Loading...
HomeMy WebLinkAboutNelson Lagoon Diesel Intertied Windgenerator Data Monitoring Project Final Report February 1983NELSON LAGOON DIESEL INTERTIED WINDGENERATOR DATA MONITORING PROJECT:FINAL REPORT,1983. Prepared for S &S Electric,Inc. by Alaska Div,of Energy and Power Development DATE ISSUED TO HIGHSMITH 42-225 PRINTED IN U.S.A. DATE ISSUED TO Nelson LagoonDieselIntertiedWindigenerator ,DATA-MONITORING_PROJECT_FINAL REPORT_FEBRUARY 1983.- »4 PREPARED FORS&S ELECTRIC,INC.UNDER CONTRACT TO STATE OF ALASKADEPARTMENTOFCOMMERCE&ECONOMIC DEVELOPMENTDIVISIONOFENERGY - &POWER DEVELOPMENT |DON MARKLE- DEPD PROJECT MANAGER DEPD REPORT 83-445-R 1 BILL SHEFFIELD Governor RICHARD LYON Commissionor ;WILLIAM BEARDSLY Director SE a _By:WILLIAM McDONALDSYSTEMSANALYST MARK NEWELL WIND ENERGY ENGINEER JAMES BARKSHIREENERGYANALYST ©COPY RIGHT 1983 EXECUTIVE SUMMARY This final report presents results of a microprocessor based data collection system monitoring several parameters of the village's diesel generators,the Grumman 33 Windgenerator and_the climatology at Nelson Lagoon from the fall of 1981 to the fall of 1982.Because of technical problems involving both the windgenerator and data collection system,findings from this project cannot be considered completely conclusive.The purpose, then,of this report is threefold: 1)To present data collected to date. 2)To present preliminary conclusions and emerging trends. 3)To document problems encountered and make recommendations to help ensure they do not occur next time around. Despite the problems and ensuing shortage of data,findings show that there is strong reason to believe a windgenerator can provide a high proportion of the electricity needs of a small diesel grid with a corresponding decrease in diesel fuel consumption. TABLE OF CONTENTS Executive Summary Table of Contents Section 1: Section 2: Section 3: Section 43 Section 5: Section 6: Appendices Historical Background ...cccccrvessccccccccsees Introduction to Data Collection Systems ....... Monitoring Project Descriptions .......cccrveee Problems Encountered in Data Collection ....... Data Reduction eoneoeeveeeneeveeoeveeeereawveevee eae ees ever Recommendations and Conclusions .....cscccccces Data Summaries Hourly Data Listings Software Documentation Sensor Specifications and Calibrations Aeolian Kinetics Brochure Sensor Brochure Grumman Manufactures Brochure ii Historical Background of the - Nelson Lagoon Wind System SECTION 1:HISTORY In 1976,the Division of Energy and Power Development launched the first community-scale wind project in the State,located at Nelson Lagoon on the Alaska Peninsula (see location map).The intent was to demonstrate the technical feasibility of integrating a 20 kW wind turbine generator (WTG)into a diesel powered electricity grid in a rural village. The Nelson Lagoon site had several advantages.These included an excellent wind site with no terrain obstructions,an average wind speed of 14 mph,and a progressive well-run community. The first installation was a Grumman Windstream 25,erected with the aid of a helicopter.This proved to be extremely expensive, as high wind delayed the work and forced three days of standby by the helicopter. Three months into operation,the tower failed following a storm. While adjusting to wind gusts from changing directions,the WTG began a yawing motion of increasing severity,which finally caused one of the blades to strike a guy wire and break it loose. The ensuing imbalance resulted in collapse of the tower. A new double-strength tower and "beefed-up"WTG unit with a stainless steel shaft were installed.No further yawing problems of any consequence were encountered. While in operation,the new wind turbine produced quality electricity.The Gemini synchronous inverter performed well,and no problems were encountered integrating the wind-generated electricity into the diesel powered electric utility grid. Though the WTG itself performed admirably,water was getting into the Electronic Control Unit (ECU),causing corrosion which finally resulted in a short circuit of the controls system. Several methods were tried to seal the unit to prevent the water build-up,but to no avail.All would go well for up to six weeks,when another short circuit would develop. During this period,a 72-hour storm with wind speeds in the 55 mph range occurred.There was good news in that the backup "if all else fails"speed brakes of the tip of the blades deployed, thereby preventing the machine from overspeeding and essentially tearing itself apart.No structural damage to the wind turbine or the tower was experienced.However,every attempt to keep water from the ECU had failed.The Division and Grumman agreed that the problem was due to a design flaw and any further attempts to solve it would be too costly and counter-productive. The first machine was dismantled. Around this same time Grumman had been awarded a contract from the U.S.Department of Energy (DOE)to design and construct a wind machine to be used specifically for tying into existing electrical grids.The Nelson Lagoon project was put on hold pending completion of the new unit and environmental testing. The Alaskan experience had formed the basis for many of the design specifications of the DOE machine. The new Grumman Windstream 33,which is rated at 20 kW in a 26 mph wind,was installed in Nelson Lagoon late May 1981.Over 9,320 kilowatt hours have since been generated with no major problems. As of this writing,the unit has been dismantled and shipped back to the Grumman factory in New York State.There it is undergoing testing side-by-side with another Windstream 33 that had been operating in a different part of the country.The system was returned to us as a result of grit found in the nub. The data collection system installed at Nelson Lagoon was conceived as a way to measure the effectiveness of the wind system in this remote village environment.Besides monitoring the performance of the windgenerator in order to accurately determine power output,several other related meteorological and utility parameters have been monitored as well.The remainder of this report describes the system and data it has generated to date. polarconsult FIGURE 1. LOCATION MAP &ANNUAL AVERAGE WIND POWER FOR NELSON LAGOON AREA 10M (HEIGHT) WIND POWER WIND POWER 5828DENSITY(WATTS/M2) Introduction to Data Collection Systems SECTION 2:INTRODUCTION TO DATA COLLECTION SYSTEMS Introduction A classification for levels of monitoring has been defined by Ransdell and Wetzel in "Wind Measurement Systems and Wind Tunnel Evaluation of Selected Instruments."The four classes of monitoring systems based on storage capabilities are: CLASS DATA STORAGE CAPABILITY I None II Limited to a single storage register III Processed information stored in data logger with more than one storage register,but sequential information lost. IV Processed or unprocessed information with sequential information retained. What follows is a description of each class of data collection system and the rationale for the type of system chosen, CLASS I SYSTEMS Class I systems have no storage capabilities and require a human observer to record data.This system is used by the National Weather Service at their manned sites.For the purpose of site evaluation,care should be exercised that the operator maintain a somewhat regular schedule when recording data,so as not to "bias"the data;i.e.,record velocities only when the wind is blowing.The same methodology applies to monitoring a Windgenerator's performance. Typical parameters monitored would be: 1).Wind Speed 2).Wind Direction 3).-Temperature 4).Humidity/Barometric Pressure 5).KW output (power) 6).Other Windgenerator parameters i.e.,Volts,Amps The advantage of Class I systems is low initial cost.However, the expense involved in reading and tabulation of the data may be somewhat prohibitive.This is especially true if a reasonable degree of accuracy is desired.Operator training is minimal and the primary goals in training would be to stress consistency and vigilance, Class I disadvantages would be a loss of accuracy due to meter reading errors of extrapolation rounding,etc.Another disadvantage is that the processing of the data obtained to develop wind power spectrums and windgenerator performance must all be done by hand.This is true even if a computer is used to reduce the data,as the data must still be entered manually,and the possibility of human error is increased. CLASS II SYSTEMS Class II systems do have storage capability,though limited to a Single parameter.This type of storage applies to two particular parameters:wind speed and kilowatt hours.The device for wind speed is called a wind odometer and records a value related to "miles of wind"that pass the anamometer.This value can then be processed (by hand)to produce an average wind speed over whatever observation period is used i.e.:hourly,daily,weekly, or monthly. The kilowatt hour meter is analagous to the windspeed odometer in that it records total energy produced by the windgenerator. Class II advantages are:1)that the summing of parameters takes place continuously and thus more data is being collected.In the case of wind monitoring,2)the readings can be made less frequently than a Class I device,and 3)provide better average velocity indications. For power measurements the kWh meter represents the only method of accurately depicting total power flow. Class II disadvantages are:1)The applications are limited i.e.,a cumulative wind direction sensor reading is somewhat meaningless;2)They tell nothing of the diurnal characteristics of the parameter being measured.They could be compared to the number of miles driven and not whether they were all highway driving or city stop-and-go. CLASS III SYSTEMS Class III devices pertain mostly to wind power potential development.They process the wind data and display several combinations of accumulated results.Processing usually involves raising the discrete data values (windspeed)to various powers (2nd,3rd and possibly 4th)and summing the results in a cumulative display register.These values are then used to develop the power in the wind and further aid in obtaining an idea of the wind spectrum using statistical analysis.A better picture of the wind's potential is obtained with this device when compared against a Class II system. Class III advantages are:1)that the data obtained is already summed and preprocessed for analysis purposes and provides and indication of the diurnal characteristics of the wind at the site in question,and 2)Remote operation is possible for unmanned sites. Class III disadvantages are:1)that individual observations on wind speed are lost,and 2)the devices may require additional equipment to retrieve the stored data. CLASS IV DEVICES Class IV devices have the capability of recording discrete data points such as wind speed as individual observations and have the capability to process and present summarized forms of the data as well.The parameters monitored are limited only to.the availability of sensors capable of providing an output comparable with the device in question.In most cases any sensor that provides an electrical output is useable with proper signal conditioning.The information obtained can be stored in the form of strip charts that maintain a running record of the parameters monitored.However,removing data from the strip charts can become a tedious undertaking and lends itself to errors in reading and recording data for further processing.A solution to the problems is found in the new generation of magnetic storage devices that employ microprocessors to govern their operation. The data is stored on magnetic digital cassettes.These are a commercially available and allow on-site analysis and are in themselves a relatively sophisticated computer. These systems are extremely flexible and can be used for windgenerator performance monitoring as well as analysis (in the case of the computer controlled systems). Class IV advantages are:1)The storage of real-time data maintaining individual occurrences in sequence;2)Extreme flexibility as far as parameters to be monitored;3) Multi-channel (parameter)capability;4)On site analysis of data is available;and 5)Data collection may be initiated prior to the development of a particular analysis methodology and different approaches used on the same data as it is stored in its original form. Class IV disadvantages are:1)The high cost in setting up the system as well as its purchase price;2)Although some do lend themselves to remote applications,they generally are not able to function in extreme environmental conditions;and 3)Devices that employ strip chart recorders are generally difficult to use when retrieving data. CONCLUSIONS In Nelson Lagoon,several Class I and II meters were already installed.The main drawback to their use was the need for an Operator to take regular readings.It was found desirable as well to make real time measurements of all the parameters - including diesel fuel flow -in order to conclusively determine what effect the wind systems was having on the diesel efficiency. This was important to perform a reasonable economic analysis so that the fuel savings could be tabulated.This necessitated use of a Class IV system. Monitoring Project Description SECTION 3:DATA COLLECTION SYSTEM o Description The data collection system is a microcomputer based device (see Appendix B for manufacturer's literature)that is designed to monitor up to 14 Analog or Digital sensors and up to 8 status (on-off)ports. The current maximum number of channels and ports possible are 56 and 32 respectively.The unit also has the ability to be mod- ified to control up to 32 software selectable relays.Presently only the monitoring capabilities of the microcomputer are being utilized. The design objectives required that the data collection be flexible in the acceptance of different type sensor outputs as both digital and analog parameters are being monitored. The data collection system design also required the ability to accept changes to the sensor list should preliminary data indi- cate current sensor ranges or sensor types are inadequate. On site,real time processing of the data is also required in order to limit the magnitude of data records necessary to storage. The parameters monitored are: 1).Windspeed (Digital) 2).Wind Direction (Analog) 3).Sensor Environment Temp.-Inside Enclosure (Analog) 4).Outside Air Temp.