % RECOVERY 100 ~~~~~~~--~~--~~~~~~~~----~~--~~~~~~~~-- ANGLE FROM VERT. 0° AZI~UTH FROM NORTH 00 COMPtLEO BY. AREA GIWtK ELEV. D~ LOG DESCRIPTIOH OF MA.TERIALS 886.0 -- -, .~ _\ , .2 ,~o <';', I -- -' I.. \ .. , I ': ".\ form 7 I APR. 6£' r:~:tl .. ' _. I Quartz Diorite, light gray, granite joint. tight. 35° gneissic, ?red. black !)uartz -,'arbonatL' vein .. iron -it.:1iot:d ',·:it:l ~'.ritL· ~ro!'!1 -!~.l . .2' tL) ~ ~f) • ~ I joint. sli2htlv altered. 10' 'r. C~E REMARKS core lengths 0.3 to 1. 9 f t. core len£ch" I).} to 1.11 tt. core lengths 0.1 to 1.9 ft. l'("\r,' lL'!1:.2.ths () . ..:. t ,) :..) ;-t . ('() rL.l tl'!l '.2; t!l~ II.) to ~.() [c. CATE 12/6/73 -J - - j :1 ~l 1 ~ - SUMMARY I~OG N" 94271.49 I sWif£T 4 OF 4 H 0 L E Nv. DOH-103 E RR??R .1? I SURFAC~ ELEV. 1086.0 PROJECT SNETT. (CRATER LAKE) DRILL. DATES' START 10/30/73 COMPo 11/7/73 CEP1lt OF HOLE 366.8 DEPTH OF CNER8URDiH 1.5 OtAM. OF HOLE NX ROCK DRILLED 365.3 CORE RECOVERED 365.3 % RECOVERY 100 ANGLE FROM VERT. 0° AZIMUTH FROM NORTH 0° CCNPtL!D BY, ~TE ~----------------~--~------------------~~~ AREA POWER TUNNEL 12/6/73 719. ~ I--- '- - -- - - - joint. iron-stained, 50 0 join t • iron-stained, 40.0 joint. iron-stained. 40° joint. sericitized with 1/4" band of quart z joints. contact. 50° joint. iron-stained Bot tom LIt HoLe "EMARKS core lengths n.l to 2.4 ft. core Lengtrls o.~ to .2.~ ~t. core lengths n.3 to ~.n ft. - - 1 -1 , - - - - 1 i H OL E NO. -=--: _ SWN\I~ARY LOG H 0 L E NO. DDH-10~ I~N=-!....--,,-~'.=....;~ .:;.:;....: ,",=-' _____ [ ~tl~ OF S rE 2-:'r ISU~FACE ELEv. 11~») PROJECT St'ETT. (CRP..TER L;;fT I CRILL OA7~Sl START 9/17/73 OEP'Tlt OF HOLE: 454.4 'OEPiH OF OVER8U-ROEN 1.7 ROCK DRILLED 453.7 CORE RECO'/ERED 4:3.7 ANGLE 'FROM VERT. 0° AZIMUTH FRC~ NORTH AREA SURGE TMK % CORE OlAM. OF HOLE riX "lit RECOVERY 10Cl COM?1L .. EO BY. Ie. Rasmussen 12/6/72 REMARKS 1111.' 1. 7 -Overburden. organic soil, loose roc -x.';f".. Top of Rock ./..J-----l~--------------.. _ / \.~ Quartz Diorite. whlte 1013. ,> /'"; fraclOllre, iron-stained. ISo ,-..:, (from 1. 7' to 3.8') 10 ./ \1 -"-1 ' .... ;' \ " .--;: .. /_~ '/ -/--~ _\ I" -, '0 ,/ black and white -,,--. \.. \ // 1-\! ~I ~ /~;,-\. -,.. /1,/ l " -'- '() . "\. .' , . )~ -', /1':"'" J ---,! -:.. .. -\',\/ , ~ '; .. . \," .... ~ \ \ '-: .. ~ ~U -'. " -~I I' ,-\ -:-- '\ "'..". ~/: ',~ -\ 1/,. /. " ' . ..;.. 30 ...... ~ . -/\'./ -)":; . , , ,," " ~, \. • I 110 -, • l. '-'--"\ y. --~ "." \ -I \ granitic textur·ed, from '-S.!" to - -"7' J J. , -'/' -.,naniti, to gneissic. dark \~ ~ " -n ~ \' ", , "- '-" -::-' . !.... \ ~ / ... 1/ ~I) • '.' ~ ..... , , '/' ~'. 90 It)O N PA rorm I APR. 6ro 1{iul) PRO";ECT ... "1 ~ · .. -I ... ~ ., ~ ., · ~ ... · ~ ~ .. -'1 ~ " .., ~ ~ -.• .. j 4 j · ~ ..... .~ .. ..... · j j i ~ hOL~ ~~O. : i· ___ J SUMMARY LOG f N 95454 r SHEET 2 OF S H 0 L E NO. DDH-104 II-E~-'Q~l! 4::'=~~n-----+r-S-UR-F.-'A-C~E~E.s..L--F:.J....V"";.:""11~1u:.l.-(~ PROJECT SNETT. (CRArER LARE) I DRILL OATES' START 9/17/73 COMPo 10/5/73 DEPTH OF KOLE 454.4 DEPTH OF' OVEReUROEr.a ROCK DRILLED 453.7 CORE RECOVC:RED ANGLE FRO>A VERT. 0° AZIMUTH FRON r!ORTH AREA SURGE TANK jraMMc ELEV. DEPTH LOG DESCIt"TION 0' YATE(tlAL..S 100 J ~ , , J -',' - 1-" j 1 iO ,~ -:; , -" ,,, '-/' I ----, I" / , Q 34 • 4 1 i 11. 11 -I -~' l~ . 5 1 ,~Q.....L '" ';\ /~ ' ...... - - -./ 190 -, , _,_1 . \ ~ ., , ..... ' fresh fracture, 40° fresh fractures, 40° fresh fractures, 25° -35° Basalt. greenish black ltl,lrt.' :)it)rite, ;~r,lnitit' T.edillm :,:;(,:11' -~~"I\ _ fracture, epidote coated I!/' (195.2' to 196.E!) ~L'.2 I 200-', ,~ N PA Form leT ') APR, 6.ra ,n 1.7 OIAM. OF HOLE r:x 453.7 °/ .. RECOVERY 100 0° COl'.'I?ILEO BY. DAn 12/6/73 "- CORE REMARKS - - 3 j j . 3 1 .. .. .. J - I I HOl E i'lO. _. -- SW~iMARY LOG H 0 L E NO. DDH-lO~ HEN;;--,,"9.;;;...S':,",,-, 5~-,-: _____ +--L __ ~SI...!.:Hi~~ 3 OF 5 C:~_:C~ lSURFACE ELEV.1111.') PROJ E C T sr: E TT. (eRA TER L~.KE \ I DRiLL DA. TES I STAR7 9/17/73 COMPo 10/5/73 DEPTH OF-HOLE 454.4 O!PTH' OF OVERBURDEN 1.7 OIAM. OF HOLE ~:x ROCK DRILLED <:53.7 CORE RECOVERED 453.7 % RECOVERY 100 ANGLE FRO~ VERT. 0° AREA SU~G£ TANK ELEV. D~~ DESCRIPTION OF WATERLALS ~13.2 '.',,- \ i,,\ Quartz Diorite. coarse granitic ;,,"--/ 813.2 -," / '-. , -,....-, '"' I -'10 ~I_::'! -/-/ " " . \ \ '- _ \. " I ....... , " \ , / / I ~·,O ,/,,' -~ ',/ , -" /\ "- ~''''\'' -\, \') -,- / -, -, ~~ 270 ,~ ---, I i , - -'\ N PA Form 7(iut) lAPR.6E\ fracture. longirudinal, tight fractur2S~ chlorite u. ~ericitC' coatl2u. ~()O black & white. ~arbilized textured, 244.7' to ,2!..g. 5 I. predominately black to ~hl.j' Basalt stringers. dense. '~reenisil black from ~61.j' to ~62.9'; ~64.~· co 2 6fl. ~ '; 266. K' to 267. R' \01 it i1 rlls<!d contacts (JO° _ :'1)') '~.l:":;llt ...;trin'~er. 3/~'" t'1i,...; ~1.J':~. It ~"':'.71 ':'1)1 l~unt.ll·t~ PROJECT -. t... -I. '" ~ CeRE :. ) i , COlori?1LEO BY • OA~ 12/6/73 REMARKS ~ ~ -l j · ~ -i -1 -1 1 .. ~ .. i - ~ - ~ ..j j · ., ~ ~ i 1 J · -I .... j ... -. , 4 j 1 3 1 - I 1 HOLE_NO. .~-: -. -... . SUMMARY LOG H 0 L E NO. DDH-104 l N 95454 I E Jll480 I SHEE.T 4 Of 5 l SURFACE ELEV. 11 p.? PROJECT SNETT. (CRATER LAKE) I CRILL OATI::S I START 9/17/73 COMPo 10/5/13 DEPnf OF HOLE 454.4 OEPTH OF OVERSURDEN ROCK DRILLED 453.7 CORE RECOVERED ANGLE FROM VERT. 0° AZlaHUTH FRON NORTH .AREA SURGE TANK .... "'-..~ , ELEV. 300" LOG DESCRI'TION 0 YAT!"lAL.S 813.2 713. , N P.:t\ Form 7(1: Sf) APR. 66 .c Quartz Diorite. as above gneissic textuTe.dark Basalt -;tringer. l/2" thick. In° tLl ~n° 1.7 DIAM. OF' HOLE NX 453.7 % RECOVERY 100 COIrt\P1UO BY. 12/6/73 ~ COR! : REMARKS Artesian flow, 316 ' I HOLE ~fO. to 324 I " '.~i - .- ~ -I ~ ~ . '1 1 , 1 ~ " 'I - - - - - - - ,.' - - - ' n' o l.:.., SUMMARY LOG HOLE NO. DDH-IO~ PROJECT SNETT. (CRATER L:'!~El I D~ILL OATES' START OEPTH OF HOLE 454.4 DEPTH OF OVER8URDEN J SHEET 5 OF 5 lSURFACE El~V.l111.7 9/17/73 COMPo 10/5/73 1.7 OIAM. OF HOLE rlX ROCK ORILLED 453.7 CORE RECOVERED 453.7 % RECOVERY 100 I--.:...:..:-=..;....;......;~-~'---;;....;;..;-'----;'----'----=::.-'---...=;;---...;.;..'---+--'-----.~'--."'- ANGLE FROM VERT. 00 AZI>.AUTH FRO~ NORTH 00 COMPU.EI) BY. DAn ~ ________________ ~ __ L-____________________ ~~ AREA SL'RG~ TAI\~: 12/6/73 ~ ELEV. DEPTM LOG 400 , DESCItI~TION Of "ATf"tAl..S 713.2 • ;' Quartz Diorite. as above I I I I ~, ' l _ -, \ .I,'. '.. '... . \ 410 \',', -.;... I, --~ ;~ -, :..1L> ,: ·:I·~ " 1'1 -\ .-" ~ ,/ .:.30 " ~ I, -- -.... . j6)8.8~54.4 ' - - - - - - - - - Longitudinal fracture, slight alteration Bottom of Hole ... CORE REMARKS - - - - : ~.; ~.\ Form 1('1 I' t\r-R.S6 cs. PROJECT ~:.~-;-;::':~-'" C'-:;::.I;:<:) ! HOLE NO.' .: .. l()J _._. _____ .....!..._-:...;...;...:...:..:;:...:;...... ______ • ____________ ...:......;:--:..:::::......:.:...-:..:.--:....:...;..:. .::~_J SUMMARY LOG IrN~~94~13~lS~ _________ ~I __ ~S~H~~~:Eu-Tl~O~)F~a HOLE NO. DDH-105 IE (J0n"e; I SURFACe: ELF-V. 1fW/ ~ PROJECT Sr:ETT. (CRATER LAKE) I DRILL DATES' START 9/21/73 COMPo 10///73 OfPiH OF HOLE 32S.g, DEPTH OF OVERBUROEN 2.5 ClAM. OF HOLE riX ROCK DRILLEO 323.4 COR.E RECOVEREO 322.4 0,. RECOVERY 99.7 ANGLE FROM VERT. 350 AZIh4UTH FROM NORTH 3300 COMPILED ay. I)~T;! AREA PO\·JER TUr-liJEL C. Rasmussen 12/6/73 ""11w.OnWL ...... S.+-2;..:.:.;;S'-+-~-:-:-~Overburden. organics & rock fragment .......... _......,:set caSing_~~-'-"-1 ,'" 1\ 1"0. Too of Rock ./ -~,/, I --Quartz Diorite. fresh black and /" \ ... .... , white. gneissic texture ., 10 ..... i./ l' -',/:' water loss "I l1.0' , /, r \~ ,\ -\ -\ /. ,I . \ .. \ l- ?O • 1/_ ~"---, " , ~ fra-cture, light iron stain, 60· -~\-, fracture, light alteration, 20· r "I -(/, "'" , .... I .. i :/ 1L-: \\~~ 1. .. \ \\ .... \~ .;./ -/'" ,I', ,,0 \> t/ .~~\\ /, / 1"/' -\\,-,.-\ " / './~ / Hornfels. light gray. heavily ~f'I .,_t{ shattered. F.e stained @ 51.0 & 52.0' )~,-,', ? 974.S 52.0 fU .'f., fault. Hanging Wall 7!7; X X)( Granodiorite, highly altered, rotten, ~ -)( X pink to white, badly broken from ~ 60_::: >2.0' '" 75.2' ~ ., ~ - core len~ths 0.2S' toO.D' -· .• Y. Jj -I I \-\I ~ /j, Ouart? Diorite, black -y "-/:~'/ 7u.....:~X x. y., ____ ~ (:'-',:. 't longitlld inal fracture . ')r Fault·: FootIJall 95S.4 75.3_ )( xX flu.....: \, ..... \ \. , %').9 .'i2.0 -:::.---;.{ Hornfels. grav. 7R.O to 'R. ~' r--. _._... ... _ .. -.- X 'I -Y. ./ x ';r.111,ldi,'ritc. ,'O;lr,;,' [L'''turC'. y. '! pinki:-;(1 :.;rCl' 90 M' fracture. highly altered. 45· '~y '-j. sgme kaolin 192.6' '1 Y Y ~X X" ! 935.~ 100 -xt~ ' ,..,.A Form APR. 65 7(Te,t) PROJECT j J - ~ - · - · · I HOLE NO. ... . I I ~, SUM~AR,( LOG HOLE NO. \ N ac.~l~ I SHEET 2 OF, D~H-IIJ5 r E _ I SURFACE ELEV, ln17 1 PROJECT sr;ETT. (CRAER LAKE' I DRILL DATZS' START 9121/73 CO~JP. 1017173 DEPTH OF HOLE 325.9 J ~PTH OF OV~RaURDEN 2.5 ClAM. OF HOLE r~x ROCK DRILLEO 323.4 I cortE R!COVEREO 322.4 '1. RECOVEP.Y 99.7 ANGLE FRC:\\ VERT. 350 I AZI~.IUTH F~O~ NORTH 330 0 COM?1LED &Y. D~ji! AREA PO' .. iER Tur;::EL ,.,._ F-~G ~LEV. _~?7); LO" 100 " .~ llO-~ '935.2 920.(, Granodiorite, coarse, pinkish gray fractures, slight alteration, 30° -70°, some Fe staining 2" rotten quartz vein in rusty zone at 109.5' 118.~~ t----+---+"'""'?~~------.,----,--------I 120 ! ..... \! Quartz Diorite, black & white ' 91 i. 3 d134. r ~7(). ~-- ,-:;--C; " / \ - 121. () /-\'/'~ ---------------oool J( ~ fracture, alteration zone, _ X X possible fault ~X X Granodiorite, light, gray to pink , X: 1 10 t,......: x' y ~ ~ -')( '( y " -)( 'I • ; X: • ~~ j " - , 'f '< Y 't lMl· • X ~)t" V 162.; x ); ~' fra~tures, closelv spaced from 129.5' tC) 132.5', 50° feldspar alteration forming kaolin (132' to 141. 5') fracture, tight, I -° ,,) " --,\ --I-165. e _ \.-::..,\ I~uartz Diorite, gneissic. dark ~~~------------~--------------~ 170 - ,... )( y y X . /. ., y ". -1-,---~/-..: l "u • X)( )( , :":~', ~~ _ )t' 130 ~\; \·:::·'"-..'1 I \ ~ , \ ': _' : I - '-~ / 190 -.: ... '..: -. ". , / " r;ranodiorite, pinkish gCl\" t ,,"om Dio"c<, l'" '0 l7~ .J ')lJa[[~ :Jiorite. hl,lCk " ,.hie", , rrilctilre,;, !,()O, ,;light ,llteration fracture, 60°, slight alteration PROJECT (. ~ -. ,-' .,. • (" '~:-/ I :." ~ ", 12/6/, slow drilling I .. 'ore It'n~ch~ I). " , 1 )~ , -1 3h ' .. :ore len"tils l.i]' 13!,' -l' , , :..jo4 I . 1 HOLE NO. - - - - - - .- - - SU~lMAR'f LOG I N 941"; I SHEET 3 Of ,; HOLE NO. DDH-I05 IE ,P'W'C: -r SURFACE ELEV. 1017 1 PROJECT sr:ETT. (CRATER LA1:E) [CRILL DATES-START 9/21/73 CO~1P. 10/7/1', ~ __________ ~~~~~~~~L-~ __________________ ~~~ ______ . __ ~~~' __ OEPlH OF HOl.E 32"5.9' DE'PT-H OF OVERBURDEN, 2.5 DtAM. OF HOLE NX ROCK ORILLEO 323.4 CORE R!:COVEREO 322.4 0/. RECOVERY 2J~_ ANGLE FRC>.4 VERT. 350 AZI~UTH FRO~ NO~TH 330u CO~LEO) ~y. ~----------------~--~----------------~~---4 AREA POWER lUNrJEL 853.3 771.4 DESCRIPTION Of ~.\TE~I~LS • ,I i-': Quartz Diorite, as above I '/, " ~ _./ // ,,-'::: ~ I" J ... 1 I , _ ~ 210 I_I, -~.,-j-," ~'\ fractures, 80 0 , Fe stained f~~ -,/,/,', I":: '.,- ~/' 21Q...1 .. /~ fracture, 60 0 , Fe stained ..... ,.::. ", -, ~"\ -~ fractures', 45 0 , slight alteration 2lU...: ~ . \':' v. \,' , ~/", ,', t'--:~ fractures, 35 0 -50 0 , slight alteratio -, " , - -~,- 250 ~ -/'- ,,":-' " /, I ' , ,--/- 1 _,,, ;' I '. / 260 .-/ / -'-\ \ 1,/ I '-., \ , ._ ,I 1", / -\-1 ,\ ~'~ .. , " / "0 I I> --'--'-I.?' " -,~/- \ , ,,"" J '" J "/ -,-::./ ..... -, f 1-'. /- 2RO > ( ': -1.'--;'./ \.':" - joints, tight, 35 0 fracture, ~OO. slight alteration fracture, 30 0 , chloritized fral: cure. )0', sericitized 12/6/73 - 'OJ - - - - - SU,'t1:--,lARY LOG I N 0)':'1 ,c,. 1 SH':~:T 4 0-= 4 HOLE NO. DUH-ICI 5 I E -~A--lsURFACE ELEV 1'11/1 PROJECT Si:ETT. 'CR;\TCR l.A'<E' I DRILL DATES' START 9/21/73 CO:VIP. 10/7113 DEPTH OF HOLE 325.9 I CEPTH OF OVERBURDEN 2.5 OIAM. Or HOLE r:x ROCK DRILLED 323.4 t COR.E RECOVEREO 322.4 0/. RECOVERY 99.7 A4'\JGLE FROM V~RT. 350 I AZI:f4UTH FRO:" NORTH 330 0 COMPILED ~y. D,.\ie: AREA P{).:~R n;::::EL 17 It,/73 ,.~G rLEV. ;::::?T)t LOG OESCiU?TIO?i OF ~j~T~iH.~LS 771.4 300 769.7 302.0-y, : ... :: Q~artz Di?rite. as a~.()ve X )(. 767.2 305.0-·:i X X Granodiorite. pink pegmat it ic Quartz Diorite. gneissic, dark 1/4" pyr ite band a·t 309.7 I -- - -l oj 750.1 Bottollt of Hol.e _12_S....:.~ -1 - - - --- - - - - - - N PA Fer", 7~ t) I L.A_P_R_,_6_6 _____ e_s~...J....._.;.P.;.R.:...:O::.:J:.:E:...:C:..T~..;:~...:.· ';.;..~ -;"';-...;.' _-...:,:.:..,."_...:..;;..;..;-,..:,, ______ --L.:...:.H9l E NO. :'_ -j j j .. j -:l -j - '.: I SUMMARY LOG N Y51S9. I SHcET 1 OF 5 HOLE NO. [)D~-l()fi E 91?t;Q, ISLJRFAC~ ELEV lnV),n PROJ£CT SHETT. (CRATER LAI<E\ DRILL DATES' START 10115173 COMP. 10/~6!73 0EP1'H OF HOLE 415.6 -DEPTH OF OVERSURDEN 1.5 OtA,.,.. OF HOLE NX ROCK DRILLED 414.1 CORE RECOVERED 414.1 % RECOVERY 100 ANGLE FRO~A VERT. 35° AZI:~UTH FRC;.a iWRTH 3100 CO;";.?'ILED 6'1 t DATi! AREA PQl';ER 1'Ur:~:EL C. Rasmussen 12/6/73 l037.8 1.5 Overburden organics and loose rock r----+------------=I , I,: " !\.. Top of Rock / 973,9 973. 0 , -, .,... Quartz Diorite, gneissic. dark f,,~ .. ~. 10 -.-, , ---. , ,//~ ".. -~l ~ > fractures, 40'. slight Fe stain 20 I"~~ \ -=-"",:" \ ..... ' ... , .~ badly crushed zone from 23.4' to -~ . r-"J" 30.0, Fe stained 1--' '" J() -" / . -':-.- - • --'I ~ \ .... '" \ ,I 90 • -I ' -=-" -I "', / " .. , /'- ','. '" ' -"/ , fracture, 40', slight alteration : ir;]ctllrC', 15' . ..;1 tghr ,Jit,'rltilln fl'l".llt. hlack (iq.s' c,' liD.h') ", "'; . I ,I 'IIIIfIiI 1 · __ -1- <)57. 100 \/':" '.. , .. ~. ' '-, .. \ ; PROJE.CT c.',:.- set casing to 9.6' ~ .. - I , I MOLE NO. -- -.~ - --1 i ~ , 1 j ~ ~ j ~ -~ ~ ~ 4 -- - :; - . I ' - ~. , SU~AMARY LOG HOLE NO. N 95159. I SHF ET :2 OF :i E 912c;Q. lSURFACE FoI.EV 1()3 0 n PROJECT sr;ETT. (CRATER LAKE) DRILL OATES' START 101lS!73 CO:'I~ 10/2[,/73 DEPTH OF HOLE 415.6 DEPTH OF OVERBUROEN 1.5 ROCK DRILLED 414.1 CORE RECOVERED 414.1 ANGLE FRO;.! VERT. 35° AREA !LE'I. ~~ I. 1 O!PTM~ 100 LOG "" '.' . -/. ' ~:"/j -" 1~ :.." .. ----,.,. \ ....... ', ..... .. ' .... ' ...... ' -,:." '-I ;'; '" :. I -.;' j " -, DESCRI~TIOM A' MATER.lALS Quarcz Diorite. gneissic. fracture. 40° very coarse white band (125.0' co 126.2') dark 150 :;,',._\ ~ crushed zone. l·~O.O' to 150.7' '1'~~~')I.);~ heavy iron staines 150.7' co 152.2' -~~\W/0.5' crumbly gouge at base -~~, ~I J) fractures. 65°-90°, slight Fe stain!; 1&0 I'~ w/1/2" iron seam" 154.0' • ""'--~ \ I - ~.'. -\~;:":/~'I J..L...,.. 163.4' co 166.1' -badly shattered, -~"I~ iron stained ... /koalinized feldspar -in top 6" 1 ·" ~\7'../\-' ~ /; --..!./\_\ / fractures, ':'5" ,light Fe ~tZlins -...... , ..... !. ,-\. "- ~ 1;;0 \ \ ..... - -"'-'~'\ \_ \,f_\~ ~\/ .- 1 '" ..... < '" ... h. ~ l 00; r-,. -:-,-,'~ \" '. i:'10 nit e 'J 3n d • L '"l h. )' t u 1.J. h. -• r---'-~'fj r-,:1tj~' Basalt. dark i2;r;,tv. hroken 883.2 190.2 ~> 880. J 879.8 875.2 ,;/,' .... :-111<lrt? )i()r~t,-,. ":;lL'i.",,-:~,.· -'1~'<:"'C" 3asalt I dark .:.!;r,JV. -,.j/ (r.lct~lrl:'<'; -'\\--'1 093.5' -194.~') ,(",' ....... ZOO "7'::_~I~ - DI~M. OF HOLE r,x c:-'" RECOVERY 100 CO:-'i?ILED 0 .... t D~n: 12/5/73 REMARI(S - - - - - - N PA Form 7(T t) I I APR, oS e.3 P?OJcCT' . '.. HOLE' NO. ,.' ( : ------------~--~--~~~~~--~.~'~'~.------------~------------~~~~~~--~~.-- SUMMARY LOG N 95:59. I SHc:'B 3 OE 5 HOLE NO. ODH-1()F E (,:/::0 ISURFACr:: ELF.:V. 1(pq n PROJECT SNETT. (CRATER LAf:E' DRILL DATES' START 10/15/73 CO~1P. 10/26173 OEP1HOF HOLE 415..6· C~PTH OFOVERaURC£~ 1.5 DIAN. OF HOLE r;x ROCK DRILLED 414.1 CORE RECOVERED 414.1 ~o RECOVERY 100 ANGLE FRO:" VERT. 35° AZl:riUTH FRO:" NCRTH 310" COt:';,~O S't, C~TE AREA pm:ER TUNNE.L 12/6/73 .......... !LEV. C!PTM L.OG 200 875.2 DE!CJlll:I~TIOH OF hlATERIAL.S ". CCAE fractures, 35·_70·, slight alterati n ~32. 6 ~28.tl 811. H -?~~ Basalt, fine grained, green-gray 1z56.0~~ to black, mod. fractured ~~-------------------------i ~,::J-:-\- :60'~ Quartz Diorite, black & white ~ .. ~\ .'~~ ~ 0 \' ",\ fractures,]O. Fe stained '-1' .... 1' ,/ \ N;-, _~\,.~ ~,J ,'~ fractures, 35·_45·. slight alteratio , .,::-; ... '"0 ,/ ,- .1 ~~~ ~,~.~., ,~fractures, :.,0. Fe stained, highl\' __ , \ . altered w/kaolin & limonite "7;.3 1/_./., )(' X H09.3 2Hcu.:: J( >: % Cranodiorite, pinkishgra\' ~';"';"';:T-~=t - ~~: .. ,',~ -: .. :" '; ~ ,: I ", / 7 90 " '. -.... \ -,.-1//, , ./ . ,'.' .. ,:/ -" \ .. --\.:,... .... , I)uartz Diorite. gneiss ie- ll)" rracture. "I ic:ht ,11 terar ;,.n REMARI<S - - ; - - - 1 -1 i , 1 ~ • ~ , ~ J . 1 - - 3 i I I HOLE NO. '. I ,-"j ~ 793~ 3 30<f~ . fractures. 3~"'-15·, sli-ght altentio N PA Form 7~ t) k APR. 66 e, .. PROJECT ~:;:. -': .. ' -" : " ~ 1 ...:""-""~ .. SUMMARY LOG N 951S9. 1 SHct=:T 4 OF 5 H 0 L E NO. [)[lH-ln6 E 91259. I SURFAC~ EI.EV. 1n"1q J) PROJECT sr;ETT. (CRIHER LAKE) DRILL DAiESI START 10/15/71 COMPo 10/2G/73 ca»TH OF HOLE 415.6 DEPTH OF OV~8UnOC:N 1.5 DIAM.OF HOLE r;x ROCK DRILLED 414.1 CORE RECOVERED 414.1 ~" RECOVERY ANGLE FRO:.4 VERT. 35° AZI:-'iUili ~RO~I i~CRTH 310 0 COlYi?I~D 6'1, ~----------------~--~----------------~~----4 AREA PO\·;ER Tur:NEL ~ ELEV. CEPTH LOG 300 793.3 DESCRIPTION OF MATERIALS Quartz Diorite. gneissic fractures, 25°-45°, slight alteratio J 302.6',305.8',314.2',316.5' - -) • J greatly altered section w/kaolin, lilOOnite from 323.2' to 324.~' fr3cturt? -.1.0° • ..;;li~h( ,11ter:J( l\1I1 fracture:..;. f\']s.]it. f.,L.lrk ' .• '/"::1all phenocr'.'st,; 'jl1art? diorit" (lhS. "-11,1,.1,') - - ------ ~ ;. r::~ Ii" -,.< ..... ,':";-:::: . -./::';' \T.drcz Jioricl'. ,,11{~k -:. · ..... ·hiCt· :-i.l(:(Ur\.:~, J{) -,-I) ~li''';ll( llct:r. j9() /. --/ -/.: .... :la(Jl:: r:rusileU ,",one ,,'/':II>2~'; '1:J.lrt· -'::~-~. ~ ...I " ::eliOI-l-bor'..r[1 Llav :';()ll~.· :"',lSe ~ -;\ from 3'f2. 2' to 392.9' -I .... i~ highly altered w/limonite (391.4' - \-1 394 •9 ') 711.3 .:.()() I~-:"/ granodiorite. ~ink ('1<)(,.l'-\<)'1.l') :'I PAl Form 7(To." APR. oiC ::.>" PROJeCT .". CORE REMARXS I HOLE ~10. lO~ 12/6/73 - - - - - - - - - SUMMARY LOG N 95:59. I ~HF:E:T 5 OF 5 HOLE NO. DDH-l06 E '?}/~9. ISURFACe: E'LEV.101on PROJECT SNETT. (CRATER LAKE) DRILL OATES' START 1011£;171 COMPo 10/26/73 0EP11i OF HOLE 415.6 OEPTH OF OVERBUROEN 1. 5 OIAM. OF HOLE tlX ROCK DRILLED 41t.1 CORE RECOVERED 414".1 ~. RECOVERY 100 ~~~~~~~--~~--+---~~~~~~--~~~--~--~--~--~~--. ANGLE FROM VERT. 35° AlI:,tUTH rROW NCRiH 310 u AREA PO\·JER TmmEL ~ !LEV. Dfo'J'" LOG DESCRIJtTIOH OF t.lATER1ALS 711. 3 . I, " Quartz Diorite. as above ',,-:. " I, -\,-; .;-.. \-, /-11 !dO I'''' -I--L":' I .. '''~7::: fracture, 40°. slight alteration I _ I ~~:j 4~ ~!.~ - - - - --- - - - - -- '. - - j - -, .- - , N PA Form 7iTc!t) !.6.Pp.. SOl!> _ .• Bottom of Hole .. I I' I 12/6/73 REMARKS -- :'l:>.f.,' 1 i 1 I J •. j I .\ I I 1 I i I -1 I i - - " j , i HOLE NO. ~'H-:, H::N;-..;.;,O:;,.,: c_"'...;,.,: _______ +-__ -...:S~'!..!.1~ ET 1 Of t1 E 9:'::5 SURFACE ELE:V. 1000.1 SU:\,1:--.4ARY LOG H 0 L E NO. DIJH-107 PROJECT S::ETT. (C~;',T[R U,,;E\ CRill. OATeS' STAAT 11/12/73 CO;'.,1? 11/22/7:3 DEPTH OF HOLE 340.2 DEPTH Cr: OVERBURDEN o OIAM. OF HOLE NX ceRE RECO'lERE:O ROCK DRILLED 3';'J.2 340.2 % RECOVERY 100 J.iJGL::: FROM VC:ilT. 3:° ~::.IUTH FRO~ NORTH 3100 CCM?ILED ;)Y. ~----------------~--~------------------~~~ AREA 30 -I' ~'. .. ' I .,:-1 ~ '. \'.". ' 1':' '. ' , i " '. .1; .. --',-'/\ , , -- " , ,/ ..... -, ' . ......: " D!SCRIPTION 01' MAT!"IALS Top of Rock Quartz Diorite, light colored, granitic, black in white 60° joint, Fe stained ~ joints, 35°-65°, tight ) iron stain at 2l.l o joint. !oS'. tight .., ( .;hear zone. ): 10..;",-t [~~t ;Olnt. 1i0 • ~5~ joint in~ (56.:" t,) lil.iI" t [gil t C. Rasmussen 12/6/73 REMARKS set L<Jsin~ to :-).) t I..~O re len gt hs 0.3' tu ~.n' !). ~ I r ,) .!.. : " ' ,"(1 rl .. ? 11.2' I '," ~: ,- ,,' L~n~t:l;-; to 1. n' ·0 j '. o 1 ~ ~ ~ 920.2 lfJO ~ UPA Form 71. tl 1 J1. ,joints, tight. 45° 1..1 ,_\ P_R_._~_e __ ' __ ~_S_-=-_...;P_R;.;..;:O..;;J.::[:..;:C;..;T:..__c..:,.' '-'-_ ....... _-...;;,.._...-;_~..;-______ _r'I_O_L_£_, ~_,JO ___ -" _' -_i' " . N qC.o~h SUMMARY LOG H 0 L E NO. DUH-I07 E 90405 I SHEET 2 1 SURFACE: ELF-V. loon.l PROJECT SilETT. (CRATER LAKE) DRILL OATES' STAR7 11/12/73 COMPo 11 /22/73 DEPTH OF HOLE 34D. 2 OEPTH OF OVERBURDEN ·ROCK DRILLED 340.2 CORE RECOVERED ANGLE FROM Vt:RT. 37° AZI~UTH rno~ NORTH AREA pmJER TUNNEL [LEV. CEPTM ~ DESCRIPTION 0' tllAT!AII.LS 100 920.2 1 iil \ --:,. ... I ----C..... __ \' ,. II- I'\.I -,:;:." K0-' 1/-;::::. l:-lO \/ -' \ /-, '/. / rJ PA Form 7 (T t) APR. 66 I~S, Quartz Diorite. black & white joints, several coarse, joints, tight, 40'-1)0' joints, sericitized, 00' '> shear j tight zone, numerous joints, (144.0.' to l49.S') joints, numerous, broken joint, tight. 30° o DIAM. OF HOLE NX 340.2 I J I ~~ RECOVERY 100 CC~PILED 3V. Do\TE R.EMARKS core lengths 0.3' to 2.8' core lengths 0.3' to 3.8' Cl)re lengtr1s O. 3' to 1 •• ,4 core length;.; n. l' to .2. 9 I L('1rt: It.:n~th~ I). ~' t l' _. '"' core lengths O. 3' to 3.:2' 12/6/73 l -I 1 I 1 - - I r~OLE tiC. I , '-~. S U~.ilMAR,( LOG HOLE NO. DCii-107 I SUR,rACe: ELEV. lOon. I PROJECT S:;~TT. (CR/\TEP. L.~~:E\ DRILL DATeSl STA.H 11/12/73 CO;',,? 11/2//13 CEPTH OF HOLE 340.2 DEPTH CF OVER3URCEN DOlAN. OF HOLE t~X ROCK DRILLED 340.2 CCRE RECOVERED 3t:O.2 -/0) R~COVERY l(jfJ ~~~~~~~~-~~~--~~~~~~~~~----~~~--f--~--------- AREA 840.4 0 10 .) / ~Z:~UTH FRO~ riCRT}i 310 0 CC;';?ILE~ Dt'. DATE PO\·jED. TU::~,[L D!SCRIPTION 0 F MAT E!IIIALS Quartz Diorite, gneissic, medium grav joint. epidote & pvrite on sllrfac-e. :'0 0 joint, pyrite w/ Fe stain. 30 0 joint, sericitized, :'5° joint. pyritized, 45° w/sericite joint, slick, chloritiz~d joint. tight. ,-hloriti7.ed. 4n° joints, tight. i'C' -it,dnC'd. iiI)" ~ninr-. ~ignt. :...) , ~ I' ... ·'. .., i : ; joints, tight, 3n° _ ':'5° REMARKS \·ort.~ lL::.n':.!.tll~ I I., 1 t () .::. () , ('ore len ~t 11S tn .!..h' '.' ,"I r, I L':l-":' t :1"": t (1 t. .,', ,'\ 12/6/73 , 1 --I -1 I i , 1 I i J j - - - , N PA Form 7IT ,-t} I l~ A __ f'_R_. _6_~ ___ • ..... ,---!-__ .....:P~R;.;..;;;O..;;.J.::::..;;C::...;T ___ · ..:..' .....:.~.~.....;... ___ ~ _______ 1 f.fOL ~._~~ _ ~ __ . __ SUM~ARY LOG N 941lRFi I SHF:ET 4 Of,;, HOLE NO. DDH-I07 E 90405 lSURFACE ELEV. 1000.1 PROJECT SNETT. (CRATER LAKE) DRILL DATES'START 11/12/73 COM? 11/22/73 DEPTH OF HOLE 340.2 OEPTH OF OVeR8URDEN 0 OIAht OF HOLE NX ROCK ORILLEO 340.2 CORE RE:COVER::O 340.2 ANGLE FROM VERT. 37 0 ;.\ZI~UTH FROM NORTH 310 0 AREA POI;JER TUNNEL ......... ELEV. ~6JH LOG D!$C"'~TIOM 0' IllAT!AIALS - - - '-- - - . - Quartz Diorite, gneissic, dark joints, tight, Fe stained joints, crushed zone @ 305.5' joint, chloritic, 55° joint, coated IN/biotite. fiO' Bottom of Hole ~~ RECOVERY 100 COMPILED BY. 041'£ REMARKS core 1engt hs to 1.3' core lengths 0.3' to 1. 9 ' core length" t () 2. ~ , 12/5/73 340 . .2 - 1 ! - - j J - - - ~J PA Form 1(1 t) 1 L.A_P_R._6_!; __ ts_--1_......:...P...:..R~O:.:J:.:!:..:C=-T.:-....,..:.:.,-'-T-'-', :---"""", . .'_. _...; ....... ,_,._:.,. _'_'00>.-' _' ____ -"-r-lOL ~ NO .. -~ S UMMARY .~OG N 93451 r SHEff 1 Qf 2 HOLE N DDH-108 E 86209 [SURFAC£ E: LE:V. 1022+ ! PROJECT Snettisham (Crater Lak t PRILL DATES I START 4 Oct 1974 COMPo 10 Oct 197 D€PTH aI OV£R8URo(N L5~ , wal:€ ! DEPTH OF HOLE 259.)' OB DIAM. OF HOLE :-.IX ._--. ..; ROCI< CRILLED 100.3' CORE RECOYERED 100.3' % RECO'/EAY LOO , ! . - ANGLE FROM VERT. 0° AZIMUTH FROM NORTH ---! COWtI..!O a',. V:lt DA":'t: , 7 :10V lY74 1 OIST ANCE S: VERTICAl... -~ HOIttZONTAL. !~~~:l~ ~ O£~I"TIO" Of fMT!"'ALS c~1 REMA~ItS LOG ake Surface I I 1303 ; 6h 1. i) i . -"'L-- I '7' water ? I I -L I , ~-, ..,~-- i 159 "-boulder. I quartz -d~or~te gne~s~ 16 T":1r14 ',&:'. Top of Rock I /'" -[Juartz diorite vneiss 12.rev. 1 i 'h t 1 v! .>; \,;eathered, hard. :na~sive; lighth' jointed with occasional lavers of fine grained marics. I I broken zone 163.5 to 163.7 solid 170.)' to 176.4' J-I-':;""..,-..j 5· clean joint ~':.:. solid lili.4' to 190.S' " , l~~~\;' :. ~.:'I -'. 'I., I ., ~~ L'l5.~' to l."q.~'. ::1etiiul:1 ~r:.line';. ~. ~ '. d' - . ~ .... , I I _' light ~re\' .lei ic ~elss-ver': : al:1~ .-, .;'.. \ ~ true t u re . " , 1"-' " , -' /1 • ... I. I" I \ 10° clean joint solid 190.8' to lYli.l' 0° clean joint sO"l id 191i. l' to 202.]' strong :nafic zone 191i.O' :o20rl.5' :;' L lean joint so lid 202. J' to 231. 0 ' ~:; .: -~li. J'-he31ed joint ,,()? 1).[ ::rrn 11 _,~,.I l:hlnritt:' ~illtCr --, " \ .' . -, l- , • ? ~) . ~~~~ ~ ;olnts. ~ ) 1 . .:. I t \' .2 I ~. I'. (111, I r t' ...: ( r i q '.!. t· r '-. 'i ld~ open jo ints 70?·" ::1inor ,·hl"rlr,· ~illL'r :-iOlicl ~':'.2.f1' tn 25().5' r Hole drilled from float in ~ I Crater Lake. Water surrace· 1 fluctuations up to ]' dail~ I made length of drill runs ' I . : uncert:.lin. [Xdct c' le\}3t il)n ~ of to r <.J t' rOl~ k In ~n~)\..," . I ,L1rteeJ '\~ ."01""L' ~ t~. ~ i....·;lS ing [1.1 tl)·""1' no preS~tlrt..-' tL .. ~t~ 1 j 1 ... ~ "1 -, 772 ~ rN~PA~Fo;;';;'r",~~9-------·---..L.....-.l...--"""TI--------lt~ ~A_P_R_6_6 __ 7_rr:_~_._tl_..L..._..:P .. R;.;.;:O;.;J;.;E:.C;:..;.T __ '~_!l_L'_tt_:-_: _r:c (,'r,lt"r 1.lk,·1 I HOLE _N_O.:;.._·)_I)_'I~: liUMMARY I'cfG N 93451 I SK~f!T 2 OF 2 OLE N DOH-I08 E 86209 [SURFAC£ E:LE:'I. 1022+ PROJECT Snettisnam (Crater Lake DRILl. DATtS I START 4 Oct 1974 COWP. 10 Oct 19/~ DEPTH Of' HOLE 259.3' DIPTM 01 CWPlUltD€N159' water OIA ... OF HOLE NX ROCK DRILLED 100.3' COM RECOVERED 100.3' ... RECOVERY 100 I , I ANGLE FROM VERT. n° AZIMUTH fROM NORTH --COMPtUD BY.Fa t DArt DISTANCES: V~AL. --i HORIZONTAL. 7 Nov 1974 i - (LEV. DD"nt ~. D(SCI'I~TIOtil 0' IIMTtRIALS ~ : LOa COM "~MARKS 772 250 -;-....... . 20· . : · .l open Jo~nts ~ 10 -same as above 1 . ',/ ~ -\ .. 251.8' 60· healed joint with pyrite .:" .... r IS· open joint :l 762.7 259. )-~-,-~ ..... 100.3' rock total~59.3' J -Bottom of Hole .. ~ I • , ~ J , i I 1 l I -I , -. • I j I I -. 'j i ! I I ! i i . I i J I I ! .j I I ~ , ~ , '-' i ~ , ....... ..., ~ -I .' -1 .' I ~ -.., I ... . -! ~ ... , I -....... ~ ... I \ j i 1 I ~ , , I 1 I -I I :l ~ : -I 01 I , ~ l -- ... "PA 'orlll m ... , APIit. U " PROJECT S[1<' t t i "il;lm «('r:'tc'r 1..1 ~ L') I MOLE NO. )ilH-111~ I SUMMARY LOG H 0 L-E NO. DDH-I09 ~NIiI-~93;:.:;:6~8S::....-_____ 1 SHEET 1 OF 3 E 86244 'r SURFAC£ ELEV. 1022+ PROJECT Snettisham (Crater Lake DRILL DATES' START 12 Oct 1974 COMPo 19 Oct 19/~ D€PTH 0' HOLE ~77. 7' ROCK DRILLED 194.8' 76,4 watte.r O€PTH C6 C71!R8URO€N 6: 5' OB DIAM. OF ~Ol.E CORE RECOVERED 194.3' % RECOVERY 100 I --J ~""_GL-=-E=--_FROM __ V_E_R_T_. ---=.o_·.....J.._AZ_IMU'T __ H_F'ROM ___ NORT __ H ___ --..4 C01M1t L.fO 8l, P3t OAT! ! DISTANCES' VfJmCAL.. - ELEV. cen.~ 1022 0.0 LOG .- D£SGRIPTION Of IlAT£"IALS Lake Surface I ~ water , "'"V..L 945.6i76.4-~ __ ! .~~"'" .,<Ou~u'u cu <.;uars" gra~n"'o g"" ~l.. I : . ~~'C!. Cobbles & boulders -quartz diorite 1'30-S·~· ~dss derived. II L939.1iS2.9 l~~ Top of Rock I / -Ouartz diorite gneiss, black to r ~~~_~:~\\ dark.gray, lightly weathered, har~. I • ,A \\masslve. 1 9~ , " \ Disseminated pyrite 33.5' ~ .... _,' 'Closely spaced open joints \.' ~ -D~sseminated pvrite ~~' I '-I)pen joints -.....,-:;---:t 1', _'. . ~_,:~I 96._ to ~6.J mlnor epldote (:) \ .. itih 113.45' offset quartz seam 7 ~ov 1974 REM.RKS ~Ol.E.· aTlLLEm C-:-cmrTTVdL '" ~rater Lake. Water surface < ~luctuations up to 3' daily l ~de lengths of drill r~ns ~ !uncertain. Exact L'levation ~ pf top 0 t ro,'k 'lIlkn''''.'t1. ~ I.,) ~. \ I -f.:n, () , open joint '.~ 40° 70· \01 light gray greasy gouge (?) open joints 0° to 70° ~oatinr I i pO-............. ~ 119.8' minor disseminated pyrite I I 15· open jOint in quartz zone I .J 501 id 127. 3' to 275. 8 ' I I J . - HPA For", APR 66 1(T .. tl PROJECT '"c·n L~il.jm ..:.(.;.\'.;.r-"!.:1,:;.;tc;;...:...r..:,~.a:.:;k;.:;".I.) _____ ..I:..:H~O~LE NO, :lil'!~ ~ SUMMARY LOG HOLE N DDH-109 86244 93685 PROJECT Snettlsham (Crater Lake DRILL DATIS' START 12 0€P'nf OF HOLE 277. 7' D€PTM OF CW!R8URD€N 6: 5 ' DIA ... Of HOLE NX ROCK DRILLED 194.8' CORE RECOVERED 194.R' .,.. RECOVERY 100 ANGLE FROM VERT. o. AZIMUTH ,.,.., NORTH CQMIItLlD 8Y. Pat DAT! ~--------~------~~------------------------~ DISTANC£S: VDmCAl. -.... IZONTAl. ELEV. DEPTM LOI 852 752 "PA Fo,,,, 7'"' tl APR 66 " •• O£SC.UftTION Of IllAT[ftIALS same as above solid 127.3' to 275.8' disseminated pvrite "202.~' healed 60° joints with 0.1 mm j 208.4' '" 213.3' 2mm seam of disseminated pyrite 216.0' to 216.5' ! I I I i i ChlOrite: I ~ I I I i 7 Nov 1974 REMARKS -KO. 0 -.. i 1 , -1 1 j liUMMARY lOG N 93685 1 ~W~F'T 3 OF 3 iO'L E NO~ DOH-l09 E 86244 -r SURFACE E:LE:V. 1022+ PROJECT Snettisham (Crater Lakt DDRILL DATES' START 12 Oct 1974 CO"P.19 Oct 1971 . 76. 4 wate DEP'Tt4 OF HOLE '277. 7' O(PTH aF OY!R8URO(N 6.5 OB DIAM. OF HOLE ~x ROCI< ORILLED 194.8' CORE RECOVERED 194.!-\' % RECOVERY 100 1 ANGLE FROM VERT. AZIMUTH fROM NORTH co .... n.£D 8l. P:H DAn 0° I i DISTANC!:S: VEJmCAL. -~ HQIt'ZONTAL. 7 ~ov I 1974 ! 0fP\'M ~ D€SGR'~T'O" Of IllAT['-'.LS '"4 ; ELEV, LOG COM RE ... FtKS I 752 270 -~ same as above .; '1' KO.O 1 ,--1 ; -/i"~' \ • I -j -, 3\) --• 4So w light gray ( ?) co~tirfg '277. 7' J 144. _ I'. i-" ,-greasy gouge \ ..... I 1 -----01 :2:lo...-....: Bottom of Hole .; I : I I ; ~ I · i I' I I 1 ! • ! I I 1 I I i I I I . 1 I I -~ . .1 -, ----:l ... -1 ... -; j ~ 1 1 -! -. ~ · -! . j j · . I I I NPA F?rm APR, 66 7er .. t) I I PROJECT~nt'tc [-; :I~ I' rH,'r ",Ikvi 1 , 1~ : HOLE ~0, "11_'",, ~ ___ .......... ~; ____ ----J N 93549 SUMMARY LOG H 0 L E NO: DDH-110 E 86220 I SURFACE E:LE:V. 1022+ PROJECT Snett1sham (Cra.t.er Lake DRILL DA~I START 20 Oct 1974 COMPo 25 Oct 197 . loIat:er .L~~.U D€PTH OF HOLE 271.1' O!PTH C11 alUtlUROEN OB 6.9' DIAM. OF HOLE NX ROCK DRILLED 120.2' CORE RECOVERED 119.7' % RECOVERY 99.6 ANGLE FROM VERT. o· AZIMUTH FROM NORTH cow.UD BY. Pat DAT! ~----------------~~------------------------~ DISTANCES' V£JmCAL.. -i HOIttZONTAL. 1-_ ELEV. DlJI'rM L O. 1022. ( 0.0 DUCl'I~T'OII 0' IMT(RIALS Lake Surface 8 Nov 1974 R£MARKS --.. - 878.0 144.0 .;_ r . WI .~ ,; -lij~'" water rubble; Quartz diorite bOulders, cobbles, gravel & mud 101/ wood recovered Hole drilled from float in1~ Crater Lake. Water surface fluctuations up to 3' dail made lengths of drill runs I uncertain. Exact elevation ~ of top of rock unknown. ._ I 0' 871. L 15~ Top of Rock 1[ :.' :.: 0\ Quartz diorite gneiss, gray, 1i g h 1 1 y J 50~ loIeather:ed, hard. massive. I ! -~:,./ High biotite-hornblende ZOTl€ I i ~, ~, '.150.9' to 154.2' 1160-...: ,:.', LOpen joints -in strong biotite, zone.~, I ;~.: solid 154.2' to 179.2' . " , 1/ -, --... ..- :17O--C~ : [ .;~ '[ ! ~ ~' -~~~1 · I/~ · 180...:...-(\ . ...J'o";"~ I '-, 1'/ I '-I, · , -' -/'1 ~'~~~ ", .' I healed 80 0 joint 101 strong muscovit~ : 50 on biotite seam ~ 179. ~' I I solid 179.2' to 271.1' i 19 20 Qll'Htz seamw/chlorite 201.2' 23 782 240 NPA For", 1ft tI APR. 66 " PROJECT '>nett i"h3m (Ir:1tl!r LJi.:.e) ~----------~--~~~~~~~~ Started :\:\ core casing to 152.)' KO.OixlO-4 KO.()4\lrJ -- L44. ()' j . ..j i l ; HOLE NO. ;1 1);:-1[, .j SUMMARY LOG H-O-L E NO. DDH-110 N 93549 I s..,~ 2 OF 2 ... ii-E....::8~62::.:2~O------[SURFAC£ E: LI!V. 1022" PROJECT Snettisham (Crater Lak~PRILL DATES' START 20 Oct 1974 COMP •. 25 Oct 197~ water-144.0 oernt 0' HOl.£ 271.1' D!PTH aI~"O€MJB 6.9' D'AM.O# HOLE NX ROCI< DRILLED 120.2' CORE RECOY£RED 119.7' % RECOVER., 99.6 ANGLE FROM VERT. o· AZIMUTH FROM NORTH -COWI~D BY. Pa t DATE I DISTANC£S' VERT1CA&... -• HClttZONTAL. -_.---[L£V. DEPTM Loa - £)€!CI'lftTIOM 0' IlATtRIALS same as above Bottom of Hole I I I I , 8 Nov 1974 ! .RE ..... KS -4 I-K(0.01XlO leftD.S'in hole I 1 J '1 -', , , 1 1 . [ ~ N PA for", 1fT ., .PR, 66 .. PROJECT Sn e tt is h a_r.1_( r._, r_:1..;.t _e r_L_a k_e"';') ___ ......L.1 .:...:H~O:..:L:..:E:....:.N:..::O::..:.._D_[)_H-_l_l_r l....J ~ , ~UMMARY ,~OG N 937~,a -SM~~T" OF'-8 l OLE N . DH-'lll E 86720.3 SURfAC£ ~LI!V. 1415.9 1 PROJECT Crater lake DRILL DATES-START 29 July 82 COMP.21 Aug. 821 OEPTM OF HOl.E 747.5 DEPTH aF CW£RIUROEN 0.2 OIAIII. Of HOLE NX 1 ~---- ROCK QRILLEO 747.3 CORE RECOVERED 745.9 % RECOVERY 99.8 j 1----- ------ ANbLE fROM VERT. 00 AZIMUTH fROM NORTH COWPtL.[O BY. OAT( , N/A i ~----I rnSTANCES: vewnCAL --~ HORIZONTAL. --E. Gilbert 9/1/82 .. 1 I ELEV,IO£PTH r= DESCRIPTION OF MATERIALS REMARKS 11.415 .<1 Surface CORt ! I I I I 10 1\~1/ QUARTZ DIORITE GNEISS: med. gray, i .. -1, .... 1 banded, med. grained,hard, lightly '/ \""1 weathered,lightly fractured. Frac-I .......... .. , I ... ~ tures clean and rough; occ.iron -I ' stains and pyrite on joints; slicker-_IJ ..... \ ... 1 ' 10 __ : _I" i ~ sides rare, occ. healed breccia. , ,':.'1 -, . ~ ..... I... < I ' , -~,~ Moderately fractured 13.5-14.1 wit~ -~: \, '\ gray clay gouge • '7f ~ :/_ I ..... ' , ,20 ___ ~ __ -' of-Gray gougP and pyri tP. 19,6 : ~~ Iron stains and pyrite 21. 5' --' -\~ A ' , 23' 25' _("':", CldlC • "..' .... -' ! _I -' 'I , .... , / ..... , ... 20° 45° , , fractured 73-78 , , fractured 97.5-99.5 -, I 0.2' silt at top ~ RQD 97 I L RQD 95 ~ost DWR at 19.6' i -RQD 100 L I I I I , r I' I I I I- I ~ RQD 100 50% DWR RQD 100 0% DWR -RQD 99 of LFractuse angles 'Jar 6 I 10°.50 with 30°-45 i dominant I I -RQD 9;-I ~ I i I -RQD 95 ! -RQ[ ~QO I I I L -RQD 97 : ; rock, 1 -1 -' . _J - frOI" -. .... ... J -! .. I 1 NPA Fo,m I I APR 66 7~~.~ PROJECT Crater ~ake I HOLE NO. :Ci<~~; $UMMARY I~~G K 93729.8 HOLE N . DH-ll1 E 86720.3 PROJECT Crater Lake DRIt..LPATES' START O€PTH OF OVERBURDEN I)EP"no4 OF NOLE f---...=.-.=... ---- ! POCK DRiLLEO 1-------_CORE RECOVERED ~""Le: FROM VERT. AZIMUTH fROM NORTH 015T .lNCE S: V£RT1CAL. i HORIZONTAL. : : .~I I ELEV Of~'LOG I DESCRIPTION Of IllATEA'AL5 , I 'l3IS.Sl l00 -j~/I ... QUARTZ DIORITE GNEISS: idem. ~I ,)1 , t 0':"1 --' '" -..., ,-\ I,. I ~ -~~-SllckenSldes at 107.1, 30 . .,. ~ ,/ 1) I I." \ : ' ... 1, ' '-/~ I 1\, , I "., I,. \\"~-! --,1" I: -\ ' , ...... /-1 ..... r ~,I(; I I ;'I\;"cidic, high quartz content .... _l /; ....... , -1'\/ 1-, .! \/ -, .... I / ,,/.\ I -/ ~-Thin chlorite stringer at '! ' . ('\ ~ / .4~ __ /_,' -~" . ..-I , , , ~ , --, , / /, : '. I ~5Q.. ~,''''\/ 0 ~26.;. 7 ~::- , ~ _:·loderate ly to hi qh ly fractured, 1259.9: -~ :5l.2~156.0: occ: gray clay gouge ! ~~ ~6C ~~".I l243.1 I I -'\_-::--fracture, healed , I I I -: -1,:-: 1-... / --/ /_' '-'/, I " -;,,, '; \~ /i '/ '" '\. ~\." -,~ ~ _~ _"oderatelj t::J highly fractured. : '" -~ ~~2.3~~8:.0: jellow-brown stains ; _~.~ 3nd S11Cks . . :234,)/~ I \ \ ... COM I I I I -1< _,~ "ocer?tel:; to hignlj fnc.Jrec at \ ~. ~Z6.4-~94.;: red-brown clay gouge'i 122g.~. ,_ ~. slicks, and ;:;yrite cornman. .9~~ ; ~-Fraqrnented and soft ~92.9~~94.·1 1221. ! High bi{)tite content zone. ;'lode-rately fractured 197 .4~:9\l.': 1215. --. ........ ·slicks.,golIge, 3'ld cl'llorite corrrnon. r--...l-.;J,j4_ MPt. ''I'''' A?R.,5 ·r-;,t' '------.. _." -~ PRCJECT I SN~~T ? OF a ! r SURFAC~ EL.EV. 1415.9! COMPo I D'A". OF HOLE 1 ~ RECOVERY 1 ! COW'ILlD BY. DAT! i ! REMARKS ! . ~ 0% DWR j , • -.; ! :... RQD 29 ! Fracture spacing :O~~113' ·1 ! -RQD ~OO : f- -RQD 90 , -RQD 92 Fractures near hOt-izontal; ~ Gouge near vertical. : -~. ~ 99 I ,-,oints dener}lly cle,"11 and rOugh I -ROD 22 , 7' ! 0.9 ,-uri:: lJs~ ~'::~._-~}~. ,-RQD 10 Solid core 194.7:197.4: : hard , HOLE NO. ~~;-. -- -, ~ .. ~ .... , 93729.8 86720.3 PROJECT DRILL DAns· START ~ __ OF_~HOL~E~ ____ -4~0!~~~~OF~~~~8~U~R~0€~N ______ ~D~'A~M~.~OF~HOL~~E ____ _ ROCK DR'~_EO _____ -+-=.C-=.OR;,.....E~R....:..;E=_C;:...O;:...V.....;E;:...R.....;E;;.;:D~. ___ ---I-.. _R....:..;E;;:.C::.;O::....V;..:E:.:.R,;..;,y ___ _ AH~LE rROM VERT. AZIMUTH fROM NORTH CC)WIIUO 8Y. DAT! . HOItIZONTAL O£SCRIPTION 0' flMT(RIALS ~(:~'I QUARTZ DIORITE GNEISS: idem. -\ :,. , JI \ \J~~ Broken zone. vert. fracture -'/- 2l(L I ,~" ~, -" ... \ :1 -I - ." ....... '.,... '·1oderately fractured 213.8~227 .5/ .~~ :-S,,,,-~ ''..,.1 t ,,\ ... , 220 .. ~ .~ ~ ""<1. / .! " '\~-'Shear zone 227.5-233.5. highly 11188.4230 ~ fractured. Gouge 229.9'-230.5'and ~ ~232.0:232.8f !1182.4 ~4= , . . .... _ Gray clay gouge 235.6' ~ ~~ , .VI\ \. ! 1175 . 8 2 4Q_~-zf --8-~ ; Shear zone 240.1~247.6~ highly :~ ~eathered. IYello~-brown clay : -: \ -"" I gouge 240.4-242.1. I r ,"- '1168.3 .~ 1 250 . ......:1/'....:1 -I I ~~ Shattered 251.2~252.S' · ~ i --:'J-/ -,,~ightly fractured and lightly weath-I I ~~;: I ~red below 25-2.S: '26<L ~ ... I ... '/: --,_ I' \ ... " ,,: I --,,' I; " ... 1- ' . --; .. ,I, ~ ." ..... ' r I : \ ... I"; 2~0 ~ 1/ /1 I __ ~,-/-... I ..... ,,-" I , ,': ,,\ \--1 -I", \ I ~ --/ / ' · 1 1--'" · ~~! :28L~ ,-::~ ... ," "," I " ,-,I " ~I:.:':' I -\J \ I /, i ~-,>:'1 · ?gro -I,'" ;-d I '-\J-.-I'~', '. ' I .. I ' -i, l /,,\_ ~"): .. ')' ..... 1-1 " j ....... ,'.t .\ . ...;, 1115. -.... / " R(MARKS r RQD 97 r -ROD lOO I -ROD 91 ! I i , -ROD 88 -R~f DC " ,0.4 core loss ~32.0-232.c· -L-~Q2 93 in ;jougE:: -RQD 94 ~ -ROD 33 . -1 ~Core broKen in thin sliveri i I I I MPA F'lr'" . 1 : I I AP " "-6 1r ..... l~_'. ~._---.;~!!Q~!S_T ____ ~~::...-~~ _______ ....01..,.;:...:...::;=:........;..=....;;..__=_..:..:.. ........ . ...., _ _ CrJter LJh.e I HOLE NO. :H-::: N 93729.8 ~UMM~RY Ib~G .. OL;-N . Dh-lll E 86720.3 I I PROJEC r rr-rlt.,r-I "i<., ORILL DATES I START j----'---lOE:PTH aF 0VEA8UROEN I ~T~2F_~LE POCK a~'u..EO : CORE RECOVERED ~--------"--._--- ~\..Lr... :~C'" "ERT. , AZlMUTH FRO .. NORTH i r-----_ .. .--.-- I Ol~i :utCE~ . v£RTICAL. ~ HOftIZONT"L. I , ELE'I . INI'tIGI ~~'LOG : '"-----_.- -I' I' , , . -_." : -' \ DESCRIPTION OF MATERIALS ?R': ... £:r ,"··.r -_._----_._--_._-- IC~f~ ( SH£E:.T <1 OF 3 I I SURFACE ELEV. 1415.9 ] COMPo I , 01"". Of HOLE I I • % RECOVERY _. COWtUO 8l, OAT! REMARKS -:;I.i~ :00; 3G4.:-4G5.4 ; ~UMMARY I~~G N 93729.8 I OLE N . DH-lll E 86720.3 PROJECT Crater Lake DRILL DATES I START DEPTH OF HOLE O(PTH (IF CW£RIURO€N ~---- POCt< DRILLED CORE RECOVERED f--------- : AN~ L E ;RQM VERT. AZIMUTH FROM NORTH rr>'ST-.'~CE-S-:-VERTICAL ~ HORIZONTAL. I: ....... D£SCRIP-TION 0' IlAAUJtlALS ,. I~~~ ~~~:LOG COAl . 00 -1'-"-I .. _I,.. \~ QUARTZ DIORITE GNEISS: idem. I ,v,";.,. . I --I-I . -I," , I '!:'I';~ 1 SHEET SOF 8 I SURFACE E LEV. 1415. ~ COMPo DIAM. OF HOLE % RECOVERY COIiIPtLlD 8Y. R! MARKS : ~ I ~ R0D 96 I core lengths l.O' to 3.0' ,...., OAT! , • '·0 4---'4 1 4" I _ ,.J l.;u .;.u'; • j. -..J • ~ -RQlJ 96 oj . , 1 ! : i , -I joint spacing varies f rO~1 O. 2 ~ ~ 3 . /: j v (J. 2. E' - r : I I' I :.-RQLJ 93 -~l<J I' I [ -I ..... ~ :.. . :--::' l.::: . ~ "PA ~'1"''1 .,... tl APR b6 ' , .• PRCJE C....;T ____ .:-'...;-J;;.:t;.::t'..:.'-_;;..;:.;J~.;,;',--___ _ 1 HOLE NO. • J HOLE I PROJEC_,-e"WLa,. COIoIP. ~ ~F~_£ ___ -+0E:=-=-P __ T..:....H_aF~OY£R.=...:....::::....:..=8....:."".:....:..=.0€=N-=--__ -t-=D~IA...:..:M..:..:..:.:.....:OF:..:.........:HOL:...:..::.::=E~ __ ~Q.(_:K OfHU.EC 1-~~RE RECOVERED .... RECOVERY , Nji...LE ;-~VM VERT. AZIMUTH FROM NORTH COWtLlO BY, OAT! ___________ L--~---_______ _+ . HOAIZOIIITAL 815.9 REMARKS Drill rate at ) min/ft. ',0 natural i.Jrt:a~s tJeL.-It:t:! 492.9~:9v.,"' , -RQu :00; 505.5~525.41 ! I :-RQD :00 ..., .. .J :f . 1 tilPt> ~')'''' \APR 1>6 PRCJE:::r (l~.·:r ,Ji,' 'HOLE NO ~-------------_____ ~I~~~~'~~~ , SUMMARY LOG N 93729.8 . H 0 L E NO. DH -Ill E 86720.3 PROJECT Cra.ter. Lak DRILL DATES' START OE:PTH OF ~£ DE~ (6 O'4RIURO€N .. _--- POCK ORILLfO CORE RECOVERED f-----------~ AH\:..LE n~ON VERT. AZIMUTH fROM NORTH f----- OIST.~HCES' VERTICAL. ~ HO."IZONTAL. : .... ~ ELEV. IQEP'T)oIi LOG D€SCRI~TION Of IMTtl'tIALS C~( 815.91600 1(;-... -1 QUARTZ DIORITE G~EISS: idem. ~\.' I-I 2' . ~ 0.05 gray gouge at 603. mlnOr - shear zone 601.~-604.0'" I -I/_"~ 1 ! ~I""\.!.I; 1 610 1\', ~ 1).1 -' -' ! ~II';-'i ,;.,1-" 1 SH£~T 7 OF 3 IsURFACE E LEV. 1415.9 COMPo DIAM. OF HOt..f • % RECOVERY [ .J COMPILED IY. DAT! I I . , R!MAI'tKS F' , -RQD 90 i I-1 , . Los t 0.1 core between ., I 603. l' and 603.3' '"1<Q[) 96 -. : I I : -ROD :00 -~Lil! 94 Joint spacing 'lanes frol:- O.1-:~5.:; avg. 3.~' i-RQD 100; 631.9:662.3' I i , I· I r-, ! -QLiO 9- i ~ -' I -~ : ~ -~JU ~GC: b,-: ,'0:69: .6' , ~UMMARY IbOG N Q<7?9.8 I SW~~T 9 OF 81 i OLE N . DH -Ill E 86720.3 . [SURFACE ELEV. 1415.9 ~~ Crater Lake DRtU. DATES I START COMPo DEPTH OF" HOLE 747 . 5 I 0("" 01 <MRIUROEN f POCX Q~I~EC~~ CORE RECOVERED ~i..LE .~O .. Y ERT. 00 i AZIMUTH FROM NORTH I----. .. 0151 AHCE S" VPTICAl.. --~ HORIZO.ffAL. I E LEV 0E:P'n-t roGIC 1715.9: 700 ~ 'I' , .. -\',.:, I -1-r-;,,'_1 -2-G __ .-r J _ \1 . \ I, \ • /_1_, "'\. 1-1 -.1C .:-\_',,\1 -/ ~ / .... \;,_1 ~,-I -I , . I '/' i -,-.:,'i O[5CJUPTION OF Il&AT(.-IALS QUARTZ DIORITE GNEISS: idem. joint • low angle low angle low angle 0.2 ~45.9 ritA -- .... CORI ! . DIA ... Of HOLE NX 'lft RECOVERY 99.3 COWt~D BY, OATE R(MARKS ~oirlt 5paci:l(J '/aritos fro::: 0.4:2:.3: av~. 9.:' I 568.4" 7 4 7 . s:. / ~ -; :--. _ .. -.. -~-' ----"--.. _._"-----_ .. _-" -_ .. -------.:.~-~~--- "Pta. For", .• ,.. t\ APR "6 . l' 30TTO~' OF HOLE ::epth of hole , Thickness of overburden ~ Rock cored i Care recovered '. ~ot'e reco'/ered -, cr,' _J 32' 92' .. (,I __ 'J "\,-rl ~ ': ') '" . , / ., 0' .J'- 92' ::0' : 46' -'::' c '----_. -.... --~ ?RC ... ECT C.:' left in hole :::-t, . ) ~ - . 0.0 r :.Sy:c - ~.J ~ . .:..,:x~S-1..- I i HOLE NO. I 1 ~ .. I I , . ~ • ~ -~ .. j . l-iUMMARY Ib~G -fl 93767.6 ~l Of7 OLE N DH-112 E 86703.6 SURFACE ELEV. 140.3 PROJECT r .. ~tp.. , ak DRILL DATES-START 10 Sept. 82 COMP.2 Oct.82 DEPTH OF HOLE 602.1 O!PTH 01 OVERBURDEN 1.2 DIAM. OF HOLE NX ROCK DRILLED 600.9 CORE RECOVERED 598.7 ~ RECOVERY 99.6 J ANGLE FROM VERT. 30 0 AZIMUTH FROM NORTH 150 0 CO"'U.£D BY, OAT[ I I OlSTANCES: VERTICAl. 521.4 : HORIZONTAL. 301.1 P. Galbraith 12/6/82 I J ~ ... I F.~EV. ~PTM O£SCRIPTION Of IllATERIALS REMARKS 1 09. 0.0 LOG Surface CORE j irq.I.!~. 1 2 PEAT . ..,. ! I I I I I I. I I I ~ Too of Rock ,'1-~UARTZ DIORITE GNEISS: med. gray, '" ,\' I -I'':'" I _~ banded,med. grained, lightly weath- I - \ \, ered, lightly fractured. Fractures 10 _ \,,_ generally c1eanand rough: occ. iron • r ~ stains and PYrite on jOints, slick-. 1:" J' -r ~ ,I' / ensides rare. occ. healed breccia. , _ .... t I ; 1 .... -'...: i J'i , ...... , . ~ i ' -;-I /- 120 --, -I-~ I I ...... ! 1..!:-_'/ i ",' -f, '-r .... I ! I I I I ~RQO 91 , 1 - i ~ I - So 1 id core 24.6:'79.: Joint spacing varies from b.2~55.~~ avg. 5.7' ; -, - : .... RQD 100 I I I I I I I ~olid core 30.0-135.4 .... RQD 97 rio-Lost dri 11 water pressu,-e , at 80 feet. DWR not lost~ , r "PA Form r I ~ APR ~6 7~'_'_'I ______ ~P~R~O~J~E~C~T~ __ c_.r~a~t~~>r_~r.~ak~e~ ________________ ~I ~H~O~L~E~N~O~.~!)~H-~J~l~~ __ - I l,UMMARV ,~~G N 93767.6 I OLE N . DH -112 E 86703.6 ~JECT . Ccot" l 'k' ORILL DATES I START OUT'H OF HOLE DEPTH OF CW£R8UltD€H I ROC_K~ _~~IU.ED CORE RECOVERED . AH",L_ i" ROM VERT. AZIMUTH FROM NORTH f---._-.- DISTANCES: VEJrflCAL. ~ HORIZONTAl.. ! ,~ ,., [LEV. ,()(~ t LOG MSC'''~T'ON Of IiMTEJtIALS COltE ~O -4'~;-I ~ QUARTZ DIORITE GNEISS: idem. I . ~/_",-::\ ~ , ". I ..... 1, -.. V" I -IJ" I';' ~ '/~ ::' I I ~ ", • I"" \ I o-'L_.,,' i , ","" I ;~, I \ ? V\~-;-: '~.!!I::'I \ , , .1/ "/ I " . ./-, , ~ "PA Fo,,,, 7,. 'I ~p" 66 'l' P~OJECT , i I I I : I I ! SW~I!'T 2 OF 7 l I SURFACE E LEV. 1409.31 COMPo I 01 .... OF HOLE -~ % RECOVERY , ! COMPILlD BY. DAn I I I ! REMARKS , I , i l I -i , • . , -, . . :UO; 24.3-:44.4 I , ~Oln[ spaciny ~3~-~29 !aries fro!: ~.='-9.0'; d',,:!, 3.:/ RQO 96 ~. 'n '-'0 ' ~olld core o~9.5-c_J'O i HOL E NO. :..r--: : ~ : , ! , - . 3 SUMMARY LOG HOLE NO DH-112 PROJECT Crater Lake N 93767.6 E 86703.6 SURFAt:£ E: L E:V. 1409 . ~ DRILL DATES I START COMP. ~_ i H OF_HOL:....:..=..:=E=--__ -+DE==:."".....:..:...:~01~CWtR~~8U.=.R:....:.;DEN=.=:...:...._ __ _+=_DI:.:..:A= .. :.:..:. OF.=.:.-..:..:H..:..OL.=.E=--_--l i' \ , P.OCKO~LL==E~D~ ___ ~~C~OR~E~R~EC~O~V~E~R~E=D~---~~~R~E=C~O~V.=.ER~Y~ ___ J ANGLE FROM V[RT. DIST ANCES: Von'ICAl. 1149. AlJIIUTK fROM NORTH COWILlO .,. DATE I ~ ..... ZOllTAL. I II-RQD 100; 154.3-2:4.4 I ?_ /-__ 1 core u:,6.4-L4 .0 QD 100; Z34.6~Z~4.2' oint spacing 24:.6~300~ aries frOI~i 0.2'-9./ avg . . 9' -RQD 98 ..... I I ~::(QD 9- . RQD 100 I~ PROJECT I~r'ater LJ~t, : HOLE NO -~-----------~--~~~~--------------------------~I~~~~.~~.,~.-~ ,,,",< [ ~UMMARY LOG N 93767.6 OLE NO. rlH -11 / E 86703.6 PROJEC r Crater Lake DRILL DATES I START ount OF HOLE OfPTH OF OY£R8URO€N ROCK DRILLED CORE RECOVERED ANGLE FROM VERT. AZIMUTH FROM NORTH >---- OI$T AHCE5: VERTICAl. ~ HORIZONTAL. tfi-!?; J D!J'f.M ,...... D€SCI'lftTION 0' IllATtRIALS ... L()S COM 300 • / -/ <' QIJARTZ DIORITE GNEISS: idem. I I ~~ • I" f : -' //f~ t' ; ~ 1 -~ \ I I 3:0 _~ \ --.. "" . '- " - I ~ I .... ' '" ' ...... , "-- ) O.Ol'Calcice joi-nt filler @ 397.3 06 I F~OJECT ~rater ~JoI"t.: I- I I I I I , I SHEET 4 OF 7 -r SURFACE El.EV. 1409.3 COMPo DIAM. OF HOLE ~ RECOVERY j cow.LlD 8Y, DA~ I / I "[IIIARKS I ~ RQC lOa 1 ~ I f-.RQD 95 , -j i ' .;,o~~~, S~~C 1 ng :~r',~;-s frol;-: C .. -"_.-" aV9. ,-.v =<QC 9 ~ RQD 3~ I HOLE NO. -,r:-:~. . , 93767.6 86703.6 PROJECT DRILL DATES' START ~OF~~~E~ ____ -+~~~~·~OF~.·~~~·~8U~R~~~~ ____ ~~~A~M~.~Of~H~O~LE~ ____ ~ ROCK DR.~ILL~E~D ______ ~~C~OR~£~R~E~C~O~V~£~R~£~D ________ ~%~R~£~CO~V~£~R~Y ______ J ANGLE FROM VERT. AZIMUTH FROM NORTH COWtUO BY. DAT! OISTANCES: VER1'1CAL. . HORIZONTAL UARTZ DIORITE GNEISS: idem. RHYOLITE DIKE: light gray, hard. fine grained, mod. to lightly fractured. QUARTZ DIORITE GriEISS: idem. hear zone 422-462. highly weath-I ered, mod. to highly fractured. occ. fragmented. altered, occ. clay gouge. "Baked Zone" Fault, near vertical, with gray gouge 446.5' to 454.6' to highly fractured to fractured 482-491 fractured below 491' PROJECT Crater ~Jke .. COM Itt MARKS . . 1 Joint spacing 400-4~4 ~ var~es from 0.1-5.8; avg. 1 1. 4 , ! ! I 00 100 :00 ROD not significant, rock: is soft to very soft. RQD 90 spacing 46~-4S= varies from 0.2-:.~; a~~. RGD 92 J .6. RQD 94 I rRQD 95 l r , HOLE NO. ~~c-•• _ i' ~UMMARV I'cfG N q17fi7 fi OLE N DH-1l2 E 86703.6 PROJECT Crater Lake DRILL DATES I START O!PTM OF HOLE O€PTM OF <WERBURO€N ~--- ROCK DRILLED CORE RECOVERED .-- I AN<i.LE fROM VERT. AZIMUTH FROM NORTH I ,..----.. rusTANCES: VEWnCAL. ~ HOAIZONTAL. (IN. DU'TM ~ D€!C'''"ION OF fMTEJtIALS 'It 976.3 LOG COM ;500 ~ QUARTZ DIORITE GNEISS: idem. ,,'I' .... i ~"I I I :~ . -; i .1'=\ .... ,-I : ~ ! 1 5 J.~.J.!. "\' ,., , I '/"'-1 ... i -Iron stains 512~513' I t . 1L\-71 I ~oderately ~eathereo in fractures i .i I ....... ,-.. " -, - NPA fo,'" 7,.,,,, I -SHE ET Ji_Of 7 . rSURFACE E LEV. 1409.3 COMPo OIAM. OF HOLE ~ RECOVERY 00"''',,(0 BY. OA~ REMARKS H<QD 98 I f-RllD 39 ' I I I I Solid core 5~a.~-526.9 ~ ROD :CG S~4.~-56~.6 i : Solid core 54G~5-0 ; I -, ~:r'ess n:lit::f frJ(~i.rill'~ .... :: ·3.6-5~~.v , , . ,"'D()~ ~GC ~·4.6-2(jh APR. ~6 ~ P~CJECT --~--~~~~--------------------! HOLE NO. _'f:-~ ~~ J i I I j 1 1 ~ ! - I , "' ,1 I SUMMARY LOG HOLE NO: . DH-1l2 N Q.171> 7 . fi E 86703.6 I SHE£T 7 OF 7 I SURFACE ELEV. 1409.3 PROJECT Crater Lake ORILL OATES' START 10 Sept. 82 COMP,2 Oct. 82 09'TH OF'HOL£ 602.1 DEPTH OF CW!RBURO£N 1.2 OIAM. t:# HOLE NX ROC'.' DRILLED 600.9 CORE RECOVERED 598.7" RECOVERY 99.6 J AN()LE FROM VERT. 30 0 AZIMUTH FROM NORTH 150 0 COWtLlD 8Y. OAT! i ~o. __ ~T~AN~C£~S_:_~~ER __ '_~_AL~ .• _5_2_1_.4 __ ~.·_~_OR __ 1ZC_ON __ T,_AL_._ .. __ ~3_0_1_.1~~ ______________ ~f [LEY De"Ml---DDCl'IItTIOfe Of IlllAT!"IALS C~ R!MARKS I 889~ '7 600 LO. ...-~~~~-~'~~~~~~~----~~~~----------i 887.9 602.r~...-.. \~" QUARTZ DIORITE GNEISS; idem. Ih()/ ,'-1 pH 0 l' in hole J I ., .1 ~ ·1 j i .. _, , .. ., ., 1 i 1 . BOTTOM OF HOLE ~ ~ePth of hole I~hickness of overburden ~ock cored Core recovered ~ Core recovered Pressure Tests Wll!-..l2.. lOI 232' 232' 282' t 282' 432' ! 432' 602.2' j PROJECT 602.1 1.2 600.9 598.7 99.6 Crater LJ .. e l 1 ~ I : HOLE NO. In-·.~= Il SUMMARY .L;PG N 93773. 3 SH~~T 1 OF 'i I H 0 L E Nu. DH -1 13 E 86699.5 ---SURFACE ~L~V. 1409.4 1 PROJ£C r Crater Lake DRILL DATES' START 6 Oct. 82 COMPo 14 Oct. 82 Of:PTH aF CJIIER8URO€N 2.0 DIA ... OF HOLE NX DEPTH OF HOLE 392.2 ROCK ORILLED 390.2 CORE RECOVERED 310 ~ . 5 ~ RECOVERY 99.3 J AZIMUTH FROM NORTH AN('LE PROM VERT. 3C o t-----.. COMPtI;ED BY. DAT! DISTANCES: VEJn'1CAL. 119 -~ HORIZONTAL. 196. : ,~tir ;' Jut 63 D€SCfltl~TION OF IIMT!IUALS fIt!"AfltK! I .~ .. COM ELEV Of~' LOG ,1409.4 .. _. ! I -·-----t~O~VE~R~S~~~'R~D~E~~J~:~Il~lu~S~k~e~Q--------------~r----+b-.~o/--------------------- i,I 407.7' ~ -=::::-=:~QUARTZ DIORITE GNEISS: med. gray. ~RQD ~9 II -~bdnded med .. gra i ned. nard. 1 i ght 1 y ~weathered. liqhtly fractured. ~I \ ~CL ~Fractures qemi!rally clean and rough; i ~occ. lron stalns and pjrlte on JOlnt . ~ ~ 51 i,,"osid,, em: w .he"ed bce"i~. I -::';~\./I ~.loderately to highly fractured 2.0'-i • --4 3' I ' ~ ~ --:-, : -. . I =c /'\,'.i ,--~/- "1~ • :'! !-\ ; I ,'" /,,' i-~ '/~ -,'. .--', " _ .... ! -~-, ~/"" .. \-/ '-\ \' , ~ I'" , 1 ---,\' : l' -':-1 , ., ..... ! \.! : ~ • I : 60_~Mi glTly fractured 59.0-59.2 .. / • \1 -': --, -~.,,~.::.' '---, ' -' ! -, -' .' highly fractured L \.Joint ';;:;,1C1~1~ '_1 "'1' I vanes tr-Oil: .~~ ... ~,~·;v~. , • I U.O ., ~ I ~l:.._ ._\.. - - ";oint spaClllg ~4.2~~~L' _ v a r i e 5 f r-01'1 J. ~ '-o~ ".'; .), ~ . i .. = I i I ~QD 9C I - ~ ~( I I I j -1 . P~CJECT -_rj~.er --'~~,~.: 1 HOLE NO. ----------.----~---~~~~--------------------.------------~.~~=-~~~~~-- SUMMARY LOG HOLE N DH-1l3 H6699.5 3773 3 PROJECT r Lake ORIl.L OATES' START 0EP'1'H oF_HOL---=-=:....:E=--__ -+-OI:;;....;;.;.PTK-..:........;aF;..;.....-CW!R~_8U~R....;OE;..;;:....N ___ ..j..:O=-IA-.. -.-O¥~H-O~L;;.;.;E=---~ ROC~ __ OR--'LL_E~ ___ --+-=C-=OR..:...:..:=.E_R;...£=_C;:..O;:..V.;..;£~R~E::.;:O~ ___ ___+_~..:......:· R~E=-C;;.;O:;..:V;..:E~R:....:.Y __ _ AMbLE FROM VERT. AZIMUTH f'ROfII NORTH COIIIPtUO BY. ----__________ L-__________________________ -4 OtSTAHC!:S: VEJmCAl. ...... ZONTAL [LEV. MPTM LOG 1322. 1322. '00 I , ~20 , -- ~ t:. \7. :/ t , ........ 1 i .~ I ~3u_ .,\ .... ~ U295.6. ~ I ~ I ~ ... r91.~ .~ , ~40_~ 1 '284.91 ~ I -. , D£SCIt'~T'O" 0' IlATEIUALS Stron~ oxidation and iron stains 100.4-102.4' Yellow-brown clay gouge 105.0~i05 4' and iron stainin~ HEARzor.E :. mod. to highly fractur~d 100.4~l43.3; gray calcareou~ goug~ common. Fragmented-, mod. soft I 120~i.21.6' "tronq oXldation ·.'Ilth O.O~'silici .. fied~uuge ~26.6'<26.2' I ~trong oxidation, clay common with s11c~ensides ~3:.4~~32.21 and d4.3~:36.2' , , Calclfied red-brown gouge ~41.4-: iA1.6' i i~/'1 , -~ I ~50---,~.!.·] QUARTZ DIORITE GNEISS: idem. I t=~'l\ I I I -, ,-~ I t-J' 3~~' Close 1y spaced fractures l60_15I~!:' ""-, 1'/ ~ ., ~-, .~-,... :S7.8~i59.J ~ I I, I ~'~: ~.1oderately to highly fractured \ '-' . 6~ 4" -~ c;' : /".::" "_. -, -' ~ -U ...:::. .-I ~-, -4~ I .~ _ -.... I ~ 'I", -t--:. I 1/---.. : ..... ~\/ ,:2~ ... '';'' I :::::~; . . \-, ..::-, -'/ I -'"" ~ /_, \1 .. \, "' I ~ /--19~0' -;-::' 7""(\ , , .; ,.':-1 Small shear ;92.3~:94': trace of ~::";;;;,=-i green-bvown gouge. " '-' " I Moderately to highly fract~ed 236. 200 _/J..:.. . 192 .8~197. 5·" M-PA For", 1~ t' APR, 66 II P~OJECT REMARKS RQD 80 RQD 72 ~GO 29 RQD 2~ RQD 95 Lost OWR 158.0' RQD 98 RGiJ 92 I HOLE NO. DAT! j • I ! SUMMARY ,,,,00 HOLE Nu. DH-113 N 93773. 3 SM~~T 30F <; E 86699.5 SURFACE ELEV. 1409.4 PROJECT Crater Lake DRILL DATES I START COMPo ~ ___ OF~~~E~ ____ -+0E~~~~Of~~~~8U~R~0E~N ______ +D~I~A~M~.0f~~HO~L=E~ ___ , P.oCK ___ DR.-'ILL_EC _____ +-C....:...oR_E:::....-R_E:~C;....O_V_'E::....R_'E_D ____ __+%-R_E;;;..C.;...O.;...V.....:E:.....R_Y ___ 1 AH(;"LE FROM VERT. AZIMUTH FROM NORTH COWtUD 8Y. ----------~-------------------------~ DISTANCES: VERT1CAl.. ~ HORIZONTAL. 