(Analog) 5)Solar Radiation (Analog) 6).Windgenerator kWh (Digital) 7).Windgenerator kW (Analog) 8)Village kWh (Digital) 9)System Power Factor (Analog) 10)Fuel Flow (Digital) 11)Time on-line:Windgenerator (Digital) The data obtained is stored in "raw"form on cassette tape every two hours."Raw"means it is in the form of pulse counts (the analog values [0-1 volt DC]being converted to "pulses"which are summed and stored as a scalar).Calibration constants are not used when storing these values. The value that is stored can be defined to be either an (hourly) average or a total,via the software.The data can also be processed as it is collected,and the results stored at an' interval other than the bi-hourly interval now used in the storage of raw channel data.This system stores the processed data (called functions)at midnight of each day.Again,the cassette tape is used to store the daily functions.The data collection software,channel and function logs,and variable logs are presented in Appendix C. The operating system utilized offers the user 4 main options in running the data computer.These are: I.INITIALIZATION II.UPDATE III.DATA COLLECTION IV.DATA EXAMINATION In addition,the user can program a BASIC language program called the User Function Program,which is run after each scan of data and is used in the real-time analysis of monitured data. Detailed operating instructions can be found in the Aeolian Kinetics manual. I.INITIALIZATION This procedure must be performed before any other option is exercised.It involves either loading of a cassette program tape or selecting the ROM (Read-Only Memory)program (a permanent "resident"in the computer's memory).The initialization proce- dure places in "volatile"RAM (Random Access Memory)the software necessary to run the data collection system.After initialization is complete the operating system provides three basic subroutines that allow the user to: II.UPDATE A.Input sensor calibration and definition (an- alog/digital) B.Define storage intervals -(2 hours for Skagway). Cc.Define the scan rate (10 seconds for Skagway). III.DATA COLLECTION A.Enter current time and date. B.Force STORAGE of channels or functions. C.Force printout (2%"paper tape)of functions and channels. D.Examine individual channels. E.Change specific variable in software. IV.DATA EXAMINATIONS A.Read data tapes. B.In software -perform new functions on stored functions.Perform functions on stored channel. °The User Function Program Whenever none of the above routines is being used,the user has access to the User Function Program.It is a BASIC language program in which all of the functions which inter-relate channel readings to one another are placed.It is through this program All the access to sensors (at The analysis and interpretation of data that the system gains its real power. and storing and printing of data happens automatically user-defined intervals). happens here, Microcomputer Outside Windgenerator WindgeneratorAirTemperaturePyranometer-Power Factor Output KWH Inside Air Temperature]||Diesel KWH Sensor Terminal (Signal Conditioning)p $$Wiener |_Fuel Flow Anemometer Windgenerator Data Collection On-Line Paper Tape Cassette FIGURE 1.Data Collection System Block Diagram FIGURE 2.System Component Location =«7 (Non WINDGENERATORCONTROL) WIND DIRECTION SENSOR ANEMOMETER fwe PYRANOMETERS WINDGENERATORin-KW TRANSDUCER KWH METER Yt CONTACTOR(WINDGENERATOR)J TEMPERATUR SENSOR (OUTSIDE) POWER FACTOR TRANSDUCER KWH METER (DIESEL) SIGNAL CONDITIONING CARDS & INTERFACE CIRCUITS os WINDGENERATOR CPU {)"MICROCOMPUTER :5 onaAIRTEMPERATURE«a FUEL FLOW (INSIDE) a TRANSDUCER NELSON LAGOON POWER FACILITY SYSTEM OPERATION The microprocessor is presently programmed to scan the Sensor Terminal every 30 seconds.The information obtained is stored and/or processed as required.In most cases the data is summed or averaged for one hour,then those compiled values are stored on cassette.The software produces daily summaries of the 30 second channel scans.Data stored on a daily basis includes time duration of discrete wind velocities (8.5 to 55.5 mph), total KWH produced by the windgenerator,KWH produced by the diesels,daily fuel consumption and other daily wind partameters such as V,v>,v4 for determining a complete picture of the wind's potential for power production.The original software developed for this application also directed the output of select data parameters to paper tape.(This mode has been discontinued due to lack of a reliable inspection schedule and subsequent paper jams.) The system software is stored on cassette tape.The micro- processor has an operating system stored on PROM (Programmable Read Only Memory)to assist in initialization. The microprocessor contains its own battery supply capable of sustaining operation for up to three hours.Should a power outage continue beyond this length of time,the system requires that a re-initialization procedure be performed by a trained operator. The objective was to train someone locally to change tapes and bring the system back up in the event of a "crash." SENSORS (A more detailed description of the sensors and their calibration can be found in Appendix D.) 1.ANEMOMETER -A pulse producing (switch closure)device that provides an input depicting wind speed in miles per hour. The channel data stored is in hundredths of miles of wind. This is further processed in the daily functions to provide miles-per-hour.(35'AGL)Installed 8/4/81. WIND DIRECTION -An analog input that provides a voltage proportional to the sensor azimuth.Installed 8/4/81. OUTSIDE AIR TEMPERATURE -Provides an analog'input proportional to the ambient air tempertaure.Installed 8/4/81. PYRANOMETER -Provides an analog input depicting BTU's/£t?.Although not directly related to the wind generation system,it is an energy source worth evaluation for further use.Installed 11/4/81. WINDGENERATOR KW -An analog input from the Grumman control system.Provides an instantaneous KW reading in the functions program.The channel data is an average over one hour.Installed 11/4/81. WINDGENERATOR KWH -A (dry)pulse initiator located within the existing KWH meter.Totals are stored on cassette hourly and daily.Installed 11/4/81. VILLAGE KWH -Same as wind generator KWH.Installed 11/4/81. 10. li. SYSTEM POWER FACTOR -An analog device designed to produce a current proportional to the phase angle between the current and voltage.Installed 11/4/81. FUEL FLOW -A digital pulse producing (ACTIVE)device measuring gallons of fuel.This data is stored hourly as well as daily.Operational April 1982. ON-LINE MONITOR -A switched output (relay)device that signals the occurrence of wind generator contacter closure. Channel data depicts fraction of hour "on-line."Installed 8/4/81. INSIDE AIR TEMPERATURE -An analog device that provides a variable impedance proportional to ambient air temperature. This unit is located at the computer enclosure.Its purpose is to monitor the temperature of the computer environment, Installed 8/4/81. Problems Encountered in Data Collection SECTION 4:PROBLEMS ENCOUNTERED IN DATA COLLECTION As can be seen from the project timeline,the periods of actual data collection are woefully short.Several mishaps plagued the system during its working lifetime.Additionally,windgenerator downtime seemed to occur in those periods when the data collection system was operating smoothly.Useful data concerning the windgenerator is thus limited. The chronologized order of system downtime -along with reasons for occurrence and solutions implemented -is listed below. 8/19/81-11/9/81 This span of "downtime"was caused by a paper jam during a daily summary printout. The computer was never checked by the operator and the "jam"was discovered by a Grumman representative while repairing the WS-33. The offending tape was brought back to Anchorage and promptly "lost"by the hotel desk clerk who was to hold for pick-up. The reasons for the length of downtime were: 1)Operator failed to inspect and/or re-start computer,2)The expense of transportation necessitated a delay until a trip was scheduled for the Grumman factory personnel. 11/29/81-1/28/82 The one (and only)software-caused down- time period.An S &S-representative attempted to reset the microcomputer -to no avail -in early December.The software error resulted from an attempt to interest 1/31/82-2/28/82 3/7/82-4/18/82 4/26/82-6/8/82 6/15/82-6/26/82 the operator in checking the equipment by having it print the cumulative Kilowatt-Hours produced by both diesel and windgenerator. The specific problem was that upon doing so, the computer had no instruction to resume data collection.The faulty subroutine was deleted in January. A power outage may have been the cause of this period.The system was reset by Grumman personnel with no problem after re-loading the program software. Sometime prior to this "failure"the data system was used by Grumman personnel to check anemometer readings against their own system (with our blessing).The data collection system was inadvertently left in the "print" mode and a paper jam once again resulted in loss of data.After clearing the jam,the system returned to normal operation. A power outage caused data collection to cease.It was found later that the back-up battery system had been damaged possibly during the paper jam(s)which can place a heavy "load"on the bat-teries.An attempt to re-start the system by personnel from Quadra Engineering (who just happened to be around)was unsuccessful. Reason or reasons unknown.Polarconsult representative reset machine and it responded normally. 7/1/82-8/10/82 9/1/82-10/21/82 The suspect in the "failure"appears to be the diesel power plant which developed a short circuit and provided extremely erratic voltages.Damage appeared in several homes due to this.problem.The windgenerator controller may also have been damaged at this time.The MC-65 was removed for overhaul and replaced with a "loaner".Transient protection was installed at this time. (8/10/82) The data tape ran out after 21 days of successful trouble free operation! Unfortunately the operator decided to quit. This loss of data is the final "gap".The system was restored to operational status by relaying instructions over the telephone to. an S &S Electric representative.The person responsible for this had never operated a computer before. at 1983 -e1981«+1982+_MAR.|APR,|MAY |JUNE |guLY |AUG.]sep,|ocT.]Nov.|DEC.|san.|FEB.|maAR.|apr.|MAY |une |JULY |auG.]SEP.|OCT.]Nov.|DEC.|JAN. ¥-Micr ¢,Pyr A ter,Wind Direction SensorderedEqpt./Rec'o -2-cy 'Ordered Eap ectd.3 °: :2 =Signal Conditioning Cards for KWH Meters,KW Sensor &Flow Transducer 3 =Small Instrument ShelterFieldTripWMMNo4-Signal Conditioning Card for P.F.Transducer (See Trip Rpt.#1) Software Phase #1 -sHeeeH Installation (See Trip Rot.#2)i inspection Trip Hi(See Trip Rpt.#3 ) inspection Trip H . (See Trip Rpt.#4) Inspection Trip H(See Trip Rpt.#5) Data Collected Ht rH Par (nas Sereneeyoe9 Perens oe re'popeeey (on)men |Gntnenn Ooty02.Donorn Sores Goes Windgenerator On Leccesccdocesfmcdt cocccechs Qe off cosnccede ncncccedeccnccedessccesdocceseesWithDataColtectionHHaoe!ttf iH :4 Fuel Sensor oO.Operational - Fine Tune Software [esoeee Interim Report oO Modify Data Col.Sys. .oOforAutoOperation Final Report FIGURE 3.PROJECT TIMELINE - Data Reduction © SECTION 5:DATA REDUCTION The following three graphs represent the most complete and accurate data collected to date.The first figure approximates a power outlet curve for the windgenerator during the collection period.The second figure shows that as the windgenerator picked up greater percentages of the load,the fuel flow for the diesel generator had a corresponding drop.The factory data for that same diesel showing how it would operate on the factory showroom is also plotted for comparison.The last figure is a similar plot showing directly the effect the windgenerator has on the diesel's efficiency. Refer to Appendix A for data reduced from the five major collection periods.It shows some reasonable penetration levels for given wind speeds,diurnal variations of winds and loads,and plots of wind data which justify the collection methodology (real time microprocessor)used. NOTES ON FIGURE 4: The average wind speed is actually a recording of miles of wind that pass the anemometer in one hour.The kWH output is a totalized value of kWH's recorded in increments of two during the hour. The curve is an expotential where y =a eX y =kWH x =wind speed. The data used to generate this plot was recorded between April 18 and April 25,1982.Daily data from the June 1982 and the August 1982 periods confirms the accuracy of this plot. Refer to Appendix G,page 4 for Grumman's curve of expected power output vs.windspeed for this machine. 20 - nJ._Sowindgenerator(totalkwh/h)(). '10 20 wind velocity (avg mph) WINDGENERATOR HOURLY OUTPUT VS AVERAGE WIND FIGURE 4. 30 NOTES ON FIGURE 5: The penetrations recorded are hourly values where the ratio of windgenerator kWH versus windgenerator kWH plus diesel kWH is defined as penetration into the grid. The generators used are John Deere diesels coupled to KATO 75/85 kW generators.A Rossmaster turbocharger has been installed on the units. The dashed line is obtained from factory data at 19,37 %,56 and 75 kW. The units are at this time 2%years old. The curve showing Actual Recorded Fuel Flow is an expoential where Fuel Flow =AeP (cw) A and B are coefficients determined from the raw data. Data is from a tape recorded April 18 through April 25,1982. Data for later time periods shows similar results,with about 15 of those points included in Figure 5. This graph shows several things: (1)The diesel generator did not perform as well as is predicted under ideal conditions. (2)Because the diesel operated more effectively at higher energy output rates,the reduction in fuel use is not directly proportional to the energy generated by the wind turbine. (3)At higher penetrations (>25 percent),there is considerable diesel fuel savings. fuelflow(gph)Actual Recorded KEY TO SYMBOLS O =Penetration 0% _as °1-5% 2s °66-10% 35 °11-20% 45 °21-30% 6s .31-50% 6=ad 51-75%'0 T=°76-100%0 &8="101-200% 9:*" >200% oO oooFuel Flow(Diesel Only)"x of 6 4 4 55450as4©5 1,2 4 5bet3/5 3 5 5 2 5S Factory DataforDiesel. é 58 (Obtained Under.é é/3 Ideal Conditions)5”545 5 20 ***tgqr ? kwh (village) v 'TvU40° FUEL FLOW VS VILLAGE LOAD AT VARIOUS WINDGENERAT OR PENETRATIONS ( FIGURE 5. 5-5 WG OUT LOAD v 50 NOTES ON FIGURE 6: This chart is the same as the village load chart;however,only the effects of the windgenerator on the diesel is shown.The penetrations are defined as: Windgenerator kWH Diesel kWH Data is primarily from a tape recorded April 18 through April 25, 1982;approximately 20 points from the summer 1982 period are included and show results similar to the aforementioned. This chart is further confirmation of the facts given by the previous chart. KEY TO SYMBOLS O =Penetration 0%fs) ts .1-5% 4.0 . :2:6-10%/ 3s "11-20%> 4:"21-30% Ss .31-50%ie]/6 =* -§1-75% 7:" -76-100%°ab °/8 =*101-200%3 9 ="= 5200%0 / x / a Actual Recorded 30 Fuel Flow / o Diesel Onl 4 /2 (1 y)5 3°|/ / 556 / 6f 5 Factory Data §/(Obtained Underd616/Ideal Conditions) 65 ; 716 '/ 2.0 / 5 4 1.7 10 20 30 kwh (diesel) 40 FUEL FLOW VS DIESEL LOAD AT VARIOUS WG OUTWINDGENERATORPENETRATIONS(siesex OUT FIGURE6. 5-7 50 -!Recommendations | & Conclusions. SECTION 6:RECOMMENDATIONS AND CONCLUSIONS Because of the lack of continuous and long term data collection due to problems with both the data system and windgenerator,it would be unwise to make far ranging conclusions at this time about the applicability of windgenerator penetration in small village diesel grids.However,several encouraging trends can be documented: fe)The fact that Nelson Lagoon was thought to be a good wind site was confirmed during the monitoring period.Average wind speeds of 12.6 miles per hour were recorded and several days with average speeds in excess of 20 miles per hour were noted.In general,the fall appeared to be the windiest time of year at the site.(Though it should be noted that very little data was gathered during winter months.) fe)While every additional kilowatt-hour produced by the wind generator replaced diesel fuel at a slower and slower rate, considerable and effective diesel fuel savings was still seen at relatively high windgenerator penetration rates. oO If the 20 days in August 1982 with average winds of 12.1 miles per hour can be taken as typical,energy production of 5.9 kKWH per hour from the Grumman machine could be anticipated.This totals to over 50,000 kilowatt-hours per year and displaces 20 to 25 percent of the village load at a fuel savings in the order of 1,500 to 2,000 gallons of diesel fuel. Monitoring at a remote site is a tricky and difficult proposition.Much has been learned through both the problems and the periods of successful data collection at Nelson Lagoon. Several suggestions come of this: Ample transient protection should be employed to protect the monitoring system from transients and spikes created by lightning and surges in the AC-power line.Given the nature and size of the typical village power plant,this is of particular import anywhere in the bush. A paper winder should be used with the monitoring system to avoid paper jams;thus still allowing the paper tape to be used as a back-up of cassette-stored data. Use of non-volatile memory to store initialization information would simplify start-up procedures for an on-site operator. An uninterruptible power supply would further extend the monitoring system's battery back-up capability.It might prove useful in situations where power outages are common. It is clear that the majority of problems were caused by relying on manual operators.One possible solution is a more in-depth training program to make operators more fully understand both the import of regular Maintenance and collection,and to have a clearer picture of how the system operates (troubleshooting in particular).An alternate operator should be identified and trained for those situations where the prime person may be unavailable during fishing season, etc. If a good on-site operator cannot be found (or regardless,if a telephone line is available and considered very reliable),auto-answer capability should be installed with the monitoring system.The system can then be checked for operation from Anchorage (or elsewhere)manually with a teletype or auto- matically with another computer.In addition, collected data for periods up to several days can be transferred out of the monitoring system into a computer in Anchorage.Use of the auto-answer capability eliminates the need for cassette storage (except in situations when no outside phone connection is available)and eliminates the need for site visits except when it is clear that there is a major problem. The monitoring system itself and the associated sensors performed well at Nelson Lagoon.If all the "human-interface"and "Alaska-interface"problems can be ironed out,the next monitoring project should go far more smoothly. 7 Sree cere Spee mK <ooWzo->Bead Lo. ; yee "D> @Soe . -£ @-Oo. 3p nae oA cn he APPENDIX A:DATA SUMMARIES Appendix A consists of several graphs depicting parameters of performance for the windgenerator and diesel system.They have been derived from the first data tapes recorded from the monitoring project,late summer/early fall of 1981. This Section begins with a table of summarized data for the most complete recording periods. TABLE Al Summarized Data for August and November 1981 AVG.MEA MEAN WIND WIND DIESEL TOTAL DAY CUM ON ON DATE VEL.NRG POWER POWER GEN+GEN=PULSES 3%%LINE LINE MO/DA MPH MPH W/M2 KW/M2 KWH KWH KWH TOT TOT 8/4 11.3 13.6 8/5 13.9 15.2 172 4.1 8/6 18.0 19.9 380 9.1 8/7 5.5 10.2 26 -6 8/8 11.9 13.4 117 2.8 8/9 11.8 12.9 104 2.5 8/10 6.4 10.8 35 -8 8/11 12.7 15.5 154 3.7 8/12 16.3 24.9 473 11.4 8/13 28.1 29.2 1334 32.0 8/14 19.5 22.6 502 12.1 8/15 8.6 11.3 50 1.2 8/16 23.5 25.4 813 20.0 8/17 14.8 21.4 275 6.6 11-9 21.9 24.1 679 8.2 136 162 298 45.6 45.6 7 7 11-10 19.7 23.2 533 15.7 164 578 742 22.1 28.8 10 18 li-11 13.5 14.3 151 4.9 314 396 710 44.2 35.0 24 42 11-12 15.9 16.4 241 7.4 350 460 810 43.2 37.6 23 66 11-13 20.7 23.8 606 17.0 372 402 774 48.0 40.0 23 89 11-14 22.9 23.1 696 20.0 226 548 774 29.1 38.0 11 101 11-15 15.1 18.8 265 8.0 0 748 748 0 32.1 0 101 11-16 10.1 11.0 65 2.4 0 772 772 027.7 O 101 11-17 11.1 11.9 85 2.9 0 776 776 0 24.3 0 101 11-18 11.2 14.0 105 3.5 0 742 742 021.8 0 101 11-19 4.7 8.5 12 1.5 0 732 732 019.8 0 101 11-20 4.6 6.6 9 1.4 0 734 734 018.1 0 101 11-21 2.7 5.2 2 1.4 0 642 642 016.8 0 101 11-22 6.1 8.1 18 1.5 0 640 640 015.7 0O 101 11-23 16.5 33.9 723 19.7 0 710 710 014.7 0O 101 11-24 21.7 27.1 752 21.5 0 746 746 013.7 O 101 11-25 20.6 22.7 548 16.0 0 732 732 012.9 0 101 11-26 18.0 22.4 422 11.9 0 680 680 012.2 0 101 11-27 8.0 11.4 45 2.1 0 608 608 011.6 0 101 TABLE A2 Summarized Data August 12 to August 31,1982 (complete days only) WIND DIESEL TOTAL VEL GENERATOR HOURS GAL/HR POWER LOAD MO/DA (MPH)CYCLES /HR KWH/HR TIME ON USE/HR FUEL FACTOR KWH/HR 8-12 7.1 28.1 1.7 13.2 22.5 2.8 .6 24.2 8-13 12.5 25.7 6.1 23.0 21.1 2.8 .5 27.2 8-14 20.9 -0-14.3 24.0 12.3 2.2 .5 26.6 8-15 14.7 5 8.1 23.9 19.4 2.6 .5 27.5 8-16 13.6 6.7 6.3 23.7 18.6 2.6 .5 24.9 8-17 6.8 44.0 3.3 23.2 20.2 2.7 .6 23.5 8-18 3.5 3.5 -0-3 22.3 2.8 .7 22.3 8-19 5,2 14.3 .6 7.8 22.5 2.8 .7 23.1 8-20 6.0 28.6 .4 9.1 22.7 2.8 .7 23.1 8-21 16.3 38.7 2.7 19.7 21.6 2.8 .6 24.3 8-22 17.5 .2 11.6 23.9 13.4 2.3.5 25.0 8-23 16.4 2.5 10.2 23.6 13.4 2.2 .5 23.6 8-24 13.1 11.1 6.4 22.7 17.9 2.5 .5 24.3 8-25 6.8 35.9 0.7 10.7 22.5 2.8 .6 23.2 8-26 14.3 5 7.7 19.2 15.5 2.2 .5 23.2 8-27 7.2 16.4 1.3 9.4 22.2 2.7.6 23.5 8-28 12.8 11.1 6.4 18.0 20.5 2.6 .6 26.9 8-29 20.7 4.7 12.8 22.6 15.8 2.2 .5 28.6 8-30 20.3 3 13.1 23.3 17.8 2.4 5 30.9 8-31 9.7 3.3 5.2 23.8 23.6 2.8 .5 28.8 TOTAL 12.1 13.8 5.9 18.3 19.3 2.6 .6 25.2 MPH CYCLES /KWH/---HRS/KWH /KWH/ HOUR HOUR DAY HOUR HOUR Figure Al shows the penetration levels with the daily wind averages. FIGURE A1:Penetration Levels for November 1981 AVG.WINDSPEED 30 --20 -10 e) 10 Wind Gen.[__] NOVEMBER: POWER (KWH) 1000 800 + 600 + 400 4 200- Avg.Wind SpeedLANDieselGen.observed other FigureA2 shows the diurnal load characteristics for the month of November 1981. KWH | 25 BaPa*I [™'20 CWSI POSAKA\N i CA SANV7]CA WAZAcASxwah SS5S\N 1 \yy SaStSiyENNCSNSSERSHY0NSNSO 5 O 1 T T T T T T T T T T T T T T T T T T T HRO !2 3 4 5 6 7 g 9 10 Ht 12 3 4 1 6 7 18 I9 20 21 22 23 24 -FIGURE A2:Diurnal Load Characteristics for November (Village Load) Figure A3 depicts the hourly diurnal wind variations for 12 consecutive days in November. MPH 30 oN ----_> 90 O_o IS Pe 10 wn ZS 0 tT T T T T T T T --T T T T T T 1 HR O |2 3 4 5 6 7 8 9 10 11 l2 13 14 15 6 I?18 9 20 2 22 23 24 'FIGURE A&8:Diurnal Wind Characteristics for November The values plotted in Figure A4 are average wind speeds versus the mean energy speed. The average is actually the miles of wind that passed the anemometer over a 24 hour period divided by 24 hours. The mean energy speed is defined to be the speed at which &of the wind power available that day occured above and %occured below.It is the sum of the velocity readings to the fourth power divided by the sum of the velocity readings cubed. MEAN ENERGY SPEED =E v4 E v? This chart also gives a measure of the wind variability. Consider two cases,both where the average is 10 mph. CASE A vi v2 v?EV =10 mph 0 0 30 3 1 2 3v4v"4 v4 ;°0 810,000 EV «39 npnvi,v7,v>,EV 0 0 277000 CASEB V,V,V;EV =10 10 10 10 3 l 2 3v"4 v4 v"4 10,000 10,000 10,000 v4 =101233v',v,v*,V DERIVED DAT FROM 1st TAPE MPH ) MPH ° ey * 25 7 re 25 a =P= I5 4 -15 10 "|et lo 5 -5 0 ]l ee|I r T I T fe) AUG:4 5 6 7 8 9 lo i i2.BB 45 i6 oI? AVG.WIND SPD.[___]MEAN ENERGY SPD.[___] 'FIGURE A4:Wind Parameters From August Tape mace pt eee Hourly Data Listings - wom ge Soe eer ae sores ts wor me me eee a ee APPENDIX B:HOURLY DATA LISTINGS The following are daily listings of all data collected by the data system,as reduced from the tapes sent to Anchroage. =4"3S Ff 1 NELSON LAaGOooOorn WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON =sTOT..FUEL FACTOR +(AVG.HPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 1 5441.7 270 72.5 51.2 ee 7G ¥%73 ****%* 2 11.1 268 V1.9 52.4 ee 6B *%72 He ee %* 3 il 247 270.4 D2.et 3.3 xe 85 *¥H cal 4 9.2 255 91.2 30.5 **&RF 87 ee ¥%¥% bs)9.F 254 90.5 50.6 4*86,4 *%49 *%#*xe, &10.6 262 YO.30.4 xe 7.6 *%73 He ae ee 7 14.2 275 3.5 90.3 ee OL **03 *%#*HX 6 14.3 271 64.3 50.7 **11.3 *%7S **He.HF 7 16.1 277 25.9 51.4 **12 He 5 **#*4% 10 18.7 278 25.8 52.9 **12.9 %%084 **¥*4% 11 15.2 275 B54 34.7 #*13.3 #*a)¥%#**e 12 16.8 273 87.6 54.5 ee 12.1 *%8S %%ee ee is 14.9 265 B46.57.1 *#*812.4 *e 85 ¥%**He 14 12.5 257 84.9 56.4 -*%12 ad 075 *%%**% 15 12.7 253 vO.34.2 **9 *%77 #%HH % 1 12.2 257 v1.2 o200 **10,5 %%7S *%¥*4% 17 14 273 Pi 34.5 **10 xe 45 ee HH %% 16 14.4 265 B4.1 95.1 **13.5 ¥%7b He ¥**% iY 15.4 267 B4.6 54.2 ¥*=612.3 x%164 #*ee *% 20 16.1 2bé&aS.Doe ot ee 813.4 %%OD 4%¥*x% 21 14.1 268 SB3.7 54.4 **12.9 4%wl ¥%+e HH 22 13.9 261 84.4 52.2 #*12.7 HE we ee He *% 23 15.1 264 3.6 53.5 #*612.5 **1 *%#e ** 24 13.4 254 85.6 53.1 *#11.4 **54 xe He ## 1)13.9 265.7 37.4 a3 x*%10,8 **17.5 ¥%ee He =£&£Bl NELSON LAGOON WIND TEMPERATURE SOLAR - --WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.ToT.TIME-ON =TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} 1 $17.1 249 37 S1.?e*¥611.5 ¥*oo?**#%HH 2 19.9%237 $5.8 50.3 #*812.2 **ool **ee 4% 3 18.1 234 24.7 30 ¥*11 **63 a%eH *% 4 16.7 234 B4.4 49.7 e947 *%b9 4%HH *% 3 417.2 226 4.2 49.3 **810.5 He 84 *%#**% 7 18.4 223 794 43.3 *%11 **64 *%He ae =)23 8226 74.7 =S001 #*13.4 4%#43 ¥*4%%% 7 19.4 213 76.4 49.4 ¥e 12,4 4%2&4 x%¥#H* 10 20.3 205 7664 49 *%=12.6 *%bh x ee He 11 22 201 74.9 49,1 ee 613.5 il 0&3 **#**% 12 «619.9 195 75.6 ©6481 #*12.2 *%=64 **ee He, 13 23.2 201 73.7 =48.5 **613.3 *%49 4%#%xe 14 24.3 194 739 Ag &**12.9 *%247 xe He x% 15 18.4 iv?77.9 =494 ee 11.2 **wa?**#**% 16 18.8 190 61.8 °°50.2 **10.9 *%64 ee **%% 17 19.9 172 B3.6 90.1 ee 611.9 ¥%073 *%¥*He ig 197.4 172 90.8 49.8 **11.4 4%82 ¥*#%He *9 17.6 174 91.3 49.9 *%10.2 iahed 71 **4%% 15.7 169 941 30.1 4%G2 ¥%7h He ee He 21 14.8 169 97.6 30.3 He 7a2 4%233 #%ae *% 22 11.7 145 103.1 50.2 xe 3.4 ¥*085 %*4%*% 23 610.1 145 108.8 50.8 ee 2.42 **31 *%ae He 24 7 143 114.7 50.7 *%He *%»44 *e #*¥¥ DA 17.?193 B&49.7 ¥%10.1 %%14.4 **4%xe HOUR iSTNUbOFhe10 fF ff Ho1 NELSON LAGOON WIND TERPERATURE SOLAR 2-H INDGENERATOR DIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT,TIME-ON ToT.FUEL FACTOR (AVG.HPH)©(DEG)(DEG)(DEG)(BTU/F2)(KH)(KWH)(HRS)(KWH)(GAL)(COS 0) 4&4 208 120 50.7 *%%%%*218 *%+x 7.4 350 112.4 50.4 %%zZel ae 285 K*4%4% 10.4 374 101.8 50.2 He 2 xe 273 ae *%HE 10.3 382 103.3 50.3 %*Zea Kt 3 HE &%He 11.5 382 103.1 50.5 4%2.9 x ol He %*% 11.3 382 1601.5 oi *%4,2 aE 23 x**%KE 11 382 101.2 51.5 &%3.8 He 284 *%x %% 10.7 354 161.64 51.4 %*3.1 x 2oY He e%He 10.5 257 101.9 52.4 ae 3.47 ee .o2 +¥*He ab 242 103.4 53.*%22 Ke 220 He *%He 4.3 223 1097.5 54.3 +e ++H %%KS %%rd 347 343 112.5 54.HE x%HH %HE HK HX 4.3 SoZ 77.1 54.2 %%ee xe 4 4%¥%*% 5.3 291 85 55.2 as *%ae 2en Ht x Ke 5.7 355 50.9 54.3 %%#%*%aH *%+He 4.2 354 72.39 bal ba HE 4%&%#*+¥%KE 4.2 350 771 54.7 H%cr HH **H%+e H* 1.1 354 Tht 55.5 4%*%eH +Ke +KE 1.2 3et 75 54.8 £%+HH *%4%£%x% ")384 74,3 54.3 *%%%H%**x %*KH 23 313 73.5 55.9 ++%x¥%+%H¥K% He 342 727 57 ee H%eH **H%#4 *% *%358 71.7 55.9 %%+H +e %%*%*%eH al 313 71.5 65.5 x e%He He xE a ** 5.5 240.5 91.9 53.7 *e 1 +e 7.9 ee He HH f EE ££cel NELSON LAGOON WIND TEMPERATURE SOLAR mo---WINDGENERATOR-----------=---BIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 7 340 70,9 54.1 He ¥%HH 4%+*%HH Ze 261 Feel 53.5 H***HH K*He HX x 11.7 343 72.3 53.4 He S *%soi ee ee *% 15.58 382 71.3 50,7 **13.5 %%7S H H%x15.9 379 &9,8 49.4 **13.2 He 7 *%*t eH 14.97 379 49.2 49.4 **12.4 te 74 He %** 14.5 370 4&9 49.8 ee 11.4 ae 77 %%**% 11.6 391 &9 Si.1 4%5.4 *%«74 **H**% 13.4 375 49,3 Si.¥ee 10.9 aH oy *%**%% 13.3 37 &9 24 53.5 **10.8 x av x ¥#*HE 12.5 26 70.7 ban #*9.3 xe 7D xe +H% 13.2 2b V2.2 59.7 *%10 te eo]*%*%HH 12.9 27 73.2 62.6 e%9.4 x 2a3 %%*%%* 13.6 24 74,1 66.3 %%9.4 ee 2 cd x %% 3.1 20 735.2 67.9 ee 8.4 ee 2ay ¥%4%%% 12.7 27 735.6 é£6.9 **7.0 HH 2c HH x He 12.9 22 735%69,3 He 3 %%»74 +%4%% is.1s 73.7 68.2 He 8.2 x 77 Ke *«% 12.6 22 735.7 47.3 H+8.2 %% 77 *%e%¥% 11.9 31 73.3 65.2 *%7 K 205 %***x 11.5 33 74,5 41.3 te 4.9 et .BY *%#%x 10.9 =73.1 55.7 &*7.3 ee O11 Ke #%Ke 9.9 47 71,5 52.4 4%3.&Ht a7 *%%%HH 19 31 70 51.4 Ke Dect ae 72 a 4%** 11.8 154 72.2 57.8 ee 2.3 eH 17.2 ****% :ff S ff SL NELSON Lamon ---DIESEL-----POWER SONUPORWIND TEMPERATURE SOLAR INDGENERATOR-------- -- VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.ToT.TINE-ON ToT.FUEL FACTOR (AVG.MPH)©(DEG)(DEG)(DEG)«=(BTU/F2}(KW)(KWH)(HRS)(KWH){GAL}(COS 0) 9.8 58 45.2 50.8 *%3.1 H+7?He #%HH 10.5 bat=d bb 4 50,8 **3.8 HH 7a xe ek HE 11.5 42 44,8 50.7 ¥%4&ae »7&*%4%e% 12 é2 43.8 50.7 xe 5.4 x%78 %*%#%*% 10.9 &l1 63.4 51 x%3.7 **»74 #%4%*% S 64 &4 51.3 et &Hx any x%¥¥KH 7al 73 63.4 51.7 **2 +£4 4%#%H% va4 74 65.6 S1.%4%1.5 x 077 &*H%x 10.8 ae 65.4 52.7 4%ef %%81 *%¥%x 12.4 108 64,8 53.4 **4,3 *%2O5 **ae x* 13.7 105 64,4 3.3 4%&.1 HH so?HH a e% 15.4 103 43.8 52 e&ee 7.8 a%2s *%4%aX 13 104 43.8 52.0 +%4.9 *%286 He %%a iz.l ob 44,3 52 x 4,3 **.o3 a *%**% 12.4 106 64,3 52.7 %+%5.2 *%a77 ***%4% 11.9 110 64,2 a are KE 4.3 #%277 x #%a 14.4 121 44,1 52.4 4%7.1 He 284 #%***% 14.3 119 &4 54.2 ¥%7.3 *%2 **¥¥a 13.4 117 44.5 54.1 et &1 xe 9 #%*%H% 13.7 133 65.4 S39 4%5.7 a 18S *%¥*HE 12.3 148 45.0 D3.0 #4 4.1 ¥%es %%%%%% 11.7 144 45.8 53.4 4%3.9 **%ay e%a H% 10,4 144 45.4%53.4 *%2.9 %%ao *%He *% 2.9 147 6435.8 53.7 *%1.4 %%285 HH ¥*% 11.7 100,4 64,9 52.0 "4 4.3 xe iv.4 *%e HH "f/10°fF 1 NELSOMN LeGOON WIND TEMPERATURE SOLAR - ---WINDGENERATOR DIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,ToT.TIME-ON TOT,FUEL FACTOR (AVG.MPH)==(DEG)(DEG)(DEG) (BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 3.9 1446 64,4 53.8 4%)e%i)*%#%x go is 6&7 wb 53.6 He Pia)ee 44 *%4%K¥ 7.2 134 48.8 53.4 a e%He 254 +¥*HH 7.8 154 68.9 53.4 a £%x% 74 **¥%K% 7al 152 &9 53.4 +%+e He wf %%4%#% 5.5 18s 49 4 e%4%Ke ei Pr £%HE 35 209 70.3 53.3 4%+x *%#%a HH 1.3 194 70.9 53.1 x%x%H%H%¥%a HK 1.7 232 71.2 53.5 ee **4H %#%+¥* 1.4 S11 72.5 54.1 x ¥%ee e%x*4%%% a7 349 72.7 54.9 +He HH +H ed HH HH a7 309 72.7 54.2 HX +%%%¥x%H%%% v4 Zak 73.1 54.8 +*%x%H%*%£%*% Zee 179 7363 59.9 3 **xe H*X*£%Fra Pec]249 73.5 5Ss.1 %4%HH x +%*%He 4.6 350 73.7 54.2 **Pea x 217 *%¥*4% 13.4 382 72.7 52.2 e%4.&a%77 *%H**% 11.5 362 71.7 51.6 %2.3 ae 37 xe ¥*KK 10.3 382 71.7 52.2 x 1.2 He o3 He *%+e 11.4 382 71.4 52.3 He 3.4 ee 287 *%4%£% 11.4 382 71 52.2 +H 4 *%oh *%ee HH 10.7 382 70.1 51.4 a 2.7 x%29S *%4%#* 10.2 382 70,5 51.7 *%2.7 He 84 *%+%#% 10,8 ts ee 70.8 Si.%x)3.0 a% F7 £%4%KH &.3 280 71 2.8.xe i.1 %%10,8 *%H%H% -Se ff el NELSON LARmOoOonN eeWheSGNUSGR14 WIND TEMPERATURE SOLAR ----WINDGENERATOR-----------__-----DIESEL---- POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 7.8 bala 43.2 50.5 #*Sel *%7?*%4%%% 10.5 38 bbe 4 20,2 *%3.8 *%78 He HK ** 11.5 b2 64,8 50.7 ¥%4.&*%7b **#%** 12 62 £3.83 50.9 xe 3.4 ue 78 **¥*** 10.9 61 G364 1 *%3.7 sia +74 *%x ** 8 64 &4 51.3 **&e%aroky 4%*%** 7a 73 &35.4 31.7 *%eZ *%244 *%*%4% v4 74 635.6 31.9 %%1.5 Stal 77 ee %%** 10.8 oy 65.4 52.7 *%2.7 4%81 ****#* 12.4 108 64.8 53.4 ee 4.5 *%285 *%#*%e 13.7 105 64,4 33.3 **&el ad OY ¥*#%*% 15.4 103 63.48 52.6 **7.8 ee 8S *%ee xe 13 104 &3.8 52.5 H*4.9 He 34 ee e%*e 12.1 oh 64,3 ao **4.3 He 0&3 He ee Ke 12.4 104 44,3 o2.7 *%Jee ee 77 4 *%¥% 11.9 110 64.2 32.0 4%4.3 *%77 ***%4% 14.4 121 641 33.4 **7el %*84 *¥*He 14.3 119 &4 34.2 *#9.3 ee 7 *%***% 13.4 117 64,5 54.1 *%&1 +%2B?He a%¥% 13.7 133 &3.4 oS.¥*D7 *#*8G **¥%¥* 12.3 148 45.8 33.5 ¥%4.1 *%85 %*#%ee 11.7 144 £5.48 aoe 4 ¥*oe?*%OP ¥***** 10.4 144 65.6 a3 44 ee 2.9 ue 3 *e ¥%%% 3.8 147 65.8 53.7 %%1.4 n*285 e%%%xe 11.7 100.4 44,9 S20 **23 **i7.4 He ¥**% NELSON LAGOON WIND TEMPERATURE SOLAR - o--WINDGENERATOR----------- --- DIESEL-----POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD,AVG,TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} 3.9 146 &£4.4 53.8 4%2 *%3 %+#¥ S isy 67.6 53.4 x Pea)*%64 HX 4%HK 7.2 154 48.5 53.4 +#%HH 204 *%¥%He 7.8 154 68,9 53.4 **e*%xe »74 HK H%£* 71 182 &9 53.4 *#%%*%»72 *%ee H% 53.9 188 &9 53.4 *#*x x al *%H¥*% 3.5 209 70.3 53.3 #%*%x +%ae H*+% 1.3 1946 70.9 53.1 #%#%4%4%**H%%% 1.7 232 71.2 53.0 ¥%H%%***%a 4% 1.6 Sil 72.5 54.1 &*e*x H%H%¥¥%% a7 349 72.9 54.9 4*4%*%x #%+%He a7 309 72.7 56.2 x%xe HH *%**¥%%% 2 254,73.1 54.8 a *%*%He %*%#% 2.2 179 3,3 59.%%%x a%£%H%%% 3 248 72.5 58.1 4%#%*%%H%4%*% 4.6 350 7a?54.2 H+ea %%017 **4%x 13.4 382 72.9?32a +%4.6 *%.77 ¥%%*% 11.5 382 71.7 51.4 H*2.3 He 87 x%¥%He 19,3 3682 71.7 52.2 4%1.2 *%223 *%x HH 11.46 282 71.8 52.3 He 3.4 **.o7 **4%#% 11.4 382 71 ba anes 4%4 xe 02 *%¥%H% 10.7 382 70.1 51.4 **2.7 x%298 *%a HE 10.2 382 70.5 51.7 H*2.7 %%84 a a e% 10.8 382 70,8 51i.?