1149. N PA Fo,,,, IAP~. 66 1('T.,atl PROJECT r I!"" for ]4 E ~ RQD 98 ~~IW 95 ~ ~ RQO ;00 ~ ~ ~l)LJ 29 - ~~I~o .'<" ~ I I I " , liD iOO; 225:.-<: joint sDpcing ~ar ~s fro~ 0.9~;2.:; avg. :. ; HOLE NO. "- 93 73.3 86699.5 PROJECT DRILL DATES' START DEPTH OF_HOL:....:-=-:::.:::E:.-__ -+D!:....;:.;..PTH~....;(JF;..;..._.;CWER;.......;;;;;..8U~R....;o€~N ___ ~D=-'A=-.. -.~OF:....:........HO-:..:L;;.;:E=---- ROCK DRILLED CORE RECOVERED ... RECOVERY ==~----------~~~--~~~~~-----------4----~~~---------- ANGLE FROM VERT. AZIMUTH FROM NORTH ~UD ." DAT! OtST AHCE S' VERT1CAL . HOIttZoefTAL D£SC"IPTION OF 1M1t"'ALS .. RtMARKS jl ~~~~~~r-____________________ ~~C_a.~ ________________ __ UARTZ OIORITE GNEISS ,I j ! 33Q 1071. aoo N PA F 0'''' 7fT t, APR. 66 .,. fractured 343.0~345.3' i , I Healed shear 348.9-349.5. highly fractured fractured 363.0~365,4' :..:..j.---~=~~---::.,...."...--------BOTTOM OF HOLE PROJECT j , RQD 100; 295.1'-335.2' , JOirt sp~cing vari7s fro~ :.2-19.0; avg. 5.6 RQD 96 RQD 9l 45 0 joint with ~inor chlorite 355.2' ~L)D 95 ,'1 i til !' 1;11 concentratiol! dt RQD 9- . -~ -. --------- , . I HOLE NO. ~"-__ .l ~ ~UMMARY 1'o~G N 93773.3 1 SM~~T Ii Of 5 1 \ OLE N . DH -~ 11 E 86699.5 -r SURFAC£ ~LEV. 1409.4 ! I PAO::C~ ("tee ",. DRILl. DATES I START 6 Oct. 82 COMPo 14 Oct. 82 I I ~_~ HOLE 392.2' D€PTH 01 CW£RBUROEN PO~K QRILLEO 390.2' CORE RECOVERED I ~_'-:E _r-~OM VERT. 30 0 AZIMUTH FROM NORTH O'S·T AMC.E S' VERTICAl.. ~ HORtZONTAL. I: ...... i E LEVOf.:P'noI I I OG i : 1- ..j I ; ; -l , . i -l j ---.; D£SCRIPTION Of IMT£RIALS Oepth of Hole ~hickness of Overburden ~oCk Cor-eQ. Core Recovered 1% Recovered Pressure Tests I rrom ! 20' ! 90' :90' . 29[/ To 90' 90' 90' 92. =' 392.2' 2. a' 390.2' 387 . 5' 99.3 , DIAM. OF HOLE I 2 . .0 NX 387.5' .... RECOVERY 99.3 j 330 0 COII1PIUD 8Y, DAn I I ... I COR£ RUIARKS ) ~ ! j ; 1 I HOLE NO. _.r -::~ SUMMARY LOG HOLE N 93731.0 PROJECT DRIU. DATtS I START D€P'TH OF HOLE 9 D!PTH OF O'IIRBURO€N 0 .0 ROCK DRILLED 2 . 1 CORE RECOVERED 591.8 I AN('LE FROM VERT. a AZIMUTH FROM NORTH 0 DtSTANCES: VERT1CA&. ..... IZONTAL D€SC'U~T'OIIt Of fIIATlltlALS o 'It COM QUARTZ DIORITE GNEISS; med. gray, ~-:';~banded,med. grained, hard, lightly 60 12-10. NPA For ... ,19 t' APR.66 \," weathered, lightly fractured. Fractures generall~ clean and rough; occ. iron srains and pyrite on joints; slickensides rare; occ. healed breccia. , , to light1y traetured 0.0 9.5 I , 0.01 clay gouge ~ 63.2 . Thin-calcite seam Cd !;fl.p' PROJECT enter Lake OIAM. OF HOl.E NX 'RECOVERY 99.9 COMPILlD 8Y. OAT! ~T 11-4-82 R(MARKS RQD 88 RQD 95 RQD 86 RQD 9- RQD 95 1;:00 29 RQD 90 QD 96 , ..:1 , -.. HOLE NO. jc;< ~4. ': SUMMARY LOG HOLE N . DH-1l4 PROJECT Crater Lake 93731. 0 86934.0 DRILL OATES I START 0fP'TH OF_HOL...;....;;;...E~ __ -+-_OI;;;...PTK __ OI~OVER8U_~_ .. _OE_-..;,..." ___ -+Ot.::.-A_M_. OF.::.-_HOL...;....;...!.;;,......,._~ ROCK DR~ILL==E~O _____ ~~C~OR~E~R~£~C~O..;...V~£..;...RE~D~ ______ ~_~~R~E~C~OV..;...E~R~Y~ __ __ I AH~~E .fROM_V_E_R_T_. __ ....I..-AZ_I .. _UT_H_fRO __ .. _N_ORT __ H ___ ~ COIIIPtL[D BY. DISTANCES: VERT1CAL . HORIZ.ONTAL 1124. Minor red-brown ~l~y.~ouge with slickensides at 15 •. 1 PRCJECT Crater ~ake .. COM RtMARKS RQD 100 1 -1 1 , -~ -j ! RQD 98 I R0D :00: ::9.~-:~O.9 ~oipt sp~cing vari~s froG 0.4-7.2; avg. 2.3 I Lost DWR at :5l.1 Regain 90~ DWR @ :53 9<: I HOLE NO. , -J I I I I I I . I , 93731. 0 B6934.0 PROJECT DRILL DATES' START DEPTH OF~HOL=E~ __ --i...;;0€..;;;.....PTH_..;.OF.;,...-;;0YER....;...,;;;. __ 8~U~R.;..;0E;.;;;...N ___ +D:..I.;.,;A.-;".;..' OF.:..:.-.;.,;H..:.OL~E~_~ ROCK DRILLED CORE RECOVERED , RECOVERY ANGLE FROM VERT. AZIMUTH FROM NORTH cow.UD BY. DAT! OIST AHCES: VERTICAL .... 'ZONTAL I 1100. S 1037 . .... , .. 7metl Aft .. ,,,. -.. , , Shear zone 216.8-227.3. highly weathered. mod. fractured. hydro- CQlltl thermal alt. co~on.,graY,clay I gouge common 217-221. 0.5 gray cl~y mylonite 221~227.3' I , Slickensides ~ 228.0 fractured 235.5~Z39.4' 50 0 joint: biotite.greasy @ 264 , 40 0 joint; biotic~.flacky greasy at 267' Crater Lake RQO 93 ROD 93 RQD 97 , , ROD :00; Z50.4-4~~.' ';oint spacinc varies frorr:. 0.3'-31. ;'; avg. ~ .0' Trace calcite and chlor~ lte'''~S6' -. ., ~ HOLE NO. DH'::J· ~ 93731.0 86934.0 PROJ E C T ORILL DATES I START --~~~~~--~-----------------,--------------~ OfPTH aF 0YER8UROfN OIAM. OF HOLE LPO~KQRI'::l-E~ CORE RECOVERED ~ RECOVERY ! AN\,LE n~~ VERT. AZIMUTH FROM NORTH ~UD BY. DAn ----------~------------------------~ . HORIZONTAL D€SCAIPTIOfil 0' MATtRIALS ... CORt DIORITE GNEISS RtMARKS Trace of calcite,and chlorite @ 306.4 Trace of calcite and chlorite @ 317' Trace of calcite and chlorite 0 33:.5' Chlorite :9 335' , RQD 100; 250.4-4l~ - 47.5' flcidic lone 59.6' I , olid core 355./-3S~.: 1 1 , . .~ NPA eIY"',~ ,_ APR b6 . "" PROJECT '~rater Lake NO. JH<:4 ---~--~~~~-~--~~~~-~------------------~~:=~~~~~-- SUMMARY LOG HOLE N. DH-1l4 7 1. 0 86934.0 PROJECT Crater Lake DRILL DATES I START ~ OF' HOL£ OE:PTH OF OY£R8UROEM DIAM. OF HOLE ROCk DRILLED CORE RECOVERED % RECOVERY AH",Lf ;ROM VERT. AZIMUTH FROM NORTH COtIIPtLlD 8Y. ___ _ _ _ _______ -L-___________ --\ OAT'[ DISTANCES: VERTICAl. . HQRJZOtIITAL REMARKS -; 1 , .~ 00 97 ..Jidely spaced joints /lim traces of calcite and chlorite Occ. smooth joints in higFi biotite concentrations I I Solid core 432.4-455.2 , , ROD 100; 421.7-451.7 Joint spacing varies fro~ 0.4~22.8~ avg. 4.3' RQD 98 I , ROD :00; 46i.:-SZ:.S Joint spacing varies fr~' O.4~:2.:~ avg. i.9' B64. J . •• PROJECT Crater La~~' -", .' ~ ...... '...., --_ ... I HOLE NO. SUMMARY LOG 93731.0 HOLE N . 86934.0 PROJECT DRILL DATES-START ~------------~~~~~~--~----------------------~~----------------~ , DEPTH OF HOLE O€PTH aF OVERBURDEN OIAM. OF HOLE r RO~~ DRILLED CORE RECOVERED ~ RECOVERY r---- ~,-LE n~o .. VERT, I AZIMUTH FROM NORTH ~UD 8Y. OAT! ~ __ -._ --------...L.-_______________ -l . HORIZONTAL R(MARtc.S , Joints have traces of 1 calcite and chlorite; occ.; miCJS ~'j~' :OG ,_ ~l l :: '..~ -. - --i ... , J PRCJECT:(,)t··r _:J'e -.-----------------.--------j HOLE NO. ~UMMARY LOG N 93731,0 1 SH.Efi 7 OF 7 OLE NO. DH-1l4 E 86934.0 [SURFA~ ELEV. 1297. PROJECT Crater Lake DRILL DATES I START 6 Oct. 82 COMPo i.7 Oct. 82 DEPTH Of' HOLE 'i9,..1' O€PTH (:I OVERBURDEN· , 0.0 '-- ROCK DRILLED , COR£ R£COV£R£D , 592.1 591.8 ---- ANG.LE r~OM VERT. 30° AZIMUTH FROM NORTH 315 0 ~--- DISTANCES' VERTICAL. 512 .8' ~ HORIZONTAL. 296.1' I I ! i I EUV. I DUTM ~ . 1 ... -1 , , -.- .. 0' .. , .. 1 .. LO. --~ 1 D€SCltI'TtOtII 0' IIMT!RIAl.S Depth of hole Thickness of overburden Rock cored Core recovereO % Core recovered , I I Pressure Tests From 6' ~ 1 6' ~36' 2 ~6' , 240' To 116' d6' 2 :6' 236' 592.2 , , 592.1 0.0, 592.1, 591.3 99.9 I ! , i f: (Ft .It-1in. ;1 9.66xlO~~ , .~.46x~0_5 "1.9 X10_5 ~.65xi.0 0.0 PROJECT Crater Lake ... COM , i I I DIAM. OF HOLE NX ... RECOVERY 99.9 J CO""'(D BY. OAT! I I \ REMARKS '1 1 ~ i " -' , -.. .. i l HOLE NO. SUMMARY I~OG HOLE Nu. DH-115 N 95300.4 SHEET 1 Of 7 j E 91992 3 SURFACE ELEV. 803.9 I PR.OJEcr C:r.atel" ld~e ORILL DATES' START 9 Sept. 82 COMPo 28 Sept. st ~~~~~~~~----~--------~~~~----~~~~ ~TH "-F ___ HOL-=-=E=--.\L.oh; ,,~;,o ....... ',,-/_+-~=PTH....:..:.. __ aF.:..:......::0YER..:...=;.:.:8=.;U:..:.R..:.:0E:..=..N ___ .:..3:..::. 4~' ----Jf-=Ot;.:.:· A~M=.:....:OF=..:.....-:..:.HO=-L=E=--....:.N.:.::X_J f-P<?~I(~RILL.E,? 646. ~' CORE RECOVERED 645. 3' ~ RECOVERY 99.2 i i N«)LE rROM VERT. 45 0 AZIMUTH fROM NORTH 3000 CO"U.lD BY, DAn DtST.~HCES: VERTICAL.4sCl 7' ~ HORIZONTAL. 459.7 1 Pat 11/8/82 I . ~ ~ :~6r91 ~7 i L OG DESCAIPT10~ur~fce lIIATERIALS COAl ~. -j OVERBURDOI: '" i It ~h i gh organ i c I ;801.5 3.4 -: Top OT Rock i ; -.!..:.2= QUARTZ DIORITE GNEISS: medium gray, : '~"' I~ banded med i um grained, 1 i ght 1 y wea ttl t '.' :/~\\Iered,lightly fractured. Fractures . _u ,-,,;-~"',generally clean :l.nd rough; occ. iron, 'i~~stains and pyrite on Joints; slio,s,' ',' ~( rare; occ. healed breccia; ace, -/~"'/!'jbasalt dikes. .20 3C " /' : 1/1\ ..... i I" --;"' ...... -I'! T" _/~1 \1'\-1 \_' .... ,1 ~': .I '-, .... /\ ~'~ {-' , ,-~ -;- .l .... \~..: , I ~l.:-!..II,~ ~iqhly fr:l.ct~red 33 J-34.2 ~ -'I '''::/\,\:.-Sasalt dlke 3~.2-r.3 see Delow ~. qray-green, porphorl:1C. hard. DIORITE GNEISS: ldeT7i. igh)Y frJctured to shattered. 44.2-45.6 , I Moderately fractured 93.5-~7.2 NPA Fo,,,,,~ t' APR ~6"" PHC ... E(T ----- 1 .1 -. - ! I -1 ! RU.ARKS 2. j/-32.6' ~Oll1t. S~JC11~j froll; .. u-':!.~; JIJl:. :-...... - "';'Y. I-RQD 24 13.«00'; Joint spacing 0.:-:2.~';avg. 2.5'; does nul include moderately and highly fractureo zOI.es. RQD 98 ," :Ol); E=.{~ .( _ 0 1 n t s fJ;K i "):! J at' i e s t r'.J';' u. 4 -4 .6; j v '" . RQO 95 ROO 89 i HOLE NO. -' j I I SUMMARY LOG 95300.4 HOLE N . 91992.3 PROJECT DRILL DATES· START ~OF_HOL~~E~ ____ -+OE~~ __ ~OF~~~~8U~R_OE~N ______ ~ __ ~ __ ~~ __ __ POCK DRILLED CORE RECOV£RED -" -------+--"-...;;;..............;;;..;;...=--~.;;;..;;;..------t__-::....;;...;........;.......---- AZIMUTH fROM NORTH . HOaIZONTAL AN\:"LE rROM VERT. ----- DISTANCES: VEJImCAl. DIAM. OF HOLE j ... RECOVERY j COWtLlD BY. DATE I REMARKS Shear zone: 100.6~102.6; fat, sof 1 ~ red-brown clay qouge 100.6~100.9' and 101.6~101.8; thermal alt. 101.t~102.6; highly frac .• mod. weathered. -~ ; 120 I -- Highly fractured :04.2~l06.7' some iron staining QUARTZ DIORITE GNEISS: idem. RQD 82 i I I ~oint spacinq ~06. --~33.~ from G.t-~ .~: avg. RQo 25 RQD 98 ;709.8 686.3, , I I I ~ 7(L , 6£2".5 Moderately to highly fractured i33.1'-166.3'; pyrite common;joints; clean and mOderately rough. , yellow-brown CQdting 157.6 I Moderately fractured :66.3-i96.1 PROJECT :ratet' ~Jke ~ ~RQo 88 RQo 90 RQD 85 I i ~ ROD 9C RQU 99 RQo iOO I ~ I HOLE NO. JH-::5 .. ! SUMMARY.",OG N 95300.4 SH£~T1 Of? I HOLE Nu. OH-llS E 91992.3 ISURFACE ELEV. 803.9 PROJ.£CT . rr~tp)" 1 akl> .ORIU.. DATES· STAaT COMPo I OO'~ ,QF .~HO.::..L=E=--__ -+..=.O£=PTH---=...;..;.,..OF~OYER.;;:..:....::::...::..=B..::.U.:....:..RO£==.:.N-=--__ -+=-DI~A="~. OF=---..:...:H-=.O=LE=--__ l I ROCK OPILLEO CORE RECOVERED % RECOVERY j ~.------------~~~~~~~~----------~~~~~~------ _~ __ LE ~RON __ V_[_R_T_. __ l--AZ_IlllU __ T_H_F'ROM ___ NORT __ H ___ --4 COWtUO BY. DAT( I Ol5T .'NCE S: VERTICAl.. ~ HORIZONTAL. ... I R[MARKS IELEV :~~~Gec:1 DESCRIPTION OF fllATEI'IALS 662 5' ~II~~~------------------------------~--~~~~~---------------1 ., 200 1~:\',' QUARTZ DIORITE GNEISS: idem. C~[ j _RQD 100 I I " -I' ~,l'\; j --./..!? ...... I I I I ~-~:~ ,--'oderately fractured 206.1-208.6 :'0 ~~. _.. :;:-, ~ ..... I, /, ~,.I '.,,~ I I .-\_ ighly fractured 214.6-2:5.6 ~':!'7'f ~-,~ 220 ~~ .. ,,17)1 '-.. -, ' I " ' ,,1_\' ~ , I _ , . -' -, \ I .~i'-;\ II :~1 ' ... ' t '" '--1 j " I~, I 591.8 j ]GO ~! I, -' I -RlJD 96 I I ! .. i.. I I . ! ~c10u 94 !- I 7 .oliJ cort: ~>L3-~3v,v / , -~0CI ~OO: =22.6-292.6 , , Solid core 2:~.4-2;:i;.2 1 1 j , I - :o1ia core ') Z.~-;:::S<4. P~CJECT :r" ce( Ld~t: ----~.-----~~~------------------------------~~~~~~~~~- SUMMARY LOG HOLE N DH-1l5 95300.4 91992.3 PROJECT enter La~e DRILL OATIS I START ~_OF_.~HOL~:..::E ___ -+Of~PTH....;..;,..:..-:;(JF;.;......;OVER~;..;.8U;;:;"":,,.:,R..;,.:OE:...;;;;,,;..;N ___ +D:.:.IA:..:.":.:.:..:....:Of:..:...-H:..:..O::..:L::.:E:........-__ P'OC~_ OR~LL ___ E~ ________ ~C~OR~E~R~E~C~O;..;.V~E_R~ED~ ______ ~~'~R~E~C~O~V~E;..;.RY~ __ ___ AH~LE FROM VERT. DISTANCES: VEJmC:AL AZIMUTH FROM NORTH COWtLEO 8Y. 564 .. 2 .... fZONTAL M5Ci.UPTION Of IMTEft.ALS Shear zone; 301.4-303.6, sandI gray-green gOU9€ @30l.8 ,0.01 1 thick) mod. ~eathered 30l.~-302. hydrothermal alt. and calcite common,highly fractured I I QUARTZ 0 lOR I TE Gr~El SS: idem. I I I \ , ~oderately fractured 33:.0-339.4 BASALT: same as page 1. lightly fractured " gray clay gouge 343.~-343.3 QUARTZ DIORITE GNEISS: idem. PRO.JECT REMARKS i -j RQD 90 . , " Solid core 3C3.6-2~:.:::- RQD ~OO RQD 99 RQD 98 ROD :00 • . -, 1 C ,I, -. " JOlnt spaClnc ~~_.--~~~.~ vanes fl'ol;IC:~/-:.9': J';:;'~ 2.0' RQD 99 RQD 97 J , ,- Solid core 394.4-4J5.J I i HOL E NO. _'r, -. -:: .. ..... SUMMARY LOG-N QC;1nn. 4 HOLE NO. DH-il5 E 91992.3 PROJECT CraterLake DRU DATES I START 0€P'n4 OF HOLE OfPTH C6 CWERBURO€N .--------.- , i I I ! I i ! I I I I ! I f I ~OCK DRILLED CORE RECOVERED -----.. AHCLE rROM VERT. AZIMUTH P'RO" NORTH .- D~T.,"C£S: V~CAL~ i HOItIZOIIITAL. I __ ~'110(PfM! L 06 . , i ,4.00 -4\I/\j I ]~ 'd, ,_1 1-I -: '··I..! 7 ' 1/'11\ -\;-/ II 4~Jl.. j' n-I ... -~-,,' .... " \ : 'I ,{-I ~ I I . /1 ~ I , 1----II" I J I\~ J ,. ~ 'I 1 • I-... i I' . 42Q I I ~,I , -" I ~J : 1-\, _' ~--~ I) I :-,~ ~ -/Y_I. I,,,, ' MPA Fo,,,, 7~ , APR S'S "', Dl!Cl'I'TION OF IMTe.IALS QUARTZ DIORITE GNEfSS: idem. I I I ! I I i i I ~oderately to highly fractured 435.cf-441.:'. Thin calcareous clay' coating on joint at 435.0' Gcc. pyrite and pale red-brown calcite coatings on joints. PR.CJECT 'II. COM SW~~T 50f 7 1 SURFACE ELEV. 803.9 COMPo I DIA ... OF HOLE -1 ~ RECOVERY COMPtUD 8'1. DA~ ReMARKS Solid core 394.4~435.0' I I -- I / , hOD lOO; 392.6-432.6 / 2 natural/breaks ~ 394.~ and 394.4 i , I , I I ....J .: ~~:; ;;\::, :;;: '.'i"" _. , ~"rf aCe flu", raL 3~ ~ ;;.. ~ '[(I~~ :;0 I ' / iSolid core 44~.:-4S6.E i I , , :'3=.5-46~.3 I ';'6:.~-': j.e I , 4c5.~-~9(,.,--, j I , , 1 l 1 , -; -• , 492.i-522.; i HOLE NO . ..>'-,-__ = 95300.4 91992.3 PROJECT DRILl. DATU-START ____ ~£w~~~ __ ~ ____________________ ~--------------~ ~_O_F_HOL_E~ __ -+..:;:..OI:::;;I'TM......:....:...:...-(J1;;.;;.....CMR..:;,..;".;:;..;..;.::I4..:;:..UI~"o€=N ___ -!-=-D':...-A;.;..M;.;..' Of~..:....HO..:;:..L.=..E=--__ ROCK OR~ILL~E~D ______ -+~C~OR_E~~_E~C~O~V~E~~~E~D~ _____ -+' __ R;.;..E~C~O~V~E~R_Y ____ __ ~LE FROM VERT. AZIMUTH PROM NORTH COWtLlO BY. DATt OtST ANeE S; VElmCAL . HORIZONTAL MSCI'IPTIOM OF IMT(RIALS c:' R(MARKS ~~~~~~~~------------------------------~---*-----------------------.; DIORITE GNEISS: idem. Solid core 503.3~516.2' 1 I I , ! f29.1 . I I ~' .... 52(L ~ZS~l ,I I _ l "~I' I I '" -,,-.' '7-... ' I f..iighly fractured 525.0-526.3 · ""-' \ I -'I'!~! ! .' ' 53iLQ:; fragmented wlth occ. c71c- 530_ ~n! Shear zone 530.0~532.6~ nod. to ,: 11-hiohll frac. 530-533.4'and 536.4-: · _ areou;; gray-green gouge 533.4- ~23. 1 ~~ 536.4: red-brown calclte coatlng '54~}~~~~ , common on JOInts. 379~6 ~\ I ~/ ...... -<.\ ! ~"l yl ! ~.;~! I -1::7i$J : ~ ...... ~-~~ 550~~~ \ , I '-~I' .. ~/'-;~I -I . -/(;" I \.- ! 56 L...; :l=, ... :=;::;, ,;:3 • \" - \ I .! I ... \ ~~: I -1--, I . ~ \ / I '5~0 ., ......... , I '. _ ........... /[ .... 'I '. I -1- , ~ I' -/ \·~~i ~/~ -,,--;..~ _, -i) H PA FOYIfI 7~ .' APR. 66 .,.1 , I ~oderately fractured 576.5-578.6; ~inor blotchy iron stains and mino~ calcite coatings on jOints. I PROJECT ;~rater La"e i 1 • .1 I I 0.J corE :33.4-::6.': ~Ou 94 ROD 97 ROO 93, ost 0.2 core , ~QD lOG; 5S0.4-BOH , I 592.3-608.5 ; HOLE NO . .jCC-__ = SUMMARY I~OG N Q'i1nO.4 SH£~T 7 OF 7 : I H 0 L E Nu. DH-115 E 91992.3 SURFACE ~l.~V. 803.9 1 ! PROJECT . r .. ~tpr I ;kp DRILL OATES-START 9 ~PfltR? COMP'?R <;Pl)t d OEP'TH OF HOLE 650.1 OE:PTH OF OVERIURQ£N 3.4 OIA ... OF HOLE Nxl ~---~ 99.2 ~~tc Q~-.!LLEO __ 6,,-,4'-".6..:...;. 7_-+C-,-O.:...R_E_R_E.;;;..C.:...O.:...V_E...:..R_E.;;;..0~_~64:!.::S:...:... ~3 -+_"rt_R...::E~C....;.O_V~E_R_Y--=~~ AH"LE FROM VERT. 45 0 AZIMUTH FROM NORTH 3000 COWU.ED BY. DATt r---'-- . ---- DISl.lNCE S: \fERTlCAL. ~ ~tZONTAl.. ! '-- ELEV·IDEPTM LOG I I· I , ~ - -! j _ • .J i j ....... 4 -.; -~ • ~ -i ; 1 , I 1. ~ ~ ..; -4 - "PA F'orlll AP" 66 7rT .,.'1 D£!C'UItTIOM OF MAT!JtIAL! DIORITE GNEISS: idem. BOTTO~;l OF HOl E , iDePth of hole 650.1, IThickness of overb~rden IRock cored Icore recovered I" C", "c •• ",d I Pressure Tests F m -IL :6' 2,,6 , 226' 296' 296' 336' 336' 346' 346' 436' 446' S J.6' 526 1 536' 546' 566' 516' s8ei' , 590' 650.1 3.4, 646.; , 645.3 99.8 K,F t . ,r·, in. -4 2.~~xlO_6 2.l/xlO_6 4.3 x10_S S.24x10_1i ~.~ x:O_4 ,.06 X lO_5 3.S xl0_S 1.95xlO_S 7.4x-I0 5 2.4 xlO- PRCJECT Crater ~dke 'It COM REMARKS 1 I 1 I I I I I ; I I Solid core 6~S.6-649.: , i I I i ~RQD ~OO; 520.4-B0~ I i i I I : i I I I " I i , I I I 6S0. : I left O. ; I in hole I I i , ! ! I HOLE NO. .. ... , I ! I ; I , 1 .1 · - , " : -. .. - - · · -- - -0. ----· - - -: - .. -t J j . ; Bl B2 B3 B4 APPENDIX B HYDRAULIC DESIGN HYDRAULIC DESIGN OF RECOMMENDED PLAN SUPPORTING TECHNICAL DATA FOR HYDRAULIC DESIGN OF RECOMMENDED PLAN HYDRAULIC DESIGN OF ALTERNATIVE PLANS I AND II HYDRAULIC DESIGN OF ALTERNATIVE PLAN III APPENDIX Bl HYDRAULIC DESIGN OF RECOMMENDED PLAN B1-1 TABLE OF CONTENTS APPENDIX Bl HYDRAULIC DESIGN OF RECOMMENDED PLAN PARAGRAPH 1 .01 GENERAL 1.02 DESCRIPTION OF THE POWER CONDUIT A. General B. Alinement C. Power Tunnel D. Penstock E. Rock Traps (1) Primary Rock Trap (2) Secondary Rock Trap (3) Final Rock Trap F. Trashrack Design (1) Primary Trashrack (2) Secondary Trashrack G. Gate Structure Transition H. Gate Structure Service Gate (1) Gate Closure (2) Gate Opening I. Tailrace and Forebay Water Surface Elevations (1) Tailrace Elevations (2) Forebay Water Surface Elevations J. Machine Bored Tunnel (MBT) 1.03 HYDRAULIC LOSSES A. General B. Losses in the Power Conduit (1) Unlined Tunnel (2) Concrete Lined Tunnel (3) Steel Penstock (4) Rouse Rough Pipe Limit Versus von Karman-Prandtl Fully Rough Equation (5) Minor Losses in the Power Conduit i PAGE Bl-2 Bl-4 Bl-4 Bl-4 Bl-5 Bl-5 Bl-5 Bl-5 Bl-5 Bl-6 Bl-8 Bl-8 Bl-8 Bl-9 Bl-l0 Bl-l0 Bl-10 Bl-11 Bl-11 81-13 Bl-13 Bl-14 Bl-14 Bl-15 Bl-15 Bl-17 Bl-19 Bl-19 Bl-21 PARAGRAPH C. Hydraulic Losses in Machine Bored Tunnel (MBT) D. Refilling of Tunnel Turnouts E. Hydraulic Losses from Drafj Tube to Tailrace (1) Condition with 518 ft I~ (2) Condition with 1,640 ft Is (3) Assumptions 1.04 HYDRAULIC TRANSIENTS A. Operating Requirements B. Need for a Surge Tank C. Net Turbine Heads Used for-Design (1) Maximum Net Head (2) Design Net Head (3) Critical or Minimum Net Head (4) Rated Net Head D. Turbine Sizing E. Surge Tank Location F. Surge Tank Diameter (1) The Thoma Formula (2) Expected Tunnel Size (3) Diameter Selection (4) Computer Verification G. Machine Bored Tunnel PAGE Bl-22 Bl-22 Bl-23 Bl-23 Bl-23 Bl-23 Bl-24 Bl-24 Bl-24 Bl-24 Bl-25 Bl-25 Bl-25 Bl-25 Bl-25 Bl-27 Bl-28 Bl-28 Bl-28 Bl-29 Bl-29 81-29 H. Long Lake Turbine Model and Prototype Turbine Characteristics 81-29 (1) Turbine Model Bl-29 (2) Prototype Turbine Characteristics 81-30 (3) Wicket Gate Closing Rate Bl-30 I. Computer Models (1) Computer Program "WHAMO" (2) Computer Program "MSURGE" J. Stabil ity by "WHAMO" (1) Results of "WHAMO" Runs (2) Governing Stability K. Transient Analysis (1) Load Rejection (2) Load Demand (3) Emergency Closure of Spherical Valve (4) Hydraulic Loads on the Penstock Thrust Block Machine Shop Bulkhead i ; Bl-31 Bl-31 Bl-31 Bl-31 Bl-31 Bl-32 Bl-34 Bl-34 Bl-34 Bl-35 and Bl-36 PARAGRAPH L. Speed Regulation and Hydraulic Capacity (1) Speed Regulation (2) Hydraulic Capacity M. Transient Background and Summary N. Crater Lake Phase Without a Surge Tank O. Hydraulic Losses Used in Hydraulic Transient Study (1) Horseshoe Tunnel (2) Machine Bored Tunnel 1.05 LAKE TAP A. General B. Orifi ce C. Trashrack D. Primary Rock Trap ( 1) Genera 1 (2) Containment of Blast Rubble (3) Tractive Forces in Rock Trap E. Fi na 1 Lake Tap Bl ast F. Final Lake Tap Location iii PAGE Bl-37 Bl-37 Bl-37 Bl-38 Bl-39 Bl-40 Bl-40 Bl-40 Bl-41 Bl-41 Bl-41 Bl-42 Bl-43 Bl-43 Bl-43 Bl-44 Bl-44 Bl-48 APPENDIX B1 HYDRAULIC DESIGN OF RECOMMENDED PLAN B1-1 APPENDIX Bl HYDRAULIC DESIGN OF RECOMMENDED PLAN 1.01 GENERAL Appendix B describes the hydraul ic design of the power tunnel, surge tank, and penstock for the .Crater Lake phase of the Snettisham power facilities. The surge tank design requires consideration of the plant operating conditions, expected turbine characteristics and the total head losses in the conduit system from the reservoir to the powerhouse. The power conduit will be connected to a turbine-generator unit which is to be installed in the existing powerhouse which was built for the Long Lake phase of the Snettisham project. Computation sheets for selected aspects of the surge tank design, water hammer, and conduit hydraul ic losses are included in Hydraul ic Appendix B2. Computer printouts from the digital computer programs used for hydraulic transients are also presented in appendix B2. Hydraulic Appendix B3 describes alternative plans I and II. Alternative II is the one recommended in OM 23, which was the GDM for the Crater Lake phase dated December 1973. Alternative I differs from alternative II only in the type of gate shaft that is used. Both a lternat ives use a vented surge tank. Hydraulic appendix B4 describes alternative III which incorporates the air chamber surge tank. Two consultants were retained to assist the District in the hydraul ic design of the project. Polarconsult, Inc., of Anchorage, subcontracted Ingenior CHR. F. Gr¢ner of Oslo, Norway, who advised us on the lake tap, rock traps, and general tunnel design. Dr. Hanif Chaudhry of Wa.sh·ington State University (formerly of Old Dominion University) advised us on Alternate Plan III which incudes hydraulic transients in the air chamber surge tank plus water hammer and speed rise at the turbine. The Report submitted by Polarconsult is included in Volume 1 of this report as Exhibit 4. The report submitted by Dr. Chaudhry is exhibit Bl in Appendix B4. Bl-2 Various plates which appear in both volumes of this report are referred to in this appendix. Plates identified by a number only are located in Volume 1 and those identified by a letter and number (Bl through B27) are located at the end of the Hydraulic Appendix. The exhibits referred to are in Volume 1 of this report. References are located at the end of appendix B1. Bl-3 1.02 DESCRIPTION OF THE POWER CONDUIT A. General. This subsection describes the various portions of the power conduit in sequence, beginning at the lake tap entrance and continuing onto the powerhouse. The power conduit plan and profile are shown on plates 2 and 3. B. Alinement. The center of the lake tap opening is located at approximate sta 7+52, at approximate elevation 799, with the trashrack located 4.0 ft above the opening. The invert of the primary rock trap varies from elevation 753.5 to elevation 766.2. The minimum power pool is set at e 1 evat i on 820 to assure adequate clearance over the top of the trash rack and or ifi ce. The rock trap trans it ions to an ll-ft diameter modified horseshoe tunnel at sta 8+50 which moves upgrade to the gate structure which is at approximate sta 14+00. The 4 percent upgrade slope from the primary rock trap to the gate shaft is intended to facilitate the escape of air during the initial tunnel-filling operation, and to a lesser extent, following the blast. A downward slope from the end of the rock trap to the gate shaft would create a peak at the end of the rock trap capable of trapping air and is therefore avoided. A secondary rock trap is located upstream from the gate structure between sta 11+40 and sta 12+00. Th i s rock trap wi 11 intercept any mater i a 1 s swept out of the 1 ake tap area before they can reach the gate structure. At the downstream end of the gate structure the tunnel is set on a constant 12.437 pct grade to the surge tank drift tunnel at sta 65+59 and the final rock trap located between sta 67+50 and sta 68+50. The final rock trap transitions to the start of the 6-ft diameter steel penstock at sta 68+75 which continues on to the powerhouse at sta 78+29. The total length of the power conduit is approximately 7,000 ft with the length of the penstock at 925 ft (including transitions), the power tunnel length at approximately 6,020 ft, and the length of the spiral case extension at 65 ft. After exiting from the powerhouse the discharge enters the tailrace where a special IIconstant level ll gate currently keeps water surface elevations between 11.0 ft and 12.5 ft. Bl-4 C. Power Tunnel. The power tunnel is an ll-ft mod ifi ed horseshoe with an overall length of approximately 6,020 ft. Tunnel lining will be required in those sections where faults or poor rock conditions are found. Tunnel lining will consist of concrete or shotcrete depending upon circumstances but in no case will the tunnel diameter (lined section) be less than B.O ft with the exception of the gate structure. Typical sections and details of the tunnel are shown on plate 4. D. Penstock. The penstock is a 6-ft diameter steel structure with an overall length of 925 ft including transitions. A typical section of the penstock is shown on plate 5. E. Rock Traps. (1) Primary Rock Trap -The rock trap at the entrance to the tunnel is part of the lake tap and is discussed ;n paragraph 1.05 of this app'end;x. (2) Secondary Rock Trap a -The secondary rock trap ;s located between sta 11+40 and sta 12+00 and ;s shown on plate 20. The rock trap will be an 11 ft high and 20 ft wide straight sided horseshoe with an additional 2 ft excavated beneath the tunnel invert for sediment storage. The rock trap crown will match the alinement of the power tunnel crown so as not to trap air at the crown of the rock trap during tunnel filling for the lake tap. This 20 ft wide section may also serve the additional function of providing a construction turnout either as-is or by widening it slightly. b The storage are .. located in the bottom of the rock trap has an approximate volume of 44 Yd 3 • The cross-sectional area of the trap varies from 190 ft2 to 230 ft2 (depending on sediment accumulation) resulting in a maximum velocity ranging from 2.7 to 2.3 ft/s with the maximum expected discharge of 51B ft 3/s. Bl-5 c Calculations based on references 19 and 24 indicate that the trap will intercept any particle larger than approximately 1/8 in. The secondary trap is being built for the following reasons: To assure that any materials that might pass through the primary rock trap are stopped before going towards the penstock. 2 To assure that the gate slots (at approx imate sta 14+00) remain clean for efficient operation of the service gate and the bulkhead. d A CELSEP type trap had been considered at this location but with maximum velocities in the unlined portion of the tunnel being only 5.04 ftls it was concluded that a more conventional rock trap would be adequate for the job. (3) Final Rock Trap - a Background. The final rock trap is built on a 12.44 pct slope which requires some modification from the original design recommended by Polarconsult. The sloping tunnel may, at first glance seem to create a physical condition in which all the rock particles entering the trap are swept down to the foot of the trashrack at the downstream end of the rock trap but this is not so. A slope of 12.44 pct is equivalent to an angle of 7.1 degrees which is a very shallow slope when looked at in terms of increasing potential particle movement. For instance, for a material with an internal friction angle of 35 degrees, equation 34 on page 41 in EIVllllO-2-1601 shows that the design shear (the shear that a particle can resist at incipient movement) is reduced by only 2 pct when a particle is placed on a 7.1 degree slope. The main factor in moving materials at a slope of 12.44 pct is the velocity of flow. The Long Lake inspection tr"ip of 21-22 June 1983 showed that only small quantities of materials have been moved down the tunnel. After various considerations it is anticipated that the quantities of materials arriving at the final rock trap will be small because: Bl-6 The primary and secondary rock traps located at the upper end of the tunnel will intercept the great percentage of materials that will enter the tunnel or that are present as a result of the final blast. 2 The rock through wh i ch the Crater Lake tunne 1 will be bu i lt is similar to that found in the Long Lake tunnel and is therefore sound. Only small quantities of materials are expected to come from the tunnel walls. 3 Any residual materials remaining from construction will be removed before the final blast. (b) Description of the Trap. The final rock trap begins at sta 67+50. The maximum velocity through the trap will be 2.58 ft/s based on a cross sectional area of 200.8 ft2 and a maximum discharge of 518 ft 3 /s. Gradual trans i t ions 1 ead into and out of the trap to reduce turbulence to a minimum. The downstream end of the trap at sta 68+50 contains the secondary trashrack. A concrete 1 i ned trans it i on between the trap and the penstock in the shape of a truncated cone is located just downstream from the trashrack. The transition begins as an ll-ft diameter circle and is reduced to a 6 ft diameter circle in a 25 ft length. Details of the trap are shown on plate 21. (c) Particle the final rock trap sectional areas of Movement In The Final Rock Trap. The transition into begins at sta 66+90 with the full rock trap cross 200.8 ft2 being available at sta 67+50. The trans it i on wi 11 be excavated out of the roof of the tunne 1 to keep invert turbulence to a minimum. Calculations based on references 19 and 24 show that particles ranging up to 1 3/16 inches will be moved down the tunnel toward the final rock trap when maximum velocities reach 5.04 ft/s. Upon reaching the main portion of the rock trap at sta 67+50, maximum velocities will be reduced to 2.58 ft/s which results in any particle small than 1/8 inch remaining on the floor of the trap. As time progresses, the sediment ~, front will move downstream towards the trashrack (similiar to the movement Bl-7 that occurs in a reservoir). An excavation at the downstream end of the rock trap will prov i de approx imate ly 96 yd 3 of storage vo 1 ume for any materials that might reach that far. The trap will be cleaned whenever the power conduit is drained for normal inspection and maintenance. HEDB has indicated that the turbine can pass a 2 inch diameter stone once during its life and can pass a 1/4 inch diameter particle on a more regular basis. To assure a long turbine life the rock trap is designed so that a 1/16 inch diameter particles entering the trap from the power tunnel will settle to the floor of the trap well before reaching the lower trashrack (see reference 2, 3, and 4). F. Trashrack Design. For hydraulic design purposes, the same spacing as that used for the Long Lake trashracks was assumed for Crater Lake. For the primary trashrack the bar spacing is assumed at 2-1/2 inches center to center and 2 inches between bars. For the secondary trashrack just upstream from the penstock the spacing is assumed at 1-7/8 inches center to center and 1-3/4 inches between bars. (1) Primary Trashrack -The primary trashrack will be 19-ft square with maximum velocities of 2.1 ft/s through the net area. The primary trashrack design is discussed in greater detai 1 in subsection 1.05 -"Lake Tap" of this appendix. (2) Secondary Trashrack -Prior to the initial period of plant operation a full circular trashrack 11 ft in diameter will be installed upstream from the penstock (see plate 21). The trashrack will provide positive protection for the turbine during the initial stages of operation. Inspection of the new tunnel after some period of partial and full power operation will allow us to make a decision about whether or not any portion of the secondary trashrack can be dispensed with (the Long Lake tunnel operates with a partial trashrack at this location). Bl-8 G. Gate Structure Transition. (1) Since the gate slots for the service gate and bulkhead at the gate structure must be formed in concrete, there must be a transition from the unlined rock tunnel to the concrete section and back to the unlined rock tunnel. (2) An economic study was performed to determine the optimum gate size and concrete transition length. Gate sizes studied were 4 ft x 9 ft, 4 ft x 10 ft, 5 ft x 10 ft, 6 ft x 11 ft, and 7 ft x 12 ft. Transition lengths (including both contraction and expansion) studied were 30 ft, 75 ft and 225 ft. Construction cost for each of these alternatives was determined and added to the value of the head lost due to friction for each of the alternatives, to determine which combination would be the least cost lyon an average annual cost bas is. The annual value of one foot of head used was $20,998 based on escalated fuel costs as calculated by the Alaska District. This value for one foot of head varies from the current vaiues using escalated fuel costs due to continual adjustment of fuel cost values, but this will not Significantly effect the gate structure economic analysis. Head losses due to the concrete lining, gate slots, contraction and expansion were considered. An effective roughness (Ks) value of 0.0016 was chosen for concrete based on HDC 224-1; K = .02 (loss coefficient) was chosen for the gate slots based on EM 1110-2-1602 and HDC 228-4 was used for determining K values for the contraction. Brater and Kings' Handbook of Hydraulics 6th Edition page 6-22 was used for determing f values for the expansior. since HDC 228-4 is vague for the flow situations considered. K values for the contraction varied from 0.0 to 0.07 in the formula: and f values for the expansion varied from 0.034 to 0.40 in the formula: hL = f(V~ -V~) 2g 81-9 Stud i es were done for discharges of 300 ft 3 /S and 395 ft 3 /s, bracket i ng the average flow of 329 ft3/s • The studies showed that the smaller gate sizes with intermediate transition lengths were the most economical. However, it was decided that the minimum gate size must be 6 ft x 8 ft to permit passage of a small tractor for construction. Using the 5 ft x 10 ft gate as hydraulically similar to the 6 ft x 8 ft since it has about the same flow area, it was found that for this gate opening size a 55 ft total transition length was the most economical. As a result of these calculations the 25 ft upstream and 30 ft downstream transitions were chosen. The 24 ft center section was chosen to provide an adequate interface, hydraulically, between the contraction and the expansion. (3) Since filling of the tunnel will be accomplished with the tunnel filling pipe and valve, high velocity flows are not expected to occur under the gate except ina rare emergency gate closure. Therefore, no special cavitation protection is included in the gate structure transition design. Plate i5 shows details of the gate structure. H. Gate Structure Service Gate. ( 1 ) Gate Closure. Once a gate size was selected based on economics and construction requirements, the major hydraulic design factor was the selection of an appropriate gate closing time. Since in an emergency such as a penstock rupture or wicket gate failure the tunnel will require anywhere from 4 to 45 minutes to drain, it is not necessary to require an overly rapid service gate closure. Also, a rapid closure will cause a surge up the gate shaft which will cause extensive flooding in the gate structure service room. Emergency service gate closure in the case of a penstock rupture was simulated on WHAMO. Flow through the power conduit due to a penstock break is about 3,650 ft 3/s as calculated by WHAMO and verified manually. Computer runs were made for 60, 80, 90, and 120 second stra i ght 1 i ne closure rates. Graph i ca 1 output for the 80 second and 90 second gate closure rates appear in Hydraulic Appendix B2 as figures 1 and 2, and the "WHAMO" input file for the 80 second closure appears as figure 3. Both the 60 and 80 second closure rates resulted in a considerable Bl-lO quantity of water in the gate structure service room above elevation 1,040 ft. The 90 second closure rate resulted in a maximum water surface elevation of 1,033 ft, which is 7 ft below the floor of the service room. Due to the possibility of personnel being in the service room and the lack of justification for a rapid service gate closure a 10 minute closure rate was chosen for use in emergency situations. A more detailed analysis of gate closure times based on further IIWHAMO II runs, manual calculations and consultation with WES will be done for final analysis (plans and specifications). (2) Gate Opening. The service gate is not to be opened under unbalanced hear, except in a rare occurence of tunnel filling through the service gate in the event of a non-repairable tunnel filling pipe or valve. In order to minimize the potential for operator error in the ralSlng of the service gate under unbalanced head, a limit switch will be provided to prevent opening of the gate more than 0.2 inches per each operator signal (for the first 2 inches of opening). A large gate opening under unbalanced head could result in an initial surge of water and high velocity flow through the tunnel which could damage the final trashrack, carry 1 arge stones through the tunnel and penstock, and resu lt in other miscellaneous damage throughout the power conduit. I. Tailrace and Forebay Water Surface Elevations. (1) Tailrace Elevations - a. Plate 18 in Snettisham Design Memorandum 10 shows a chart of tail water elevations that ranges between -1.5 ft and 11.4 ft. In recent years the State of Alaska has built a fish hatchery in the tailrace which utilizes a portion of the powerhouse discharge. The tailwater elevations now range between 11.0 ft and 12.5 ft and are controlled by IIConstant Level II gates built by Alsthom Atlantic Incorporated, Model number 0630. The gates rotate about a hori zonta 1 shaft and are actuated by the water level on the upstream side. During a visit to the site in June 1982, tailwater elevation was observed to be 11.4 ft with an approximate Bl-ll discharge of 480 ft 3 /s. The hatchery personnel can change the tail water e 1 evat ions by varyi ng ballast wei ghts in the contro 1 gate with max imum allowable water surface elevation being 12.5 ft. At this elevation the maximum allowable discharge of 200 ft 3 /s is entering the hatchery raceways. The control gates were designed to limit the tailwater elevation to 12.5 ft even during the maximum expected tide of 11.4 ft and with a maximum plant discharge of 1,680 ft 3/s including discharge from the new unit. b. More recent ly, when the Department of Fi sh and Game became aware of the annual charges the Alaska Power Administration would be making due to lost potent i a 1 energy caused by the increased ta il water, Fi sh and Game decided that the hatchery would be able to function with lower tai.lwater than previously anticipated. Ultimate tailwater elevations at this time are uncertain, but it seems reasonable to assume that regardless of what may happen in the future, the concrete structure that houses the "Amil Automatic Gates" presently controlling tailwater elevations will remain, and will act as a broadcrested weir with a sill elevation of 1.7 ft. c. Tailwater Curve. Figure 4 shows the tailwater curve that will be used to obtain the minimum water surface elevations. The broadcrested weir equation: Q = (C)(B)(H)3/2 was used where: Q = Total discharge across the weir (ft 3/s). B = The total length of the weir (ft). H = Energy available just upstream from the weir (ft). C = Weir coefficient. The total length of weir is 24 ft, and the weir coefficient is assumed at 3.50 which is somewhat on the high side, but it does produce minimum tailwater, which, for our purposes is a conservative approach because turbine submergence was our primary concern. Maximum tailwater elevation Bl-12 will be approximately 12.5 ft and occurs only when the maximum plant discharge of 1,640 ft 3/s is concurrent with the maximum expected tidal elevation of 11.4 ft. (2) Crater Lake Surface Elevations -The average recorded outflow based on hydrologic records for Crater Lake is 193 ft 3/s which represents a lake elevation of approximately 1,018.6 ft. For the sake of being conservative a lake surface elevation of 1,022 ft was selected for transient and pressure calculations. The natural outflow at elevation 1,022 'is approximately 800 ft 3/s. J. Machine Bored Tunnel (t"IBT). A MBT wi 11 be accepted as an option for the Crater Lake Project. A MBT of ll-ft diameter would be acceptable in lieu of an 11-ft diameter modified horseshoe. In terms of hydraulic losses a 11 ft bored tunnel is comparab 1 e to the proposeo ll-ft horseshoe (see figure 5 of Hydraul ic appendix B2). Although the bored tunnel is smoother, the horseshoe tunnel wi 11 be 1 arger, due to the dri 11 and blast technique. The maximum velocity in a ll-ft diameter bored tunnel is 5.5 ft/s wh i ch is acceptab 1 e in the rock to be encountered. Where rock conditions dictate lining requirements the tunnel diameter will be 9 ft for concrete lining and a minimum of 9 ft for shotcrete lining. Because of the smoother tunnel walls in the bored tunnel a 12 ft diameter surge tank is required to maintain stability in the system (see figure 6 of Hydraulic Appendix B2). If the contractor chooses to bore a 1 arger tunnel, a correspondingly larger surge tank would have to be built. Bl-13 1.03 HYDRAULIC LOSSES. A. General. Head losses in the power conduit are primarily caused by frictional resistance to flow. Additional losses are caused by contractions and expansions as flow moves into and out of rock traps~ lined sections and the gate structure. Further losses are caused by flow through bends in the main rock trap~ the power tunnel and the penstock. In caJculating head loss~s each feature producing a hydraulic loss was assigned a loss coefficient IIKII~ and a corresponding headloss was calculated by the following equation: All losses were summed up, and for convenience a second form of the headloss equation was related to the total discharge in the power conduit. This equation is: K = Loss coefficient for individual feature. hL = Head loss for individual feature (ft). V = Velocity at individual feature (ft/s). HL = Total head loss in power conduit (ft). Q = Total discharge through power conduit (ft 3/s). K = Overall loss coefficient for entire conduit from intake to turbine. g = Acceleration due to gravity (32.2 ft/s2). The Manning formula was used to calculate friction losses in the unlined sections of tunnel while the Oarcy-Weisbach formula was used for the 1 i ned port i on of the tunnel and the penstock. It was felt that the Manning formula would be more appropriate for the irregular unlined tunnel. Bl-14 Figure 7 in appendix B2 contains a summary of hydraulic losses along with detailed loss calculations. Calculations were performed for maximum, expected and minimum hydraulic losses. Expected losses were used for determining the economic tunnel diameter. Maximum losses were used to calculate minimum internal pressures including minimum water hammer at the unit. Minimum losses were used to calculate maximum internal pressures, maximum water hammer and stability of the surge tank. For detailed breakdowns of all losses for the different sections of the power conduit, see figure 7 in Appendix B2. Plate Bl illustrates hydraulic losses in various portions of the power conduit. B. Losses in the Power Conduit. (1) Unlined Tunnel a Expected Losses -The unlined portion of the power conduit is an ll-ft modified horseshoe tunnel as shown on Plate 4. The effective roughness in the unlined tunnel is expected to be approximately 4-1/2 inches or 0.375 ft. The nominal tunnel area is 102.8 ft2 which results in a circular equivalent diameter of 11.4 ft and a relative roughness (per HOC 224-1/6) of 11.4 ft/.375 ft = 30.5. Based on this relative roughness the Von Karman -Prandtl roughness Equation provides a Oarcy-Weisbach friction coefficient IIfli of 0.0585 and a Manning lin II of 0.0267, but reference 5 shows that relative roughness alone cannot fully define hydraulic resistance in unlined tunnels. Scalloping or waviness resulting from drilling and blasting techniques are an important factor in hydraulic resistance. Therefore, Manning's lin II was based primarily on empirical findings at existing tunnels summarized in HOC chart 224-1/5. After consideration of 12 tunnels ranging in design cross-sectional areas from 54 ft2 to 183 ft2 (nominal tunnel cross-sectional area at Crater Lake is 102.8 ft2) an initial value of lin II = 0.0315 was chosen for expected Bl-15 conditions. After going through a series of calculations to find the maximum and minimum losses as shown in the following paragraphs the expected "n" value was rounded off to 0.031. b Maximum and Minimum Losses -With the expected value of "n" = 0.0315, a Oarcy-Weisbach friction factor of 0.0186 was calculated by the equation: where: f= Oarcy-Weisbach friction factor f = 185 n2 (Dm) 1/3 (Ref 21, p. 6-15) Om= Circular equivalent of horseshoe tunnel; in this case, 11.4 ft. n= Manning's "n" HOC chart 224-1/6 was then used to find the relative roughness (15.2 on the x-axis) corresponding to a friction factor of 0.0186. The effective overbreak, including effects of scalloping along with normal tunnel roughness was equal to 0.75 ft (11.4 ft/15.2 ft). To obtain maximum and minimum "f" values, "auxillary" curves parallel to the fully rough curve were drawn on HOC chart 224-1/6 (see figure 7-38 in Appendix 82). These "auxillary curves represent approximate limits of maximum and minimum loss coefficients for the tunnels that were being consiaered. A vertical line was drawn through the fully rough line at the expected relative roughness of 15.2. The intersection of this vertical line with the two auxillary curves resulted in maximum and minimum "f's" of 0.099 and 0.069 respectively. Which were then converted to equivalent Manning's "n" of 0.029 and 0.0347. c Sensitivity to Tunnel Size -It is the general experience in tunnel construction that the average as-built tunnel diameter is larger than the design or nominal diameter and this project will be no exception. If the completed tunnel has an average diameter of 12.2 ft with an 81-16 accompaning cross-sectional areas of 126.5 ft 2, -the expected lin II value could be as high as .041 without reducing the design head. If the completed tunnel has an average diameter of 11.5 ft with an accompanying cross-sectional area of 112.3 ft 2, the expected lin II value could be as high as .035 without reducing the design head. It is therefore concluded that the selection of .031 for the expecting Manning loss coefficient is a reasonably conservative assumption. d Required surge tank diameter is related to hydraulic losses and tunnel areas. Therefore, tunnel roughness and cross sections areas will be measured by photogrammetric methods as described in references 6, 7 ana 8 and/or by physical measurements as the tunnel is being built. A discussion of the sensitivity of the surge tank diameter to minimum loss coefficients is part of Section 1.04 -"HYDRAULIC TRANSIENTS. II (2) Concrete Lined Tunnel For the initial hydraulic loss calculations it was assumed that there would be approximately 800 ft of 9-ft diameter lined tunnel. Tunnel lining was foreseen at Cliffside, Hilltop, Tlingit and Tsimshian Faults (see Plate 4). In addition, concrete lining will also be required for the gate structure and its transitions. Expected friction losses are based on an assumed effective roughness (Ks) of .0016 ft which was the value measured for Enid Dam Project (HDC 224-1) and is considered a good average (conservative) value. For expected losses, an average discharge of 335 ft 3/s was anticipated and was used to obtain a Reynold's Number. Once the Reynold's Number and the relative roughness were known, the Darcy-Weisbach friction factor was obtained from the "Moody Diagram" (HDC chart 224-1). For maximum and minimum losses, a discharge of 500 ft 3/s was assumed to obtain a Reynolds Number. This value of 500 ft 3/s is only an approximation of actual discharges and it is used only to obtain a Reynolds Number. The values of the Darcy-Weisbach friction factor are a function of the Reynolds Number but are not particularly sensitive to the Reynolds Number and therefore the assumption of a 500 ft 3/s discharge is appropriate (the finalized maximum discharge is 518 ft 3/s). Minimum Bl-17 friction values were obtained from the Von Karman-Prandtl smooth pipe line at the appropriate Reynolds Number (HOC chart 224-1) while the maximum friction values were based on the Rouse rough pipe limit which in this case were equal to or greater than the values obtained from the Von Karman-Prandtl fully rough equation. See paragraph 1.03 8(4) below for a further discussion of the Rouse rough pipe limit versus Von Karman-Prandtl for determ"ining maximum losses. The following friction factors were used for the concrete-lined section of the power tunnels. Cond it i on Maximum Losses Expected Losses Minimum Losses Oarcy-Weisbach IIfll 0.0160 0.0137 0.0093 IVJanning "n" 0.0134 0.0124 0.0102 Friction values were taken directly from the IIMoodyll diagram with the Von Karmon-Prandtl Smooth Pipe Equation and the Rouse Equation being used f.or an occasional check. As the design of the Crater Lake Project proceeded, foundation investigations provided more information on the rock conditions along the proposed tunnel alinement. As a result, we now anticipate that there will be only 125 ft of concrete lining along with approximately 920 ft of shotcrete 1 ining. Calculations were made comparing the hydraul ic losses for 800 ft of concrete-lined tunnel with the losses that would occur for a combined total of 1,045 ft of concrete and shotcrete lining. The calculations sowed that with an average discharge of 335 ft 3/s, using expected losses, the total difference in head loss for the different condit ions was on ly 0.23 ft. The shotcrete-concrete comb i nat i on resu lted in smaller losses than the concrete section. For the maximum discharge of 518 ft 3/s the head loss difference was 0.44 ft which represents only 2.2 pct of the total losses from intake to surge tank. This was felt to be insignificant and no changes were made in the orig"inal hydraulic loss calculations. 81-18 (3) Losses in Steel Penstock -Friction losses in the 6-ft diameter steel penstock were calculated in a fashion similar to that used for the concrete-lined portion of tunnel. An effective roughness of 0.00005 ft was chosen for calculating expected losses. This roughness value is one-half the recommended value for discharge computaticry in HDC-224-1/1, but is equal to observed prototype data in the same reference. The effective roughness value of 0.00005 ft assumes good maintenance of vinyl paint. The interior of the Long Lake penstock was in exce 11 ent shape when inspected in the summer of 1983 after 10 years of operat i on and s imil ar performance is expected for the Crater Lake penstock. To obtain appropriate Reynolds Numbers an expected average discharge of 335 ft 3 /s was assumed for expected losses and a discharge of 500 ft 3/s was assumed for maximum and minimum conditions. As in the lined tunnel, minimum and maximum friction values were obtained from the smooth and rough pipe limits on the "Moody" Diagram (HOC chart 224-1/1). The following friction factors were used: Condition Maximum Losses Expected Losses Minimum Losses Darcy-Weisbach IIfli 0.0146 0.0102 0.00875 Manning "n" 0.0120 0.0100 0.0093 (4) Rouse Rough Pipe Limit Versus Von Karman-Prandtl Fully Rought Equation a The rough pipe limit (RPL) on HOC charts 224-1 and 224-1/1 (Moody Diagrams) was used for selecting maximum friction factors. The Von Karman-Prandtl (VKP) fully rough equation could al.so have been used for this purpose but for the range of Reynolds Numbers being considered, the RPL produces greater (more conservative) friction factors than the VKP. In addition, using the RPL method is simpler because it does not require any assumptions for effective roughness (Ks) which is one of the shortcomings of the VKP method. 