+s 3.45 +297 x ¥¥x* &.3 250 7i 53.2 **ol *%10.8 %%H%He boasPeeae--hh.-safe.deOs"1s f/f #1 NELSON LAGOON WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME ON =sTOT,.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 32,8 254 42,8 51.7 %%He +a%%%H**% 3324 232 &1.2 51 %H x HH e*K*e%x% 31.5 279 41.5 50,4 H%H%#%e**%H%%% 29 278 61.4 SO .1 H*x*ed x x ¥%HX 224 277 41.3 49.7 4%%%+%a%*%*%%% ete Pe)273 61.6 50.1 e*4%£%4%e%4%x 25 273 61.8 50.3 +%HH %+%*%*% 26.4 276 41.8 50 **#%H%=}eS %xe 25 272 41.7 50.4 +H%+x H%+x 23.2 270 -1.8 50.5 #% #%ee RE RF He HR. 23.3 267 41,3 51.5 *%2 **Ol He *%ex 24.8 275 61.7 51.5 %%1.4 ee al He RF He 31 282 61.8 53.9 %%a%xe ee *%H%He 31.2 2E0 1.7 54.2 %*¥%H%H%K%x x% 30,7 282 61.7 54.%#%#%xe *%ee 4%He 32.3 264 &1.47 Sob *%+*%4%4%x%% 31.6 281 41.6 53.5 ####*%+%*%+%*% 25.8 278 &1.6 Si.z2 4%*%%%4%%%4%Ke 23.6 276 1.1 49.7 +%%*%4%4%4%He 29.5 274 60,1 49 ..&x HK EK *%x 4 + 23,4 243 59.3 49.4 %+a +%ae 4%*% 26.4 267 oy?.4 49.1 *%*%*%4%a ¥%£% 23.1 245 40,1 49.4 %%#%***%%%x x 22.9 245 40.4 49.3 e%4 ee 4*HE 4%KE 8.1 275.3 41.3 a1 %%4%+e el *%4%*% "”14 f/f el NELSON LAGOON WIND TEMPERATURE SOLAR woe INDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON «TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 23.9 2h7 £0,3 49.4 eH e%HE HH +%+%%% 223.9 hy &4 49,2 tt ae x%**%HH &%Cr 21.3 2h 41.4 49.3 +H £%HH %*%%%% 13.3 Zté 41.9 49 .&kt ee HX 4%HE *%E% iv.2 2h?£2.44 49.5 *%¥%4%¥*4%4%*% 15.4 2h as SO a +HH 4%x)*%¥* 14.3 ZEQ 44 4?9 x%KK H¥4%HH KX KH Zhael sil 6245 42.1 x *¥eH £%H%4%He 20.4 290 &l 43,3 *%+HK 4%E%4%He 2749 282 a7 49 49.2 %%4%HX 4%KE 4%KE 22.8 2E5 &1.4 49.9 ee HH He ¥%**4%He is.'265 43,7 52.4 x &%HH a HH 4%KE 20.2 278 44,3 54,5 ES.4%He *%H%4%4% 17.9 274 b5.7 55.2 **3.4 RE s20 He He KE is.245 73.8 a&el ¥11 +71 %%*%%% 1?.2a¥77.4 S7 a *%9.7 e%65 a %%¥% 17.7 270 73.5 D/ed xt 10 *%244 %%¥%*% 16.1 2646 73 D447 *¥*13.1 %*wh ee x Re 17.5 265 73.7 3.9 x%13.4 HE 1 *%¥%% 17.°249 77.3 3.3 *%13.6 #%1 He 4 a 15.2 243 74,5 a2 **13.5 a 1 4%4%#% 14.2 Zhi 774 bal 6)**2.7 HE 25 **x%%% mad 240 73,8 49.7 *%12.3 #%1 %%4%* 10.4 Zo?eet ral ©%%9.9 ¥%1 ee x 4% 17.5 271.4 65.9 31.7 He Sel H%a He ee ee i"MobUDGohyeS"SCONEUL0bef 421 7 1 NELSON Lamon WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,ToT.TIME-ON «TOT.FUEL FACTOR (AVG.HPH)=(DEG}(DEG)(DEG) (BTU/F2}=(KH)(KWH)(HRS)(KWH)(GAL)(COS 0) 12.5 382 70.4 52 xe 5,20 93 xe +% 13.2 382 69.9 S24 ee 5.7 ee |9B eek x%15.9 382 49.5 51.4 *##8.7 9 ¥#29 xe He ¥% 16 382 69 51.7 **G2 **195 ee He *% 14.8 382 48.8 51.7 **See 98 xe 4H x% 14.5 382 66.5 52 #705 RR LOD ee eK x% 13.9 382 468.5 52.1 **FG **95 XH *% 3.6 382 67.2 S23 **13.7 #%697 eR HF x% 14 383 46.7 52.2 **12 *%9%HH 4%x% 15.9 371 67.6 52.6 **11.4 **9.95 ee EK a% 12.9 373 47.7 53.5 **11.7 **95 xe eH ¥% 14 356 68.4 54.3 #*10.55 **.95 Ke He x% 14.2 343 469.5 54.9 **11 9 oF xe 4H *% iv.e1 226 70.1 SS.2 #*11 **1%eee x% 19.2 246 49.8 54.1 **11.5 94 xe *% 15.6 247 70 54.8 #*2 #8 9.97 He £X xx 14.7.247 70.4 5h #e 9 ee 92 a)** 11 260 71.3 56.4 #*7 #* 9H ee xe @.4 264 72.1 59.2 **3.3 #*92 xe HH *% 7.9 268 72.2 56.6 **1.8 #*9.93 xe HH x% 6.32 249 71.6 54.8 #**.2 #*285 xe ee ** 6.1 267 70.9 S34 **2 *e 9 94 ee KH x% 4.4 Zo7 EF wk 32.2 4%4%He a7 **%*Re 5 271 69.2 SZ.55 **# #*xe 5G ee RK *% 12.7 223.9 49.5 53.7 **7.3 **21.8 HHH *% fY Az 7 B11 NELSON LAGOON WIND TEMPERATURE SOLAR =-----WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.«=AVG.TOT.|TIME-ON =TOT.«=FUEL.«FACTOR (AVG.HPH)(DEG)(Des)«=(DEG)CBTU/F2)(KW)(KWH)=(HRS)(KWH)=(GAL.«(C08 0) 4.9 230 49.3 52 He %*ae ol H%4%4% 5.6 261 70 Sis7 0 HR ORR 2 ee HK x% 5.2 246 Os S1.7 *#*eH 34 xe eH #% 7.8 252 710 S24 ee +ae %)ee HK ** 8.7 201 71.8 51.8 **1.3 #*99 He 4%** 7.2 273 71.9 52 ##63 R97 xe ke x% 3.4 247 72.2 52.2 R*1.3 HE 29d %+***He 5.9 282 71.9 S29 #8 #***9 59 Te x*9.4 273 70.7 Si?**3,3 ¥#75 xe ¥e x% 1.9 153 69.7 5SOQ.9 #**(5 **=05 xe xx 14 291 49.8 «52.8 eR 1162 7 xX HH +% 20.5 285 69.2 53.5 **13.5 *#* .78 xe ee *% 21.8 283 47.9 53.3 **13.9 #*84 xe HH *% 20.9 279 &7.5 53.9 #*14,2 #*192 ee HH *% 19.8 275 466.7 54.5 **14,3 #*93 xe HH *% 20.3 271 65.3 S22 **12.2 **87 ee Ok *% 22.2 249 63.8 51.3 **8 #8 03 aT)*% 27 28200 43.100 S505 eR BHO xX xx 26.4 269 43.4 Sl.3 **S.B 9 32 a)*% 25.6 233 63.6 51.5 **SS #426 xe HH **20.7 262 44.3 Si.7 **13.6 4%77 xe |#e +% 36.6 284 6448 52.8 **St **417 HX ¥K ¥% 2v.4 237 64,2 n2a7 He **H%He He 4%4% 27.4 27h 3.9 S27 i HE 4*t%X*%xX XE 14.3 264.7 47.7 S22 **4.9 #8 12,5 Te ees PF 2S £1 MELE OM LAGOON WIND TEMPERATURE SOLAR WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAD.AVG,TOT.TIME-ON =sTOT,.FUEL FACTOR (AVG.MPH}=(DEG)(DEG)(DEG) (BTU/F2)=(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) "1 7.8 257 mo.50.4 ¥*3.3 **1 *¥*¥* 2 Fad ZoG 94 30.1 **Zoo ee 1 *%*%al 3 7.3 Zoo 97 iG 474 4 1.?*%1 4%¥*** 4 eZ Zo vo.IO ee 1 e*74 ¥***¥* a bet 252 1O1.1 49.4 *%&+85 *%%*ee &4.4 Ziv 104.7 Age x%*%ee 202 ial *%xe 7 &135 107.4 47.5 *%*%HH ¥**%%%%% S 5.8 156 107.46 47.9 #%¥%%%¥%4%%%4% ?&.5 14 111.3 43.1 *%**td 214 *%#%*% 19 Fad 3Y 115.2 4?&%**%e*Oo %%#%*% il 7b 146 117.5 Si.i #%4%*%wl *%*%%% 12 liek 11%izZ.l See?#%Sal **18 *%**4% 13 al 115 125.7 33.3 es H%4H ¥%%%Re al 14 o.4 119 120.2 oo.*%&cad woe *t *%Ke iS 10.4 120 izi.Z oL.?4%2.9 ee 1 %%¥*ad 16 11.7 35 110.9 SZ *%4.2 *%i *%*%** i7)610.8 120 101.4 52.9 ¥e 2.7 e%1 **¥%%% is 11.7 izZ 103.7 a2e et 3.Y xe 1 ee *He ivy 10.3 131 104.7 Soul xe ZG #%235 %e ¥*** 20 10,3 123 112.4 ma &ee Zeek **oP ¥*4%¥* zl Bal 119 112.5 Doe 4%ore)*%8 4%*%x 22 12.3 125 110.2 31.4 %%4.&ee 1 *%%**% 23 13.4 23 104.4 bas ane *%a7 *%1 *%ae *% 24 15.4 12é vo LG eee *%B.S He i 4%4%ee DA B44 159.7 102.7 31.1 *%:He 14.2 Sad %%** ="26 jf 1 NELSON LAGOON WIND TEMPERATURE SOLAR -----WINDGENERATOR BIESEL:POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON =TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)==(BTU/F2)(Ki)(KWH)(HRS)(KWH)(GAL)(COS 0) 1 15.5 130 v5.3 ss ea *%3.5 *%i ee 4%%% 2 16.4 122 v6.1 S203 *%v.35 **i ¥**%*% 3 18.64 114 37.9 32.0 #*®11.4 ue 1 *%*%4% 4 19,5 114 £4.98 ba **12 ee 1 4%*%#% 2 21.4 117 B2.7 349 **®612.7 al i ¥%%%*% &24.2 iiyv 81.5 20 ee 13.7 ee 1 %****% 7 24.4 117 B1.2 a=ee 613.7 **i He x%He e 23.115 BO o2e7 **15.5 a 1 ee *%*% Y 24.5 115 733 3265 *e 12.9 **74 **#%¥* i9 2464.6 116 7747 ao **13.1 a FS *%*%¥% 11 28.122 BO.2 34.1 ¥*11.2 **a]xe *%4% Zz 30.4 118 #OW9 So wt **®11.5 a%77 Ke 4%et 3 32 i22 me Do.2 ee a)ae ool *%*e *% 14 25.4 117 e359 &1 **13.4 4%286 *****% i5 24h 114 o5.5 40,2 #*13.3 **oP ee 4%H* 14 24.5 111 e348 60.2 ee 13.4 a 1 *%¥%*#% 17 iPad 110 37 E£0.2 ae 611.4 Stal 1 *%*%** in 20.2 73 B4.1 63.9 **812.6 He 1 He ee ee iv 24.3 1O¥S2.1 57.4?ee 13.7 ¥*i u%x *% 20 20.8 113 B2 6b *%12.7 **1 ¥*ee 4% "i 21.2 114 S39 he 1 ee 612.4 *%1 ***%** 22 23.2 104 73 al wae 7 4%3.4 ee 1 **#%*% 23 25.4 103 73.9 So a be **%13.7 ae 1 4 %%ee 24 25.44 115 77 Doe &**13.9 ee 1 #**%** DA 23.:114 B45 33.7 ¥*12.2 *%22.5 ee ¥%*% it"LP £1 NMELEONM LO ASGmoOonN WIND TEMPERATURE SOLAR -- -WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.ANG,TOT.TIME-ON =TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2}(KW)(KH)(HRS)(KiH}(GAL)(COS 6)"OoNpUPROh227.2 130 64.5 57.9 KE 3.9 ee 2a 4%He He 2h.9 131 5.5 55.3 e%10,23 EE ah x 4%Ke 24.2 141 8.9 58.5 4%£.5 +%244 +4 H*H% 20 148 v2.5.1 e%Zz %%294 4%4%4% 20,5 132 v1.4 54.5 **12,7 +275 +%*¥ee i5.1 124 70,3 55.4 ee o.1 £%224 **H%%% 12.5 137 100.1 55.4 e 5.9 ee 6S *%*%He 14.3 130 100.2 55.4 Xt 7.2 et 3 4 HE Ht 11.3 115 vo 2 54.3 +#3 *%274 4%a*% B46 114 107.5 54.4%**1.5 *%284 **¥%ee 11.7 23 110 54.3 4%4.3 *¥1 %HE #% 13.5 104 100 54.9 %%5.1 x 1 *%4%a 12.2 29 73.5 sv .l **5.0 *%oo?4%¥%*% 10.9 149 102.5 60 *%3.4 *%279 x ¥%HK 13.1 141 108.9 57.3 HH Det cd 1 4%£%He 13.6 121 107.6 60,4 +e &.3 *%1 #%¥*xe 12.4 115 102.5 62.4 4%4 *%7 %¥%*% 11.8 134 114.9 &1.46 %*4%#%*%He ¥t ** 14.8 136 114.4 40,9 ***x%+%H%H%a 10.9 128 118.9 &2,4 #*#¥*%¥%*%%HK ?3 i2l 117.1 52.8 #%#%a%x%*%HH #% 8 135 125.5 Set ae %*%+#x%x%%% t4 i232 120.3 57 %+x%%4%HH %% 14.5 141 114.2 56.5)***%*%4%*%¥%** 14.8 125.4 104.2 53.2 *%4.4 *%14.1 ***%#% "2s =1 NELSON LAGODPI WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD,AVG.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} ,JSa!3PRfhhoatbth745 134 1iv.l 55.5 *%+H %%¥%4%x *% 7.2 {42 120,3 beat SN ¥xg +%%*HH x*He 7.5 142 122.55.7 x*%%HH *%¥*%4% $.8 122 ea 54.5 %%4%aH +4%&%H% i 154 121.7 54.7 +HH *%4%+¥*rd 1O.1 124 122 SS ee ¥*%x ¥H%H%H% 10.7 140 117.3 54,4 %#H%HK *%+%%x% 14.5 121 103.9 24.1 at 4%%%4%&*Pr He 17.9 28 100.2 54.7 %%%+H ***%Ht HH £8 1i?104.9 SA.1 %%*%EH x H%*%+ 15.2 tel 1il 57.2 %%4%aH *****%*% iv.2 116 103.9 57 %¥%*Ee x %%H%HE 1924 112 v4 57 .&4%ee 4%*%**HE ee 224%114 v3.1 57.4 a #%HX +%¥%er'x "ol 118 v249 53.5 He He ee *%4%#%He 21.6 114 94,7 So.7 *%4%H*x HH H%H% 15.2 or oo ee 41.6 **aH ee +a%K%+H 18.5 ey 91.5 40,8 4 %%HH H*+%£*4% 251 103 7 o 52,6 *%+H HH +%4%%%HH 34 122 fo.6 54.4 *%*%x%4%H%*%He 32,5 117 4.7 55.4 *%+%ae x +%++ 24.2 113 G2.2 54.6 H#+%*%HH ¥%#%He B4el Liz Sl.2 54.8 *%#%HH +e *%e**% 26.2 113 B36 54.9 *%%HE ee 4%RE He Lit fF 10 Ff WIND HOUR VELOCITY DIRECTION (AVG.MPH}=(DEG)410627.5 295 2 25.5 293 3 24,8 23? 4 23.4 24 3 24,7 233 &22.280 7 21.3 273 G 22.2 277 9 20.4 279 i900 619.7 273 11 24.3 263 2 22.5 269 is 22.9 265 14 23.5 267 13 15.8 273 16 15.1 274 17 614.1 273 18 14.8 277 iy 13.7 27& 20 14.4 283 2io11.7 273 22 135.2 287 23 12.5 272 24 13.8 290 DA 17.7 278.4 & Li.7 11 f7 WIND|HOUR VELOCITY DIRECTION (AVG.MPH)==(DEG)1 12.4 255 2 12.5 283 3 11.4 269 4 10 «271 2 11.5 275 &10.8 274 7 13.3 235 6 411.5 283 y o11.4 283 10 12.7 28% 141 i1.1 253 iz 11.8 284 13)12.5 234 144 14.5 287 i535 15.5 292 144 45.4 286 17 146.9 290 is 15.9 284 i?15.4 251 2O 13.7 274 M1 «615.8 279 22 14.7 279 22 15.9 279 24 14.7 276 DA 13.4 281.7 7 =1 TEMPERATURE INSIDE OUTSIDE (BEG)(DEG) 70.7 37.7 &7 F 374? E35 &37.564,1 37.7 42.5 37.9 41.3 37.1 &1.7 34.5 42.5 24.5 45.2 37.2 &7 4 37.2 &7 wb 37 47.4 37 47.9 34.4 45.2 36.8 43.5 37.0 45.1 37 ab 4&7 al 37.3 &Y.7 37.4 fn?3 37.8 70.2 3o.& 70.5 33.4 71.2 38. 727 37.4 72.6 37.3 7a 37.4 TEMPERATURE INSIBE OUTSIDE (DEG)(DES) 73.5 33 2.c 3.4 71.4 34.3 71.3 36.1 7z 34.2 70.9 34.6 70.6 37.7 7Vzeu7 34.775.0 37.7 73.8 38.5) 73.9 40 7343 41.46 77.9 40,5 73 ab 40.5 774 40.2 77.9 40.5 777 37,9 74.4 40.3 71.7 40.1 70.3 37.9 45.4 40.1 bib *$39 s & 44.1 35.9 63 .&38.5 34h 23.9 RAD. (BTU/F2) x% x% eg ty tt om!&te SOLAR RAD. (BTU/F2) HH x% HX x% HH ¥% #* #4 1 11 22 40 31 1? 17 MELSON LOSIGonN SOLAR --WINDGENERATOR DIESEL AVG,ToT.TIME-ON TOT.FUEL (KW)(KWH)(HRS)(KWH)(GAL) *HH e*24 4% £%4%%%22 re ee HH **24 #* £%HX K*ears *% *HH *%22 *% *%re KE aes a 4%¥*%24 4% £%EH &¥28 K% &4%204 42 %* 4.3 4 2k m2 e% 1.2 2 203 33 x 1.5 2 ai 35 4% ahs 2 04 35 *% 7.1 is 045 m2 x 13.5 1s oe 24 4% 13.2 14 a 1s ¥% 14.1 14 1 15 4% 14.2 is 1 24 4% 13.7 14 1 12 HE 12.¥14 1 14 ¥X 11.9 14 1 14 ¥% 11.9 14 1 12 4% 10.4 16 1 14 + 9.9 1G 1 12 4% 3.9 144 10,8 373 +¥ NEL on WAGE -- -WINDGENERATOR DIESEL AVG,TOT.TIME-ON TOT,FUEL (KW)(KWH)(HRS)(KWH)(GAL) oe 10 1 12 ¥% 10.3 tz 1 10 4% 7.8 10 1 12 *% v4 10 1 iz x¥ 9,5 12 1 10 4% 11.4 12 1 16 ¥% 12.1 iz 1 12 4% 10 10 1 20 He o.7 10 1 24 4% 7.4 10 1 24 4% 9.4 10 1 2 #% $5 1o 1 2h 4% 190.5 12 1 25 4% 11.3 iz 1 er)¥% 11.1 12 1 24 x% 11.8 14 1 24 x% 12.8 14 1 20 ¥% 13.4 14 1 14 4% 14.2 14 1 14 x* 14,5 is 1 2 4% 14.7 13 1 3 4% 14.6 15 1 o *% 14.7 1s 1 &*¥ 14.4 13 1 &HH 11.5 314 24 SP #% POWER FACTOR (COS 0)camebradonpbasy03foeinPOWER FACTOR (COS 0} AG 47 246 4G 46 »47 nA 4A 4A? AY 45 AY 49 47 46 A 0 4& 0 46 4 «47 47 »47 «47 «47 4 i ra to FS:MELLEOM LAr SONDOBheSfo"UDtopea.WIND TEMPERATURE SOLAR ---WINDGENERATOR DIESEL POWER = VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON «TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} 15.1 27 &3.5 33.4 ee 14.4 is i &ae 47 18.6 265 5.5 3747 ee 14,2 14 i 4 #*«47 iv.3 246 &4.7 37.3 ee 14,1 15 PG &*%47 14.9 2h 4 37.3 **14,5 15 i 2 *%«47 15 272 43.9 37.9 ee 614,85 15 1 4 ¥%+47 15.9 270 64 3E.o **%14,8 is 1 &#%»47 16.9 249 £4.43 33.5 ee 6 614.8 20 1 3 #%«47 15.4 273 Gel 3?ee 614.9 18 1 12 ¥%»47 14.7 274 &7 62 BY.ee 14,7 13 1 22 *%»47 14 Z27&é9 3,8 3 14.4 1s 1 20 #*»4G 15.3 230 70.4 40.6 11 14,1 14 1 20 ¥%47 if 86295 74,8 39.9 20 13.2 14 1 Z&4%Ad 17.1 302 73.37.47 22 12 iz 1 Zh *%243 17.1 203 80.4 40.5 27 611.4 iz i Zh **Ol 14.5 300 344 40.4 il 10 160 1 23 *%2 15.8 295 24.7 490 4 10.4 12 1 20 %%we 14.8 303 B4.2 P47 i 11.5 i2 1 23 **ae 14.4 295 24.5 39 xe 11.9 iz i ae *%seas 14.4 295 aa 39.5 **12,3 14 1 2 #%49 16.5 29%Beez oF ee 611.9 lz i 2h **oo 14.2 300 ey 3?**e 611.5 12 i 30 ¥*ae 13.5 301 £4.46 35.7 **3.5 =1 32 **a4 13.3 252?33 37.5 ee 610.5 12 1 24 #*Ab 12.3 26 7S.9 3?5 **9.5 10 1 1é #¥4d 15.9 235.9 7445 3?al 4.2 12.7 350 23.9 440 #*4 ti Y AS YF ES1 NELSON LAGmODORI WIND TEMPERATURE SOLAR WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE QUTSIDE RAD.AVG.TOT.TIME-ON =s«TOT.FUEL FACTOR (AVG.MPH)==(DEG)(DEG)(BEG)=(BTU/F2)=(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 12.4 301 73.3 33.4 *%7.3 bs i 1s ¥*46 11.5 296 BO.33.5 *%&.3 S 1 20 ¥%44 13.4 3164 80.46 33.3 #%3.3 3 1 14 ¥%4G 14.2 326 75.9 3749 %*B.4 =]i 12 #%AG 15.2 317 7746 33.3 ee 10.7 12 1 12 ¥*AG 12.8 317 7747 33.8 ee DLS 16 i 12 ¥*44 15 254 73.7 37.5 ee 11.1 12 1 14 #*46 14.4 204 7?39.8 #%12.7 12 i i146 #*46 17.7 251 30.4 37.8 **%612.5 14 1 24 #*248 197.4 305 80.3 B94 9 13,6 1é i 22 #%47 22.7 310 77.2 3944 is 14,3 13 i 22 #e «44 22.6 308 F&ul 39.2 14 14.3 is 1 22 #%46 23.9 BOF 74.2 33.4 16 14.4 20 1 20 **244 22.8 312 72.9 2747 14 14,5 20 1 22 e*4 24,5 303 71.6 37 10 14.4 ZO 1 20 #%4G 24,8 303 &Y 5 3644 3 14,7 20 1 12 *%»47 24.7 305 &3 44 35.9 **14,2 20 22h 3 ¥*47 2562 307 &7 7 35.7 *%®14,4 20 1 14 #*Ab 25.3 202 47 2 35.4 ee 613.9 20 4 14 #*+47 25.9 296 &7 aA 2544 **13.5 15 Fd 14 **247 26.4 271 66,8 35.3 #*12,4 13 =p)14 #%43 25.8 290 bo a7 35.1 *%3 is oS 14 #*48 26.4 300 &3.2 34.5 e*12.7 13 85 iz #*245 25.9 305 &4 3 **12.9 is 27 10 *%45 20.6 299.1 73.6 37.4 F.4 12.3 372 23.2 402 ¥%4 dit 4 14 7 51 MELSON LAGOON ' WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.«AVG.TOT,-'TIME-ON.«TOT,«=RL (AVG.HPH)(DEG)(DES)«=(DEG)(BTUYF2)(KW)(KWH)=(HRS)(KWH)(GAL 1 8625297 63 33.8 **14.7 22 1 6 ¥e 2 24,8 301 41.4 33.6 **1443 FO 9.96 4 &* 3 23.2 303 62 33.6 **14.7 18 1 6 ¥e 4 24.3 302 62.1 33.8 **14.5 20 .97 4 ke 5 25.4 303 41.6 32.8 **12.2 14 a)S #e 6 24.3 204 41.7 33.1 **13.4 20 88 6 #e 7 22.46 299 62.3 32.5 **13.8 ig 94 See 8 22.4 293 63 32.4 **14,7 18 1 1200 ee 9 23.46 271 65.5 32.2 **5 b 3 30 -¥* 10 23.2 258 70.7 32.8 4 FR RH +*36 11 22.4 261 72.8 33.1 15 eH *%33 0 x1222.2 245 72.7 33.4 9 10.9 14 56 Bho ORY1322.46 289 70.1 33.4 15 14,4 18 25 24 2 -¥*14 20.4 286 70.3 32.5 24 13.7 18 «87 220 #* 15 21.9 244 49.2 33.1 16 14,5 18 85 130 ¥* 16 21.5 301 70.2 22.7 4 .,3 **02 3 ** 17 22.4 285 72.32.7 #e RH +Bho He 16 22.2 268 74.4 32.7 #8 #e ¥*4D oe 19 23.1 245 74.2 32.5 8 8H ee #*3h ee 20 22.7 302 72.8 22.5 8 ##¥x x%32 &e 21 23.3 253 71.9 32.4 48 ee ++32 00 42222.8 295 71.5 32.4 #*4H eH x#B20 ee 23 21.3 243 71.8 32.6 *#4H Hx +230 ¥e 24 21.5 212 71.6 32.8 *#eH **25 00H nm 22.8 277.5 48.3 32.9 3.6 7.1 24 110 5450 1417 15 7 S61 NELSON LAGOON WIND TEMPERATURE SOLAR ©----WINDGENERATOR DIESEL HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,«=A.TOT,-TIME-ON «TOT,«FUEL (AVG.HPH)(DEG)(DES)=(DEG)(BTU/F2)(KW)(KW)=(HRS)(KWH)(GAL 1 20.8 270 72.1 33 0 RRR +*2h #* 2 20.8 293 71.3 33.1 SL:eS **Bh OR 3 21.9 264 Tid 33.3 oe HR HH +24 x 4 20.9 272 70.9 33.1 ee +%24 #e 5 20.2 274 71.5 33.1 en *%24 0 ¥®&21.3 19?70,6 32.5 He %e ¥%4%24 e¥ 7 20 251 70.5 32.3 ***%#H +*24 2k &i8.9 242 72 32.4 HE **HE e*25 k* 9 19.3 235 73.7 32.5 *# *e oe ¥*300 ¥* 10 14.7 224 75.7 22.5 2 *e ee **34 ke 11 17.2 224 77.8 32.9 a ee:#*34 0 -¥*12 16.6 178 74.9 33 7 #e RH **40,0 ¥ 13 16 115 65.4 33.4 a eo **34 ee 14 14.2 94 &1.6 33.4 1000 RH +*33 00 ee 15 14 101 59,5 33.7 a,*%4200 ¥* 14 12.8 37 44.4 33.3 4 RH *#a1711.4 90 83.2 32.7 **4 9 xe +3h ke1510.8 64 28 33.2 Ke ¥%HE *#*35 4% 1?2,5 77 a3 .8 3344 He ¥%HE ee 30 4% ")o 25 70.9 33,9 K*HH +t XX 30 + 21 8.1 47 PALL B44 RH +%33 00 o¥e227.5 47 =Pb 35 eR HOH x%34 0 ¥*23°°67.3 28 Y5.8 34.7 oe ee eH +23 00°°«O¥* 24 7ad 20 vod 34.7 HE 4%HH il ah ee DA 15.1 153.3 77.3 33.3 1.8 ** #*ee 74R #e OhopatesPeeBbradCreneeo2ess®aseCHAOlegeeeeeBKPScm tt YY 16 fF E11 MEL SOM LAGOON WIND TEMPERATURE SOLAR ----WINDGENERATOR----------_----DIESEL-----POWER HOUR .VELOCITY DIRECTION .INSIDE OUTSIDE -RAD.AVG.TOT.TIME-ON =sTOT..-FUEL...FACTOR(AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)=(KW)(KWH)(HRS)(KWH)(GAL)(COS 6) 1 &.2 43 Pat 34.3 ¥*****¥%24 a*4 2 &.8 a7 91.3 33.9 **#%**#%24 ¥*oo 3 7.2 a7 27.6 33.¥*¥%%**%22 ¥%ae 4 7a?&2Z oy 6b 37.S ee #%ee *%24 **woe 3 11.8 85 7345 33.9 ¥x ee %%**24 **ote &11 &?70.2 35.1 ee ***%ee 22 *%oe 7 11.1 72 bb.34.7 a+*%ee ¥%Zé *%a4 6 10,5 3 70.7 36.3 %%¥%il ee a0 %%a7 ¥10.5 L&Fou!34.4 *%H®#%*%4)#%as 10 11.8 &7 73.8 34.5 &*%#***38 *%2&1 11 12.3 &5 70.5 36.3 13 *%*%**33 #*0&3 iz 12.2 77 &F Wb Shel 21 ¥%*%*%oo *%WS 3 13.3 47 &Fa1 34.5 2&ee ¥e ¥*40 #%wob4 14 12.3 71 &D A 36.4 24 #%*%#*40 *%0&2 i5 11.2 76 4?a1 36.7 i9 ¥%**X%42 *%be 14 10.5 75 72.3 37.2 190 **4%¥*oo *%0&2 17 7.8 77 720i 36.1 i 4 He *%33 *%0&3 12 7.8 1 72.9 Boel ***%*%%*40 ee 2h4 17 10.5 77 3.3 35.47 ¥#%xe He 3 ee we 20 S29 74 71.8 35.46 **#%*%*%24 *%who 21 10.2 32 7i.i 35 %*ee *%*%23 ¥%7 22 2.3 87 74 35.4 e**%ee #%oe ¥*238 23 7.9 7?7202 D383 %%x *%*%23 #%Ps) 24 ?71 70.3 34.7 **#%ad *%a *%apa) DA 160.1 70.8 74.7 36.3 S ee ee x%772 He oo Li Y¥if ff NELSON LAGOON WIND TEMPERATURE SOLAR -- -WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON =s«CTOT..FUEL FACTOR (AVG.MPH}==(DEG?(DEG)(DEG) (BTU/F2)=(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} 1 10.7 70 4&7.34.5 *#***%#%24 ¥%spate) 2 2.5 72 68.3 35.1 ¥%*%ee ¥%24 **4 3 7.8 75 73 35.9 *%ee ¥**%2 *%who 4 o.6 &3 744 34 *%*%*%#%24 **wah 2 s.9 &5 75al 34 *%¥**e #%22 ¥%wl &2.2 a?74e1 BG.%**%*#%#*22 *%ah 7 10.2 a0 73 34.2 %*+%%%*%23 ¥%spate] =10 a S442 34.5 %%#%*%a%30 *%we y 11.2 ba Bo 16 33.**¥***4%42 #%264 19 11.3 6 So.37.4%2 **4%#%40 #*0 &S 1i 10.2 64 1.2 ot 13 ¥*xe ee 39 4%2&5 12 7.8 72 79.3 40.6 a4 *%ee *%28 e*ods 13 7.2 77.3 4s a3 **%%¥%40 **64 144 11.5 64 73.5 44 42 *%*%%%33 *%afd 15 612.5 &1 774 43.3 37 **He **40 #%bd 16 13.5 6&6 Bab 41.4 is #%e%#%38 ee rays 17)13.2 £4 64.9 35.5 3 ¥%*%*%3:4%oo 1@ «13.1 &2 aia?31.9 ***%*%*%xc **of i?13.3 &1 34.7 31.3 *%#%ee *%33 ¥%242 20 13.1 £0 eed 30.4 ¥%¥%*%4%3 **o& <1 12.9 &3 sO 49 30.4 *s ¥%ee #*a2 4%wo? 22 13.1 &5 49.46 2?,.9 *a****%2 ee apa 23 i2 &1 4?27 6b Sd ¥%*%*%32 *%opal) 24 11.9?60 48.3 2944 *%***%4%2h ¥%wads DA i1.1 63.2 ae |34 aah ¥**%*%77&**Pes) 41 7 15 WIND HOUR VELOCITY DIRECTION (AVG.HPH)(DEG) 1 13.59 2 12.8 66 3 11.3 71 4 10.5 81 5 9.2 27 &bad 3 7 5.8 #88 &5.7 86 9 Sl 71 10 9.5 77 11 9.3 80 iz i ee 3°9.3 102 14 13 111 15 15.8 112 14 17.5 113 17 14 110 ig 14.4 112 19 17.6 117 20 13.4 113 21 14 128 22 10.8 13 23 6.3 )=«:132 24 9.3 114 mA 11,1 96.8 141i 7 19° WIND HOUR VELOCITY DIRECTION (AVG.MPH}(DES) 1 11.3 104 2 10.2 101 3 7.6 £78 4 8.1 80 5 4.9 79 &5.9 87 7 Sel 87 6 414 9 3.9 158 io.062.4118 11 2.1 107 iz 2.46 99 3 1.8 98 14 2 100 15 2.4 9-98 14 2.7 1 i7 3.7 #85 if S.2 116 19 4.3)(«124 0 5.2 147 zi 4 1b4 23 4.9 ©=140 2323.4 =«140 24 4.4 156 DA 4.7 110.7 f o1 TEMPERATURE INSIDE ©OUTSIDE(DEG)(DEG) 43.4 30.1 45 29.3 47.7 27a 47.5 25.6 47.2 27.4 4baF 27.9 47.2 23.4 47.6 29 47.9 23.9 48.1 32 49.3 3 20.7 41.7 32.4 41.? 53.4 40.7 at 04 37.3 aee7 37.4 Deed 34.42 S321 35.9 Dee 35.3 weed 35.9 a e4 34.7 oho 34.3 34.4 33.6 24.4 34. 30.4 33.6 f G1 TEMPERATURE INSIDE ==OUTSIDE(DEG)(DEG) 33.9 34.7 bas r)35 a te 34.2 36.4 24.6 34.9 bala 37 reed 3 D569 37.4 56.7 37.3 D7 6&83267 36.8 34.8 a7 40.46 37.4 45 a?ol 90.4 2744 49.9 37.9 S1i.3 60.1 49.9 40 43.8 woe?37.8 37.2 34.9 he 7 S321 7 a&32.2 wad 32.3 a7 ad 32.2 weal SZel D7 al 33.6 NELSON LAGOON SOLAR a ---WINDGENERATOR DIESEL RAD.AVG,TOT.TIME-ON TOT.FUEL (BTU/F2)(KH)(KWH)(BRS)(KWH)(GAL) %%4%HH *%246 4% x x HH 4%a4 ¥*¥ %%+H a¥4%24 4 rr ££*H*24 H% +4%HH *%24 a% x %%KE x 2 4% x oe)x eH 23 *% x £%HH x 30 K*¥ 1 *%HH %%4O +% 14 He eH &*ot £% 2&ee aH H*33 He 47 x HH x ag H* 53 HH HH %%33 ** 50 *%HH x 40 KX. 33 ¥%HH a BS +% 14 x HH zd SC "* 2 %%HH *%34 4% %%He xe £%32 4% *%x 4%a 3 %% *¥£%HH *%20 aE XH *%He *%23 *% HK 4%+%4%25 £* %%¥%xe *%23 x* x a EX *%24 #% tO %%eH x 742 ¥% NELSON LAGOON SOLAR - -WINDGENERATOR DIESEL: RAD.AVG.TOT.TIME-ON TOT.FUEL (BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL) %%He ry 4%24 H% KE 4%rd x%22 £% %%+H ae ¥%2 +% x%x %*¥=£% *%+HH %%22 + x¥*%ry x*24 *¥ ++%H%*%26 x He **rd x 2 K¥ 1 4%*%33 H* is +HH a%2h 4% 23 H%xe a 3 +% 46 *%re %%BS * 43 +H a 4%34 %% 4i *%¥%He 34 %% 44 x%4%+%32 ¥% 20 a%Ht *%3 rg 2 %%HH 4%42 4% x %He 4%36 Pr **+HH 4%32 £% **a%eH *%a &% *%*%ee #%30 H+ x £%ee £%3 4% +%4%HH a 23 £% EK %%eH **2h x 10 *¥HH £%732 4%Ph.UE ti fF 32O Ff 1 NELSON LAtSOOn WIND TEMPERATURE SOLAR - --WINDGENERATOR DIESEL WR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,TOT.TIME-ON =sTOT.FUEL (AVG.MPH}=(DEG)(DEG)(DEG)=(BTU/F2)(RW)(KWH)(HRS}(KWH)(GAL) i 4.3 154 wel 31.4 He 4 *%He 24 *% z 4,5 154 wed a 31.8 **K**%#%22 ¥% 3 34%155 a7 4%31.8 *%He ***%2 *% 4 7eZ 141 m7 el B2.0 %%¥%*%*%24 #* 5 3.2 145 ails oS Beeb *e ¥%a **22 #% &bw i5e a 32.47 **ae ee %*24 *% 7 6.9 178 --356.3°>33.4 He --Re ¥%RHR BB RR&o.2 iss ah 7 33.&*#e ee 4%8)4% ?3.4 170 milan 7 33.42 **¥e 4 ee 33 #% 10 &w2 139 a7el S341 &#*ee ¥33 *% it Sal 144 a7 ad 33.7 0 ¥%*%x%34 #% iz 244 165 Seo 346.1 25 *%*%e%40 *% 13 1.8 164 a7.33.4 35 *%¥e *%33 ¥% 14 1.6 134 £0.48 39.4 zi *%%%**33 *% i5 Zl 24 1.1 43.7 13 ¥%sd *%33 #* 1é 4.2 oy 60.4 40.7 3 a**%¥%3 *% 17 eo 11?ao a 3 1 ee ¥%¥%3 ¥% 1s Ded 108 a7 al 37 al ee #**%%*re x% iv oa 103 36.4 37.4 *%#%¥%¥*23 *% 20 2.3 85 aie a &SF &e ee ee 4%cod 4% Z 4.7 102 aha?34.8 *e ¥*¥*xe 22 *% 22 2.4 108 mG a&35.7 *t *%ee *%23 *% 23 zZel 122 7 3344 **%*%%*%23 ¥% 24 wae 135 27 32.8 *%#%*%*%=a% ™A 4.4 1346.8 a7 of 33.4 5.7 4%ue **734 ae 21 oY S21 fF 1 MELSON LAGOON WIND TEMPERATURE SOLAR --- WINDGENERATOR DIESEL HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON =sTOT..FUEL (AVG.HPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL) 1 1.7 i32 ae 32.5 xe He **ae 24 He z 1.2 1146 mh 4 Bo.***%*#%*%24 4% 3 2 1il ade 7 32.7 %*ee **¥%24 e* 4 3 173 Da 30.3 *%4%*%xe 24 ** ra)1.1 151 Dee 27.3 hd ¥e *%*%22 4% &22 180 weed 31.7 %*%**%%%24 %% 7 3 181 aad 3 ¥%ee %%¥%24 ¥% o 268 192 a 30.9 ee *%*%*%2 *% ?2.5 206 33.9 30.2 ue ¥*¥*ee 23 *% 10 4.7 229 24.45 30.4 11 #**%*%25 ex ii 1.5 243 ao 33.4 13 ¥%**¥*23 #% 12 1.5 190 sat a 4 oo 23 x*ee e*29 #% i3 1.4 i8y aol 346.6 31 **%%*%30 ¥% 14 2.3 244 wit eS 38.2 27 *#*%**2Q #* 15 2.3 293 97 37.5 Zl ¥%**4%26 *% 16 Zed 274 SP a7 35.1 ?4%#%**23 *% 17 347 147 22.7 40.9 2 ¥*%4%23 *% is Zed 123 ae &BIG %*#%*%*%30 *% i?Ze 202 aF 7 35.5 ***%**ee 32 *% £0 2 237 a7 el 39.3 ***%ee *%23 #% 21 3 203 Seo 34.5 e%¥%HH **30 x* 22 348 18s a7 .5 32.45 &%4%ad 4%23 4% 23 a 201 ba he 31.9 %ee ee 4s 24 +e 24 4.8 201 mt a &31.1 He %**%x*24 *% DA Zab 194 Do»34.1 aa7 ¥%*%x%642 ¥%a8}:”-wepeeepeeeONpopaPSRab"ttfObie&&&caChenUcnUDenGenCnORRRan 11 47 BS f/f Sl NELSOM LAGOON WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,ANG.TOT.TIME-ON =sTOT.FUEL (AVG.WPH)=(DEG)(DEG)(DEG) (BTU/F2}(KW)(KWH)(HRS)(KWH)(GAL) 1 ae?225 HS a &30.45 *%*%¥**%24 *% z 4,7 217 a Ae 30.4 *%*%*%ee 22 ¥* 3 4.3 1?ove 30.7 **+e al *e 22 al 4 &.&214 27 «2 31.3 *%44 ae al oe ae ba)7.3 193 ba Ae BO ¥e ee ee al 22 He &&195 ba ode 27.3 %*HE Hs ae 24 #% 7 7a iv a 30.3 *%*%¥e ¥%22 *% S 7.8 196 rad 31.4 ¥%#%***%22 ee $&.l 177 D7 63 32.3 a%*e **¥*Zé ¥% 10 4.8 144 27 4 oS.3 **e**%23 *% it sal 13s a7 ed 33.9 y ¥e x*¥%32 *% 1z mab 136 27 34.4 14 *%He xe 28 ee 13 Bad 117 a Ae 3443 23 ¥****%3 *% 14 a4 125 2743 Bh 13 ***%#*22 #* i5 3.5 33 26S 36.3 iz ee **¥%2h #% 16 4.2 127 ba a eR 34.3 3 4%***%23 *% 17 7?134 Pee 34.5 He *%***%34 ¥* 16 «10.9 213 a7 7 a7 el %%**tal ¥*20 ** 1?P45 222 aie 1 37.5 4%He ¥***23 ¥% 20 7e7 224 a7 &37.1 ***%He e*a2 #% 21 4.7 220 S?346.47 4%*%***%eo *% 22 7.8 195 Glial 36.8 **a%*%xe 23 *% 3 a&ivl brew 34.45 a**%*%#%24 #% 24 sed 147 &2 a1 33.9 **e*ee **24 #% a)&.1 180.5 aoaZ 34 3.2 #%*%4%640 He Ai of 2S f/f en NMNELSOoOMNM LAGOON WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL: HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAD.AVG.TOT.TIME-ON =s«TOT,.FUEL (AVG.NPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL} 1 3.3 120 G1 34.9 il &***ee 22 He 2 3 114 ate?37 a1 %****%*%22 *% 3 =]101 a4.33 %%¥e **ee 24 *% 4 e.2 112 me So.2 **#*ee **20 ¥% 5 7G 135 34.4 33.9 #%4%*%ee 22 ¥% &Baz 161 wo eZ 40.1 ****#%a%22 *% 7 7b 153 aa F 40.7 He xe *%#%24 *% o Fal 1246 £0.85 41.2 ****%%#*23 *% 3 324 141 60.2 40.2 %**%*%¥%32 ¥% 10 &&144 61.3 40.8 3 ***%*%38 ** 11 &&125 41 40.?16 %*¥%4%3 4% iz 10.4 129 60.8 41.7 3 #%%%%%3 *% 3 12.3 127 60.2 41.2 3 *%%***34 *% 14 13.8 149 60.6 42.7 9 #*4%*%oo x% iS 14.9 144 G11 3.3 &¥%4%4%33 #% 16 21.9 147 &1 44,1 2 ***%%*24 #% 17 15.2 143 &1 43.5 #%4%e***3 4% 16°«14.46 141 61.1 43.7 %****%%%3 *% 1?26.4 157 61.2 45.5 ¥**%ee x 30 #% 20 35.3 193 40 45.1 *%*%eH #*oe Re Zi 39 229 me B 41.4 He x**%*%30 4% Ze 37.2 34 444 39.9 ***%*%x 23 ** 23 37.1 231 mato 35.3 *¥¥%%**%2&4 *% 24 34.7 222 31.4 37.4 *%ee ae ee Zh He DA 16.5 153.46 bale)40.5 1.?¥%x 4%710 ** 11 47 24 7 E21 NELSON LAGOON WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TINE-ON TOT.FUEL FACTOR (AVG.HPH)=(DEG)(DEG)(DEG)(BTU/F2}=(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} i 35.2 220 50.1 246.7 +***%ee 24 #%eo 2 31.7 217 497.5 36,2 %%**e%eK 24 **woo 3 33.2 222 47.2 35.9 *%**ee *%24 HH wae 4 29.2 220 49.3 34.8 %%4%*%¥%22 #%woe 5 23.3 210 49.6 35.9 ¥%4%*%a%24 4%eae &23.6 211 49.5 34.4 %%**&%a%22 4%sol 7 18.9 201 50.5 34.1 4%*%#%*%23 4%Aba) 8 13.5 176 Ze?34.9 x ¥%He 4%25 *aisle) 9 17.4 133 S31 34,5 &%*#a**%33 4%42 i0 619.4 165 53.9 36,8 ba 4%H*oo 35 4%Gl 11 13 17?64.5 37.7 13 #%%***33 *%262 i2 14.9 174 73.1 32.3 17 4%**%He 3S 4%G2 3 14.7 185 737.9 38.14 **e%*%33 ee obs 14 17.2 142 76.7 34.8 4 x He £%th %oo 15 14.5 -218 79.8 33.5 --13--8 eR HR.AQ RR.GA. 14 14.2 198 87.7 3 ti ¥%a *%35 ¥%0h5 17 15.3 205 24,53 34 #*4%%%+%35 ¥%h4 1s 23 23 3.5 38 ee #%%%¥%3h ¥%wh2 19 27.1 243 74.1 38.7 *%4%H%#%32 4%mbat=)20 28.4 244 71.2 39.44 ¥%¥%H%¥%24 4%o& 21 22.3 233 70.7 39.5 *%¥%4%*%30 ¥%apet=) 22 25.9 243 70.6 38.1 ¥%¥¥H%H%30 *%oa? 23 23.2 244 70.7 3°%%¥%*%¥%23 a%7 24 17.2 zal 72.4 38.5 **¥%x **24 ¥%eo MA 31.7 207.1 45.8 34.9 3.2 ee a%4%744 *%Pee) 11 7°25 f/e1 NELSON LAGOON WIND TEMPERATURE SOLAR - --WINDGENERATOR:DIESEL:POWER HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAD.AVG,TOT.TINE-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG) (BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 1 19.1 187 72.5 34.5 *%¥%*%*%22 H%254 2 18.1 207 80 37.1 %%4%H%4%24 x%54 2 17.3 204 Sit.t 37.7 %#%%*%¥%22 ¥%sos 4 14.8 190 o2,25.5 ¥*4%#%H%20 ¥%ol 5 12.6 171 70.2 35 %4%**¥*22 4%oe &17.2 171 E946 39.3 x +%H%xe 22 #%woz 7 15.9 £4172 59,3 37.8 *4 *%%%¥%26 ¥%54 S$23.7 175 27.7 40.9 H%¥%%%*%28 x%waits 9 27.9?1738 34.8 41.3 *%+%*%H%33 4%063 10 24.3 170 25.8 41.7 3 ¥%4%4%40 x%4 11 23.4 142 57.9 42.1 4 ¥%%4%42 4%065 12 #18.9 165 a1 42.2 7 *H*x*38 *%wbS 3 197.5 157 73.3 42.2 5 ¥%e%+%33 *%262 14 22.1 158 971.3 42,3 10 *%*%¥%ah ¥%& i5 22.4 159 20.8 43.1 10 ¥%*%#%34 #%ab 14 20.5 15 71.6 43.3 2 #%e%#%40 4%0&3 17 19.2 158 03.43 #4 4%#%#%34 H%Gl 16 721.9 169 71.6 43.5 %%#%*%¥%3 ¥%masta iy 618.1 150 73.6 43.6 *%#%*%#%30 #%so7 0 20.9 133 70.46 43.6 ¥*¥%H%#%3 *¥oY <i 19.7 133 270.2 43,8 a+*%a%H*32 4%wo 22 22.1 139 85.7 45.2 **#%#%¥%-ZO 4%258 23 24.5 153 57.4 44.3 %***+%H%28 #%Abate) 24 23.6 160 88.6 45.7 *#HH eH ha z RO 5G ti "¥Be WIND HOUR VELOCITY DIRECTION (AVG.HPH)(DEG) 1 27.9 183 2 30.1 187 3 24.7 184 4 22.9 183 5 20.6 180 6 22.3 171 7 19.2 180 8 20.1 185 9 18.4 179 10 18.2 179 11 19.1 181 i2 20.1 187 13 17 182 14 i5 178 15 15.9 180 16 14.3 185 17 12.2 178 18 14.2 178 i9 11.3 153 20 44.1 162 21 12.2 149 22 14.3 179 23 14.4 183 24 13.9 180 DA 17.9 178.5 L1.of 27 WIND HOUR VELOCITY DIRECTION (AVG.MPH)(DEG) 1 1445 180 2 11.9 176 3 11.9 182 4 8.7 168 5 13.1 176 &13.4 185 7 10.2 214 &4.2 221 9 3.2 211 10 4.8 192 11 5 188 412 5.8 159 13 6.8 154 14 4.8 154 15 3.7 147 16 7.4 142 17 6&9 137 18 11.2 136 19 9.7 116 00 «9.2 «114 2100749 = =«:109 22 6.6 117 23 «44-130 24 4.5 151 DA 7.9 140.9 f TEMPERATURE INSIDE ©OUTSIDE(DEG)(DEG) 37.4 44.1 o5.9 44.2 B4.1 435.4 $7.5 44.5 70.1 43.7 87.2 43.4 B.1 Dad v1.1 43.1 91.7 42.7 93.3 42.6 73.1 42.5 93.5 42.9 97.3 42.7 100.6 42.4 101.4 42.4% 101.6 AL? 107.1 41.3 164 41.1 104,5 40.5 104.7 40.5 103.4 39.4 v9.2 BIZ 97.8 37.8 96.5 37.9 95.5 42.2 f 1 TEMPERATURE©INSIDE §=QUISIDE(DEG)(DEG) v5e1 37.4 95 36.4 95.7 34.2 veal 35.2 97.2 35.8 94.43 36.3v5.8 34.2 104.7 36.1 114.1 33.1 114.9 3 121.4 39.4 126.4 42 123.5 40.4 129.9 40.1 135.4 41.7 134.6 40 131.1 38.8 127.2 37 107.5 37.4 97 33.3 73.5 38.5 101.4 3.4 110.1 34.7 120.1 37 111.4 32 NELSON LAmOOnM SOLAR ----WINDGENERATOR TOT. (KWH) RAD. (BTU/F2) He £E HE E% * ee He. EX NELSON LAGOON SOLAR ----WINDGENERATOR- TOT. (KWH) RAD. (BTU/F2) H% #% HH %% + He HH HK xe 3 20 2? 23 zi 19 & HH ae HH ** +H #* iH HK S AVG. (KW) *% H% #% a# 4% e* HH #* #% #* #% #* 4% #% *% #* +% #% H% #% AVG 6 (KW) ¥% #% x% #% a% #¥ ¥% *% 4% *% #% #% +% H% ¥% *% H% ** ¥% a* *% #% a% 4% #% HE KE ee EE cod EE a HE RF * Re Rt 4 Ke ee *E xt RE e* KE 4% +t *% ke %e ee eH KE EE HE HH Xt Ee 4% #% KE a Xt H% KE 4% £% He HE HE DIESEL: TIME-ON TOT.FUEL (HRS)(KWH)(GAL) *%24 #% *%=¥* +%2 4% *%2 £% *%24 H¥ *%2 *% a 22 +% %%ao x¥ 4%30 +e %#3 **¥ *%23 +H ¥¥24 £¥ x 36 HX +a8 %% xd 32 H¥ x aé ¥% *%3 ** *%=o e* ¥%2&rd ¥%2 *% *%2h +H K%28 x **23 H* #%zo £% %680 e% DIESEL TIME-ON ToT.FUEL (HRS)(KWH)(GAL) 4%2&** Ke 24 4% #%22 ¥% +22 &% x%22 *% 4%22 ** x 22 *% +%22 x *%24 *% *%2a x% *%24 #% H*24 % *%2h 4% HE 2 *% +%23 *% **24 %% *%23 +e +%32 HK x*30 +% ee 28 H% *%2a +% 4%2h x% %H 23 xe x*2&e% %*408 HH NELSON LAGooOnM"RS £ WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL:POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON «TOT,FUEL FACTOR (AVG.HPH)=(DEG)(DEG)(DEG)=(BYU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 6)NOPUBteneemMis 177 33.8 33.45 **12.3 12 1 12 ¥%4% 15.4 161 SoeG F4.3 ee GS 10 i 14 ed 47 20.1 145 52.7%34.5 ¥e 8614.2 18 i 3 #%47 is.170 mee 35 *#*%13.9 14 i =**47 20.2 173 m2 35al ee 14,1 146 1 3 ¥%47 14.5 175 weed 34.4 #*10.2 12 i 14 ee 46 13.4 157 a3.1 33.9 #*7.5 &1 20 #*4? 14.7 171 aoe 34.5 **11.1 14 1 20 #*»47 18.4 185 :a a)34,3 #*813.2 14 i Z4 #*Se) 135.7 180 ed 34.9 8 12.6 14 1 23 *%el 15.4 173 34.3 3h 14 10 12 1 34 He 2h 164.5 171 S07 36.7 23 10.2 12 1 34 *%abets) 17.2 145 aed 3h 22 11.3 i2 i 32 #%Oe 14.8 165 54 36.9 2&4 10.9 12 1 3 ¥%arsya) 15.2 150 34.2 35.6 20 «628.7 10 1 ab *%oa? 14.7 146 "6.6 34.8 S 8.4 10 i 32 #*so 14.1 150 24.2 34.5 4 3 5 1 30 *%4 16.2 143 wh 24.5 **10.3 10 1 a2 *%sot 14.5 144 ied a 34.4 ae 6 89 10 i 23 *%we 11.9 149 wb 4 24.1 #%60566 &1 32 ee arabe 14.4 150 29.7 33.5 #*8.6 3 1 23 4%a) 11.3 i355 S307 33.7 ee 4,8 &1 30 ¥*whet 11.4 153 34.4 34.1 ae 4,7 &1 23 4%ats 14 147 shel 34.5 *%8.3 =i 20 ¥*»47 15.8 143.2 54.7 34.7 5.5 9.8 260 24 S20 ¥*rs) f Me ff me MELSON LAGOON WIND TEMPERATURE SOLAR -WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG,TOT.TIME-ON =s«TOT..FUEL FACTOR (AVG.HPH)=(DEG)(DEG)(DEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 17 156 24.9 35 **%11.7 iz i 14 #*44 15.2 164 34.3 34.9 ee 962 10 i 14 4%44 11.8 170 ooed S4.6>xe 46 &1 18 *¥47 3.7 125 aoe 34.2 **1.2 **73 22 ¥*rs) 12.3 150 35.4 34.2 #%865.6 &i 15 ee 47 11.4 131 35 86-333.4 ee 4,9 &1 13 ee 45 13 134 4a 22.5 **ae &1 24 #*wd 13.2 133 Doe?33 ae 48 &i 2&¥*eZ 13.5 134 34.1 33.5 #e 6&5 =i 32 4%37 1i.1 141 24.2 32.9 3 4.1 4 8S 34 #e wv val 172 med 33.5 7 2.3 2 FB 40 4%Sl &.i 206 o7.