81-19 b Concrete Lined Port i on of Tunne 1. The concrete 1 i ned portion of the tunnel is 9.0 ft in diameter. With our maximum discharge of 500 ft 3/s that was assumed early on in the design process, we obtain a Reynold's Number of 3.9 x 10 6 • The intersection of the Reynold's Number with the RPL on HOC chart 224-1 results in a friction factor of 0.016. The VKP formula is independent of the Reynolds Number but an effect ive roughness has to be assumed. . The fo 11 owi ng chart ill ustrates the friction factors obtained from the VKP with the assumption of various pipe roughnesses. Effective Roughness ks (ft ) .0020 .0025 .0030 .0040 Relative Roughness Oiameter/K s 4500 3600 3000 2250 Oarcy-Weisbach friction factor IIfll 0.0140 0.0150 0.0155 0.0162 The friction factor does not reach the maximum value (0.0160) obtained by using the RPL until Ks is equal to 0.0040. HOC 224-1 recommends a Ks of .002 for circular concrete conduits as being a conservative value which would result in a friction factor of 0.0140 which is well below the 0.0160 obtained from the RPL. HOC 224-1 does indicate that a Ks of 0.00397 was recordea at Pine Flat but this was for concrete lining formed with wood (longitudinal planking). Concrete lining in tunnels is placed with steel forms, resulting in much lower values of Ks (0.00001 to 0.00061). c Steel Penstock. The Reynolds Number for the recommended 6 ft diameter penstock with 500 ft3/s discharge is 5.9 x 10 6 , resulting in a maximum friction factor of .0146 based on the RPL. Using the VKP formula results in friction factors of 0.00087 and 0.0100 with corresponding Ks values of 0.0001 and 0.0002 respectively. HOC 224-1/1 recommends a conservative value of .0001 for vinyl or enamel coated steel pipe which is Bl-20 the type of pipe to be used at Crater Lake. This shows that the RPL gives a more conservative value than the VKP formula when steel pipe is being considered. d Summary. The portion of the above discussion involving friction factors in concrete linea pipe could very well be considered an acadelTlic exercise because of the relatively short lengths of tunnel involved (100 ft to 200 ft) and the small differences in the friction factors that were obtained between the two methods that are being compared. Friction factors in the penstock however, are of greater significance and it can be seen that the RPL gives a more conservative value of friction factor than the VKP formula when large steel pipes are being considered. It should be kept in mind that the maximum losses are used to determine minimum pressure gradients and maximum discharges, and the more conservative values are felt to be appropriate here. (5) Minor Losses in the Power Conduit -Calculations for minor losses included bends, contractions, expansions, slots, tees, trashracks etc. Detailed calculations for minor losses were initially performed for a l2-ft power tunnel and a 6-ft penstock which was the power conduit for the DM-23, vented surge tank alternate. The percentages of minor losses with respect to friction losses for these conduit sizes appear below: Cond ition Minimum Losses Expected Losses Maximum Losses Ratio of Minor Losses to Friction Losses Intake to Surge Tank 13% 24% 30% Penstock Entrance to Turbine 2.3% 3.0% 2.8% Friction losses were accurately calculated for each of the different power conduits investigated for the economic diameter study. The friction losses were then multiplied by the appropriate above percentages, and these values were added to the friction losses to obtain the total hydraulic losses for each condu it size that was bei ng cons i dered in the economi c diameter study (see figure 7 in Appendix B2). Bl-2l C. Hydraul ic Losses in Machine Bored Tunnel (IVIBT). Since a contractor may elect to construct an MBT, a detailed analysis of hydraulic losses was performed. These calculations appear in Hydraulic Appendix B2, figure ~. "Minor" losses were calculated in the normal manner using various HOC and included; transitions to and from shotcrete sections, surge tank tee, horizontal and vertical bends, gate structure transitions, trashracks, entrance, rock traps and gate slots. Based on a discussion with a representative of the Robbins Company and ~istrict geologists, an expected overbreak of 1/2 inch was arrived at. Maximum and minimum overbreak was then judged to be 3/4 inch and 1/4 inch respectively. The overbreak values were used as the effective roughness (K s )' which resulted in relative roughness (11.0 ft/Ks) of 528, 264 and .176 for the mi n imum, expected and maximum loss conditions. By using the Von Karman-Prandtl equation (HOC chart 224-1) the following friction factors were arrived at: Condition Minimum Losses Expected Losses Maximum Losses oarcy-Weisbach IIfll 0.0225 0.028 0.032 Manning "n" 0.0164 0.0183 0.0196 o. Refilling of Tunnel Turnouts. It is expected that the contractor will widen sections of the tunnel for his own convenience. There was some concern about the hydraulic losses that these turnouts would cause, and therefore some thought was given to the possibility of the contractor refilling the excess tunnel cross-sectional area with shotcrete. Calculations. showed that with a discharge of 400 ft 3/s, the combined contraction and expansion losses amounted to 0.068 ft (a 15 degree transition was assumed). Further investigation showed that because of reduced velocities, the lower friction loss through the increased flow area available in the turnout would more than make up for the contraction and expansion losses. Friction losses through the turnout were 0.0407 ft while friction losses through the same length (175 ft) of unlined tunnel with a 12.2 ft diameter is equal to 0.187 ft. The combined loss for the contraction -expansion (0.068 ft) plus friction losses through the turnout (0.0407 ft) totaled 0.109 ft while the friction loss through the Bl-22 unlined tunnel was 0.187 ft. Similar results were obtained when smaller discharges were considered. It was concluded that no refilling of the turn about would be necessary. To avoid the possibility of a tunnel with too large a cross-sectional area, the contractor will be limited to a maximum of four turnouts upstream of the surge tank. E. Hydraulic Losses From Draft Tube to Tailrace. A study of hydrau 1 i c losses between the draft tube and the tail race was undertaken to help in determining the new turbine efficiencies. Results of the study were: (1) Condition with maximum discharge of 518 ft 3/s through the Crater Lake unit with the two Long Lake units inoperative. a Total hydraul ic . losses between the draft tube and tai lrace including expansions and contractions are equal to 0.47 ft. b Total friction losses between the draft tube and tailrace are 0.16 ft. (2) Condition with maximum discharge of 518 ft 3/s through the Crater Lake un it along with the max imum discharge of 1, 122 cfs through the two Long Lake units for a combined total of 1,640 ft 3/s. a Total hydraulic losses between the draft tube and tailrace including expansion and contractions are equal to 0.76 ft. b Total friction losses between the draft tube and tailrace are 0.32 ft. (3) The following assumptions were made in these hydraul ic loss calculations: 81-23 a Tailwater elevation = 11.4 ft. b Manning's "n" of .012 was used for concrete lined sections. c Manning's "n" of .0347 was used for unlined sections. d All expansions, contractions and bends were considered between the draft tube and the tailrace with the exception of the sudden expansion that occurs at the junction of the lined and unlined portions of the draft tube. Bl-24 1.04 HYDRAULIC TRANSIENTS A. Operating Requirements -The Snettisham project serves an isolated load in Juneau. The Crater Lake unit may at times be handl ing the entire Juneau electrical demand. Such operation requires a plan which has the capability for rapid load pickup, rapid load rejection, and inherent stability under load changes. B. Need for a Surge Tank - A surge tank is necessary to meet the operating requirements discussed above. Maximum and minimum water hammer e 1 evat ions at the turb i ne wi thout a surge tank are 1,700 ft and 480 ft respectively, for a 3.5 s wicket gate closing and 5 s opening time. Maximum and minimum water hammer elevations with the selected surge tank \ are 1263 ft and 597 ft, respectively (surge tank at sta 65+59). In addition, a surge tank would be required as a source of water to fulfill the function of allowing rapid load pickup. Performance of the system without a surge tank on both load rejection and load acceptance combined with the operating requirements discussed in the preceding paragraph indicate that a surge tank is necessary for the Crater Lake project. C. Net Turbine Heads Used for Design. This section describes how the net heads used to specify the turbine were determined. Calculations of net heads are based on the following equations: KW = Q x Hn x E -11.8; H = Q2 K. L -' Combining these equations yields: ! 03 -Hg 0 + 11.8 KW/E = 0 where: kW = Generator output (kW). o = Turbine discharge (ft 3/s). Hn = Net Turbine head (ft). E = Plant efficiency. HL = Head loss (ft). K = Friction coefficient. Hg = Gross turbine head (ft) .. B1-25 Maximum net head was calculated using the maximum pool elevation of 1,019 ft, tailwater of 11.0 ft, expected losses, rated generator power of 31.05 MW, and 86 pct plant efficiency. The maximum net head was found to be 990.5 ft. Design net head was chosen as the expected normal operating head of the turbine, which, based on expected power generation and reservoir storage, is 945.5 ft. Peak efficiency is desired at this head. Critical or minimum net head was calculated using the minimum pool elevation of 820 ft, maximum tailwater of 12.5 ft, expected losses, 27 MW power, and 86 pct plant efficiency. The critical net head was found to be 788.0 ft. Rated net head has been established as the lowest net head at which the full gate output of the turbine can produce the generator blocked output of 34,.50 MW corresponding to a turbine output of 47,000 hp. Rated net heaa has been set at 945.5 ft. Maximum discharge (hydraulic capacity) is 518 ft3/s . This is based on the Long Lake turbine model with a prototype turbine throat diameter of 51.5 inches, 100 pct wicket gate opening, and generator blocked output of 34.50 MW. This occurs at a net turbine head of 912 ft. The U.S. Bureau of Reclamation recommends that maximum and minimum net heads not depart from design head by more than 125 pct or less than 65 pct respectively for Francis turbines. Our departures are 105 pct and 83 pct for maximum and minimum net heads, and are thus well within these recommended limits. D. Turbine Sizing. The major design parameters used in turbine sizing were to achieve maximum efficiency at normal operating heads, and to match the turbine with the generator which is specified at 31.05 MW. Bl-26 Representat i ves of HEOB and OCE recommended the fo 11 owi ng criteri a wh ich were used in sizing the turbine: (1) The turbine would be guaranteed to produce 35,000 horsepower at the critical (minimum) net head of 788 ft. (2) The turbine would be guaranteed to produce 47,000 horsepower at the design net head of 945.5 ft. (3) The Long Lake model data would be used. (4) The prototype turbine throat diameter would be 51.5 inches. The resu It i ng prototype turbine characteri st ics curve appears as Pl ate B2 at the back of this Hydraulic Appendix. E. Surge Tank Locaticn. The preferred surge tank location in the system we are considering, is as close to the powerhouse as possible without violating rock cover criteria. The location initially chosen for this project was Sta 67+50 but this location resulted in a surge tank that was inclined at a 10 degree angle to the vertical. This tilting of the surge tank was required to make certain that the shaft would daylight at the required elevation of 1,080 ft (max surge elevation in the tank is 1,075 ft). To simplify the construction stage of the project it was decided to move the proposed surge tank site to Sta 65+59 where a vertical surge tank could be utilized. Geological borehole OH-99 is within 75 ft of the final surge tank location and shows favorable rock conditions. The major design effort for this OM was undertaken for the original surge tank location at Sta 67+50 (downstream location) and therefore, plates, figures and calculations in this appendix reflect conditions with the surge tank at that location. A subsequent sensitivity study (tabulated in the main text of this OM in section 10) revealed that no significant hydraulic changes resulted from moving the surge tank upstream to sta 65+59. The largest change ;s a 7 ft B1-27 increase in water hammer at the unit which is acceptable, and therefore the upstream location was selected for design. The elevation contours in this area are of 1 imited accuracy (~ 5 ft to 10 ft) ana therefore, final surge tank location will be made after a COE survey in the summer of 1984 establishes the area topography more accurately. F. Surge Tank Diameter. (1) The Thoma Formula: F = (AL)/(2g CH) was used to calculatethe surge tank diameter required for incipient instability. In the Thoma formula: F = Cross sectional area of the surge tank (ft 2 ). A = Cross sectional area of the tunnel (ft2) • L = Length of tunnel from reservoir to surge tank (ft) . g = Acceleration of gravity (32.2 ft/s 2 ). H = Net head at the turbine (ft). C = Coeff i c i ent of minimum hydraulic losses between the reservoir and the surge tank. Hf = Hydraulic losses from the reservoir to the surge tank, where Hf = CV 2 (ft). V = Velocity in the tunnel upstream of the surge tank (ft/s). The Thoma Formula will calculate a tank area which will provide borderline stability under small load changes, assuming constant turbine efficiency. (2) Expected Tunnel Size -It is anticipated that the final tunnel will be bigger than the nominal size of 11.0 ft. This is due partly to drill'and blast techniques used in the construction of unlined tunnels and also to the enlarged rock traps and construction turnouts. The final average tunnel diameter and cross sectional area are projected at 12.4 ft and 131 ft2, respectively. This represents an increase of 12.7 percent over the nominal diameter of 11.0 ft and an increase of 28.2 percent over the nominal tunnel area of 102.8 ft2. The equivalent increases for the existing Long Lake tunnel are 14.1 percent for the increase over the Bl-28 nominal diameter and 27.9 percent for the increase in tunnel cross sectional area. These figures indicate that the anticipated final size of the Crater Lake tunnel is reasonable. Because of the importance of the tunnel cross-sectional area in determing critical surge tank diameters the contractor wi 11 supply the COE with cross-sectional data as tunnell ing progresses. (3 ) Diameter Selection Using the Thoma Formula with the expected tunnel diameter of 12.4 ft resulted in a minimum surge tank diameter of 6.1 ft and a diameter of 9.2 ft with a 50 percent increase. A final diameter of 10.0 ft was finally selected because the type of cutting heads used in the raise bore technique are built in differentials of 1 ft. In Appendix B2, figure 8 shows the calculations for surge tank diameters and figure 9 shows a curve of Thoma surge tank diameters versus various tunnel sizes. All Thoma calculations are made with minimum loss coefficients. (4) Computer Verifi cat ion -Computer program "WHAMO" predi cted a cr it i ca 1 surge tank diameter of 7.3 ft for the expected horseshoe tunnel. The use of "WHAMO" for mode 11 ing stabil ity conditons is discussed more fully in paragraph 1.04 J. G. Machine Bored Tunnel. A machine bored tunnel (MBT) with an 11.0 ft diameter will be an acceptable alternate on this project. The Thoma Formula resulted in a minimum surge tank diameter of 7.67 ft and a diameter of 11.5 ft with a 50 percent increase (see calculations in figure 6 of Appendix B2). A final surge tank diameter of 12.0 ft will be required for the MBT. All hydraulic transients for the MBT are less critical than, or equal to, the equivalent transients for the horseshoe tunnel, as shown in figure 10 of Appendix B2. H. Long Lake Turbine Model and Prototype Turbine Characteristics. (1) Turbine Model -The original Long Lake model data was placed in the "WHAMO" computer program with the bu lk of the data being taken Bl-29 directly from the IIHill Curve ll • (Original model data and IIHill Curve ll are not shown because HE DB has informed us that this information is considered proprietary by the turbine manufacturer.) The original IIHill Curve" lacked efficiency lines below the 50 percent level and, therefore, the 10 percent through the 40 percent efficiency lines were interpolated. The model turbine characteristics curves were a source of data for the IIWHAMO II program for model horsepowers less than zero (required in IIWHAMO II ), because extrapolation from the model turbine characteristiscs curves was a more accurate process than extrapolation from the IIHill Curve" (the IIHill Curve" was used to check the data obtained from the model characteristics curves). By extend"ing model horsepower and discharge curves beyond "PHI" values of 0.75, we were able to obtain the raw data in metric units which were then translated to the Engl ish system for the IIWHAMO II program. HEDB recommended and endorsed the use of turbine model data "in IIWHAMO II without the application of the Moody efficiency step-up. This results in more conservative water hammer values. (2) Prototype Turbine Characteristics The prototype characteri st i cs as shown in Pl ate B2 were scaled up from the mode 1 data based on a turbine throat diameter of 51.5 inches and a Moody efficiency step-up of 1.7 pct (based on HEDB recommendations). The efficiency step-up is applied to the prototype characteristics but not to the IIWHAMO II model data which results in a small discrepancy when the locations of the IIWHAMO II runs are plotted on Plate B2. This discrepancy is small and can be ignored for engineering purposes. The prototype curves are used for III~SURGEIi runs and for general turbine and generator analyses. (3) Wicket Gate Closing Rate -An equivalent wicket gate closing rate of 5 seconds was chosen based on a pre 1 imi nary overs peed ana lys is. This rate was confirmed by final speed regulation studies as described in paragraph 1.04 L. Figure 11 of Hydraul ic Appendix B2 shows the gate closing rate. Bl-30 I. Computer Models. (1) Computer Program "WHAMO" -"WHAMO" (water hammer and mass oscillation) is a digital computer program originally prepared for the Missouri River Division in the 1960s. The program was updated by the firm of Camp, Dresser and McKee of Waltham, Massachusetts, in 1978 and is now available to the Alaska District on its Harris Computer System. There is a more recent version of "WHAMO" (1984) which is capable of calculating transients for a compressed air surge tank and also has an electric governor option, but this version is available only on the Amdahl system in Portland. We used the 1978 version because of the convenience of the Harris System here in Anchorage. (2) Cornputer Program "MSURGE II -was used for stab il i ty runs and to check reject run results from "WHAMO". "MSURGE" is based on the Arithmetic Integration procedure as described in reference 14 and is available on the Harris System in the Alaska District. J. Stab il ity By "WHAMO". (1) Results of "WHAMO" Runs -"WHAMO" was used to calculate critical surge tank diameters for the nominal horseshoe tunnel diameter of 11.0 ft and for the expected tunnel diameter of 12.4 ft. "WHAMO" produced critical surge tank diameters of 6.0 ft and 7.3 ft for the smaller (11 ft) and larger (12.4 ft) tunnels, respectively. The analysis was based on minimum hydraulic losses, a pool elevation of 858.4 ft, and a tailwater elevation of 11.4 ft. Power settings were increased from 38,000 to 38,500 HP for the 11 ft diameter tunnel and from 38,500 to 39,000 HP for the 12.4 ft diameter tunnel. It is 1 ikely that a somewhat larger critical surge tank diameter could have been calculated if a wide variety of power setting and reservoir elevations had been tried, but, it is apparent that the recommended 10 ft surge tank diameter wi 11 provide an adequate factor of safety. Bl-31 Additional stability runs were made for the expected tunnel using surge tanks of 6.0 ft diameter and 10.0 ft diameter (recommended surge tank). Plate 82 shows the location of stability runs and Plates 86, B5, and 83 show surge tank water surface elevations versus time for the 6.0 ft, 7.3 ft, and 10.0 ft surge tank diameters. (2) Governing Stability: a. Background -For stability runs, the "WHAMO" program brings into play various governing equations which require eight coefficients. These coefficients are functions of the following governor settings: promptness (Tg), dashpot relaxation (Tr), permanent speed droop (0") and temporary speed droop (~). The temporary speed droop is a function of the mechanical startup time (Tm), and the water startup time (Tw). When using "WHAMO" on the Harris system here in Anchorage, the user inserts the eight coefficients into the program. When using "WHAMO" on the AMDAHL system in Portland, the user may insert the four variables (Tg, Tr,O" and (J ), or the eight coefficients as on the Harris system. Because of its convenience, we have consistently used the Harris system here in Anchorage with the accompanying eight coefficients. b. Stability Runs -initial stability runs were made with the following values: Coefficients used for "WHAMO" Input on Governor Settings Harris System Tm = 6.33 S AONE = 0.0 TW = 0.55 S ATWO = 1.0 T9 = O. 15 S ATHREE = 2. 18 Tr = 3. 19 S AFOUR = 0.104 (5" = 0.05 AFIVE = 0.0 )f = 0.23 ASIX = -10.64 ASEVEN --3.34 AEIGHT = 0.0 Using the above data, "WHAMO" showed surge tank instability for tanks ranging in size from 6 ft to 20 ft diameter. HEDB suggested that we Bl-32 increase the Polar Moment of Inertia (WR2) from the 1,075,000 lb-ft 2 originally recommended. When WR 2 was increased to 1,300,000 lb-ft 2 , the system showed itself to be stable with the recommended 10 ft diameter surge tank. c. Temporary Speed Droop -After a number of t ri a 1 s, it was determined that by increasing the temporary speed droop (~) from 0.23 ("first cut" value) to 0.40, "WHAMO" showed the system to be stable (with the design surge tank diameter of 10.0 ft), even with the initally recommended WR 2 of 1,075,000 lb-ft 2 (Plates B3 and B4). Changing the temporary speed droop to 0.40 results in a change of coefficient ATHREE from 2.18 to 3.31. As a result of this investigation, it is apparent that the governing controls will be required to produce the temporary speed droop required for stabil ity. The stabil ity runs for the 6.0 ft diameter surge tank (Plate B6) and the 7.3 ft diameter surge tank (Plate B5) incorporated the temporary speed droop of 0.40. Fi gure 12 ; n Append i x B2 shows the input file used for the recommended 10 ft surge tank. d. Electrical Governor -the above analysis was made for a mechanical governor, but it now seems likely that an electric governor will be installed (the current version of the governor specifications give the contractor the option of using either). The "WHAMO" input file for stabil ity was modified to include an electric governor. Some additional minor power conduit changes requested by HE DB were also incorporated and are shown on Figure 22 in Appendix B2. The input file appears as Figure 23 in Appendix B2. In specifying the electric governor, the following values were recommended by HE DB and were used in the program: Proportional Gain Integral Gain Derivative Gain Speed regulation = 3.460 = 1 .090 = 0.275 = 0.050 Pilot Servomotor time constant = 0.050 Bl-33 The electric governor provided adequate stabil ity response. Plots of wicket gate opening, turbine speed, and surge tank water surface elevation for a 10 ft diameter tank appear as Figures 24, 25 and 26 respectively in Appendix B2. K. Transient Analysis. (1) Load Rejection - A load rejection run was made with a maximum pool elevation of 1,022, minimum hydraulic losses, blocked turbine output of 47,000 HP (34,500 KVA generator output) and minimum tailwater elevation (4.8 ft). A 10 ft surge tank and an effective tunnel diameter of 12.4 ft were used. Results of this run were: Maximum surge tark WSEL = 1,075 ft. Maximum piezometer elevation at unit = 1,256 ft. The turbine characteristics chart (Plate B2) shows the location of the reject run. Program IIMSURGE" in conjuction with the Allievi Charts was used to check the "WHAMO" reject run with resu lts as fo 11 ows: Maximum surge tank WSEL = 1,076 ft. Maximum piezometer elevation at unit = 1,266 ft. The initial gate opening was 80.2 percent. Plates Bll through B14 illustrate the transients occuring during rejection and figure 13 of Appendix B2 is the WHAMO input file. (2) Load Demand -The load demand run was made with a mi n imum pool elevation of 820 ft, maximum hydraulic losses and tailwater elevation of 11.4 ft. The wi cket gates move from zero to fu 11 open in 5 seconds. which corresponds to a change in power demand from zero to 35,000 HP (25,690 MW generator output). Bl-34 "WHAMO" was used for the run and results were: Minimum surge tank WSEL = 764 ft. Minimum piezometer elevation at the unit = 598 ft. Plate B2 shows the location of the demand run and Plates B7 through B10 illustrate the various transients occurring during demand. Figure 14 of Appendix B2 is the WHAMO input file. (3) Emergency Closure of Spherical Valve -In the event of a failure of the wicket gates or penstock rupture downstream of the spherical valve, the spherical valve will be closed to stop the flow of water into the powerhouse. Spherical valve specifications (by HEDB) call for a valve closure time of 2 minutes. Straight line valve closure rates of 30, 60, and 120 seconds were simulated on the "WHAMO" program using the discharge coefficient vs valve angle curve for the spherical valve provided by HEDB (figure 15 of Appendix B2). The water hammer resulting from the closure rate of 30 seconds was chosen for conservatism. The pressures on the upstream side of the valve resulting from these valve closure rates are tabulated as follows: Spherical Valve Closure Rate Seconds 30 60 120 Maximum Pressure on Upstream Side of Valve (ft) 1 , 128 1,079 1,047 The various transient conditions occurring as a result of the 30 second valve closure are shown on Plates B16 and B17. The IWHAt-IO" run simulated a situation in which the wicket gates are frozen in the open position and constant power generat i on ; s occurr; ng (generate mode on "WHAMO"). Th is mode produced a higher water hammer than a standard reject run. Figure 16 of Appendix B2 shows the "WHAMO" input file for this run (30 second closure). The spherical valve closure runs were made with the same initial conditions as those assumed for the load rejection run in subparagraph 1.04 K (1). Bl-35 (4) Hydraulic Loads on the Penstock Thrust Block and Machine Shop Bulkhead. In the event of a penstock failure upstream of the penstock thrust block, the penstock tunnel, access adit, and machine shop adit would fill with water. This would place hydraulic pressures on the thrust block and the machine shop bulkhead. Maximum pressures are based on the addition of momentum and steady state pressures. A sign ifi cant momentum force cou 1 d result from the initial surge of water from the penstock break moving downstream to the thrust block and machine shop bulkhead. A flow of 3,677 ft3/s was used for momentum and steady stafe pressure calculations. This is the maximum flow which could occur from a penstock rupture at maximum pool as calculated manually and verified by WHAMO. Momentum pressures of 64 ft and 17 ft of water were calculated for the thrust block and machine shop bu 1 khead respect i ve ly. Steady state pressures were ca lcu 1 ated based on a discharge at the access adit portal of 3,677 ft3/s (34.8 ft/s) and no flow from the penstock into the powerhouse. This is a conservative assumption and is reasonable since a penstock rupture is most likely to occur due to water hammer caused by a wicket gate or spherical valve closure, thus preventing any flow into the powerhouse. The Bernoulli equation was written between the access adit portal and various points in the system to arrive at the design steady state pressures. Maximum hydraulic losses through the access adit were used because they will yield the most conservative pressures. A Manning's lin II of 0.0347 was used for the access adit and K values of 1.0 and 0.05 were used for losses at the access ad it/penstock tunnel and the access adit/machine shop adit intersections respectively. The steady state pressures calculated in this manner were 149 ft and 69 ft of water for the thrust block and machine shop bulkhead respectively. The total design pressures, (the sum of momentum and steady state pressures), are 213 ft and 86 ft of water for the thrust block and machine shop bulkhead respectively. (5) Surge tank at Sta 65+59. The preced i ng trans i ent ana lyses are based on a surge tank location at Sta 67+50. With the surge tank located at Sta 65+59 as shown on plates 2 and 3 the max imum WSEL in the Bl-36 surge tank (reject condition) is 1074 while maximum water hammer at the unit is 1,263 ft. Minimum WSEL in the surge tank (demand condition) and minimum water hammer at the unit are 765 and 597, respectively. Section 10 in the main text discusses the sensitivity of the system to changes in surge tank location more fully. L. Speed Regulation and Hydraulic Capacity (1) Speed Regulation -Overspeed analysis is based on a standard polar moment of Intertia (WR2) of 1,075,000 lb-ft 2 as established by HEDB. The synchronous speed of the turbine is 600 rpm and maximum overs peed is limited to 900 rpm or 50 percent over synchronous speed. The wicket gate closing pattern is shown in figure 11 of Appendix 82. "WHAMO" was used to determine overspeed for the lowest net head at which 47,000 hp (blocked output) could be produced, i.e., 100 percent gate opening at an approximate net head of 910 ft. The maximum unit speed resulting from this condition was 880 rpm (as shown in Plate 815) which represents a 46.7 percent overs peed condition. Plate B2 shows the location of the run on the characteristics chart. Figure 17 of Appendix 82 shows the input file for "WHAMO" • (2) Hydraulic Capacity -Maximum discharge is 518 cfs and was determi ned from the same "WHAMO" run that cal cu 1 ated overs peed • A manual calculation assum"ing maximum losses, maximum tailwater and blocked output resulted in a dishcarge of 511 cfs. The higher value calculated by "WHAMO" will be used for hydraulic capacity of the system. The pool elevation corresponding to this discharge is 960.8 ft and is based on maximum tailwater, maximum hydraulic losses and a discharge of 518 cfs. (NOTE: The maximum flows are based on a prototype turbine throat diameter of 51.5 inches, which was selected to produce 5 percent greater power at minimum and rated heads than the 35,000 and 47,000 HP called for in the turbine specifications). Bl-37 M. Transient Background and Summary. (1) The design of the surge tank and calculation of water pressures for the Crater Lake project has been an ongoi ng evo 1 ut ionary process with a wide variety of modifications which include: a. Changes in surge tank design from the original 350 ft high vented surge tank (10 ft in diameter) to an air chamber surge tank and then on to the recommended vented tank which is approxmately 950 ft high (10 ft diameter for the horseshoe tunnel and 12 ft diameter for a machine bored tunnel). b. Turbine characteristics changed from the original LOllg Lake model with a throat diameter of 52.32 inches and synchoronous speed of 514 rpm to the Oworshak model with 600 rpm synchronous speed and then back to the Long Lake model (synchronous speed equal 600 rpm and throat diameter of 54 inches). The final recommended turbine is based on the Long Lake model and has a synchronous sreed of 600 rpm with a throat di ameter of 51.5 inches. (2) Figure 10 in Hydraulic Appendix B2 shows an abridged summary of the transients for a small cross section of the calculations that were done for the project. The table shows that the transients are only moderately sensitive to even major changes in the system; for instance, the piezometer elevation at the turbine (for a vented tank) varies from a mi n imum of 1,237 ft to a max imum of 1,303 ft. The compressed air surge tank produced a maximum piezometer elevation at the unit of 1,218 ft and a maximum hydraulic gradient at the surge tank of 1,129 ft. Our recommended system produced a maximum piezometer elevation at the unit of 1,256 ft and maximum hydraulic gradient at the surge tank of 1,075 ft. [The original OM 26 of October 1983 indicated a maximum piezometer elevation at the unit (reject condition) of 1,329 ft, but this was based on the combined use of computer programs "MSURGE" and "MSRWH", which, when their maximum gradients are added together produce more conservat i ve resu 1 ts than "WHAMO" does. ] The transient analysis for the system shown in OM 23 (1973) which included Bl-38 a surge tank approximately 350 ft high with a 10 ft diameter, resulted in a maximum surge tank water surface elevation of 1,064 ft and a maximum piezometer elevation at the unit of 1,302 ft. The Dowrshak model was used in "WHAMO" for that analysis. (3) All of the earlier computer runs were made with assumed tailwater elevations of 11.4 ft because of assurances given by the State Fish and Wildlife Department that there would be no change in tailwater elevation. This concept has recently been revised and minimum tailwaters are shown in figure 4 of Appendix B2. N. Crater Lake Phase Without A Surge Tank. Due to the significant expense of constructing either an air chamber surge tank or a vented surge shaft, a hydraulic analysis was performed to determine the feasibility of building the project without a surge tank or an air chamber. Transient analyses were performed for the overspeed, load rejection, and load demand conditions at 5, 10, and 15 second wicket gate opening and closing rates as well as an additional overs peed analysis for an increased turbine/generator WR 2 of 2,000,000 lb-ft 2 • (Current design WR 2 = 1,075,000 lb-ft 2 .) The analyses were conducted on the "WHAMO" computer program and the results appear in figure 18 of Appendix B2. These results show that if the WR 2 could be increased to 2,000,000 lb-ft, and the equivalent wicket gate opening and closing rates were increased from 5 seconds to 9.5 seconds, it would be possible to keep the overspeed, maximum water hammer, gate shaft surge and gate shaft drawdown within acceptable 1 imits. Some structural changes would be required, such as raising the elevation of the control room floor and lowering the crown of the power tunnel at the gate shaft. Further investigation revealed that the WR 2 of the turbine/generator would need to be at least 2,106,000 lb-ft 2 to provide adequate governing stabil ity of the system, as plotted on Gordon IS stabil ity curves as shown in figure 19 of Appendix B2. Although it appeared to be theoretically feasible to eliminate the surge tank from the system by increasing WR2, generator manufacturers informed represent at i ves of NPD-HEDB and OCE that 1,550,0001b-ft2 was the maximum practical limit of WR 2 which could be incorporated into the turbi ne/generator for Crater Lake. Th is e 1 imi nated the system with no surge tank from further consideration. Bl-39 o. Hydraulic Losses Used in Hydraulic Transient Study. (1) Horseshoe Tunnel -Hydraulic losses for the expected tunnel (12.4 ft diameter) were interpolated from the hydraulic loss summary table shown in Figure 7 of Appendix B2. The loss coefficients are used in the equation: K = loss coefficient. HL = Head loss (ft). Q = Discharge through the tunnel (ft3/s). Hydraulics Loss Coefficients for Expected Tunnel Intake to Intake to Surge Tank Unit Minimum Losses 0.305 x 10-4 0.610 x 10-4 Expected Losses 0.390 x 10-4 0.750 x 10-4 Maximum Losses 0.520 x 10-4 1.070 x 10-4 (2) Machine Bored Tunnel -The hydraulic loss coefficients were calculated for the alternative 11.0 ft diameter smooth bore tunnel as shown in Figure 5 of Appendix B2 and are tabulated below: Intake to Intake to Surge Tank Unit Minimum Losses .263 x 10-4 .562 x 10-4 Expected Losses .370 x 10-4 .722 x 10-4 Maximum Losses .498 x 10-4 .997 x 10-4 Bl-40 1.05 LAKE TAP A. Genera 1. The 1 ake tap is referred to in the Pol arconsu It report (Exhibit 4) as the "open system/wet tunnel type. II It is called this because just prior to the final blast the entire tunnel between the lake tap and the gate structure is filled with water brought in through the gate structure which is open to th~ atmosphere. The configuration of the tap is s imil ar to the one used in the OKSLA Hydro-power project in Norway. The lake tap consists of an entrance orifice, a large rock trap and a transition to the 11 ft diameter modified horseshoe tunnel. This open system/wet tunnel configuration is a preferred type of lake piercing arrangement because it reduces the blast forces on the service gate and a 1 so reduces the amount of post blast rubb 1 e in the tunnel downstream of the primary rock trap. Details of the tap are shown on Plates 11 and 12. B. Orifice. (1) The orifice is a short tube, 12 ft in diameter and 10 ft in length. The discharge coefficient is 0.81 (reference 21) resulting in a maximum velocity at the vena contracta of 5.7 ft/s for the maximum expected discharge of 518 ft 3 /s. The top of the orifice is at approximate elevation 801. The minimum lake elevation was set at 820. The vortex submergence is calculated from the equation: S = (O.4)(V)(D)1/2 (EM 1110-2-1602) where: S = Required submergence in ft = 7.9 = round to B.O V = Velocity at vena contracta in ft/s = 5.7 D = Diameter of entrance conduit in ft = 12.0 This minimum lake elevation allows for a required vortex submergence of B.O ft, 6.0 ft of ice cover and a 5 ft safety factor. Bl-41 C. Trashrack. (1) Losses -The primary trashrack has a gross cross-sect i ana 1 area of 361 ft2 based on its 19 ft x 19 ft shape. The rat i 0 of the net trashrack area to the gross area was estimated at 0.67 (the same ratio for the intake trashrack at Long Lake) resulting in a net trashrack area of .67 x 361 ft2 = 241.9 ft2. With the maximum' expected discharge of 518 ft 3 /s the maximum velocities through the net and gross trashrack areas are 2.14 ftls and 1.44 ftls respectively with the trashrack at 4.0 ft from the orifice. A flow net indicates that flow paSSing through the trashrack utilizes a portion of the trashrack approximately 16 ft in diameter, resulting in functional gross and net trashrack areas of 201.1 ft2 and 134.7 ft2 respectively. Maximum velocities through these areas are 2.58 ftls and 3.85 ft/s respectively. References 9 and 16 indicate that the maximum velocity through the gross area of the rack should be about 2.5 ftls with velocities of up to 5.0 ftlsec being acceptable for racks which are accessible for cleaning. To avoid damaging the turbine the trashrack will be put in place over the orifice after the final lake tap blast and before any discharge is permitted through the power conduit. (2) Hydraulic Losses Through the Trashrack -When considering the total trashrack (gross area 361.0 ft2 and net area, 241.9 ft2 with a maximum discharge of 518 ft 3 /S) the losses are: Trashrack Condition No clogging 25% clogging 50% clogging Hydraulic Losses 0.05 ft o. 12 ft 0.34 ft If we consider the 16 ft diameter area resulting from a flow net study (gross area, 201.1 ft2 and net area 134.7 ft 2 ), the hydraulic losses are: Bl-42 Trashrack Condition Zero clogging 25% clogging 50% clogging Hydrau 1 i c Losses O. 10 ft 0.29 ft 0.84 ft Reference 9 recommends that maximum hydraulic losses through the trashrack should range between 0.1 ft and 0.5 ft when trash rack clogging is included. The actual losses through the trashrack with 50 pct clogging will most likely be between 0.34 ft and 0.84 ft. In any case it is felt that a 50 pct clogging of the trashrack is a remote possibility and therefore the consequences are of minimal importance. Instrumentation will be available to inform personnel in the powerhouse if severe clogging of the trash rack were to occur (upwards of 40 pct). Equation (11) on page 472 of reference 16 was used to calculate head loss through the trashrack. D. Primary Rock Trap. (1) General -The primary rock trap (see plates 11 and 12) has the function of containing the bulk of material resulting from the lake tap blast plus any other materials that may pass through the orifice during the life of the project. The rock trap also must allow discharge to move into the power tunnel with the minimum of resistance that is consistent with the economics of tunnel construction. (2) Containment of Blast Rubble -The final blast will produce approximately 86 yd 3 of rubble. This is based on a tap plug that is 10 ft deep, 12 ft in diameter, an overbreak of 6 inches around the perimeter of the orifice and a 1.75 bulking factor. The rock trap can contain all material from the blast with a minimum of constriction. It is anticipated that some of the rubble from the blast will pass into the power tunnel but the secondary rock trap at approximate sta 11+40 will prevent any gravel or cobbles from reaching the gate structure. Bl-43 was In anticipation of additional materials being introduced, the rock trap designed to handle at least 60 yd 3 of additional sediment before constriction becomes a concern. A smaller rock trap was considered in which "self cleansing" would occur i.e., if a severe constriction occurred, higher velocities would be created which would simply move rubble out of the way and create more flow area. This approach was abandoned because of the variety of intangibles that exist in sediment transport and tractive force analysis. (3 ) Tractive Forces in Rock Trap Tractive force theory (references 19 and 20) indicates that under normal conditions the maximum expected velocity in the power tunnel of 5.04 ft/s will move particles ranging in size from 0.5 inches to 2.2 inches. Reference 1 shows that highly turbulent flows can produce tractive forces considerably greater than those predicted by tractive force theory and considering the highly turbulent conditions at the rock trap and for some distance downstream, it is possible that stones much larger than 2.2 inches in diameter can be moved toward the gate structure. The bulk of these larger stones will come to rest downstream from the rock trap in the unlined tunnel, but if any are carried further, the secondary rock trap at sta 11+40 assures that no large stones will reach the gate structure. E. Final Lake Tap Blast. When tunnel excavation is completed, preparations will begin for the lake piercing blast. Instrumentation, piping and blast ignition wires will be installed in the tap area as shown on Plates 11 and 12. The instrumentation will consist of: (1) A water level monitoring device in the rock trap that will transmit to a readout panel near the gate structure access adit portal. A 2-inch pipeline will be installed to supply compressed air to the lake tap area from a compressor at the gate structure access adit portal. (2) Devices to measure blast pressures at three locations in the rock trap and tunnel. The locations will be immediately under the tap Bl-44 plug, approximate sta 10+50 and at the face of the tractor gate at approximate sta 14+00. These blast pressures will be recorded at the gate structure access adit portal. Once these preparations are made, the serv i ce gate at the downstream end of the gate structure will be closed and the tunnel will be filled with water pumped in from the 1 ake through the gate shaft. As the 1 ake tap fills, air will be pumped in from the access portal to the area just underneath the orifice to maintain the water surface elevation at 783 ft. This air space will act as a cushion to reduce blast pressures against the service gate. The volume of the air space will be approximately 2,108 ft 3 at a gage pressure of 90.8 lb/in 2 which represents an air volume at atmospheric pressure of approximately 15,100 ft 3 . This volume is considerably greater than the 5,300 ft 3 of atmospheric air used for the Ringedalsvatn (Oksla) lake tap (Exhibit 4, p. 28) but the actual geometry at Oksla is unknown and Polarconsult indicates that the larger the air cushion the greater is the shock dampening effect. The air cushion, in combination with the distance between the blast and the gate structure, (approximately 650 ft), will assure that the gates weather the blast with no damage. The time between the start of the tunnel filling and the blast will be strict ly contro 11 ed. Pol arconsul t says liThe peri od of time from start of filling the tunnel until triggering the final blast is critical. The work for this period should be planned to the smallest deta"il aiming at 16 hrs from start of filling until firing (this even if the delay caps should be specially made to resist 300 ft of water pressure for 72 hrs)." It will be important for the contractor to have high ly experi enced personnel at the site duri ng the blast phases of construct i on and duri ng preparations for the final blast. The movement of water thro~gh the lake tap and· up the gate shaft following the lake tap blast was simulated on WHAMO. The blasting of the rock from the lake tap plug was simulated in the program with a rapidly 81-45 opening (in 0.2 seconds) valve. The WHAMO input file is shown in Appendix 82 as figure 20. Using conservative (minimum) friction values for the tunnel and gate shaft and a realistic maximum lake elevation of 1,019 ft, it was found that an initial gate shaft water surface elevation of 995 ft will result in a maximum surge elevation of 1,039.7 ft which will keep the control room dry. This will provide an "initial head differential of 24 ft between the lake surface and the gate shaft (and the rock trap vicinity), which is approximately the same head differential used at Oks1a (26.2 ft). This differential is considered adequate to assure that the overburden and blast debris from the plug is carried into the primary rock trap. Water surface oscillations in the gate shaft following the blast as calculated by "WHAMO" are shown on figure 21 in Appendix 82. The period of the initial oscillation is 26 seconds and maximum water surface elevation is 1,039.7 ft occurring 13 seconds after the blast. The peaks of the oscillations decrease rapidly with time due to friction losses. Max"imum discharge through the plug area is 325 ft 3/s and occurs 6 seconds after the blast. Maximum discharge up the gate shaft is 323 ft 3/s and also occurs 6 seconds after the blast. Gate shaft water surface oscillations were also calculated manually using an arithmetic integration procedure. Results compared well with those calculated by "WHAMO". Maximum WSEL in the gate shaft was calculated to be 1,038.7 ft, occurring 14 seconds after the blast. To determine the maximum force on the service gate due to the blast and subsequent surge of water up the gate shaft, a summation of forces was made at two second intervals up to 16 seconds after the blast based on the WHAMO results. The forces considered were hydrostatic force due to standing water in the gate shaft, momemtum force due to the change in direction of the water upon striking the gate, and the blast force. The maximum hydrostatic plus momentum force based on the WHAMO results is 765,000 "lb. An approximation of the force which will result from the blast is based on 81-46 the blast pressure recorded at cell # 2 at the Ringedalsvatn (Oksla) lake tap blast (Exhibit 4, pp. 64-68). A comparison of the Crater Lake. and Ringedalsvatn conditions is shown below: Reservoir WSEL Minus Gate Shaft WSEL DistaQce from tap blast to gate Initial head on gate (prior to blast) Maximum pressure increase due to blast Tunnel area Air cushion volume Pressure in air cushion before blast Maximum gate surge above lake Total pounds of dynamite Number of delays Anticipated Conditions at Crater Lake 24 ft 652 ft 206 ft 130 ft2 15,100 normal* ft 3 7.3 bar 21 ft 600 (based on long lake tap) 13 (based on Conditions at Ringedalsvatn 26 ft. 1,117 ft (to cell #1 at gate) 272 ft Cell #1-33 ft @ 0.8s Ce 11 #2-39 ft @ 0.97s Cell #3-115 ft @ 0.25s 375 ft2 5,393 normal ft 3 9 bar 19 ft 1,578 long lake tap) 18 *Atmospheric Based on this comparison, it was decided to use the pressure of 39 ft of water recorded at Cell # 2 (Oksla) as a blast design pressure for the Crater Lake blast. For conservatism, the force resu It i ng from the des i gn blast pressure of 39 ft was added to the maximum hydrostatic plus momentum force even though the max imum blast force wi 11 probab ly occur pri or to the maximum hydrostatic plus momentum force. Maximum blast pressures at Bl-47 Ringeda1svatn occurred within 2 seconds after the blast, whereas the max imum surge at Crater Lake wi 11 occur about 14 seconds after the blast. The total design force on the 6 ft x 8 ft gate was thus found to be 882,000 1 b. The hydraulic analysis for the lake tap blast was sent to WES for their review. Their response confirms the foregoing hydraulic analysis and appears as exhibit 5. F. Final Lake Tap Location: The location of the lake tap as shown on Plates 1 and 9 is approximate. The ultimate location will be made during the final phase of construction. Probes will be drilled out ahead of the work crews to determine which path will give the soundest rock and also to determine the exact position of the lake bottom. 81-48 REFERENCES 1. Mattimoc, J. J., Tinney, R. E., Wolcott, W. W., "Rock Trap Experience In Un1 ined Tunnels, II Journal of the Power Division, ASCE, Oct 1964, pp 29-45. 2. Boil1at, J. L., & Graf, W. H., IIS e tt1ing Velocities of Spherical Particles in Turbulent Media, II Journal of Hydrau1 ic Research, Vol. 20, 1982, No.5, pp. 395-413. 3. Boil1at, J. L., Graf, W. H., "S e tt1ing Velocities of Spherical Particles in Calm Waters," Journal of the Hydraulics Division, ASCE, Vol. 107, NO. HYlO, OCt 1981, pp. 1123-1131. 4. Rouse, H., "Engineering Hydrau1ics,1I John Wiley & Sons, 1949, pp. 780-782, 206. 5. Reinus, Er1 ing, "Head Loss In Un1 ined Rock Tunnels, II Water Power, July-August 1970, pp. 246-252. 6. Rahm, Lennart, Power, Dec. 1958, pp. "Friction 457-464. Losses In Swedish Rock Tunne 1 S, II Water 7. Wright, D. E., Cox, D. E., and Cheffins, O. W., IIPhotogrammetric Measurement of Rock Surfaces In a Power Tunnel,1I Water Power, June-July 1969, pp. 230-234, 274-279. 8. Munsey, Thomas "Unique Features of The Snettisham Hydro Project, II The Northern Engineer, Fall & Winter 1976, Vol. 8, No.3 & 4, pp. 4-13. 9. Creager, W. P., and Justin, J. D., Hydroelectric Handbook, Second Edition, 1950, John Wiley & Sons, Inc., pp. 100-102,547,546. 10. Rathe, L., IIAn Innovation in Surge-Chamber Design,1I Water Power and Dam Construction, June/July 1975. 11. Bergh -Christensen, J., "Surge Chamber Design for Juk1a," Water Power and Dam Construction, October 1982. 12. Chaudhry, M.H., "App1ied Hydraulic Transients," 1979, Litton Educational Publishing, Inc. 13. Svee, R., "S urge Chamber With an Enclosed, Compressed Air-Cushion,1I International Conference on Pressure Surges, 6 - 8 September 1972, Copyright BHRA Fluid Engineering 1972. 14. Rich, G. R., "Hydraul ic Transients, II Second Revised and Enlarged Edition, Dover Publications, Inc., 1963. 15. Wallis, S., IIMountain Top Tunnels Tap Glacier For Hydropower," Tunnels and Tunneling, March 1983. Bl-49 16. U.S. Dept. of Interior, "Design of Small Dams," 1974, p. 465. 17. Rajaratnam, N., "Erosion by Plane Turbulent Jets," Journal of Hydraul ic Research, IAHR. Vol. 19, No.1, 1991, pp. 334-358. 18. Simons, D. and Senturk, F., "Sediment Transport Technology," Water Resources Publications, Fort Collins, Colo., P. 705. 19. Maynord, S., "Practical Riprap Design," Misc. paper H -78-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1978. 20. "Hydraul ic Design of Flood Control Channels," Engineering Manual 1110-2-1601, U.S. Army Corps of Engineers, Washington, D. C., 1970. 21. Brater, E., and King, H., "Handbook of Hydraulics," 6th edition, McGraw-Hill Book Co. 1976, P 4-19. 22. Jaeger, C., "Fluid Transients in Hydroelectric Engineering Practice," Blackie, 1977, pp 293-333. 23. Binder, R.C., "Fluid Mechanics," 2nd Edition, Prentice-Hall, Inc., New York, 1949, pp. 204-205. 24. Chow, V.T., "Open-Channel Hydraulics," McGraw-Hill Book Co., 1959, pp.165-173. Bl-50 APPENDIX B2 SUPPORTING TECHNICAL DATA FOR HYDRAULIC DESIGN OF RECOMMENDED PLAN -on t----'_ 1.1'·::.;7-: .. ::;~.;:; .' .. PR.i\TER l.A(E, SHETTISHM, RISE IN GATE SHAfT DUE -TO 88 SEC GATE CLOSURE ~~:.fl::'·: .. I~', ... 1833. It , \ 1811. , \ \ \ 861.5 '\ ~S.S ga3.S '/ (' I I 87i.S / 85?S S3S~5 8. ) ae. / V / / , , , \. \ \ , \ ~ \ , 68. RU1 OF ei AUG a.. AT 18186'''8 "\ "\ I \ / \ / ~ / \ / -V-XJ X ELEM S11 ".5. EL V. o ELEM Vl GATE OPE UNG "-1'0 n a8. 1M. lae. 168. TIME (SECS) lS8. ~ GATE (10 118 88 17 66 55 .... 33 11 8 aM. eUN. (Fl.) ~f··· . , ~ . , Q.. "'. '" ".f 1~~ _.6 ~1.5 1&8.5 877.5 8S6.5 8J5.5 , I. " ~TER LAKE, SNETTISHA". RISE IN GATE SHAFT DUE'TO 1.5 "INUTE GATE CLOSURE , . ., o· .,..,.. ~ ~ ~ " I V ~ ~ ~ \ , .. \ I , 'c\ / \ X ELEft STl U.S. El i='U. , / V tLt" VT 1a"1~ un: I"'"" X I , , " / , , / , -, / , \ J , , , n. n ce. -40. 68. 88. 118. 128. HI. 161. TlI'IE (SECS) ~ GATE Oil) 118 99 88 77 66 55 44 33 11 I 281. : ••. ; . ~.'I-!:' '. ~~ '·~t~·'.· '.~'; • L)~1U' lJIIU. SN£TTISHM AISE IN ~n SHN'T DUE TO 8. SEC Q.n CLOSURE i~C: W JOE ~)(t.O NtD Jm JOHNS .T 1'HI ALASICA DIST C~S 0' EHGlttiERS 1-::f!', WATER .wIftE1t AND I'IIISS OSCILLATIOft (101*/110> PROQRNt .J: co, THIS FILE IS DeWlC -11 FT £XCMUlTtD 1'UtItEl. ~c. now SUIUl.ATIOit THROUGH POKEN PENSTOClC .T POtSTOCIC IEQII'+I'+IHG S'.:c .' USE OPel C.wttE1. FLOW DOWNSTREMI OF ~TE STRUC~E r,:.c. SVSTEJI COIW/'fDS ~;:~::. rfm~ ~ AT 1 11 £IDIEHT Cl LIt« 1 1 .. 13El. Cl. LItle 1.. ate 1+ El. cae LIt« 2M 3M lS. EL ClI LItle 3 .. 4" 11 El. C'" LItle .... 511 17· El. cse LItle S" 611 18 n c&I LItle 611 7" 11 El. C7I LItle 7 .. a .. at El. TJl "T 811 RISER sse 21 El. C1S LItle 811 a58 22 El. STI AT lSI 23 El. C78 LItle 811 a. e.. El. Ul LII'It 811 8M as El. C7I LIre 8M HI • El. ell LItle gee 1 ... ~ El. TUI AT 1 ... 21 FINISH 21 C El.DIEHT COIIW'fDS 31 RESUUOIR 10 .... ELEV 1111.' FINI 31 CONI 10 Cl DIM la. L£HQ 1. CE'L£R 4&&1. DtDLOSS "T ... CPLUS .IUI CftItIlS 1.sa II FRIC ..... FINI 33 COllI 10 Cl. DIM 11. LEJtQ I. CE'L£R 46A. FRIC .... "DELOSS "T I CPl.US .21 34 CftINUS .11 FINI 31 COllI 10 C2I VMIAILE DISTMCE ••• MEA 32". D 35. " 334. D 6 •• " 371. 38 D 115. " IN.' 1.£ .. 115. CELER ••• FRIC .1S83 ADDEDLOSS "T 35. on CPLUI .sa CltlttUS .&1 ADODLOS. AT ••• CPWS .2 C"IttUS .11 FINI 31 CCItI ID C3I DIM 11.1' LDtQ 233. CEt.EII 4&&t. FRIC .NII FINJ J8 CCIItD 10 C'" DIM 11.1' LEJtQ 504. CEUR 4Ut. FAIC .... FINJ ... COllI 10 cse DIM 11.11 1.EHI 2M. CEUR 46&1. FIUC .16511 FINI 4S COllI ID cae UMJAlLE DISTMCI ••• MEA 112.' D 25. A .... L£NQ as. CELER 46&1. 41 FRIC .1113 FINJ 43 COllI ID C'7t DIM 1.1 1.EHI 12. ClLER ...... RlIC • MIl ADELOS. "T 4. CPUJS •• 1 44 eftl .... 'S ADDEDLOII AT 12. CPUJt •• 1 eftIHUS .'1 FtNI 4& CCIItD ID C1S DIM 1.7 1.EHI 1. CILEJt ..... FRIC •• 1 FIHI ... $lIlGETNIC ID ITt TUOITME Et.IOTTOfI 1". IfTOII 1 ..... TTOP 11&3. IIDIM •• '7 47 TOIM 131. CELERITY ..... FRICTION •• 1 FINI 41 TJUNCTION 10 TJl 'ILLET ••• FIHI ... CONI Ja C78 DIM '7. I LEHI 1. CILEJt ...... FRIC .1113 "NI SlIMLUI 11 US TYPI 1 UlOID 1 DIM 7.1 FINI 5S UCHM 'TWI 1 QATIPOI 1... II. 71. M. 51. .... 31. at. 1.. • .• 51 DISCOIF.13 .71 .11 .11 .41 .33 .a4 .11 .11 ••• FINISH 53 COIIt II C'7I DIM 7.1 UHI 1. ca.a ...... FIUC .1113 FI"t 54 CGtID Ia CIt DIM 11.1' LIHI I.' cnu ...... ,.IC .... 'IN! • IEIIJIUOII ID TVS E1.IV 781. FINI .. 51 C OUTPUT ....,. n :: .I.uY ALL ""I" • HUTOI'I '.1":' ... "'..: .. : ......... iI\~~fr.'~ :IIZ -• I: _=01. m pptt a QQ . --. a " DE 1M pta Q HEAD -MODE 8M PtEz Q HEAD ~ ttODE 1St pta HEAD Q . tto. an PtEZ HEAD Q it: .HOIII" 8M PtEZ HEAD Q ..,..-HOIII 5IM PtEZ HEAD Q 11 HOII. 1 ... PIa HEAD Q 71 ELEJt Ul POSITIOff PIa teAD Q 'T.l FI"ISH .,,, ~.FI"ISH ~ ~t.~mHQ REU51'S 11 Et.EII STI ELEU leAD Q .. NO. 8M pta Q HEA8 81 HO. III PIa Q sa HODE 8M PIa !CAD Q 83 HOIII Me PIa Q ... HODE 1'" PIa Q as Et.EJII VI POSITtON PIa HEAD Q .. FINISH 17 C CCWUTATIOML PMltHFiETERt 81 .. CONTROL • DTCOIP t.5 11 DTOUT 1.' ga TMX 2e.t 113 ~ 1.' 14 DTOUT 2.5 • TMX 2M. • FI"ISH n C GATE CLOSURE SCHEDULE -.. SECOttD QATI CLOSUIII • SCtEIIUl.E USCHDI.R.I 1 • T ••• Q 1M.' 1. T 21. Q ?S. 111 T .... Q see 1. T •• Q 21. ldT".I ••• 114 FINISH 1. FINISH 1. C PlCUTlCllt CCImIOL 1'" 1. GO 1. ~QOOIIiWlM\I"" u.~ 111 EDT •• 14 12 10 8 6 MHHW 4.8' 2 0 0 200 , . ----- i I· ! .. ---~~---------......... --------- . , 400 600 800 j i I : . ...l Maximum Tai1water = 12.5' Highest Tide 11.4' . 3/2 .. Q '" (3.5)(24)H Maximum expected discharge with all unHs in action ~Q = 1642 cfs 1000 1200 1400 1600 Discharge in CFS .. ..... :....: . ..: 1-·· I· I NOTES: 1. Curve shows minimum tal1water elevations at powerhouse with no backwater effects from ocean tides. 2~ . It has been assumed that the .tainter gates at the fish hatchery have been removed. but broad crested weir remains in place with a sill elev. = 1.7 ft. 3. Tailwater elevation should be taken from curve or from elevation of tide. which- ever is higher. 4. Maximum discharge consists of 1124 cfs from units 1 and 2 plus 518 cfs from unit 3 (new unit) for total of approx. 1642 cfs. 1800 2000 2200 2400 CRATER LAKE -..-. , TAILWATER CU~VE ' ! . . ~:1 :.. ---.------ COMP .~ > ,;-- C H K 0 • ~,-,,,,-\ ....c'tL...1 __ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA SHEET HO. ________ _ FILE ____________ _ DATE If, /d?lZ?> :' I,' j.';.:--~ r i2..E::\-6(~ .. ,)c.e \)VV\"2..lp 'f\2..lC.T10t0 \..()~~ CP,'-(.Q\_~~lf;.. \,0 'A'-{ De~\,)u <.... ~I':>G ~LH X 8 "2.., . ,--".--,.--J n --.'~-"1 --'1 -'\ . ~l ~: ; ... , \--' ~~---.. -.-~~~==~~~.=~~:------------ ,~-------- I -) SiL ~'2.\Ll.'E.D £. 3lJ1c"tSD l- ."\.. ~~~~~u~~S~~~~\~' .. -~'-------"_. __ .... __ .... '. ~,-' , (""'O:".:e.'S C:~\......C.0\....~i'E.I:: \ N D"'-'" ~ w\.~\....-R..EV"\~\ ~ -ru~ ::"r-h,.\ 'z \:::cQ. TI-I-E-Di(.lu.....el~ a B~~'\:) S~Tl0~ fRC',','-l'i-SO Th: .... + ... :; 1 , /". ,::--,,:.~ .) ..... . -. -;\~s ::i:.(~\t)N DIs. Or it-t-e-s~e6-e-~~(" \l"i~ .. ',\~T :'<:-(.:T'~:.J ::;2 t. \, \-\. 'S ~.lt \ '-\ 1" '-\ S' It) ~ i14 ~ i ~ ~ W \ '-\.. N~ \t) '3~ '(. -:;:', -~~: ,_ (. j , .. -r--: ~~::.:. . CD.. '\IZ..A~\ilOtS~ FIZ-Q."-". St1C>T ce~ Sa.Tlt,..'::' ~-:.... .' ~."'- :-~.1'''.:''.''\~ . r ...... , -) , , '-.:.- NPA FORM 168' (Rev.) Previous editions obsolete. DEC. 1965 a AG-FPP 552-83 C' 0 M P • ,;; ~ l':: CHKD. ,.,../ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA ....... SHE E THO • _--""!~=--_ F 1 L E __ ----:--::--::,.....-_ DATE /Q "J;/2 3~ "'_. /u <! , (j). IiLA~~\\\tl~5. ~v\. '5>'MtlTt.'ite'\E c::.~TU>-):' \t:I \ \' ~ iCou.::... .5'2(. Tl C ~ : EfoSeC tll\..l t:>(= \ ~ vVl A~ ~ "2.-'Tt'teQe' p>. Q.:c L( I ~t='\NI\\E f'~0\...T A~ Wt\\C.H ~,\.,..'-~EQ.-,)\'-(~ l-\ r..l \ "'-l(j. • ~~'i'I\ ~ \ c1're\'L rt. iL ~ \t)"\h '- OF S. \):..,.c-s,;"""e-r'1-C ~(T!C~.J . f"<,S rlbh~ f1)~ ~ 0 i= '-\~E:.v $~-T!ol'~":" \t-J v'ABT SElIl'),..)· L\ L \1veC ~~TlO"-1'!.. w... oT ~~.:nt':l~ fr '\ I, L1 .1 I' ., IJse £' -m..A~~\ \\C~ 0= ~\i):,\~!;.. \\-\\~ \~ I-~ '1l-\AN T(\iZ" z.sl ~EI~ \~ Dw... ~v t\.J~ \C \\-\~ D,r:F\(oU1 Dr ~?B.?II'~ SmTC~ P\tb~ 0" It> (,0" \~\c..W~.$. o~ A \...01'\(,-ST£.eT(.r':-, ,S" -..j ~: .s. 7 0 ..(. 7 0 NPA FORM 16~ (R v ) Previous editions obsolete. DEC. 1965 a e. OK. ~ ~fL eYf /110-Z-/::,,-'l':- /Cjl~/; :.f-'2 ~ C I AG-FPP 552-83 C OMP. '3N3"" CHKD. __ _ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA \\ -= /.1 \D ~. k = I DO~ C ~cx.. Z Z 8 -'4 ') c...~)(.p Kc .......... ,~::: c""--- \\ -= ---~ i)\ 10 \. \ ~- ....-/. C2S-:.f) ::-DY C~DC. t:: ~,,~ I \< ~ 'M. ll'-l .: 0 \~ (I+OL (.~B-Y, l3A!.~O ;:' ,""2.0 \~ V'A~'j. C .. K. SHEET NO. _--,_=<:.......-_ F 1 L E ---,-__ ,----, __ DATE ---:.....:1 O:...........;r:...-'_.~..:::::2--"'-)..;...·~_ .-c i ~\ ,/', .J ,"-c:: , -.~ .I "-\~o -0 == 0 =- t-{ (OOS f.tJ( ) ;:; • /8 0 = .0'-/7 f NPA FORM 16& (Rev) Previous editions obsolete. DEC. 1965 a . AG-FPP 552-83 COMPo :Jf-)~ CHKD. __ _ SUBJECT u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA CTZRTG/L L-AIC.r= K Y'<\~ = L1 ( , /(p T ,Z D) _ f, '-1'-1 -"-J-(-/'-I~ L329/{rr,'IS"l.)..;. _ I 3~2 (~'-I, If) SHEET NO. i F 1 L E __ ----=~__,__- DATE /0 ..4P2 Bi"". (<..i~~ (,..~ c\ :ro-~i\~, ~\.H>2~\2.\..~LL \~\)e:eCY() p. IO.s \ ',( 'M A ~ =-\. ~ ~;( (), I C)': I \ ~~ ? v!,' " f\-: Z~t n'-" ( 'i2.oc..~ 'TeA? -'S) "'" L.~ ) e, S '2 -30 ) V=- 1/ "'~ !.-= ~ "f/I..{- // t,~ 1..--:: I • ()D"2.-.... -IJ T . I, MPA FORM 16&a (Rev.) Previous editions obsolete. DEC. 1965 AG-FPP 552-83 COMP. ;IN:r CHKD. __ _ SUBJECT ® u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA C.IGA TC:-(l__ \,...'f':\L.-e- PI' -~ A= L.ji 0 S''7 I 22. I' /2./ \E. == \f D ~2...j _ ~~ - ,,1'-- = 'ZO ~ = l3,~ tp)l \ \) :; \ a. ... ,.-v/"-S 2. !XI()lJ / , ' 0 ,,,),, v )<~""'~ -. 3 8 -- ~~ ~ ¥: .It. ~.., -. J-S"" ~ I I -_\~ ~'Ii:~p - ~'-~~~ = 1'"2 1-(.1 ~t.?) :: D 1-/ / ...,--- ~\\.-fV,. ~'t :::. 138L,lca\o'j= J ' , D 7 ( -- [-1 -, \S-(,\~~ ').:-f ,0"2.8 -~ I.....".,,H.-..) - rZ : ! NPA FORM 16& (R v ) Previous editions obsolete. -DEC. 1965 a e. SHEET NO._S __ _ F 1 L E ___ ----,,,-- ,,_ .... -, ""'l,' DATE .. ;) I± r ',;;.. ;j" AG-FPP 552-83 COM P. -:y.....'J:r CHKD. __ _ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA C 1l.PlncTL \..AICE' K EXj) = ~(V\I\A)l ~ [<~l~ - 1(,.-4 100 ,01 7, / 0 e~ ~ l 'M~ c.. ""2. "B -"2./ \ ~ \ l '~L e~l;:' = I 0 \ (. ( COlo'); . 00 ( B'p HLMA)L'" ,es(" tQlo): ,1)0 J3 ' -H '-'IV. \ N': , C C ~ -, (, I ~lo \: I OD ! U I 1' . ..0/'2.... -= b, G-~\6' CO rS::''T1ClCTID.0 30' --------,. -~-------~--~~ 1~1 NPA FORM 16& (R v ) Previous editions obsolete. DEC. 1965 a e. SHEET NO. (p FILE DATE LI) PP,'e D· ' u '1.., , AG-FPP 552-83 CaMP. In::;: CHKD. ___ _ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA ,..-f1-1 J~ ! • SHEET HO._I.....I...-__ FILE _____ _ D A TE/:J 6 ,:;>,2 .] '.,/ ( D-z../I) , = " K~ ~= , DlP \ , \.> 2.>";;:'-lIS 1~f\..JE \ ) VVI\ '--I -~E""I.I'\~ 17:;-r ~ I ::-I : ( i, .... r::.,z-;",.. 'Z-!). == ~,o '-il'-j '~-\ , \.. I A -(.,xB ;-'iB FT"2- I V= 3"2..~ t;. 0 -FP~ -. 0 ~ -'-IS - ?- A -7:J &:"" t../ -r j -:J.-,! f1 If) , -f f ,.'e. TC,,-,S FOiL S I---C;-C \~e:TG' ((j ,)/.j l-:'E:') ,~'. ;<:..S- 0, FF '-c...1j,-"\ \0 'F' l',j ";., ,_"r:, 'Z \, .. ",,~ r--:J r--}I "X~;. r,~ ~ \..";'-2.':'- G\~~N \ i'J CtiC'..0) ~?sN -c.MAN~}6-'rlr\'lD~rl,v\.\.W I TA~\.,c= S'-~ : , , . 1\,. ',' '.' . NPA FORM 16&a (Rev.) Previous editions obsolete. DEC. 1965 AC-FPP 552-83 COM P. ;:JAJ'~ CHKD. __ _ SUBJECT u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA CiLA/a'L LA\( ~ I '/ ~ c\ \~S (,D""2l) <- (\ 0') \/3 r '.1-\~S" I" .c,,1..) -r ' I ~'_; ') I ~ -I D'-I/~ ~ SHEET NO._..:.I.?~ __ FILE _____ .,....- DA TE I () A ftZ. 9 ;~,_ I......, ~.~ ./, ~OCP~ - I (J,BD\8 NPA FORM 16&a (Rev.) Previous editions obsolete. DEC. 1965 AG-FPP 552-83 COMPo JI~ CHKD. __ _ SUB~IECT u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA C I( A Te('L-LA K'F. Q), 'fIClCTIOtU Lo~~ \N vv\~T '. L:::. ~1 SO -I ~ y~ -71)7:: l-/57'O 6 ....... ,..) d G 'ell +> -;: d ~",,"")I. .:: cl. -"/ ,""2 ~ -= ~ " /' -'\oJ~ -- -,./ I,j - 1~~t7 -I l I I D 1f)?S - \ I. • D LD a ,DC117 I DO 3 7 ~ I D·') ;;-(pB 9 SHEET HO. ___ _ FILE ____ ..,.,..,...,._ DATE ; () 8;:>':-2 87' HPA FORM 168'a (Rev.) Previous editions obsolete. AG-FPP552-83 DEC. 1965 --r--""i"'"" C OMP .. it1L l iD SHEET NO. _.:......-__ CHKD. __ _ u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA FILE ____ ....",....-_ DATE /2 4?25"/_ SUB~'ECT '/ -l.r/LA.;' t+tDil/muG 11''/ I I 'J) (v1/3 T. l~ -:: . o""L'2.Sl I,,{b) ~ I. 74'33 L ~\..,:) \ \ := b1..tO (ll,l()) :: ~ ~ __ "I~' -. .1 r't. ... ep I <':'f//_J .... ....-Y--- \-\\..W\A)I.. = • c~"'2... llf. 7D ').:; 2 1'1'8 &5 ®, AL.'-Lo;...se-:J IN W\\A\~~~L C)r ?D\"\,)ef~ \\),,\rY0- f~( l'\\,''''\ \ r,~\'A \(~ \D SvR..G.:('3-\~N 1,(. \ CBf$e~ O-i'~ D \;"\ '-V I-\: ~D(.r\\ju l. A~O~ I\)D\~ \?, 2... ). " R«f: ~, (?~~6 \.3"Z..-~ "\ ~-e~ K" p,\?.;; i31~set::. (IV-_ A '. \\) ~~ tJ"E L f$ = I D I ) P, =-7 B: .s Y ?-r ~ I V; E1:: '-;". I 7 F?: 78 . .5 y - I' (r;) 0\-JUI\.l8~ PO\JJe\L j\)rVl')Q LeNG\~ = / 3&~ -750 .:: 6/~ ./' r2.--I \ 1> ~<-<;. ~s.rtt:>C ,PI = 13D. 10 Pi "'-~ // ~ = . -z. S"38 /(folL-~TI\N:~J::) ~~~~ i"JIJ~)~ u ~\\\S. J ;;:.~~ ,\:> J ~~ '-f). n e"i> S • D ~I C /' ,02. e ,0 / NPA FORM 16&a (Rev.) Previous editions obsolete. DEC. 1965 AG-FPP 552-83 ·COMP. :1Nd~, U.S. ARMY ENGINEER DISTRICT, CHKD. 1": CORPS OF ENGINEERS l ANCHORAGE, ALASKA SUBJECT CIZ87F(L LA!W ALASKA SHEET HO._,-,U __ F I L E __ ~-=--,......-- DA TE (0 A;-?fl 'BY -Z / !"" .. ,-'I 3.73/ / / v= Z.Sz ~PS. Wl-e = xp 3.7~1 (.OiSSj: I 3G77' ~ HL-Mt\ X ;; / I j I -----"4 • {J) I Sl , 0 i 8S" = '-f{£!(,'J' /~ I '-__ -J - Hl-IN\,t-J:= '< (, (p S' ( i B .-" -• "32/7' ~ -'. If.) ... .)- ~~~.F?~:5 16&a (Rev.) Previous editions obsolete. ~ ,D78~ AG-FPP 552-83 . -,. ~ COMP. __ _ U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF. ENGINEERS ANCHORAGE, ALASKA CHKD. __ _ SUBJECT - l-t i-f",I~ ( 0 2.~~) /3 7 "'''") , ~--. I _ ...... ,~ ::;. C ::;8 ) __ f"J//' (>/ '-fj ( v , -t!) "(, t..( - H '-MIrV :::: (,O/~Y) ( 3. '7 /Y'O) 'L_ I {)D 78 I .,....-. -(p t../. 'f - I<VIA'N v '"'0;;'( e ./ 2. 'T!V::il,?Aa: C2 e Il.JT/lAIZ{: .------. I D& 3 .,---. 12fS <3. G/I..JTflAA1ld ,o?S--• / '-I 7., /,.. '-/. Pf(lllIAtty 1~·cK. TRAP .(ozo / '1 -" ."..--, ' ~ ~ ./ 5, $e(.~;'{)ttr'i !lficI( Tlclff ,It.{?' ------/" .21 "2- f2P"..K.77Q?I (~'fp) -_ ..... (p, r-,,\l7tl.. 103 z.. , 6 LI~ ...- /0, (;"A-iCr ~~ ,o3S I 0"::;'1 ,987 /. (Pc'] NPA FORM 168'a (Rev.) Previous editions obsolete. DEC. 1965 SHEET HO. /2.- FILE _____ _ DATE ____ _ I· ~ gr ---I I, , I .... !~ , -'f I' -- AG-FPP 552-83 'COMPo )N"T CHKD. __ _ U.S. ARMY ENGINEER DISTRICT, ALASKA SUBJECT CORPS OF ENGINEERS ANCHORAGE, ALASKA (' fZ ;...\Wl.-~(.G""" H l.. ~,I'.) ~ ...... Ei'\(~ CU ,/ . , 0 , 04''7 ® DD!? // ( DC> 2..- @ , i) 2-8 ,-, DY/ ® ,OO(ZS ~ ,oo/8~" cD ,0 '13 7 ./ /r I .... ..:1 , 107 ~ /' :~ .) ,Yt,<"/O " , ~ iJ/8 (j) /' 7'-183 / 2, J 7s7 ([)CD , "2>2/7/ , '3077 c£'&) 0078 / I D I 'i~ , ®© ,7...&/1 / ,ic.ft( 2, 8Lj7 , Lf.D07 I ~ -- / ,/ ./ ~ "t ...,. D r-J ~ i"t-.:I':i'0 XII.)';,- -'-( .q l,l'A f ,DI. ') NPA FORM 16&a (Rev.) Previous editions obsolete. DEC. 1965 " H '"':2 SHEET HO. __ '_-_'_ F I L E ___ ___=_- DATE /() AP,e e'f' '-\M~~ --~, -" 372.- , DD3 , D 71 "'''''~3 I ,.,I ,-'.- I 2.. -'S'-' I , t .~- ." .-.,,. I ' !, ;:;,r_.-.. ~~ 2, ,.. -.., '-( >O('I1~ ~ ' .. ' , 1..1.~1'- ~,/ .. o '9L/ , I I / J~( 7 .5 ~ ,-, ... -:-, ,-",' . '- , # '-/73 x,'J -'7 -'-I D 7 3 v r/\ f I 10.00" ,( LV / , i-f7f.Rf/O· '1 q "'I '7 v /(~ --/ I? ,.{ ( -- AG-FPP 552-83 ; , ..... ' --' C'OMP . .Tty U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SHE E T NO. It.( CHKD. __ _ FILE ______ ~- DATE U AiE BY' "'. SUBJECT C/ZttrefL. LAt-~ {f-itS Ctf73'ClCS OUT A-s. rffff BXPe-cn;D r IS 8e7W~ TtfG' K... CA'-C\)\..A~D 0S.~C-A-\..A\2.(,..-s % o ~ ,,,,6' IfVo.. \"-.){)iL-\..J)S-S.e~ (U,l/>/O'),) ,7'13 tiD -i) f -r-ttS" ~ Cf'tu;u LA"N:D ~,~G-A S V\A Au...... CY 0 C F ~ \f\AINC~ LoS~~ (~CI.(Ojc»). &/1'2110-'1 • Trtcz r ~f 1"7 -z., '2.-XI 0 -'i ) A-L. ~o ( :'HA Pf]f2.G3. \1-.):114 -CG).D \\~ Y a ? C\:: 111~ D\2l~ ~ E~~ \U1\Jr-JCl.-(\c.,--<' h>~~'G 'J c \= • I "-fS 'J...IO -.J _ NPA FORM 16&a (Rev.) Previous editions Obsolete. DEC. 1965 A~-FPP 552-83 COMPo C H KD. :r~:r u.s. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. I CORPS OF ENGINEERS FILE ANCHORAGE, ALASKA DATE 10 APE at SUBJECT L LAI[.z- -r HD vt1A ~ foR-/II 4 /Y181. , '"2lP ~ x/o-t( c -.lS.-f\?.--= (ZlP S x I;;~";) ( TT Y 5.S 1.) ......... F= LA -Z C1 \-\ I" c.... ('7 -:-,~' -:," ;>.f T ! LA -2. LA -((:;I!..P t \~c.~ ') -+-(~y x YB ') + (zs-x. ~82:::"'~*) -t l3 c 1. '-I~~S") 4-(lDl '/. 78.5) + ('-1575 x:;7S) = = S7BJ 287. \./ SA'-( ~,.) \S '{'A\N ) \ G I r..\\N ?oo~) MAX TW .~ F '-0 \,).".) , I c- \I '2,.... ?ee,--~ ~ 0' .-----~_ TW.:;: \ I. '1' Q :: 4 SO C-/"S . ..../ K = SvZlIO-Y -"'I"?u I . ..., ..... 'N H~ =-0 S~"2.. ;(/0-1.( )( LfSO) -; /1. Lj I -- Hu = S "2.0 -1 \, ~ -1 \. 'i = 777 /-- HPA FORM 16& (R v ) Previous editions obsolete. DEC. 1965 a e. AG-fPP 5SZ-83 C (JM P • .:r jJ:r CHKD. __ _ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA CJ2ATdL iA/Le-<;u~ -rnflJ/(. rI SHEET NO. L- F I L E __ --=____=_--.-- DATE JD A-p2 Bl{,. S. LA L 5' 78, '2.8'7 :. --~--------------------- -7~, i 171--,/ .. /' C t11I: (7, fJ 3> 1.1 D -0( 1(, · V) <; "I""?sr ___ S~7~~(~~~e~~______ = (~'-I, '1)( 777) (. Z '1'-/ ) b :.<-( -: r2-= 7. (p '7 D x I,S== II,S , - NPA FORM 16~a (Rev.) Previous editions obsolete. DEC. 1965 AG-FPP 552-83 ( C OMP. :r IV 3' CHKD. J .,..1 U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. t/3 CORPS OF ENG I NEERS FILE ___ ~=--- ANCHORAGE. ALASKA DATE '7 ..:r~N 83- SUBJECT c.'R.P\\'c-(L LA~ -c..otSSn\~\ ~ t\?E"" ~llee--f1~~&,.3 ,?()VJ~\L T \) I-.lJ'~ '>- "D'A~E\E:.Q." CFT:) 10 ID ID /0 10 II II . /1 /1 II 1'1., /'-rz .... 1'- /7..- I~ 13 13 13 I~ i ! Pc.~\~ DA\\\e1'e~ (rT.) 5,0 SS (',0 (p,5' 7.0 .s,o .5~ ~.o -~.~ 7,0 5:0 S,S- ~,o i I I I I I I , I , \"-l'~1<...1Z It) S.,:l\~~E l~Nw.. \ :2.'-il /' \ . ('~I v' \,1..Yl· V \ .1}41 v I. ,,-'n ./ C> .,"4 , ./' 6.l YI v' 6.1'-11 -/ C).1'41 v' 0.1'41 ./ O,Y~4./' (),y~y./ D.Y('L{/ O.~.HDY ~ 6.4~~ D,302-/ o ,~o'L &/ 0,3.0'2-v- 0,:,02-1 O.~1- 0,2.0'-v . f 6.'-02-v 0, '2..C"L v 0.2.o,-v I c, 2..0'-./1 5v~ l'A r.J't::... Pet-.J ~"icc. ~ \() i>~~ttx....<' Er-J1~~fXC= ~rVi~Il..r-.)c..~ itl iv~2.\N(; O,ra~\ / C),SJ(J -- 0.333 ,/ C~.2t& 0, /5'-/ ,/ O,C01.I/' (; ,Sl~ .-' I D.33~~/~ I C,~.t .. G,: 0, /S'i .' 1 I I 0,103.1 /'! 6,Sf~"/ ~' 0,333/ o ,'te!:il o./SV,/, i 0.8 1 1 ".....1 () .S/~ 1 O,!>S '3:./1 D ,z...SS':nb' O,IS~ -; ! j 0,8s1 ........, O,S f~ /" : O,3~~ o. 2~~ .,- Q./S'i v ~~~.F?~~5 168a (Rev.) Previous editions obsolete. TOTAL- c. .o~l ..-- \.197-....- I ,Sl~ ,../ l, S"S\ . ','1:" \,\..\l..D '-, \.s<1f .......-j \ .?.ll.c --j \.Ol~ -j ~·7;' O,'fILj -l (,~14 0./'1 o . ,'1 "I ..--+-~' o,el~/ O~/lt7 O,~7>'7~1 i \ . \52.. -t 0, CO 31 ____ I CL toS'-f v ! o~ ,)-"17 (),y~ --i , ! \.oS2.... ~ O,l~l Vj o .SS~ --1 o,Sd:r·~7 D.:S1S 1 :-:(. ,\ I ! ,"' , ~Sn-&l COMPo ;!I'S~ CHKD. ,,,1 SUBJECT t'owc IL llJrJ.-...>c.\" "t>, """"'~Q." (rT) ID 10 10 10 10 II I' fI, I , II 13 I~ (1 I~ /3 U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SHEET NO. Soo s.~ fo,D {P,S- 7.0 ~o S,S- ~.O Ip.~ 7.0 7.0 ~c StJ- {f;.D (,;.j'- 7,0 \ IU\ p...,<-E: \'0 \ S\.)fZG.~ T"~~ , i I I 1 ! i i I I I 0, '171 /" ~,'17'-/ V eJ.'J7'1 ;,/ 0./7'-1 / (j.77'1/ 0.S81 ./ 0 . .58/ v C),S81 v (J,.s8/ v- oS81 .,/ 0,238 ./ 0,238 V 0,238 -- O. z3B v I 0.2.38 ./ I O,/~O V 0.10<) L./ 0./00 V' I I O./fto /\ O. /(P() I ----------~---~ ~ P-.L \.JeS:. (X 10 -~ ') 1t.> '?ENs"\ot.\' Ii:: ~~"'N<:.e" e ~i~,",NC IE \\.) 1\'YK..~\..:I€ (),OIS' ./' (j,DI S' i Y O,()/~ ,.,' ---- 0,& 7'-11/" 0, 43(,p / 0, 'Z-£N ./ ~'/7! L/ o,l3S /,f.lS:5 -I / I '-125-- !,2.7'!:....-· (. (SO .-J.- ( , / 2'-1....-" (, '2-?0 ./ (.03z.... ./ OISeD 0·7B7 ./ ' 0,7'5/'--- 1.07'-1 ...,/' o .8(t.P -- 0, (p(p'f /, O,S7/ -t.....r o.:s I~ 0.7£/7 ",u,e9 y'; I 0,5"3; 0/ ! 0, '-1'-11 v D.3~e ",..--. 0, BG?7 .-/ 0,&(1 t-- D. '-IS? --i I C, 3c,u ....... ' {),SID - I I I NPA FORM 168a (Rev.) Previous editions obsolete. nI:l' I QI:J: .....,: , I C OMP. ::r NS" CHKD.J 101 SUBJECT I ~"- I i T~N"-l€L- l "t>IAUI.~l"ee..." i crr) /0 10 10 10 10 II II ./1 II II /'- /1- 1'1- 11- /"Z- /3 /S I~ I'!> 13- l/..f 1'-/ It..! /LI 1'-/ U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. 3Li CORPS OF ENGI NEERS FI LE ~ ___ ~ ANCHORAGE. ALASKA DATE /0,7{i I\l 8~ J? ~_Y..3 CR.A'1'"E:fL LA.k'~-C.cN~IAI\..)T ~P>c= ?f2FS..~\~ S\)U~. PE i'J'S.\cc.. c:... blfh",~Q (fT) £'0 ~s (;,0 ~,S- 7,0 S.O 5.S (p,o ~,~ 7,0 --5.0 SS' ~.o CiJ,j 7,0 II \ " .. )"\A\<'~ le> Su~"f=' iAN\" P8~~ltx~ I sve.G...~ Tp..,"-.:)~ To ~~'"it:>~ s~.fr£ANcG ' \t:TAL.. I ~~\K.H~ To,~&N6 I ('('2'1./ /,f.pz.'1,/ / r (pz, if t/ ~:~~Vv/ Or 'f~9 .....- i O·7(P7./ I 6 .7v7 V 0, l'j~ 7 V- I O. '7(Q't ./ , o.~oe 0/ 0,(,08 ./ D. ~oB V- 0, (po8 V o,(poB ../ 0,3,7 ./ 0,3'7 V () .:577 '-""'" 0, "377 V 0,3'7 I/'" 6,2fp~ V O.2~(d V 0, 2..~(, ./ 0.2-&& ../ 0.2~r, v' i I ·0,0'2.3 ..,/ () ,02.3 I I I : i t J 0,02. !> /, lSI ./ 0,730 ,,- o,'-n~ ...- o,3ZS"'; 0,22..9- ,...." /' /SI 0,730.-I' {),'i7~ -- 0,328 ..- 0,227"'- /1 /SI ./ 0, 730 ,.,., O,~7~ ./ 0,32.9-'" 6,22-0,'/ I,IS/ ./ 0,730/ Or~7~ -, 0,3Z8· I 6·227,/ . /' lsi /\ 0.730""- D,1..f7lt: /' 0.329 ./ O,lZe,'" ; ~~~. F~~~5 168a (Rev.) Previous editions obsolete. 2573-U \ I. 4 fLl , ; --1 46 1323 1 ~ tl T II If .. II ' , r iii '1 I 'I' ~!~.iJi i', ~'; hill, I ! ! f I ; I ! I ' 'j , I H f I ' ,I 1!d 1 t I 1 ., H-1 i·1 . " ,: '.:, , ' ! ' ~ I I ' r Ji!lpi j •• , . 11 I i ! 11 i J ,rA ! ' 1 ·1 1 It . ,. J I ~ I : r : Ii , Ii 4 I ,,~ tS I : i Ij )J I 11 r H' lit r N i I __ j ,! ' 1 ! I ., I I ,'. i I It: . -I I ,Ij . , ,. .; I Ij , ., ,-J I Ii • f l ;: L i I , I I I I j ,. . " . I I ! H ... ' . . . i} - i! I ! I I j r I ... \ j I l , 1 II ,\ I I I t I ,I I II I .11. I, , I . ,. "I ' . : I I ", '! J If'I cOO"l$ CHKD. ! U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SHEET NO. SUBJECT T C:::-/O?E I,,' t )(= -i 111._$",.$1--1 -~.~-: '-1,03 NI.E"A = ~ \I S.Sl. -r ('"\.0", 2) l S.S) + lJe~ iT (n) 2_ W; . .s)(~.O'-tS.'~ 2 = l-n,S2-T-Y"{.~~ ~ C"('B -2.l".2.1 J2--= /02,8 PT v ~ (.)i?, ~ JtJ J G~r. B A F~ = \T 1-.. $;.~ B,-c s Ac..-30/3lPO Il,2B CGo::: '-1,o'3.~"'L-~ '( '2. A IT )(. II ; S, 7~ E3 ,Ov "Tam<...... p,;;: '3(0. 8lo K:. ~ -(o'l, Q, -2,l~ I ~.ro~ - l<f2:,xe'" 21.1 (. 06ID\2.. (S(G~j : '2 ,11 ~/::. 3l.S0<Q ~~~.F~~~5 168a (Rev.) Previous editions obsolete. COM P. JIv J u . S. ARM YEN GIN E E R DIS T RIC T, A LAS K A S Ii E ET NO. .s-/;1 CHKD. !it·t1r CORPS OF ENGINEERS FILE JAN C H 0 RAG E. A LAS K A 0 A TE ---:/=--L---"'"-e-,r1-V --=;;u,...-~ / z... fhvr\ j-'...l SUB J E C T C.{!A lEe Lllft -CQI/ IST8 T£ 5/ Q PE /J,£E,5sut!.E ,~(\ E. L\ I\JI2 D L= t3co \ f' """'N = . oo~~ \< "'" . D \ ~ 1 8 ~o = \. 2 r ~ Tap I (\.oI~8.S-) _ ~O'+l.-W - I. 3 s~ Kf--(.~-n.'-((gI~B.S) -2.I~o L..?T IN ~'k ( 4 c~l. 2.,..) - H PA FORM (' _ .00'1 3 (~~ = 0·8"2-7 168a (Rev.) Previous editions obsolete. ~ ., -I /1 COMPo ,JNrI CHKD. I hi U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. (p! COR P S 0 FEN GIN E E R S F I L E -=----,--::-------::::-:::-- ANCHORAGE. ALASKA DATE 7 uAN ~3 12. I-t).."'-"'.3 SUBJECT C£4rEk? .( piF -(//ONST,AIVr "<:b(2PE fJ/2£sSut2E 5~&aE 23,0 l8 , 2'1. -----~---------. COMP.lf!:: SHEET NO. C H K D • .::.YuleIDo/L...-_ U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SUBJECT -\0. 13A~e D 00: \ '"2-' \0 ' (Y\ou\n8D ~;a.~~t-to..c \J~u~'eD R>w8L \~Nt)E.l..... tf: C\K-C0~R.. C.Cl.)c....~ \...\Ne.\::) 'PcwE"\L \\.J~~f'.J~L. 'Sa1i~. f SiEr...;..i. ~ . p~ ~lDc..\<..., i..R' Q' j D L\tJ~~-900 0\00 / L = ( .. , ~C,) Y' I -..:--L ~.,. '-'='.J,-'. L...\ i ~ - ./ i _ r;,. ("' , ") -, -...... ' ,\ -. - -~ \-\ ' ... ) ~! I • • 2~J0' f A ... a' • t. < / , -c o. ,../ IY./.... /0 S3So~' -- o '.), ~1 -31 ~ '2.W\..)C.\2 TH! So ~-r I 0 ('/~ ___ 13f\:E:D a r--.J (~I" :=.C :~.., '')() 'J! c.~) ... I - - . (g B 1'2. ' I ~ c ~----------------~ v ._. ___ _ NPA FORM 168a (Rev.) Previous editions obsolete. DEC. 1965 !~ i I 2573-!1 C OMP. J"~3." C H K 0 .~I....z·W~ __ U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SUBJECT C.? t\1b-Q L.AlLE -CQ"Y\~m NT SLO? E S&.ss/ . '2., oS 310 --"'2- I SHEET NO. 2-/2 Y FILE __________ __ DA TE 2]" De c. 8 ~.c< J, t:f l)-ee Y c:- ?iO:-~~ (Le 'S.\J (CG..E ~r I -z 5 3.8 lfo~ STA)JDA-12...0 rt\)\CS~~\~''::; \\.Jf~( \~)_, "Dh-'-l \ S. / sec.., I D I TA\?,IJ=; Y '). I 1'2-=-\ "2. )( . '2. S3B =-3,oC /" ~= ~ I ~~ :=. '2..'\\:(1'2....',( 3'.)/3\.tl~)" ~,2.-\i AC ~ BE ~ ~ .'2..rc cs "" 8,,~ ? = '-lO,I~ R -= ,c. '2. ,'3 ILl 0 . \ , -: '3, 0 L..{ n ey ~::::: I 0 3.1 0 ./ \1~"r-) -IOZ-crO/ NPA FORM 168 (R v ) previous editions obsolete. o~r Iqn~ a e. ....... ", :,) , . COMPo 0N"S'"" CHKD •• J W J"J U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. 3/21 CORPS OF ENG I NEERS FILE' , ANCHORAGE. ALASKA DATE 2'2. ? e=t-82.- ~9 .!L~ ~~ (' _;-,~S U!!.!B~J~E~C T.!....==Q~i(.=P\=ITe=e\Z-===l.-A=~=C=-=C'O=~=~=N\===~~~?:!e~:::'Pf2.e'Z£~~~l)~v~t:i~1 S6~~~' ;!:i-::::::::.~= , ./ "L = ~ ~'II\';:; = \(Pv",.\".,) = I /(p! 2- ~ , / ,. i- ,.-.... :.. ./ \<--- / .,// ~- '2 -:?~ ..... ' .-, .. 33, ill ( -\1_"":)< \v:I.iI'J . ....;- , , ., f"\ • , ( _\ V 100 ," .i /" r ;, :: -,.. ... - / : ~~ " -- ~~~ F?~~~ IS8a (Rev.) Previous editions obsolete. :..---- - \ L..' -:.. Ir 'I <.., ,~ '.---- - COMPo :rN~ CHKD. f'W U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. 4'129 ... f COR P S 0 FEN GIN E E R S FilE .",_ ANCHORAGE. ALASKA DATE '"2."4-Dec. e 2q ~ .lr--2,... .~. -'---'~S~U ~B J~E~C~T-==c..=Z=A1'e1Z..==::::::::=LA==\C.E=-=-::::::::::::<:~o=Nttf\==N\=' =S=\...=()=P=\::::====f'=~==\J=Q.=E~-=S=0=R.=G..=\;;::!:'S'== I , , : -, D K~ 10 o DorCp r .... ''''-'... ,.) , -'.'.J' 0- 'K...r,JVo' N = 76 - , 0 \ <04 /' ~-:V __ I ? I~ / , I' I .......... , L- NPA FORM 168 ev. Previous editions obsolete. ,-." . ... ~-- -r-~ ~ == I ;..l "c. ~ ~-r.." 'J ,,~. \ ,~,"-V := r'l""? 0 -"-_ ...... J ,. _ "'-J ...... .-.J ~ ~ • -__ _ FoIL CO~oo\\ CAf'r1C. '--"y.-t:=',.:t(- '\~.~r-~\ ~L -,.(~ =-,oo".r POT G ~..)\(::. \)Av.t\ fuR..., \ \' ¢ C~d~ ~ Cll,':'~'-:-), t./<-I "")7 G -' c...,.._ \ \ U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. CORPS OF ENGINEERS FILE __ -=-_~ ANCHORAGE. ALASKA DA TE 22.. DE"(.. 6'2- z. ~ .,I)*.-¥ 2,... ~-.,--~S~U~B~J~E~C.!,.T .=::c.:;:l'.::f*=:re1L=1 ===L=A;(.=,===-=-=C=6"\=S~;rA=N=\ =~=L..==o £~e:=~=, ===(2.e::::!I"'=:::,s::\,)::;:Q.f=G"=== ,... '-:::--..... -, ..... ' '---:::. :.~- '. CfJt',(o • • ' j':'l'1~ .", -----"'-'--- J • 0' • ~ .. FoZ or-, / \' , I \ .' \« .) \):.12 ~2-c)':-K ... r:,'L j)\XH,?-'7~i? r-;'·'=-'j-'.··~·'Ij \"D~)(? 'Z'Z..~-\!~ (":'.lrQE: v":'J,Y?:: ;:-::';:; l\.~,~\..= -;;..,.,::; f..\6 ~F 2<;:Ot;cy:'·)'~'J'.-'_L;-_>,~ -:: O. 000 0..5' ~ ';-ib c.. '"2""2.. 4-I (I j -0001 , ~ f· E'( D !<' , -I' ',--",.--- L-= ·0102.. -: ) "PA FORM r 168a (Rev.) previous editions Obsolete. ~ i. " I \ ' ~ , ;.I I)' ;; , i./COI .--_..------ I I i~' v4 .. -.. .- i I :)-r) ':..--~ ~ ~' ~\~ I .. 1 U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. "h? CORPS OF ENGINEERS FILE AN C H 0 RAG E. A L AS K A 0 A TE -::Z.::-::2~\)-\R.-B-"2.~. r <'" COMPo 'Jt-J'S CHKD. I;,.,;' "3o..£)~ )-2- .. -, ~~S~U ~B J:!.5E~C.!.T....:::::C.=~==='::::::::::===Lfr='L~S=-::::::::C§V\:i?===~~:!::N=-=,=<b==:::::l.b::=?e-===?:!::::::::::::~~::::::::\'5~g.s:~=~===\,j\l6..~~b"===' v I I C I , . . ~ . '- 1/ ,'.' --, K", -II.' (' 1 , .:/ JZB' I !" 'i \ / ( --------- -:-' ../ (.J11.! ~ ; , . . , I ~..,~..-\ , ,I 7/ ·:0) --I L!7 0 .~ , I '-0 ./ I .! ,.. r i J.·3~.": J -Ii :)!~",..-. I I I If. / ! 8 • .s:s' A=(8.S5X n.\~ -t (tT}O.~.ss.1...) -= 2f.p1 r:-'-,,- ---p= 11.1 1" 8.~~-r 8.sS -t-(lT~ 8.~S.); (2i.OG ~ I...-___ ......L...Y I ,"'" , I <=--.. ~~ r. -:J -;. 0 . ~ S'le -. ~' , '- v .... Q. : ~ C~{ ::: f..p; .OJ).--- . ft : }. 2 & 'J'e '""-' .... i ; NPA FORM 16Ba Rev. Previous editions obsolete. COIo4P. CHKD. U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. 7!2 f CORPS OF ENG I NEERS FILE _----,,~ __ ANCHORAGE. ALASKA DATE cPri? flu lL z., J)~ rz.. /~ , --...2..5 U!L!:B~J~E ~C T!.....===&===~~7i.=b:::Je~/A===!KE==· ==(J~~~~~=l1=NT:::::::::::=:::!S=J.~O==A=£==Af::!::::!E==S5~V.=t€!:!E=::::S;::!:~~~===~E.== \ .. / = , r -'O:,~. ' ... / I'. r -, ---~;"t, I .:.... i I : . )-~ oJ) , , _' ..J ~ .r " ........-r '" c-/' :";Q :J \ \.J . \.f' J '-. . , . i \,' ___ _ j - (( ''\ -, i_", -') : c: ./ \.. J ~ :;: .Sol; I • _ r-" \ t...J/3, -,~ r \ /5D0 "I" 1 1.;8,5) -:) (./o' V -' I n I I/) -......... '----~~/I'2,I) NPA FORIo4 16Ba (Rev.) Previous editions obsolete. r I -, \ ') , .. j 2S73-al * COMP. CHKO. V U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SHEET NO. F I L E _____ --". OAT E d9? D£C-.; f",<r SUBJECT 'rr ~)'")." 3(;1 D~ ~" l' t (' _--1 ~::;' , .: __ ) .., A(,,::: 3 8 Lf PT <-- A,v=-68:...f )(. ~7B ==-7...GO rr'- v ' .,. :' f ~ \ .' ~.) \ -...... 1'-.= i,""iS-,,:~, p)-\ T\, \(~ . ,-"'.J' tJ \ (,.. \. rr: , ..r ,I '2- ["., 0\ r_ , p_?- I IQ""" , , .:,.-..::: t::~~ ~ ~") ':' .... -::....~ .. ~ .. \ -';i..-'-':),..:. .,.!;. <.-:--' --".1-"\ r \ "\ .. . t.=" _ ..... '-). ( I' ~ "Z. '~/~, G..-\ ..., . ; \ '! "'3 ./ I, ::; l 38<.1 j ! -", ,:, I,' r-'! :.... \ \.. .. \....P:l2'.o"\,-./ ::: ~ , ..., :~~" ---. ~ . - , / -' II, -0 -- N PA FORM 168a (Rev.) Previous editions obsolete. COMPo CHKD. u.s. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. I/Z' CORPS OF ENGI NEERS FI LE __ ......__-- ANCHORAGE. ALASKA DAlE ~;; f;Jt'.c. ~ 3 () OGt-Y2,.. ,r., '........,.~S U!:!..!B~J~ES CT!....==(3:::::4=~===T£~J?.~&~fl~t==E:::-=()::::n~M~S~'V~· jq=!!N=T:::' :::::,~s:~'/o:::A~~:::::::=:B==~=&====S~.s~/~/R.===lE:::::.:::::S=t/&C===l) E:!!:: , ~',,,,::,-f;_'. :::.. -'_" ,,_ "'::.. ::"-Y: ~.~ ":::-::" ::-,..:; ~ ~ t r--r::._,:. ~ -_'~ C :_! ,·,2 \::. '.;" ') r )=-... . " -----~----- T\-l<\ S K 13'-' 50 S/c, . ----,/ 1''''-, S ~ ~ ~\..P.:J' ') . -- TIL-I) 957. 3) - ,L.{Sl ~ --,07.:J ,,/ ~~~.F?~~S 168a (Rev.) Previous editions obsolete. 2573-!1 .-- COMPo l)N,T CHKD. ~4AC u.s. SUB J E C T {!,qIGTER. ARMY ENGINEER DISTRICT ALASKA CORPS OF ENGINEERS' ANCHORAGE. ALASKA iAKE-COtJ/5TBNr SLaPE: , (J,-~ c;. 0 0 t>L.. _ --D, \ <. :., ~ S' /r, 'r\ \:) c.. SHEET NO. ID /z '7 F I L E ---::-_____ -- DATE ~ eye A"<i-~ B€£5SLJIi!E .5LJ4]E (= '7.;::, :. : :~' ":l. -.:...-c¥)_,: · .... ·-0.,.,;' .~- '"';_ ~ ::::~:;>-:--f \ c,.. , '-') \wC.:i( .. E:f\!>c ~i S"oVo D~\,;; To c.o-:·;;,\....<:..'>.(\'1 C;::. Q\c.<. \i(.p.:; ~ ~EMl) (O('NSi2...,/ k/"'C. _ ~ = \( "",P,'1-. == \ ,'3,'3" ,LD1 $" :; ,'3~ S .,/' :-<;0 p~: :<~,.0 % 6.b 1 1< ,\91$ < • -:;-52. ../ ( . ( ~ \ . \ '-) \ \ -z. '-.~) :: ~ 8 -1\ L. L ---I I) II.:' \ ,-::.. ?~):, . ..,J l t, = '-v~. A'1-= __ _ -r It PA FORM 168a (Rev.) Previous editions obsolete. COMPo ;fA/if " CHKO.-r-u.s. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. /I 21 CORPS OF ENG I NEERS FILE I ANCHORAGE. ALASKA DATE~'J 0 Ec. 2~ SUB J E C T tJAttTER Lfl&£ -CON 6T8 NT IS LOPE &£SSl)R.E l.fo'k2£G-' 2- . -,-, '-. N PA FORM n~1' I qf\ \< --.O?- :?=,;.) i -., <. x I' ~ ...... Kn = IO~ 1;::'i:XP -. /' .. 0 ""' -/ -, - :' "' ,. "" .." •• i '''' ..... ' rj I __ • - ./ l t-f r. t -/ ~-; '"-....... 1_/ li / ~ /2 Z- . {)08 ..--' • (J' I -" -- ,. J r , ().' ',,- --::::--:- 168a (Rev.) Previous editions obsolete. ~ ':c', I . , ! , u.s. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. Iz./?Cf CORPS OF ENGINEERS FILE AN C H 0 RAG E. A LAS K A DATE cX-.;;;;---,o:D:--g-~--:""' "-, COMPo VNiI CHK00--r- ......... '~~S U!..2.B.!!.!J E~C..!..T ~C~R.::A~"~E~R.~L::A~K===t=-::=:C~O~"~',,-~ST~A~N~T~8=1.D~'?~E.~£>R~E~8~6~({~R~e::::~~' 2!)Q.::::t~t= , ' ~ '~. y e., - I '::'~ -_ '. r"' ~I -' - \ --\ .. -.:::.,..:. " '"' --. '-' I , 0 l-j 1'2.. l ,-- , . - .",;,. -'" -:: y I l...J _ . ,f'" ,~. y 0 "::1'""' I '-' 'I //~ / IVIL,..; l\t..··,-,J '- . -... --- ~ =- NPA FORM 168a Rev. Previous editions obsolete. ~ ,.....-. /~ --r-; ~:' ,-' ......, '1.:::" i U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENG I NEERS FILE ___ ..----........- ANCHORAGE. ALASKA DATE C)OJ DiC. R.2 COMP. SHEET NO. CHkO. ..lO /)~ 6'2-(··""".i-r~S U!...!:B:..!!.J..:...;E C~T~C=Rf\~IT~E::R==::!l=+=B=K==E::-=C~O~N~S~I=B==N=T==!::~~l::O=\?=E..===5?=R~E.::::~~\ ~)R~E===S~\)~R=G.:::=:E. . \;(I/lD I -" . Pe.C;F ILtZ A I i (2' \ < :> NP~ FORM 16Ba (Rev.) Previous editions obsolete. 7 - COMPo C H KD. U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. ILf/Z f CORPS OF ENGINEERS FILE ,_ ANCHORAGE. ALASKA DATEdQ) J).c;;c <?;""" > . ?f' .{)~ 6-"------·---,~S l~1 B~J~E ~C T!......:!::t2~ll~£!=D~€:=R.~L~Il~f/v~E==-~C~O~I1I~S=T=8=N=T~\.~5L::!o~A~~~A~~~~s~\S:=:IJ~tf~~~' ,::.s=t.J~R~~=)=E== '_; ::... ,:: I "2.. '.-1 ~ I (:.-~ '" --'":) .. .... -. • ~ I' . ..;> ,--,,~.·t:.·~\.~c---'':::';' ,:. C:;,,;:·-t ,-\J~11~C -::...·...:::;:-~-'c.'~I:::· \""_ f·.::'''TcJ\,--,-y ND\i.··~\t-:S.'·'.I:::''''''.) \r-..) \t4.~ :-;~_ (" C~ "-'\ Po "-~,-p.. > ~. -'v" ---D. - -: ,sC 5,7 0 I ,0 So 'r( ,:;. -,1"2-(~\L-8.S) ,05"8 E~;;' -..,/ -(TnvL.')'" K ~~ r't\!"tx' :: • I !.DO ( t/)\lP 8 .S) ./ -ID11 t/ (n x {o1.)'t-' - \(~ ... ,O~O (v{~B.~) :::: o~CJ / " .... ''\j ( ;~ 'I If)'"!.)-V -- r" 1../"Z.,.. _ --\1 _ --- D, \"'2. ~ (,"':''''f.. ::-I~J. '( !,2. -' Lj"2. 1 / i . ..,) ..) . 'I'" := C. :;~ -. Y, "l... 2...:-,2 I i / I ...... ~ •• ' ,; i , N PA FORM 16Ba (Rev.) Previous editions obsolete. COMP. CHKO. SUBJECT ~ '-(,r," 'I. I J "<-\ c...\ ......... ".,....J ~., U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. 15"/29 CORPS OF ENG I NEERS FILE ~----=~--::~ ANCHORAGE. ALASKA DATE ~ DEc «~ 1.fJU-(Cuu,STANT slOPE p~!I1I&~ YL. • L..[ 1.l ("'C('\ -z.0~ -\..J\ ~ ..".....,;.; --, ([I ~ tt. ", ') "'!--- ""2..1Y (I \,./:; (\ ':;. D:!. ~/ I ,,~~:,..tJ..;I"; I ---I (. r; '). ;..!' .... )-t. -=-...-: <;-._3..Q'_~> .~ 5\,}~G;;: ,AN'< ~=<"q @/ ::=,_.~ __ -_-_-_-_-_-_-_~R_--__ ~_~~:~~_.I ______________________ ft_';-~ .. r~-------------------= N PA FORM o r I 6 S00Ue:s Dr-: ILC.')~t.~~·. al, 1'2.' TO ~ G R..A C\,)t'\L, ~ ~P..N '5'.~N b'). ~ TO crl-A~~\..)Fl c.cNTR~(..\\ON, /" (7.. 'f 168a (Rev.) Previous editions obsolete. 7'· ",' COMP.~ CHKD.~ U.S. ARMY ENGINEER DISTRICT. ALASKA SHEET MO. /~!2 f CORPS OF ENG I NEERS FILE ____ __=::_ ANCHORAGE. ALASKA DATE ;>r9 OPC. 2""' SUBJECT C.RA'IE2.. LAKE -CoN>5Tf:\"TE SLoi)E. t=s£sal~tg5-~~ , .o{JJi , , "~ (lDlv,B,S ") ~, C;-" -,j%§ r,' "'Y. ,,33 ~ ITT ~''" '-I l ~ ) , $f \< == ~ CloILD8.S) E' )'.\\.~ --.O'-Dl (l-' -,"t '. .,~ \. ! ). V " -" ' / fp b. ------..---. NP~ FORM 168a (Rev.) Previous editions obsolete. .-" ~ .., t..J '-1 .. I ,- ~~=::y U.S. ARMY ENGINEER DISTRICT, ALASKA SUBJECT c.RATE-R.. CORPS OF ENGINEERS ANCHORAGE. ALASKA LPtK. E . C~r.. lS"iA"'T '~LOeE / VE:OZ. DF \S Y"'~i~ ... 8'-. THiCfCE,Af:.£ '4 1')2':;-"':"·-;:;: -;:f-~,-\ ,-=., ""_ E-r'\ :;.. v) \-\ \ C. H I.J..j \ \... \... R.. \::; Q '..) \ ~<'.E" c. ~ --:...::... e -;Z ~ ~ \ ,,) c... /~ SS t.,) 1M. ~ T l-\-AT \ f'.') D\ '\ 1('::;('-..) \A. '-A i2..E:1'\.>-l , . ...;..,.. I":> S- (2/'.J-::-.OUr~)TS{LE::C Dvql';C-\IJNI"\\2Ur--.)G-L-...;\ ..... \C\..1. \...\.)\\....,'-. ,C.-2Q0\\C...E" c...of'}CiZIC-1E"" l..-:r--.Jlr--'C-. ;.~r,..,c.~(.:"'_·:-:L ~C" t--:'--ji'\.- L ,,\" .,.. _t:"> -? c.' --'"'I Ie.. p.,,~1 ~ .. \.~, \"r:':-. .' \N\NC~ '-..GN Go-"\ ~s. I v _,-,-l_ oJ-_ GoNT~ RCT\ON ~ D"L = G.5; \ .L-~ "2.:2..9 o D, 10 o -+--~/ , ,t..-, _ -, \ I ~ - N PA FORM 168a (Rev.) Previous editions obsolete. COMPo !INtI CHKD.~ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA -I~/ .. ' ,c~ C r..:';f ..... _. ,;, - ,", "":;. (,' ~" - / 2. \< EX (:) = ,\ \ S -+, I ~ 5" = ,300./ c··,~ ~ ~/P ;';"";c.. t:' ..,-,'7,;)."-.-.,,,.)"' \-~,~ ........... '---, ~ K"""'A)c' -.23 + ,3>0 -, 5'::' I 1<-5 X 5~ ;:::. Z.fJ5"D / ~ , --\ v-... AX ==-- 2. k'""",,.J :-0+ .01 ,01 \<or :::= 5 x .01 -0, ?:>So ./ -. "' .. .. ~.J --- ,'" / ... -; . I ,_~ '/7,~ ..L~:~' . ~ ......... , :, -~ ---...:....-----<":.~~ . ~'--' .', '.~:"--~-':_ .. --:::::>'-~--~~f··- l -----.--. --~ '\ . \. , - 2..s ' x:, -I ____ ,5'" NPA FORM ISBa (Rev.) Previoul editions oblolete. 18/2. r • .., ,. ....., , ... j j COMPo 7JNiI CHKD.~ U.S. ARMY ENGINEER DISTRICT, CORPS OF ENGINEERS ANCHORAGE. ALASKA SUBJECT -C R.J3TER,.. I...AK.E -COIY,STA (\IT I ALASKA lA.eGE"':::.T T~ANs;.\\\CN FRo""",, '-JNL.\10E.D T\JNNE.\-\() 6-Al"e \ S. 1"'-.,) ir\-IZ ~12.,~t-..,)TJH .... ...... -3,2S" _ ~~ =<...._ 1,,,,\t) ! (,1 12.S "2.S ( Tt )"'-: \/2-,.. ~~ ~: ( I~~~~ = /. [p---, , D, , z.s "= :>-, \(c. v/ C t\-bC. -Z 2-B -4) -.0"'2....- ~t [~.~ ~oc~s, __ ~J!u' <----~~------,,~ -------. .~""" /-./ 1< IZ =: I 0 . ') ( H l)( ?"2. 8 -L( ) '<<--+ k' ... ~ . 0'2... i-. 0 ~ = I. "5 ~" , \ \ =-.) 4lp , /1 \( G. =. t I ( (; I ~ )) .S') ::- e~c ( ..... \..{ t;'" ./ f.....,. -\.:J"'YV\"')..--- NPA FORM 16Ba (Rev.) Previous editions obsolete. CaMP. crt,,} IT CHKD.~ U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET MO. zo/2f i CORPS OF ENGINEERS ANCHORAGE. ALASKA F I L E -:--_.,......-_"=""' DATE m Dec. i"""· SUBJECT C RS! E ~ L e \<. E.. -CCf\J~'t 9 (\)"I ~() D.Pc ~1-. SLoPE PR.'1:.&SuREsuRG -v ~ ~ t,~':' (. \._ -------..Jr .0'1 0 ·~('r" .... ;·\ I ~ f \_ ~ . V (; .~ J .----p_ ..... --k c, '.'. ,Jo.} ::- ,OW, MPA FORM nc:1" IQ~c:. 168a (Rev.) Previous editions obsolete. Z!------------- v ..I.::. t i • COMPo StJ\ CHKD. JJ Z/ 1?t1 U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. rjv! CORPS OF ENG I NEERS FILE ____ _ ANCHORAGE. ALASKA DATE ;07 ;8~ ;'t c e. A'j"GR.. LA K E" -Cor..} S T B C\J T ;5 b DP E P REsSl\ R.E, &"lRQf SUBJECT ,,,":) .--. ~ -./ 0 "')"",-. ---. ........... '-.----\I,,:::'~ ------7 II = "" i ~ ~ X \ , I/, -' • !' .) '-.,.,' ' .. ' \ 0 -, " , -I O·-.!J I \ J ~ 0.10 ( '. :l, ..-\<" iT ~~ . ..2'v.-. ,.~~ (: 2.~ (J '-- K = a ,\"3~ (~I~ B.SJ 1'\ V\AMo. -C?LD \ J 1.,.- \< .: \\ '1M. r-.J O.D~"'" IIp ILD~.S" ') ~\'?l)~ NPA FORM 16Ba (Rev.) Previous editions obsolete. .J ~. =--:: L:-~ C:.. -, _~ ~ -, c ..... -• ! ,009 - .O/?. -- -. ()o~ .J','l:.7, \1',) '--': ~~. ')E:.\:=~.' \':'Pt')' ~.">I.,J 0 I'~': _ -_ ' -. ;.;' ,. '_ _ J • U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. ?"",-/21 CORPS OF ENG I NEERS F IlE ___ ~~ ANCHORAGE. ALASKA DATE ,xPl Dpc. ?""'" COMPo WjV~ CHKD. v ~"i SUBJECT Cs((.TE£ &At<.e. -CoN.:5TANr SLOPE PR&SSlJRE ~&~. ~~ G,. \ ' _V....;..l.:::;:;..-= _iC....;\....;\c.....;:;...;...A.;..;:L=-....;~~6.;:;..-_t-..J_~=--~~_S_T_A.-:-_\_L\..:...-+_Y~D~,,,J-! _v<..._:=---.:,7_ 6 _ Il2. = 2,/ x IO~ ( StreeT #10 ) '( 1I\i\.~:-• 0 \ )( \, '3 -:S: ,0 \ !:> \<' "'" ,~': ,(,) t x.. 0, ~ 'l: I DD 1 , () I (~I {g g,S') C! L\ I 1 Sl. S J K ... 0 I ~ (lg \ l; <a ,S) __ B V\o\ A-~ CL ~J 151.'5) k~o\l,...) = I cOl (~llo8,S') _ Lili/ ls7"~J ,00'1 >,' ,003 -- \J ~ i2.TI C ~'-BG t-..J ~ Q:.. Si A, 15 ~ z. ~ C. m\..U e¥-\'\uo,.)s..E \J ~L." E iCOO~t.-l \~KE K = 100' 0(. = 1 0 -%--= \~:: 1(.,·1 \/ ::-I D08 t "-gp NP~ FORM 168a (Rev.) Previous editions obsolete. COMPo ,)N) CHKD. 9"~ U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET MO. 7,3/21 CORP S OF ENG IN EERS FILE _----:=---__ ANCHORAGE. ALASKA DATE ad Dre q~ SlIBJECT CRi1/EA. I...AJ<FE-CONSrANt SLOPE peEssu~Osf?r£nl2.,. H 1< G '" rh" . 0 \ \ (~I~~ . .s:) (n x ~"2.)'-- (~I~B.S) C:r:r). 3 ~) 'L- 'PO\1J82,. \\) to.J N ~'- v c. \-\OK.~:co~\t\~ tsGN D ~ ~ IDBS ---~ ./ , / (BA~D O~ ?c::.LAI<..(c..)~I,,)LT 100\/, 51.. i2.G"P'i ?I....A.~ 5 ,\,~ / k' =-.3 B (f-\DC-"Z 2-8 -'2-t 228 -2/1 ') e'(? // k ~A~ = I \ ~ ~ l( \ 5. 8 .: I 5' 0 ~ '1<-.,..,.) == O,lDl x ,~8 =-,2SS / KBr=x? = ,3e eli liaS ,$) = -- K 2 w-.... Jt,. ,Sos (Cc/(Pg.s) ~ .203 ( {I../ I 7 S 7, 3) 1<' \;:, U:;-((cI(cB.S.) -J,,,,rv I /0S--- MP~ FORM 16Ba (Rev.) Previous editions Obsolete. -,. jJ , 73-a " COMP. W'N[ CHKD. #(AC U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. -zilzl CORPS OF ENGINEERS FILE ;i!ii! ANCHORAGE. ALASKA DATE ciP2 OEC ':( SlIBJECT CR,ATE.& lA\<..g-CONSTANT SLope. PRE~l}l£EI1$eC:~ d. l-+ciC\ :COr--,Y\ t..''-i3 s ~D Q..::' s:I A. ~ e, TCO 0<..:--.:::. I 0 --------~-~-~-~ ~ ~ ~ --~ -~ ~ ~ ~ ~~-----L-__ ~~ __ ~ -~--- ~ ~o-~::: --=-$ d.~ -LP l t+DC. '"2."2.-g - \ ') v [,~S X,OY~ ~ ,DS~ '" 'M. A" ..; K"",,\.--.)~ O·~l 't. • O~ 1.... =-• () l...8 -- Fo iC... 2 PA 112 So 0 F ~ \S. ) k' G:l?· I D \ X 2-::;.. I 0 "2.... \( """ A)l :: \ I ""3:S X I C 1... ':; I 0"2. 'l k ~,rJ = 0 I (0 I 'I. 10"2.-= 10 ,s. \<' ~e. ~ -,0'2. (l,p l (,p 9 .SJ _ ' Sa 5_if (~~'- ( 'A ,-\ .. , ~...... . . ~ ----~ -;- " ': '2.- t / ( C(3)~ NP~ FORM 168a (Rev.) previous editions obsolete, -- COMPo CHKD. U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA IO~-=- SHEET MO. 2~!? f FILE ____ -=-_ DATE,;:Q? DEC. ~Q( 3 () J>eL &-'t-Pg,.e SSt) &.e,5ufS..C.E. 'Tv~~'~E MA";::'-..)FAc..\\.)~12....... \ ...... '\A'f R.e-tJ..-.:J\ R..~ A D\~F~I.; 0T ~ I~< .. :-<-. o~,...::sC) R..~c..\'-AT A,--~ --L __________ _ /'l,I' ~' /s 8, '-I fT 'Z..- ~ '" 11,1;, \< .. I,Y~-.YS (~)_ (~)-z...; -= \ , y r---,L/ ~ (. 7 ~~ ') -(. 7 r l.£; ') -z, -: I 538 NPA FORM 168a (Rev.) Previous editions obsolete. DEC. 1965 2573-51 " COMPo JNJ CHKD.~ SUBJECT U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA (I C C ') .::'38 UJI&Q, "'./ _ .....; -- ( ')"2..-- ,23/ /' l<Ti'" ; 117·8 /- TD ROCK. TRPI ~ ~ ~ ~TA, lD 8 "too l < ""-A x.:: \ . !:. ~.x D. \ C = " 1:. ~ \<'''''Io.\N =-6. I.e I x. 0.,0= I c'..o"'" C). lD ((PI ~CO,S) t-~ I)"t- 0, 11:. ~ lVI \o8.SJ _ ~i)~ - ~~~. F?:~5 168a (Rev.) Previous editions obsolete. = ,007 -- , () 12.. -- SHEET MO. -z..~ /2 '1 FILE ~ DATE"A> DEC r' 30Dfk.. &2- jy-J / I 2S73-!1 \. CO~P.~ CHKD.~ U.S. ARMY ENGINEER DISTRICT, ALASKA SHEET NO. '2.1/21 CORPS OF ENG I NEERS FILE ____ _ ANCHORAGE. ALASKA DATE Zk, ~( 8'2... ~ () LJ..c..C 6-~ LA\<:"e -LON~IANT S\..o?G ~-s.s.QRe-S\)RG.I.< SUBJECT \. Co,,", D\),T fR.\C\\c"-.J u...... l)t-,)L\ "-lE.n PowE ~ \\)~ NEo.L t>. L.\...:!Gt::. Powc;:;-R. T~N "-l ~1.. Z . iRPI~ et'\C.~ AT E N'tJZ.f\1'J CE:. 3. E....:lT~NC..6' L\. ?R.\V\..u\~'f eo'-\<... ,ep.,? ct. \2' iD"2.0' po.i:'R~n t:).?AN~~J,.) b. LRoo VE"e.T'C.P\~ ~~Nt:> c. '1 0 VE.et''-~L Bli;to.)t) d. IlJ 0 Ho'e\~o".iTf\\.. aet-.J~ e. ZO'l\:) ,,,' 6.~wft\\... c..ooS'i~Plc.\IO~ " ~. :::£.COND~~Y ~c.<. \"'it.F"IP 0.... 1"2.' It:> IIi G-R~C\.)A\... ~).?f\~~IOtV b. I '2,' TO ,"1' p.,~C'Vj:1i c.oo.JTo.C1 100.) ~, f\\...)f.\\... ~oc,,-,.c.p-p ct. 12' To nl 'C;:ItPl~ E"?A.N~'()IV ~. OTl"€'i?-TR.AN~I\ 100!. ct. L..\ /OJ\; D ''It> \)~'-I"""E.C ~~ ~\)~N'i.' b. GAie ST12..x:.·N~G "'i1Z.P\~~ "\ a"-.)~ 8. s~ ec; t: T Po.IIol ,(. TI:.E 9,. BE:N t>!:> 0... \I~Ri'c..Po.\... C!... Si"A.1Lj+LlU C. 'r\O~'tOo...)\':""'-C!. ~ ~iH. l.Q~'tco ID. G-AIE SLQ'iSa l<~",,\ ,...) "' \' I !. ., I ~lSlt> ;.../ 0, /l,QS .,/ o ,o~3 ../ o ,09S'""/ /' o . '-IS 2- 0,12.z........- O,OOS ."...... 0.0\\ V'" 0.030 - O. () 3'2-.......-- 0.550 ./ o. 19 '1 .,,/ 0,001-" /' 0.003 ,// ./ O. 10S'./ 0.035' - /' \Y.""iOz.:- /.., '--tl N PA FOR~ (' 168a (Rev.) Previous editions obsolete. K~)t.~ 1.3.~ ~ ~--;;' , r 1,05lp / O.ZYB-- O.14'Z.-/ 0, Vl ~ ..,./ 0,18' ......... 0,009 0.011.0 -' C.C"!!) o.oS-8 6,15'-1 -' o,OyB -- \,S-CO/' O. Z'9S .,/ 0,009 .,,/ 0,00 '-I o· lS1 "...-- () , C SL{ .,...-' ./' ffi-;--3 '-\ L., I~'+'H~ ...--.......- a.., '-t~ ?. '(/ 0 -i (),Y/.i"{ 1/('~ ----I'"' 1'-] n,\",,\ \ ,'31'2. ,./ 0, L..{ 3,2.. - 0.199 .",- 0.'018 .......... 0, Zl./ I --0,01 \- D,O~,--- o.o~o .,.. 0,0"1' --- O,2,OLp - o,o~'-I- '-.. 2.lDSO ",/ 0,3'2. ./" 0,01£... -- 0005 - C,208 --- 0,01"'--- Zl(.PI2 .......... 2.--1. I ~ b .....--~ , It: 0 ~ ~ /0-"1' -'f-~ t...r p. r"':' Y'..... ' 7 - .. -- .' , COMP.:r~L C ~ K 0 • ~, .,J..l-W----=-_ u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA SHEET NO. 28/21 FILE po.. DA TE 21 DL~ e"" SUBJECT \, Co~~U\T F-~\c.\,ot-..J d,F\~~\.... K...c<:"'\<"\K~,? ~. ~I r-....)~'-Roc K. '\ I(r'I P b. 11.\' 10 \ [, [' A~l0F'i COtSi~f\c.TIe.N 1. O"iI"\EI'<.. ,-eAN'SI"llCI\,)s:' c. F\r-lPl,-~~~K? \() ?E~s:\OCI<:. \ \. i~A~i:.Ac.I< AI P~~~ltX\<.. 1'2. ACC~ ADiT ID ~oc.K. TRA';:> K<:'T~? = Ksr~p ~ 'K':::;\_~ (2a) A'-....Fi \, C.O~'D~\-\ F~IC.iIOrV c. ~TeE:L ?E t>l s..iO C'<.,. s., 'BE. N 'i>S:.. b. V~R"'c..A,-e. S~. 18'12' - cL hOKI-:CCIoSH'\... c:. ::-..., ~\A ,l<t)"t-oo I NNGL.- o. \sY .,- o. -Z ~\~. O. 00 tQ -' . ~ / I 0,111 . oj ') o .()\., )( 10 -i . 1. ~ o ~~l.oVo ~ 10-'1 . . .- NPA FORM 168a Rev. Previous editions Obsolete. ~ t) /)k,. "l.... ~e-~QG..z- •• ? .. -. 2:... 6,S18 O.'l.~\ -- 6.2.~1-- 0.001 -- ~ : ,,.,; - -I I o:~ 'l.~ 10 -L{ -. '~ /,J D ,-=t-~ S" x IO-'-{ . r" i. o.Oy~./ • .3 ~-I 01~8~ O. :$01 6.'2.'31 ~- 6, a 1"2.. - C>.oBS' - 0.432.-- ,-. --, COMP.~ CHKD'--F- U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE. ALASKA I ...... i ~~ >. ; .,,/ (" , \ ~ktO~ -U'.~~~+ O.1Z,8~; \l-':1~~-t O.llcB/ v -,. :::' .13 ./ . t/ ,/ ,o!>i T .2tlR /' .02~ \l'C)\1v v' ./ = . o(P'2.+ I ~-z..~ \\,~~1"" ,/ "../ I O~S-+ . ys,2- 1'3.382;( ~( \lAL..\)~S iC.E\\\M\1'\) (.cc-0s'ln NT ~ ~1"o~K... Sol cES MPA FORM 168a (Rev.) Previous edItions obsolete. DEC. 1965 , -::2 -:> <. ~/ , 0 '3 ~ -~. '-' ' 0 -,02-8 2573-&1 • 0.10 ... .. I- Z III U 0.01 o.. ... .., 0 U III U Z 0.08 C I- 1/1 ;;; .., .a: 0.0 7 RELATIVE ROvGHNESS ~ OR 0.., THICKN::SS \ _ClE ... "ANCE OR LlINIUU'-4 [XCAI/ATION LINE MEAN Oq A·'ERACE EllCA ... ATlON LINE TUNNEL MUC" NOTE' SEt C~""I>T 22~-I/S fOA I:lENTlnc ... TIO .... OF PRO.;lC oS INOICAT£O BY NuuSERS ........ Q ......... , .... "I" ••• -•• , .............. CI.," : ...... l. .. " .~ ... k II, o",=~ Dn=~ II = 0",-Oft II, = NIKURAOSE'S SANO GRAIN ROUGHNESS RESISTANCE COEFFICIENTS UNLINED ROCK TUNNELS f-RELATIVE ROUGHNESS HY(·HAUL IC OE ~IGN CHART 22. -1;'0 • •• 1-•• - ..--. , C OMP. \./ t..J CHJ(D._~_t~_ "SUBJECT 1-t{J Y'>~ sh ~ c.. 7v /'7n~ I PI A (r.pr!'r tF-r ) 10 / 1 1 ?. /3 vs£' '" U.S. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA L-5B TER .... LA k:.E 'i.. I C v A )-t'q' HO If'J"t4k( InlA J!.( Inro~~ e~ -£ ro ~D Xo Tvl7l7r v IJ)/ 5"'l'ge T6" oJ niT SoJl' 7 e (ft') /ftl X )0-4 '1-/04 ... r#I1/<" (cv ~ F AL) \ ./ ' 97'" ... /. ? 7 3 " (J,b ttS-"" J-1·~ 7'30,/; ....., , ~-~ I .... rt'. <rtr.o ... 0.611 ...... I /L'l?'~17&-q,C "', 3'~ ~ o ,G{,~ 'r)'')7b " /Z2,3. Th ; " . 2~Y ..... 0·737 " (,49c . 13 ~...,~ f I './ I '-1,,0. '-~ .3..,; " -=-12, ') rr. p()oJ "'-I e l'f'vt,17I(117 = ~l 0 USc MlnJf1tl.lM J-I<jdYttv)'c, I~ssps .,... I /0 1 ... d7/]to I e ff ~ "i=-g "I Ho =' '820:.-(Z5.7tr-fJ2..))=-'-I7~/.7 >':. If '(I "1 rp =. (1t,,311r)(.~.~ I r = ~,,, C:f ~ 7~k7 (, Iff) .... . 11J'1f . SHUl NO. -.!. 1:...-__ FILE ___ ~_-;- DATE 'Aph/ $?I /t'j N/f. ;'1 :"h i I Oill ~ ThonG( : Thoma.. rp .l\ " t'" 0\-r; 1 X j,S I .' r (ft~ (fc) (ft) I 1\ 1 ~ 2-1.,4." b·1~ =7 f\j'i i '( ~ '.e-" , 7,s-7 ::-7 f. . l ,~ , '--, 3~.b : G, • '1 9 1], .-. ,~ I I -- t-;L:: l!W~)t. ~). J ff =. Z", ~ . .... ;..j" ~ cp: 4'~1·1' C~,5 NPA FORM 16&a (Rev.) Previou •• ditions obsolete. DEC. 1965 ~. f: COMP.< i,A) CHKD. ~,h SUBJECT u.s. ARMY ENGINEER DISTRICT, ALASKA CORPS OF ENGINEERS ANCHORAGE, ALASKA ('< fiJ: TE,!? l A I( E r.p In' I, Q! ~ ~ S-o c f ~ IP = 3 G,/ 3 tiV .'\, J..J L = 0.,!~CX!O-")(1'O"L) = /7, ~2. -fr- , '", H 0 = ~ "2 cI -(/7,) z. "fl"e' S)::-1 ~ 9, 7 1/- -"1L - JJ :. . /.. -;::> SHEEl NO.--..Jho' __ _ FILE _____ ,.- DATE /, h~r / :::-7 (. i ,.:."t • '7 }-P : 37 Soo ./ -- ,----- ~, f---- 1-- r ! L:: --+--- I tp l' "Ftz;ml:e I! Jf I l5 uifui§i) € t ___ . ___ ._~ .. -= .......... __ ._+-__ • _____ 1 •• __ • ___ ...... ________ '-: __ -=::---=:-..:-=---=-~==_~.:..-=--:t.:=..:==-...:~-=·== . :-...: ;.: . ~ ~ . ---. --. • 0 __ " . _______ • ____ ,.0 ___ _ 0-' '_ ~ • ____ ..... _ •• _.t-. ---. ___ _ :: :=:=---r==--::::...-:--~-:=~-~ =:--==:.:E-=-':~=:~ :. -~._ 13 eft I 1 CASE 1 1-- 5 SUMMARY OF IIYDRAULIC TRANSIENTS AT CRATER LAKE l (cor~ruTER PROGRAr~ "III iAMO" ) ,;;, _. ________ ... _4 ~- ~ --~~--~ --~ .----_._-_.--~---~----- Maxlmuru IIaxlmum ~Iaxlmum Maximum fl1nlmum l11nlmum Minimum 111 numum Sea 1 Tallwater rlez. Elev @ lisa In ~ISEL In lia te Overs peed Plez. Elev @ WSEL I n Surge IISEL In Gate Over Tunnel Elevation Turbine (ft) Surge Tank(ft) Shaft (ft) (RPrl) Turbl ne (ft) Tank ( ft) Sh~ft (ft) Crown 1 t ~a te Shaft ft (tt) -----".-_. -~ -------.--IJESCRIPTlON 1256 1075 1027 000 590 764 010.8 13.0 or rejection: 4.0 Lake· 1022' Lake· 1022' Lake· 1022' Lake· 956.5' Lake· 820' Lake" B20' Lake • 820' Lake· 020' or demand and Initial Initial I nit Ia 1 Initial Final FI nal Final Final pverspeed: HN • 1001.5' HN • 1001.5' HN ·1001.5' HN • 926.1' HN • 784.1' liN • 784. I' HN " 704. l' liN " 784.1' 11 .4 Long Lake r~odel 12.4' Horseshoe Tunnel 51.5" Throat/10'~ Surge T ank Block~d Output· 47000 hp (Re 1 Ulncked Output· 47060 hp (OS ~ -----._---------- - 1237* 1078 1027 096 590 764 810.0 13.0 11.4 Lonl Lake Model 12' Horseshoe Tunnel 51.5" Throat/IO'~ Surge T ank Blocked Output • 48938 hp (Ref Blocked Output = 50076 hp (OS ----_._-_. _______ -+ _____ ~----_+----_+----_+-----~----~-------~-----~-----t----- Long Lake Model 12B8 II' Horseshoe Tunnel 54" Throat/10'~ Surge Tan k Blocked Output = 47777 hp !~~i) Blocked Output = 47048 hp ---~~----------~ ---_. --- Long Lake Model 1283 12.6' Horseshoe Tunnel 54" Throat/l0'~ Surge T ank Blockerl Output • 47.771 hp (Rei) Ulncked Output • 47008 hp (OS .... _---_._- Long Lake r~odel 1303 12.6' Itorseshoe Tunnel 54" Throat/6'-IO' Surge T ank** Blocked Output· 40339 hp (Rej) 1082 1028 B67 599 751 809.7 ----~-~loj6---I---I-0-2-B--------1-----8-7-0------599----761-----007~8-- ----~--------------I--~-----r----------------\-------- 1067 1029 599 770 810.1 12.7 11.4 10.8 11.4 NOTES: 1. All transient runs are based on the wicket gate closure rate shown in figure 2. O.S. a Overspeed. -~-----~ ------~~ ---------~-- 13.1 11.4 3. Net heads or case 1 vary somewhat Wrom plate due to the 1.7. Moody efficiency stell-up used f plate 82. Moc~y step-up ------~~~-----------------------------1f----------l--------I-----------I----:--+------J------+---------J~was-not~appl1€~· to WHAMO-- 6 Dworshak r~odel 1218*" 173.1 1040 889 639 166.9 807.0 10.0 11.4 turbine charac erlstlcs p 11' Horseshoe Tunnel (Max Hydraullc Min Hydraullc HEDB reconillend tlon. 47.B" Throat/65508 ft3 gradient In gradient In Air Chamber tank/no orifice tank. 1129) tank· 733) ----~ ::~~~~~~~~~~~ : ~~~~ ~~'l'i(~l):~)jij_) 1--------+-------t---------l-------f-------f-----------1f-------+-----+:------:----:----lI--------t----- 7 Long Lake flodel 1240 1075 1027 878 590 765 811.5 14.5 for rejection: 11.0' machine bored tunnel 4.8 51.5" Throat/12' Surge Tank for demand and Blocked Output· 47147 hp(Rej) overspeed: Slacked Output = 47060 hp(OS) 11.4 --~----~------------!