%33.18 #%%*35 42 **0&5 4.5 iv4 Ph 35.7 17 *%4%223 40 *%243 i190 216 104 35.2 24 4,5 4 «54 34 #*05S Be 254 94.5 3347 13 1.5 2 oO?32 #%23h &G 227 v4.9 33.1 3 oi ¥e 063 33 ee wo? &200 102.7 33.3 ¥*ol x*aC:40 ¥*62 6.7 204 110.5 33.*%**¥*02h 40 #*03 fe7 ivsS 111.7 oad *%4%iad 69 33 **«41 wal 177 115.4 32.4 *%#*He 020 34 **o& t%X*HE He et Ht HH 4%ak 4 HE 4.3 127 110.%34.2 ***%*#%%%32 #*2&2 4.5 123 113.4 34.8 ¥¥¥%*e ¥%30 **ol Pad 171 77.3 BSA ael 3 74 15.4 69S %*oo Lo £SO /Sa ME LSM bLASGoorn WIND TEMPERATURE SOLAR -----HINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.ToT.TIME-ON ToT.FUEL FACTOR (AVG.NPH)=(DEG)(DEG)(DEG)=(BTU/F2))(KW)(KWH)(HRS)(KWH)(GAL)(COS 0} 1 7.3 131 105.4 33.45 *%7 ¥*2 2h #%woe 2 &iSz 104.6 31.4 *e *%#%1 23 e*08 3 2324 137 112 S262 **¥**%20 2b *%oh 4 &.7 122 107.4 34.6 *%oO hal 045 24 #%abst) i)S.2 111 20.9 35 ¥%3 4%oY 24 ¥%we &v9 101 SO.1 36.1 **See 2 1 20 *%49 7 3.4 94 732 37 %%1.7 2 24 ¥%oe &VAG v1 77 37.4 ¥t Zeek 2 79 22 ee arn|?Pee 74 74.3 37.45 *%2.2 Z 1 2b ¥%wl 10 S47 b£&G31 So.4 3 3 4 i 24 *%4 il 7.5 72 B14 37.8 3 3 z 1 40 4%woe 1Z 9.3 70 B4.3 4i 3 «2.8 4 1 34 **2 13 *%x%ae +t +%x#*%%%HH ¥%HH 14 10,8 BO ene)40.7 14 4 1 23 #%wold i5 acd ae ¥1.4 oY?11 7 *%1 30 ¥%Sele) SCCCEREEEECECECEERECEEEEECECERCEECECEERCECEREEEEEECEECCEEECERCEEREECEEEERERERERCEECEEE SRCRECREREEEEERCEECEERECERCEEEERCEEEEEEECOOEECECECECOEECEEECECECEEEECEEEEEEECECEEECECEREECCECECEECCECEEERCCEEECEECEEECEEEEEEEEEECEECOEECEEEEECRCEEECECECEECEERECEECECECRRCECEEECEREE ROSCRECERECCE CEE OCR EE CEROCEECEEEEECEREEEECECEEECECEEECEEREEEEEEEEEREEEEEECEEEECCEEEGESCEECCECEEECEEEECEEEECECEEECEEECECERECCCECECERCECECREECECREEEECCEECECECEECECECREREEEREECEEGEEES BOCECECCOCEREECEEECECEEEEEECEEEEEEECEEEECOEECEEOECEEERREEEBEREEEECEEEECEEEGEEECEEEOEE CCCEECECEECEEEECEEEECEEEEECCEEECECCEECEECEEECECECECEREEECEERERECEERAEEREECEERECEEEECEEER CECRCCRECRCEEECCEECECRCERCEEECEEEREEERCOEAEEECEEECECREECREEEEEEECECEECRECEEEEECEGEEREEE CCCECECEEREECEECEEEECEEEEECEECECRECEREECEEECEEECEEECECERCEEREREEEEEEEREEEEE 2 /25 /82 NELSON LAGOON WIND TEMPERATURE :SOLAR ----WINDGENERATOR----------_-- -DIESEL-----POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE ©RAD.AVG.TOT.TINE-ON TOT,FUEL FACTOR (AVG.MPH}=(DEG)(DEG)(DEG)=(BTU/F2}9 (KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 1 3.8 47 43.1 26.2.&%*%HX *%24 ¥%Maebe) 2 3 54 47.4 24.2 |%*#%eH #4 24 *%eas 3 8.3 Si 46.7 Zhe R*HH H%¥%24 HH 253 4 343 45 43.4 24.28 |ee HH x%xs 22 4%sae ba 23.44 70 45 24.4 He **He Ce 24 4%wae &3!v5 42.1 26.7 4%H%He *%24 ¥#%AenXe 7 1.140 40.1 ZO RR HH %HH 24 HH 51 o 1.2 114 38.4 17.5 *%*%*%HH 24 #%253 v See gz a7 .&2204 |g a*H¥*30 4%Absba 16 3.7 et 33,5 26.7 |21 +*%¥%34 #%eat ii 2.9 oe 37.3 20.8 ©24 #%*%H%30 ¥%7 2 344 111 43.4 33.4 |44 %HH #%32 *%sae 3 4 85 41.9 38.2 49 4%HH *%32 4%057 14 Be &1 45 44,4 49 #****%32 +ww? iS 4.3 &é1 46.7 46.9%44 #**%H%34 #%261 14 5.9 45 AD &45.7 34 *%HH HH 33 #%2&2 17 4.43 batt 50.4 3 ZZ %%%&%34 %%oe| 18 5 &2 4A?&33.7 |8 #*%*%*%42 e*64 tv Sao &o 43.5 29,8 |a #%ee ee Mors]e%2&l 20 Zaz Bo 44.3 26.1 He %%x%*%rc)4%2&1 2 Za?87 44,3 26.1 a ae a Ee 32 x 0&1 22 4.7 v2 423.4 26.1 *%¥%*%4%32 x%wo? 2 2.7 107 42.7 26.2 HE *%Ke &*30 %*pata] 24 2 105 4i.2 26.2 |e++x*ee 25 ee wa?DA 3.46 80.5 44.1 20.2 12.4 ee %**%730 e*Pie) =42 f/f ©MELSON LAGOON WIND TEMPERATURE SOLAR owed INDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE .RAD.AVG.TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(BEG)(BTUF2}(KW)(KWH)(HRS)(KWH)(GAL}(G05 0) 1 zal 74 40.6 26.2 %%ae *%+23 4%aa? 2 2.iii 40.1 24.2 H%#*HH *%26 HX 5G 3 1.4 114 oe 2204 |***%*%x%26 e%iiaa) 4 1.7 120 38.2 2a *%+*%*%2&4%«54 5 1.5 i235 3747 15.2 e*%%4%+*24 *ona &&125 37.2 14.5 x%+#HH x%2 *%254 7 2 129 34.1 14.4 He #%*%¥*25 ¥%oa g 1.2 150 36 eC %%#*%ae 34 4%way v al 204 34,45 14.2 ©7 HH |HK #%44 £%64 16 x%202 27 47 Zoeo ee |**aH He 40 &*WG il 02 197 44.3 26,9 ZO +x ¥%40 e%2&7 z 22 217 738&24.2 -44 ee HH H*42 xe re| 13 1.3 230 24 42.9 47 He %%#%42 *%269 14 1.9 245 100.3 45.1 °49 x HH %38 e%2&7 15 3.9 214 102.4 Deel |43 **He **40 4%ebly 14 3h 1406 103.2 SZee 33 4%He 4%38 4 2&0 17 3.4 a3 1603.1 50 |21 *%%%**%3 **245 16 247 45 104.4 43.2 g ¥%x #%ah £%eft i?1.7 73 164.5 34.5 |%ee HH e*42 4%2&3 20 1.4 124 104.1 27,0 at **He HE 40 ee 2 21 1.4 141 103.1 24.3 *%+**%40 e%245 22 1.7 154 103.3 23.2 %**%HH 4%40 **26S 23 4 170 101 23.%H +*%-*%33 #%264 24 1 127 V4.8 23.#%¥%He **zs 4%2b DA 1.5 147.2 71.7?27.t 0612.4 4%*%*%B46 ¥*o& e f ma Ff WIND VELOCITY DIRECTION (AVG.MPH)=(DEG)2 124 3 143 «4 147 12 133 **131 #*115 **113 22 144 1.5 155 1.2 141 1.4 129 263 129 2.5 134 4.3 132 aa 128 4.9 128 3e7 =130 a4 102 Sel 1546 3.4 150 1.2 158 2 i538 1.?153 4.5 147 z s 1 134 e gy f =7 WIND VELOCITY DIRECTION (AVG.MPH)==(DEG)ae)147 4.2 178 Be!170 oi 215 1.4 ivy 2.9 141 Ses =134Fas1346 4.4 148 4.9 141 4.3 142 Ze 144 2ed 214- Ze 157 &15? &145 4.9 173 3.9 144 1.2 172 3 i5 3 139 se?150 aad 151 Sez 32 oe 162.2 =i NELSOMNM LaAGmoorT TEMPERATURE SOLAR -----WINDGENERATOR DIESEL: INSIDE OUTSIDE RAD.AVG,ToT.TIME-ON TOT.FUEL (DES)=«=(BEG)=-s«(BYUV/F2)=(KW)(KWH)(HRS)(KWH)(GAL) 92a?23.3 +*%%%*2 *% 91.6 20 +%a%+%%%24 a 90.6 17.3 £%#*+x*24 #% 70.2 2oae2 %**%+%or 24 4 70.5 oa,x¥x "%x 24 4% SO.1 24 x H%%¥%24 x 71.4 26.5 %**%4%H%25 #% 74.4 2&He x%H*%*34 *% 100.9 23.4 4 #¥*%H%4?% 1035.3 24.6 12 a H%*40 +%103.9 28.8 23 *%xe 4%40 4% 103.5 31.4 3 ae He x%42 x 104.4 33.3 42 4%%%4%40 HX 104.4 35.9 40 +xe 4%42 ¥* v7.4 ow 2s x eX H*42 aE v7.8 3388 1?Cr x%4%40 ¥% 100.8 gee?1i %%%%&%3 % vLi 30.2 4 *%%%4%22 4% 73 29.2 ***%H%HH 40 *% 65.5 23.7 **%%*%*%42 *% 60,5 79.3 £%HE He H 40 *% 54.9 23.7 *%a HH x 3 4% 54.6 264.7 rd %x x¥a H% 51.46 20.4 %%¥%HX He 23 at 87.8 Z7ea o.¢4%He *%B04 &% =NELSON LAmoOOoON TEMPERATURE SOLAR -- -WINDGENERATOR DIESEL: INSIDE ©OUTSIDE RAD.AVG.TOT.TIME-ON TOT,FUEL (DEG)(DEG} (BTU/F2})(KW)(KWH)(HRS)(KWH)(GAL) 49 25.8 4%%%HH +26 H% 47.8 2h **¥**%4%£%24 4% 45.4 24 *%x%HH x%24 xe 43,5 Boal x%¥*Ke H%24 ee 43,8 24,1 4%£%HH +H 2h + 45.1 26 HE H%xe *%24 *% 3.24 4%%+%a 23 4% 41.4 26.2 ¥*x &4%32 x* 41.7 26.4 Ps]#%x%*%40 ** 44.1 24.3 18 ¥%#%¥*42 ¥% 44.4 30.4 31 +H e%#4 40 HH 49 38.5 43 +a***42 4% 53.9 3.0 Si ae 4%*%25 #¥ S45 47.7 Si &%4H ¥%ao #% Sh ab 41.8 43 4%xe ¥*33 4% 57.7 35.3 3 x%*%¥%36 H% 53.4 34.8 21 ¥%%%¥*28 4% 37.8 235.6 $¥%*%¥%a6 H% 55 30.4 HH er HH 4%34 *% 53.4 27.5 *¥%ee ¥¥ag x 31.3 25.8 +#%+%+%34 +% 497.3 2&¥%Ped HH x 34 % 47 3 2h.7 4%%HH td 32 % 42,5 on 1 %%ee HH H%25 x 49,5 30.6 13 4%*%4%792 *% POWER FACTOR (COS 0}os a IG apes) "se "asus!5OOOOboohsemNUBue=f 4 ff Sm WIND VELOCITY DIRECTION (AVG.MPH)=(DEG)4.5 139 '4.5 151 aah 137 is)151 &.F 145 7.3 127 bh i32 b&b 1294.5 i38 34?144 ba2 144 Fad 132 b&b 1397.3 130 Bao 124 7.?117 ee |1273.9 125 12 138 iZ.?134 15.3 154 1?P.&1571.2 143 25.7 149 ¥.3 198.2 f xs WIND VELOCITY DIRECTION (AVG.MPH}=(DEG)24.6 152 17.3 151 13.9 147 20.2 140 1?is zZ1i.l 14522147 236 144 2345 142 1v.7 13 13.4 1346 13.9 140 14.4 i3 14.4 oY iz iS? 16.3 175 15 17? 1i.1 172 ?160 S.2 142 Jee 149 sao 154 &al 141 45 165 15.5 151.4 NELSON LAGOON TEMPERATURE SOLAR o-n--WINDGENERATOR---DIESEL INSIDE =.OUTSIDE RAD.-AVG.TOT.TIME-ON TOT.FUEL (DEG)(DEG} (BTU/F2)=(KW)(KWH)(HRS)(KKH)(GAL) 47.6 27.6 *%H%x x%sh % 435.4 23 %%x HH +%24 %% 48 25 e%He x ¥24 4% 45 22.9 %%x%%%*%22 + 42,3 20 &x a%H K*a x% 47.8 28.9 HH %#%¥%24 HH 44.8 23 H%&%KH 4%oh &* 44,7 29 *%HH HK K%32 K 47 2?3 ¥¥*%%44 H% 47.2 30.2 -12 %*%*%42 4. 530.6 33.8 24 x **¥#40 H% 52.0 39 45 +ae +42 #* 51.4 40.9 Sz x ¥%x¥42 ** 53 42.2 oi 4%4%a 35 *% OQ 42.5 44 4 He eH 34 ¥% 52 &40,5 23 #%xe +%3 a 52.6 28.1 22 H%%%ae a?¥% Si 34.2 4 %%HE **32 4% 51.2 33.4 4%H¥He *H 3 x 50.5 33.5 4%4%He #*42 a 20.4 3349 4%4%*%He 40 *% 47,9 33.9 *%¥%x x 3 4% 497.1 33.4 +¥H*EH %¥30 x 45 33.7 x *%%%¥%24 + 49.5 23.3 12 ¥%4%KE 720 xe =i NELSOnM LAaAGoon TEMPERATURE SOLAR o ---WINDGENERATOR DIESEL: INSIDE OUTSIDE RAD.AVG.TOT,TIME-ON TOT,FUEL (DEG)(DEG) (BTU/F2)(KH)(KWH){HRS}(KWH)(GAL) 47.5 33.8 4%%%ee *%.th x* 45.1 33.5 a%x%HX %22 % 43,4 2347 %%%%ae 4%24 *% 46.2 24.2 HK ¥EH 4%24 4% 45.1 34,3 xe +H 4%*%24 *% 43.2 24.1 *%He H%%27 4 43.97 35,5 *%#*%e%29 a% 49 24.46 KE E%x &3 ¥% 423.3 34.4 4%#**%x 40 H% 44.4 34.4 1 ¥*Ke 4%40 ¥* 47.7 35 4 ¥*x%4%4?* 47.6 35.4 4 ee %%H%43 a 51.9 35.4 7 e*xe #%52 He 53 33.8 10 4%*%4%4G %% 55 36.1 13 *%xe 4%44 ¥* D4 3 15 &%He *%34 4% kalba 37 17 He He He 32 *% mS 36.5 10 *¥H%*,3 K* 54.1 35.2 i H%x%¥3 H% babes Id 33 x%¥**%a*28 H% 546.3 3Si.6 *%ee HH 4%33 HH 56 30.7 e*%KX ¥3 +% 54.5 30 %+eH +32 4% 56 27.4 %%e*%%#*a0)*% 51.7 34.2 3.9 4%*%%%B22 *% POWER FACTOR (COS0}wo? 29 237 abel ea a7 41 264 043 065 9 «67 hh »&4 b4 s £1 043 263 2&2 .43 41 arab atst=:a & =££&jf HS NELSOoOMN LAGOON WIND TEMPERATURE SOLAR noon INDGENERATOR DIESEL:POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,AVG.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)*(DES)(DEG} (BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)(COS 0) 1 5.9 153 55.6 25.4 #%x¥He 4%2 ¥*aah 2 &.2 153 54.5 28.2 H%%&%**28 ¥%ak 3 &.3 134 S2e4 28.4 **¥¥xe 4%28 #*aad 4 4.8 143 52.9 27.8 *¥%*%¥%24 #%2a ka 4,5 141 Sau 27.7 *%#%*%4%2 #%aac &&141 Sal 25,2 HE 4%4%He 24 %%an 7 4.4 143 53 27.4 *%¥%*%%*2b *%eat Ps)4,3 157 52.4 26.9 1 #%*%%*23 4%Piebe) ]4.5 149 S27 26.3 il *****X 30 ¥¥oak 10 4.7 149 53.7 33.5 24 4%*%**32 #%ao? il &197 Sioa 7 33.5 23 ¥%*%¥*44 4%»&4 iz 12.2 204 57 a 37.9 43 ¥%HE 4%42 4%2&3 3 12 211 60.4 41.4 53 ¥**%%%3 #*& 14 12.4 212 1.2 42.3 34 *%*%4%32 ¥*ae 15 1z2 210 1.1 42.7 kalba)**ee **30 ¥%255 146 6.5 27?52.4 42 25 *%**30 ¥%Pie= 17 a7 21?54.6 39 18 *%+%*28 **apat] 15 7.4 230 52.3 35.4 5 +%ee 4%3 4%241 i?&.&227 55.9 34.7 %%HH #%%a2 x G1 20 &202 57.9 22aF 4*4%*%**34 ¥%Sl 21 a.&183 So.4 31.4 4%+a ¥234 H*eae 22 5.4 158 53.6 30.4 **+%*%#+%30 ¥%wo? 23 5.8 164 37.9 30 *%¥**%¥¥28 4%Aiel= 24 4.9 152 54.5 2?**+%*%**24 #%a DA &.4 150.4 52.8 33.1 Seo x 4%*%736 **eo >££FY f/f NELSON LAGomP WIND TEMPERATURE SOLAR w-- -WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,AVG.TOT,TIME-ON TOT.FUEL FACTOR (AVG.MPH)(DEG)(DEG)(DEG} (BTU/F2)=(Kid)(KWH)(HRS)(KWH)(GAL)(C05 0) 1 4.3 137 34.2 23.3 *%%¥%*%24 ¥*»4 z ka)145 m2 27.1 H*H*EX %¥22 &*24 3 2.7 157 51.4 22.3 **%%4H 4%24 4%wie 4 77 152 50.9 Zee **4%*%4*2:#%eae 3 Wel 141 530.4 25.3 *#***%4%24 ¥¥24 &2.5 154 50.6 2?%%4%*%%%22 #%eve 7 B.0 15?50.4 28.4 **%%*¥%24 4%eae g ii 168 50 20.8 1 +t HE a%2 KE woo 9 14.4 172 43.2 Soe 3 7.2 3 4%22 ¥%249 10 617.2 1646 47.9 335.2 17 12.2 iz 4%14 4%»4& CECEEECEEEECEEECEEEECEEECECEEEECEEREEEEERECOEEECEREEREEECEERECCEEEECCECEEEEREEECEEREESCOCECREEEECEEEECEEEECEEEEEEEEEEEECEEEEECEECERERECEEEEECECECEEECEEEERCEEREEECCECEREEECEEERE BERECRACEECEREEEEOEEEEREEEECEECEEEECEECEREECEEEECEECECEECEEEECEEEEEECERCOOCEREEEEEEERE BRCECEECEECEEEECEEEEECEEEECEECECEEEEEEEEEECEEECCOERCEEEECOCEECECECECEECEECEECEEEEEEECEEEEREEE CECCRERERCEEEECEEECEEREEEEECECOEEREEOEEEEEEREOOOEECECEECEEEEEECEEEEEEEEEEEEECEEEEE GCRRERECECCECEECECEEECEEECEEECEEEECEEREEREREEEREEECEECEERECEEEECEEEEEEEECREEERCEEECEEEEE BECREECEECEREEEEOEEEOCEOERCEREEEEECEEEEEECOEECEECEREEEEEEEEEEEERRECECEECEERCEEREE CCREEEREEEEEECOEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEECEREERECOECEEEREEEREEECEEEEEEEEEEE BCCCECERECCECAEEREEEEEEEEEEEEEEEEERREEEEEEEEEREEEEEEEEEEEECEEEEOROEEECEEEEEEECECEREE SCOCCR ECE CREEEEEEECEEREREEEEEEEEEEEEEEEEEEREREEREEEEREEEEEEECEECECEECECECEREEEEEEEE SORCRCEEREEAEEEECCEE EERE AEEEEEEEEEEREEEEECEECEEEEECEEEEREECEEEEEEEECEECEEECEEEEEEuuPRGOGeCCRCROCCEROCEREEERCEREEEEEEECCEEECEREEEEECEEEEEREEREEEECEREEEEECEEEEREE 4+££16 j/SS FUEL FLOW TEST WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.AVG.TOT.TIME-ON ='TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG) (BTU/F2)(KW)(KWH)(HRS)(KWH){GAL}(COS 0) '404612.8 314 47.9 24.9 4%*%Shad *%30 «3.3 wh 2 14.3 320 EVD 20eo %%*%*%**20 3.3 2&3 136 6:15.30 ©322 71 25.3 *%¥%¥**%30 8603S 64 14 14.1 324 71 25.4 *%#%EH *%23 3.l 2&2 15 14.64 325 71.3 25.5 HHH He *%26 3.1 241 1&4 12.2 327 74.5 25.3 **e%*%4%26 3.1 0&2 17 13.4 345 Thal 25 ¥*¥**%4%24 Bal G2 16 12.9 355 76.4 24.9 %*¥*ee *%24 3.l 2&3 iv 12.6 335 76.6 24,9 10 *%%e #%2&3 w&3 20 10.7 333 78.3 24.9 27 ¥**%*%26 Sal b4 21 ¥.2 302 32.3 25.4 rap |¥%4%¥%3003.3 246 22 10 267 5.2 28.2 &2 *%4%#%3O 863.4 0b& DA 12.5 321 75 25.4 12.5 #%#%**334 38.2 & VELOCITY DIRECTION WIND (AVG.MPH)(BEG) a eablcveee TEMPERATURE INSIDE ©OUTSIDE(DEG)(BEG) SOLAR RAD. (BTU/F2} -- -WINDGENERATOR AVG. (KW) TOT. (KH) ME LSM LASS TIME-ON (HRS) TOT. (KWH) DIESEL FUEL (GAL) KWH/GAL VILLAGE TOTAL tH "ro SF er A oF a $10.2 3h 39.5 82.9 Gh BAG 4a /1 Sh 2.8 10.7 13 10.8 30 42.2 34 91 Bal SY 488 o3 °°2.9 «10.31411.2 37 A3.1 |B4L ey 4.7 hy i 32 oS.13.2 i5 i2 23 43,7 B44 St 5 LJ i 30 3 12 14 13 30 AB.B41 74 5.7 ln/8 3h 3 10.4 17 12.8 34 44.7 31.3 52 7.9 av 1 34 1 13.5 if 13 29 44.5 28.7 33°«8?tv i 300 BY Bad i?13.4 27 AR.7 24.7 iz 10.1 Lov i 30 3.9 «13.7 #0 15.9 Bh 42.5 34.9 2°9,7 Lav 1 300°2.9)13,7 31 13.7 30 41.5 3 ee 10.4 LEV 1 3h 2S 13,5 oe i3.?30 40.4 27.1 **10,9 1OV 1 $8 3.8 15.5 33 OLA 34 39.7 27.1 ¥*10,7 iby 1 32 BG i3 24 13.4 Pr)39.10 BAAS ee OLD Lo/1 S244 13.3 NO SUMMARY Pal HOUR "sOsgoeohtdPhoee16 HOUR NDROBtohaeEht"i> WIND VELOCITY DIRECTION (AVG MPH)__rybayttRoRboBOReeeeeeMPOfetoeecdaewtLEee8ew8Aahe8Be8PopatSoyUbeeoAeSoop>Pidee WIND VELOCITY DIRECTION (AVG,MPH)2.42 29.8 27.9 27.8 29,2 35,3 25.9 (DEG) (DEG) a ae MELSON LAM TEMPERATURE QUTSIDE (DEG) INSIDE (DEG) Bo5 27.5 2747 OAfeidCeteed0afeFimopbPbe"foWesPotPepoDeeeooosifle«QOwoesoSEpeODboOpOPoePoeboonofBt.*SOLAR RAD. (BTU/F2} %H a sooe0aypegafiga™odeeQooS*fgo*kK*txFm1 a & ----WINDGENERATOR AVG. (KW)SsaF2»BFewFwTOT. (RW)ce0oTpsai] ,beateePpooBocoooTIMNE-ON (HRS)P|lesBeeeleeleelodollollOdmo>*% 13 ot MELSON LOA oorn TEMPERATURE INSIDE OUTSIDE (DEG)(DEG) m7 a4 eh mie7ad ebae meal 2 mieBS[ion a)ted Ow &0.4 Zea 64,2 Zoel6Sa?Pits 24.2 SOLAR RAD. (BTU/F2) K +H KH H% HK HH & is etal -WINDGENERATOR AVG, (KM) 7 #% #% HH #% H* #% H% HH TOT, (KWH) HH 4% HH HH HH HH ee HH TOT. (KWH) DIESEL FUEL (GAL) is 2 1é 2 if 20 20 ne miGogsdhBooo .OFuegfDIESEL RooOFpaPopoPopaPopabo”PoaaUioebaw0GpoeeOeNESaGa'ptyTIME-ON (HRS) 02 et 4% ed %* X* x* * 4 TOT. (KWH) Rte]OJnoWofooo34 a3 42 3 KWH/GAL VILLAGE il 11.2 11. 10.5 10.2 11.3 10.5 ii 10.5 12 KWH/GAL VILLAGE TOTAL 11.4 10.5 10.6 10.3 10.4 10.3 10.6 11 11 2004 %bits a be 27.2 4s suf " Li 6iv.d 23 bit 7 eval ad *%%%ae 4O 3,7 10.8 iz 15.4 315 bvF 18 en bs ¥%He *%44-7 4 il is 14.7 318 acres 32.2 74 ¥%ed ee 44.7 4 1i 14 15.4 314 7aw4 25 25 ee ae *e 44 oa 11.2 i5 18.4 312 &7 WS 33 a7 i5 14/4 Ev 26 Sal 13.5 14 17.5 315 "3 36,8 72 13.8 14/1 22 Ze?ee4 7 15.4 Siz 71.5 oa &20 13.5 14/7-i 25 Sal 3.5 18 15.5 312 71.7 34.3 oe)3.5 L4y 1 "2h 3 i3.3 ivy 14.4 315 Foal B1.?Y 10.4 LO 1 22 2.5 11.4 29 11.5 325 777 S1.t 1 Dect 4v i 25 sel 10.3 21 vad S35 Bye 31.8 **1.2 ZY 1 ah ae 10.5 2 ot ca i i rr He se aoe Ft tis 45 htZo74337v4.9 oe e%4%ee Fd a a4 e468 24 cha &245 vol 24.2 *%¥%**¥%0 3.2 No SUMMARY "of Si "f Ss MELSON LOAN WIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL KWH/GAL HOUR =VELOCITY DIRECTION INSIDE iJTSIDE RAD.AVG.TOT.TINE ON TOT.FUEL VILLAGE (AVG.MPH)=(DEG)(DEG)(BEG)=(BTU/F2)(KW)(KWH)(HRS)(KWH)(GAL)TOTAL 1 4.1 B45 100.2 34.4 #*¥%*HH 2b 3.1 B45 2 3 101.4 B42 a%4%x &28 nes 5.7 3 4.8 102.4 35.1 a*a %ae 23 2.3 o.4 4 5.4 100.8 34.1 a HH e%x 28 3.2 &.7 5 Bak we?be He HX He x ae 2.9 Fad &&al v7 AS m4.7 %%¥%HH a w4 3 3 7 S.4 7.8 35 i *%¥%H%23 3.2 2.7 Pe 2.0 101.4 chat a &Zz ¥*He 4%Be 3Y5 vil o i 1064.7 24.7 o #4 %*+34 3.7 v7 1 1.6 10%,7 39.5 17 4%KH 4%se 3.7 10,2 1i 1.7 Lil 40.3 22 +%HH ¥%38 3.8 10 tz wae 111.8 41.6 2 #%HH He 38 347 10.2 aa 2.113.4 44,4 37 ae ¥%HH a4 3.8 24 14 Pon 114.7 45.4 38 #*He KH 35 2.8 106 15 4,1 114.4 44.5 2e 4 He *%42 4,1 10.2 14 3.4 117.2 45.4 a8)%co *%.44 4.4 10.4 17 4.5 :111.7 45.3 13 we HH aad mG 3.4 Ya 1s 245 a4 mye 41.7 10 Aaa)x 2O7 AQ 4 1G i?3.7 n4 HOS 377 5 Pe BY st?et 344 10.2 20 a8 BS 77.8 Bo.2 1 a KE a HE eer 24 v7 Zl ov 20 74.4 34,4%7 He 2 Be aa v1 2 aes we TALE 346 x oh XH ath m2 3.5 vil 23 &.7 a2 7oSa1 35.0 #%#%*%a7 34 ao v7 24 4.5 1i?myo 25,4 H%e%%%214 2s 3.2 m7 DAY 4.97 140,%ae 3.7 75 al 2 ae?504 s5.8 anaes "4.0 7 IIe A isi MELSON LOAaGoon WIND TEMPERATURE SOLAR nnm-WINDGENERATOR DIESEL KWH/GAL HOUR VELOCITY GIRECTION INSIDE OUTSIDE RAD,AVG.TOT.TINE-ON TOT.FUEL VILLAGE (AVG.MPH)=(DEG)(DEG)(BTU/F2}(KW)(KWH)(HRS}(KWH}(GAL}TOTAL 27 140 v1.4 He 2.7 4Y ,8s8 22 15.5 138 Be #%10,4 10V1 bm bs 2a? 2 y 1 14 Zee, 3 15.5 i34 bre a ;**10,5 10/7 1 2 Zel 4 18.8 134 baba 2 **13.9 14'1 S 1.2 11.5 3 2a 140 a7 al a3 ¥*14.5 2OY 1 &1.7 13.2 &22.5 137 a4 St Boe:ee 16,5 Ley 1 4 1.7 Le.? 7 S5.2 134 aa?'3 17.1 20/vy 10 1.13.7 B 22.8 137 te ao a S i3.