---------j------I------~~ ~ ----~---~------I---------~--~---~-------------- *Inltlal gate opening Is iI.2% In case 2, while Initial gate opening for case 1 15 1IJl%. **In this analysis, the surge tank consisted of an upper section, 10 feet In diameter, and a lower portion, 6 feet In diameter. ***DM-26 shows a maximum plez. elev. of 1329 feet, ~/hlch was calculated by usIng a combination of computer programs "MSURGE" and "11SRl4H." I I ~ U III ~ ::J • o z • o ., '" <: --ID ~ () l.u I-Q: \~ ~ /DO 80 ,~o LIt) 20 0- o C£'ATEZ, LAKE: 'AI I (.\<GT G-A:T&" GL.O::')Q..7 e.~ z. S' A ?R. '3,"" JKY 8 /0 ~ CRA~ LAKE TRANSIENTS -STABItITV -UE~ED TANK -~~NICAL GOUERNOR 2 C BV JOE ~XLEA AND JEFF JOHNS AT THE ALASKA OIST CORPS OF ENGINEERS ~ C YATER ~ER AHD "ASS OSCILLATION (~) PROGRAft • C THIS FILE IS DCYSl3EV -12 •• FT HORSESHOE TUNNEL "IN LOSSES S C LONG LAKE "ODEL. ~2-1.e7s.eeeJ HP1-JSSee.HP2-39ee8 4; 7 C SVST~ CO""AHDS • IJ 1. S'r'9TEI't U ELEPIENT HW AT 1 12 EL£rlEl'fT Cl LIP« 1 1M 13 E1. Cl1 t.I1« 1. 2M 1-4 E1. Cie Lll« 2. 3M 15 El C:. UI« 3 •• M 16 EL C.. UI« ... S" 17 EL cse LII« S'. 688 18 EL C68 t.I1« 6ee 788 , li EL C7, LII« ? .. S" 21 EL C7S LII« 8. 851 21 EL STl AT 85. 22 EL TJl AT 8ee RISER SSI 23 EL C8I t.I1« SII gee 2. EL Cga LIt« 911 le88 25 EL Clee LII'IC 1'" 1188 26 EL Cl1. LII'IC 1111 12 .. 27 EL C13. LII'IC 1288 l+1e 28 EL TJ3 AT 1.88 RISER lS .. ag EL Cl+1 LII'IC H .. lSM :. EL STa AT 15. 31 EL Clse LII'IC H" 16 .. 32 EL Cl68 LII'IC 1688 1 ?. 33 EL Cl71 LII'IC 17" lS" 3. EL C18. lII'IC 18" 1988 35 EL Cl98 LII'IC 19" 2ee. 36 EL C2H LII'IC ae.1 21e. 37 EL Tl LINK 21e. a2 .. 38 EL C21. LII'IC 22" 23 .. JSJ EL "" AT 23ee +I FINISH 41 C ELE~NT CO""ANOS .a RESERVOIR ID HW ELEU 858 •• FIttI .3 COttO ID Cl OIA" 12. LEMG 1. CELER .66 •• ENDLOSS AT ~ CPLUS .916 C"IHUS 1.68S •• FRIC .868. FINI .5 COHD 10 Cle DI*," 12. LENG 9. CELER .668. FRIC .868e ADDEDLOSS AT 9. CPLUS .al ~ C"IMUS .19 FINI .. 7 COHD 10 cae UARIABLE DISTAttCE e.1 AREA 32 •• D 35. A 33 •• D 68. A 319. •• D 115. A 131.1 LEMG 115. CELER "661. FRIC .8571 ADDEDLOSS AT 35 • • g CPLUS .58 C"IHUS .58 FIttI 58 COHD 10 C:. DIM 12.il LEHG 233. CELER 46M. F"RIC .166. FIttI 51 COHO ID C+I DIM 12.il LENG 54. CELER 46M. FRIC .'78 FINI 52 COtfD 10 Cst OIM 12.91 LEttQ 221. CELER 46M. FRIC .166. FIttl 53 COHD It) CM UMIAILE DISTAftCE ••• MEA 131.1 D 25. A.'. LEHQ 25. CELER 46M. 54 FlUC .163 FI"I 55 COHD 10 C7e DIM 1.8 LEHG i. CELER 46M. FRIC .163 AODEDLOSS AT •• CPt.US .11 sa CftIMUS .81 FI"I 57 COHD It) C7S DIN! 7.8 t.£HQ 1. CELER ..... FAIC .1813 FIttI 51 SUtQETAIC ID STl Sl .. t.£ ELIOTTOf'! 781. ELTOP 1 ..... DIM 8.7 CEt.ER "6A. FRIC .11 51 FIttl " TJUHCTION ID TJl FILLET I.' FIttl 81 COttD ID cae DIM 1.8 t.DtQ 15. CE1.ER <46H. nnc .MVl ADDEDLOSS AT 3.' 62 CPLUS .81 CftINUS •• 1 FINI 13 COtfD ID Cit UMIAILE DISTAttCE I •• MEjIII .... D 38. A 131.' LEHQ 38. cnEJt 046&e. 604·· FIUC • e893 FINI 65COf41) II)-Clte DIAPI 12.g. LE/'4C 52''1. CElER -466e. nIC .e66-4 NlJI'ISEG 1-4. FINI 6S COMD ID Cll. DIAft 13.9 lEMG -41. CELER -466 •• FRIC .e6-48 ADDEDlOSS AT 8.e 6"1 CPWS .85 CPllrtlIS '.8 FINI sa COHO ID C13. OIAPI 16. lEI'iQ 26. CELER 466e. FRIC .8618 FINI 6i TJUHCTION 10 TJ3 FILLET 5.' FINI 7. ~O 10 CI-4. DIAPI 11.16 LEI'iC 6 •• CELER -466 •• FRIC .8696 ADDED LOSS AT 7.5 71-CPLUS .75 C~IMUS .75 ADDEDlOSS AT 6 •• CPlUS .75 CMINUS .15 FINI 72 SURCETAHK 10 ST2 SI~LE ELiOTTO" 141.a ElTOP 11st •• DIAn 18.e CELERITY ~668. 73 FRIC .6268 FIHI 7~ COHO ID Clse DIM 16. LEHQ 81. CELER 466.. FRIC .063' FINI 7S COHD 10 Cl68 OIM 13.73 LEMC 2 •• CELER 4668. FAIC .865' ADOEDLOSS AT e., 78 CPLUS ••• CPlI~ .IS FINI 77 COHO ID Cl78 DIM 8.7 .. LEHC 25. CELER "668. FRIC ."73 AODEDLOSS AT e., 78 CPLUS .269 CPllNUS .26i FIHI 79 COHO ID C1S. DIA" 6 •• lEHC 95-4. CELER 33e •• FRIC .0e875 I'iU~SEG 3. FINI at CONO ID Cl98 VARIABLE DISTANCE 8.' AREA 28.27 DISTANCE 6.-4 AREA 15.ge .81 CELER 33te. FRIC .8.875 FIHI 82 COHO ID C2te DIM ... 5 lEHC 6 ... CELER 3le •• FRIC .8.8 .. FIHI 83 TURI 10 Tl TVPE 1 SVNCSPD 6et. FRIC 2se. ~INDACE 258. UR2 le75e8 •• DIAn -4.29 8.. FINI 85 COND 10 C21. VARIABLE DISTANCE 8.8 AREA 16.6 D 13.8 A .. e.6 D 32.3 A 78.7 86 D 32 ... A -485. D 322. A 485. lEHC 322. CElER 466 •• FRIC .eese &? ADDEDLOSS AT 13.8 CPLUS 1.12 C~IHUS 1.12 ADDEDlOSS AT 32.-4 CPlUS 8.45 88 CPlINUS .33 FIHI 89 RESERVOIR ID T~ ELEV 12.5 FINI 98 C TlJRBIttE CHARACTER ISTICS FROI't lOHC LAKE 'IODEL 91 TCHAAACTERISTICS TVPE 1 - ga GATE 8. 18. 2.. 3e. 41. St. 68. 7e. 8.. 98. 1". 93 PHI .-48 .-45 .st .55 .68 .65 .7' .75 .8. .85 .98 .95 9 .. QPIODEl 8 •• 133 .261 .377· .-478 .578 .67" .771 .856 .93. .97" 95 •• 8 .126 .257 .37. .471 .57' .666 .756 .S"6 .917 .973 9& •• 8 .123 .2-46 .35-4 .~57 .sse .653 .735 .82. .893 .953 97 8.8 .123 .236 .339 .428 .S3. .631 .72. .se-4 .871 .9l8 98 8.8 .171 .22' .32" .42' .588 .687 .6S2 .788 .839 .898 99 ••• .1-48 .215 .3ea .392 .487 .577 .661 .7-45 .a87 .865 lee 8.0 .136.2.1.279 .371.-458.5-48.623.781.776.827 lel 8.8 .117 .179 .293 .3-46 .43-4 .515 .576 .65-4 .718 .167 102 8.8 .e89 .151 .22" .3-4' ... 18 ... 67 .5-41 .681 .671 .712 1e3 8.e .e56 .11-4 .173 .238 .357 ."3' .512 .5-4" .585 .661 1.-4 e.8 0.e8 .862 .le5 .151 .28-4 .aS5 .318 .481 .~59 .523 185 e.8 8.e8 8.88 .819 .e-43 .868 .893 .145 .185 .247 .3-43 186 HP 8. .ee8' .8e28 .831-4 .8-42 •.• 525 •• 621 .87e •• e772 .e828 .0856 187 e.e .e875 .8198 .8315 .8428 .1S4' .06'" .8725 .88.2 .e86" .09" le8 e., .8869 •• 188 .8386 .8 .. CS .85'" .8651 .8739 .8821 .8882 .0925 189 8.8 .eesa •• 175 .8292 .8"1' .8521 .8641 .8735 •• 82 •• e885 .8929 118 8.' .e .... l .8156 .ea78 .838S .... 91 .861' •• 7.1S .8796 .885-4 .0gee 111 ••• .eese .8135 .ea38 •• 3 .. 5 .... 5 •• 8555 .6& .. 5 .8732 .8792 •• 8 ... 112 ••• ."11 .&192 •• 191 .8C92 •• 39' .... as .8562 .e64I •• 718 •• 755 113 e.. -.M32 ..... 4 •• 1l" .8225 .831' •• 394 .... " .ISJI •• 591 .8635 114 ••• -."79 -."18 ... 55 •• 136 •• 215 .8285 .'348 ............. 8S804 115 ••• -.'121 -.M11 -."11 ... 33 •• 112 •• 162 .8222 .8267 .8312 •• 355 U8 ••• -•• 175 -.'138 -.... -... as .M18 ... 71 .M65 .tlle •• 144 .8185 117 ••• -.822t -.12M -.'164 -•• 114 -.teeI -...... -.ee3I -.8821 -.e.14 ... 38 118 Flr.ISH 111 In C OUTPUT REQUESTS 121 128 DISPLRY ALL FI"ISH 123 124 HISTORY ta5 ELEI' ST2 ELEU fll£Z PRESSURE HEAD Q 121 HOllE 1M fllEZ HEAD Q 126 NODE lee PIEZ HEAD Q 127 ELEftST1 ElEU PIEZ HEAD Q 121 NODE l~ee' PIEZ HEAD Q 15-NODE IBM PIEZ HEAD Q 138 NODE 21" PIEZ HEAD Q 131 NODE 22" PIEZ HEAD Q "38 ElDI 11 SPEED POSITION poWER Q 1.33 FIHISH 13" 135 FIHISH 138 131 PlOTFlLE 118 E1.£ft ST2 ELEU 138 EI.£It STl £lEU 1 ... NODE 1 .... PIEZ 1 .. 1 NODE IBM PIEZ 1'42 E1.£" Tl SPEED Q POSITIOfI POYER 143 NODE 21ee PIEZ 1 .... FIHISH 145 C PLOTTING REQUESTS 1"6 H7 H8 1 .. 9 C CO~ATIONAl PAA~EAS 15e 151 CONTROL 152 I)TCOf'IP 0.1 153 DTOUT 0.5 15 .. TI'IA)( 20.' 155 l)TCOfP 1.0 156 DTOUT 1.0 157 TI'IAX lee.' 158 OTCOI'IP 1.0 1551 DTOUT 1.0 16. Tl'!AI( 2 .... 161 FIP'4ISH 162 C STABIlITV SIMULATION 163 OPTUR8 ID T1 GOUERH LSCHEDULE 1 FIHISH 16~ GOVERN 10 Tl AONE e •• ATUO 1.' ATHREE 3.31 AFOUR .1e .. AFIVE e., ASIX -10.6" 165 ASEuEH -3.3" AEIGHT e.e OPE~AX 21.5 ClOSE"AX 21.5 ~INISH 166 SCHEDULE LSCHEDUlE 1 167 T 0.0 l 385&8. 168 T 1.e l 385 ... 1651 T 1.25 L 39088. 17. T 2.' l 39e&8. 171 T 3ee •• l Jgeee. 172 FIMISH 173 17 .. C EXEC1JTIOfI COHTROL 175 178 co 177 QOODIYE 171 /EOF' 179 EOT •• 1 CRATER lA<E, SMETTISHA", HVDRAUlIC TRANSIENTS -10 FT DIA" VENTED ~ANK REJECT 2 C BV JOE WEXLER AND JEFF JOHNS AT THE ALASKA DIST CORPS OF E~GINEERS 3 C WATER HA"~ER AND ~ASS OSCIllATION (WHA~O) PROGRA" ~ C THIS FILE IS OCLR13EU-13 FT(la.~' HORSESHOElEXCAUATEO TUNNEL 5 C UENTEO SURGE TA~ 6 C lONG lAKE ~OOEl 7 C SVSTE" COMftAND5 S ~ 10 SVSTE" 11 ElEMEMT HW AT 1 12 ElE~NT Cl lINK 1 108 1) El Cle lINK 118 2&1 1~ El C2e lINK 2ee 3ee 15 El ClI lINK 3ee ..e. 16 El c~e lINK 48e see 17 El C58 lINK see 6ee 18 Et C6e lINK 6ee 7ee 19 EL C7e lINK 718 s0e ae Et C75 lINK see 858 21 El S11 AT S50 22 El TJl AT S00 RISER sse 23 El C80 lINK see 9ee a4 El C90 lINK 900 leee 25 El Cle0 lINK 1018 1100 26 EL Cl10 lINK 11ee 12ee 27 El C131 lINK 12e0 14e0 28 El TJ3 AT 1400 RISER 15e0 29 El C140 lINK 1~0' L5ee 3e Et 5T2 AT 1588 31 El C151 lINK 140e 1601 32 EL C160 lINK 160e L700 33 Et C170 lINK 1718 lS0e 34 Et C1Be lINK lsee 1980 35 El Clse lINK 1900 2e01 36 El C200 lINK 20e0 210e 37 El Tl lINK a101 22ee 38 El C21l lINK 2201 23ee 39 El TI.I AT 2300 41 FUUSH 41 C ELEMENT COMMANDS 42 RESERUOIR 10 HU ElEU 1022.0 FINI 43 CONO 10 C1 DIAM 12. LENG 1. CElER 466 •• ENDlOSS AT HU CPlUS .916 C"INUS 1.685 ~4 FRIC .e680 FII'II ~5 CONO 10 C10 DIAft 12. LENG 9. CElER 4668. FRIC .&6se ADDEDtOSS AT 9. CPlUS .20 46 CMIHU5 .19 FINI 47 CONO ID C2e VARIABLE DISTANCE 0.0 AREA 324. 0 35. A 334. D 60. A 379. 48 D lLS. A 102.8 LEMG l1S. CELER 466 •• FRIC .e5S3 ADDEO lOSS AT 35. ~9 CPlUS .58 C"IHUS .5S FII'II 5e COHO 10 ell DI~ L2.7e lEHG 233. CEtER 4668. FRIe .0696 FINI 51 COHO 10 c..e DI~ 12.70 LEHG 54. CEtER 4668. FRIe .'S' FINI 52 COHO 10 cse DI~ 12.70 lEHG 226. CEtER 4668. FRIe .0696 FINI 53 COtfO 10 C68 VARIABLE DISTAl4CE e.e ~ 127.5 0 as. III 48. LEtIG 25. CEtER 4668. 54 FRIe ."93 FINI 55 COHO 10 C7. DIAft 7.8 lEHG 9. CELER 466 •• FRIe .ee93 ADDEOLOSS AT 4. CPlUS .el 56 C"IHUS .01 FINI 57 COHO 10 C7S DI~ 7.8 lEHG 1. CEtER 4668. FRle •• e93 FIMI 58 SURGETAtIC 10 S11 SIfPU ELJOTTOfli 78;. ELTOP 1.4 •• OIM 8.7 CElER 4668. FRIe .el 58 FII'II 68 TJUNCTIOH ID TJl FILLET ••• FI"I I . ,.-, . / -.5 I 61 COMD IO cse OIA~ 7.8 LEMG 15. CELER 466e. FRIC .0093 AOOEOL055 ~~ 3.0 62 C~LUS .81 C~INUS .01 FIMI 63 COMD IO Cge UARIABLE DISTANCE 0 •• AREA .s. 0 3a. A 127.5 LEMG 30. CEtE~ 4660. 6. FRIC .0a93 FINI 55 COHO ID C10a OIA" 12.7' LENG 5241. CELER .66a. FRIC .0696 NUM5EG 14. FINI 66 CONO 10 Clle DIA" 13.9 LENG 41. CElER 4660. FRIC .0657 AOOEOt05S AT 0.3 67 C~LUS .05 C~INUS a.0 FIMI 68 CONO ID C13e DIA~ 16. tEhG 26. CEtER 4660. FRIC .0696 FIMI 6g TJUNCTION IO TJ3 FIttET 5.e FINI 7e CONO 10 C140 OIA" 12.70 LENG 60. CEtER .660. FRIC .0696 AOOEDtOSS AT 7.5 71 CPlUS .75 C~INUS .75 AOOEOLOSS AT 60. c~tus .75 CMINUS .75 FINI 72 SURGETAMK IO STa SIMPLE ElBOTTO" 14e.0 ElTOP 1150.e OIA" la.0 CELERITY .66e. 73 FRIC .e606 FINI 7. COHD ID C1S' DIAft 16. lENG s •• CELER .660. FRIC .0696 FIHI 75 COHO ID C16. OIAft 13.73 LENG 28. CElER .66 •• FRIC .e696 AOOEOlOSS AT e., 76 CPLUS I.e C~INUS .95 FIMI 77 COHD 10 C17. OIAft S.7. tEMG 25. CEtER .660. FRIC .e073 ADOEOtOSS AT 0.e 78 CPLUS .269 C~INUS .269 FIMI 79 COMO IO C18e DIAft 6.e lENG 95 •• CELER 3368. FRIC .0e87S HU"5EG 3. FINI 8. COND 10 C1ge VARIABLE DISTANCE e.e AREA 28.27 DISTAMCE 6 •• AREA lS.ge 81 CELER 330e. FRIC .08875 FIMI 82 COMD 10 C2ee DIAft •• 5 LENG 6 •• CElER 33ee. FRIC .008. FINI 83 TURI 10 Tl TYPE 1 SYNCSPD 6el. FRIC 25 •• YINDAGE 2se. WR2 le7se0e. OIA" •• 29 8. FINI 85 CONO 10 C21e VARIABLE DISTANCE a.e AREA 16.6 D 13.8 A .e.6 D 32.3 A 78.7 86 D 32 .• A 405. D 322. A 4es. tEHG 322. CELER 466e. FRIC .a090 87 ADDEOlOSS AT 13.8 CPlUS 1.12 CMINUS 1.12 AOOEDtOSS AT 32 •• CPLUS e.45 88 CMINUS .33 FINI gg RESERVOIR 10 TU ELEV •. 80 FINI 98 C TURBINE CHARACTERISTICS FROft LONG lAKE ~DEl 91 TCHARACTERISTICS TYPE 1 9a GATE •• le. 2e. 3.. .0. 5.. 6e. 7.. 8e. 91. 18e. 93 !'WI ••• .45 .50 .55 .6. .65 .7. .75 .8e .85 .9a .95 9. QMOOEl a .. 133 .261 .377 .• 78 .578 .67 •. 771 .856 .930 .97. 95 e.e .126 .257 .37e .471 .57e .666 .756 .8.6 .917 .973 96 a.e .123 .246 .35 •. 457 .55e .653 .735 .82e .893 .953 97 a.e .123 .236 .339 •• 28 .53e .631 .72e .8e4 .871 .93a 98 e.e .171 .22e .32 ••• 21 .5e8 .6e7 .692 .78e .839 .898 99 e.e .148 .215 .3.a .392 •• 87 .577 .661 .7.5 .8a7 .865 10e e.e .136 .2al .279.371.458.5.8.623.781.776.827 lel a.a .117 .179 .C!93 .3.6 .• 3 •. 515 .576 .65 •. 718 .767 102 e.0 .089.151.224 .3.e .418 .467.5.1 .6el .671 .712 le3 e.0 .056 .114 .173 .238 .357 .43e .512 .5 ••. 683 .691 le. e.0 0.08 .a62 .la5 .151 .2a. .255 .318 .4el .459 .523 les e.e 0.08 e.0e .a19 .e.3 .068 .093 .145 .185 .247 .343 le6 HP e. .0e8a .002e .e314 .e.ae .0525 .e621 .e7te .0772 .0828 .0856 le7 e.0 .0e75 .8198 .e315 ••• 28 .0s~e .a6~' .e725 .0802 .886~ .egea 108 e.0 .0069 .0188 .e306 .e.25 .05~ •. e651 .e73g .a821 .e882 .e925 le9 •• e .ees& .0175 .ec92 •• ~1 •• tS21 .e6~' •• 735 .e828 .e88S .e929 11. e.e .e .. l .0156 .e27' .• 38S .e~91 .e61 ••• 785 .e796 .e8S~ .agee 111 •• a .eese .al35 .e238 .• 3.5 .e4S1 .0555 .16.5 .e732 .e792 .a8~' 112 ••• .0811 .aega .a191 .6292 .e3ge .a~as .05&2 .e648 .a718 •• 755 113 ••• -.te32 .184" .el3<4 •• 225 •• 31e .a39<t .e461 .85Je •• S~ .0635 11" e.. -.te79 -."18 .eess .1138 .821S .eaas .e3~& .... 85 ••• 6e .es .. 115 ••• -.e125 -."71 -.tel1 ... 33 .ale2 .el62 .e222 .8267 .e312 .a355 116 I.. -.'175 -.a136 -.ee89 ·.eees .ee18 .ee?1 .e165 .1131 .11." .elas 117 e.a -.822V -.82.' -.el&4 -.'11" -.a889 -."~6 -.ee36 -.tt21 -."'" .te36 118 F"INISH Hi lae C OUTPUT REQUESTS lZ1 12Z DISPLAY ALL FINISH la3 124 HISTORY las NODE lee PIEZ HEAD Q 126 ELE" STl ELEV PIEZ ~AD Q 127 NODE 1490 PIEZ HEAD Q 12S ELE" STa ELEV PIEZ HEAD Q 129 NODE 160. PIEZ HEAD Q 13. NOOE 1708 PIEZ HEAD Q 131 NODE Isee PIEZ HEAD Q 132 NODE 1908 PIEZ HEAD Q 133 NODE 2088 PIEZ HEAD Q 1~ NODE 21ee PIEZ HEAD Q 135 EL£" Tl SPEED POSITIOH POYER Q 136 FINISH 137 138 PlOTFILE 13; ELE" ST2 El£V '148 ElE" STl [LEV 141 ELE" Tl SPEED Q POSITIOH POWER 142 NODE 14ee PIEZ Q 143 NODE 16ee PIEZ Q 144 NODE 170e PIEZ Q 145 NODE laee PIEZ Q 146 NODE 21ee PIEZ Q 147 FINISH 148 149 C PLOTTINC REQUESTS 15. 151 152 153 C CO~UTATIONAL PARA~TERS 154 155 CONTROL 156 DTCOMP 0.1 157 OTOUT 0.S 158 T"'AX 20 •• 159 DTCOI'IP 1.0 16e DTOUT 2.5 161 TI'IAX H~ ••• 162 FINISH 163 C '5.0' SECOND EQUIVALENT CLOSURE OF GATES FROM a'.2~ OPENING 164 OPTURB 10 T1 ~EJECT TOFF 1.0 USCHEDUl£ 1 FINISH 165 SCHEDULE VSCHEOUl£ 1 166 T a.e G a8.2 167 T 1 •• G ae.2 168 T 1.5 G 7e.' 16; T 2.' G 5;.' 178 T J.' G 38.' 171 T 4.' G 16.' 172 T 5.' Q 5.5 173 T 6.1 G 2.8 174 T 7.' Q 1.5 115 T 8.1 Q •• 8 17& T g •• Q '.1 177 T 9.5 Q 1.1 178 FINISH 17V lSI C EXEaJTIOtt COHTROL 181 lli GO 113 QOOI).YE 10 1 CRATER LAKE. SNETTISHAM. HYDRAULIC TRANSIENTS -DEMAND-A! FT DIAM VENTED TANK 2 ( BY JOE uE~LER AND JEFF JOHNS AT THE ALASKA D15T CORPS OF ENGINEERS 3 C UATER HAMMER AHO MASS OSCILLATION (UHAMO) P~OGRM ~ C THIS FILE IS DCLD13EV-13 FT (la.~ FT HORSESHOE)E~CAUATEO TUHNEL.MA~ LOSSES 5 C LONG LAKE MODEL 6 7 C SYSTEM CO""ANDS 8 9 10 SYSTEM 11 ELEMENT HU AT 1 12 ELEMENT Cl LINK 1 lee 13 EL C10 LINK lee 208 1~ EL cae LINK a8e 3ee 15 EL C3e LINK 3ee ~08 16 EL C~0 LINK ~ee see 17 EL C5e LINK 50e 60e 18 EL C6e LINK 60e 708 . 19 EL C7e LINK 70t a0e a0 EL C7S LINK S0e ase 21 EL STl AT sse 22 EL TJl AT 800 RISER S50 23 EL cae LINK S00 gee a4 EL CS0 LINK 900 10ee 25 EL C100 LINK 1000 l1e0 26 EL Cl10 LINK 1100 1200 27 EL C130 LINK 1200 1~00 28 EL TJJ AT 1~00 RISER 1508 29 EL Cl~0 LINK 1~0e 1500 30 EL STa AT 1500 31 EL CIS0 LINK 1~00 160e 32 EL C160 LINK 1600 1700 31 EL C170 LINK 1700 1800 24 EL C180 UtlK 1800 1900 25 EL C199 LINK 1900 2000 36 EL C209 LINK 2000 2100 37 n Tl LIN/( 2100 2200 32 EL C210 LINK 2200 2300 39 EL TI./ AT 2300 40 FINISH 41 C HEMEtiT COMMANDS 42 PESEPI)01R 10 HU ELEV 820.0 FINI 43 COND HI C1 OIAM 12. LEtiG 1. CELER ~660. ENOLOSS AT HI.I CPLUS 1.s~a Cl'lII'iUS 2.183 44 FPIC .0973 FINI 45 CQND 10 C10 DIAM 12. LENG 9. CEtER ~66e. FRIC .0997 ADDEOLOSS AT 9. CPLUS .40 46 eMINUS .37 FINI 47 t;QND 10 C2e IJARIABLE DISTAttCE 0.0 AREA 32~. 0 35. A 33". 0 60. A 379. 48 0 115. A 10a.8 L£NG 115. CELER "660. FRIC .0835 ADDEOLOSS AT 3S. 49 CPLUS 1.18 CMINUS 1.18 FINI 50 COHO 10 e30 OIA" 12.70 LEHG 233. CELER ~&&8. FRIC .8997 FINI 51 corlD 10 C~0 OIAM 1a.70 LEHG S". CELER 4&&8. FRIC .115 FINI 52 COtlO 10 CSI DIAl'! 12.71 LEHG aas. CELER "668. FRIC .8997 FINI 53 CorIO IO CSI 'JARIA8tE DISTANCE e.e AREA 121.5 D as. A ~B. lEHG as. CEtER ~668. 5~ FRIC .016' F1HI SS CONO 10 C71 DIA~ 1.8 LEHG 9. CEtER ~88t. FRIC .0161 ADDEOLOSS AT ... CPLUS .01 56 C"INUS .01 FINI 57 COND 10 C7S OIAM 7.8 LEHG 1. CEtER ~66I. FRIC .0161 FINI sa SURG£TAHK ID 5Tl SI~PL£ ELBOTT~ 789. [tTOP 1~. DIAl'! 8.7 CELER ~668. 5; FRI~ •• 116 FIHI 61 TJUNCTION ID TJl ~ILLET e., FI"I 61 COHD ID cst DIA~ 7.a LEHG 15. CELER 46&1. FRIC .'161 ADDEDLOSS AT 3.' 62 CPLUS .11 C~INUS .01 FIHI 63 COI'fD ID C9t VMIAIl£ DISTANCE ••• AREA .. a. D le. A lG7.S LENG 3 •• C£t.ER "6M. C" r. {j S4· rRIC .01S0 FINI ~5 COMO 10 C10e OIA~ 12.70 LENG 5241. CELER 4660. rRIC·.0997 NU"SEG 14. rINI 66 CO~O 10 Cl1e OIAft 13.9 LENG 41. CELER 4660. FRIC .0941 AOOEOLOSs AT 0.0 67 CPLUS .05 CftINUS 0.05 rINI 68 COHO 10 C130 OI~ 16. LENG 26. CEL£A 4668. FRIC .0997 FINI 69 TJUNCTION 10 TJ3 FILLET 5.' FINI 70 COND 10 C140 DIA" 12.70 LEHC 60.0 CELER 4660. FRIC .0997 ADDEDLOsS AT 7.5 11 CPLUS 2.0 CMINUS 2.0 AOOEDLOSS AT 60. CPLUS 1.49 CMINUS 1.49 FINI 12 SURGETANK ID ST2 SIMPLE ELBOTTO" 148.0 ELTOP 1150.0 DIAM 8.0 CELERITV 4660. 13 FRIC .0606 FINI 74 COND ID C150 DI~ 16. LENG 8e. CELER 4660. FAIC .0997 FINI 7S COHO 10 C160 DI~ 13.73 LENG 20. CEL£R 4660. FRIC .9997 AODEDLOSS AT 0.0 76 CPLUS 0.8 CMIMUS .05 FINI 77 COHO 10 C170 OI~ 8.74 LEHG as. CELER 4660. FRIC .0160 ADDEDLOSS AT 0.0 78 CPLUS .538 CMlMUS .538 FINI 79 COHD 10 C180 DIAM 6.8 LENG 954. CELER 3300. FRIC .0146 NUMSEG 3. FINI 80 CONO 10 C190 VARIABLE DISTANCE 0.0 AREA 28.27 DISTANCE 6.4 AREA 15.90 81 CELER 3308. FRIC .0146 FINI . 82 CONO 10 C2ee DIAft 4.5 LENG 64. CELER 3300. FRIC .0146 FINI 83 TURS ID Tl TVPE 1 SVNCSPO 6ee. FRIC 250. UINDAGE 250. UR2 1075008. DIAM 4.29 84 FINI 85 COND ID C210 VARIABLE DISTANCE 0.0 AREA 16.6 0 13.8 A 40.6 0 32.3 A 78.7 86 0 32.4 A 405. 0 322. A 405. LENG 322. CELER 4660. FRIC .0150 87 AODEOLOSS AT 13.8 CPLUS 1.12 CMINUS 1.12 ADDEOLOSS AT 32.4 CPLUS 0.89 88 CMINUS .67 FINI 89 R£S£RVOIR 10 TU ELEV 11.4 FINI 90 C TURBINE CHARACTERISTICS FROM LONG LAKE MODEL 91 TCHARACTERISTICS TYPE 1 92 GATE 0. 10. 20. 30. 40. 58. 60. 70. 88. 90. 100. 93 PHI." .45 .50 .55 .60 .65 .70 .75 .80 .85 .ge .95 94 Q~OEL 0 .. 133 .261 .377 .478 .578 .674 .771 .856 .930 .974 95 0.0 .126 .257 .370 .471 .570 .666 .756 .846 .917 .973 96 0.0 .123 .246 .354 .457 .550 .653 .735 .820 .893 .953 97 0.0 .123 .236 .339 .428 .530 .631 .720 .804 .871 .930 98 0.0 .171 .220 .324 .420 .508 .607 .692 .780 .839 .898 99 0.0 .148 .215 .302 .392 .487 .577 .661 .745 .807 .865 l0e 0.0 .136 .201 .279 .371 .45& .54& .623 .701 .776 .827 1010.0 .117.179.293.346.434.515.576.654.718.767 102 0.0 .089 .151 .224 .340 .418 .467 .541 .601 .671 .712 103 0.0 .056 .114 .173 .238 .357 .430 .512 .544 .585 .681 104 0.0 a.00 .062 .105 .151 .204 .255 .318 .401 .459 .523 105 0.0 0.00 0.00 .019 .043 .068 .093 .145 .185 .247 .343 106 HP 0. .0080 .0020 .0314 .0420 .0525 .0621 .0700 .0772 .0828 .0856 107 0.0 .0075 .0198 .0315 .0428 .0540 .0640 .0725 .0802 .0864 .0900 108 0.0 .0069 .0188 .0306 .0425 .0540 .0651 .0739 .0821 .0882 .0925 leg 0.0 .0056 .0175 .0292 .0410 .0521 .0640 .0735 .0820 .0885 .0929 110 0.0 .0041 .0156 .0270 .0385 .0491 .0610 .0705 .0796 .0854 .0900 111 0.0 .0050 .0135 .0238 .0345 .0450 .0555 .0645 .0732 .0792 .0840 112 0.0 .eell .0892 .0191 .0292 .0390 .0485 .0562 .0640 .0718 .0755 113 0.0 -.ee32 .ee44 .0134 .0225 .0310 .0394 .0468 .0530 .0590 .0635 114 0.0 -.0079 -.eelS .eess .8136 .0215 .028S .1346 .0405 .0468 .0504 115 0.0 -.8125 -.0071 -.eel& .0033 .9182 .9162 .0222 .0267 .0312 .0355 116 0.0 -.0175 -.8136 -.ee89 -.eeas .ee18 .0871 .ee65 .0138 .0144 .0185 117 0.0 -.0229 -.0208 -.0164 -.8114 -.eea; -.~ -.0036 -.9921 -.0e84 .ee36 118 FINISH 119 12. C OUTPUT REQUESTS 121 122 DISPLAY ALL FINISH 123 124 HISTORY 1~ MODE lee PIEZ HEAD Q 12& E~ ST1 ELEV PIEZ HEAD Q FIG. 127 NODE l~ee PIEZ HEAD a 12S NO~E 1500 PIEZ HEAD a t29 ELE~ ST2 ELEU PIEZ HEAD Q 130 NODE 1600 PIEZ HEAD Q 131 NODE 1700 PIEZ HEAD Q 132 NODE 1800 PIEZ HEAD Q 133 NODE 1900 PIEZ HEAD Q 13. NODE 200e PIEZ HEAD Q 135 NODE 2100 PIEZ HEAD Q 136 ELE" Tl SPEED POSITION powER Q 137 FINISH 138 139 FINISH 14e 141 C PLOTTING REQUESTS 142 PLOTFILE 143 ElE~ 5T2 ELEV 14~ ELE~ 5Tl ELEV 1.5 NODE 1400 PIEZ Q 146 NODE 1609 PIEZ Q 147 NODE 1700 PIEZ Q 148 NODE 1809 PIEZ Q 149 ELE" T1 PO~ER POSITION Q 15e NODE 210e PIEZ 151 FINISH 152 153 154 C COMPUTATIONAL PAR~TERS 155 156 CONTROL 157 DTCOMP 0.1 158 DTOUT 0.5 159 TMAX 20.0 160 DTeOMP 1.0 161 DTOUT 2.5 162 TMAX 100.0 163 DTCOM? 2.5 164 DTOUT 5.0 16S TMAX 209 166 FINISH 167 C 5.0 SECOtm STRAIGHT LINE OPENING RATE-FULLv Cl.OSED TO FULLv OPEN 168 OPTURB 10 T1 GEr~RATE VSCHEDULE 1 FINISH 169 SCHEDULE IJSCHEDULE 1 170 T 0.0 G .0001 171 T 1.0 G 20.0 172 T 2.0 G 4e.0 173 T 3.0 G 60.0 174 T 4.0 G 80.0 175 T 5.0 G lee.0 176 FINISH 177 178 C E~ECUTION CONTROL 179 In GO 181 GOODBVE 182 /EOF 133 EOT •• ! ~;' 3 ""), "i ..; ..... . DISCHRI2CE. CO£.FFICIGNT vs VALVE. ANG~' Ig· 7· gO. r-------.--'"--... -------+-l::========--------.;.-• ,.----,._.---...... -. .. ---t ~ i i :=... -:::::;;<'J -.,. . , f ;~.~ I F=: I i r. / 1 _. 1-I~ I I • I I I ! -----. 1--___ . f---- ==---. -,.,-,---'- , ~ f--- f---. -. -_ f----- ;:=.--..... >--. ---- ~:-- ---~ ... .~--4_ i . I I ---+- ----;--.--:-- t_ ; ----. ,- - -.- 1-_\_ , . -\ ----~: . --1=7"=-= ----~r -\-- -• -••• 1 -Y--- c. -S:p_ I -i. : i'; i i I -i ~ i, • 'i +-- -,\- .. -I i . .~---:::: -=~~--- _~~=o-_ .. --:---:~~ ---- '. -0: _ ~-=-0 ~ ---~:-:.:::-:. X .. --.: . . ---._---.-. -. ----~-':I~ .. --....... ----..... -........ . - , L ----:--~ ._-.:..:~ ~-=-----,---~~~.=.:::~~--:=~~ i _ .... I ...... ... _ .. _ .............. _ ... _ ......... ---...... -.... _--_ ....... --._-.- I: . ____ -J" I· --. " I l;.CRATER' LAKE. SNETTISHAM. HVDRAULIC TRANSIENTS -SPHERICAL VALVE 30 SEC CLOSURE 2'0','· BY JOE UEXt.£R AMD JEFF JOHNS AT THE ALASKA DIST CORPS OF ENGINEERS 3'0· UATEA ~ER AND ~ss OSCILLATIOM (~H~O) PROGRA" ... ··C THIS FILE IS DSUCQ -13 FT(12.'" HORSESHOEIEXCAUATED TUNNEL S C' SPHERICAL VALUE DISCHARGE COEFFICIENTS ~ C VEHTED SURGE TANK ?' C lONG LAICE rtODEL a·c· SVSTE/'t CO""'AI'IDS 9 11 11' SVSTE1'I 12'ELE~E"T HW AT 1 13 ELE~E"T Cl LIN( 1 1 .. 1." EL Cl' LIt« le. 2M 15 El C2. LIt« 2e. 388 18 El C3e LIt« 3ee .. M 1'7 n C'" LINK .. ee 588 18 El C5. LINK see 6M '19 El C6e LIt« 6ee 7M 28 El C7e LIHK 7ee 8M 21 EL C75 LINK 8ee 8S1 22 EL STl AT 85e 23 El TJl AT aee RISER 8se 2" El cae LIHK 8ee 9M 25 El C98 tIHK gee 10ee 26 EL C10e LINK 1080 110e 27 El Cll' LINK 1180 1208 21 El C13e tIt« 120e l .. e. 29 El TJ3 AT l .. M RISER 15 .. J8 EL Cl". LINK 1"0' 15 .. 31 EL ST2 AT 1580 32 EL Clse LINK 1 .. 01 160e 33 EL C16. LIt« 160. 1708 3 .. EL C170 LIt« 170e 18ee 35 El Clae LINK lS0. 190e 36 Et C1ge LI/'tC 190e 2eee 37 El V2 LINK 20ee 2858 38 El C2H LINK 2058 2108 3~ El Tl LINK 21ee 22ee .. e EL C210 LINK 22.8 2388 "1 El TU AT 23H .. 2 FINISH .. 3 C ElErtENT CO""AHDS .... RESERVOIR ID HY ELEV 1022.8 FINI .. 5 COND ID Cl DIA~ 12. LENa 1. CElER "668. ENDlOSS AT HW CPlUS .916 CrtlHUS 1.6a5 46 F~IC .0688 FI"I .. 7 COHD ID Cl1 DIAft 12. LEMC 9. CELER "668. FRIC .8688 ADDED lOSS AT 9. cPtus .a8 .. 8 CrtINUS .19 FINI .. 9 CortD ID cae VARIAIl.E DISTMCE e •• MEA 324. D 35. ill 3:M. D 68. A 379. se D 115. A 182.8 L£MC 115. CELER 466 •• FRIC .e583 ADDEDLOSs AT 35. 51 CPtus .58 C"IHUS .58 FINI 52 COI'fl) ID C38 DIM 12.78 1..EHC 233. CEL£R 4668. FAIC .86M FI"I 53 COHO ID C ... DIM la.7' tEHQ 54. CEl.ER "668. FAIC .... FINI 54 COHO ID cse DIM 12.71 LEHQ 228. CELER "668. FRIC .86M FINI 55 COHO ID CM UARIAIl.E DISTAHCE ••• AREA 127.5 D 25. A 48. l.ENC 25. CEtER 4668. 58 FRIC .9893 FINI 57 COHD ID C7I DIM 7.8 tEHQ g. CEtER "668. FAIC .1183 ADDED lOSS AT' ... CPLUS •• 1 51 CPtJNUS •• 1 FntI 58 ~D ID C1S DIM 7.' t.EHG 1. CEl.P ~. FAIC .8113 FI"I 8. SURCETfIHC ID STI SI .. I.E E1.JOTTOR 78;. EtTCII 1 ..... DIM 8.7 CELER ..... FAIC .11 81 FJNI sa TJUHCTIOH ID TJ1 FJLLET ••• FJ"J 63 COHD ID CN DJ,.,. 7.1 t.EHG 15. CEL£R ..... FRIC .8M3 ADDEDLOSS AT 3.' SA CPLUS .el C~1NUS .el rI~I 65 CONO I~ Cga VARIABLE OISTANCE e., AREA 48. 0 3e. A 127.5 LENa 3e. CELER 466e. sa· FRIC .te93 FINI 67 CONO ID Cle. OIAft 12.7' LENa 5241. CELER 466e. rRIC .e6ge NU"SEC 14. rINI 61 COftO ID Cl1' OIA" 13.9 LENa .1. CELER 466 ••• RIC .e657 AOOEOLOSS AT e.e 68 CPLUS .IS C"INUS '.e rINI 7. COHD 10 C13. OIAft 16. LENa 26. CEUER 4668. FRIC .e696 'INI 71 TJUHCTIOH 1D TJ3 FILLET 5.' rINI 72 COHO 10 C14, OIAft 12.7' LENa 61. CELER 4668. 'RIC .e696 AOOEOtOSS Ai 7.5 73 CPLUS .75 CftlNUS .75 AODEOLOSS AT 68. CPLUS .75 CMINUS .75 .11'11 7~ SURGETAHK 10 ST2 SIftPLE ELBOTTO" 14'.' ELTOP 115 •• ' OIAM 1e.e CELERITV 4668. 75 FRIC .8686 FINI 76 CO"D 10 Clse OIM 16. LENa 8 •• CELER 4661. FIUC .9696 FINI 77 COHO 10 Clse OIM 13.73 LENG 28. CELER 4661. FRIC .96g& AOOEOLOSS AT e.e 71 CPLUS ••• C"INUS .IS FUll ?g COHD 10 C17. DIM 8.74 LENG ~. CELER 466 •• FRIC .ee73 AODEOLOSS AT e.e Be cPtUS .269 CftINUS .269 FINI 81 CO"D 10 C188 OIM 6 •• LENG ~. CEtER 33 ... FRIC .ee875 MU"SEG 3. FINI . 82 COHI) II) Cl98 VARIABLE OISTANCE ••• AREA 28.27 OISTMCE 6.4 AREA 15.91 83 CElER 33 ... FRIC .ee875 FIHI 84 VALVE ID V2 TVPE 2 VSCHED 201M •• 5 FIHI 85 UCHAR TYPE 2 ANGLE e., 1 •• ' 28 •• 3 •• , 4 •• ' 5'.e 6e.' 7e.e se.e ge.e 86 DISCOEF 98eee .... 2.3' 1.1e e.64 e.42 e.26 e.17 e.ll .e56 e.ee FINI 87 COHD 10 C2te OIA" •• 5 LENa 58. CELER 33 ... FRIC •• ea4 FINI 88 TURI 10 Tl TYPE 1 SYNCSPD 6te. FRIC 258. ~IHOAG[ 25e. UR2 1e75eee. DI~ 4.29 89 FINI 9. CO"O ID C21e VARIABLE DISTANCE e.e AREA 16.6 0 13.8 A 4e.6 0 32.3 A 78.7 91 0 32.4 A 41S. 0 322. A 485. LENa 322. CELER 4661. FRIC .eege 92 ADDEOlOSS AT 13.8 CPLUS 1.12 C"INUS 1.12 AODEOlOSS AT 32.4 CPLUS '.45 93 C"IHUS .33 FINI ~ RESERVOIR IO T~ ELEV •• 81 FINI 95 C TURlINE CHARACTERISTICS FRO" LONG LAKE MOOEL 96 TCHARACTERISTICS TYPE 1 97 GATE e. le. 2e. 3e. 4e. 5e. 61. 78. 8e. ge. lee. 98 PHI .48 .45 .5e .55 .6e .65 .7e .75 .se .85 .ge .95 99 ~OEL e •• 133 .261 .377 .478 .578 .674 .771 .856 .93e .97. 188 e.e .126 .257 .37e •• 71 .57, .666 .756 .846 .917 .973 lel t.e .123.246 .35 •• 457 .55e .653.735.82 •• 893 .953 182 e.e .123 .236 .339 .428 .538 .631 .72' .se4 .871 .93e le3 e.e .171 .22e .324 .42e .5e8 .687 .692 .78e .839 .898 1e. e.e .148 .21S .382 .392 .487 .577 .661 .745 .S.7 .S65 105 '.e .136 .2el .279 .371 .458 .548 .623 .7el .776 .827 196 ••• .117 .179 .293 .3.' .434 .51S .576 .65. .718 .767 187 e.' .889 .151 .22 •• 3~ .418 .467 .541 .6el .671 .712 le8 e.e .856 .114 .173 .238 .357 .438 .512 .54. .683 .691 le; e.' .... .e62 .105 .151 .284 .255 .318 •• el .458 .523 11. e.e .... e.ee .• 19 .e43 .&68 .e93 .145 .185 .2.7 .343 111 HP e. • ..... eeae .e314 .84a .1S2S .e&21 .e7" .e772 .1828 .nsa 112 ••• • .. 75 .elS1S •• 31S .e428 .K-4e .96~ •• 725 .e812 ..... e9M 113 ••• .ee&9 .el88 •• 38& •• 0425 .~ .9651 .e73i •• 821 .8882 .egzs 114 e.. .eesa .e175 .82;2 .841' .1521 .964' •• 735 •• 828 .t88S .1921 115 ••• • ... 1 .elSS .e27t •• 31S .8491 .961' •• 785 .1796 ...... 19M U8 ••• • .... el35 .e238 .13.5 .84M .1S55 .1&45 .1732 .t7t2 ...... 117 ••• • .. u .1892 .e191 .12R •• 3M .... 8S .15&2 •• s..t .1718 .t'?SS 11. ••• -."32 ......... 134 •• 225 .831' •• 394 ...... lSle .lSie .96JS 111J ••• -."79 -... 18 .815S •• 138 .N1S .t28S •• 3 .... f.4t5 .... se .es.t 12e ••• -•• 125 -."71 -."18 ."33 .'112 .'162 .1U2 .1287 •• 312 .tJSS 121 '0' -.'175 -•• 131 -.ten -....... 1' .M71 ... 6& .'lle •• 1 ...... 1as lil ••• -.8221 -.12" -.'164 -.'114 -..... -..... -.1e3I -.1121 -.1114 .tt3I 123 F'INISH 124 125 C OUTPUT REQUESTS la1 12? DISPlA¥ AtL FIHISH las tag HISTORY ~ !'tOD[ Ute PIEZ HEAD Q 131 ELEP! STI ELEU PIEZ HEAD Q 132 !'tOO[ l04ee PIEZ HEAD Q 133 ELEP! S12 ELEU PIEZ HEAD Q 134 MODE 16ee PIEZ HEAD Q 135 MODE 17ee PIE% HEAD Q 136 MODE lue PIE% HEAD Q 137 NODE 1gef) PIEZ HEAD Q 138 NODE 28eI PIEZ HEAD Q 138 NODE 2858 PIEZ HEAD Q 1'" NODE 21ee PIEZ HEAD Q 141 ELE" Tl SPEED POSITIOH POWER Q 142 ELEft U2 POSITIOH FIHI 143 FIHISH 144 145 PlOTFILE 146 ELE" STa ELEU 1047 ELE" STI ELEU 148 ELE" Tl SPEED Q POSITIOH POUER 14~ ELE" V2 POSITIOH IS. HODE 1400 PIEZ Q lSI HODE 160e PIEZ Q 152 NODE 17 .. PIEZ Q 153 NODE 1888 PIE% Q 154 !'tODE aeee PI EZ Q ISS HODE aes. PIEZ Q 156 !'tODE 21ee PIEZ Q 151 FIHISH 158 lSi C PLOTTING REQUESTS 168 161 162 163 C COMPUTATIONAL PARAMETERS 164 165 COHTROL 168 DTCOMP 0.1 161 OTOUT 0.5 168 TPlA)( :le.' 1651 DTCOI'IP 1. e 118 DTooT 2.S 171 TM)( 6e.0 112 FII'fISH ge T 30.0 A 90.0 191 F'Iti:SH 192 193 C EXECUTION CONTROL 1904 195 GO 196 GOODBYE 197 /EOF 198 EOT •• 173 C SVNCHROtIOUS SPEED OPERATI~ (6 'fM£ TURBItE AT BLOCKED OUTPUT 47 ... HP 174 OPTURB ID 11 GEtERATE VSCHEDULE 1 FIroIISH 115 SCHEDULE VSCHEDULE 1 11& T e .• Q 8'.2 177 T 68.' G 8'.2 171 FINISH 171 C CLOSURE (6 SPHERICAL VALUE I" :M SECOttDS 181 SCHEDUlE USCHEDULE 2 181 T ••• A •• ' 182 T 3.3 AI •• ' 183 T 6.1 A 2 •• ' 184 T 1 •• A 31.' 111 T 13.3 A 4'.' 11' T la.7 AS •• ' 187 T at., A H.' 111 T 23.3 A 7 •• ' In T 21.7 A .... -~ ,'-~ f.... ... / '.f, i '...a 1'~,~~TER LAKE. Sl'fETTISHM. HYDRAULIC TRAHSIEHT5-1. F'T DIAM V€NTED 'l'AHI( OUERSPEED 2. 'C", IV 'JOE UE)(LER AHD JEFF JOHHS AT THE ALASKA DIST CORPS Of' ENGINEERS 3; 'c.: UATER HNI"ER AND /'lASS OSCILLATIOH (IJHAMO) PROGRM ,,~C' THIS FILE' IS DCt.01XU-13 FT (12." HORSESHOE) EXCAVATED TUf'lNEL,/'lIN l.OSSES. S C" . .l.O"Q .1oAICE I'!ODEL I , ?-C' SVSTErt ~ I l' SVSTEP! 11 ELE/'I£"T ~ AT 1 12 EL£PIEHT C1 LINK 1 1,. 13 E1. Cl. LIt« le. 2,. 14 £L cae LIt« 2 .. 3 .. 1.5 EL ClI LI t« 3M .... 16 EL C4I LIt« .... see 17 E1. cst LINK set &ee 18 EL CM LIt« S .. 7 .. 19 EL C7I LIt« 7a. s .. 2. EL C7S LINIC se. ase 21 £L STl AT S58 22 EL TJl AT S .. RISER sse 23 EL C81 LINIC see gee 2 .. EL Cge l.It« gel leee 25 EL Cle1 LINK leee 110. 26 E1. Clle l.INK 1108 12 .. 27 EL Cl30 LIt« 12" 1"" 28 EL TJ3 AT 1 .... RISER lsee 2i EL Cl41 LIt« 1 .... 1588 31 EL S12 AT 15 .. 31 EL C1S1 LIt« 1 .... lstl 32 EL C1M LIt« lS,. 1701 33 EL Cl71 LIt« 1711 lsee 3" EL C181 LIt« lS11 1gea 35 EL Clge l.It« 1908 2ee. 36 EL C208 l.It« a." 21aa 37 EL Tl LINK 21ee 2208 38 EL C21e l.It« 22" 23el 39 EL TIoI AT 2388 "I FIHISH .. 1 C ELEMENT comAHDS .. a RESERVOIR ID HY ELEV 956.5 FINI "3 COHD 10 Cl DIA" 12. t£NC 1. CELER ""I. EHOLOSS AT HW CPLUS .916 C,.IHUS 1.685 .... FRIC .968e FINI 45 COtto ID Cle DIM la. LEttG 9. CELER 4668. F'RIC .9688 AODEDLOSS AT 9. CPlUS .21 "6 C~IHUS .19 FI"I .. 7 COttD 10 cae VARIAILE DISTAHC€ ••• AREA 32". D 35. A 33<4. D 6e. A 37V. "8 D 115. A 112.8 t.[1'IC 115. CELER 466 •• F'RIC .e51J ADDEDLOSS AT 35 • .. ~ CPlUS .58 C"IHUS .51 FINI 51 COttD 10 ClI DIM 12.7' L.EHQ 233. CELER "&se. FAIC .8696 FINI 51 COHO ID C .. DIM 12.78 L£HG 5". C£LER "661. FAIC .881 FINI 52 COttD ID cse DIM 12.7' L£HG 226. CELER "&ie. FRIC • eo& FINI 53 COtlD 10 cae VARIAlLE DISTANCE ••• AREA la7.S II 25. A .... t.£ttG 25. CEl.£R 466e. &-4 FRIC .M83 FI"I 5& COtID 10 C7I DIM 7.8 L£JtQ ~. CELER "'&t. FAIC .1M3 ADDEDL05S AT ... CPlUS .11 51 CftUIJS .81 '1"1 57 COttD ID C?S DIM 7.1 LDtG 1. CELER ~. FAIC .MIl '1"1 51 SURCETNtIC ID 511 Slt'lPLE ELIOTTOR 78SJ. ELTOP 1 ..... DIM 8.7 CElER ..... nuc .• 1 51 FI"I II TJUHCTIOH 10 TJ1 FIttEr t •• FI"I 81 COttD 10 cae DIM 7.8 lDtG 15. CEUR ..... FAle .1113 ADDIDLOSI AT 3.' 81 CPt.tJS • t1 CPlIHUS .'1 FI"I 83 CQtID 10 CIt UMIMLE DISTNtCE ••• AIIU .... D lI. It 127.S LEttQ lI. CELER ...... /' -,/ ~, ~~." FAIC .8ev3 FII'tI i5'~I'tD tD Clee DIM 12.7' LEI'tG 52"1. CELER "66'. FIUC .0696 liUI'ISEG 1". FINI YoCQl$ ID, CU. DIAl'! 13.SI LENQ "1. CELER .. "e. FRIC .0657 ADDEDLOSS AT e.0 e?' CPLU5 .85 CI'III'tUS 1.1 FII'tI iI'COMD ID Cl38 DIAl'! 16. LEI'tG 26. CELEA "6&t. F~IC .8696 FII'tI 6~,TJUHCTION ID TJ3 FILLET 5.1 FII'tI 7tCOND ID Cl". DIM 12.71 LENQ 61.1 CELER "661. FRIC .&696 ADDEDLOSS AT 7.5 ?L' CPLUS .75 CI'lINUS .75 ADDEDlOSS AT 61. CPLUS .75 C~II'tUS .75 FIliI 7a.SURQET~ ID ST2 SI~LE ELIOTTOI'! 1 .. ,. EtTOP 1151. DIAft 11. CELERITV "661. 13' FRIe .1616 FII'tISH ,. COHD ID Clse DIM 16. LEI'tG 88. CEt.ER "661. FIUC .N96 FIMI 7S. COHD ID Clse DIM 13.73 t.£HQ 21. CELER "66e. FRIC .N96 ADDED LOSS AT ••• 7S CPLUS ••• CI'IJI'tUS .85 FIMI ?1 COtID ID cn. DIM '.74 LEI'tG 25. CELER 466e. FIUC .1173 ADDEDLOSS AT ••• 71 CPlUS .HI CI'IJI'tUS .26V FII'tI 7V COftD ID Clse DIM 6.' LEI'tG SlS4. CELER 33M. FRIC .8887S HUftSEG 3. FII'tI 8t COHO ID Cl98 VARIABLE DISTAHCE ••• AREA 2'.27 DISTAHCE 6." AREA 15.91 81 CELER 33 ... FRIC .... 7S FII'tI , 82 COHO ID CaM DIM 4.5 t.£HQ 64. CELER 3388. FIUC ."'4 FII'tI 83 TUAI ID 11 T .... PE 1 SVNCSPD 688. FRIC as •. I.III'tDAGE 258. IoIR2 1175 .... DIM ".a9 84 FIliI 85 COHD ID C21' VARIABLE DISTANCE ••• AREA 16.6 D 13.8 A .... 6 D 32.3 A 78.7 as 0 32.4 A "IS. D 322. A "85. t.EI'tG 322. CELER "66e. FRIC .0898 87 ADDEDLOSS AT 13.8 CPLUS 1.12 CI'lIHUS 1.12 ADDEDLOSS AT 32 ... CPLUS e ... s sa CI'lINUS .33 FII'tI 8S1 RESERVOIR ID TY ELEU 11.4 FIMI 91 C TURBIHE CHARACTERISTICS FROf'! Lot4G LAKE I'tODEL 91 TCHAAACTERISTICS T .... PE 1 ga GATE •• 1.. 21. 38. .... 51. 61. ?e. 8.. 98. 1 ••• 93 PHI .... • .. 5 • S. .55 .61 .65 • ?e .75 .88 • as . ge • 95 94 QftODEt. ••• 133 .261 .377 .478 .578 .67" .771 .856 .938 .97" gs ••• .126.257 .37e ... 71 .578 .666 .756 .8"6 .Sl17 .973 96 •.• .123 .246 .354 ."57 .55' .653 .735 .828 .893 .953 i7 1.1 .123 .236 .339 ."28 .531 .631 .72' .884 .871 .938 98 e.8 .171 .228 .32" ."28 .588 .617 .692 .788 .839 .898 9S1 ••• .1"8 .215 .382 .392 ."81 .577 .661 .7 .. 5 .8.7 .865 188 ••• .136 .211 .279 .371 ."58 .5'" .623 .781 .776 .827 111 I.' .117 .175 .aS13 .346 ."3" .515 .576 .65" .718 .767 102 ••• ..8S1 .151 .22" .3'" ."18 ... 67 .541 .681 .671 .712 1.3 I.' .'SS .11" .173 .238 .357 ... 38 .512 .5.... .585 .661 114 '.8 •• e. .N2 .11S .151 .2'" . ass .318 .... 1 ."59 .523 lIS '.8 e.8' '.0' •• 19 .... 3 .868 .eg3 .145 .185 .a .. 7 .J"3 lN HP •• • •• se .• 82 •. 831" .... 21 .0525 .8621 .1788 •• 772 .e828 .e856 117 '.1 ."75 •• 1;& •• 315 .... 28 •• 8548 .N48 •• 725 •• 882 .08S" •• 981 188 ••• .ee&SJ .'188 .e3f6 .8425 .e5<te .N51 .8739 •• 821 .8882 .eg25 1" ••• .eesa .• 175 .8292 .... 1 •• e521 .N48 •• 735 .e82t .• 885 .eg29 11. ••• .8841 •• 158 .8271 .138S .... 91 .N1' .1785 •• 79& .885" .8988 111 ••• .eese .'135 .8231 •• 341 .... se .1S5S .8&46 .'732 •• 792 .88'" 112 ••• • .. 11 •• eva •• 1Vl .8292 .1381 .... 85 .1562 •• 641 .171' .17S5 113 ••• -.8832 ......... 134 .8225 •• 311 .'3~ .84H .8538 •• H .N3S 114 ••• -.et7V -... 1 •• eess .• 138 .8215 •• 285 •• 346 .148S •• 4M .15'4 11& ••• -•• 125 -• ...,1 -."11 .M33 •• 112 •• 1&2 .8222 .8267 •• 312 •• 355 11' ••• -.'175 -.'131 -..... -.IIIS ... 18 .1171 .ee&5 •• 138 •• 144 •• 185 117 ••• -.182SJ -.teet -.'114 -.'114 -.eet8 -...... -.telI -.1121 -......... 31 111 FII'tISM 111 1. C OUTPUT REGUESTS 121 1. DJSft1JW '-U FI"ISH 183 114 MInOR\' 121 NO.. 111 PIa HEM Q 111 ELDf ITl ELEU PIa HEM Q ~!;:t:-~·.; .. '!;' ~totoJ)l. 14M PIa HEAD Q 1.~£tDr5T2 nEV PIa Q 121UfODE.188t PIEZ HEAD Q 13eitlODE ·1Me PIa HEAD Q l~f"HODE·e ... PIEZ HEAD Q lJa".tfODE 21ee PIa HEAD Q 133' EL£If T1 SPEED POSlTlott POYER Q l;M'FIHISH US'" ' 138'pt,()TFIL£ 13'7 EUftTl 9P£El) POSITIOH POW:R Q 138'1«)11£ 21 .. PIEZ 1.'I"IHISH 1 ... · ' 141·C PLOTTING REQUESTS 1~ , 143 ' 1+4 , 1"& C COl¥UTATI~L PARMETERS 1'" 1 .. 7 CCItITAOL 148 DTCOfP •• 1 1"8 DTOUT •• 5 1st TMX 2 •• ' ISl DTCOfP 1.' 152 DTOUT 2.5 153 TPWC lee., 15<4 FINISH ISS C °5.,0 SECOHD EOOIVALatT CLOSURE O'F CATES FROP'I len OPEHII'fC 15a OPTURI ID Tl REJECT TOFF 1.' USCHEDULE 1 FINISH 157 SCHEDULE USCHEDULE 1 158 T ••• G 1M.' 158 T 1.' Q lee., 1&8 T 1.2 Q gg.s 1&1 T 1.5 Q 93.' 162 T 2 •• Q 83 •• 1&3 T 2.5 Q 72.5 1& .. T 3.' Q 62.' 165 T 3.5 G !>e.1 166 T .... G "1.5 167 T S •• Q 2 ••• 168 T i.' a &.5 liS T 1 •• Q 3.' 11. T I.' Q 2 •• 171 T g •• Q 1 •• 112 T 1 •• ' G '.3 173 T 11.' G •• ' 11 .. FINISH 17'5 178 C EXECUTIOH COttTROL 1'7'7 111 co 1?t1 GOODIV£ 1 • .IEOf' 111 lOT •• .,.-.. t '-' l- lL < Jf ~ <t v <!J ~ :J :i 11: ~ flIP l\. 1St> \lS~% Acc~;>n\i6i.-C ov .. oZ."'~·. /e~'2., R.a:~1:I1(' /J c,,'\.~ I':lfT\C,.J • JC~( ~ 1~'Io lo"{o I = c~~ t«low. n.ccll... /037 /Q3B .s-ID 10 E~l..llvA.~ c;..ATe CU)~ i\-~ ~) ns ~-~--~-----r----~---- S /0 IS' ~\\JA~ c;...-.'le oPer-l'''Cr-TIMe (?e-c.) -. -~ ---~-.--------------~ _ .. --------- . ,.,. <!: C lD '2 ~ :;l r- Q) ;; uJ ..J~ ILIr ..... ~v III Ii ~ ~ J'I.('o tr:Cw $" u,c:r ~ p..l ~ -VJ r\A~\tC fU3S.\)~ ',ens,ooo 'b.~~)' 2!o F6~ S4 .:nv:J \~t'l."I' .. D6,c;IoJ . \iAw.a .0.) ~t\oI U,p. ~-____ .....!Io...--____ ---"'O--~(-='" It. 1:. .. ".<lcE rt.. 'TAIV'c:.) S 10 IS E: QV\ VA",,","'" G.~ GL.O'S.x.a:z. T. wE ( ::,@:..) J /,CV so:> 4(1) 5'1f5.-i: DE":..1G,,-' ~u". s: 10 I~ G' q~"AI..E'-'T ~Pt~ O~~\~ "."i:f \'5e-<.) I...) c ...... ~lp l .... ct. C.>I"''''@'EIL , ......... 1'<.,.'). ~ \ /' ) 0.4 0.5 ~IT' I" THiI "'lIee C ..... OT "'OYID( .IIY ,",QUI"C IIIJIIULATIOif UlltL(11 fiT TID WITH lUll" VALVII OPE"ATI'" 0 .. 10TH LOAD -0' 'ND LOAD -0 .. t-1 ... £0 .OS""G) -t'-. i... .... " I 0.' o o o.t ---- .~ J / / V / 0.' rm r; / 1/ / / 1 UII'Tt ,. 'H" .A_,~ I! '''OVID' PIIIIQUI'-CV .IIULATlO" 0" LA". 11In .. ONLY I '0.,-i~ --... _-- 1/ UfIiIITI ,. TN'I IIIA .. I' Will '''OYIDI I '000 RleuLATIOIl 1M IIOLAT(D O,I_ATION OR IVI'IM O'UUTIO. / 0.' 1.0 'I .. 14 figure 5.13. Gordon's stability curves. (After Gordon 14) W 0'1 > '0 "2-n· Tg :: Wid" ga', ap"';"g c. lim, ::t '< C. r~ : EII,~"II" gtl I, ~/tlsing ... '" ,im, E. n' T' : Wa'" s'arfing ,1tM o-j ... • 'x~luding ,ha, af '" ::s flra', 'ub, '" n· rm : M,~hani~al s,.,ing a ,im, '" "" Q.. ... = 2, loS ,<'110"1 \b-~'" Vol R."'"r '2.,000, OOU \\7..ft'L. .... l~eRATUI LAKE. SttETTISHM. RISE IN ~TE SHAFT DUE TO l.AKE TAP 8t.AST 2'( Q.... IY· JOE 1.IEX1.£R. Arm JEFF JCHtS AT THE ALASKA DIST CORPS OF ENGINEERS :J,C·' IMTER HAI'I'IER AND MSS OSCILt.ATIOH CYHAI'9O) PROGAM -t.; C . THIS FILE 15 DCt.I.LAST -12.4 FT EXCAVATED TtH£L IF S .• C SVSTEit COI'IW'fDS 7.: S' g. SVSTEJlt. 10 E1.EPIEHT HW AT 1 11 ElDEHT Ct LINe: 1 1 .. 12 n. VI LIt« 1M an 13 EL. C2. LIP« 2M 3M 1" EL C3e LINK 3M .... lli EL C~ LII'fIC .... 5 .. 16.EL CS. LII'fIC see &Ie 17 EL C6. LINK see 7 .. lit EL C7e LINIC 1M S .. 19 EL TJt AT see RISER 85. 2e EL DUI'2 LII'IC se. as. 21 EL C1N L11'1C set 898 22 EL V2 LINK 891 gee 23 EL Cl1. l.11'IC gee 888 24 EL TI.I AT sse 25 EL STl AT as. 26 FINISH 27 C ELEI£HT COI'w.Al'tDS 28 RESERVOIR 10 HW ELEU 1119.' FINI ~ COHD ID Cl DIM 12. !.ENG 1. CEL£R "s&e. ElfDLOSS AT HU CPLUS .916 CPlINUS 1.685 3e FRIC .8S. FI"'I 31 VALUE ID VI GATE DIAnETER 12. VSCHEDULE 1 FINI J2 COHD ID cal VARIABLE DISTAI'tC[ e •• AREA 324. D l5. A 334. D &e. A 379. J3 D 115. A le2.8 l.D4G us. CElER "6&e. FlUC .1583 ADDEOLOSS AT 35. 34 CPLUS .58 C"IMU5 .sa FIHI 35 COtfO ID ele DIN! 12.71 LENIl 233. CELER "&fie. FRIC .1696 FI"'I 36 COHO ID C .... DIA" 12.71 l.ENC 54. CEl.ER "'&fie. FRIC .eS8 FI"'I l7 COHD ID CSt OIA" 12.78 LENC 226. CELER "661. FRIC .1696 FI"'I 38 COHD 10 CSI VARIA.LE DISTANCE 1.1 AREA 127.5 0 25. A 48. l.EHG as. CELER "661. Jg FRIe .8193 FIHI .. e COtfO ID C7. OIAft 7.8 LENC 9. CELER .. "e. FRIC .8893 AODEOLOSS AT 4. CPl.US .e1 41 C"IHUS .'1 ADDEOLOSS AT 9. CPLUS .g CPlIHUS .9 FINI .. 2 CONO ID Cll. DIN! 7.8 LENC 1. CELEA 4&68. FAIC .8893 FIHI .. 3 CONO ID DUMa ~ DIN! 8.7 FI"I .... COND ID CUt. DIN! 7.8 LENC 1. CELER .. ,&e. FAIe .863 FlI'lI .. 5 RESERUOIA ID T\I ELEV 996.' FIHI .. , TJUHCTIOH 10 TJl FILLET 1.1 FI"I 47 SURCETNIC 10 STl SII'P1.£ ELJOTTOPI 789. ELTOP Its •• DIM S.7 CELER 466e. FRIC •• 1 4a FINI 4; IMLVE ID va GATE DIN'IETER 7.8 U50iEDULE 2 FI"I 58 C OUTPUT REQUESTS 51 S2 DISPLAY ALL FINISH S3 54 HISTORY 55 EL£ft STI ELEV PI£Z HEAD Q SI !'tOOl 1 .. PIa HEAD Q 57 !'tOM a .. PIEZ HEAD Q S8 FINISH 5; &e .r~ .. sf· C· PLOTTIMG REQUESTS &a,1fLO.TFIIZ . 63;!tDIV1POSITION M-ttOD£ 1" Q PIEZ . as:·ftOI)£ ..... Q PIEZ EMi-ELEft STl ELEU Q 6? £LEft'Vi POSITION is FIHISH 68 C COfIIUT"TIONAL PMN'IETERS 7. 11" COHTROL 78·. DTCOfP· '.5 73·DTOUT 1.' 14.-TM)( 28.'· ?S DTCOfWI 1.' 78 DTOUT· 2.5 71 TI'WC 2M.' 78. F UtISH 79·· C IHSTNtTAfEOUS VALVE OPEHIHG 5INJ1.ATII'IC LAKE TN' ILAST Be· SCHEDUIZ USCHEJ)UL£ 1 II T I.' Q ••• 82 T 1.' Q I.' 83 T 1.2 G 1 ... . 84 T 2.' G 1 ... . as FII'tISH 86 C VALUE CLOSURE PRIOR TO ILAST TO "FILL" SURGE TANK TO TI.I ELEU. I? SCHEDULE USCHEDULE 2 88 T I.' Q 1 .... Ig T 1.' G •• , M T 1.2 G I.' 91 T 2.' Q I.' ga FUtISH ;3 94 C E>CECUTIOH CONTROL gs NCO 'T1 GOODIVE 5J8 .IEOf' gg EOT •• . "LEU . (FT) 1 ..... - 1835. 1\ 1838. , , , 1825. , , leat. , I IllS. • • 1.18. 1885. 1888. J 8. CRATER l.AKE. SHETTISHA". RISE Itt GATE SHAFT DUE TO LAKE TAP BLAST DISCH GATE StoWT WSEL Nt!) FLOW US TlI'tE LAICE ELEVATlOH • 1.U~ FT ltnT. GATE SHAFT usn • ~&S FT , (CFS) " )( ELE" sn -u.s. ELE ~. o ELE" ST1 -DISCHAR ~ 3S8. " fI{ 2se. \ I , f\ t , I 1/\ au~. , f , I ,I \ I 1\ I \ /\ ~ I I , , \ , , , I , , I I , , , , l , , , l , , , \ , , \ ,I J , \ , I , 'iJ \ \} , , • , I , I \ , , .V \ , \ , 1 \ I , ' .J \ ' . ae. .... 6e • se. , JI . \ ''l'~ \ 11 \ \ I \ \ ~'J \ y; , \ \ \ l \ r I \ \ I ~ , \ I \. oJ ute. lat. 1 .... TU£ (SECS) \ I V\ \( \ \ , \ , \. 168. \ ,f, \I \ I \ I .• I 188. 7e. \ e. - -78. , -l .. e. -a18. -a88. -358. aee. RUN OF 2a MV B .. AT 1"132'~ ········· .. ·· .... ··········~~···:·e·~·~··· .. I ........................................................................................... . .................................................... . .... 8:~ __ _ /?I~ 1_'!!5£. _ ~ 7 T7'tJ . ~-?t~..!- -~~---- I II I . I" / .. ( .. / e(' / .' ..-' 1 . 1 , \ , ,. , / \ \ \ \ r j / \ ,..' ~.~;..; ua. 'MWfSIEtm-ll." DIM UlHTD T.te m.n.I~rIC OOUIRI'tOIt a:.Q... IV JOI WEXW NtO Jm JOtN .T TIC II'LMIC" DIST C OF EHGINEPS X.Oo' IMTtR HNIER N4D MIt OSCIL~TIOH (IoiWIIO) PROQRM .f,c.: . THIS 'ILl IS DEWI13EV -11." " £)CC#l\MTID """.60"1" LOSSE.!. i~'~."'.:'." LOtIG.... UIICI PIOOI1.. EUCTIUC QOUERHOtI. HGI RECCfI,.NDD IMLUb ;,0: ,S'YSlUt COfIWtDS ~ .. :.'j... ' It:smu. n. E1DIErCT HU II'T 1 II nUEHT Cl LltIC 1 1" I'. n Cl' LII« 1" 2M 14 n cat LII« at. 311 15 n C3I LII« 3M .... 1. n c.te LII« .... SM 11 n CA LII« see .... l' n cae LII« .... 711 18 n C1t LII« 711 ... 21 n C"1I UIC ... tse 21 n 511 AT SA aa n TJl AT ... RISER .. 23 £L C8I LIte ... He 24 n C. LIt« .. 1 ... as n Cl .. LIrtIC 1 ... U" 21 n TJ3 II'T U" RISO use il7 n CU, LIte u.. use 21 n 5T1 Itr 11se 21 EL Cl. LXIIC U" 12 .. It EL Cilt LII1C 1211 13M 31 n Cl ... LIIIC 1311 1 .... 31 EL Clse LIIIC 1 .... 15 .. 33 n Cl" 1.11« ISM 11 .. 34 n Cl. LII« 1'" 1 .. 3& EL Cl1t LII« 1" at .. » n CIIt LIIIC aMI 21" ~ n Tl 1.11« 21" a2tt 31 EL CllI LII« 22ft a3M II 0. C22t LII« 23M 2 .... ... O'TUATa .... 41 FINI .. ... C Et.DEHT COIIWIDI 43 .aDUO'1 1. til E1.EU ... 4 FINI .... CGIe JD Cl DIM la. L£ItQ 1. CUD ..... IDfDLOSS II'T HW CIIUJS .11' C"IHUI 1." .. FlIC ... FIN' .. CGIe II ct. DIM 11. LIM t. CIl.EI ..... FIIIC ... MDEDLO.S ,.., I. CP1.UI •• .f7 ~ .11 nMl ... CCIIe I. cae UMIAIU DIITMCI t •• -.-»4. D lI. A 334. D M. A m. .. I UI. A 131.' laG UI. CIUI ...... FlIC .-.3 MIIClOSl ,.., 31. M CPLUI •• CIIuc. .11 FIN' It QIe II C» DIM 11.1t LIM 133. CIUI ..... AIC ...... nNI • QIe II C. DIM 11.11 LIM 14. ca.a ..... AIC .I'N FIN' a QIe II CIt DIM 11.11 LIM _. CILII ..... '.IC ...... FINI 14 c-. II ca UMlMU DIITMtCI ••• MIA 131.' D •• " .... LENt •• enD ..... • Ale .tea ,tNt • c-. II C7I DIM 7.1 LIM I. CIUII ..... "IC .1113 "DDIDI.OII ,.., 4. CPWI .Il .., CIIDIJI .IS 'till • QIe ,. C7I DIM 7.t 1.IJtI 1. CIUJI ..... "Ie .1113 'INt • ...,.. U 1T1 .IJIIU ILIOTTGII 711. ILTOII 1 .... DIM '.1 CIt.D ..... "Ie .11 • '1111 .~.~ T.altcTtOtt II TJl II'UI.IT ••• II'IHI II. COttD ID cae DIM 'P.' LEHQ 11. CnEII ...... Fine .tea .III1£1)LOa A' 3.' a" CPU" .el auHUI •• 1 11'1"1 .... COte ID cte UMIAILI DItTMtCI ••• .A .... D 3.. " 131.' LEHQ 3.. CEt.E. ...... • FRIC .1tA FI"I TJUNCTIOtt ID TJ3 FILLET S •• FIN' ! COND ID Cl .. DIM 11.11 LEHQ 111 ... CELl-...... F~IC .... 4 NUftSEQ 14. FI"I COHD II CU. DIM 12.11 LING It. CEt.EIt ... It. FRle ...... _DOOLOSS ., 7.1 ." CP1.US .15 ~IftUI .11 ADDIDLOSS ., it. CPLUI .11 ~IMUI .15 F'I"I "'!UlCETMIC ID STI SIPPLE Et.IOTTOfl 1 .... 3 ELTOP 1 .... DIM 1 •• CELERIT't' 71 ..... FRIC ..... FINI 11 COttD ID Cl. DIM 12.11 LUIQ 131. eno ...... Fine ...... nHI 73 COHD II Cl31 DIM 13." LEHQ •• CELER ...... FRIC .... FIN! 1 ... COMD II CHI DIM 15 •• LEI'tQ ?S. CELEJt ..... FIUC .1831 FIHI 7S COHD II Clse DIM 11.11 LEI'tQ II. CELER ..... FRIC .1113 ADOOLOSl flIT ••• 71 CPtUS '.1 C"IHUS .... FINI TI COHD II Cl11 DIM 1.5 LEHQ IS •• CEtEJt ..... FlIIC .11?3 FINI 71 COHO ID Cl. DINt I.' L£HQ lit. CEt.E1I 3311. FRIC .tII?S NtJlllSEQ 3. FINI 11 COND ID Cl. UMI •• LI DISTANCE ••• .,. 21.a7 DISTMCE 1.4 MEA lS.M • CELER 3311. FIIC .1tI?S FI"I IS COHD ID C2M DIM 4.5 L£PtQ .... CE1.ER 3311. FRIC ...... FIHI .. 1UtI ID Tl TVPI 1 SVttCSPD .... F'RIC 251. WI"DIIIQI 251. WRa 1m .... DIM 4 •• 13 FlNI .... CGND ID cal' UMIA.LE DISTMCE ••• MEA 14.41 D 13.' " "'.1 D 31.3 A 71.1 as LEI'tQ 32.3 CEl.£II ..... FRIC ...... 1 FINI • CCIItD 1D C2H DIM 12.4 LING a4.' CELER ..... FRIC .1111 ADDDLOSS A' ••• I? CPWS .... ~11'tUS '.5' ""DEDLOSS A' 2 .... CPUI. 1.' C"IfIII •• 5 FI"I • ~I. ID TV ELIV la.s 11'1"1 • C TlMIPtE CHIiWlCTEIISTICS FROft LOtta loME ..,Dn • TaIfCMCTERISTICS TYPE 1 11 MT( •• 1'. •• 31. .... st. •• ?to •• •• 1". • PHI.... .... .st .51 .It .81 • 'PI .71 .11 .11 .M •• a QMIIEL ••• 133 •• 1 .m .... 11 .57' .1'74 .7'71 ... .831 .1'74 .... ••• .1..2I'7.31e ... 71 .17' .... .111 ..... .117 .1'73 .~ •. ~ .~.~.~.~.m .m._.~.~ • ••• .123.231 .331 .... .531 .131 .721 .... .171 .i3' 1'7 '.1 .171.221 .32" .<41, .se. ..7 .Ita .?Ie .131 .n. • ••• .141 .211 .311 .311 .417 .m .811 .7'" • ..., ••• • ••• .138 .atl .111 .311 .41' .54' .a3 .111 .7'71 .827 1 .. '.' .117 .111 .213 .3'" ."34 .511 .171 .... .71' .717 lel ••• .... .151 .a4 .3'" ."1' .417 .541 •• 1 .1'71 • na 1. ... .111 .114 .173 .all .317 ... 31 .511 .544 .581 ... , 113 ••• .....MI .1. .111 .a... .iII .311 .... 1 ..... .Nl 1.. ••• .... .... .'11 .143 .tA •• a .'41 .1. .8 .. 7 .343 1. .. •• • ........ 1314 ..... IAS .1811 .t1M .1'7'71 ..... .... ,. ••• .1111 .11 •• 1311 .................. t711 .... 1114 .1IIt ,., ••• • ... Ila ............... 1111 .1731 .1111 •••••• ,. '.1 ..... el71 ._ .... 11 .IIIS ...... t73I ......... 1811 ,. ••• • ... 1 .11 •• 1I'?t .a. ..... 1 •• 11 .t?tI .f?II ...... .... 111~' .~.el •• ~.~.~.~.~.~.~.~ 111 ••• ."" ._ .ellt ._ .e:.e ................ "'1 •• t?R II. ••• -............ '134 ." .131' .1314 ..... 1131 .... ... 113 ••• -."'" -.......... 1131 •• 11 ._ ................... .. U4 ••• -.tt8 -• .." -."11 .1«1:1 .11 •• 118 ._ • ...., .1311 .. .. UI ••• -.tt71 -.el31 -... -.... 111' • ...,1 ..... 1t31 •• 1 ..... 11. U' ••• -._ -._ -.1114 -.tt14 -... -.... -.... -.IIIS -...... ... 1I1'IJtI .. U. 111 C OUTPUT ....,. I. ~~lr~·~~~·1.~:t~. ~ . ,.~t$P1.Nt . MoL 'DtIIM ·HiiToWJ .. 'EU!t STI ruu 'lIZ PttESSUK loUD Q HOK 1" 'lIZ HEI'D Q EUII ITt nIU PIa HEAD • .. NODI U" PIEZ HEM Q : HODE 1 ... PIn HEAl Q HOD[ 11 .. Ptn HEM Q . HOOE 22M pta ~ Q 1. E1.£ft Tl SPEED POSITtOH POWER Q HPJ .. FtHISH 33 g:. FlHISM 131 PU)1'FI1.1 l5 nER STa ELIV 31 E1.£ft STt ELIV 31 NODE 11" PIa 1'" NODE 1'" PIa 1 .. 1 nER Tl SP£ED Q POSITIGH PO&EII ~ 1'" ItOIE 21" PIa 14 FINISH 1 .... C P1.OTTIHQ REQUESTS ... 1 1'" 1"" 141 C COfIPUT.-TIOHAL PM_fEAS 1'" lSi CCIfI'T1tOL 111 DTCOfII '.1' lSI DTOUT '.1 153 1NIIC a. .• 154 DTCOfII '.1 1&5 DTOUT 1.' lSI 1NIIC 1 .... 1&'7 DTCOII' '.1 151 DTOUT 1.' 158 'TMX _ •• 1. FINISH 111 C STMIl.lTY SIPUATIGH ELECTRIC GOUERttOR III GPT\III ID Tl QOUERI'I t.scHDULE 1 FINISH 183 QOU[JIt tD Tl ICP 3 ..... Itl 1 •• !CD •• 815 " •• tI MT~ ••• RPOU 3IMt. 1a4 OPDIWC at.1 C1.OSEJWC 11.5 FlNI 1. sauuu I.ICHE])UI.£ I 1. T ••• L 3?MI. 117 T 1.' L 3?MI. t. T 1.8 L 37A1. 1" ~a •• L 371et. 171 T 3M.' L 37IeI. 111 'IIII .. 171 173 C DlCUTIGH COImIGL , .. 11'1. 171 .a.IOODIMn~\'IfI" 111 /VII 171 Uf •• .......--.... ~ ~ ~ :3 ~ ~ ~ l ~ ~ \.J -~ 'II 8' as EL~CT'ltC 6 ()veH .,}{)(L ~ue TA ~K rJ>.:; 10 ~ J R~IV CF "2,..~ :S~'-1 roy 95 ~-------r------~r-------.--------r------~--------~------~------~-- o ICP 12S -rIIJfB rlZorll STiller cF L--Mj) CH,iJ(l)u{T (0aC 6~JJis ) J7S- l' ~ ~ ~ 6 ~ ~ \~ (PDe> 5"'1'7 ..578 S'77 So /eo ISO \ CUleG-Li\~ WI-tAu,t{) EfleLTlUc.... GD\I~NbfL $-.JUfC l"~K..I':IO( 12.-..) I\j 0 F '"2-'i: S0 v.r ~ '-f ' 3i)o rll1la-PIZDnt smlff 6F L..-C)/t,) CflHtVC<=f ( S (y( (f'){ fJS ) \ C'iCfilB1L L.A-1L-l:5'" GU3C-TelG <x>"~l ~OI2... S~ru.w ,~t.3~ 1 ==/0' rz,~ tV 0 r--z.'-J ::Jm,>-j ro ~ _ --.. l --...) ~ ~ iSl. ~ < 'Q: 1- ~ ~ ~ :) ,-) lSI ~ () -,-----_ .. __ ._--,--- /00 ,l,.S t J flC{)I1{ ST/ltlF C}f-f-()llD - ----------------------------________ ~(.~~(ON. , ABSOLUTE P.RE8SURE , TRANSDUCER \0 MONITOR LAKE ELEVATION DIFFERENT~L PRE88URE LAKE ACCE88 AOIT TRANSDUCER TOIJ.tONITOR \ , ______ --:~-/----L-08-8-E ... 8-B-E-T-W-E-E-N-L-A-Jl.KE AND _ APPRO)( aTA 13~OO GROUND LINE MAX POOL 101i' :-';' '-"""i'2 • ..-/;;ooI-l~lll MIN. POOL 820' o 00 + ~ c ... eo )( o a: II. II. ~ II r/ II II II I II II , .. " '-------....II-L---------J--Ilt ______ ~ ~ • .. .. ro C • • ... W W CoO " " t: c ~ " " C SIGNAL TRAN8t.U88ION II: a: % ~ ~ CO III III ~ ; ~ ~ FINAL ROCK TRAP PRESSURE TRANSDUCER TO MONITOR) SURGE TANK WSEL ".J' THREADED FITTING FOR GAGE ORJ.------1 PRESSURE TRANSDUCER TO MONITOR PRESSURES UP8TREAM OF BULKHEAD 8EE 8ECTION ... IN OM ae FOR DETAILS, POWER HOU8E CONTAINS' 1 THREADED FITTING JUST ABOVE SPHERICAL VALVE PLU8 WINTER KENNEDY PIEZOMETER TAPS lN SPIRAL CA8E . ~o -' ... c+ ~ ... ... Wc Ul ... 5 CoO %)( a:o UJa: ~II. 011. II.C GIB80N TEST NET HEAD PIEZOMETER FITTINGS-LOCATED IN PEN8TOCK.lPIEZOMETER TUBE8 RUN DIRECT Tb POWERHOU8E FROM NET HEAD PIEZOMETERS) APPENDIX B3 HYDRAULIC DESIGN OF ALTERNATE PLANS I & II (DM 23 ALINEMENT -VENTED SURGE TANK) B3-1 3.01 GENERAL. This section describes the hydraulic design of the power tunnel, surge tank and penstock for Alternate Plan I of the Crater Lake phase of the Snettisham power facilities. (Alternate Plan II is essentially the same hydraul ically as Alternate Plan I. Reference to Alternate Plan I in this section applies as well to Alternate Plan II.) The surge tank design requires consideration of the plant operating conditions, expected turbine characteristics and the total head losses in the conduit system from the reservoir to the powerhouse. The power conduit will be connected to a turbine-generator unit which is to be installed in the existing powerhouse built for the Long Lake phase of the Snett i sham project. Des i gn memorandum 23 shows detail s of the Crater Lake phase that are not included in this section. Only the general hydraul ic aspects of the alternative power conduit al inement and conduit sizes are discussed in this section; alternative specific features such as gate structures, trashracks and rock traps could be incorporated into both the· recommended plan and the alternative plans, and are therefore not specifically considered in this section. 3.02 DESCRIPTION OF POWER CONDUITS. A. Alinement. The Alternate Plan I power conduit plans and profiles are shown on Plates 23, 25 and 26. The invert of the power tunnel entrance is approximately 783 ft and the invert of the rock trap is set at 775 ft. The minimum power pool elevation is set at 825 to assure adequate clearance over the top of the trashrack and lake tap opening. Although a wet or dry lake tap scheme could be utilized in the alternate plan, minimum pool elevation is set at 825 ft based on a dry lake tap. The lower terminus of the power tunnel was determined after considering site topography, hydraulic transients in the surge tank and water hammer (maximum and minimum) between the surge tank and the unit. The invert of the power tunne 1 at the surge tank is at e 1 evat i on 745. The gate chamber wi 11 be located at sta 14+00 approximately 650 ft from the power tunnel entrance. 83-2 The power tunne 1 entrance wi 11 be located at the 1 ake tap. The 1 ake tap scheme and general design has been recommended by Polarconsult Inc.,' and is intended to trap the majority of rock from the blast in the adjacent rock trap. The penstock vertical alinement was to a large extent determined by the minimum pressure gradient between the surge tank and unit. A minimum vertical distance of 25 ft was maintained between the top of the penstock and the minimum pressure gradient. B. Gate Structure. Gate structure hydraulic design for the alternate plan is essentially the same as for the selected plan. See section 8 of the main report. C. Rock Traps.' Rock trap hydraulic designs for the alternate plan are essentially the same as for the selected plan. See sections 7 and 9 of the main report, and sections 1.02 and 1.05 of Hydraulc Appendix Bl. D. Trashracks. Trashrack hydraulic designs for the alternate plan are essentially the same as for the selected plan. See sections 7 and 9 of the rna -j n report. B3-3 3.03 HYDRAULIC LOSSES. A. General. Head losses in the power conduit are primarily caused by the frictional resistance to flow. Additional losses result from trashrack interferences, entrance contractions, bends within the conduit, rock traps, contractions and expansions as flow moves from 1 ined to unl ined sections, and the gate structure. In calculating head losses each feature producing a hydraulic loss was assigned a loss coefficient "k". A total hydraulic loss was arrived at with the equation: H = KV 2 L - 2g A second form of the headloss equation was related to total discharge in the power conduit. The equation is: H = K Q2 L - v = Velocity in concrete lined section of power tunnel. (ft/s) k = Sum of individual loss coefficients. Q = Total discharge through power conduit. (ft3/s) HL = Head loss in section of tunnel under consideration. (ft) K = Head loss coefficient in the entire power conduit. (ft) g = Acceleration of gravity. (32.2 ft/s2) The Manning formula was used to calculate friction losses in the unlined tunnel while the Darcy Weisbach formula was used in the lined portion of tunnel and in the penstock. It was felt that because of the general irregularity of an unlined tunnel the Manning formula would be more appropriate in that portion. 83-4 B. Losses in the Power Tunnel. (1) Unlined Tunnel -The unlined portion of the power conduit is a 12 ft modified horseshoe tunnel. After reviewing photos of the Long Lake tunnel and having discussions with engineers and geologists who had been present during construction of the Long Lake tunnel it was decided to assume an average overbreak or roughnes~ 0, 4.5 inches, in the Crater Lake tunnel. This overbreak was then used to calculate an equivalent diameter of 12.19 ft as well as other hydraulic properties of the tunnel. Mannings "n" was based on information summarized in HOC chart 224-1/5. An "n" value was obtained by averagillg the measured "n" values of those tunnels in HOC 224-1/5 which were in the same range of cross sectional area as the Crater Lake Tunnel. The selected value of .031 was slightly below the average va 1 ue .032 obtained from the above procedure but was cons i aered a good expected resistance value. The 12 tunnels that were considered for resistance values ranged in area (design area) from 71 ft2 to 195 ft2. The l2-ft diameter horseshoe tunnel at Crater Lake wi 11 have a des i gn area of ;23.2 ft2 including an assumed overbreak of 4.5 inches. It should be pointed out that the existing Long Lake Tunnel (originally designed as a l4-ft diameter horseshoe tunnel) was designed with an expected average area of 160.94 ft2 while the completed tunnel had a measured average cross section area of 199.3 ft2 (ref. 8). HOC 224-1/5 shows that actual tunnel areas average about 15 pct greater than des i gn areas. If the percentage increase in the driven tunnel area was 15 pct greater than the design area, the lin II value of the driven tunnel could be as high as .036 without reducing the design head. For minimum and maximum losses, values of .029 and .0347 respectively were used for Mannings "n". Losses for benas, contractions, expansions, transitions, rock traps, and entrances are based on various HOC data. (2) Lined Tunnel -There wi 11 be approximately 900 ft of 1 ined tunnel. It is estimated that there are 4 sections of lined tunnel including the gate structure. Losses in the lined tunnel will consist of friction losses and contractions and expansions. Friction losses are based B3-5 on Reynolds numbers and re 1 at i ve roughness (see HOC chart 224-1). The following friction factors were used: Condition Maximum Losses Expected Losses Minimum Losses Oarcy-Weisbach "f" .0164 .0125 .0096 Manning "n" .0138 .0121 .0105 Maximum friction values are based on the Rouse rough pipe limit for a given Reynolds Number. Minimum friction values were obtained from the Von Karman-Prandtl smooth pipe line at the appropriate Reynolds Number. Friction values for use with the Oarcy-Weisbach equation were taken directly from the Moody Chart (HOC - 224-1). The Von Karman -Prandtl Equations and the Rouse Equation were used only for an occ'asional check. Considering all the variables that exist in pipe hydraulics this procedure was considered sufficiently accurate. C. Losses' in Steel Penstock. Friction losses in the 6 ft diameter steel penstock were calculated in a fashion similar to that used for the lined concrete tunnel. An appropriate Reynolds Number was first calculated and then HOC chart 224-1/1 was used to obtain friction factors as follows: Cond it i on Maximum Losses Expected Losses Minimum Losses Oarcy-Weisbach "f" .0146 .0115 .00875 83-6 Manning "nil 0.0120 0.0106 0.0093 3.04 SURGE TANK. A. Operating Requirements. The Snettisham Project serves an isolated load in Juneau. The Crater Lake unit may at times be. handl ing the entire Juneau electrical demand. Such operation requires a plan which has the capability for rapid load pickup, rapid load rejection and inherent stability under load changes. 8. Need for a Surge Tank. A surge tank is necessary to meet the operating requirements discussed above. Maximum and minimum water hammer elevations of the unit \'Iithout the surge tank are 1,617 ft and 346 ft, respectively, maximum and minimum water hammer elevations with the surge tank are 1,302 ft and 508 ft, respectively. In addition, the surge tank would be required as a source of water to fulfill the function of allowing rapid load pickup. Performance of the system without a surge tank on both load rejection and load acceptance combined with the operating requirements dis~ussed in the preceding paragraph indicate that a surge tank is necessary for the Crater Lake Phase. C. Method of Analysis. Determinations of maximum upsurge on load rejection and maximum downsurge on load demand were made by four independent methods. Two of these methods were the Ca 1 ame-Gaden chart method and the R. D. Johnson chart method. The Cal ame-Gaden chart method was developed for restricted orifice type surge tanks and includes a procedure whereby the effect of varying orifice coefficients can be included in the determination of surges. The R.D. Johnson charts were developed for differential type surge tanks; that is, surge tanks with an internal riser. The R.D. Johnson charts are suitable for use with restricted orifice surge tanks if it is assumed that the pressure level at the surge tank riser tee is equal to the water level which would occur in the differential surge tank internal riser. The third method involved the use of a digital computer program callea "MSURGE". This program was originally developed in the Southwestern Division Hydroelectric Design 8ranch in the early 1960's, and was converted 83-7 to Fortran by the Hydro 1 ogi c Engi neer i ng Center at Sacramento, Cal iforn i a in 1968. The program utilizes the arithmetic integration procedures outlined in IIHydraulic Transients" by George R. Rich (ref. 14). The program allows for variable turbine characteristics, and variable tailwater elevations; it also allows for rapid analysis of such items as varying tank diameters, orifice characteristics, penstock and power tunnel sizes, etc. The program was designed to analyze load rejection, load acceptance and stabil ity. The fourth method was the program II~.JHAMO" (Water Hammer and Mass Oscillation). "WHAMO II is a digital computer program originally prepared for the Missouri River Division by MIT in the 1960's and was updated by the firm of Camp, Dresser and Mckee of Waltham Massachusetts in 1978. The "WHAMO" program was available to the Alaska District in the Boeing Computer System until the fall of 1983. It is now available on the Control Data Corporation System, the AMDAHL computer at NPD, and the Harris computer in the. Alaska District. Because of its excellent documentation and its great flexibility "WHAMO" results will be used for surge tank and water hammer analysis except where noted. D. Expected Turbine Characteristics. (1) Long Lake Turbine Model -Plate B18 shows the expected turbine characteristics that were developed from the Long Lake turbine model by the Hydro Electric Design Branch (HEDB) of the North Pacific Division (NPD) for the proposed Crater Lake turbine. Also shown on this plate are conditions A, B, C, D, and E which were used for checking the hydraulic performance of the surge tank. Conditions A, B, and C are based on 100 pct load rejection with the unit operating at plant blocked output. Blocked output is equal to a turbine output of 47,190 hp which is equal to the generator rating of 31,050 kW divided by 0.9 power factor at a generator efficiency of 98 pct. Condition D is based on a minimum pool elevation of 825 ft concurrent with a load demand from zero output to full gate and maximum hydraulic losses B3-8 in the power conduit. stabi 1 ity of the surge 37,500 to 39,000 hp, Condition E is used for checking the hydraulic tank and is based on a sma 11 load increase from concurrent with minimum losses. All stability analyses were made with a minimum reservoir elevation of 825 ft since stability is most critical for this plan at minimum head conditions and with minimum hydraulic losses. These turbine characteristics were used in the IIMSURGP program, and are somewhat different from the final ized turbine characteristics shown on Plate B2. (2) Dworshak Turbine Model -After the initial surge tank studies (based on the Long Lake turb i ne model) were completed, HEDB recommended us i ng the Dworshak turbi ne model study (for Dworshak Dam in Idaho). A prototype turbi ne characteri st ics curve was developed for the Crater Lake turbine based on this recommendation and is shown on Plate B22. The Dworshak model was used in conjunction with the IIWHAMO II computer program. (3) Net Heads and Hydraulic Capacity -Calculation of net heads and hydraulic capacity is essentially the same as for the selected plan described in Hydraulics Appendix Bl. E. Surge Tank Diameter. (1) Thoma Formula Diameters -The Thoma Formula: F = AL ......;.,..~- 2gCH is a standard tool for selecting the first approximation of surge tank diameters to meet stability requirements. In the formula the variables are defined as follows: F = Surge tank area (ft 2 ). A = Cross-sectional area of the power tunnel (ft 2 ). L = Length of the power tunnel from intake to surge tank (ft). B3-9 C = Coefficient of hydraulic losses. H = Pressure head at the surge tank (ft). g = Acceleration due to gravity (32.2 ft/s2). The Thoma Formula will calculate a surge tank area which provides border 1 i ne stab i 1 ity i. e., the amp 1 itude of the water surf ace movement in the tank ne ither increases nor decreases with time. The Thoma F ormu 1 a assumes a small load change along with constant turbine efficiency. Standard practice is to first calculate the diameter which corresponds to the Thoma area and then -j ncrease the "THOMA DIAMETER II by factors rangi ng between 25 and 50 pct. The Thoma Formula is a dependable tool but it does not reflect a variety of conditions which can influence surge tank areas necessary to obtain stabil ity. One important factor is the amount of rotative inertia provided by other sources of power generation in the system. As discussed in the literature, other power installations which are interconnected with a project having a surge tank, tend to increase the stability (safety factor) of the surge tank. This type of safety factor cannot be counted upon for the Crater Lake Project, which would indicate the design should be conservative. The Thoma Formula resulted in a minimum diameter of 6.07 ft and a diameter of 9.1 ft with the 50 pct increase. A diameter of 10.0 ft was finally selected beCause it was felt that the 10 ft diameter vertical shaft would be the minimum size that a contractor would conveniently build. F. Load Rejection Surge & Tank Top Elevation: (1) General -Conditions A, B, and C are shown on Plate B18. These points are located on a vertical line which represents the blocked output of the system. This blocked output is equal to the rated output of the generator (31,050 kW) divided by the power factor of 0.9 resulting in a generator output of 34,500 kW. The equivalent turbine output under these conditions is equal to 47,190 hp. Surge elevations for the various conditions were calculated with minimum hydraulic losses, minimum tai1water EL, (11.0 ft) and blocked output. The oscillation of the surge tank water surface elevation for the various conaitions are shown on Plate B19. B3-1O (2) Condition A -Maximum surge for condition A was calculated by four different methods; two were manual and two were aigital computer so1utions. The manual methods were based upon the Calame Gaaen charts ana the R.D. Johnson charts. The digital computer programs were "MSURGE" ana "WHAMO." The Reservoir surface elevation for the condition was 1,022 ft, which is the maximum power pool used for transient calculations. Maximum surge elevations for the various methods were as follows: Method 1. Calame -Gaden 2. R.D. Johnson 3. Computer Program "MSURGE" 4. Computer Program "WHAMO" Surge Tank Water Surface Elevation 1064.7 ft. 1064.5 ft. 1063.7 ft. 1064.2 ft. The results of program "WHAMO" were used for the maximum wate'r surface elevation at the Surge Tank. The other methods check within 0.5,ft indicating that the solution is a dependable one. For program "MSURGP the elevation in the surge tank at the start of rejection was equal to 1,014.25 ft with a power conduit discharge of 477.5 ft 3/s resulting in a surge of 49.4 ft. For program "WHAMO" the elevation in the surge tank at the start of rejection was equal to 1,013.7 ft with a power conduit discharge of 467.8 ft 3/s resulting in a surge of 50.5 ft. Plate B19 illustrates the similar results produced by "WHAMO" and "MSURGE". (3) Conditions B&C -Conditions Band C being at lower net heads than Condition A, will require more discharge for the blocked output of 34,500 kW resulting in larger rejection surges. Surge tank calculations for Band C were done by program MSURGE because of its simpl icity and proven accuracy. Surges for Band C were 51.4 ft and 56.9 ft respectively. Maximum surge elevations for Band C were 978.0 and 926.3 respectively. Conditions Band C have greater surges but result in lesser quarter cycle elevations in the surge tank, and therefore, do not govern the top elevation of the tank. The top elevation of the tank will be at 1,150 ft. This elevation represents the point at which the surge tank daylights and gives adequate freeboard for the maximum water surface elevation of 1064.2. B3-11 G. Load Demand Surge and Selection of Bottom Elevation. Condition 0 on Plate 818 represents full load demand. This condition determines the lowest water surface elevation that will occur in the surge tank. The parameters are minimum power pool elevation of 825 ft, wicket gates opened to full gate, tailwater elevation of 12.5 ft and maximum hydraulic losses through the power conduit. A zero flow condition is assumed at zero time with the wi cket gates fu lly opened ina governor time of 5 s. The initial water surface elevation in the surge tank was 825 ft which corresponds to minimum power pool; Calame -Gaden, R.D. Johnson, IIMSURGE II and IIWHAMO II resulted in minimum water surface elevations of 772.0, 770.6, 774.6 and 771.4 respectively. The result of IIWHAMO II at elevation 771.4 is to be used for minimum surge elevation. On this basis the top elevation of the surge tank drift tunnel was selected at elevation 766.4 ft. This will provide a 5 ft seal under the worst condition. Pl ate B20 shows the surge tank load demand prof il es produced by programs IIWHAMO II and IIMSURGE". H. Load Acceptance Characteristics. Plate 820 also includes a curve which illustrates the turbine output in hp for condition D. This curve shows the rapid load pickup capability of the turbine with the vented surge tank. Assumptions used for load demand, condition 0, are conservative in nature in that no initial flow was assumed through the turbine at the beginning of the demand cycle. In most cases the turbine would be operated at speed-no-load before loading to full gate which would result in a downsurge not quite as severe as the one computed. A remote possibility exists that the turbine could be thrown on full load when operating as a synchronous motor with tailwater aepressea with compressed air. In such a case no flow would exist through the turbine prior to load demand, and the demand profile shown on Plate 820 could apply. Good correlation between IIWHAMO II and IIMSURGE II can be seen on Plate 820. B3-12 I. Stability Routings. To de~onstrate the change in surge oscillations with varying surge tank diameters, stabil ity routings were performed using computer program 1If'lISURGE Il for surge tank diameters of 4.5 ft, 6 ft (Thoma Diameter), and 10 ft. The profiles of the surge tank water surface for the various diameters are shown on Plate B21 for the stability routing of conaition E. Condition E, as shown on Plate B18 is based on a small 37,500 to 39,000 hp concurrent with expected losses, elevation (825 ft), and maximum tailwater (12.5 ft). load increase from mi n imum power poo 1 As shown on Pl ate B21, the 4.5 ft diameter tank is unstable, and in a matter of several minutes, surge oscillations have grown from approximately 14 ft to 42 ft. The 6.0 ft diameter tank, which is the theoretical minimum IIThoma ll diameter shows surge osc ill at ions with no change in amplitude through the entire recorded period of 400 s. These routings illustrate the justification for a 50 pct increase in Thoma Diameter. A 10 ft diameter was ultimately chosen for the surge tank because 10 ft is believed to be the minimum size vertical shaft that a contractor conveniently would build by conventional drilling and blasting. Condition E is based on expected hydraulic losses in the power conduit and the expected turbine performance curve on Plate B18. The resultant profiles for the 10 ft diameter tank on Plate B21 show that the situation is rapidly aampening and inherently stable. The quiescent levels are the steady state surge tank water surfaces that would be obtained once the surges have dampened to zero magnitude. J. Orifice Design. (l) General Ideal orifice action will provide an initial pressure level at the surge tank drift tunnel tee that will equal the surge tank water surface at the end of the quarter cycle. This is true for both the load demand and load rejection cases. The discharges for the rejection and demand conditions were 477.5 ft 3/s and 500 ft 3/s respectively resulting in an orifice of 4.4 ft diameter. Plate B18 shows the location of conaitions A (reject) and D (demand) which determined the discharges used in the orifice design. The surge tank wi 11 be offset from the main tunnel resulting in a horizontal orifice. B3-13 (2) Load Rejection -As shown on Plate B19 for load rejection, the above criteria are satisfied for Condition A when the unit is rejecting blocked output load at maximum power pool. For conditions Band C the design criteria are almost met but a somewhat larger orifice would be required for a perfect solution. It was felt that the point at which the highest water surface elevation in the surge tank occurred (point A), would be the most critical. The orifice design discharge of 477 ft 3/s was determined by assuming 86 pct overall efficiency concurrent with maximum pool and minimum losses. (3) Load Acceptance -The load acceptance prof i 1 e on Plate B20 shows that the selected orifice of 4.4 ft meets the required criteria for Condition D. This condition was recognized as the most critical because minimum water surface elevation in the surge tank will occur here. A design discharge of 500 ft 3 /s was used. (4) Conclusions -The orifice represents good design practice for the vari ety of demands that are to be placed on it. Wh il e imperfect in some regards, it handles the variety of demands placed upon it quite well. B3-14 3.05 PRESSURE AND SPEED REGULATION. Since the size of the generator and thus its polar moment of inertia (WR2) is already limited by powerhouse size and hoist capacity, overs peed analysis is based on a constant WR 2 of 1,075,000 lb-ft 2 as establ ished by HEDB. The synchronous speed of the turbine is set at 600 r/min and maximum overs peed is limited to 900 r/min or 50 pct increase. The wicket gate closing pattern was suggested by HEDB. For the "5" s closure for example, the closing pattern is nearly a straight line from 100 pct opening at 0 s to 13 pct opening at 4.3 s; slow closure is initiated at 4.3 sand the gates do not fully close until 9.0 s. Figure 11 in Hydraulic Appendix B2 illustrates the gate closing pattern. The "WHAMO" computer program was used to determine overspeed for various gate closure times and various net heads at a turbine output of approximately 47,190 hp (blocked output, 1.0 power factor). Maximum overs peed was found to occur at the lowest net head at which the turbine could produce 47,190 hp, i.e., 100 pct gate opening. The "5" s gate closure time will produce an approximate 50 pct overs peed (901.5 r/min) at a net head of 846 ft starting from the 100 pct open wicket gate position . and turbine output of 47,116.8 hp, and moving to the fully closed wicket gate position and turbine output of 0 hp. Water hammer pressures are also based on "5" s opening and closure rates for the wicket gates. B3-15 3.06 INTERNAL CONDUIT PRESSURES. The determination of internal conduit pressures was based largely on the computer program "WHAMO" (Water Hammer and Mass Oscillation Simulation Program), prepared by the Resource Analysis firm for OCE in 1978. Turbine model characteristics based on the Dvorshak turbines, with throat diameter altered, were used in the "WHAMO" program. Additional calculations for purposes of verification were also done using the MSURGE computer program, the R.D. Johnson method, Calame-Gaden method, and Allievi Charts. Transient calculations are based on "5" s wicket gate opening and closing times as described in section 3.05. A table of surge elevation and water pressure gradient elevation values determined by the various methods appears below. METHOD OF CALCULATION "WHAMO" "MSURGE II COMPUTER COMPUTER R. D. CALAME-ALLIEVI PROGRAM PROGRAM JOHNSON GADEN CHARTS Max. Surge 1064.2 @ 1063.7 @ Elev. (ft.) 21.0 s 20 s 1064.5 1064.7 N/A Min. Surge 771.4 @ 774.6 @ Elev. (ft.) 21.0 s 20 s 777 .3 770.6 N/A Max. Water Hammer 1302.2 @ Pressure Gradient 2.3 s N/A N/A N/A 1324.0 Elev. at Turbine (ft.) (includes velocity head) Min. Water Hammer 594.9 @ Pressure Gradient 0.8 s N/A N/A N/A 507.7 Elev. at Turbine (ft.) (includes velocity head) The above table is presented for comparison of the various methods. The surge and water hammer values used for design are as follows: Maximum surge elevation = 1064.2 ft (WHAMO). Minimum surge elevation = 771.4 ft (WHAMO). B3-l6 Maximum water hammer pressure gradient elevation at turbine = 1302 ft (WHAMO) Minimum water hammer pressure gradient elevation at turbine = 508 ft (Allievi Charts) The minimum water hammer pressure gradient elevation at the turbine was taken at 508 ft for conservatism. The maximum pressure gradient at any point along the penstock is determined by drawing a straight 1 ine between the maximum surge and the maximum water hammer pressure gradient elevation at the turbine, and similarly for minimum pressures. The accuracy of this method was verifiea by placing dummy nodes at various points along the penstock for the WHAMO computer runs. The pressure graaient in the power tunnel was 1 ikewise determined by drawing aline between the minimum pool and minimum surge (f~:>r minimum pressure gradient) or between maximum pool and maximum surge (for maximum pressure gradient). 83-17 3.07 INSTRUMENTATION AND TUNNEL X-SECTION MEASUREMENTS. The discussion of instrumentation and tunnel X-section measurements for Alternate Plans I and II is the same as that for the recommended plan which is covered in section 13 of the main text. 83-18 APPENDIX B4 HYDRAULIC DESIGN OF ALTERNATE PLAN III (OM 26, September 1983 ALINEMENT -AIR CHAMBER SURGE TANK) B4-1 4.01 GENERAL This section describes the hydraulic design of the power tunnel, surge tank, and penstock for Alternate Plan III of the Crater Lake phase of the Snettisham power facilities. This alternate is unique for the Corps of Engineers in that it includes an unvented surge tank which will be referred to as an air chamber surge tank. The air chamber design requires consideration of the plant operating conditions, expected turbine characteristics and the total head losses in the conduit system from the reservoi r to the powerhouse. The power condu it wi 11 be connected to a turbine-generator unit which is to be installed in the eXisting powerhouse which was built for the Long Lake phase of the Snettisham project. 84-2 4.02 DESCRIPTION OF THE POWER CONDUIT. The power conduit for Alternate Plan III is the same as for the recommended plan as described in Appendix B1. .. B4-3 4.03 HYDRAULIC LOSSES. The hydraulic losses for Alternate Plan III are the same as for the recommended plan as descri bed in Append i x Bland are illustrated on Plate Bl. B4-4 4.04 AIR CHAMBER SURGE TANK. A. Operating Requirements -The Snettisham project serves an isolated load in Juneau. The Crater Lake unit may at times be handling the entire Juneau electrical demand. Such operation requires a plan which has the capability for rapid load pickup, rapid load rejection, and inherent stability under load changes. B. Need for a Surge Tank - A surge tank is necessary to meet the operating requirements discussed above. Maximum and minimum water hammer elevations at the turbine without a surge tank are 1,895 ft and 367 ft respectively, for a 3.5 s wicket gate closing and 5 s opening time. Maximum and minimum water hammer elevations with the air chamber surge tank were initially calculated to be 1,332 ft and 549 ft, respectively. These water hammer were arrived at by using a conservative approach. After the air chamber design was completed the "WHAMO" computer program became ava,ilable for air chamber surge tanks. The additional check provided by "WHAMO" allowed us to be more certain of design values and use the 1,218 ft and 639 ft values for maximum and minimum water hammer elevations, respectively, as computed by "WHAMO". In addition, a surge tank would be required as a source of water to fulfill the function of allowing rapid load pickup. Performance of the system without a surge tank on both load rejection disclJssed and load acceptance combined with the operating requirements in the preceding paragraph indicate that a surge tank is necessary for the Crater Lake project. C. General Description of Air Chamber Surge Tanks -An air chamber surge tank is essentially a large chamber offset from the power tunnel. It contains compressed air above a depth of water. Air is provided to the tank by compressors located "in the powerhouse. Once air pressure is brought up to the design value, there should be little need to use the compressors for pressure regulation on a regular basis if the rock is as competent as expected. (Reference 15 indicates that after 2 years of operation, the compressors at the Driva Powerplant have not been used except during the period of filling up the system. At the Jukla project, the air chamber leaks at the rate of about 6,000 ft 3 per mo. This slow leakage rate has left the three compressors idle most of the time.) B4-5 The orifice is normally omitted in this type of design to improve water hammer reflections from the surge chamber. Details of the air chamber are shown on plate 36. D. Expected Turbine Characteristics -Turbine model test results were available at HEDB for two turbines which approximated the hydraulic conditions at Crater Lake. These were the Long Lake model (Snettisham Project, Alaska) and the Dworshak model (Dworshak Dam, Idaho). The Dworshak model was selected at the time the air chamber was under study as best suited for Crater Lake. (This selection has since been reversed so that now the Long Lake model is preferred.) The Dworshak model stepped up to 600 r/min prototype with a 4.0 ft throat diameter was found to fit the hydraulic conditions at Crater Lake. Plate B22 shows the prototype turbine characteristics (based on the Dwprshak model) used for all transient studies for the air chamber surge tank plan. The turbine characteristic curve indicates the conditions for stability, rejection, and demand studies. An additional efficiency curve is shown on Plate B22 which plots generator output vs. reservoir elevation at expected hydraulic loss conditions. Net heads and hydraulic capacity of the turbine were initially derived for the system described as Alternate Plan I in July 1982. Changes in net heads and hydraulic capacity were minimal since the expected hydraulic losses ca 1 cu 1 ated for each ali nement are s imil ar; K = 1. 11 0 x 10-4 for the vented tank al inement and K = 1.093 x 10-4 for-the air chamber tank alinement where HL = KQ2. ~ing the maximum discharge of 556 ft 3/s results in head losses of 34.3 ft and 33.8 ft for the vented tank and air chamber alinements respectively. This represents a 0.06 pct difference in net heads out of a total net head of 847 ft (rated net head), and th i s difference is considered insignificant. Alternate Plan I consists of a B4-6 12-ft diameter power tunnel with a 6-ft diameter penstock, while the air chamber system consists of an ll-ft diameter power tunnel with a 6-ft diameter penstock. Procedures for obtaining net heads and hydraulic capacity are the same as those described for the recommended plan. E. Preliminary Stability Analysis Using Svee Equations -As in the design of a conventional surge tank, stability criteria will largely govern the horizontal cross-sectional area of the air chamber. The other factor in air chamber design which is important for stability is the total air volume in the chamber. Once air volume dimensions for a stable air chamber are determined, the demand condition can be designed for by calculating the maximum downsurge and providing enough depth of water to contain the downsurge with a reasonable safety factor. Maximum upsurge is also calculated. Maximum water hammer and thus penstock cost will decrease with an -increase in air chamber size. An economic study was conducted and it was found to be uneconomical to increase air chamber size to reduce water hammer. The results of the study are as follows: MAX. PRES. MAX. PRES. AIR CHAMBER GRAD. ELEV. GRAD. ELEV. PENSTOCK VOL~ME EXCAVATION AT TURBINE AT TANK STEEL TOTAL (ft ) COST ($) (FT) (FT) COST ($) COST ($) 17,000 352,593 1,357 1 ,219 612,000 964,593 23,000 477,037 1,317 1,178 600,000 1,077,037 33,000 684,444 1,265 1, 127 525,000 1,209,444 63,000 1,306,667 1,235 1,097 518,000 1,824,667 As can be seen, on enlarging the air chamber, excavation costs increase faster than penstock costs qecrease, and thus the smaller air chamber is more economical based on this consideration alone. Selection of air chamber size to insure stab"ility involved an analysis of factors which influence stability, including: 1. Turbine characteristics. 2. Power conduit hydraulic losses. B4-7 3. Power conduit size. 4. Critical pool elevation. Stab i 1 i ty cond it ions were analyzed us ing the Svee equat ions (reference 13) and the "MSlIRGE" computer program. The "MSURGE" program produced the most conservative results but both methods of analysis are described in the text. The results were then independently verified by Dr. Chaudhry (exhibit Bl at the back of this appendix). The close agreement between "MSURGE" and the Svee equations for most cases was demonstrated in prel iminary work. Computer program "MSlIRGE" was used because "WHAMO" was not capable of handling air chamber scenarios at this time. The Svee equations (reference 13) calculate the air volume at incipient instability and were developed specifically to analyze air chamber surge tanks. These equations are as follows: 2g ~fO + ~. LO -n r' o Acr = Asc ~ + N Po l L Y Zao J Where: L = Length of tunnel from intake to surge chamber in ft. At = Tunnel cross-sectional area in ft2. hfo = Head loss from intake to surge chamber (steady state) in ft. Vo = Velocity of tunnel water (steady state) in ft/s. Ho = Gross head of power plant in ft. qo = Discharge of turbine (steady state) in ft 3 /S • 6. q = Diffe3;~ce in turbine discharge between beginning and end of load change in ft • no = Initial turbine efficiency (steady state). 6n = Difference in turbine efficiency between beginning and end of load change. B4-8 Asc = Critical (horizontal) area of vented surge tank in ft2. N = Polytropic gas constant. Po = Pressure of air cushion (gauge, steady state). This is the head differential between the hydraulic gradient and the water surface elevation in the air chamber in ft of water. Acr = Critical (horizontal) area of air chamber surge tank in ft2. ~ = Specific weight of water in Ibs/ft3~ Zao = Distance between air chamber roof and water level in the air chamber oj n ft. The first equation is an expansion of the Thoma equation as used for vented surge tank s. The second equat i on converts the Thoma area to the critical surface area for an air chamber surge tank which is then used to calculate required air volume for an air chamber surge tank. , Minimum head loss values were used for stability calculations. While minimum net head is used for stability calculations for vented surge tanks, this may not be the critical condition for determining air chamber surge tank dimensions. The reasons for this are (1) the efficiency term used with the first Svee equation varies with net turbine head and lower values of the term produce larger chamber areas and volumes. This term is dependent on the gradient of the turbine efficiency curves as shown on Plate 822. These efficiency gradients are different at different net heads. (2) Since the tank invert is established by maximum downsurge, this elevation is set; but in calculating air volume required for stability over the entire range of turbine net heads, it is possible that this required air volume plus the volume of water in the tank between the tank invert and the water surface (which rises as turbine net head rises), will become maximum at some intermediate turbine net head corresponding to a reservoir elevation other than minimum pool. 84-9 The Svee equations were therefore solved over the entire range of turbine net heads in the area of the turbine characteristics curve where the efficiency term was minimum. The maximum required tank volume for incipient stability was found to occur at a net head of 875 ft with a load increase from 46,500 to 47,191 hp. The air volume was 23,838 ft 3 and water volume was 14,700 ft 3, yielding a total tank volume for incipient stability of 38,538 ft 3 and a water surface of 3,500 ft2 using minimum losses for an 11 ft diameter power tunnel. It should be noted that the selected power tunnel diameter of 11 ft is the design value and for a conventionally excavated tunnel the actual diameter will be somewhat greater. The construction contract will call for a minimum excavated section corresponding to an 11 ft section. The contractor wi 11 not be paid for any excavat i on beyond the 11 ft sect i on. The variance in tunnel diameter from the 11 ft design value is of importance both for hydraulic loss factors and for requirements of air chamber volumes. (Tunnel size will effect surge tank diameter in a conventional vented surge tank in the same way.) For the purpose of sizing an air chamber, overbreak will increase the conduit's net flow area above the 11 ft design value, and this factor suggests conservatism is required to insure an air chamber volume that is adequate for stability. The approach taken in analyzing average tunnel areas larger than 11 ft is conservative in that it does not include the added roughness which would result from the cone frustrums blasted from each round. This roughness is significant and is described in references 5 and 8. The following table shows the air volumes required for various power conduit diameters as predicted by the Svee equations using expected hydraulic losses. B4-10 CRITICAL AIR VOLUMES BASED ON SVEE EQUATIONS Power Critical Air Tunnel Penstock Volume Based Diameter Diameter on Expecte~ (ft) (ft) Losses (ft ) 11 6 18,762 11 .5 6 21,897 12 6 25,124 12.2 6 26,600 l3 6 32,845 A water surface area of 3,500 ft2 was used for most calculations. At any air chamber air volume, the tank will become less stable as the free water surface area decreases. Calculations were done using a modified Svee equation (eliminating the efficiency term), plotting Critical Water Surface Area vs. Critical Air Volume in the air chamber for various power tunnel sizes. The water surface area of 3,500 ft2 plotted in the stable region for all air chambers considered. F. Des i gn Approach Us i ng Computer Program "MSURGE II -Air chamber stability was also analyzed by using the computer program "MSURGE". This program was originally developed in the Southwestern Division Hydroelectric Design Branch in the 1960's, and was converted to Fortran by the Hydrologic Engineering Center at Sacramento, California in 1965. The program utilizes the arithmetic intergration procedures outlined in the text "Hydraulic Trans i ents II by George R. Rich (ref. 14). The program was des i gned to analyze load rejection, load acceptance, and stability. The program allows for variable turbine characteristics and variable tailwater elevations; it also allows for rapid analysis of such items as varying tank surface area and volume, penstock and power tunnel sizes, etc. The program was expanded to include analysis of air chamber surge tanks in 1982 in the Alaska District. In preliminary transient calculations tailwater elevations ranging between 11.0 and 12.5 ft were used while in the final design approach a constant tailwater elevation of 11.4 was assumed. The constant tailwater elevation simplifies calcuations with an inconsequential change in accuracy. B4-11 The air chamber revisions include the addition of pressure head in the air chamber. Pressures, temperatures, and volumes are calculated using the polytropic expressions: and Where: Pl = Initial pressure (abs) in air chamber in ft of water. P2 = Final pressure (abs) in air chamber in ft of water. Vl = Initial volume in air chamber in ft 3 • V2 = Final volume in air chamber in ft 3 • Tl = Initial temperature in air chamber in degrees Rankine. T2 = Final temperature in air chamber in degrees Rankine. N = Polytropic gas constant (1.4). The exponent N has been set equal to 1.4 implying adiabatic behavior (no heat loss). Dr. Chaudhry, in Exhibit Bl at the end of this Appendix discusses this assumption and shows it to be suitable. The "MSURGE" program has been further expanded to inc 1 ude automat i c plott i ng of water surface elevation, air pressure, hydraulic gradient at the tee, and turbine output vs. t"ime. G. Final Design -The Svee equation is a useful tool in locating approximate air volumes for incipient instability and in demonstrating how required air volumes will change with variations in certain variables (power tunnel diameter, turbine efficiency gradient, net head, tunnel length, etc.). The "MSURGfII program however, was used for final design computations -,for two major reasons: 1) it yielded somewhat higher (and thus more conservative) required air volumes, and 2) Dr. Chaudhry recolTll1ended the use of IIMSURGE" over the Svee equations after his verification of "MSURGE" results. B4-12 Since the air volume required in the tank for stability will increase with tunnel diameter, and since it is unreasonable and may be costly to restrict the contractor to a narrow tolerance of excavated tunnel diameter, it was decided to relate average excavated power tunnel diameter (within the range of 11.0 to 12.2 ft) to required air volume in the air chamber. A safety factor of 1.5 will be maintained for all tunnel sizes up to 12.2 ft in diameter. The safety factor is defined as the ratio of design air volume to the air volume required for incipient stability. Minimum hydraulic losses were used throughout this stability analysis for conservatism. This ensures a 1.5 safety factor even if the tunnel excavation is smoother than expected. Another major design requirement was that a minimum depth of 3 f~ of water be maintained over the air chamber invert for the most severe drawdown condition. Whereas the Svee equation predicted the critical conditions for stabil ity to occur at a net head of 875 ft the "MSURGP program indicates that the critical condition will occur at 800 ft net head (equivalent to pool elevation of 832.2 ft) and this condition was used for design. Stability runs at minimum pool (820 ft), as well as pool elevations of 884.5 ft and 909.6 ft were performed for the 11 ft tunnel and were found to yield incipient stability volumes less critical (i.e., smaller) than that at a pool elevation of 832.2 ft. The design air volumes and total tank volumes for tunnels between 11.0 and 12.2 ft in diameter appear below: Tunnel Diameter (ft) 11.0 11.25 11.50 11 .75 12.0 12.2 Design Air Volume for Stability (ft3 ) 51,000 54,150 57,750 61,500 65,625 69,000 Total Tank Design Volume (ft 3 ) 65,508 69,554 74,178 78,995 84,293 88,628 Safety Factor 1.5 1.5 1.5 1.5 1.5 1.5 84-13 Once the design volumes were establ ished, rejection and demand runs were performed on IIMSLlRGE II for the 11.0 and 12.2 ft tunnel schemes. The critical condition for load rejection is maximum pool (1,022 ft), tailwater elevation at 11.4 ft, minimum hydraulic losses, initial turbine output of 47,191 horsepower (blocked output, 1.0 power factor) and full gate closure in 3.5 s. This condition is indicated as "Rejection Condition All on Plate B26. Rejection conditions "B" and "C", shown on Plates B26 and B27, are similar to condition "AII except that pool elevations are 960 ft and 880 ft respectively. These graphs are shown to illustrate that condition "A" results in the greatest hydraulic gradient at the tank. The critical condition for load demand is that condition where the water surface elevation in the tank reaches its minimum. This condition occurs at minimum pool (820 ft), tailwater at 11.4 ft, maximum hydraul ic losses, initial turbine output of 0 hp (wicket gates. closed), and wicket gates fully opened in a governor time of 5 s. This results in a turbine output of 40,825 hp after quiescent conditions are achieved. The "Demand Condition" is indicated on Plate B25. B4-14 The results of the rejection and demand runs appear below: Conditions at Air Tunnel Diameter Chamber Surge Tank 11.0 ft 12.2 ft Total Air Chamber Surge Tank Volume (ft 3 ) 65,508 88,628 Max. Water Surface Elevation on Rejection (ft) 173.10 172.92 Max. Hydraulic Gradient Elevation on Rejection (ft) 1,128.4 1,104.5 Min. Water Surface Elevation on Demand (ft) 166.90 167.26 Min. Hydraulic Gradient Elevation on Demand (ft) 734.4 752.0 Since the smaller tunnel (11 ft) and air chamber combination yield the most critical rejection and demand conditions, the max'imum and minimum hydraulic gradients are based on this combination. In addition, Plates 923 through B27 represent the pressure and water surface oscillations in the air chamber for the rejection, demand, and stability conditions for the ll-ft diameter power tunnel. Additional stabil ity checks were performed on "MSURGE" for larger load changes. The conditions analyzed were as follows: Turbine output (hp) at time = 0.0 sec 47,191. 47,19l. 47,191. 13,000. Turbine output (hp) at time = 4.0 sec 18,000. 32,500. 18,000. 42,472. Minimum losses were used in all cases. satisfactory stability response. All Reservoir Elevation (ft) 1022. 1022. 880. 