¢14 1 is Zed 13.6 Y 25.46 146 waliad w tat 3 is 15.7 Lav 95 24 2a 15 10 2S.3 141 a7 4?m4,o 146 20 94 24 2.9 13.7 11 26.7 13?ifs'?34.7 i7 14.7 Livy 1 24 2.5 iS 2 24.5 140 mae be 20 14,7 lav 87 25 3.1000 614.8 is 24.5 142 40,58 B37 17)«615.7 igVY 93 24 3 14.4 14 27.4 143 61.5 the er La.e 14v 25 25 3 14 17 OnOteeHOUR "S00NEUTpoRoeOawgcoOhte.VELOCITY DIRECTION WIND (AVG.MPH} 17.9 Re 21 (DEG)i4'? 71.4 S45 oF bs oeeetslSaase 7a ME LSI LOAISoOon TEMPERATURE QUTSIDE (BEG) 34.3 INSIDE (DEG) SOLAR RAD. (BTU/F2) HE EE HE Et -----WINDGENERATOR AVG. (KW) 14.5 amesmopOFpa""iGaalin"oe 300 «3 32003 34 3 m4 Me 33 3 30 3 24 3 14 =Bsomo SanepdmpetggTOT. (KWH) 14 TIME-ON (HRS)deoICeeeeeeReeeTOT. (KWH) 10 eee 15 ead 2 Z 14 ZeZ 14 Zed 14 ead 3 ee Ln 11.5 11.4 10 10 v4 val v.4 10.3 KWH/GAL VILLAGE TOTAL 10,9 11.3 Pua ba ee &ah a.10.2 10 44 17?2?¥%*%*oh 3.4 10.5 ii 2.134 32 **ae *a3 3.9 v7 1 bral 225 22 wl **Ae 40 4.1 v7.7 13 4,°vn 27 ee HE 202 eb 4 vo i4 &205 i He cd ch 42 4.1 10.2 15 veo is?iv Be 4 71 34 a?10.2 i&11.4 1S3 7 348 4v 1 22 i)ae 7 vo 177 11 347 2 77 24 Sel S43 1s b&w i5i 13 ws ee 27 32 Bao 7.7 iy 10.7 137 3 ee)2 1 Zh Be 7ofZOv414iz1.4 ra 75 2h Dau a7.eects a ++=its ride PHS Sole --sshllpch preZeacd140x*eE ee 3 a0 oe oa 2 4.5 141 4 es He 218 20 3.3 v 24 a7 134 *%*%HE Zl 2h Sal o.3NOSLIMMARY ram HOUR PONO booeeabeOTra VELOCITY DIRECTION WIND (AVG.MPH) wa?SmNsoooeryLa).ibeeiAfohatsPotepabo(LEG) 101 Saeen aaaene MELSON LASIooonN TEMPERATURE INSIDE =OUTSIDE(DEG) 114.2 113.1 1604.5 107.4 1Ooa.1 wi,4 ny, 37 Py cod a & 65.5 35 mis,4 Fi? (DEG) 40,5) 25.2 Shel 37.5 37.4 37.2 37.2 27 & 34,4 mate7 34,2 mh SOLAR RAD, (BTU/F2) xt HH noCEPftPomSpeeBo ,"opMt-----WINDGENERATOR AVG, (KW) %% % KH HH |4% H% £% % KH 2 4,8 Ba? aa? TOT. (KWH) KE *% H% eH % H% % HH *% HH TIME-ON (HRS) HH, eats) *% x% He ¥% a% aH a# Hx Re KH *% xe H% OS eeedDIESEL TOT. (KWH) wat ,4 "how ae maT a]1G ra ay oy ”ana = Can an2G= og "aaaPv on)24 a 4243 ms -pais wet)Pa mis bm)a oat 230 wt wi ay Leo ay wmedtotot he 3 24 Bog Spe on03oct Con Deny omoieweet shy = nm "Zh = a te FUEL (GAL)PanwaBPopbipgesoieimoeKWH/GAL VILLAGE moo"ttme"dANpoc"re00ria!of""a ,Stpet No HOUR WIND VELOCITY DIRECTION (AVG.MPH) 11.4 10.1 QewefeetbepeteNS)-oomA(DEG) S15) B15 B15 315 f).PeeSSe la TEMPERATURE INSIDE (DEG)(DEGO.2 mae 31. 7a oO. 7s 3 7 }omCATOPonLAa=a( e»cott"psobopocSERoedpoOoat=8GMNeftftPafe1 ES K XE HE 16.2 LL.aé 11.5 12.2 12. 13.3 NELSON LOAGoon GUTSIDE y hen*otSOLAR RAD. (BTU/F2} ** +% --- -WINDGENERATOR AVG.moushet_a"JfelPNCopglag "JGibopghepabMmbagsNWwuTOT. (KWH) TIME-ON (HRS)eSTKI,BoepeeeekReeReeeetDIESEL ToT. (KWH) 10 10 5 10 1o FUEL (GAL)fhhahanotyOOae12.2 12.2 BagbonMagMirgMocohnOOpephepaGTpaPeaSoOehea"fotMioiteeeHpOD>rs)anLiferyrthLi}4 7 5 cr 4 34 . is oS,o4 33%20)5 eH a)44 4.14 10.7 i4 5.75 33.5 355 4%+a 34 3,7 2.7 is 4,oe ho 24.3 25 we HEY D "39 o.7 "hs Fer Ete _4557 tok}=bys 4 Nees ie NG 17 7.74 oO,a4 oe 4 HRY oh 34 SA 7,4 is 5.Pre a7,24.1 iS 1.4 a +340°BAG 10 im rte br Spi alSH hk it Pa bi --deed pi 20 ie?2a ee 228 1 3.3 4v 1 30 ne 10.3 oY iz 287 7 a3 2 4%5.7 by i Sh i 10.3 12.7 287 7 33.2 ae 4,8 by i th *10.4 23 41.8 297 75.31.5:ee 5,5 by i a4 %10 34 10,9 287 75,31.9 e¥25 4 i 33 BAG a9SLIMM "} HOUR 1 ARY fs [sWIND VELOCITY DIRECTION (AVG.MPH) Y.? (DEG) 257 a” TEMPERATURE INSIDE (DEG)(DEG 77a a MELSON LOAM OUTSIDE ) = SOLAR RAD. (BTU/F2) HE -- --WINDGENERATOR AVG. (KW) 7 TOT. (KWH) HH TIME-ON (HRS) 2 a7 TOT. (KWH) 24 FUEL (GAL)osae KWH/GAL VILLAGE TOTAL iad Bo ES EES BEE LUE LL OB se WIND TEMPERATURE SOLAR 0 anne WINEGENERATOR DIESEL POMER HOUR VELOCITY DIRECTION INSIDE «OUTSIDE.«RAD.TOT,TOT,©TIME-DN TOT,FUEL «FACTOR (AVG.NEH)(LEG)(DEG)=(DEG).(BTUF2)YE (KWH)=(HRS)(KWH)(GAL C08 0 : E.8 bcd 65.1 47.2 g ##¥%#%NG 2.7 at 444 54 BFA Aw 15 £%K%+%$4 3,8 65 10 1.42 Sti.t El **9 4%hy 3 7 il wa?41 Sta =Cid KE EE 2c =af ig oe 129 54,5 37 eke +2 3 ee) is 4.9 156 71.7 re eS 2 4%a2 3.2 A? {6 10.5 54 73.5 bh RH ##Be 3 bd i7 16.6 53 7B SE 4%BO Sd bl iS 41.7 66 7 5 44 eek *%SB 3 71 iv 11.2 9&6 é AL #0 eH *%28 3 a7 20 9.2 73 49,5 nt ec 4%Bh 349 «als SL 7.4 O73 ;i)ne ##Be 3 LS 22 G4 71 bbe.Abe a eT *%BO Bad 72 meet a Lis Coie a 4 EE 4%He ee 2a se OS S4 4,.8 B15 46.8 45,5 4%ee ee #%38 3 wa MO SUMMARY ase ro.ord BME LOS Lays”LN cate*s,i,iisWIND TEMPERATURE SOLAR 0 soem WINDGENERATOR DIESEL POWER HOUR =-VELORITY DIRECTION INSIDE =UTSIDE RAD,TOT,ToT.TIME-ON TT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG}(BEG)«=(BTU/F2}CYC,(KMH}(HRS)(KWH)(GAL)(C05 0)iosaysffeebtnHE Ke Re ¥wh 2 a®4%4 #%2h wa? a%K%eH KH we 2aF 218 ee 4 HH 402 ay af i Alsé bated ba?oF 40,6 x a%4%¥%2h 3 a z ad 17%fg 40,5)Re HX RE aE 4 248 a fs i)7S ZO &4 5 "xe He HS 4%ge Za?a fA 4 fi LP 63.3 So RE Ke ae 4%ne 2a?rie ha)es 7a fA By ae ¥R ee eH 2S 2.7 OVS bs i 4 174 be.Ss 40,3 2 Ke a%4%2O Babs afi ,al iSa &l 41.1 v He ee a 22 ead afd m 44.2 141 Oto eae 21 KE H%4%ee wads abv 2 12.8 164 &t 44.4 Be 4%He Ke 22 a7 a Gh 1G 14 120 &L.e pare)42 %**%HE 1S 2 1.OE ii 153 blaé&Mba 27 eH a*4%2h 2a ai 12 177 boa?Ab,44 4%%#Ke ne 3 yee is ote iA 7 43,4 ae He H%He 24 3 al? 14 170 ad 4.4 60 %%a%EE 0 mal a?4 15 iS Sat 4g bo %%*%ke 0 Sad wa 14 145 2 45,&iva HH HR 4%24 2a?bbs 17 147 ha 47 5 4n eM He %%eh 2a?ed 1é Mea!150 7 46.0 29 LE Ke H%ita 2.9 a Esl is ca i149 3 is 4H t%HH 2h ar a oS 2a 22 142 4 7 4%HH HX me Bee a? 21 S.S 143 7 z 4H ae 4%3 af hh a 4 ra™2FDAY 13.5 Lov. WIND K =Es](AVG,MPH)PetowRopedPoebewieeonwodeStaoPPASpoeopona3ieofoOPOSEwpOoAQ"yn0819 e 20 st zi 8 22 2 23 4 ;4Bf ,eae"WIND HOUR =-VELOCITY DIRECTION(AVG.MPH)"OO"QoeoPetT.oeNodSGoees2©&#8g©2*2&atheeHotst=Reeebasiesd14 beteeetbepeeeRetWoLPpoAomfeleeBorShaUpiageeeeoeNefoee 11.5 23.8. e434? VELOCITY DIRECTION (DEG) 143 Ls i37 137 140 145 144 isl (DES) MELSON LOAN TEMPERATURE INSIDE (BEG) ACD ij*,toyHaCAofG2poboeeeeeeOoooomomimomUocnPeodaEeos*wpeNehatingedeihiehinone"MENDONipaMalti OUTSIBE (DEG)PppbpPpppionbmAtoSS.PBRRNRRRRifpe«#fnbPoeUii ME LSI LAS Soe o TEMPERATURE INSIDE Ei?ohbi4 Geel &3al bk abs boo brF yb e8Os2«2"bem=2@wo8_feetombonditaiin"ias4cAwyonom:OUTSIDE (DEG) 44.3 42.5 41.4 4i.5 41.7 41. AZ 42.5 43.1 44 43.3 44,3 44.4 43. 44s 44.3 44,4 44.7 44k 44 4a.442.9 Aes 42. 4S SOLAR RAD, (BTU/F2) He He A mh £E RE 10.5 SOLAR RAD, (BTU/F2) HH KH He HH HH ToT, aadrye. 4% HE ES +H EE +% ee tt tt 4% ak HH ae He 4 ee KE He EF HE Ee et KF aH DIESELWINDGENERATOR TOT. (KWH) HH eH HH *% % HH He % a% ¥% HH HH % HH H% HH ER %% *% %% kt % HH %% RE aS TOT, cye. H% +H #% #% *% HH #¥ H% 4% %H #% % #% #% x# HH HH HH *% H% £% 4% KK %% HINDGENERATOR TOT, (KWH) % He H% HH ¥% HH HR HH HE HH % ¥% HF rd % eH eH %% 4% HH HH HH £% HH &E Re TINE-ON (HRS) EX ae 4% 4S 4 He K% H% ESF 4% EE 4% Et He aE RE a Rt KF 4S KF HE % Ee aE ToT, (KWH)QabsPehoRobtaHt thabahaopOPreeOg ,a,tethe+oaroCoosCoSag ,eehebpoeboot25 be PagOpbapBaRabopPoopPpPoopaRoaeeaagNEMpSyOghlho.8ftamegOFteReFftrtoae'bar AajStS TIME-ON (HRS) EE HE RF He Ee * EE HE t% +% KS HE ce a ES ee He s¥ x ** £t He KE + eE BIESEL TOT. (AME26 a4a DRYPohtrsbhororoiceLiBobaBooo03teoCrraeaam3rhOOanesho0SoonOopyOoPhobonshoodBaoFUEL (GAL) oad QobopoPopabopaboawoDogMOpoCowGeaPoewpSeeoe80asel POWER FACTOR (C05 0}rybls"2s."0FeGoeeOPSOsMleGRAENOR*OmRoePeORathfswy0onNadPOWER FACTOR (005 0) ulfn ff 2S ESI MELON LOAD 2 Aco mmwmWIND TEMPERATURE SOLAR 0 oo WINDGENERATOR ESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT.TIME-ON ToT.FUEL FACTOR (AVG.HPH}(REG)(DEG)(BEG}=(BTU/F2}OYE (KWH)(HRS)(KWH)(GAL)(COS 0} 1 4 fad,4 Az 1 KE eH HH Ke 2 =wla =1 b£7 4 42.1 EE 4%4%%*"4 2.7 2fl =z af bib a hs 43.4 ee e%RE Ke 24 2.0 oes 4 1.5 bxlua?44 KR ae KH 4%m4 2.5 7 5 1.3 bbs 44,2 *E 4%KE a 22 2.7 lod by ws bikea 7 -44 RE a Ee KE Ze 247 47 7 ol bby bs 43.7 4 e*x%ae 20 eb 3 g HE bboaT 47.2 14 &E EE 4%ae 2.7 ae cota) o 2 bbw 43.4 Za E%ae *%23 3 7s 10 wo 6745 44,5 Ze 4%RE 4%2h 3 wh? 11 2.5 AS 20,7 20 a%He 4%28 3 a7 12 4,5 7O 5737 4%4%£%TAQ)2.0 af? is fw Sad ah a bs 64 H*He 4%oe ab 274 14 boas 74.7 57.4 4g 4%es x 23 3 oS 15 7.3 72405 a7al ao ¥%HH *%2s 3.1 .7i 14 mal Veal mh.4 4%a x Ze 2.9 aaoa) 17 mad 70.7 Beet ean)*%He ¥%24 3 alot if boa?bt Siws bss x *%¥%me 3.ht 1?50 6&7 47 il ¥%He 4%25 aad 269 20 4.7 bE?ob 4g .&12 ¥%#%4%28 i}Avot zl eo bt .7 47.4 b #%*¥*%24 2.bts ae 2.7 &7.2 47.1 >KS 4%£%20 nf te at 2 275 ji.47.9 4%¥%He a%32 sae 7244421347&7 wi 4647 KE ae KE ke m0 3.2 ava DAY S4 Ley .5 bis 45,7 17.5 a ae *%G42 71.5 ah fe of Pip iis MELSON LAGE Sco WIND TEMPERATURE SOLAR - -WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE OUTSIDE RAD.ToT,TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH}=(DEG)(DEG)(DEG}«=(BTU/F2)-CYC (KWH)(HRS)(KWH)(GAL)(C5 0) 204 45.2 eE ee *%eX 24 a)wf? 349 44,4 ee ¥%HK aH e462, ]1oniebs 'S bis * my bi 43.7 %#%%*%**24 Ze . 124 &7 44.4 Ke ae a Ke 14 1.1. 2 Toy 5 ALA te He +**¥24 sa Lea be 4 4oh 1 xt aH x*2G 3 in4 byS 42,7 &E%HH 4%22 eS 44,55 14 KE K*4%20 PepoPopsAoeIPpeloReOopoesOeeegOANEAeeSftoblesShagBAOdeOrpehgahaMing&UbonWonMwyeses=©*2©2©FN2££2BwRopoPeOOPigWEbs bs i fy & fs &é Z &S 44.2 eal HH He 4%22 bs 16 3 113 fF SO,7 %%%EE 24 ts il bs Pai ES S244 45 %+8 x*2 me & iz 7 a4 bbs a Pom me aX HE %%0 Ze ® 13 bs aes &s7 53.7 34 %HH x 8)a 7 14 #106,bS b7F 54.7 47 ¥%H%Fe 24 Ba a iS a SS és?sa mo ae He HE 2G wig 1&hve 3H i ae 44 HH KX HH 30)a,7h 17 fi B44 70 Fie.4 2S 4%a 4%2h Ze 24S 18 a sie 71 Bb m1 aE KE aE oH)me w/a 1?5.7 5 71,5 41,5 43 H%%HH 28 3 wh 20 oa ao 0°O77 Set ae HH tH HE 2 248 a st Zl 7a 2h 71 54.5 17 *%+H HH 25 2a?Jie 22 Be 4 Cia)70,8 Si.z &¥%+%HE 24 2.8 a bet 2 4.1 iS bt,7 45.7 ¥e ¥%4%aH 2h 2.7 27s 24 zal 138 bE 47 o %%x e%H*25 Sal av? DAY 4.7 105.4 él a 2 45,5to50.iv.HE ae 4 402 f&£24a ff cS MELISON LIACHON & bebSicn WIND TEMPERATURE SOLAR wen WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE GUTSIDE RAD.TOT,TOT,TINE-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG}=(BTU/F2)EVE,(KWH}(HRS)(KWH)AGAL}(C05 0) 1 1.2 sad by7 wi 4a wt KE xe 5 H%we ares!72 2 *e m7 bé,1 45.3 He #%4%H*22 2.7 7? =ai B34 &5 44.4 ¥#+e He 22 247 aks 4 wd 215 bi.43%2 *%%%+22 2d 63 a)mat 250 bibs gE 42.2 &%4%aE 4 2O Ze&2 Os bs 5.0 237 bls 3 42,5 i *#**%ras)2h aw be 7 4A 244 bb oS 28 4 aX ee **20 Sad wha Par aks 220 &7 44,9 =4%%%eX ae weak OS v Sad 24s &7 5 45%14 KE Kt eH e 2.7 a&e7 10 eal SEL oa 45 st *%4%#%2G tee w7i 11 2?24 70.9 Vg al 42 4%a x Ze a1 wf iz 5.9 45 71.8 54.8 4G H*%%¥%oe 343 wf? 13 &cin)72.5 By 44 Se x ee m4 a4 ava 14 a ao Ya?O7 ad 46 35 =1 24 "al w fest 15 sal 4 71.7 SoS 44 13 2 avi me 3 wt 14 ee bibs 7iw&5447 ne 26 =1 32 ae 4 17 7.124 FO 54.5 5 123 H%wad m4 3.4 he? 18 19 142 bi 5i.7 22 £0 2 74 32 345 wb 1?6411.7 1723 45.2 Fa &ii 4 4 1 uG 2h 2 FO 10.7 7?fx7 5 BOS &¥H 4 i Bh eal ws zl v 1a bi7 bs nO &4%a 1 24 24 aif 22 Pa 2oy 45,6 49.4 1 iz4 ae Apete 24 24 2&3 2S Bad Bod 70.2 48.7 ¥%4%He ¥%me 3.2 74 24 we 241 by?4 42,5 +%¥#%%¥%20 3.3 77 DAY S.4 190,:&E7 47.8 164.2 443 15 a5 G34 65.4 wh SM SS mSis MELSON LAGOS 4 bom WIND TEMPERATURE SOLAR tonneWINDGENERATOR =DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE ©QUTSIDE RAD.ToT,TOT,TIME-ON TOT.FUEL FACTOR (AVG.HPH)=(DEG)(DEG)(DEG)=(BTU/F2)CYC.(KWH)(HRS}(KWH)(GAL)(C05 0) i 2.4 BLA bo 4c.2 aH x**e xe wh 2 «71 z 3.5 v3 45.46 Ay 4%HF ak e¥26 2.7 a7 =ma?205)és.&42.4 xe ¥%xe x%24 eae ht 4 79 Sh A.4 47.7 ¥¥K#He ¥*24 Zac 7 si)2.375 bt &a7.*¥#%4%x4 24 2.0 268 by a7 370 (GES 47.5 4%HF ee ce 24 2.0 aks i o£Te "To MELSON LACM Seca WIND TERPERATURE SOLAR 0 seem WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE ©GUTSIDE RAD.ToT.TOT.TINE-ON TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DES)(DEG)=(BTU/F2)YE.(KWH)(HRS)(KWH)__{BAL}(C05 0) 13 67.3 142 zed o1.7 42 ed NIG NUS .we Low?iss =mead 45 #%10 20 .Pas) +sbe?=wdee=»3s&gs"ShoDeerPEaYOelelaaSSSOdPaoi.”24 1 4%"2otao"SigNooonhaeo"JoeoeopoeoP"EASpAOpePApataaPipe"osmenaytSognCOpOoeJpPoeeeaBbOBPaPapabapoPpaPopooepoPo4 xz AES 4°2 a *ba as s ad iv 14.2 7O a 2 é *045 2O 12.8 &?7 Ao,12 1 4 .abanfe ei oii.s &wd ae o ii 4 .we 22 45)ot 47 &i tit He a7 24 1 wae 25 7.7 aed 47.2 e¥LPO HH ?Zh x of 24 2.5 be 2 4é at Pa 2 eo 2h 'a buts NO SUMMARY ae at MEL Som be m'EP Reg Se ee WIND TEMPERATURE SOLAR 0 sone WINDGENERATOR BIESEL POWER HOUR VELOCITY DIRECTION INSIDE ©QUTSIDE RAD.ToT.TOT.TIME-ON ToT.FUEL FACTOR (AVG.HPH}©(DES)(DEG)(DEG}=(BTU/F2))CYL (KWH)(HRS)(KWH)(GAL)(C05 0) i Fab LoS babs GF 45.1 ee 43 2 eo a4 ea?we 2 ba?i72 &7 4 44.7 *%47 eH 127 24 ea ots: a ee is?&7F 4 43 HE 117 ee me 24 al Gl 4 11.8 134 fo.?45.2 ee 1 4 1 2G acd a4 = 3.2 134 G4 A 44.4 %%ee bs 1 14 ea we! &12.4 122 és 8 44,9 #%1 &i is 2a woe 7 ae am ae AS abs i LA ee 7 18 24 w4 3 sal v1 &4 4 47 c a4 =79 rvs wad we v ad abot bi .8 47.7 é if es eo ne eae wits 10 7 a4 bat a Ai.7 101 ae a in 24 2a Gl ii a BO EE ab 4%a 200 ee we 2h mad id 12 a7 14 EP 4 44.8 iz i:4 1 24 2a of LS y i?7O,4 46,5 12 77 =PE me a?woe 14 12,5 ho by 47 14 ee 10 1 14 Zee 45 is vee she GE 5 ao Li ae &1 ae aah at? Lé 2.5 17 Eo 7 As 12 30 2 ee 24 2.8 oe 7 4.8 oe 71 49.2 12 a ee oe?Be 2.5 whol 1s a7 71.4 o1.5 17 HH eX *%32 Sal wae iv ead Fae whe at a4 *%HH 4%24 eal oh? 2G Bad Paal 44.5 14 15 %%224 4 2a hes zl a 71.2 44,7 é ve HE he we 2a a bobs 22 20.5 bn?45.8 =4%i4 i 13 2 AS eo 25.1 1.2 43 %%¥%14 1 i.?AE 24 25.9 al mita L 424 4 ex 14 i 10 i.a DeDAY10.2 137.4 bs?WF 4b br PEA rm is.l iS 617 at WIND VELOCITY DIRECTION (AVG.MPH) 24.3 HOUR "Sh"SooOPteahe20.2 21.3 10 103 1i 6i?.3 iz 22.9 13 22.2 14 20.7 15 Zed WIND HOUR (AVG.MPH}ih3Sate28#8g»*"ttoehapto20 missing (REG) oat "7Zo? iv4 8RtapeepetcaoeoaDen7S-oonBooOfeeeeNEVELOCITY DIRECTION (DEG) 17? ié1 144 PESLWSd TEMPERATURE INSIDE (DEG) a7 sofisd.oe=#"HEifswdfees1eetEFhe"£4Ce=«28«4StwoeGnPegshaaeoPBOUTSIDE (DEG) 41 .&. m0.7mia 50.5 ms Gi BPPpPEPEPpbfoeNESME0toteME LS rap TEMPERATURE INSIDE (DEG) B42 100.7 Los 111.1 1an,1 107.4 OUTSIDE {DEG} 4i.3 44.5 47.4 Aidabs 44 44,7 44.9 43.5 47 Ag 4D & me& a1. oil.? tenlan oo oo SOLAR RAD. (BTU/F2) +H HH HH aS "ORDBoPetpaPonePoeestutOocarey"aoOSOLAR RAD. (BTU/F2) #% HH HH KE xe 1 teu13 21 - --WINDGENERATOR TOT. (KH) ToT. tye, aH tS 1 14 **12 1 14 =14 ¥E 14 oe WINDGENERATOR TOT. (KWH) TOT. cy.foDho&*tetakLaeadoe.a*PPJakPOipafeRahapoPhoO2tobook*-reoka*i>pKLeeSarimoe f dab TIHE-ON {HRS} Ls py BkeeekpetekpeteeteketieeteheeBtpetbehpetfaYRTOT, (KWH)phPnGrSegDIESE!paPoebohae2 200 2, 20 2.4 252 48.2 TIME-ON (HRS}2)atat2"DeeaacPapeeeteeeteeeeSEEReteeetet"Stasnoe8Rk"a's8mM"4."at*ooTOT. (KWH) 2G "annNoocoopboogMePapapabpbapaPopePOWER FACTOR (COS 0} POWER FACTOR (COS 0)iPpaeeOPpbApSinoeenitomfnomUbonBacaUleeUlindiandianbmpopue i}MAfitie gE MES LSM LOA Lage WIND TEMPERATURE SOLAR ooo--WH INDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAR,TOT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH}©(DEG)(DEG)(DEG) (BTU/F2}=CYC,(KWH){HRS}(KWH}(GAL)(COS 6} 5 iv?113.5 455 He iS *%04 2 2.8 we 45.4 +e 14 a%205 Ze 247 ob 1a 123 44,&%%4%**%+¥2s zal o 44.73 H%KE HH %20 27 45 HH xe *-)20 247 45 5 1 a +H 3 =O}= 4 HH aH %20 =¥%&%E%20 475 14 #*ae %%22 27 H%H%%2Rnwiifitmeifetfukfh>aLayaLdambmPeeeeH"a0NpokOApodpeNieesCofaipsebNo16p.heeeapORoRUPonBoaBetoMgopReopaheaCOprtetpeeeCowyOT.tefspersfhD>ieNoteSCANpaomeeNSopUPibyfSAS 39 %HH HH Ze aos m4 K H*EE sits 5 47 *oe HH 24 eae 7 be =& +e c 7 .:.&1.