820. conditions exhibited The stability of the design tank was substantiated by Dr. Chaudhry, and his report (exhibit Bl in this appendix) speaks best for itself. B4-15 Stabil ity response was found to be essentially the same whether an orifice was present or absent in the drift tunnel. Dr. Chaudhry and Polarconsult recommended against using an orifice and thus the design tank contains no orifice. Omitting the orifice will improve water hammer refl ect i on, i. e., a greater percentage will refl ect from the air chamber water surface rather than passing up the power tunnel. H. Load Acceptance Characteristics -Plate B25 includes a curve which illustrates the turbine output in hp vs. time for the "Demand Condition". This curve shows the rapid load pickup capability of t-he turbine with the recommended air chamber surge tank. Assumptions used for load demand are conservative in nature in that no initial flow was assumed through the turbine at the beginning of the demand cycle. In most cases the turbine would be operated at speed-no-load before loading to full gate which would result in less downsurge than the one computed. A remote possibil ity exists that the turbine could be thrown on full load when operating as a synchronous motor with tail water depressed with compressed air. In such a case no flow would exist through the turbine prior to load demand, and the demand profiles shown on Plate 825 could apply. I. Description of Design Air Chamber Surge Tank and Instrumentation - Based on the design work described in the preceeding paragraphs, a design air chamber surge tank, as shown on Plate 36, was developed. The plan includes an 82-ft long drift tunnel of similar cross section to the power tunnel, sloping upward into the surge chamber at a 12 pct slope. The surge chamber is 24 ft wide, 17.6 ft high, not including the 5 ft crown, and has a variable length. The air chamber would be excavated in rock and is unlined. The range of water surface, pressures, and other data are presented on Plate 36. Water surface movement will be monitored by three separate devices. Two devices are identical and are comprised of cisterns near the top of the chamber and water pipes at the invert of the chamber. The water pipes are run out of the chamber to pressure difference gauges located on the dry side of the plug in the access adit. The output 84-16 from these gauges will be converted to water surface elevation and monitored continuously from the powerhouse. This system is similar to that used for the Driva hydropower scheme in Norway (ref. 10). An additional system for monitoring water surface elevation would be developed by WES for calibration and verification of the other dual system. This system will measure distance to the water surface based on a sonic echo. Two additional pipes are shown on Plate 36. These are 2-inch diameter air pipes. One of the pipes is connected to a compressor in the powerhouse and is used for adding air to the chamber automatically or manually to keep the water level between specified limits. The other pipe will terminate outside the powerhouse at a valve which can be opened to release air from the chamber. The pipe must release air outside of the powerhouse because of the possiblity of carrying poisonous H2S or other gases which may be present. (Laboratory studies for the Driva plant (ref. 10) found this to be a possibility.) All monitoring and air pressure conduits will be contained in a metal conduit and will run from the air chamber, through the access adit plug, and to the powerhouse vicinity. J. Air Chamber Surge Tank Location Sensitivity Study -Due to the presence of faults in the vicinity of the location selected for the air chamber surge tank, a sensitivity study was conducted to determine the effects of moving the air chamber 200 ft upstream and 200 ft downstream from the design location. Stability, rejection, and demand calculations were done using "MSURGE". Preliminary IIMSURGE II runs for stability, using an 11 ft tunnel and the critical net head of 875 ft as predicted by the Svee Equations, demonstrated that the incipient stability condition occured at essentially the same air volume (between 25,000 and 26,000 ft 3 ) for both the upstream and downstream locations. The demand condition was also run on IIMSURGE II 84-17 for an 11 ft tunnel and a then current tank design volume of 61,586 ft 3 (final design volume is 65,508 ft 3 for an 11 ft diameter power tunnel). Minimum water surface elevation on demand varied by only 0.06 ft between the upstream and downstream locations. This minimal change would not affect the final design. During preliminary calculations, a variety of transient calculations were made for the air chamber 200 ft upstream and downstream from the recommended location. These calculations showed that only water hammer was significantly affected by relocating the air chamber. As a result only the rejection condition was run for the upstream and downstream locations for the design tank. These runs were based on the nominal ll-ft diameter power tunnel. The results are as follows: Max. Hydraul ic Gradient Elevation at Air Chamber Surge Tank (ft) Additional Water Hammer (ft) Max. Hydraulic Gradient Elevation at Unit (ft) 200 ft Upstream 1,126.8 255.2 1,382.0 K. Air Chamber Air Loss -Potential is an important consideration. Air can 1 ) Air leakage through the rock, 2) air water, and 3) air leakage into the rock Tank Location loss Recommended Location 1,128.4 201.0 1,324.4 of air from 200 ft Downstream 1,130.2 165.4 1,295.6 the air chamber be lost in three possible ways: entrapment in the air chamber trap and power tunnel through a severe downsurge. Only points 1 and 2 above are considered in this section since the air chamber surge tank has been designed to retain approximately a 3 ft depth of water under the maximum expected downsurge condition. B4-18 Air 1 eakage through the rock is governed by the permeab il ity of the rock and the head difference between the internal air pressure and the extern a 1 groundwater pressure. Since groundwater 1 eve 1 sin the area are not accurately known, the estimation of air leakage through the rock is approximate. Po1arconsu1t has stated in their November 1982 report: "Judging from the observed rock quality and experience from similar construction in Norway, it seems to be quite realistic to find a site for the chamber in the proper area giving low or practically no air leakage." Air 1 eakage through the rock was est imated by two methods: 1) calculations using rock permeabil ity values in the Darcy Equation, and 2) extrapolations from experience at the Juk1a and Driva projects where air chamber surge tanks are used. Permeability values measured in drill hole DH 115 range from 7.06 X 10-4 ft/min to 2.17 X 10-6 ft/min. A common permeability value fQr' granite is 10-8 cm/s or 1.97 X 10-7 ft/min. Based on the fact that the drillers, when performing permeability tests (Lugeon Tests), were looking for areas of high permeability, and the fact that testing will be done during construction to locate an area of low permeability, the value of K = 2.17 X 10-6 ft/min was used for this calculation. Modification of the Darcy Equation for air as opposed to water loss, is related to the relative viscosities of air and water. Using the ratio of water viscosity to air viscosity yields a factor of 90.5. Studies done for the Juk1a project indicate that the ratio of air loss to water loss could be as high as 200 to 500. For conservatism, a factor of 500 was used for this calculation. After DH 115 was drilled, water flowed out of the top of the hole at elevation 775 ft. At a later date, no water was observed flowing from the hole. For lack of more specific information, a groundwater elevation of 775 ft was assumed. For conservatism, the minimum distance of 720 ft to the face of the mounta"in was used. The Darcy Equation was used as follows: Q = 500 KA (H l - H2 ) L B4-19 Where: Q = Flow of air at atmospheric pressure (ft3/min) K = Permeability coefficient (ft/min) A = Air surface area of tank interior (ft2) Hl = Tank internal air pressure (gage -ft of water) H2= External groundwater head (gage -ft of water) L = Linear distance from tank interior to face of mountain (ft). Air leakage, adjusted to a gage pressure of 850 ft of water, was calculated to be 3,895 ft 3/mo. The Jukla tank, having a total volume of 219,000 ft 3, was found to leak no air when the internal air pressure was below the external groundwater pressure of 558 ft of water, and 1 eaked between 20 and 200 normal litres (at atmospheric pressure) per minute when the internal air pressure exceeded 558 ft of water. Assuming that air leakage is directly proportional to total tank volume, and using the maximum air leakage rate of 200 normal litres per minute from Jukla, the Crater Lake tank with a volume of 65,508 ft 3 would leak air at 3,509 ft 3/mo when adjusted to a gage pressure of 850 ft of water. The largest anticipated tank of 88,628 ft 3, corresponding to the 12.2 ft diameter power tunnel, would leak at 4,747 ft 3/mo on this same basis. The air chamber at the Driva project, which operates with 177,000 ft3 of air and is excavated from very sound rock with over 3,000 ft of rock overburden, showed no air 1 eak age dur -j ng air and water pressure tests and no leakage during its first two years of operation. The compressors had not been used except to fill the tank initially. Regarding possible air loss through entrapment in the air chamber water, studies have been performed at the Jukla project which give an indication of possible air loss. Although laboratory studies prior to construction at Jukla indicated that air could be lost at a rate of 0.6 ft 3 up to 1.6 ft 3 of air per thousand ft 3 of the water volume B4-20 , needed for normal power production (air at atmospheric pressure, using very conservative assumptions), virtually no air was lost through entrapment during plant operation. The lab study did find. that air loss was decreased as drift tunnel length was increased. They recommend a drift tunnel length at least 5 to 6 times the diameter of the drift tunnel. The Crater Lake drift tunnel substantially exceeds this length requirement. In conclusion, it is estimated that total monthly air leakage from the proposed air chamber wi 11 be approximately 5,000 ft 3 at a gage pressure of 850 ft. B4-21 4.05 LAKE TAP FOR ALTERNATE PLAN III Lake tap design is the same as that for the recommended plan, as described in Appendix Bl. B4-22 4.06 PRESSURE AND SPEED REGULATION A. General. The generator-turbine polar Moment of Inertia (WR2) is equal to 1,075,000 lb-ft 2 as established by HEDB. Synchronous speed of the generator-turbine is 600 r/min with maximum overspeed limited to a 50 pct increase which is 900 r/min based on HEDB recommendations. In order to calculate pressure and speed rise a computer program called "MSRWH" was written by Al aska District Personnel for the Harris Computer. "MSRWH" utilizes model data, which in this case was the Dworshak model and is based on the arithmetic integration process as illustrated in reference 14. Pressure and speed rise values were based on results from "MSRWH" which were checked when possible by manual calculations. B. Wicket Gate Closing Rates. The valve closing pattern and the closure times are the same as that used for the recommended plan. Equivalent closing time from full gate and 70 pct gate are 5.0 sand 3.5 s, respectively. The 5.0 s closure time results in maximum speed rise at a net head of 835 ft while the 3.5 s closure rate at maximum pool (maximum net head), results in maximum pressure at the turbine. Figure 11 of Hydaulic Appendix B2 shows the gate closure rate. C. Pressure and Speed Rise. Pressure and speed rise were calculated for two conditions as follows: (1) Maximum penstock pressure is based on maximum load rejection which is defined by blocked power output of 47,190 hp, maximum pool ele- vation of 1,022 ft, tail water elevation of 11.4 ft and minimum hydraul ic losses. Rejection Condition A on Plate B22 shows the location of the pOint which is defined by the above parameters. The maximum pressure gradient at the turb'ine was 1,329.4 ft whi le the unit speed (at 3.5 s closure) was calculated at 792 r/min • A 3.5 s valve closure was used because the initial valve opening was equal to 70 pct as opposed to full gate as shown on Plate B22. These values were calculated by the above mentioned computer program "MSRWH," written by the Alaska District. Manual calculations using the Allievi Charts resulted in a maximum pressure gradient of 1,324.4 ft with conditions as described above. B4-23 (2) Maximum speed rise was calculated at a net head of 835 ft and blocked power output of 47,190 hp. This point, which is approximately the same as Rejection Condition C on Plate B22 is the maximum net head at which full gate operation will occur. As net head decreases from this point discharge decreases, as net head increases, discharge decreases and gate opening decreases. Therefore the point chosen represents the critical condition for speed rise. Maximum unit speed with a 5 s equivalent closure rate is 859 r/min (this value was subsequently verified by "WHAMO") which is well below the allowable maximum of 900 r/min • The corresponding pressure gradient elevation at the unit is 1,171.5 ft. B4-24 4.07 INTERNAL CONDUIT PRESSURES A. General. During steady state conditions the elevations of the internal conduit pressures are calculated by simply subtracting hydraulic losses from the initial reservoir elevation for different locations in the conduit. When rapid wicket gate movements occur, transients are created which can cause changes in conduit pressures. The speed and size of these changes are proportional to the amount and rapidity of wicket gate movement. This section will consider: (1) The maximum reject condition (gate closure) which causes maximum pressures throughout the conduit. (2) The maximum demand condition (gate opening) which causes minimum pressures throughout the conduit. B. Maximum Pressure. Maximum pressures occur during the maximum reject condition which assumes a maximum reservoir elevation of 1,022 ft, tailwater elevation of 11.4 ft, and minimum hydraulic losses in the power conduit. Resulting pressures are as follows: (1) Air Chamber Surge Tank The elevation of the maximum hydraulic gradient at the air chamber is 1,128.4 ft. This result was calculated by program "MSURGE" modified for the air chamber system. The maximum pressure at the air chamber occurs 13.5 s after wicket gate closure begins. Water surface elevation in the surge tank is initially at 172.0 ft and increases to a maximum elevation of 173.1 ft, a total movement of only 1.10 ft. Plate 826 illustrates the water surface and pressure profiles in the air chamber during the maximum reject run. (2) At The Unit -Maximum pressures at the unit were calculated by the Allievi Charts and computer program "MSRWH." An equivalent closure time of 3.5 s from the initial gate opening of 70 pct to the fully closed position was used. Calculations based upon the Allievi charts produced a maximum pressure gradient of·l ,322.2 ft whi le program "MSRWW produced a maximum pressure gradient of 1,329.4 ft. It should be pointed out that 84-25 both the Allievi charts and program "MSRWH" calculate pressure increases at the unit without considering conditions at the air chamber. This pressure increase which was 193.8 ft and 201.0 ft for the Allievi method and program "MSRWH" respectively, is then added to the maximum hydraulic gradient at the air chamber (1,128.4 ft) to obtain the final gradient at the unit. Th is procedure is conservat i ve but prudent under the circumstances. The final design pressure gradient at the unit will be based on the program "MSRWH" result of 1,329.4 ft. Plates 29 shows the maximum pressure gradient at the unit. C. Minimum Pressures. Minimum pressures occur during the maximum demand conditions which assumes a minimum reservoir elevation of 820 ft, tailwater elevation of 11.4 ft and maximum hydraulic losses in the conduit. Gate opening time from zero to full gate is 5.0 s and maximum discharge is equal to 530 ft 3/s. (1) Air Chamber Surge Tank -The elevation of the minimum pressure gradient at the air chamber is equal to 734.4 ft which occurs 19.0 s after the wicket gates begin to open. Beginning and minimum water surface elevations in the air chamber are 168.5 ft and 166.9 ft respectively; a change of only 1.6 ft. Calculations are made by the "MSURGE" program with air chamber modifications. Plate B25 illustrates conditions in the air chamber during the demand run. (2) At the Unit -The Allievi charts were used to compute the minimum water hammer. Minimum hydraulic gradient at the unit is 548.7 ft. D. Comparison to Consultant Work. Dr. Hanif Chaudhry, consultant on hydraulic transients, did an independent check on water hammer and speed rise calculations (Table 1, Exhibit Bl). The conduit design had not been completed at the time and therefore the calculated results are slightly different from final calculations. The lower rock trap was finalized at 15 ft x 15 ft, but at the time of Dr. Chaudhry's calculations a 17 ft x 17 ft rock trap had been envisioned. The smaller rock trap used in the final design results in slightly higher initial velocities and higher water B4-26 hammer values. Water ham~er and speed rise calculations were made for equivalent closure rates of 3.5 s, 5.0 sand 7.0 s. The following table compares the results of calculations by the Alaska District and Dr. Chaudhry. Pressure Increase at Unlt Unit Speed (ft) (r/min) Gate Compo Compo Closure Prog. Manual* All ievi Dr. Prog. Manual* Dr. Time (S) IIMSRWH" Solution Charts Chaudhry IIMSRWH II Solution Chaudhry 3.5 207. 1 221.3 204.4 213 791 790 779 5.0 160. 1 135.1 168 827 824 7.0 118.7 101.3 142 888 862 *By arithmetic integration The above table shows that Dr. Chaudhry's calculations produced greater pressure increases but lower unit speeds. At the 3.5 sand 5.0 s gate closure rates, the IIMSRWH II computer program produced resu 1 ts that were reasonab ly close to Dr. Chaudhry's. The agreement between the different methods shows that our pressure and speedrise calculations are dependable. B4-27 REFERENCES 1. Mattimoc, J. J., Tinney, R. E., Wolcott, W. W., IIRock Trap Experience In Unlined Tunnels,1I Journal of the Power Division, ASCE, Oct 1964, pp. 29-45. 2. Boillat, J. L., & Graf, W. H., IISettling Velocities of Spherical Particles in Turbulent Media, II Journal of Hydraul ic Research, Vol. 20, 1982, No.5, pp. 395-413. 3. Boillat, J. L., Graf, W. H., IISettling Velocities of Spherical Particles in Calm Waters, II Journal of the Hydraul ics Division, ASCE, Vol. 107, NO. HY10, OCt 1981, pp. 1123-1131. 4. Rouse, H., "Engineering Hydraulics,1I John Wiley & Sons, 1949, pp. 780-782, 206. 5. Reinus, Erling,· IIHead Loss In Unlined Rock Tunnels,1I Water Power, July-August 1970, pp. 246-252. 6. Rahm, Lennart, IIFriction Losses In Swedish Rock Tunnels,1I Water Power, Dec. 1958, pp. 457-464. 7. Wright, D. E., Cox, D. E., and Cheffins, O. W., IIPhotogrammetric Measurement of Rock Surfaces In a Power Tunnel, II Water Power, June-Ju ly 1969, pp. 230-234, 274-279. 8. Munsey, Thomas IIUnique Features of The Snettisham Hydro Project, II The Northern Engineer, Fall & Winter 1976, Vol. 8, No.3 & 4, pp. 4-13. 9. Creager, W. P., and Justin, J. D., Hydroelectric Handbook, Second Edition, 1950, John Wiley & Sons, Inc., pp. 100-102, 547, 546. 10. Rathe, L., IIAn Innovation in Surge-Chamber Design, II Water Power and Dam Construction, June/July 1975. 11. Bergh -Christensen, J., IISurge Chamber Design for Jukla,1I Water Power and Dam Construction, October 1982. 12. Chaudhry, M.H., IIApplied Hydraulic Transients," 1979, Litton Educational Publishing, Inc. 13. Svee, R., IISurge Chamber With an Enclosed, Compressed Air-Cushion,1I International Conference on Pressure Surges, 6 8 September 1972, Copyright BHRA Fluid Engineering 1972. 14. Rich, G. R., "Hydraulic Transients,1I Second Revised and Enlarged Edition, Dover Publications, Inc., 1963. 15. Wa 11 is, S., IIMounta in Top Tunnels Tap G 1 ac i er for Hydropower, II Tunnels and Tunneling, March 1983. B4-28 16. U.S. Dept. of Interior, "Design of Small Dams," 1974, p. 465. 17. Rajaratnam, N., "Erosion by Plane Turbulent Jets," Journal of Hydraulic Research, IAHR. Vol. 19, No.1, 1991, pp. 334-358. 18. Simons, D. and Senturk, F., "Sediment Transport Technology," Water Resources Publications, Fort Collins, Colo., P. 705. 19. Maynord, S., "Practical Riprap Design," Misc. paper H -78-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1978. 20. "Hydraulic Design of Flood Control Channels," Engineering Manual 1110-2-1601, U.S. Army Corps of Engineers, Washington, D. C., 1970. 21. Brater, E., and King, H., "Handbook of Hydraulics," 6th edition, McGraw-Hill Book Co. 1976, P 4-19. 22. Jaeger, C., "Fluid Transients in Hydroelectric Engineering Practice," Blackie, 1977, pp 293-333. 64-29 '1/ . r L ,-. -... r II c. .'lo j) it': ! C,)rJ ;UC L>,j " Y t ,.0 , J , . ~ i • 1) r r , is::' ric t. (''1', r i r" r t .~ f C ~ ! :" I ...... I t., ~) : C; U f -' t ,~ n '\ t ') r n C , '..J ,) r /) J -: (t (-.. ; r u .~ r _"'1 (,. ,)~ If~~:·:rs 'I j S j t: t 0 r ~." r ~~ 4 i r 2 , t ,,) r ... ,.; t ~ f .J II· .... ':1 , .' ~, I ." 1l j r I ~.., ,l r-. C r. c r ,1 ''1 " ':iU~~(" jr, ~_ .. --; ~ i i1 .1 5 ~< -1. V C U ., :':-1 -l ; I .5. . . ~;;;, -.I t. '1 ': f ') I I C ,-I I '1 ') r,~ r i" j; '0; -) n ',:' C ,CO> S S ;.: r ; ,'. C ;.1 , .. " . ] ;" -' r t r \} 'S V ."\ e .~ t I" r f '1 r f ,H" Y'i i .~ -l r f .';'1 ,j ': :-: t. .~ r 11 i ',i"ldfy' ~ -> i ': Y r'~:;l!P.<; . . c, ' C (J r f i rl 'J '~c I !. r i ; r. '; • ., L .., . -I -:; :> u ,'i1 ~ S J,l ~-:, I :~ ~ C I I .-'; ~-J J! ~ .. ;'l i n _~ T :, 'J ., J r ~ I • ,). ~ r , t, " i .~ f -, r ... ' 4 r .. , :-, c: i" ,~ I, "t iii t 'I Itit ons. T n t:) j s n ,) r) 1 i r' , .; r r <> t 1 I .,,~ j '\ n j t n ~ r" S 11 f ~,51 r e V1 for 'J,,) t~! SIT (.': (, sci I I ;~ ~. i r) r 5 • l( ,'1 r, ~~; t. ~ i fl \. J i., ;>, 1 J,~ t. i ,) n r'~ " ;:': ~ ,: n It:, r t u r c: • I~ f' J:"~ -; ·1 r .. ~ : :,) r t h C '1 f (J r if v f t <! in:; , i r r: ;-., i''i':) ') r i t ;-1 ~ ~l !~ t: i t f ~ r ':' '1 I.; -: :-; '2 i r' ~ til ( IS<J·.r~r-~ .; '" ·1 L; '} ~ u ie p r .-] ~ I~ n L .! n; e.j r J .'-'J,~~-r·-1.1 r\ il~:i ":;tran __ 'j (J'.J~st;.1r'~i~ tli"" :j ! t ,) n ' '" f [, 1 n i '3). I r. s t ~~;~ r· ~"rc--;c ,:.7 C J.~ S i :'. r ~ ~. i 'J n • i ':: ,l Q \J ,; n '1 ,: 1 " -t r ,? n s ,~r p f t 'C " L '1 i:; "r ,; 1 ,J 5'.' .l r : I I ,I l r c n i "i ') ." r <; i r <; t ,I ,., ,; ,)I. .: t J t .. ~ l.... ~::.:-~ (': i I j S 'J ') I ~ r .. ....., '/ . ...., ~; I-.~' ""I r -, :·,-'·~r ~turp. C~(~..,;~:. ·lllr inc; ) n :;, n ., d t -t. r1 n " t <> r '? f f "~ c J C i n t:. • ! i r !'1sci!I·'ti(lflS ~ S 5 i~ ()' J I ~. ,0 , S f 'J! I 1... j r~ j ~I u:; i "" ( ~~; i (j r 1 ! . -, ,- oJ '.J -f ,..' r ; ~ l ',' i I ': :~ ) 'I ': i" r " :> is : \-: c-=!' r ," " : r -~ f ., J' or: , ,. ',': r , 0 I'~ :-': '/ , -0 i r r " 'n u f , I " j r .! i r ~ : :) ': I I I ,~ i ' J -J. 'I ,j:' 1 ! .~ .... ; : r :-:; I r ,CO . I • +, I .. • r 'c' V J " or" t ;)'] .". ) I " i :;~:.': I'; i ,i '.' ~ 0 r ". i n i " ~ . " , , , i ',; .. in" r;-; ~ c t i ') f1 V I ,~ I ~ r !.' :; t ': ,., ,1 S " r 'J -, t. i \I ~ r :,,' I L ": J , .l"!,/~ ,~,>,?j c:)"'[,ul"'r ;-r t) J r ;1 ,....., ~ 1 '" 'T' X ; T! IJ !" 'j f1 J rr i n i i', 'j" ,>IJr:" '!vf'i'; ',r. d r .,; i r '> l ~ b iii t y l' f -, in t.h~ cnc l ,l'>t.,j d~ciilJtjnn5 i)f '~ 1 r '1 I <; 'J r 'J -, r " ,,, j -:; J ',1 S a ,j G n ~, h p nuT"~ r i r; ! , !~ ., :~ r n , .., -~ '1 !.J ,j, ", !1;1 fIll 1-'-t'-1~~ 1 Ir ; l1 t . ., \-. i or: 'In ,-~urin t-.. h -' t 1.1 !'"' ...., i '1 e S ",i ~, t I j ::~ , " " .,.; i t, V .., j T, e f i i c C;Lu'~: ) t 'n·"'" y ; ":-" ~-; : r,)'l·c r I ~I i r, C Ij !] (! ': ~ !--1 ~ I,~ t t e r i sip (: -: r r :> C t, t y ; r 'j r ' . -, , -,j '..' C C'11 ~1 ' r i <; (' I~ (') f t t', " (~ ") i,o C II t p '.' r :: ,; '.r Ii; ; .: OJ co iT C' 'J t f; r :J r 0 :; r '3 '" " .:: '/ 0. , 0,) ell ( '/ " r I .... ,. '1 ~ r .• i r: 1 f t, ~ r L.<111"·~ CS!},,) usin) ~C\Jrt:'-sr,.~"'r ""'t:1C"~ f'lf ::. () t a I I 0i d r t; j de t. i (; n for ' I' J ,) ie', I " f);: I " ,o' ',: ( .: ~ J r a 1.:.11 e rl t {>= '1. ;: ) t i r~ i 1 r I j • " ': .-' ~ict.i)n '(,'~ct:~j :" l)( i j,: u;: '~ '10 U I d for ,.; c 0 i" r ;j r j 'J I ,~ • fj c l: 0 r s j y o " ~ r h r <; d \< I n v,c.~'.J~5 fe,r t (1 r 1', t;, :i ',j i t i un, c:, ~ c kin J t.h~ t.y St.l,l'] i ,.,.:, 2D:'jP'"f t,o uri' j ne·j ,.'.~ ~ 0-:1 (j tunn",! • OInL! !Til" 'r IJ ii 'V'" I iJ"; <; ,') . \ d r,:; j ,~ c ~ ion s ~ r .., L.'~ r , ) ;J 0 S sib I " >'; x rJ L~ C t p ,j sit I j,~ t ,......"' -. ..; I 1 ~ • t ~ q i<: r ,'" S " 0 nSf> f '1 r f u I i ',t r :".~, 11 n of n ': t '"' f~'l d i, n 'J t: e '-I () r r. h 'j • T .. L :T' 'J , : J r " ::! r s t .''','' ". ,.. -." v t, 1,' ~, h '~r '" i.> ;~ r l) S <; I [) i 1 t. Y t h '3 t the tun n :> 1 ':: ,~ y :;, 0:(C.:Vlt::'(~ 'j U :::; i :1 'j ~ :, II r i n"-' ~ :.: r: h j fI ~ r~""'I t. ;) " r t h ,l f) to:: t: I '", f1 j n ; 's '1 f!) r .-l L 0 r '~U tun n e I <; for "~ I :'l S t ':! j ,. t, un n _10 I b n r ~ ~,j .... ~J nne!, 5:l ~; (/.u:.tr"t :1 .~ ) • !. f '1 ( . , . f~ f • 1 ~ c '-~ :; i ~.. .\ '1 C r', lJ i !" .'; ,1 :] i r v u , tJ "1 P ... i I I t) (' S i ';:1 i • j C ;" ""' t 't \" '. ' ~ T '--: ; r '"1 r :~.. ; f i + ; S G ~ c 1 t.: P iJ t l) ~ () r t_ t ~~ w t 1.J r, n :~ ~ ~ t-:, ,':' '1 t ] n~' s i 7, S ,., '.I 1.1 1 ,; "): fj " ,j i f j -:! (~ ] C C ,'J r '.1 in, ~ I '! • I j r C C '1 , " I j t c' " ... 'J ~, 'I _' -. • .~ () IJ 0 J ~1. () 'j 'i j ,1 , ') '; -: i I I :', ~. >, i r I) i1 '). t.,~ :) I () '~ ,1 r: to <1 n 1 e s cr~~<;~r~ 0sci j I~t '.., e r Col ',' .t J r .> .)J~i"rlct',)fY r.'-1t'! " '.1 fPC " .> i' :> !l f C I J r i n'~ t h ,_~ .5 ~ run s • t. j S r ~\ ..: (~ r;':~ n j: '~ ,] r ; ~ I:; '" 1I C h " n '; ,'c':> ~,,! i '1 \, " s t , ':" I r ".. ::. 1 frof stl')1 It'!. If r j~ " '/ :) t. ,i !, j, t 'J ~I n r '~ :; ~ I) n <; ~, t r,!! ;; 0 S <; i) j t i 'J f r 211J C i ~ ,; tn,' t, il '. V I' ! 'I :, '" ~ ~ '.( ~:' f '1 r ~ u • C t ..., c -" ", I r t ., f ", ~. 1 J r', n ': I ,', , i " ,I 1 r ) ...l ~I I ' j t •. .> , I, ~ j' '""3 ."l ~ - , ,~ ;oj iI' .j . ..; (; r; n C" r ,~t -l 1,' ~ ." S :, C '.1 l'~ .... i-,; 'J S ~' -_l S T l .. sir; f '. r 'J:'; i ., " , h t, :::: .Jf" C I ... , I i ~ 11,'\ S -; ,'f I 1.:' ... () I J . 1 ~ i ~ 1 1,1 • '" T J 'I . '. T ~ I' ... · ; t ) . '1 r T - L J • 1 '. ii) U 'J) ,. j S S -sur =: t~ ,~tuci;:.~ t n ~ r~ ,) r t:""1 <. r r :~ n cis t I J r"" i '1 e s , j" ,.:; \. h l r , r ..... J 'r 1_: ~ " :l. -: 0 \ -' ) q i fie ~1 r ~ f r " '1 t c~ .~ r ~..1 <.:; S \ J -r f~ r i s ~ • r: r 'J C ~ C I I r <'\ -:-. .,.. ~-l • C n ~) ~l ;.1 ~ r i :.:;" j s J11 If r,:,;u r !.J n d t~ r ~; ~ i~ , l t, i r • __ ~l t ~ r t-~ -_-~ '1 ~ r:'1 r ~_F' r :; s S I.J r ::) T ;;'~ ;~ "i X t -; Ij '"I j r :~ .i 'i u r -:2 "} n G S [1 e -? 0 r i :; 3 &. (' I -'J t,:l~ lJ·,)str.,!,'>fT r~:>arllr,if 1" T : .. CI \.. 1 .1 i n i ~ i (. f ~ t? '1 / -s t 1 ~~ ~.., (; ') I. n 1 f 1,; -, ,-.; . r i'J' 'J -I ,~ :: f Co C.., l'~ _. i I .' ~ '1' i 'l i if lJ [r f r jet. , <) n fi C t n r s '" t"' r,"! ! J ') :~ c: • f t L ',J r ~':5-\JJr~ C fJ .'-r~ u ~ .:. r r ~::;u! L; . -, r > n " ;, I C ,I r I~~ ;.} r ;.:. 5 .~ n t ~~ t j th.., 1 n ,1 I. !J r '1 I ,., (~ C ~d r , C I. prj s t t C s t '1 ,~ 'r! c~ t f1 r) (~ n f c h Z1 r jct,~ r t t, -; S n "> f) j V E: t h:2 \OJ ~ t ,~ r "',1·11 [r'~ r e r: U-l t i Q n s • T r, i! Q 0 S :, i J iii t y ') f u S rt <: d C Q n; cut e r ,J r ') ,; r J ,'" t .1 r -: r'; 11 ""'! C • : ~ 'j 1 -~ ric 1 I \' J Pcr~ i'l., ~:r'1~rl:! ,1.-15 c .~ 1 t r .j I i 'C " lie i ~ J n (~ ,~ P. 'I f' ! tJ ,:: P ., n ~_' , fin it·" "J i f ~ ;.> r : • ,r t '; j :; 'i,~~thU'~ ~(Jr.k.~ ~ .... 1 ,) r t ~l,-' ::' n ,: I j > ,-'J f sic 1,.1 1 SCI I:> t i 'I '1 S , ., r (] u T1 'i , .. ] t -" r :l '~ ~, I J r J 1 e:c. t ~ .1 'I C .J ij S ~! fl i S '"'J V f ~~ S I] ''-I n 'J i S JJ'~ ~, L I" i--, " r I '" t. f ~ 1<:; f I n~_.,,~; .:::. ."-' " ... ) . }. nr-;, )(1 ;} f , t i ') l( -:; i j'l ~1'., ~ r ~ t r J '1 .:; j c n t-_ s • T!; f! V 2 r .; j ~J n a f \,. T ~ r ,-, t",! r '1 ( ~; ~ : 1 t.J S ~ ~~j l t t ; r r~ -'1 r (1 (~ r ~: J f r.! r : r l ~ :" 'l L.: -, '", '~I ....... \J ',u r :;j'1 ;ovc;rn<Jr. i:.. 1 c; :J 1 t, t ,) r' C j 'J .J ~ t 'I" ".~: t IJ r • t i r L ':.: (0 ,. " ,,' ." r nCI'IsiJ[I () " ," ,_ r ij ,~ f -~ ~, I 1 [T C ·1 :,; T' .~, r fJ V~· ~ )( r.' n s i 'I ely v'-:f'iicn in fh ~ uS',j '/ '! n v p r '1 'J r ., j :'1'. j:, t i () I C ~l :-: r :1 c t '? r ! s tic ::; t-; ~ -1 n", 1 y, i ~ I t. f G!" t;l (-; S n '~ t t ""I .---. T ~' ~- J :;:. ..... ' '{ ..J<'rf0f'f,nc r C '1 f i U.. -1 t i G n s ~ 1) U ~ I I () " i '1 . ,: .1 ') r :; '1 ,.' i f i ,,: -I r. i) fl~, , j' i ~)~-:. r -j v --= .' : ....:. 1"") ~ ,\ ') 1. Jistances ~f j,10,~nrl l~ tt h~t~een the t~n~ ·JD Cl n j t h '" i ,., j t i ::1 1st ~ a rj y-s tat e ,0 t e r I e v ~ lin tho L,,,, k tl ~ y "" c~t!n USaQ to aetermin~ tne ':.~nk ared. In rry orini0n~ this ai;tanc~ in the s~fect~d design should b~ ~t le~st l~ ~nd prr'dcrrJbly ~J ft especially if the 3ir compressors dr~ tCl .)j:I controllo.d by water-level monitors. to 2. the Th~ corners of the w~ter passages joining th~ t3nk tunnel shf)uld ce roun1ed esoeci'31ly to refluce n~Jd losses for the outflows from tne tank. 3. If it is feasible from structur31 and construction vie~ pfJintJ the tunnel length connecting th8 tank to tnD tunnel should be reduced. VI. ADDITIONAL STUDIES Since the Crater Lake Powerplant will not be c()nnpcted to a larg~ grid system, it is necess~ry th;]t the pl-lnt oe s t.j b leu n d e r i s a I ·01 ted 0 0 e r .3 t ion. The ref 0 r e , l! e t "I i I e ,~ ~o~erning stability studies are necessary to 5el~ct pr002r ~alue~ ~f the generator inertia dnd the ~icket 13te noenin, and closing tirr~s. Such studies should include Doth small and I~rle lo~d changes. 5ince the turbin~ wil I be subj~cte1 to "lonor:n3.lly high pressures follOwing a major 11d1 rejection due to pressure rise in the enclosed air, such studies are extremely necessary to determine the speed rise. Comolete turbine characteristics, and gover,or non-linearities, such as saturation limits etc., should De inc 1 u de 1 ins u c han a I y s e s • Air c h a mb e r s we r e use din S ma I ! po,",erolants about sixty years ago in the U.S.A., but their USH w~s aiscontinued due to governing stabi lity prohle~s ( q e f • 9 1 • [ tao pea r s t hat the s e pro b I ems '" ere c :~ use rJ a y the tur~ine governor and were not due to the chambers. VII.5Ur-'MARY 1. Except for minor modifications, the surge t3nk as designed should be 3dequate. 2. The stability of oscillations followin'] major changes should be checked. load 3. ~ore detailed waterhammer, soeedrise, and go~ernin~ stabi lity studied are needed to determine the penstock aesign pressures, and to select the generator inertid, ~icket-gate opening and closing times ~nd optimum ~overnor settings. REFE~PJCES 1. Svee, q.,"Surge Chamber with Enclosed ComDr~5se1 Air Cushion," Proc.,Int. Cont. on Pr~ssure Surses, Er9fand, ')ept.,1972, puhlished by 8H;(A, Englanc, ppr;Z-15 to G 71-? It. ":>.Ch'1udhry, , ... H., f\.DPLI::D wY':':>'ULIC '" 0 _'> t f d ni ':' e i n h a Ie, 'f e'~ Yo f K, ~j. y •• L 979 • T ,1 t, '! S T c: ~; T '": t 1. Ch3Ijdhry~'" H., Sahoah, M. OJ. ,anc ;:u'!O/j ':!f, J. I~," "Analysis .:1'1d ,)tability of Closed 5ur'j~ Tani~s,H ;1<-if)~r U n \ 1 ~ r p r ~ 0 d rat i I) n t 0 ~) e ;J r .~ sen t ~ d a t F 0 tJ r t h I n t e r • r: (J n f • on Pre5~ure Surles, England, Sept., 19d3. 't. G r a z ~, H. R • "ItA R'l t jon a I The r '11 0 d y n ami c ~ q U 2 ti r) n for .~if Ch;:}mher Oesiqn." ?roc.,Third ,\ustralasi.Jn ranf. 0'1 h I.j r -3 u I i c san rj Flu i c .~ 8 C h. , 5 y d n e y , A u s t r.) I i ,J , i Q 'j .'1 , ~:j • 5 7-h 1. ~. Gr~le, H. ~.,"The Importance ot TemDeratufa In \jr Cha~ber Uperations," Ref. 1, pp.~2-13 to F2-Z1. ~. ~rekke, H., Personal Communications, lQS3. 7. Forrest, J. ~., and Robbie, J. Csci I '~tions Prediction-A Comp3r~tiv~ ~tudy of dnd Waterha~mer M@thods," ?roc., Third Inter. Press. Surges, London, 19dO, PP. 333-347. F • , n :;t ,) 5 S ,-;::155 SiJr3~ Conf. On ~. Thomas, H. H., HydrOelectric Power in Soc. Civ. Engrs., Oct. and 'tIhith2m, L. Tasmania," Jour., 1964, pP. 11~45. S.,··Tunnels for PO'fter l) i v., ,\r:l~r. 9. Parmakian, J., "Surge Control," in CLOSED CJNDUIT F L CI W , e d i ted b y C h a u oh r y, M. H.. and Ye v j e vic h, v. ,'.,J ate r ~esources Publications, 1~81. TABLE I MAXIMUM PRESSURE AND SPEED RISE Effective Closing Time Max. Press. Rise Max. Speed Rise * (Sec.) 5. 7 • 9. (ft) 213. 168. 142. (rpm) 181 . 226. 264. Maximum ~ressure rise at the turbine = Maximum transient- state pressure -Initial steady-state pressure .... -E <! '. " . I • --Rational heat transfer (ref no. 7) 0----0 Adiabatic (n=1.4) 600~--~--~--~--~~-.---~---.~~r---'---1 E 500~~4----0~--~~~---+--~~--;----+----r-~ '--" c.rj (f) w n::: ~ 400~---~--~--~+-~-+~--~---r~~~--~~~---~ n::: <! 100 200 300 400 500 60?' 700 800 900 1000 TIME (sec) Fig. 1 Comparison of Air Pressure FollowipgTotal Load Rejection I ' i. , 17()D ISoO 1400 /200 1100 _____ _ I I I I ------1- i------ ---'·1 ,-- I I ') .~~----- ; ! I, " . '-, CSUR (Chaudhry) MSUR (Corps) ---_._------------,.. . --.-----;-----~--.---;---.--, ~ . i ""*-~-----------~--+----- \ , \ 'I: , , ----. -_., , , " I ! I I 'I' ----; 'j 'I '" -------t-- I I ! ! I ' I 10oo~ ______ ~ ______________ ~ ______ ~I~ ______ ~ ______ ~ __ ~~~------~I--------~--------------~--~ 80 100 120 '10 ''0 180 20 40 2tJO 220 Time (Sec) Fig. 2 Compar~on of Air ?ressures Follqwing Total Load Rejection I ' 5 I 4 D f--~ 60 ,---,----,---_,----,---,-----,---,----~--_,--_,--_,---- 55 MAXIMUM LOSSES 50 f--__ +-___ +=-~--~-~~lli~~Plli~EruCT~~,D~~~~~i~~~~~--r_--~--~--~--_+--_+--~ 45 f----+_--~---_r--_+-----~--r_---+---~--_r--_+--_+--~ ..... ILl 40 f----+---~--_+--_+----I___--r_--~--+_--~--_+--_+--~ ILl LL / ~ C en en 0 ...J 0 « ILl 25 35 ~O I___--+---+---_+_--_+--~----r_--+_--+_---_+_--~---_+L-~~ / I ~v--::P o L-__ ~~~~~~-t-~~~~_-~ ___ _L __ ~ ___ _L __ _L __ ~ ____ L_ __ L_ ___ o 50 100 150 200 250 300 350 400 450 500 550 600 DISCHARGE IN CFS HYDRAULIC LOSSES FROM INTAKE TO SURGE TANK DRIFT TUNNEL B A 5 I 4 ..... ILl ILl LL ~ en en 0 ...J 0 « ILl I 3 I 60~ 55 50 45 40 MAXIMUM LOSSES -----EXPECTED LOSSES \--MINIMUM LOS SES i i i 35 I 30 25 e-~-I----------J ------+---+---+-----+---+~--+_--+_---+_--_+_--~ 20 15 ---10 --5 I----~--~I----------:::;-:~t:-:=---:-::--- ~L...J-.=l~~ 0 0 50 100 150 200 250 300 350 400 450 500 550 600 DISCHARGE IN CFS HYDRAULIC LOSSES FROM SURGE TANK DRIFT TUNNEL TO TURBINE 3 I t 2 60,- 55 50 45 ..... 40 ILl ~ ~ 35 en 30 en 0 ...J 0 25 « ILl 20 I 15 10 5 0 0 50 2 MAXIMUM LOSSES EXPECTED LOSSES ---MINIMUM LOSSES / / / / / / / / / / / /" 100 150 200 250 300 350 400 450 500 550 600 DISCHARGE IN CFS HYDRAULIC LOSSES FROM INTAKE TO TURBINE NOTE' ALL HYORAULIC LOSSES ARE BASED ON AN II FT. MODIFIED HORSESHOE POWER TUNNEL AND A 6 FT. DIAMETER STEEL PENSTOCK. Symbol Aevlslons DeserlptlQns CORPS OF ENGINEERS ANCHORAGE, ALASKA I U.S. ARMY ENGINEER DISTRICT 1---------------------.-----' -~ ---I Designed b,.: ;rf0::r m SNETTISHAM PROJECT, ALASKA SECOND STAGE DEVELOPMENT CRATER LAKE I-::-----,----------j us Army COO-D. Drewn by: JKL 01 Enq;I"urs .POWER TUNNEL AND PENSTOCK HYDRAULIC LOSSE--=S'-------__ -I Shee1 __ 0' __ I DESIGN. MEMORANDUM 26 PLATE B1 D C B A 1 0 c B A 5 4 3 2 TURBINE OUTPUT 1000 HP PROTOTYPE TURBINE CHARACTERISTIC CURVE 1. THESE CURVES ARE BASED ON THE FOLLOWING: 8. LONG LAKE MODEL b. 800 RPM SYNCHRONOUS SPEED c. 51.5 IN. THROAT DIAMETER d. 1.7\', MOODY EFFICIENCY SET-UP 5 4 3 2 -----------Aa..::;VI"-=-=.":-:-'---------- ~ _ __t-----------=D"'.=-.~C~~'!~!'--"------t~.!~ ~!I!!~rt -------------------t---t U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS ANCHORAGE, A~ASt(A -=o-.. --C-'.-n-•• :-:.-,-, --'--=IFffIl==----.;SNETTISHAM PROJECT, ALASKA S.sS I!:4dJ SECOND STAGE DEVELOPMENT -----1 U"'m,C~.' CRATER LAKE I O,,,,,,n bWl 01 ("11 .... '. RECOMMENDED PLAN EXPECTED TURBINE CHARACTERISTICS 511 •• 1 511 •• 1 __ ., __ DESIGN MEMORANDUM 26 PLATE B2 o c B A ~ 5 I 4 3 2 1 DESIGN SURGE TANK DIA. -10.0 FT. - 1. SEE PLATE B2 FOR UJCATION OF STABILITY RUtt. D a. PROFILE IS BASED ON DATA FROM 0 CRATER tAKE TRANSIENTS -STABILITY -VENTED TANK -MECHANICAL GOUERNOR COMPUTER PROQRAM • WHAMO·. EtEV ~GE TAHIC USEt. US TII'I£ Lt. PIODEt. LlRa-1,07S,eee Ie FT DIA"ETER TANK (FT> TE~ORARV SPEED DAOop-•• ~e (ATHREE-3.31) 3. INITIAL TURBINE NET HEAD -831.4 FT. 853. 4. TAILWATER ELEVATION;; 12.& FT. -- 8S2.7 I '\ ELEM 5T2 -IJ.S. ELEV. a.. MINIMUM HYDRAULIC LOSSES 852.~ ~ gS2.1 I \ I 1\ c / \ I \ ! C 8S1.8 r'\ \ / \ / \ / 351.5 \ ~ / \ / / f--- 851.2 \ / \ / 1\ / 250.9 ./ \ / ~ / 850.6 \ V B B 85e.3 85e. A.wl.lon. e. 20. ~e. 6e. 80. 100. 120. 1~e. 160. 188. 281. Ivmbol D .... ,Ip1l0". D.'. .pprowld 1- TIME (SEeS) TUNNEL 0 :12.4' SURGE TANK 0 : 10.0' RUN OF 2~ APR 8~ AT 17'28:55 HP : 38,500 HP = 39,000 RESERVOIR ELEV. = 858' 1 2 I u.s. ARMY EN(iINf.f.A DISTfUCl CORPS Of fHCiIHffRS ANCHORAGE, ALASKA - Onlunld DVI m SNETTISHAM PROJECr-;-ALASKA A WATER SURFACE ELEVATION VS TIME .:JNJ"" SECOND STAGE DEVELOPMENT A u .... ,"',CDl'pt CRATER LAKE Or,".flt·W' DI r"'v ..... '. ~ RECOMMENDED PLAN ~J.:~ HYDRAULIC TRANSIENTS STABILITY PROFILE I OF IV G ~, lcall' ~8 BHOWN Ih .. 1 .O._0J.:. • r".rlnOI I " IHYDRt.., 0.'1' I. AUG. U IUlln".,. "Z<:,d ., . r,~ ° 6f,{[,1~. -arewlng 'h •• I_.I _ Cod.' I~_ ....... n ........ 5 I 4 3 I 2 DESIGN MEMORANDUM 26 PLATE 83 t D c B r--- A 5 POldER CHP) • 39"0E+5 • 3930E+5 • 3920E+5 • 3910E+5 • 390eE+5 .3880£+5 . 3870E+5 • 3868E+5 . 385eE+5 • 38"0£+5 I 4 I 3 DESIGN SURGE TANK DIA. = 10.0 FT. CRATER LAKE TRANSIENTS -STABILITV -VENTED TANK -MECHANICAL GOVERNOR GATE SPEEn TURBIHE SPEED. GATE OPEHIHC , POWER US TJ~ tl ~DEl YR2-1.e?S.eee (RPM) Ie FT DIA~T£R TANK TE~ORARV SPEED DRoOP-e."e (ATHREE o 3.31) (X) 601. r-~~-'--------~------------~-------r------------r---------'-------~------------r------r-------'le0 • I \ I r~ , 6".3~~~~'1~11~--------~------+------+------------r-------;r-----+----------~-----r----~~·5 II \111 ~ I~ I II ~ltl 599.6 M-~"++~~Lf-\---±----+---t----t--____1t_--t_--+----t 99. :f ,'/ J V\ / -y -M-~ " _ :>~ I \ \ /\ / ~, ~,-L:.--.. 598. 9 H-t,'I~t! -+H" f-\.-IV----jr-'+---+----loo-+I/'......../"1:""'"--::1""t--~"-+---+--'::::O""'7,.....--~+-~"'-1 98.5 f I '\ / 1''. / '" 11 , -'-...o7~ / """--~_ -_ ~ ~ / _-~_ 598.2 ~'4i-1~r--!f--1~\~,~,T-~~----~T/~-r--~-~~-r~~~~~~-~~-~-~-~~-~t-~~~~--~98. Ii \ ! 597.5~4-~~~-~---r---+---;------1f----~--+_--~------'~.5 I' I ---+-'W-ELEM T1 -St'EED - - -~ ELEM T1 -GATE ppENING ~~f--+---~---rr----~--+~~E~~l~EM;--.T~l~~---~FPU~E~R,-~--~---,~· ~~r-;------+--------~------+-----;-----_+----_;------r_----4_----~~.5 ~~-+---1-----~--_r-------+---;--____1f__------r_--+_--;~ • ~~---+-----~----~-----~-----t----t------____1t_--t_--+_------~95.5 L---L--~~-~--~--~---L--~--~--~-~95 . 6e. 8e. 10e. 12t. 1"0. 160. 180. 2M. TII'IE (SEeS) TUNNEL 'lJ .. 12.4' SURGE TANK I[) = 10.0' RUN OF 2" APR 8" AT 17128t55 HP: 38,500 HP= 39,000 RESERVOIR ELEV. = 858' 5 1 2 TURBINE SPEED, TURBINE POWER AND WICKET GATE OPENING VS TIME I 4 3 , 2 1. SEE PLATE 82 FOR LOCATION OF STABILITY RUN. 2. PROFILES ARE BASED ON DATA FROM COMPUTER PROGRAM • WHAMO·. 3_ INITIAL TURBINE NET HEAD. 831.4 FT. 4i. TAILWATER ELEVATION. 12.5 FT. '" MINIMUM HYDRAULIC LOSSES ".vlslona D c 1--.- 1_·='m=.=.It===========D=.,=.,'~."=.n'~====~=D='''=F'= .. ='O.='dl 1_ 1- 2 I u.s. ARMY ENGINEER DISTRICT CORPS OP ENGINEERS . ANCHORAGE, ALASKA SNETTISHAM PROJECT, ALASKA [1J] SECOND STAGE DEVELOPMENT 1-=-_~""'-""'.b.bL~_, U"'m.C~" CRATER LAKE Of •• n bWI oj El'le'~'" RECOMMENDED PLAN HYDRAULIC TRANSIENTS STABILITY PROFILE. II OF IV DESIGN MEMORANDUM 26 PLATE 84 A r--, 5 ! 4 I 3 2 I 1 THIS TANK REPRESENTS INICIPIENT INSTABLITY AND IS LESS THAN DESIGN SIZE -NOT RECOMMENDED FOR DESIGN DIA.= 7.3 FT. D D 1. SEE PLATE BZ FOR LOCATION OF STABILITY RUN. CRATER LAKE TRANSIENTS -STABILITY -VENTED TANK -"ECHAHICAL QOUE~NOR I. PROFILES ARE BASED ON DATA FROM COMPUTER E1.£V PROGRAM • WHAMO·. eFT) SURGE TANK WSEL VS TIME 854. I. INITIAL TURBINE NET HEAD. 831.4 FT. 4. TAILWATER ELEVATION. 12.5 FT. t-- 8S3.5 1/\ (\ r\ a. MINIMUM HYDRAULIC LOSSES .,. / 853. \ I \ I \ c 1 c asa.s I \ / \ I \ 852. r\ / I , I \ ~ 851.5 \ / \ I ~ I ~ f- 851. \ I \ I \ / \ ISt.S \ / \ V \ V \ B 8 J 858. ~ 11 v '\.../ V 848.5 ... wlst.". I.,mbol D •• crlpllon. Dale Appro",od 1- 141. •• •• .... ,e. 88. lee. 128 • 1 .... Uie. 188. .... TI"E (SECS) TUNNEL ([)~ 12.4' SURGE TANK (]) = 7.3' ... OF 23 NIl 84 "T 7'56'17 I u.s. ARMY EHGlfrrt£ER DISTRICT HP= 38,500 HP~ 39,000 RESERVOIR ELEV. = 858' CORPS Of EIrIIGIN££AS 1 2 ... fiCHORAGf:, AL.ASKA A DU'gnsCl t.V_ mil SNETTISHAM PROJECT. ALASKA WATER SURFACE ELEVATION VS TIME ::r'-l::r SECOND STAGE DEVELOPMENT A Drawn bVI UIliA.ft\,£:OI'~ CRATER LAKE Dlfrl'_." --~ RECOMMENDED PLAN t!d!7~ HYDRAULIC TRANSIENTS STABILI,TY PROFILE III OF IV (I~" . lui •• AI SHOWN Sh ••• . • .. J.. r.'.,enee " It "~,,o, ... ~ Dale. 14 AUG. 11 '1 ... lIIlIan ."f..z.~ bJ~;nL Drawln. Ih'" ., CH ,.... ,0. C ••• , , ........ , ..... 5 I 4 I 3 I 2 DESIGN MEMORANDUM 26 PLATE 85 5 I 4 I 3 2 1 1 THIS TANK IS LESS THAN DESIGN SIZE AND IS UNSTABLE -NOT RECOMMENDED FOR DESIGN DIA. = 6.0 FT. D 1. SEE PLATE B2 FOR LOCATION OF STABILITY RUN. D 2. PROFILE IS BASED ON DATA FROM COMPUTER PROGRAM • WHAMO·. CRATER LAKE TRAHSIEHTS -STABILITY -UENTED TANK -~EC~ICAL QOUERMOR I. INITIAL TURBINE NET HEAD. 831.4 FT. EI.£U SURGE TANK WSEL VS TIME (FT) 4. TAILWATER ELEVATION = 12.5 FT. -- 856. /' I. MINIMUM HYDRAULIC LOSSES 855.1 r\ / /\ 854.2 7 \ I \ I c c / r\ 1\ a53.3 I \ -; \ I \ 852.4 / \ V \ I \ r\ f-- SSI.5 \ / \ \ I , 1 I J SS8.6 \ / , I \ I 1\ V 11 B B "49.7 ~' V \ / \ / .4a.a \. /' V nevl.lonl 8-47.9 Sw-mbol O •• ulptlonl Oal. Appro\lld _._- - 841. e. 28. ..e. 68. Bt. lee. 128. 1-4e. 168. 1 ... ... TIPIE (SEeS) I SURGE TANK 0 = 6.0' u.s. ARMY ENGINEER DISTRICT TUNNEL 0. 12.4' CORPS all EliGINEER$ ANCHORAGE, ALASKA RUN OF 24 APR 84 AT 14157151 HP: 38,500 HP: 39,000 RESERVOIR ELEV. : 858' o •• IUnld bWI [ZD SNETTISHAM PROJECT, ALASKA A A 1 2 :;r",;r SECOND STAGE DEVELOPMENT Ufo ""nl, COIP' CRATER LAKE Dr ..... n bw. 01 fflIiUl.,,' ~t'--4-_RECOMMENDED PLAN WATER SURFACE ELEVATION VS TIME !r~~ HYDRAULIC TRANSIENTS ~/_. --=:;:? STABILITY PROFILE IV OF IV , "',. (~t~~ . 5calll AS SHOWN &h •• 1 rol.fonce "H'-' H ~o~~ nUIIILlOtrl ·,~:f~1,~1.l;1<V 01'1. 14 AUG. 17 Ouwlno Sh •• t_ol_ CHI tHQIII I '10 .. Code: ,.........-..ol--aa-o. 5 I 4 I 3 I 2 DESIGN MEMORANDUM 26 PLATE 86 t 5 4 I - 3 _. 2 l 1 1. SEE PLATE B2 FOR LOCATION OF DEMAND RUN. D 2. PROFILES ARE BASED ON DATA FROM COMPUTER D I PROGRAM • WHAMO·. CRATER LAKE, SNETTISHAM, HVDRAULIC TRANSIENTS -DEMAND-le FT DIA~ VENTED TANK 3. NODE 1400 IS THE INTERSECTION OF THE SURGE ELEV TANK DRIFT TUNNEL AND THE POWER TUNNEL (FT) SURCE TANK ~SEL , PIEZ ELEV AT TEE VS TI"E 51.5' THROAT DIA"ETER (TIE). 836. r HEM STa ~.s. ELEV. 4. QUIESCENT TURBINE NET HEAD. 784.1 FT. ~ -f--- 828.8 u NODE 1<408 - P EZ. ELEU. 1/ '\ 5. LAKE WSEL • 820 FT. 8. TAILWATER ELEVATION = 11.4 FT. 821.6 ~ ¥ \ 7. MAXIMUM HYDAAULICLOSSES C t ~ 81'4.<4 C J \ ) ~ '"" ~ 807.2 ~ 1 ~ / -·0 J ~ v ,-- 792.8 I 785.6 B f /, B 778. <4 ~ /1 771.2 V VJ Revl.IDn. _.,mba. D"crlptton' D.'. Approved 76 .... I- e. 2e. ..e. se. ae. lee. 12e. 1 .. e. 168. 188. 2.e. . TIPIE (SEeS) RUM ~ 28 NIl 84 AT 13'28'38 I u.s. ARMY ENGINEER DISTRICT CORPS Of ENGINEERS ANCHORAGE. ALASKA A I Dullftld bWI m SNETTISHAM PROJECT, ALASKA SURGE TANK WSEL VS :1",," SECOND STAGE DEVELOPMENT A TIME D'awft bVI Lli "ftlvCOI'pt CRATER LAKE I .'''i_e,. "'-RECOMMENDED PLAN PIEZOMETRIC ELEVATION AT 1?l!'J~!~ HYDRAULIC TRANSIENTS TEE VS TIME LOAD DEMAND PROFILE I OF IV ~. leall. AS SHOWN 'h ... rot.renca I~~ 'tD lin o:.r.... Pall. I. AUG. 17 hUlnb.'1 :t..t:l 5 I c. ..t.~':f.(,ll. ~ D,."",lno Shu, D' 4 I Code: , __ ...... ...-.0. 3 I 2 DESIGN MEMORANDUM 26 PLATE 67 t ---_._--- 5 I 4 I 3 2 1 1 1. SEE PLATE B2 FOR LOCATION OF DEMAND RUN. 0 0 2. PROFILE IS BASED ON DATA FROM COMPUTeR PROGRAM • WHAMO·. CRATER LAKE# SNETTJ$HA~# HYDRAULIC TRANSIENTS -DE~AND-1e FT DIA~ VENTED TANK Et£V 3. NODE 2100 IS AT THE UPSTREAM SIDE OF THE PIEZ £LEU AT TURllHE US TI~ 51.5· THROAT DIAI'IETER (FT) TURBINE. 828.1 1 4. MINIMUM PIEZOMETER ELEVATION EQUALS S88.1 FT, -j I ses.l AT 0 •• SEC. .... I /' ~ I ~~ ----~ •• QUIESCENT TURBINE NET HEAD. 784.1 FT. 782.1 V ~ ~ I ~ / •. LAKE WSEL • 820 FT. I I C 759.1 ~ l/ cl 'J. TAILWATER ELEVATION .. 11.4 FT. 1 NODE 21ee -p EZ. ELEV. I 736.1 I. MAXIMUM HYDRAULIC LOISES I 1 713.1 --I al .- J 698.1 11 I 667.1 B B "'''.1 621.1 I Aevlalonl 'wmbo' D •• crlpllon. D.,. Approvld S •• l ---e. ee. ..e. S'. S8. 18 •• 121. 1 .... IS •• lS8. e ... TIME (SEes> RUt OF 28 MIt ... liT 131.'38 I u.s. ARIoIY ENGINEER DISTRICT CORPS Of ENGINEE AS ANCHORA.Gf, ALASKA PIEZOMETRIC ELEVATION AT TURBINE VS TIME D .. IURld bW' [ZI] SNETTISHAM PROJECT, ALASKA A .'OJ:> SECOND STAGE DEVELOPMENT A U~ ~1mw C"'PI CRATER LAKE Drawn taWL o/t:I'I~_.n ">rt<-. RECOMMENDED PLAN ~~~ HYDRAULIC TRANSIENTS LOAD DEMAND PROFILE; II OF IV (I~;' SCIII' A8 SHOWN Sh •• 1 , --H II I~h~o:~ rol.r.n~. b.'I, lu.,nl.l.'1 '.~!"'f. ~7&. I. AUG. 17 or • ...,lno o • .J'i.N.. '(,;.1.0 c.. Coda: '--.-.0 .......... Sh •• , .. 5 I 4 I 3 I 2 DESIGN MEMORANDUM 26 PLATE B8 I 5 I 4 i 3 2 1 1 0 CRATER LAKE. SNETTISHAM. HYDRAULIC TRANSIENTS -DEMAND-10 FT DIAM UENTED TANK 1. SEE PLATE 82 FOR LOCATION OF DEMAND RUN. 0 I POldER GATE (HP) Flf~s ) TURBINE FLOU. GATE OPENING. & POWER us TIME 51.5' THROAT DIAMETER 2. PROFILES ARE BASED ON DATA FROM COMPUTER 00 490.1 110. PROGRAM· WHAMO·. h ~"------ .3510E+5 --' '"..j ..... -~ 1-.--..,:0-: ~-:...-....,. 1------_...-,. 3. QUIESCENT TURBINE NET HEAD ~ 784.1 FT. 441.1 r",) ," ----99. ''''II .;I' -' 4. LAKE WSEL • 820 FT • . 31Z0E+5 392.1 P 88. ~ HEM T1 -DI CHARGE S. TAILWATER ELEVATION. 11.4 FT. .Z730E+5 ----0 HEM T1 -GATE OPENING 343.1 ----"' .. "" n -[V.II:.r 77. e. MAXIMUM HYDRAULIC LOSSES I C .2340£+5 I C I 294.1 SS. • 1950E+5 245.1 55 • • 1560E+5 I I 196.1 44 • • 1170£+5 147.1 33. 7800. 390e. 98.06 aa. B B e. 49.0S 11. .0SS7 h -3900. I. I. a0. 40. 60. 80. 100. lal. 140. lse. 180. a80. A.lft.lons TIME (SEeS) Irmbol D •• trlplhm. Dal. Appro,,,.d -- RUM OF 28 "AR 84 AT 1312813i TURBINE FLOW, TURBINE POWER AND I U,S AR""'" ENGINEER OtSTRICT CORPS OF £NGtNHRS ANCHORAGE, ALASKA WICKET GATE OPENING VS TIME O •• tuned b)'1 !!:ZIl SNETTISHAM PROJECT, ALASKA A To,," SECQND STAGE DEVELOPMENT A O,.wn bYI us Arm,COlp, CRATER LAKE Df[ftQln •• n "'t<A~ RECOMMENDED PLAN Im!.i~~~ HYDRAULIC TRANSIENTS LOAD DEMAND PROFILE III OF IV I~I r S~.I.: A8 8HO~Q~:~~nc. ~ -, .hu.4-t-!lumb.r; • 0 1./ .. '10 .. 0 ..... Oa'el ~~~~j ~/.;..~ 14 AUG. 17 ~~- Ctfl ~~ I ~IlN CDd.: , ...... -M-O, ...... 1501'1 •• 1 ., 5 4 I 3 2 DESIGN MEMORANDUM 26 PLATE 69 I c---4 : 3 2 1 1 5 1. SEE PLATE B2 FOR LOCATION OF DEMAND RUN. D D 2. PROFILE IS BASED ON DATA FROM COMPUTER CRATER LAKE, SNETTISHAM. HYDRAULIC TRANSIENTS -DEMAND-it FT DIAl'! VENTED TANK PROGRAM • WHAMO·. ELEU 51.5' TM~OAT DIA"ETE~ 3. ROOF OF POWER TUNNEL AT GATE SHAFT EQUALS (FT) GATE SHAFT ~SEL US TIME sae.s ELEVATION 797.0 FT. n 4. QUIESCENT TURBINE NET HEAD = 784.1 FT. B19.5 I ~ ELEI'! ST1 -IJ S. ELEV. S. LAKE WSEL ~ 820 FT. --B18.S I \ 8. TAILWATER ELEVATION = 11.4 FT. C C ~ -817.6 I \ / '" 7. MAXIMUM HYDRAULIC LOSSES ~ ~ 816.6 I "'" / 1\ 815.7 V' I I"'-"" B14.7 V 813.7 I B B 812.7 I 811.8 \ \J - R.vl.lons O.~~'lpuon. Dill. Approvllll SW'mbol --- 818.8 e. 28. 48. se. se. 1ee. 12e. 14e. lS8. 188. 210. TIlliE (SEeS) I u.s . .uUoIY ENGINEER DISTRICf CORPS OF ENCiINEERS RUN OF 28 MR 8.f "T 13*28'31 ANCtlOAAGE, AlASI\.A O .. IUned by! I!:Zll SNETTISHAM PROJECT, ALASKA A SECOND ST AGE DEVELOPMENT A GATE SHAFT WSEL VS TIME ;TN::S-us. ... "",e<><",_ CRATER LAKE Dr"~n bw: clIIEr>illI1 •• " RECOMMENDED PLAN ""'=------HYDRAULIC TRANSIENTS 11·{J'j-1~~./ LOAD DEMAND PROFILE IV OF IV WJ.1L..j1!Q.1III ------- ~""d,bVI 5celll' AS SHOWN 6h •• ' fol.rene:. '~~~l!'t(.~~L roumlJan Oalll\ 8 .. AUG. 17 Apr\lU.~ bVI '/ J O(.:IO/IIlnO-----,.------------- :,(, InC 5tuIII_ .1 ___ Cll~ I"QIIII~ IAu)H Ct>d.: ,1tHI.....-<II-QI-Ot i I 3 2 DESIGN MEMORANDUM 26 PLATE 810 5 4 I r 5 4 3 2 1 I 0 1. SEE PLATE B2 FOR LOCATION OF REJECT RUN. 0 CRATER tAKE. SNETTISHAM. HVDRAULIC TRANSIENTS -10 FT DIAM VENTED TANK REJECT 2. PROFILES ARE BASED ON DATA FROM COMPUTER EtEIJ SURGE TANK USEL 1 PIEZ ELEV AT TEE US TIME 51.5· THROAT DIAM REJECT ~ROM 47000 HP PROGRAM • WHAMO·. (FTl 1077. ~ . ~ 3 . INITIAL TURBINE NET HEAD I: 1001.5 FT. AI ----1067. (' ~ ~ 4. LAKE WSEL a1022 FT. EtEM 5T2 -IJ S. EtEV. Ai e NODE 1400 -PIe Z. ELEV. /" 1057. J~ '8" \\ ,V •. TAILWATER ELEVATION. 4.8 FT • e. MINIMUM HYDRAULIC LOSSES 1047. \\ II v c C 1037. \ I ~ 1027. ,. \ V ) I 1017. r-L/ \ J 1007. ~ II [\ iB 996.6 f\~ V / B 9S6.6 '\( ~/ I 976.6 0 10 20 30 40 50 60 7e 8e 90 lee Revisions TII'IE (SECS) Srmbol D."c,lpllon. D ••• Appro .... d 1- lUi OF 2 APR 84 AT 14:25:13 t SURGE TANK WSEL VS TIME I u.s. ARM Y ENGINEER DISTRICT CORPS OF ENGJNHAS ANCHORAGE, ALASKA PIEZOMETRIC ELEVATION AT TEE VS. TIME O_,.'sned bWI m SNETTISHAM PROJECT, ALASKA A A ;JNS SECOND STAGE DEVELOPMENT us "'m~ CD/pI. CRATER LAKE Dr.",," bWI 01 f."Ijl,n ... ,. '1ooe..-.--., RECOMMENDED PLAN It~~~ HYDRAULIC TRANSIENTS LOAD REJECTION PROFILE I OF IV I ~rtJJ);.;i I ... ,s, A8 SHOWN &h •• 1 (. -rol.ranc. I ~ 0 tt"~' O •• e. I. AUG. t 7 nUIlIU." 'Pp"~d ,l.1d L I DfewinD 5t1 •• '_.'_ dill.u. 1f.1 •• Cocl.: 1 ... ........0' ..... L 5 I 4 3 2 DESIGN MEMORANDUM 26 PLATE Bll I 1 t ---- 5 I 4 3 2 1 1 0 1. SEE PLATE B2 FOR LOCATION OF DEMAND RUN. 0 CRATER LAKE. SNETT I SHAM. HVDRAULIC TRANSIENTS -10 FT DIAM VENTED TANK REJECT ELEV 2. PROFILE IS BASED ON DATA FROM COMPUTER PIEZ ELEU AT TURBINE US TIME 51.5· THROAT DIA" CFT) REJECT FROM ~7ee0 HP PROGRAM· WHAMO·. 1275. 3. INITIAL TURBINE NET HEAD = 1001.5 FT. 12-46. ~ 4. LAKE WSEL = 1022 FT. 5. TAILWATER ELEVATION = 4.8 FT. 1211. I NODE 2100 -PIE ~. ELEV. 8. MINIMUM HYDRAULIC LOSSES 1188. c e 1159. 1130. 1101. ~ 1012. V.JW' V'-'-lJ ~ ~ ~ // B 1043. ~ .. " B ~ 101<4. ~ V ~ -----985.2 0 10 20 30 40 50 60 10 80 ge 100 Aavlalonl Dat. Approved S~mbol Olu;rlpll(ml TII"E (SEeS) RI.Ji OF 2 APR 84 AT 14:25113 I us ARU, 'NGIN,ER DISTRICT CORPS OP ENGINEERS ANCHORAGE, "LASKA PIEZOMETRIC ELEVATION AT TURBINE VS TIME D •• lgnld b~! II:ZIl SNETTISHAM PROJECT, ALASKA SECOND STAGE DEVELOPMENT ~~~ U& "'"nw c".p. CRATER LAKE Onwn b'W'. 011 f"ijll'l,lIr' A A RECOMMENDED PLAN '5~ ........ --------.... HYDRAULIC TRANSIENTS ~f.~~ LOAD REJECTION PROFILE II OF IV Sh •• 1 ~b~1 1,,,11' A8 SHOWN (1I1.rln'l , ,. ,~~~~ 111.10111.11" Oell' 14 AUB.17 :Z't,b~ ( Orawlno Shut_DI_ CHI l~N~{ t'it: Codl: ' ......... -ol-ot-Oe DESIGN MEMORANDUM 26 PLATE B12 I 3 2 5 I 4 I t D c R A 5 4 3 CRATER LAKE, SHETTISHAM, HVDRAULIC TRANSIENTS -10 FT DIAM VENTED TANK REJECT TURBINE SPEED & POWER VS TI"E 51.5' THROAT DIAM REJECT F.OM 47eee HP ---+----,~ HEM T 1 SPEE POWER (HP) ~~_-=~~ __ +-___ ~_-_-_-1-_-&~E=L=E~M~ __ T~l_-r_~P_O_W~Et-___ t-__ -t---~.~860E+5 ~~--~-~---+~-~~~----4---~---~r-----r----t-----t-----1'~320E+5 ~~ ~ • 3780E+5 .32~0E+5 .2700E+5 .2160E+5 • 1080E+5 ~~00. +-~ --------~-I---~---I-~. UL-----L------L------L--____ L-____ -L ______ ~ ____ ~ ____ ~~----~----~~S~". 70 80 90 1" 10 20 30 50 TIME (SEeS) 60 RUN OF 2 APR 8~ AT 1~l2Sl13 TURBINE SPEED AND POWER VS TIME 5 : 4 i 3 t 2 2 1. SEE PLATE 82 FOR LOCATION OF DEMAND RUN., D 2. PROFILES ARE BASED ON DATA FROM COMPUTER PROGRAM· WHAMO·. 3. INITIAL TURBINE NET HEAD Z 1001.5 FT. 4. LAKE WSEL = 1022 FT. 5. TAILWATER ELEVATION. 4.8 FT. •• MINIMUM HYDRAULIC LOSSES Iwmbol R.wl.lona Oeu,lpllona D.,. Appro'ud J u.s. A.R~Y ENGINEER DISTRICT CORPS 0' ENGINEERS ANCHORA.Ge. ALASKA SNETTISHAM PROJECT, ALASKA ;:jNT (I:ZIl SECOND STAGE DEVELOPMENT I------'=="'-------j U".m,C~.. CRATER LAKE DuwnbVI oIheU\lltrl RECOMMENDED PLAN ----., HYDRAULIC TRANSIENTS (?.:Jj},t-,[/ ~ LOAD REJECTION PROFILE III OF IV 'HI" :.'~ 51'1 •• '_"_ DESIGN MEMORANDUM 26 PLATE 813 c 8 A 5 I 4 [ 3 2 ! 1 D D CRATER LAKE, SNETTISHA~, HVDRAULIC TRANSIENTS -10 FT DIAM UENTED TANK REJECT 1. SEE PLA TE B2 FOR LOCATION OF DEMAND RUN. EUtI (F'Tl GATE SHAFT IoISEL US TI~ 51.5" THROAT DIA~ REJECT FROM ~7ee0 HP , 2. PROFILE IS BASED ON DATA FROM COMPUTER I leai'. PROGRAM • WHAMO·. I ~ / ~ i~26. I ...... -...../ \ 3. CONTROL ROOM FLOOR EQUALS ELEVATION -,..-HEM STl W S. ELEV. - ~ 1040.0 FT. 102S. ~ '\ V 4. INITIAL TURBINE NET HEAD • 1001.5 FT. J / 10a ... I \ / 5. LAKE WSEL = :1022 FT. C C 1023. I ~ / e. TAILWATER ELEVATION::' 4.8 FT. I , 7. MINIMUM HYDRAULIC LOSSES 1023. j \ I 1022. I \ / 1021. I \ I 1020. -.J \ / B B 1019. \ / ~~ ~ 1018. e 10 20 30 "0 50 6e i'0 8e ge lee TIME (SECS) Swmbol R • .,lslons Osac.lptlona Dale Approwed - RUN OF' a APR 8-4 AT 1<f:asS13 GATE I u.s ARMY ENGINEER DISTRICT SHAFT WSEL VS TIME CORPS Of ENGINEfRS ANCHORAGE, AlASt(A Dulgned bWI [ZIJ SNETTISHAM PROJECT, ALASKA A ..:IN::l SECOND STAGE DEVELOPMENT us A,m, CCWptl CRATER LAKE Drawn bWI 01 EnQu ... ar. A ""-~ RECOMMENDED PLAN Ir:.;};;.~ HYDRAULIC TRANSIENTS LOAD REJECTION PROFILE IV OF IV '?&.l;'" , Sca'S. AS SHOWN Shu' ( ........ -_ '!46"~_ ,D'.renc. "gLII~AO .• fII Da.e. 14 AUG. U "".lInUer. ',~1r.VZ b" L '"' II ~,~ /I~iJ Or.wlnu Sh .. l_o'_ Code: I ....... ........al~ 5 I 4 I 3 2 DESIGN MEMORANDUM 26 PLATE B14 , 5 1 4 I 3 2 1 1 0 1. SEE PLATE B2 FOR LOCATION OF OVERSPEED RUN. D CRATER LAKE, SNETTlSHAM, HVDRAULIC TRANSIENTS-10 FT DlAM VENTED TANK OUERSPE~~ SPEED COATE 2. PROFILES ARE BASED ON DATA FROM COMPUTER TURBINE SPEED & GATE OPENING US TIME 51.5' THROAT DIA" FROM ~7,e6e HP/18e_ GATE PROGRAM • WHAMO·. (F!PM) 00 S0e. 10. 3. INITIAL TURBINE NET HEAD 'K 926.1 FT. !\. P... - 870. " ~9. , ~ 4. LAKE WSEL = 965.5 FT. , r--84O. I "-8. 5. TAILWATER ELEVATION: 11.4 FT. ~ I ~ e, MINIMUM HYDRAULIC LOSSES 81O. r ............ 7 • C ~ C r--.... 780. ............ 6 • ELEM T1 -SPEED ~ , ----& ELEM T1 -CATE OPEN tiC i--... 75O. , ~ 5. , -- 720. I ..4. I 69O. I 3. , I B 660. , 1:2. B \ 630. ,. 1. \ ...... n n n b. 600. . Ravlslona 0 10 20 30 4O 50 60 70 80 90 100 Iwmbol OeurlpUona Oa', ApprQved -- TIME (SECS) RUN OF 3 APR 84 AT 12:45%31 -- I U,I, AH"~ I!NGINteR [lIBTRIC' CORPI 0' I!NGINH". ANCHORAGI!, ALAaKA TURBINE SPEED AND WICKET GATE OPENING VS TIME D.tlgned b.l ~ SNETTISHAM PROJECT, ALASKA A A ~",';l SECOND STAGE DEVELOPMENT u~"'rm,CQlpt. CRATER LAKE I Drawn b'l 01 ling __ n ~ RECOMMENDED PLAN C!:JJ!!~~&. HYDRAULIC TRANSIENTS ;..~:' .. :-;;' ~~ MAXIMUM OVERSPEED (~" lea'a, A8 SHOWN Ih .. 1 rol,,.nl;' -I~",~~:.:J.-IUlmb.rt :~O"J.~ Oal.. 14 AUG. 17 (; r.-~Q 8. I lOW Drawing Sh •• I_D'_ Coda: 1-.. ......-01-0l-0I 5 4 3 i 2 DESIGN MEMORANDUM 26 PLATE 815 , t ... j r 5 l 4 1 , 1 3 2 1. THESE CURVES ARE BASED ON THE FOLLOWING: 0 8. LAKE WSEL : 1022.0 FT. 0 CRATER LAKE, SNETTISHAM. HVDRAULIC TRAHSIEHTS -SPHERICAL VALUE 30 SEC CLOSU~£ b. TAIL WATER ELEV. = 4.8 FT. £tEV PIEZ ELEV AT SPHERICAL VALVE & VALVE ANGLE VS TIME POSH c., ELEV. OF SPHERICAL VALVE. 7.5 FT. '"1 (DEG) U4S. r->' d. INITIAL FLOW THROUGH SPHERICAL VALVE. 471 CFS JJ' --r--- ------;-- ---~ 8. INITIAL TURBINE OUTPUT -47. 011 HP 113e. I ll'::J·5 (BLOCKED OUTPUT) I·~ -- rI f. INITIAL NET HEAD ON SPHERICAL VALVE : 1125. ,/ 6. ENERGY ELEVATION AT VALVE MINUS ,/ ~HOIE ae ~0 -PIE ~. EtEV. I --& ELEM Vc -VA VE AHGl ELEVATION OF VALVE = 1008.1 -7.5 = 1000.6 FT. 1. lUte. ~ 6.15 I g. MINIMUM HYDRAULIC LOSSES C C ~If 1085. ~ 2. PROFILES ARE BASED ON DATA FROM COMPUTER i 7. I PROGRAM ·WHAMO-. I 1070. , if 7.15 I 1 -.... ----.. (( ~ I' i'.. lesS. , ) V ~ o. I r-- I V ~ 10~0. , V ~ X 10 •5 I I ) leas. t! I / D. I B B I 1010. I / .5 I 9g4.5 It ..)11"" -. e 5 10 15 ae as 3e 35 40 45 58 55 68 A.ylslon. TIME (SEeS) S,mbol O •• crlpllcna D.'. Apf)r~>I~·d ... -1- ._- RlI't OF 5 APR 8~ AT 11 ~5az 37 I UJI. AR ... ", ENGINEER DISTRICT CORPS OF ENG.INEEAS PIEZOMETRIC ELEVATION AT SPHERICAL VALVE AND "HcHOHAaE, ALASKA. O •• I&".d b,~ ~ SNETTISHAM PROJECT, ALASKA A :::n,,:> SECOND STAGE DEVELOPMENT A VALVE ANGLE VS TIME O ... "",n bw; 1J!l.'m)lCI;>fJli CRATER LAKE oolf.f\\l~." ...".,..~ RECOMMENDED PLAN t'~;1,~ HYDRAULIC TRANSIENTS SPHERICAL VALVE CLOSURE I OF II _M. . ..... . I~-" , $.:.1&1 AS SHOWN ,,, ... ~.m.. ;:'f(:U:.I;;t-~ ,~I.l.nc. nuudH.n ~P'f.t':1d -.. ~f f1 C2 O.i .. 1 &4 AUO. ,., 1--==---~~~::In, ............ t"" Sh •• t_O'_ "!!.II! ~;. i.I'I). 5 j 4 I 3 i 2 DESIGN MEMORANDUM 26 PLATE 1316 t 5 I 4 I 3 2 1 1. THESE CURVES ARE BASED ON THE FOLLOWING: D 8. LAKE WSEL I: 1022.0 FT. D CRATER LAKE, SNETTISHAM, HYDRAULIC TRANSIENTS -SPHERICAL IJAtUE 30 SEC CtOSUR~ b. TAILWATER ELEV. = 4.8 FT. Et.EV POSN n'T) ~L IH SURGE TANK AHD SPHERICAL VALVE ANGLE VS TI~E (DEG) C. i ELEV. OF SPHERICAL VALVE I: 7.5 FT. 107 .... S. d. INITIAL FLOW THROUGH SPHERICAL VALVE = 471 CFS ~ --f-- -V-~-f------< I •• INITIAL TURBINE OUTPUT I: 47,011 HP (BLOCKED OUTPUT) 1~68. I / "\ ,::>.5 ELEM ST2 -W.S. ELEV. cf 1\ -----e ELEM V2 -VAL~ fo ANGLE ~ f. INITIAL NET HEAD ON SPHERICAL VALVE: U~6a. I V \ 6. ENERGY ELEVATION AT VALVE MINUS ELEVATION OF VALVE = I 1008.1 -7.5 = 1000.8 FT. ~ 1056. / \ 6.5 g. MINIMUM HYDRAULIC LOSSES C C I ( 1\ 10se. , / \ 7. I. PROFILES ARE BASED ON DATA FROM COMPUTER I PROGRAM ·WHAMO·. I Ie ..... I' V \ 7.5 I r! c ~ J 1038. / J , 1°' I ~ le3a. / V 8.5 I 1826. ({ 9. B I / B I 102e. / .5 / V ~ / iL Ii -101 .... . Aewi.lona e 5 10 15 20 25 38 35 '" "5 50 55 &e 'w mbot D •• crlpUon. 0",. Appro..,.d ~ TIME (SEeS) 1- RUN OF 5 APR 8 .. AT 11152137 1 u.s. "-RIrIIY ENGINEER DISfMICT CORPS Of ENGINEERS WSEL IN SURGE SPHERICAL ANGLE "IoICHORAGE. A.LASKA. TANK AND VALVE D.,luned bWI ~ SNETTISHAM PROJECT, ALASKA A ::3"'S SECOND ST AGE DEVELOPMENT A VS TIME U![o,.,m,COfpl CRATER LAKE Dr."",,, bW; 0<1 fnaln.,,, ........... =-RECOMMENDED PLAN HYDRAULIC TRANSIENTS lot,?~~ SPHERICAL VALVE CLOSURE \I OF 1\ ,{.JJ r. . r.'<Z<../ C 1m b " - Scale, A8 SHOWN Sh •• , rolel8nce , ~o:l;l-t ... "~unb.rl ',~t\~ b" V ( 0.'8' I" AUG. n Drawlno Ih •• I_D'_ Clijl '~ J.~.;~~' , Cod.1 1 ..... .....0 ........ 5 I 4 i 3 2 DESIGN MEMORANDUM 26 PLATE B17 t CORPS OF ENGINEERS '" Z ;:: "" 0:: '" ~ ...J Q. '" ::IE <l Z 1040 f----+---+---+----+---+---+--+----+----+--__+ 1++----1;---+: =---+-I------,---------,-----,-,--,----,--,---,---------,------,---,-----,---,---------,------,----------,-J 1020 f-----1 __ __+--+--+---+----+--+---+--+--+_--\__~.N2+--__j.H~-___I_~.N'-O +--t---."~~f-----1----->i:.IU "\.o~------=<¥-_+-' +: ~tAol\"\-/ ~ If /f Ii v~ / Ilf /~O) / vfJ O J. L V9 "10" r" I~ 1000:MA:X:.N--tE=+-=H-E=A-D~-+9+",9-0=.-5~:~-{~-~t+-~R-I~~-0~--~t-pr::-Tr;n-42---1~p'-T,oPU-HTp-'3-+II"( 5-0-Kw--+--+--+--+-1 fif---+--/-H--/-+:~h/:--+--/----IT---t-/-'-r/-J,<..-jv--+V-/--+V---C/~'I--!-: -\---/.---1~~k::-cm--t~--:;;;'T7""ON~A--I--/--ft-/-----p.\-------1rr-o:::-<>'----iI-/-t-t).// 980 } 17 / I V IV 1/ /! vV,1 q\~ol'---~ JiV L / 960f-----1-__+--+---+---t--4--+-----If---+--4--Ht-/--~--+_~+_~~-+_-~\__~___t__+~~-~~-+-~~·~__t_--~~~-r~~~~-~ h,~ / 1/ 0 ,;; / j I :/I V / / I 1./; ~~ ) hl/j/V,~~.~(:. MEAN (DE SIGN) NE HEAD 94 ,5 .rGE.~ERATOR A 2/3 RAT DOUTPU -20,7001 W :; II ~ r V /.~ .... 940 \ TL IBINE· OU·!PUT-.' 1300 HP m 920 f--I _-+--__+---+----+----+----+--+---+---+--++-/+-/~ +-+/~I__t__I__/t--lli/~~/ ~">---''£H-jV--------k-V--i---<!>-: _ _+_I+-V _------¥+V 10+-/_+----~f_---t-----A'---/J-----A-V-A'v:-----7'L~~,~~C·_+_!<-___t_-~ ~ /11 If / J / I/? / / :~v /I~i CONDITI0~8:I/V~~oF" L: I------I---+---+----+--_+_----+-___+_ I / I / ;'1 I / V /1 v V lV I v j:P ~ v ~~ / y : t-/? 7 j,r! / f / t, II / : / v~~/ ~ ::: I-R_AT_ED_---.JNf-ET_HE_AD+-847_.0___l_----={~-~:+~1_~~T_~_Tr~:_T~_;;_, ~f-,go_~p_K~-+-~_~~_~ --If--+I/-1HI4-//-----Y-I/_~H//'--+----Irv---!JJ,H_I/-_+t_v-___H/':-'-f___l,__Av____t_ A-v;r/v;~~~ , / if / Ilf / ft / // IV, / /~~V;~O)~ I 8201--~~~---+---~--~---_f_--~---+--++_-4-+---f-+--~~__+_+__+_+/~_+_-+~~ ::: f---MIN. (--+CRIl C-AL) NE-Tf-HEA-D 788+-0-{;;o-R u +-~:-T~~~-2r+-'~-HOp Kw+------+~--+/---+-I-If--+-I/'----+-J.--I---1/--/---l-17-!-I't-f~;-/I+-V-/ff-~iL-..f./(--IOND,T-+-"o E---+-t;~4-I-~-+-a:jtr---.~f-A-1 ~---tr-~-+-V-----+--+--: +----t---t--=t! / / I / ~/ / // / (I ~e>-::~l/cONDI ION 0 / / / JiI I 'I I I If /' /j /~ -+-+--/: ---+-----I---+-j-+------+--l 7401--___t---+---+---+--~--~--4_---+---+---~--1--'--+--__+---+--_+_--_+_--___I_--~-~_+_--+_--.~--+_-~~_+_--4---4_--+---~--~~ 760 U. S. ARMY I. TURBINE CHARACTERISTICS PROVIDED BY HYDRO -ELECTRIC DESIGN 8RANCH OF THE NORTH PACIFIC DIVISION FOR FIG. 17 IN OM NO.23 (1973). 2. NET TURBI NE HEADS BASED ON 12' DIAM. POWER TUNNEL AND 6' PENSTOCK. 3. GENERATOR EFFICIENCY ASSUMED AT 98%. o 2 6 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56.--_56;;";""..---..,;6;,,;;,,,0 ___________ .... TURBINE OUTPUT -1000 HP Symbol Designed b,.: Revlslan. Descriptions Date Approved U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS ANCHORAGE, ALASKA J'w 1m! I----~--'-'--I USAfTW1eorp. Drawn b,.: 01 Engl ...... SNETTISHAM PROJECT, ALASKA SECOND STAGE DEVELOPMENT CRATER LAKE GEl< ALTERNATIVE PLANS I & II TURBINE CHARACTERISTICS ( LONG LAKE MODEL) Sealfl': Sheet relerenee I ____ --I g;~~~*;;;;_--=-::::-~ numt,er: r-- Sheet_of_ DESIGN MEMORANDUM 26 PLATE 818 CORPS OF ENGINEERS U. S. ARMY CONDITION A. RESERVOIR EL. 1022 FT. CONDITION B. RESERVOIR EL. 935.1 FT. 1075 990 SURG E.. TANK WATE!' SURFA \-I.E ELE ~ATION 985 -illflliE. T \oiNK W.A t.ER ...s.11E FACE E _EVUl lli 1070 ----RESSUR LEVE AT HE COMPU ER PR pGRAM MSURG 980 1065 ~" j ~ COMPU ER PR pGRAM WHAMC 975 :'\~--jl\ 1060 ',L." \\ rr. TEE : ( '~ E 1:11/7 PRES pURE L VEL~ E 970 I L 1055 ;r / \\\ pGRAM MSURCE L , / \~ E ----------COMPU ER PR E 965 I 1050 : / \\ V Ji! 1 \1 --0-~-COMPU ER PRJ GRAM ~HAMO V 960 A 1045 A : I '~ T i I \ T 955 I 1040 ~ I ! I \\ f "--l 0 I! I hl JL .l 0 950 N 1035 /OUIESCENT N iJ \\ ,1 ~ ~ r!j ... \~ ,tiL ~ ,V,A 945 1030 LEVEL 1022 FT. I :/ ~ " / ~ .1 ~ I II :1 ::fl -'ill :I~ v '~ 940 v----0UIESCENT N 1025 : N if , I '1 .t/ ['\ ;I<' LEVEL 935.1 FT. if ".'1, ~ i/// '§'::L 935 \ , F 1020 JL F i , 1/ ~ II \\ ... ~ :'1/1 ~ ,If '~\ E 930 , E '1\ ;/ '\ /I I\. E 1015 "Jl 11 \\.'''' --< 1 '"",, E 925 T T ,1 !L &, ; 1010 920 ,,~ /l ~ \\ iL -1005 "~, 11 915 \\ /j 1000 IL' 910 995 \\ ..... !l 905 ~V '-' 990 900 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 TIME IN SECONDS TIME IN SECONDS CONDITION C. RESERVOIR EL. 879.7 FT. NOTES: 935 --SURGE TANK~ ~TER S !:!.RFACE I ELEVATION 930 /I 1. SEE PLATE B 18 FOR TURBINE CHARACTERISTICS FOR CONDITIONS I '-----PRESS ~RE LE EL AT TEE . A, B, & c. 925 I I ~ 920 I 2. BASED 11110 FT. DIAI'HER SURGE TMK, 4.4 FT. DIAMTER I 1 \\ ORIFICE AND MINIMUM HYDRAULIC LOSSES IN POWER CONDUIT. 915 I I / \\ 3. ALL CONDITIONS ARE FOR 100% LOAD REJECTION WITH UNIT 910 , E : I \ OPERATING AT RATED CAPACITY AT 1.0 POWER FACTOR, OR L 905 \ E : I \\ 47,000 HP. V 900 : I \\ / , 4. CONDITIO!! A SHOWS RESULTS FROM DIGITAL COMPUTER PROGRArS A 895 "MSURGE" AND "WHAMO: DATA FOR CONDITIONS BAND C IS FROM T 890 : I \l 1 }... ~ "MSURGE" DIlLY. I Ii \l 'ii II ~ rOUIESCENT 0 885 , LEVEL 879.7 FT. N 880 :t 1 /1 ~ I! '\ II /1 ~ 1/ '~ Revisions I 875 1 Symbol Descriptions Date Approved N \ I \ I / \\ /1 ~~ 870 F 865 ' \ , / ~ .1. E \\ II -........... 860 E \\ /1 T 855 '~ II 850 u.s. ARMY ENGINEER DISTRICT 845 CORPS OF ENGINEERS 840 ANCHORAGE. ALASKA Designed by: m SNETnSHAM PROJECT, ALASKA 835 JvJ SECOND STAGE DEVELOPMENT US ArmJ COrps CRATER LAKE 830 D",wn by; 01£I'l'0l1,.. .. GcK AL TERNA T1VE PlANS I & n 0 20 40 60 80 100 120 140 160 180 200 [~~~ VENTED SURGE TANK TIME IN SECONDS L""!!::i!,.'!"t.,,~~=,· LOAD REJECTION PROFILES ~1'" Scale; Sheet AI-.o ... ".'.rence numb.,.; ~, . .~...-. ,,~ Dat.; 84 AUG. 17 2~ Drawing Sh_t_o'_ "". 11-Cocht: 1~'-«t-08 DESIGN MEMORANDUM 26 PLATE 819 o f- lIJ lIJ U. ~ z 0 i= <t > lIJ -' lIJ c f- ::> Cl. f-Cl. ::>:1: 00 w O z2 ID Z "'-::> f- -+-- 8 -- A 5 810 800 790 780 770 1 ;--SURGE TANK WATER / SURFACE ELEVATION 4 \iRESSURE LEVEL AT \RIFT TUNNEL TEE 1 l\ 1\ I :/£ I ~~~~---+---r---r--~--~~~----~--+---r---T 3 ~QUIESCENT LEVEL 1 2 I ! T-~lT I I . -1-1 •.. I --- I ' 1 I I , I ' I : II ~\\ \\\ (IV! I! I i COMPUTER PROGRAM "MSURGE" I I I II+-I \ I ,t} I I lee COMPUTER PROGRAM "WHAMO" I I ___ __~ ___ I-----+-_ _ ___ ' __ _ l 1\\ I I /V / _-__ . ---I II ---1-1 1 --I. PRESSURE L2O'M~'uT~ P~~~~M TY~It~hJEE .-----r--1I! 'I i ., [' I t' I ;1\ 1 \ \ /A~ -.... ---<>--·COMPUTER PROGRAM "WHAMO" 1 I I ---1 _ _ ! ___ _ 760 50 40 I ',-_ \~~~' I I 11 ---QUIESCENT ~O~~~}ER PROGRAM "MSURGE" --I --+-' 1-r -T-I' . I I T~RBlN OUT UT I II I ' +. -f--TURB~NE ~U~:;::: :::::: :::S:::'~ !-I. I -I--ttl +-1' r- I I J 8 8 COMPUTER PROGRAM "WHAMO" t-' I '+ I +' , + ~-t---t----f------j./-!-#--I---+---+I--+----+--t--+--'---;-.. --I I [ !, . I . ,-In ; - (/~ I . I ! illl 111,111+-- 30 ~:; ill I i I I I i I I I I I 200~~--~'0~~--~2~0---L--~30~~--~4~0---L--~50~~---6~0~~--~7~0---L--~80~~--~9~0---L--"'0~0~~--~110~~--'1~20~-L--~13~0--~-'1~40~-L--"15~0~~--~'6~0--~-'1~70,--L--T.18~0--~--~19~0--~~200 TI ME IN SECON OS CONDITION D RESERVOIR ELEV. 825 FT. UNIT LOADED o HP TO FULL GATE (APPROX. 4O,500HP.) NOTES: I. SEE PLATE 818 FOR TURBINE CHARACTERISTICS FOR CONDITION D. 2. BASED ON 10 FT. DIAMETER SURGE TANK WITH 4.4 FT ORIFICE AND MAXIMUM HYDRAULIC LOSSES IN POWER CONDUIT 3. DATA ARE FROM DIGITAL COMPUTER PROGRAMS" MSURGE" AND "WHAMO". A.wialons Symbol Descriptions 0 c B Date Approwoed ~---+--------------------------r-~----~- Designed by: r.Pr.'II 3w ~ 1--------=-------1 us ... .,...,Coros Drawn by: of E:"",I~ GfCK I U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS ANCHORAGE, ALASKA SNETTISHAM PROJECT, ALASKA SECOND STAGE DEVELOPMENT CRATER LAKE ALTERNATIVE PlANS 1&. VENTED SURGE TANK LOAD DEMAND PROFILE Shee. reference number: f------------J Sheet ___ 0' __ _ A ~ __________ ~5 ______________ ~1 ___________ 4~ ______________ -L1 _____________ 3~ _____________ ~1 ______________ 2 _____________ LIID_E_S_IG_N __ M_E_M_O_R_A_N_D_UM __ 2_6 ___ P_L_A_T_E __ B2~ t 5 4 I 3 I 2 1 CO NO [T I ON E. 4.5 FT. DIA. SURGE TANK CONDITION E. 6 FT. DIA. SURGE TANK ( THOMA DIAMETER) RESERVOIR EL. 825 FT. RESERVOIR EL. 825 FT. 840 820 - -URCE TANK 'WA ER SU~ FAC E EV TI N --URGE TANK 'WA ER SU~ FAC E EV TI( N 835 D A ~ 818 " D 830 1\ r I~ A E II I E '\ Iii (\ \ L I,~ r L ( E 825 A E V A ~ r (\ V A 1\ ( A 816 T 820 I I \ \ \ QUIESCENT T QUIESCENT I LEVEL 813.7 FT. I LEVEL 8137 FT. 0 0 N 815 N V I I \ I \ 814 -I 810 I e- N ~ U \ ~J \ N F 805 F E V V E 812 E 800 L E \ I T V T ~ \ \j \ I \ 795 810 I V ~ V f'J ,u V C 790 C 785 808 0 20 40 60 80 100 120 140 160 180 200220 240 260 280 300 320 340 360 380400 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 TIME IN SECONDS TIME IN SECONDS e-- CONDITION E. 10 FT. DIA. SURGE TANK RESERVOIR EL. 825 FT. NOTES: 816 TI~N I I I. STABILITY COMPUTEO FOR SMALL LOAD INCREASE (37.500 HP TO 39.000 HP) -I--URCE TANK WA ER SU~ FAC E EV IN ZONE OF DECREASING TURBINE EFFICIENCY. SEE PLATE B18. 2. EXPECTED HYDRAULIC LOSSES WERE ASSUMED IN THE POWER CONDUIT. 8 ! 8 3-PROFILES ARE BASED ON DATA FROM THE DIGITAL COMPUTER PROGRAM "MSURGE" E 815 1\ L 1/ 1\ ,; \ )"1 E V I ~ \ A r LEVEL 813.7 FT. T I ,,/\ /QUIESCENT I 814 I \ 1/ / \ I t1-"-vlalons 0 f' V\ Srmbol Descriptions Date Approved -N \ \ r ~ vvvl~ - I [ N 813 I I u \/ V'i F E E I T u.s. ARMV ENGINEER DISTRICT I CORPS OF ENG...eEAS ANCHORAGE, ALASKA 812 \11 o.algned b,.: Ill:!] SNETTISHAM PROJECT, ALASKA A I Jw SECOND STAGE DEVELOPMENT A Drawn b,.: USArmrCorPi CRATER LAKE .. ,- I GEK AL lERNA TIVE PlANS I & I ~kod?~ VENTED SURGE TANK 811 :...P2? --STABILITY PROFILE 180 200 220 240 260 280 300 3~0 340 360 380 400 OOIUH.-..'e ...... n_.Ec 0 20 40 60 80 100 120 140 160 ~b": Scale: Sh •• t . ... -r.'.renc • ~ H_ OGY Dale: number: TIME IN SECONDS AP:7fJJd." 84 AUG. 17 .,,' _, t::"-Onl.lng Sh •• t __ of __ Code: ,............-0, ......... 5 4 I 3 I 2 I DESIGN MEMORANDUM 26 PLATE 821 t CORPS OF ENGINEERS ~ W .... lL. Z C « W :J: .... Z aJ 0: :::l ~ ~ W Z 1000 .-----,-------,-~~ 980 I MAX. NET A: 9_0'~'+-1 ____ +-_-tt-__ t-_1H-___ ... _+-__ ,-1 960~ ~~~~~~~~~~~~~ 940 '.----+---+ 920 t-~-t---+-- 900 880 860 RAT o NET HEAD 840 820 I I I 800 ...L MIN.I (CRITI ALl N THE 0·788 0.1 780 t ---+---+1--t---r~--~ 760 t--t--t---I---t l --X __ +I_---i-_-l---1 I /1 I 740 I--.-+--+-~I----, 7 -T 7201-----+-----j--+--.++ -f ·1' .--+-'--f---+ 660 1....l1.. _ _ _ ~--<--L-~~_-'-'--------'L.-'- o 2 4 6 8 10 18 20 22 ~_r_---I-J'-+--1--+-----i'\---I 960 -+----j94O 920 H: --+---+---=R : CONDI ION C I 820 I +---+-----L 800 ILiTY CONDI ON A' 780 OEM NO l ... -----t- I -------t-_t+----+l'--,-'-j---/-+--+.l'1trN."7I'----rl.:O~F-O~ ---- -----++--+---+-+-.1 760 720 I +-+---+ -_. ---+--_. 740 .. t-t :I: '" '" § 0> ID _~~r~ -.... '" ... --I--+-----,----j 700 .--r----j--+-~ 680 ~2 ~4 ~8 40 42 44 46 48 52 54 TURBINE OUTPUT -1000 HP L TURBINE CHARACTERISnCS CURVES ARE BASED ON MODEL CHARl'CTERISTICS OF THE D\NORSHAK TURBINE MOOEL SUPPLIED BY HEDB 2 PROTOTYPE 01 MENSIONS' o. THROAT DIAMETER • 4.0' b. SYNCHRONOUS SPEED • 600 rpm 3. ·OVERALL EFFICIENCY" IS BASED ON EXPECTED TUR81NE EFFICIENCY, 98 PCT GENERATOR ~~f~~~C~'I;~m~E~O~~:~UU';J~EtO~~~S AT:I~A~~:M~';-EEV:T~~~E~F pl~:S~1'c:N 11FT, 4. RESERVOIR ELEVATION IS BASED ON A TAILWATER ELEVATION OF 11.4' 5. TURBINE OPERATION FOR SURGE CHAMBER STUDIES ASSUMED AS FOLLOWS' LOAD REJECTION CONDITIONS (A,B a Cl -OUTPUTS SHOWN. ARE PRIOR TO LOAD REJECTION. LOAD DEMAND CONDITION -OUTPUT SHOWN IS QUIESCENT AFTER DEMAND. STABILITY CONDITION -OUTPUT SHOWN INDICATES INITIAL AND FINAL QUIESCENT. 6. MAX., MEAN, RATED AND MIN. NET HEADS ARE THOSE BEING USED BY HEDB FOR TURBINE DESIGN. "0 '40 920 P .00 !:': Z 880 0 ;:: .. 8.0 > W ...J W 840 a: ~ 820 a:: W en w a: 7&0 740 10 12 I. 16 20 22 24 26 28 ~ '" 00 ~~ ~ ~~~ ~ci ;$; <Egg 32 34 ,. U. S. ARMY 38 40 42 GENERATOR OUTPUT IN THOUSAND KW Symbol I- .Do.O.".".Od_b.".:::'S,--W':':"_--1 EZI (JSA.my 01 Enog, ...... Drawn bw: GEK Drawing De5crlption. Dale Approv .. d u.s. ARMY ENGINEER DISTRICT CORPS OF ENGINEER!; ANCHORAGE, ALASKA SNET11SHAMPROJECT,ALASKA SECOND STAGE DEVELOPMENT CRATER LAKE AL TERNAnVE PLAN III TURBINE CHARACTERISTICS (DWORSHAK MODEL) Code: 1.........-0' ____ Sh •• I __ ., __ DESIGN MEMORANDUM 26 PLATE 822 - 5 I 4 'l 3 I 2 1 I THIS TANK IS UNSTABLE AND LESS THAN DESIGN SIZE-j THIS TANK REPRESENTS INCIPIENT INSTABILITY AND IS LESS THAN DESIGN SIZE - NOT RECOMMENDED FOR DESIGN NOT RECOMMENDED FOR DESIGN SIZE OF AIR CHAMBER SURGE TANK FOR THESE PLOTS: NOTES AIR VOLUME = 20,000 C.F. SIZE OF AIR CHAMBER SURGE TANK FOR THESE PLOTS: I PROFILES ARE BASED ON DATA FROM THE COMPUTER PROGRAM WATER VOLUME ~ 14,508 C.F. AIR VOLUME -34,000 C.F. "MSUHGE" AS MODIFIED TO ANALYZE AIR CHAMBER SURGE TANKS. TOTAL VOLUME ~ 34,508 C.F. WATER VOLUME ~ 14,50B C.F. TOTAL VOLUME -48,508 C.F. 2 MINIMUM HYDRAULIC LOSSES WERE ASSUMED IN THE POWER CON-D D SAFETY FACTOR FOR STABILITY ~ 20,000/34,000 = 0.59 SAFETY FACTOR FOR STABILITY -34,000/34,000 = 1.00 lJUIT FOR AN II FT NOMINAL DIAMETER POWER TUNNEL ANO 6 FT 870 821 n n OIflMfTER STEEL PENSTOCK 860 ~ A 3 SEF PLATE B2ZFOR TURBINE CHARACTERISTICS FOR STABILITY 820 CONOI T IONS E 860 A E " f'HOFI1.FS ARE BASED ON STABILITY CONDITION ''A,'' WH ICH IS THE L L E n E 819 MUS r CRITiCAL CONDITION AND IS REPRESENTED BY A SMALL LOAD V 840 V CHANGE AS FOLLOWS (SEE PLATE 822) A A T II T 818 AT TI ME " 0 S I 830 I TURBINE OUTPU T ::: 40,700 H P r---0 f\ '\ 0 TURBINE EFFICIENCY = 0.92 N /\ N RESERVOIR ELEV :: 831. 9 FT 820 ~\ / \ 817 TAILWATER ELEV. = 11.4 FT I I TURBINE NET HEAD-80.0..0. FT N 810 N AT TIME" 4S V \, 816 TURBINE o.UTPUT '" 41,50.0. HP F F TURBINE EFRCIENCY '" 0. 91 E 800 E RESERVo.lR ELEV ,,831.9 FT E V E 815 TAILWATER ELEV." 11.4 FT T T 790 5 STABILITY PROFILES FOR THE RECOMMENDED AIR CHAMBER V SURGE TANK ARE SHOWN ON PLATE 824. C 760 814 V V V v v C V V V V V 770 813 0 50 100 160 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 TIME IN SECONDS TII£ IN SECONDS ELEVA TION OF HYDRAULIC GRADIENT VS. TIME ELEVATION OF HYDRAULIC GRADIENT VS. TIME -.-- 168.8 166.5 S S U U 166.49 R R ~ ~ F 168.7 F 1\ A ~ A C f\ C 168.46 B B E E 168,6 166.47 E E L f\ L E 168.6 l\ E 168.46 V V\ If \ \ v A A 168.45 T T I 168.4 1 0 V V 0 166.44 N N Revls60ns Symbol Descriptions D.,. Approved I 1 168.43 .--.--N 168,3 V N F V F 168.42 E 168,2 E V V V E V V E li T V T 166.41 V V 168,1 168.4 I u.s. ARMY ENGINEER DISTRICT 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 CORPS OF ENGINEERS ANCHORAGE, ALASKA TIME IN SECON)S TIME IN SECONDS Desl9ned by; m SNETTISHAM PROJECT, ALASKA A .:r IV::) SECOND STAGE DEVELOPMENT A lIS ..... """'" CRATER LAKE WATER SURFACE ELEVATION VS. TIME WATER SURFACE ELEVATION VS. TIME Dfo.wn by; ... -JK.L AL TERNA TIVE PLAN III ~p,~~ ... AIR CHAMBER SURGE TANK STABILITY PROFILES I OF " (rntZ' b"J. ' Scale; A8 ..oWN Sh .. t reterenceo number: ~, . • c ....... UQ~Q.y ~ Oe'e; 84 A.UG. 17 1];;Ji: '" ..... ~ Ika.lng Sheet __ •• __ Code: 1~1""" 5 1 4 I 3 l 2 DESIGN MEMORANDUM 26 PLATE 823 5 4 I 3 I 2 1 I I THS TANK IS STABLE BUT LESS lHAN DESIGN SIZE~T RE~'FOR DESIGN ] 1 DESIGN TANK 1 I SIZE OF AIR CHAMBER SURGE TANK FOR THESE PLOTS: SIZE OF AIR CHAMBER SURGE TANK FOR THESE PLOTS: NOTES: AIR VOLUME -40,000 CF AIR VOLUME -51,000 CF I. PROFILES ARE BASED ON DATA FROM THE COMPUTER PROGRAM WATER VOLUME-14,508 CF WA TER VOLUME = 14,508 CF "MSURGE" AS MODIFIED TO ANALYZE AIR CHAMBER SURGE TANKS .. TOTAL VOLUME -54,508 CF TOTAL VOLUME = 65,508 CF 2.. MINIMUM HYDRAULIC LOSSES WERE ASSUMED IN THE POWER CQN- SAFETY FACTOR FOR STABILITY = 40,000/34,000 = 1. 18 SAFETY FACTOR FOR STABILlTY= 51,0001 34,000 = 1.50 QUIT FOR AN II FT NOMINAL DIAMETER POWER TUNNEL AND 6 FT 0 DIAMETER STEEL PEN STOC K 0 821 820 3. SEE PLATE 822 FOR TURBINE CHARACTERISTICS FOR STABILITy CONDITiONS 820 4 PROFILES ARE BASED ON STABILITY CONDITION "A" WHICH IS THE E E 819 MOST CRITICAL CONDITION AND IS REPRESENTED BY A SMALL LtJAO L L INITIAL HYDRAULIC E 819 E CHANGE AS FOLLOWS' V 1\ " V ~ GRADIENT ELEVATION~ I'... /1 ATTIME=OS A fI A 818 818.06 TURBINE OUTPUT: 40,700 H P T 818 T 1\ I~ f\ TURBINE EFFICIENCY" 0 92 ,--1 1\ 11\ /\ /\ / I 1(\ / RESERVOIR ELEV ;:0 831 9 FT f-- 0 1'1 0 I\A lrv" TA.ILWATER ELEV. '" 11.4 FT N N ~ 817.18 TURBINE NET HEAD'" 800.0 FT 817 817 I V V \ I) fJ IJ 'J "J I V 'J v 7 AT TIME ;:0 4S TURBINE OUTPUT = 41,500 HP N V N TURBINE EFFICIENcy = 091 F 816 V ~ / RESERVOIR ELEV = 831. 9 FT F 816 E E V TAILWATER ELEV '" 11.4 FT E E QUIESCENT HYDRAULIC GRADIENT J T 815 T ELEVATION AFTER LOAD CHANGE 815 C 814 C 813 814 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 TIME IN SECONDS TlME IN SECONDS ELEVATION OF HYDRAULIC GRADIENT VS. TIME ELEVA TION OF HYDRAULIC GRADIENT VS TIME ,---,-- S S U U R 168.48 R 168.48 F F INITIAL WATER A A 168.47 SURFACE ELEVATION"'. B C 168.47 C B E A ~ E n I\", E 168.46 ~ E 168.46 A 168.460 L n ~ A I f\ 1\ L h E f\ r E 168.45 " V 168.46 1\ V i\ / \ 1/\/ 1\1\ Vvr V A \ f \ 1/ \/ UV i\Tv A 'J 168.445 T T 168.44 V IJ I I 168.44 I 0 V V -V 11 0 168.43 N IV N IV I Aevlslons 168.43 Symbol D •• cl"ipUons 0.,. Approved I I 168.42 V f--f--N N QUIESCENT WATER SURFACE II F 168.42 F ELEVATION AFTER LOAD CHANGE 168.41 E E E 168.41 E T T 168.4 168.4 168.39 I u.s. ARMY ENGINEER DISTRICT 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 CORPS OF ENGINEERS ANCHORAGE, ALASKA TIME IN SECONDS TIME IN SECONDS Oeslgned by: 1m SNETTISHAM PROJECT. ALASKA A :}"N"J SECOND STAGE DEVELOPMENT AI WATER SURFACE ELEVATION VS TIME WATER SURFACE ELEVATION VS. TIME Or.wn by: us Arrrrr CCII'P& CRATER LAKE oil"" ......... ,JKl_ AL TERNA T1VE PLAN III m1rr1.'tfY..~ AIR CHAMBER SURGE TANK STABILITY PROFILES II OF II ~bY: Scal .. : She .. t AS SHOW" reference CH.U. •• "'~"'oo, .... "', aate: number: A7l~" 84 AUG. 17 Drawing 5heet __ ., __ '"'H.' ..... ~ Code: '~1-<11f-011 5 4 1 3 2 I DESIGN MEMORANDUM 26 PLATE B24 V t 5 I 4 I 3 I 2 1 I DESIGN TANK I TOT AL VOLUME OF AIR CHAMBER SURGE TANK FOR THESE PLOTS = 65.508 FT3 RESERVOIR ELEVATION = 820 FT D D 830 46 820 H V----0 40 R f\.. / E 810 /"'.. S L / E 36 E '\ p V 800 QUIESCENT LEVEL 0 A \ / = 793.4 V 30 T ~ E ~ I 790 ~ R f--0 / 26 N 780 I L N I 20 N 770 T I H F 0 16 E 760 U E \ I S T A 10 750 N \ / D C 740 S 6 C \11 MIN. HYDRA LlC GR DIENT LEV. = 734.4 730 0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 TIME IN SECONDS TH£ IN SECONDS ELEVATION OF HYDRAULIC GRADIENT VS. TIME TURBINE OUTPUT VS. TIME f--r-- 168.6 S 168.6 U R 168.4 F 168.3 /'\ QUIESCENT LEVEL = 168.04 A / 1\ II B C 168.2 B E 168.1 \ I -:::----.. E 168 L 167.9 ~ E I V 167.8 A 167.7 I NOTES: T I I 167.6 1. PROFILES ARE BASED ON DATA FROM THE COMPUTER PROGRAM 0 I "MSURGE" AS MODIFIED TO ANALYZE AIR CHAMBER SURGE TANKS. N 167.6 I 2. MAXIMUM HYDRAULIC LOSSES WERE ASSUMED IN THE POWER "-,,,1.1 __ 167.4 CONDUIT. S,.mbol o..criptlon. Da,. Appro,,"" f--I 167.3 L 3. ~;';.~':,At!rLI,~ ~~~~~M1Ln r,.'ttPs~~1 ~USN~~~ ~ElDWA~~,1 ~LROATDW~T f--N \ I 167.2 IN THE SURGE CHAMBER DUE TO THE ABSENCE OF AN ORIFICE. F \ I E 167.1 \ I 4. SEE PLATE _ FOR TURBINE CHARACTERISTICS FOR DEMAND E 167 CONDITION. T \l MIN WATEf SURFA E ELE . -166 90 5. MINIMUM POOL (820 FT) AND MAXIMUM TAILWATER (".4 FT) WERE 166.9 ASSUMED. 166.8 6. AIR VOLUME AT START OF DEMAND CONDITION IS 50.S63 FT . I U.S. ARMY ENGINEER DISTRICT 0 20 40 60 80 100 120 140 160 180 200 THE POWER CONDUIT CONSISTS OF AN " FT. NOMINAL DIAMETER CORPS OF ENGINEERS 7. ANCHORAGE, ALASKA TI ME I N SECONDS POWER TUNNEL AND A 6 FT. DIAMETER STEEL PENSTOCK. o.slilnedbW-l m SNETTISHAM PROJECT. ALASKA A :Jr-.!:J SECOND STAGe DEVELOPMENT A WA TER SURFACE ELEVATION VS. TIME Dr.wn by: .. _"-CRATE! LAKE ... -"'11K AL TERNA TIVE PLAN 1\1 ~ AIR CHAMBER SURGE TANK c • ~1: LOAD DEMAND PROFILES ~b" acele: AS SHOW. 5_' '.L ref.renee ~"~M~~"""" D ••• : " ... mber: ... AUG. 17 A~l~ ""'. . .. ~ , .. af!-,,",wing ..... __ 0. __ CcNIe: 1~t ____ 5 1 4 I 3 1 2 \ DESIGN MEMORANDUM 26 PLATEB25 t 5 I 4 I 3 I 2 1 I DESIGN TANK I TOTAL VOLUME OF AIR CHAMBER SURGE TANK FOR THESE PLOTS = 65,508 FT ~ NOTES: 1. SEE PLATE B22 FOR TURBINE CHARACTERISTICS FOR REJECTION CONDIT! OHS A. B. & C. 1. STUDIES ARE FOR 100% LOAD REJECTION WITH THE UNIT D LOAD REJECTION CONDITION A -RESERVOIR ELEV.=1022 LOAD REJECTION CONDITION B = RESERVOIR ELEV,=960 OPERATING AT Q7.191 HP WITH MINIMUM HYDRAULIC LOSSES AND D MINIMUM TAILWATER OF ll.q FT. 1150 1080 1 E~EV. a 1 1 128.4 ~AX. E(EV. -1~64.8 >.. DATA ARE FROM COMPUTER PROGRAM 'MSURGE' MAX. 1060 1125 I \ q. NO ORIFICE IS INCLUDED IN THE DRIFT TUNNEL. RESULTING \ IN PRESSURE GRADIENTS AT THE TUNNEL TEE ALMOST EXACTLY E ,-QUIESCENT LEVEL -1022 E 1040 EQUAL TO PRESSURE GRADIEIH IN THE AI R CHAMBER. L 1100 L I f\ r QUIESCENT LEVEL = 960 E / \ E 1020 5. INITIAL AIR VOLUI'ES FOR REJECT CONDITIONS A. & BARE V f\ V I \ \ L ~ 39.998 FT3 ~~D Q3.211 FT3 RESPECTIVELY. A 1075 A 1\ T I \ II \ / 1\ T 1000 1 1\ I I \ \ L _\ I \ 6. QUIESCENT LEVELS REPRESENT THOSE PREDICTED BY ADIABATIC -I ,--- 0 1050 0 980 EQUATIONS AND THUS DIFFER SLIGHTLY FROM THOSE PREDICTED BY N I I \ I \ I N I \ I \ / \ ISOTHERMAL EQUATIONS AS REPRESENTED IN THE "AI R CHAMBER tilTH I 1025 I 960 I 1\ ZERO FLOW THROUGH POWER CONDUIT" CURVES ON PLATE 17. N \ I \ I 1\ I \ / N \ I / \ L \ 7. THE POWERCCHX.ITCONSISTS OF AN II FT NOMINAL DIArfTER F 1000 F 940 \ / \ , ~ / \ POWER TUNNEL AND 6FT DIAI'ETER STEEL ?£NSTOCK. E ~ I \ \ / \ ) E E E 920 T 975 T \ / \ / V '-'" \ II V V 900 \ I) ~ C 950 \.., 880 C 925 860 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 TIME IN SECONDS TIME IN SECONDS ELEVA TION OF HYDRAULIC GRADIENT VS. TIME ELEVATION OF HYDRAULIC GRADIENT VS. TIME r--- LOAD REJECTION CONDITION A -RESERVOIR ELEV.=1022 LOAD REJECTION CONDITION B -RESERVOIR ELEV.=960 173.2 S MAX. ELEV.=173.10 S ~AX. E~EV"17k.24 U [\. U 172.2 R 173 I \ QUIES6ENT L~VEL _ 1172.13 R I \ F r\ ,-F 172 A 172.8 A I !\ B C I I \ f\ C , QUIESCENT LEVEL = 171.17 B E r E 171.8 I ~ \ ! ~ 172.6 /\ / E I \ II \ I \ E 171.6 L L I \ I \ / \ I \ E 172.4 E V I I \ I \ / V 171.4 1 \ I \ I \ A 172.2 A 171.2 T T I I \ I 1 \ I \ I I \ I I \ I \ 0 0 171 N 172 I \ I 1 L N \ I II \ / \ \ / RevlskJns 170.8 S,mbol o.scrlptlons Date Approved I 171.8 I \ I \ \ I \ -r--N \ I \ \ \) N 170.6 \ I \ / V F 171. 6 F E \ I V E 170.4 E \ E \ / V T 171.4 \1' T 170.2 \'/ 171. 2 170 I u.s. ARMY ENGINEER DISTRICT 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 CORPS OF ENGINEERS ANCHORAGE, ALASKA TIME IN SECONDS TIME IN SECONDS Dulgned by: m SNETTISHAM PROJECT, ALASKA A TN:J SECOND STAGE DEVELOPMENT A WATER SURFACE ELEVATION VS. TIME WATER SURFACE ELEVATION VS. TIME Orawn b,: US A""Y eo.,r. CRATER LAKE of Engww. ... CAK. AL TERNATIVE PLAN III tm?~~~. AIR CHAMBER SURGE TANK LOAD REJECTION PROFILES I OF II ~b" • $c.'.: AS SHOWN She.' relerence ""'. ,~~. Dale: number: 84 AUG. 11 AP~bl ,""j... ," /,J,1.lf-Dr.wlng Sheet o. Code: 1..........c11"""" 5 1 4 1 3 I 2 I DESIGN MEMORANDUM 26 PLATE 826 - t 5 J 4 I 3 I 2 1 I DESIGN TANK I TOTAL VOLUME OF AIR CHAMBER SURGE TANK FOR THESE PLOTS -65.508 FT.3 NOTES 1. SEE PLAN B22 FOR TURBINE CHARACTERISTICS FOR REJECTION CONDITIONS A. B & C. D LOAD REJECTION CONDITION C -RESERVOIR ELEV.=880 D 2. STUDIES ARE FOR 100% LOAD REJECTION WITH THE UNIT 1000 I I OPERATfIiG AT 47.191 HP WITH MINIMUM HYDRAULIC LOSSES MAX. ELEV. -985.8 AND MINIMUM TAILWATER. 980 I 3. DATA ARE FROM COMPUTER PROGRAM "MSURGE·. E 960 L I 1\ 4. NO ORIFICE IS INCLUDED IN THE DRIFT TUNNEL. RESULTING E (\ r-QUIESCENT LEVEL -880 IN PRESSURE GRAIDIENTS AT THE TUNNEL TEE ALMOST V 940 A I \ I / f\ EXACTL Y EQUAL TO PRESSURE GRADIENT IN THE AIR T ~ CHAMBER. i 920 r--0 I \ I \ / / \ 5. AIR VOLUME AT START OF REJECT CONDITION C IS r-- N EQUAL TO 47.973 FT.' 900 I \ L I / \ 6. QUIESCENT LEVELS REPRESENT THOSE PREDICTED BY N 880 ADI ABA TIC EQUATIONS AND THUS DIFFER SLIGHTLY FROM F \ / \ / THOSE PREDICTED BY ISOTHERMAL EOUA liONS AS REPRESENTED E 860 IN THE 'AIR CHAMBER WITH ZERO FLOW THROUGH POWER CONDUIT' E \ I \ / \ / T CURVES ON PLATE 24. 840 7. THE POWER CONDUIT CONSISTS OF AN 11 FT. NOMINAL DIAMETER \ / \ ) 'V POWI3'I T1.H.EL AND 6 FT. aAAETER STEEL PENSTOO<. C 820 C 800 U 0 20 40 60 80 100 120 140 160 180 200 TI ME I N SECONDS ELEVATION OF HYDRAULIC GRADIENT VS. TIME -,----- LOAD REJECTION CONDITION C -RESERVOIR ELEV.=880 S 171.2 MAX. ELEV .• 171.06 U 171 I R F 170.8 A I \ /A I-QUIESCENT LEVEL -169.6 C 170.6 B E I \ VI B 170.4 /"'\. E I \ / / I \ 1\ L 170.2 E I \ / II \ II \ V 170 I \ / II \ I A T 169.8 I \ / \ I I 169.6 0 I \ / \ I N 169.4 j Reylslons \ I \ / \ I Spmbol Descriptions Date ApPI'olf'ed -I 169.2 -N \ I \ I \ / 169 F \ / \ / E 168.8 E I T 168.6 IV 168.4 I u.s ........... ENGINEER DISTRICT 0 20 40 60 80 100 120 140 160 180 200 CORPS OF ENGINEERS ANCHORAGE. ALASKA TI.ME IN SECONDS o..tgned by: Ell SNETTISHAM PROJECT, ALASKA A ::r .... r:r SECOND STAGE DEVELOPMENT A WA TER SURF ACE ELEVATION VS. TIME Dr.wn by. US Annr eorp. CRATER LAKE .. -C:::A.K ALTERNATIVE PLAN III ~~~ AIR CHAMBER SURGE TANK LOAD REJECTION PROFILES n OF n ~br: Scale: AS 8HOWN Sh_t r.'erence C"IC~_'~" Da.e: number: :n:.;,;~ 84 AUG. 17 tt".I~ Drawlftil 5" •• 1 __ 0' __ Code: 1.........ot~ 5 I 4 I 3 I 2 I DESIGN MEMORANDUM 26 PLATE 827 t AG-FPP 4874-84 C1 C2 APPENDIX C PENSTOCK DESIGN ANALYSIS OF CONFINED PENSTOCKS FOR EXTERNAL HEAD STRESS ANALYSIS OF STEEL LINERS FOR PENSTOCKS EMBEDDED IN ROCK APPENDIX C1 ANALYSIS OF CONFINED PENSTOCKS FOR EXTERNAL HEAD e c ANALYSIS OF CONFINED PENSTOCKS . FOR EXTERNAL HEAD I. SCOPE The purpose of this section is to give two methods of anaJ.yzing a pen- stock, in rock nth the annular space between the steel liner and bore back- f:Uled nth concrete, for external water pressure. The two methods discussed are those of Vaughan and Amstutz. II. DEFINITIONS Yo = Figure I radial gap between steel liner and concrete due to all causes, inches R = inside radius of steel liner, inches T = thiclmess of steel liner, inches I III. VAUGHAN'S METHOD In. the Journal of the ·power Division of the American Society of Civil Engineers, Vol. 82, No. P02, April 1956, E.W. Vaughan presented a method to detennine the buckling resistance of a penstock liner. His method is as follows: . rOY-OCr + L-2 £' 60"cr {yo + OC£JjJ(Rf Z_ R + ay-(Tcr -0 l' O"g-f5crl-R £7/, tTl T Z4CTcr --:---tJ,I cry • yield strength of steel E', . £ = /-v~ where £,. Young's modulus of steel.& ratio of steel V =Poisson' s CTcr = stress in steel liner bef"ore buckling but at incipent buckling other terms are as previously defined and all. units must be consistent e o-cr and T are the only unlmowns in equation~. Other factors are known from the geamet17 of the problem and the stee1 to be used. The following is one • way to utilize Vaughan I s method: 1. Assume a value of C7 C r 2. Find the value of : which satisfies eqw1tion 1. This can be done by trial and error or by explicit s~ution of the quadratic equation. i ,.,.--P R . I"T":: I"T'" 3._~ the hoop stress equat on, v -y-, substJ..tute vcr for v R . . . and value of T from. 2 above and solve for pressure P which the lining can resist. A more simple way to solve this problem is to use the attached curves as follows: 1. Pick graph of appropriate yield strength. 2. Enter graph on left side with design head. Follow a horizontal line Yo to the curve labeled with the desired value of R : From this point 2 . . -c R dr.op a vertical l:ine to the abscissa and read value or R 3. Dividing R by T gives the value or .. -T T NOTE: NEITHER THE EQUATIONS NOR THE CURVES INCLUDE A FAC'IOR OF SAFETY. ACTUAL EXTERNAL HEAD SHOULD BE INCREASED E THE DESIRED !£@ FACTOR TO DETERMINE THE DESIGN HEAD. IV. AMSTUTZ'S MEmIOD E. Amstutz has presented a method or solution in two articles published in Schweizerische Bauzeitung (Swiss Construction News). The equations or.'.Amstutz 3 are. (-0;: +1ff)[flZ (flC;Y~J.J{;@t~JfY'Vf-l@(-ay~-,(Ji_2 /-EIR)=O.S50 frTg '-rn )(t() (Tn l TJ t -E {Tl-. - - - -__ 3 where Oi. '-o-y eEl -E 'Y-~/-v+ve Y -I-VI! cr n = theoretical campressi ve stress in the steel liner due to the ext.ernal pressure~ allowance being made ror the new mean radius of the buckled lobe. All other terms have the same meaning as used in Section TIl and all units must be consistent. t The use or Amst'W'r s equations is essential.ly the same as using Vaughan r s method. 1. (Tn and R are unknown in equa~ion 2. Assume. a tYn and find the R T . value of Jr which satisfies equation 2. 2. Substi tu~e the values of and equation 3. 3. Solve equation 3 for pressure, p /j' T fran· step 1 above into The attached curves are the easiest approach. The method of using the curves for Amstutz's solution is the same for solving Vaughan's method. Of course the curves labeled "Amstutz" should be used. 3 -- NOTE: NEITHER THE EQUATIONS NOR THE CURVES INCLUDE ! FACTOR OF SAFEIT. ACTUAL EXTERNAL HEAD SHOULD BE INCREASED BY ~ DESIRED LOAD FAC'IDR TO DETERMINE THE DESIGN HEAD. -- V. COMPARISON OF VAUGHAN & AMSTUTZ Mm'HODS The basic di.f'ference between the two methods is t.-W mode of buckling Vlhich is assumed. . Both methods assume failure when yield 'stress is -exceeded. As- smned buckling modes are shawn in f"igure 2. j. of _bu,£'!!ed / n1 ----/00 €.,,{e ..,..,-.... -......... ~ .,.. ",,'" ....... '-" .... "- ./ .......--, A •• .,,, , .... / to J> •..... ~ , .. ..... ...... '-'/""'" 1. // •• , -:. ........ : :.11"'-~ ••• ~ " 4 • • •• , W" ('oncrere /: /' A '.' ~ ---.. --~ ••• : .' <)" , • . ~ --. . J /. • u '". .". , . . . .." ,. .. ,-." .. '. envelope / 00 •• " . '0. ~: " • 4 -•• ~. • ' •• 4 .• 0' II ., • .::. -..L. y '.: ) • . . . . : .... . ':' .. ~ ... ... ..( • f> .'/' \ ---r f' "....., . . . Yo=ln/;ial gap '.~~.:~. j. "I I '~:~.-:. Lining betO~ opp/icolion :.?\"""'. -'\,-\ J 9: /' \~.< .. ~, if edernal pressure . < f' \ ~ .,' n.~ / \ " ' .• 4 , ~.I. -~I \,.. ....... ~: , :. ~ flo/f wave a·' It' ••• ~ .. Linin9 afl~r app!lcofio/{J :.~ ~ hew mean line _~~I }f~~-:. of ex/ernal nressure .. ".::.. ;),.~~;: " ,-: .. ~ rIO • 'l ~, 1 -• btJ, lJelbre buckling 0 ~ .:~. ~I /~::-, .' " ~. I ' i.' ••.• 4 : -: "-\ / .. ~ :"r '~-.: BUCKLING ACCORDING TO VAUGHAN '0 /' ~~,:, f __ .:-'~:.~·~d~ ... ~ ~:' :r::.· ; :-... : ~: ~~", ,', .,,-' -... . ... :. BlJCKL//v{; ACCORDING TO AMSTUTZ Figure g In all cases Amstutz gives more conservative answers :than Vaughan. Since both methods are rational., one could deduce that .Amstutz bas picked a failure mechanism 1dth less f"actor of safety than bas Vaughan and therefore Amstutz's. method more closely' approaches the lower bound f"or the problem. Ideally., of" course designs should be at the lower bound or 10"..wer if zero probability of failure and economy are desired. Another factor faVOring Amstutz's 4 4 e c e c method is that penstock liners have been observed to fail in a single lobe as Amstutz assumes. McCaig and Folberth have analyzed successful and unsuccessful liners and found. "that a large number of' failures occurred below the curves derived by the theories of'Vaughan and Borot, whereas the successful installations and. failures straddle the-curve of' .Amstutz." The above discussion indicates the superiority of Amstutz I s theory, but would -Vaughan I s theory be just as good using a higher load factor? Ap- parently definite answers are beyond. the state-of-the art at this time (1968). VI. STIFFENERS Ring stiffeners can increase the buckling resistance of a penstock liner • Longitudinal members and. other anchors welded to the outside of the liner and. anchored in the concrete force higher modes of buckling and cori- sequently increase buckling resistance. Some disadvantages of "sttf,"fenersll are: 1. Difficul.t to handle sections of liner with protrusions. 2 • Many "stiffeners" are broken off or damaged du:cing construction. 3. Make good concrete placement more difficul. t. due 4. May failAto elastic shortening of liner before buckling loads are reached. Stiffeners have not been considered in the design methods presented because of the above reasons. Some designers feel that stiffeners have real value and elect to use them. \ 5' VII BIBLIOGRAPHY 1 ~ "The Buckling Resistance of Steel Liners for C1rcular Pressure Tunnels,," Ian W. McCaig & Paul J. Folberth" Water Power, July 1962. 2. Rousseau, F.: "Bennis-Lac Casse Hydro-Electric Po'Wr Development,," Journal of the Engineering Institute of Canada" April 1956. 3. Patterson, F. W., Clinch, R. L., & McCaig, I.W.: "Design of Large Pressure Conduits in Rock," Proceedings of the American Society of Civil Engineers, Power Division Proc. Paper l457, December 1957. 4. Vaughan, E.W.: "Steel Linings for Pressure shafts in Solid Rock,~ Proceedings of the. American Society of Civil gineers, Power Division Prac. Paper 9le, April 1956. 5. Ings, J .H.: " The Warsak Hydro-Electric Project," Journal .2! ~ Engineering Institute of Canada, Iecember 1960. 6. Borot, H: "Flambuge d'un Cylindre a ~aroi l-li.nce, Place Dans Une Enveloppe Rigide et Soumis a Tme Pression Exterieure," La Houille Blanche No.6, December 1957 7. Amstutz, E.: "Einbeu1.en Von Vorgespannten Schachtund Stollenpan- zerungen," Schwe:izerische Bauzeitung, April J.8, 1953. (.uso an article on same subject in same publication, March 4, 1950. 8. Charles Jaeger -"Present Trends in the Design of Pressure Tunnels and Shafts for Underground Hydro-Electric Stations," The Institute of Civil Engineers, Paper No. 5978" 1954. 9. "The Stabilization of the Steel Liner of a Prestressed Concrete Pressure Vessel," H. S. Chan & S. J. McMinn, Nuclear Engineering and Desi@ 3 (1966) 66-73, North-Holland Publishing "Co&, Amsterdam -~ " ,/ APPENDIX C2 STRESS ANALYSIS OF STEEL LINERS FOR PENSTOCKS Er1BEDDED IN ROCK - --'" :.,.--" -~ ,- . : -. ~- .. --- ~ ~g 'C I .~; '. ":.: . . .. -, . '. .~~.;-~ ~~:: ~ '.~'.-.. -..~ --~ STRESS,·:.~>-ANAL.'VSIS: . OF STEEL. ·'LiNERS(~jFOR:>·PEN.s·TOCkS· ····}.:·::':·:£MB E DDEO;::/N .. ,'ROCK,,, '. • "_0 '_." _ • , _ ,. , -,,, • -. ". ;. ~ '.~ .' ~ "~-~~:~\~i:/: ~:'>~:'~~~-i: ~ '".: .; 'O~ ... '-'::.'J~~ .. _~*--~~ ~. -.-' " . .; .,' r . ":J. ... ... . -.-:;. -.,.':----- . "~:~ "I:;. .:. -~-_: ~ .-.':: '-~ ."~ ~~::~¥i~~ rock:.: •. : The'. rock . .S'u rrounr:it(Jg' . file '. sfee/.{/rner'·-::{·:: :,:.~~;.~~-;~sf}~_ can,,·;res;S7:i/. .. ' por'fion· oT',":7he load a'lJs;!:7'd~~·:{~~~:~~E~~fs;~;.:~;~,: Inf.e(/?aJ:rpressi.Jre ,.:,~:j:rI7c1 ". cal?.s/d~ra-l/on;t)f(···:t/J/;S;.t};;~~~;~~:<~??~~~ ~~~~:s{~~~Z;i'%o~'~'1:f~V;dtt;;aft&;o,J;;i'~l;~Zr;flj;~If1:~i;; flJlckness.:i·'ot;.:suqh .:~.t:t. .line~,.:::··tak'ng·ln.f()t;·,!ccotl/?tX-CE'/::·:;.~ roclf.'·· sqppor:l, "/s ::91 v:en~,"·:-.·A.·:Q ample;~prql?le(l1J:.l':':.~·/:· .. :; i,s' ::worked.: .... './!sl/lg.fhIS method ... and:t/Je;.i'._ .. :; .. ~·i. <.t·~~.·~.:<~.:.:.--.:~~:.:.:·~~ .. ~.·: .. :.;·.·.·~.:··der/vaf/on 2of" 'll7e~ine Ihod /s·-·q/ven;.-::·'0.:q~~:{E.'~~~'~'1;;·:~': .~.,:-,~~;,~.'~'-~;2,,:' .. " ,j . '''; :;/~-~> -..... ' ; .' :' ."~. "'-'r!~'-~;:~~[+~~<;" c~::~~;:'. :::~··~:~~~-f.:f:t:Y t~:} . . DEFINITIONS AND':-'ASSUMPTIONs>:",!"" '<"':~~"~"":', ~~~./ "! .,-,.!" ...... ~ . '._., . _.-:::~-:o::<~~r ::C.:;;.:. -~: fi~~;' F/P~;; re'/ liidica ie S ~f he mean iriq • ()~:!St/;]bo!.s..T ,,~,~ .;~':'"~' used in ,ihe'mefhod.;· .. , Fissured-rock; .incapail/eor . corrlJ(/;gt:ange'!t/~ .' . fens Ion. '':'' .. :~ .. .>;.. ~:--;'.- ":-:;~. ,. , ; :::: ,'~-, . : •••• _1.. "_." F/gure I 10':" . -~ . .-" ... :':-";,.. ..... .,.:. ------,~.,~-. _. -----_._-_ ... _.-._- ..... -, . ..... -.'-;- . . .-.. ~. "-.... .• _ ... r", •. .... ,...'; , . ~ . . . . ~ .-, ~ ". :".: .',' . -.. -"-,-.. ':~~'. . ~ _ .~:.: .. (~;.; ... ~~.~. ," -:-: ",:'~. _~ .~' ~:~ . '."". :",:. ~ _" . -~ :" ~ .' ~. _~ -_:>. _::. '. 4 • """. • . ·'.n .,: =: inside' ,radius ·.of conc~ete ,. J"qdlus "-',' : .. ,-- .'. ,~ :!,~:.:,.. . .... ::. .. _ <.: .. ' '.' '.:. ,-.-. ,:', ~ .. :. .' :., . /; .'0'" ".:.,.,<.' .' ?, .~, ...•• .... ,,:=-~ •. ':'.~ . ':"./z~.; ~ ,/ r~(iiu.s "::qr,. funnel , ·.',Jnche,s·····i~~;·· .. .,: .. ~~.:;;~:::~" ... , . -:-li;{··~. ':'l=;~tltus. fo oulside ~f' 1i:S~urt'd;;r ;h:,ii:;~d . :1'>, .• . ' .' ',. roc.k , .. -Irl.copable .or.·carrytng tangenflallens/on, in.C/1CS ..... ·~::'':.qd;'u~.~'fo. ;uiqc~·. ~F r;ck ,l}nch.e.!,'-: .;f)r:· "-.. . .', .~.-\ ~~::>.<::':~>~:~'Kf; ~:~~~·,·:'~~~.:~I~·~'/:-,:';~.;<::· '.' ~ ,:' ~~·j;~f:: . ~t· ~i~t '~'; ;:::~}+-:~~.i:'·;· '. ;i:~~~'~:';:t, . :Li, ". __ . ' .117(//01 ·'gap. '/ietween sfeel.anti concr,ele,. /l7chei:/·~ .. '~~ . '. '. __ : ,.' .. _:. "',~. ,".. ~ .: .... '~_ ~._ ~ •• ' , '_ ._. ; •.• ' ,r ", _, -.• ,:~,.r-:,'~"~:' ":::~~'_:'.,."', .. 'Lf2' =. 'lilii/a/ . gap ·.befVl(een concref~. (lnd .rC?"c.k?-'.nclJes,.~'~.,: .. ' . . ... . .', . ". . ~ -, . ,-~ '., , . _ . '. . . -~" ., -~.: ;. ~. -:~~,~t~,' . . - .. <;')jd: ·.th/cknesS' ot .concrel-e " : I/lCl7es . ';'. \,D, ~ ").r .......... Il7icknessof' slee///ntll'j /;';I7e.s-.c:;.:,; '. . ~ .. ',.' . ... :" ~" . ::'. . ~ ';' ':. '. .' , '. ". /'" Allmo-ler/als behave. elasl/cally;·:exCepT.· the .' .. :~·.-rock. wht'ch '/s assumed to derorm<·:(/ + k) times ..... / .. ~. fl7~ .·:elastic ,c(~"ormation: J: e, . k ::r.6'prt'serlfs .. a . ,':':.': ·;''plastic Il __ ,de(ormal/on.~ '. ..=":.:.~::.,:::'.'«~ ". ., .. ,;~' --. ',;: ~~ ...... ' '.'~. ~:;:i.:~:r::::;!~:::··~·:·:~;::~',;:,;; '~: ': :".':'::).::":.'.':.-., ~ :':.~::':;~:":;, .. ~:.~ ~~i:~;:. . '~.' . :::'~ '·Z.: The" rod/us >lo~fhe roc /( ,,surra ce :{ /s',muc h:.-- : . ;,' .';-/a rger:.ll7on.:.: f!7e~;·.r'ad/i!.s· ~,_"or flJe:.~funne/..:· ' ... . • '.-3. ·"r .• ' ;s:_S:nd/I·;;;~;~;e; '. f~~ft.;.~'·J~-~'. ·<~~C-,~. '.' •• _oW_ ,,"" -: .. :,. '::.~._ •• ' ~'. ~ _,_'. ~ .", ;~', ......... ~.!-.. ",e, .', __ "_.::."~ _.,' .:.',,:"-:-.-.~ '-".,,;- .' '", ,_" -_. ' •• :~"~' : ;:',~: .,-,'" e. ._,_-::.... '-i '_: ..: ., ..... . 4. r/:-=:.,. ,t?. '_' '..... . ". .' . :.,. ,'.. ....:... . :.: '.' • . r" ~ -.. ,. ;., .', 5. Sfresses'~ due' '10 ' res,idua( ·.:ro.ck-.pressl.Ir,!>$-are' netjleeleel. . .' . " . '. :.. .. . ... ,.' - , -,'.~ .' ,'. ./':, ',' ':-. , .'. ,.' .,.. , ' .. , .. ' .. • . I. , ~ '~ .. :;~ .. " .. ' ~ . '~"," , -\.'_!' -:", .'... " . {~ \ "~ e) . ./ -" < " , -,', . ;. .. · METHOD':',-:'::::<>:" , .. · F/~sf, 'd~t~~m/ne:;~'::fhe:;')};~e=n';io~s shown " ' ... :" 'i~ .. f{C;,!~:~.·.'~·/·'·.·· :':'.~/,::./·.~:",::.:/:.r~/:~;:<:::·.~·_;::··">::'~ .. ~::.::~::; .. ,'J":" ..••• ::,. :~ ':':.:' ,.~: ·:·-:·~:~<·~:j;>:~·s 'f'~~ . ,~ .. : I. . it :/s ···ds,uailil· .. deferm/n·ed ··P;I hydro'u!ic <~" ~~1/'" ,.:~'~~~': · ~-·.·:'ond· e.conom/c ·.:c.ons/deroflons· and.ls known. : ... ': . z,\~ ·;~'-;;;CI1>t!;/b~-.R: a;a'bY~;;; slr';;~;;~~:_i;;/'i:_' ., ". c9nslaeraflons:1' and '/s':!tnown,. , . . ... " , .' .' ,a:', e:;-5~~tit~.~~~1i;,.;~;:~~f::~,fl;~,~:,~)::;:_·s~(::r,';t;y, , · 4.;:.r., ca.n;";ae·~·est/mateil>:'~f; has 'b'eenfakeiij,,; .,<,:::.:: ... ' .... ~ ... -.".". ". ,,' < . ~tfso/}~,tt<jfi!{< .. I~e,;(u-n'Jt/· d'am6'ter,_:~z.·;".,.·,;~ .~ '5.', LJ 1 musl. be.·~sfl:mated .. ·~.If~ Qccurs becovse .. ,'",.' ... ;~.~~ . or cOl7cr6'fe. s/7rlnkoge, . less f/Jan ·perrecf .. · .. ; ,.',.-: ~'t?; concrefe:plar;emel7f, and '-fhe.d/rreience.~:'> .... <'/t:~'\ · .. befween -the" temperatura" or . ,file J/ner "'" ,:'.', ~ '. :.~ ~;;?~. ~ -w/;&n .. the . con ere Ie /s p/oc ed and 'the.. -':.' :',.~ : .... ·.~·t1 . '. ;tempera lure . during operaf/on. . '. ._ . ....... . >.':o.· ... :,)~~~ : : .-r:hafporfion .·Of'Ll/ due" temperafure chan'9~s :.', "'::.!~~~; can beca/cu/afed -by: '.' .' '. ':.;'\~~~i.; . LJ feinp.. = we R '. '. '~> .. :·w.fere :.4lemp :==' .. radlal.. . .... · .. ~ , .. ::,.:,_:-~.:':.:,';~:«"':~. w ..' ::. ", . '-' ;'. ~ -. ~ . , ,'-.... : . '".- " ~ . -.. , . . . . ,; .":"" ~. ::-,-. . :~:' - . :. c·· .•. Nofe.· fhq{'fl7e··d£splace.rr/enf.'.::'doe . ro ,-: ''':.!:'';'':·''<~~.;i#&~~: .. ' ," .. '>lel77perofure ·,:-changes···can·b~i'/nward >o~/::+>~::;'}'~f~~~~~r . ".;.-oufword (ou/ward' iz:.ope/"afing··.lel7lpe'afu;e}~·~~ '~'~~)i!3~;~ : ~-:/.s>/j;9her .:. fhan " femperarureor. liner wheh:··::::,.-==~\:tif.;?t' o tId .. . .J,. OJ.. . ..t' J' ,/ . . .....J. "--, ,~~~ :'.:.117$ a/Ie ~/n WftlC/~' c~s,e .. I'I1lt~u/splaC6'm&nl. , .. ::,~~.:#~;1.;~ .. ; :.: ',.' would hOJle ,Zt.:'·~n1inC/s·'-::S19n) ....~ .. ' .. <:: .... ,.~:;)~~!!..:: .' , .. ,' ' ... ' ' ,. ., .: "--";':i~;;_ , "':';~""l~~~~li~ :" ~-<:?i;~ .. ~:tj{~t . . -::;--- . -. ; ~ .-::.~:.'-':-' .. '" '".~ ..... '. ~~'. L1z muslbe'es//mCl-led. II Occurs becaus~'~;;;J,·;.?r.:. ; :':. ')'OT .COllcr8tti~ sllr/nkog& and. It's s, fhall'perFect . '):;~':.";,., . . . ' ~ ... ':. cone/ere placemenl.. .' ",: ... ::.<:.;~'~""~ .. <''-~'~'c:-:.·:~:.;/~~·, '.' '-;-).Y''-';',~ .>< :' ',,' ::. ,': . . .', --,:'::";:,,, . '.' ,: ." '~.~.:' " <,.' '. ", .~. ,..-\;,','.-,c;. >;:. ... 7. . ·rf . Con be . ta~e/7 as simply, (rr.f~~ ¢ -I-.f) •..... :--.:'~=-~,:.:,.;.:. '-'1" ., > 7"-~: .• :=-.:~f-:.r -• -:; ....... :. J_ ... '. --. : .;.'-.~: .. ',::.. .Of .,."",,-...,~ ...... ..... 8. :';'o~< need'·noi:-be'dei~~m/n~(j.::';~<tl;~>' than' :.~c:··::;>:.·'i;.,!~~ ":",~?=z.' fo oscBrfainil7af. /1 /s'manj;::f/nie,s' ::;",-~:·';~~L>i· ,,:.:-, .... ~"'i >lorg&r:-R (say 10 fimc>s greafer: or.',mor~). :~<·:;::;-.. .., .. 'c,,,.;. __ ...,.. .:;,,··.·i.~~,·:· .. ~.~::'~'-.;".-\;;,'r",.:C:'-::·:;· N °7;;·. ~ .. /s~:e:';d:f1/·: ·.·r: .~:,\·;;.;.-1{~~1~8~;~~~Ij~,,",~ml~[~tj; ...... ""','-:_'"'' ".' where '.',' P . ~~ ,,: /oio/ infernal pressiJ;e '~:,',' ' .. ,~:,,: .. ,'. '.~~~'~-r~~ ~.-:~,; .. :~;-/,~ . .' 't·~ .. ,p;;. Fj'.-'::' . file· pari/on OT. fhe infernaf..-pre$Su(e "':':.~:;' , .:: '-." '-':':-)," ".: .. , .. cQrr/eq by the stee/"lil7~r:,:~; >1\~;~:,:-';~;:~:?~,,-:«~ ond G:j~rc,ls; ·'i; ( ~~/ .12}f:"'~·':;Z{/~~t·~;,~·~~> . £c 'ntH;' f~.(iTf;j);;,rtJ+::.Jr'11fiy;(i1@ OS -m;A'.UI/owQ/;/esi;i;}:'w;'e.rs ...~';;'; ..... , >;~$f : . ": ~.~ ~ .: ~. .. .•... .! ; '".-." .. , '-:.-i ':. :.... .. .. '".-. -. -:~:-. :':~. ~ . . "'<': '-', ,Es:=, . ,(ol.ln9s,,·moduh!s Foi'ilt!el" "',.<:: . . " . ..' ~:'-.-E RI ::; ... ' ~ . '-~ ..... -.' ". "," (-J..,;:or.fIJe-'~fiss(jr~d':ra&k.-.~,:-; ... ,. ,."f .: -,' -.. ';. ~.~, :,:-~,.;,,-~.: '. ',.:' :--:' :-.:.' .::-:":~~~:.~, . ~ --.~' .' :::::£:?;,'~;-:,~~':C· .. '.~;>~:.,.~~,.~' ~~~::~;:~£~~~i~'Zii . " <"'~'. -'; ~ E IT 1I ::'. 'c ,~/ •• , • .: .>-'~'~:,:' 'I( " ~.' :T6~{/~tz,~~lj!2rf.~:~oC~{2~£~i~1:i~fif , ,', ,;..-, .... '. :: .. ',: '<;.;.>., ':. ';'::.-/_:',;>:<:,.c'/f"·:'·;~=·:"=~:~i:~;;:~!~~;~~~L~~1' ,::>L'~;'::.~~~::~,~~·.;:··V.1l . .:: ,.,Pol:s..sgns ro/;o ro(~ s,ol/lJ.d. rock~:-:'~":'·:Y:";:~"-"~:~4'J':~~~"%'>:'.· : '::-.;';'. . . . .', ' . .' .:'-<~:~, ,-' 0,", '~, \ •. f~5ir'S~;:;~:~·~.:~;';':">,';~'?-g;~Y.F~~;f:;~~~· ·'·· .. ::::·':,:·:'i1'I ~'. ;rock . derormofiol'l /;,oCtd/f/on :::fo'-e/o.siic·,:~'if.ft,:l~l· .• ' ... def'orma liol7 of'· :fhef'is sl.Ji"ed roclr--:Z::')';~~;'::.,i~}~~~:';1f;7i~~~ . ',";.,;.:~' " '. --: :'-i: -. ··:-,;:.~::.": .. :·~ .. :~'·~~~~>Sj);;f:;t~ ,. IrJT =: ';oc;/>deformafio/7 . ./l?tltt'tI;i/orrf;·"e/()'st;c,,:·.o~>(j', ~~~> defbrmal/on of the sound rock(csnmofe· volt/e) :""~--. In Inti/cafes Naperion o;"na/oiol '-., . ". ---." .. ~.~ ~ - c o " . ---- () c ", ~ ~ a, 6'/7lire . il7en It'nin9' mUff..corr!! inferno/pie.s s ur~ .. : If '-..•• -!'. -;: .. '. . -. )., ... , If" .8 /.0 J ". fl7eh·:.(o'C/r 'w/II cartjJ·· 'entire :.;/1le/'na/~~:i>; .. ;i~:~¥E?t~fr---, .• 'r'- 1-'.:" .. ' :·· .. pr~ ~ SiJ,:~: .. ~akd· //l7il7!!-;,!~C'd ()'!Iy.be C7":';'<:f~E[~~t~ tTlIn//llq/<·;.th/Ckn~ss lo;: :POSS!'i<f(d8Iefe.tf.'~":~~~~t~~-X:'*: und er§ol7Je. CliCUm.stOl7ces.:>· ;,-':" ~':-::-;~~.~.:;{4;:~>;. ~'.-.;.. ~'.';~:" :;--;: '~.,~~ .~_ . s~: .. ,~;~~;·t··-··.· . ~;~~·~t<~.~:~·::(:~y~>--·.·~·;;· .. ~~t~~ CCllciJ/~le. '·8:< from,"abol(e : .e.qtJ?fion:7I7en·R :~~e. F:: ~ :'~~':i(~f~fi .-.. : .. qnd':'l?r~ssur~:.·.·carri~a':,fJ!I.slC'e/··//I7~~:/~~h//~~~:~~~~ .," .. '. -;:, ::. ~ '. ~.~: .. ~ . ;;: .. ; ... :-"; .. -.:"._£.'''' ._ ::-0:" -,./'0'.':'-::' . _~'_ :-1:: .... ; -:: ~.: ... '.; . .. ~~;,~.: . .., ';.;. . . ~ ~~:, >. ~-. ->.: . .-' .. .:-. .. : •... .:. , " .' '."'!" R -... :. ... : :-. -:~'&.: -,-_~_'._" 0 b :::= .----...-........ ~-1·-• __ :-1 --_. , .... -.,. . . ~;.... -. -'A -. -:~:' . -" ..... : ,""-:-. .... ~~ ...... ' . --' :! ........ '. ' . '; •••• ,::". __ •• 0 •••• --.5··· ._ -' -'" .'i. :~ -.,: ~ .... --: -.. ~ " .. ~'{~.: ... :.-.;, .. ' c' . , . .-. ~-."" ;. .' ' .~. ) ..... -.- --""': .-.~. . ~ :-' .. ":.: . . : .. ::; , :----~: .--.' -:'; '---.. -' :~ -.,. ~ ;., "-!: : ...... -. ... ".":: e'J . /' '-.,.-:-. : " R -II 51 -2 -87" LlI -I-~2 ,; O. 02 1/ E(; - I( £3 - = = 87 f /74 = cbl II ..J X /0 6 PSt' 0.25 0.25 .30 x /0 6 Assume rock surFace remole From funnel 30 ks/ yield tJnd 55 Irsi ull/mote sfee/ 55/(s/ CTs = 4 =-18. 75 Irsi 30, 000, 000 (. 02) '. -- £ _ ~ 1-) o-s -S / .. -(-p 30 x 10 6 In ~8 r: '+ 30)( 10 6 /, + 25) /77 ZG"I + 30)'106 '/r2£1'lf:2.. -'5 ... ) .3 x /0 6 (5// .3 x 10 6 (I. tJ? .3x/06 {). ~/ ... . . . -. .:.-:.~ ..... ~-,. . .. -.. ."" .' .. ,,'.:, .,-;- ". -:. . ., -. ,". /0.~-. -.~ .~. -. E. -OS -I I, ?? 0 .34.69 P E. -13, 750 -II, 770 - .34.69P . r ". [, _ 57.0_ A p p ~ = 57 ps;' (corr/ed /J~ iOC/() -~ .. e' / -....--.,. wifh p.;: /40,osi T r C' q 'd = (p -A) R - ... ()s -'.:: ~ . . . .. ; -' ". (/40 -57) Sf _ 1.3) 750 0.308 " 6 '" -. • !=." '~' .. ~ """~:' A ,. .".' ',-. ~-"'~."""--' T(Jrfher ,'sl;p(//af/on~_m;9hf be '-made' Ihal file slee/ slress' slJa//-,'ool'.:eiceed 8():%"or ,~,f/;e .. 9;e/d ,~,>':::.: stress " when 'ro·clr,:.t.~s/rCT/n.t /~ ~,neg(,£Jpfecl:i &.~~,~7i{ ." -...;.~ .... ~:~; ..... ~._~. ., .. '.~ . "'. :-r;~~,."1.' .. ~_ '. -----.. .-. -.'~: -~'~~~"~~:. ·.T ,-;'~~',,_h~f%f%/~{;-;Z9~'{;;F:-"'?' ,::\ ·'~l~~ 'I":>':·. -•.. ' .. --0 •... _. s_...~. :.· ... _i."':.:.;.~.:~-:~·-: ... ~:~ .~_:~,_ ·.·'':~~f·O_ _ ~... ..-_ r. ~ . ___ ... _ ~,.. .. _~ :> . : _ .. . .,." .::. :.~ .. ~ ° :_ ' •• _: .~ ..... ,: ._. '''':~;!..< .. ~~ The -7 .: ca)cula fed' . with rock, "resrrqint. ls'."9rea--Ier?' '.: ~t:~::., -. .-.... : --:.::" _.::; -:- -,~~-2-,~~~ ReFe~~-;-fo,,'~()9ur.~":i.'~'~(o.;:s¥'j7bois'~ dl1d;_>def/i1/lions~ . ,::}~~,:: ~~:.~-~ '" T/Je , a'e(/vption:, C0r'~/st~_ ',01'., -formu/al/(J9' -~~rpression:i:;:'~~,' for, The ,de,Tormaflons .. 'or sfeel.,', conCre-le~"~··:s!Jtlifered::·:~.; ,,/ ' --" ~ - '::-. 'J . "rock . ·a/7c(,~~i7fClcf-,~roC/(~ ,:'·":8y :'Fijol(/ng.'.: ille.,7"-, ;-.. -;~~~~~_: deformqflons' .c~mpalib/f!" fl!e.-pf~s~{Jr~:.;i!i.:$trllJul;o/1).,:.~?: to file ;sfee/: lIner' ana'. fhe··roc/r·'col7', 'ie~·i:lelermi?~d .. ·~" .• :~-'-,: ~.:,::.~ "', '< ,,' . :':~':.; ,--.. ~" . .:~~~: '.;,-:~-' " :;:~~~?~?>. Sfee /:,::~de ~orq;:~iio;j:,:' ,t~~,.,:,.>~~.~~::':'~:. ~··,-iL~?~·, " -/,',:,;.;i,::,k,:,~' .. " '. • ~~" ';'~'~~ J' \. .• _..' _ _~._ >~.. . ,", ....... <4-· --.. -.;. . .-~ ~.:-~ Fi ~ /', A>'; "',PL.. --LcT,.,,·-:,·-, C'\>.~.,. ·<<?tn . LJ.',:,~, A £---',', -' .' .> - .--' .,:".: .... , ':. '-~:'-;"~ .::~_--~:.' ·~.:."-.,,:-.:,,::~--::::~'.·.· .. :·.·~A:· --~-. . ....... .. --~' -'-',.~: • ' ., •.••. p" '.-..... __ .. _.: ,. 1" , .. . -';' ." .":." ... ~ -. ~. .:.., .... '-. .. :,' . ',.'.' "-.. "1- '. -.:...:; , -. • '.-"'!-:.-.. : ..... ~ --'-"!".-. '. -.. . . ' -' .. ' .. c c· CONCRFTE DEFORMATION ...--'Ir---Difreren f/a / ~-rIng elemenf Figure 3 Assumed thai COl7creTe fakes no fens/on. On file diff'erenfial ri1ltl elemenf ih~ fofa/ eXlernol force must equal the folal infernol force' as fo/lows: E;(lernol Force::: (0(; -f doc) Z 7f ( r f dr) = Z 7T(OCr t-rdoc + OCdr of d(Tc dr) neglecting hig/Jer order a'/ff'ere/lfio!s: Exfc>rnol rorce = Z 7f (OC r -}-rdOC + OC dr) In fern 01 f'orce ;: C 7{ r CTc p1f (OCr f rd(Jc -f C5C dr) = pi! OCr ac dr + rdDC ::: 0 J~; =-f~r 8 ;,--.-....... ~.' ··:;~;2~~;~:·\· ~)J~J~~: ~ "'!-~~'.,.. :.".::, .. '~;~.;i'·'-. --==~':~--.. ', . . {;-' ?""'- ,'/nOC Inr c r .;. InC :-,.' , '. • • -' " ... : .. In R oc· = Ff _0 o· C:. :.'~ .• :~..;!' .. ' . ;' -... '.- "~q:i;'. ~::~:":';- ",-. ", "' ~"-,-. (3)·./nofo .FIR . If,. .~ 0 .. :~ - .,;",--: -.-~- ',-"' - .;;. .... , --- eqfn,·:o(c.) : -~' ;'. -.. _.:-o~(4) . . . . .' . .• 0t::. • " - :."'~'" - • -........... -"0 .,."' .' .- ..... ;~' .~----. ... -:-': .. ~.~--.:-:-;~-~. ",- . .,.. .:;: . ~ ::-..... . ~ ... ~ . -~--.::;. ,-.. -<;;i~-~;-. '9/re-~:o ~-~7~ '0, 0 0 -- o • . ~ . .... ~ ,. ! ; ""r .~ .. ~:.';-::~..: : ."'; . ~:. . --.-.-.. . ', ,,- ~ .. -;; I , -' .... '?r.!:.-.: ~ ::. f--.. . . ~r. ~ . .... :;., .. . :...;.. -~- .-';,. ~ ' ... . _-" / ------ srra/n ,-.... dt"sp/ac6'mel7t _,'~' _l.. _ :>(1-!6oke S "'fa~) DC -r ,,4."':1" . , cd~ -dr B from' difrereniio/ eqfn (4) info 'eqfn -(5) q/J/es .,~ "d.l1 '.~' ~ ···~'-,dr ," -. -.-- -:. ~. q~ves F} R(l fX) /77 E, iLlE$lI~~.·~~~·&I~~~,al"IIII"IIIIIIII .......................... ~e,ki~i1IIJ1Hij£QII~. ~~~,~~_~~~.IQ .• ~,~ICb"""""""""""""""""..t ..... ~ . . , -"1.' .', '" . , . fa Y ::'Def'ormot/~n' or Iniac! Rock -C'~L' ". radIal ddormalion~ LlRll = ! fI:~; ?:-:; 17R.,.;.7· rF A, :,.r .••.. ",'.,::,',· ... -~~ . i.' RlI·LIo " f ' 'J ·~:i;;r.~: ~ ~'-. ,.':" " .. '. " .:: , ...... >, " '. ~: " , ' .. -J . , .. -.. ''''- .. ~ * •• ' .. , . .. ._.. .. ~ - . -.:-...... ..;-. " --"" ....... : .. ~ ~ .~ ",. ,.. .• _"r: • ~:...'. , iV.;;R~-~ ~~~:; -v01!<,. , , . .. ,; :, ~, ' .: "" .~ ... - Loaded' '~.-. " . 'concl/fion Figure S ,-. ,,". ~.; -: ,;,-~~.. -~j ~.~~~.>J:~_:.~~~~:; ,-~ , :.' ~ .: " .. ' . -. .... _"..-. _. ~-... .. : ,: ... , II '-"/ '.' ':.. ~ W / -. .<7S;_ffll.i~ From Fi9ure·~:. 5 compafab//ify of displacements .9/ves;~~:;./,!:,,!,~:,~,J.J)· :. '.-"':.' '. -..... '.~~:" . T T Ll/ +-b .1-Llz -f T T·tli?.lI (i~1rftj ~.:'. ".:'._ .:::;:. Lls .Tf .r f-b -LJc"+r'-ARI(I ffrJ)',"'or ::~~:;:.: .. "':.',',";.,; .... ,.:>:"",...,..:;; ,,6-Ll, -I-<1z/L'Jc -I-LlRI (/-1 /rUt-1J~JI r/ikir) ::Lls~"(;rj, •• a -::-. ~. 0" a' ~o • .:;: ro -c- sub sT/fu fin9 I P Lls'-OSR Es .~. ~ . . .. " F} R ... ' ·.rz Ec /17 .. R Ll ... -.', ... -C ~.,~~- . , ..:.~ -.. ~ .:-";' . . R j .···rz EcFfR: + . .... _._._:_ ....... " . ',' .. ':l . '.=-.' " .. , -.. '-;a.,' .. , '.: e ---c·/·· -' . Now assume -- {'orl her arronglng .. ~,;~~ . . ' :'. e / P .EC· -I- .', -~. , .... '. .... ', . -'r' .. ,,"',-;-r'·.; ". :-' .\. :,....; .. ::. 1-' ~ ......... . ;: ... ". ',' .' , allowable sfee/sfress and • ~. £ (I-fkI) RI ~ .. ' . ... -,;. ."";." . . ..... ':.~';,;\~ .. ~.; '::~~' ~ ':-~. :v'';'', -,.-: .. : ·.0·~~~··: "-,' 0;.' •. ..; .. ,'". ~_ ,,''!I" ,.. ...... . ".-::. j -',-, .• ' .. ~ -,- .~ ..... . , --'::, .. :' .. ~, ,,",- . ";. '~' .. , ..... . _ .i .. . , ........ :,',' . , ,--. "01 :, ••• " -... -. '(' . ~ f Es ER1I ..' .... .- ~ .. ~ 7. E: .. ':·"·tillTCES ~ . Wa.ter Power Development, Vol 2, 2nd English ed., :&nil. Mosonyi; Akadenu.ai Ptiblish:Ulg House of the Hungarian Academy of Sciences, Budapest, 1965. 2. "Steel Linings for Pressure Shafts in Solid Rock," E. We Vaughan, Jour. o~ ":b.e POi'fer Q!!. of the Amer. Soc. ~ Civil Engrs., Vol 82, No.' P02, April 2955.