=& *250 120,&1a&et 4%#%ee Ze 245 7 iS .BS tie.ha eed 7z *%Hx 4%22 27 o& 14 *:1oOv,Se.7 7&4G |RE 4 Ze 2.7 af 17 di.OS 104,bal)baa 4i ¥%at 22 2.8 w&l 18 46s.BYE wo 47.5 37 1 4 1 24 2.5 ahs iv id.BOS VE 43 ao 14 2 1 20 2A wa? 2O di.279 a 47.7 27 &HR 2Fo BO 2a?ae Si 41.5 23 a7 45,5 iz ee)2 avo 22 Ze?ae Se 10,4 ea T4432 44%Z 27 4 a Whe 20 2a soe 23 o x 27 bs 44.5 ¥*oo 4%27 2h .als] Z4 we LO0,6 44,5 x oh,x%2a aC 3.2 w7i DAY &i7 220.4 114.7 4o,0 2EL4 442 12 oS S34 64.abs FY ff bo £CS MELSON LASGoM 4"biScoco WIND TEMPERATURE SOLAR ---WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)CYC,(KWH)(HRS)(KWH)(GAL)(COS 0} 2 B51 PLS 44.7 **125 2 77 24 3 by 220 102.7 44.2 *%sae *%22d 22 aa? 21Y 104.5 44,2 *%ae ***22 za? 204 iil.44,3 4%ee at eX 20 ea? 134 zl.44,4 ee *%¥%#%22 wal i33 124,45.3 ¥%%%**20 eat 1 iz 47 4*cd : 137 1i7.48.5 *%ee *%me ea7 "=e!"aDpshagSosNanOTeOopawDpee1*feoPe"J"SEAUpfaohoeaogOsoeoOoeoOomretTdcon0efmoBbUdaooayMin134 i124,45.3 =!BO *%24 Ze za? iQ a 173 Liv.pa]OE 25 BS ¥%eS 20 ea?* li 4,7 426 425.9 1 44 NG Zee NG 4,2 eae iz iS.154 1Oo7 a a 43 ¥*pa)Lé Ze is 17.bs eo =bs ¥%10 14 ae 14 2S.155 .what 43 *%14 by 1. 4A 16 KK 1 per 455)ii KE 14 45.2 3 4%14 45.4 i ¥#2 45.3 eH H%14 45.4 ee ae 14 oryMepbPppput.ftWSsBs:iiaR20atepaoOlenooSooGooooaniat*I.aan'anoa)wcBetbehpetRAetetRApetTGt-_"eepoOroy'tRPReRRteeeePeaDeieefFpyOOorRaPa15,1@ $17 "BaD"Ol&SEt RUNNING READING GtTIRTEO Remamile ORTA Frreo w/ERMORS =Lai #et MELSON LAO "boom WIND TEMPERATURE SOLAR - ---WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.ToT.TOT.TIME ON ToT.FUEL FACTOR (AVG.MPH)==(DEG){DEG}(DEG}=(BTU/F2)-CYC,(KWH)(HRS)(KWH)(GAL)(COS 0} 1Z es &7 iz4.1 &1 me 4%3 ee ah ae 7a 13 aD babe 127.°E93 ZG xe %%*%34 Ba 77 14 bs)70 128.1 bab Met ¥e RE ae 20 2.5 7b 13 bait Ab 124.4 be eA me xe ee He 23 Sal 77 14 bi7 £2 124.7 43,8 mo 10%?%%Ae 26 Bee a7 17 &.%7b 117.3 45.7 33 v7 ee 77 Ze 2a?w&l 1S 8 78 1iz.4 64.3 20 117 ee wae 2 Bal bby i?B.S bi 114.2 62.2 1?a4 *%ey 24 3 ae 20 7.3 79 103.7 ava)7 107 2 VS hs 3.1 oh zl vee Pa vow 1 a Aree 3 77 ¥%i 24 3 oh Ze o Pi aes Diba &%%70 *%77 2a Sel WOE 23 10,2 127 Vhs ate 4 ¥*31 2 29 24 3 i] 24 v4 145 vo?ma *%43 z 7 2h se iF DAY 7.2 0°OS 112.8 40,4 19,3 705 4 Vas 355 40.7 hh mS MELSmnM LAS "bcosam,Hi=A im WIND TEMPERATURE SOLAR -- -WINDGENERATOR BIESEL POWER HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAD,ToT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG} (BTU/F2}CYC.(KHH}(HRS}(KWH)(GAL}(COS 0} es 142 107.4 24.5 ee a4 %25 26 :7s 53,5 H%40 2 &24 o a &7roan?tm!Li cg He ue ce 22asme&74 133 zaZ 172 ba Se 1 ie 121.4 a Zan 4 1.7 Le4 124.6 54.xe %%HH ¥24 2.8 ?4 5 2 BLE 127.4 5455 HH HH HH #%22 3.8 73 &Ps :127.4 57.x 4%HK 4%22 2.7 «fil 7 i.?3 130.5)!Bh #4 *#HH +%Be 27 7 g Sy a3 1246.9 baa 2 Gh a wold 20 247 4 o 4.8 oC 123.7 aha ed 7 {O28 HH wal 22 2.7 h7 16 745 canis 124.7 SiGe.7 17 20 HH eas 24 2.9 able 11 10.9%SSE 114.4 7 i 2h 4 2 1 22 ee oon 2 10.4 bette 115 a)22 bal =1 aes 28 WS is o6it.l 237 114.3 40 34 1 4 1 22 248 Ge 14 10,9 2a?115.2 &1.%40 &z 1 me ee wh 15 7a 212 t21.2 63.7 mit av *%2&3 24 249 2&7 1é &184 130.3 bb.m0 1 =ws Ze 2.0 a7 17 bw&245 125 &2 bb we wal 22 2a ob 18 7 al 205 127.7 64,5 24 &2 =Gs Ze a 7 i?8.8 v4 137.5 &i3.&il 15 ea 2&3 24 2.2 2 Os 20 7.7 207 Tse.2 4&2 4 77 Ke wot 24 2?2h el ae 2OG Loy?&1.7 z 33 %%all 24 3 afi Be 6S.235 127 61.4 He ii Pes a ot 1s 2a&a 2 is 22h 112.5 By a KY *%ts 1 22 245 Ge 24 14 207 1i3.?Sv.2 at 4%be 1 a za?wa? TAY 7.1 208.2 L224 Se.)12.4 &75 4g in.Z 540 67.7 & HOUR POAQABRReHOUR WIND VELOCITY DIRECTION (AVG.MPH)=(DEG)Fal 174 "™FroshfeteeckfanpeefeckfantfeatFeepakehpeBt"NSOSESUoaeDeBoePeACaeeePe«sbal®.oCNoongOesyatobaSepeOrpeooeeApaSOAfeimiatWIND VELOCITY DIRECTION (AYG.MPH}=(DEG} MELSON LASS TEMPERATURE INSIDE 100.7 101.9 111.3 vert Oemcceesnttoveeee OUTSIDE (DEG) weal a?a ,newiresfanSeSsCokLPUooio&obioma,metttipcopeCbs=ewoeTNseowsoweelelellkAronq:SESoeOeMELE LAN TEMPERATURE INSIDE (DEG OUTSIDE (DEG)ioP"EOGaUseaoePe:SOLAR RAD. (BTU/F2) Se RE Papniaptigiee.oSpromeOAnspaboheokeeeHe 14.5 SOLAR RAD. (BTU/F2) amen TOT. cye. 184 ----WINDGENERATOR TOT. (KWH) TOT. Cyc. bid WINDBENERATOR ToT, (KWH) Kt feteoOROSGeOROhamefet- ,oeeda*datBoPoBS144 ssatetiraaeytyCmBoattheBReeUDeeeeReeReRPA]ONY"osNYmeTIME-ON (HRS)os"se!«xt"LtreotTOT. (KWH) 20 "SstyPagoGooPopoBapPopaPopoPapsboSonRaoSUTOTonTenhoosdepawt"OgOFTIME-ON {HRS} TOT, (KWH) POWER FACTOR (C05 0)ses82#*®828"£3MhSasLNOStSiooWochuiPOWER FACTOR 1 613.7 274 oe?Agwd %**%bs 1 24 Za?arate 2 245 2be Vee?49.3 *%*%bs 1 1s ea 2a? 2 s.s 204 86.5 4g 4 %%*%14 1 190 6 Sl AY 4 20.5 24 VPs 45.3 ae *%14 1 bs 1.?4B 2 ae 2E0 7a.4?¥%#%is i 4 1.7 AE &22.7 277 Faas 43.3 ee #%14 1 4 1.7 45 7 21.7 vor ft 73a 45.1 *%ee 14 1 bs 1.7 WAS by 20 257 73.8 47.7?2 ¥%14 1 4 1.7 45 YO SSG 2?l Foes AT wt 10 *%1é i bs 1.6 45 10 22 eee 74 45.7 Zé ae iS 1 be 1.7 |»45 li 23.5 2S Paes a0.1 abs ee 14 1 19 2 45 if 21.8 29 774?SL.a #%14 1 14 Pee 49 is 21.7 275 lane 4g 7 me ¥*14 1 is 2 acho 14 S2.2 300 1.2 maw 4 78 a%14 i 146 we wal iS 2 305 B11.mi.&Q *%14 1 12 2 4D 14 23.5 B03 a0.8 al ae &S ¥¥bed 1 10 a 4G 17)22.5 203 BO.wo 29 *%1é i 14 2 49 a 23 20D =a mi)Es ae ee 14 1 14 AY iv 23d 310 mo.7 Oe 24 a*14 1 is =e4 2O BE.314 4 ay.7 14 **14 i 14 z abe 2l 20.9 Bis ao.45.6 4.*%i4 1 19 2 045 ee Lei 207 mS 43.ee et 10 1 pa ee we22s.3 207 he 45.4 %*4%12 1 Le Za wtb 24 417.5 BOS 24.7 43 ¥%He iz 1 1é 2.3 wold DAY 20.7 274.7 OY 475 1.5 xe 34 24 27G 32.a "225 "MELSON LIAS of beoecoo WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)=(BTU/F2)CYC,(KWH?(HRS)(KWH)(GAL}(COS 0} i7.9 301 BS.47.7 eH 14 1 iz 3.2 48 17.4 300 1.4 47.5 48 9 e 14 i 10,Bal 49 17.4 302 51.4 47.5 ee 12 1 12 Bl 4s 15.6 303 S3.5 47.4 48 9 ¥®16 1 iz 2.2 5 14.9 B99 24.8 a 10 1 14 2.2 252 2.9 BBE 85.4 47.7 %* #by 1 &2.5 59 15.1 295 7.2 47.9 i a 1 14 2,3 54 14.4 304 S5,.5 48.2 2 ee 10 i 10 3 48 17.1 3 a5 48.4 See 12 1 i222 48 14.5 3 84.6 48.9 ie 10 i 14 2.3 45 11.9 35 92.1 49.7 BL é i 24 29 58 13.9:97.8 50.4 32 4 bs 9 28 3.2 43 15.4 3 The AFF SL ee bs i 24 3 42 li.d 3 W.9 49.2 Bl 3 4 i 30 3,8 .7 17.1 3 97.5 48,8 25 1 10 1 24°249 7 17.3 3 65 50.3 33 #*10 i 24 3 wh 14.6 308 94.4 49.4 19 9 ¥*8 1 24h Bat bibs 14.3 308 94.7 49.1 13 1 é 1 2h 3 64 12.2 302 97,9 48.8 5 1 4 i 24 3 47 13 297)PS.1 00 48.9 5 Re S i if 347 59 13.3 294 P2.2 45.4 Z #4 é 1 iS 2.4 54 ig.2 284 91.8 AS xX 2 é 1 #4 29 63 12.6 270 F1,5 48.14 eR 4 i 24°29 hb 11.6 287 P3.1 48.1 xe HK 4 1 22°249 7 14.7 302.2 96.4 48,5 4 131940 BRL 44K AS 5 i MELISS LOAM A bio ooco*,jes*s,ulfWIND TEMPERATURE SOLAR -----WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT,TOT.TIME-ON =sTOT,.FUEL FACTOR (AVG.MNPH}==(DEG)(DEG)(DEG}=(BTU/F2)CYC.(KWH)(HRS)(KWH)(GAL}(COS 0) 12.1 254 v1.7 S12 ee bs 22 za?Ge 12.5 2ol VOWS 4s.%t *%14 25 aes 12.4 270 7 a 47.5 ae **14 Zac apabe OohoBb1z2.7 283 ay 47.3 K%a*if 245 ha 13.8 275 Any ee ¥*iz 2.oe) 14.8 271 a4 45,4%#*10 14 2.3 wal i344 2a?pe =ee x%ct 14 2a re) 14.4 Zoy Pa 4st i 'RK cy a 4 % ?1 we HH 35 H%12 14.1 257 12.3 ents i3.1 a 14.7 17.?-es2&weHee=owCAoeespefonOomoiRiueEh=,PidGPAAinibe«=«atlat jheFAbe-.**re"Nd1e.2 13.2 12.4 14,9 ,=sfee8«8oyfeP.3aien.aeEEar0me!1ANSEofUoGoanuiinofiicnCfonre en]me baat ma bt De bs raanIpBphepobotat ,Loeii 4%10 7Wuho.MY.iBsf«.C8IllolcellSoolpealSoolcoolcooolseedollseeollneedoolcoolooelllooloolsaadbt5,a!feiisda0 64 1 47.4 by 49.8 2 ?v 13.2 208 avs Zo e*by Ze Za?ab 11.5 3O5 43.6 eS z 4 Ze 2.8 abot 11.7 BOE 43.4 4 1 4 7 22 2.7 e&l eed aO4 43,3 1 1 4 1 is wad so? 10.7 mOY 45.2 %%2?2 es 4 2.8 a bok Fal BOO 43.1 4%&9 z 27S 2b 3 arate .Bb Zoo 45.3 RE £0 ee 1 24 ze?72 Y (3,6 273.4 43.7 val 1461 i52 Zoe?444 &2.1 a) WIND HOUR ==VELOCITY DIRECTION(AVG.MPH)=(DEG)oh 275 PMECecro2ryas+imeRotSagSheeepfeOle2GooOgeooOetethhhe ,ha!onraphe28of-_aaw=ffta3zses8&«i?14 Ok HO 42 307 2d 324 roves ba 327 23 324 24 &330 DAY 11.2 297.7 =t= WIND HOUR =VELOCITY DIRECTION(AVG.MPH)=(DEG)mata &B45 "OOARoeboaeeP3an1o feeeoeeewtOo©UenoesBoAMpOFnooDUTgowoAteparoa .&7 mo .&7he PpPURLOos24 47 BAY 3.8 170.7 These MELSON LASoON TEMPERATURE INSIDE (DEG) we 7 wi we& 77 ab 745 VAS vo? YL.S V0.5 ved vo v4.2 howd v4,4 vA ws vite ve? ve Vea? wo oy OUTSIDE SOLAR ----WINDGENERATOR RAD,TOT. (DEG)=(BTU/F2)CYC. 4G.Pe47.SeBhlalotiembmInebnionaieee ,taeBPEEPHOSeMwooOootdae=ts49 ME LISIN Laon TEMPERATURE INSIDE (DEG) 103.7 105.9 109.5 111.5 113.3 113.4 "OeUbeAPSENEOAmememtllaedateaiaee}sss52Fewe82mePaeepaNoeeomomiGUTSIBE at 142 **14?mytalnhCorpryKS 4&7 14.2 1034 SOLAR -----WINDGENERATOR RAD.ToT. (DEG)=(BTU/F2}-YE.BO,5 51.4 49,7 43.4 49.8 i ai. 52.3 See a4.0 hela a7 ae S "80oepoCAAOnA=»iesw5ewes®breapsOnoncnncnmNNSRWSSmafdareofts*=2««KE a3 TOT, (KWH) RE ENNORRORERPPPeERAN*50 TOT. (KWH) ee xe Re 4H ** Ee Ke HH AH He aH Kk RE xe EE He KE He KE aH et Ke EK HH ** ha}SS TIME-ON (HRS) ? 77 aas"OeMowe"I".!misRYEEEleeeeeeeeepeeeette"Ltee£4"Lifa£1fYft.22acsaeaemsDIESEL POWER TOT. (Kh)BeepeePeet-enaE84OyFUEL FACTOR (GAL)(C05 0}cnanin"AGSOStsPibipaPapabopoPipabopobopsbopbopaboPoopouns*2sosLda.Lda*opeopLiwtsdeltf.2QWi-gomOoeoUePopPRPmI dF>TIME-ON (HRS} 2G H% H¥ #% KK HH H¥ #% HE a% HH HH HH x¥ He HH HH #% aX DIESEL POWER TOT, (KWH)34 20 =O FUEL FACTOR (GAL}(COS 9) ee ava 2.8 74 2.7 73 2.7 73 2.7 274 2h 73 2.7 71 Zh 68 2.8 7 2,8 72 2.8 73 2.8 74 2.8 7h 2.8 73 29 74 2.4 7 2.5 wf 2.8 74 a4 3 29 74 3 78 5 77 mo be OF GS MELSON LAGE A ica WIND TEMPERATURE SOLAR - --WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT,TIME-ON =TOT,FUEL FACTOR (AVG.MPH}(DEG)(DEG)(DEG)(BTW/F2)cye.(KWH)(HRS)(KWH)(GAL)(COS 0} 34°?72 117.3 34.5 x 4*4%#%24 Za 77 3.4 73 117.3 mits Et %%#%He #*22 62.5 74 4.3 Ph 114.5 a7 a7 *H x%aH #%29 Za7 73 1 115.7 aoa 7 %%#%%H He 22.2.7 74 220 115.7 49 HH HH #HH 20 al a74 i 3 a Pa 13 zal ee 7 22 7 ivs 22 224 115.4 47.1 4H +%ax tH 22 037 72 2 114.1 47,%1 *%#**%20 2.71 iiz.i 4k 10 ¥*4%#%20 062.7 68 PowetoMoeOPesidRoeasDeadboh 224 1is.i ay.4 24 ¥%He *%22 Zao 72 io 1.7 124 1iv.4 2447 2h *%%%¥%24 2a?073 11 4.4 le 114.8 an 35 ¥e HX ¥%ze 2a 71 if bd Pi 107.8 &3.&45 **eH e¥24 3 74 2 7.5 115 100.5 &1.a?al =vol 24 341 7k 14 10.3 11?v4.2 aha?a iv 2 FP Ze ead G4 15 Sal LS?101.5 mite L 40 a 2 o&24 2a?wi 14 10.3 169 110 aad 43 22 a%a7 24 245 h7 17 10,5 133 101.7 a?a4 zl 30 4 1 2O 2a Gl 1s o.4 77 07 Lid,&22 4i %%oh 220 O28 ante 1?Bad bo 102.2 L1.7 14 20 2 1 20 fe?OE 20 Fab oho 1O5.5 ied mt 37 2 eo 20 a?bd zl aa P £0 112.4 ead Z 104 ¥e 3 22 2a bbs ze ea?vo 115.7 baba a %e 2 aH ee 2h 3 wal Zo cna £4 117.7 oa 7 ee *%ae e%24 3 7 24 &101 1is.?aia %%#*He *%26 so 77 DAY See 124.4 110.4 mo.13.1 344 14 7.5 240 67,5 7 =Of UES St MELSON LSE "bia WIND TEMPERATURE SOLAR WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE ©OQuUTSIDE RAD.TOT,TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH}©(DEG)(DEG (DEG)=(BTU/F2)CYC,(KWH)(HRS)(KWH)(GAL}(COS 0) a LOU .9 Sst 3 4%HH HK ee 2,5 wf 178 114 54.6 HF x *%HH es 2,5 ofa 152 114.3 Sa 4 XH x%#%HH 24 28 ae i514 114.7 51.7 4%35 HH oS 20 247 aba i 4 4 a? ba me 144 113.7 od ¥*ol 2 220 22 2a a7 &1.4 a4 115.8 Dee %t *%*%**ZO 2.7 74 7 fiz vo 110.8 Sot a 1 &5 *%wo]20 we?roy o 4.4 oS 103.3 ict v 3 ee OS 20 oat ee v 4,3 124 112 mie.Sh eo ¥%ee ee 22 2.7 71 10 7 77 111.4 é1.9 40 77 HE 43 22 Za?7 il ma bs 4 114.5 5.5 a4 43 ee 17 24 2.45 73 1 aad BO 117.4 71.7 oe *%He ¥%wee 3 77 13 7.5 Ai 117.3 74 76 102 ee 77 24 3 73 14 10.1 oY 118.5 73.2 mO ee 2 1 13 eal seals 15 re 44 114.5.7 3 3 a 1 22 za?abs 14 ?2 Liv.Tbe 79 ao a 1 20 eal G2 17 345 mS 117.5 Toe a Ze 2 PP 22 ze?WBS 1s 7 £1 119.2 75.7 43 0 HH wah 23 Bal 74 i?at LQ 120.1 7349 Ze 12 He 13 ee Zao 7k 20 ae 134 114.4 EQ.iS be =27 20 zal 4 el b3 142 isi.cite 7 3 oa)ee 205 2s 240 7S Ze 7.4 147 .vo 24.5 %%od %%arate!eG 2 073 23 4.4 142 mo shat #*14 %%OF 2c tal we 24 1.5 21?Fo a1 ba 4%ae %%ee 2S Sal 7? DAY &103.1 112.62 26.5 bis7 10 Pal 244 67,8 a7 oof Eb ff NMELISON LAGOON # bwScoco WIND TEMPERATURE SOLAR soeWINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,TOT.TOT,TIME-ON TOT.FUEL FACTOR (AVG.MPH)©(DEG)(BEG)(DEG}=(BTU/F2)YE (KWH)(HRS)(KWH)(GAL)(C05 0) 1 awa 234 7464 51.5 a 4%K%4%Zo 3 a7? 2 3 2 72.7 52.5 *%x%%%x 24 2.9 a he) ey boa 7 57 7405 55.1 4%zi 2 0 OS Se Za h7 4 7.2 4&2 74.2 54.1 ee 4l 4%1 22 2.7 L4 5 me 73 7Se1 53.4 ee 122 ee 82 22 2.45 a bb &fa7 £4 72.4 54 HH oe 2 2?22 247 26S 7 &.5 54 72.8 54.4 **&&HE eo SQ 247 OS S Sal 47 74,1 55.0 4 7?%wo 22 2.8 265 v Fas 45 73.5 57a 7 7O eH wae 22 2.8 wh7 10 B48 oe 743 So .5 el 24 +e BS 24 2a?oh7 ti Fabs 73 73.3 &2a4 Az m4 2 2a eS =a&7 iz o.7 &y 74.5 44,4 7 m3 x 1 24 re Prcton iS m4 45 77.5 7O.7 él Bb 2 a wh 3 2&4 14 10,4 70 Pat bbiahs haba)3Y 2 2 20 2a oh 15 5.4 8 B95 69,5 42 24 2 a7?22 2.5 062 14 an ot BO oer 737 &l 32 2 a?20 2.8 afl 17)10.5 25)771 45,8 7 BS 2 .oo 20 2.7 obs 12 14.4 134 are &S 4 4i H#10 1 14 244 sae iv 14.4 134 ao?&2.27 3 bs 1 16 2.5 aoe 20 612.4 130 71.8 40,8 11 x%4 1 20 27 afd 21 610.5 130 aD ay.4 27 4 a7 20 Za7 WhS Ze 348 122 v2 55,9 ¥%*%bs 1 20 Bab a&l BG LS.s 105 my 4 BS.7 HH x ba 1 20 2.8 bbs 2 14,5 oo ibs S72 H%x%10 1 15 Zao Peat DAY 9 1.5 B1.6 40,2 19.5 vay &4 19.7 Bia 64.4 ah MELSON LSM Icofh*il,fhbWIND TEMPERATURE SOLAR weeWINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,TOT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH}=(DEG)(DEG)(DEG)«=(BTU/F2)CE.=(KWH)(HRS)(KWH)(GAL)(C05 0) 1 12s.?Bb 7 ab Not aot ee bs bs eo 1s aah G2 2 17,4 Liz ae me aA ae #%12 1 12 Bad wd 3 15.4 124 o1.?rahat a 4%ee iz 1 12 Bae aes) 4 17.?121 Ta?ie ¥**%14 i &1.?45 =]15.7 110 BOS rales 4 %%*%Pa 1 2 eae ae &ee 101 m4 37 «4 **¥%be i 14 2a3 wos 7 11.4 118 ES eS a %t *%4 1 14 za4 wa? S 3.2 131 4.7 raid a &4 ¥%re 1 10 ead wa Y LP.145 739 had a 15 ee 14 1 S i.?45 190 20,4 135 7G elas 15 we 14 1 10 2 AP Li o.2 Lis 73.5 mae 14 e*12 i 10,2.2 49 12 mad 107 BOG més a 2 ¥%10 1 ge 2a7 wate is 14.4 123 m7 mb iS *%iS 1 1é Bao opal 14 1?142 BO,S chad a 25 4%iz 1 14 Zao eo) 15 17.7 149 BO?aA 3 ae 12 1 146 eal wd 14 15.3 144 oO.4 al ii ¥%14 1 pe ead Ay 17 18.3 134 72.8 a4 4 4%12 1 20 2.7 ale S is.l 1352 1 4a 4 ¥%iz 1 1é mad a iv iv.d mo BO.4 24 4 ae 12 1 o ees als 20 19.4 144 73.2 chat a 2 *%14 1 16 eae Ay 21 aiv.e isl 77 ata A ¥%¥%i4 1 2 eae A? ge 20.4 134 mO.d mea *%*%14 1 12 weet a) 23 22.2 146 e1.5 Deas 4%ee 14 1 12 eel 4 et 21.2 141 tah m1.ee *%14 1 5 z 045 DAY 17.5 131.7 s1.3 baba mal bs 27a da see 34.9%ae) Sof GES 2 fo MELSON LAS 4 bitococm WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.ToT.TOT,TIME-ON TOT.FUEL FACTOR (AVG.MPH)==(DEG)(DEG)(EG)=(BTU/F2)CYC,(KWH)(HRS)(KWH)(GAL)(COS0)i 20.6 1é2 1.7 m1a4 ***%14 1 &1.4 AE 2 20.7 134 PEE o1.4 al sd 14 1 bs 1.?WAS Ss de.131 77 ai.*%a*14 1 =i.?AS 4 17.4 133 Pb al.7 4%*%12 1 bs 2 WAS =14.2 &S m4 4 s1.7 ¥*il is 1 i4 Bae wh &16.3 145 v1.7 alae *%ee 10 1 iz eae wd 7 i?.6 162 m4 o1.e **¥%14 i 10 z 4? se iv.4 164 m4 pa ae &*%14 1 ba 1.?AS Y 20.5 145 4.7 aL.7 il *%14 i 3 1.7 AS ig iP.7 144 m4 ead il ¥%12 i iz 1.9 249 11 0 46i?.e 165 7 ah wae 14 ¥*Le 1 106 i.?4? iz 14.5 144 SaaS moe 7 **10 i 14 zZel a is 14.°131 ve 4 24.2 22 ¥e 16 1 1é Zak a 14 iv.174 V1.8 D444 2?*%14 i 10 1.?4A iS 15.5 143 Mo 74.1 14 He =1 14 zoel aol 14 14,3 177 34 a4 a4 12 *%&1 14 Zeal we i7 2a?Leo oA 2441 1i **bs 1 20 Za apate is eae ise 103.5 hota il *%&1 22 Za?arora) i?15.7 132 101.4 ma &12 ¥*tat 1 14 Bad eho ZO 17 154 v4.8 ots &ae 12 1 14 zeal A? Zl 14.9 150 ite be wea ee e*10 1 14 Zee oe 22 Pals 17%102.2 aa %E BY 2 7?Zh 2.72 eo 11.2 174 113.4 S208 ee ii oF 24 2ad 77): 24 14,3 175 1O2.2 ao H%EE 1 14 2.3 wd DAY 14.4 170.5 v1 a &?fl 244 Eo.4 B22 S114 eo Acon ee a a MELSON LOASICoE bios WIND TEMPERATURE SOLAR - -WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT,TOT.TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG}=(BTU/F2}CYC,(KWH}(HRS)(KMH}(GAL}(COS 0) 1 15.4 171 vo.4 ola **ae 5 1 14 Be vod 2 13.5 ifs U7 aS 21.5 He 4%=1 14 eae ach 3 13.3 133 vo eo 31.5 ae #%bs 1 14 Bee eae 4 i15.3 LO vod o1.7 ae *%10 1 Lz z AY ba Zac 137 Po?sl.1 ae *%bs 1 14 fox weabat &13.7 Les vob 20,5 %%**mg 1 14 Bae wd 7 13.4 ive eee!mi,&#%¥%&i 14 Zed we fs Low?202 vo ae ees 3 ¥%=1 12 zal oe 7 14.9 2OKS vee?21.&*%10 1 14 eae wa 10°643.5 2i4 vad weed 12 ae 10 1 14 eee os) 11 14,7 els v3.2 sa 22 *%10 1 14 ead oA 1 617.5 zZlé v4.5 hate zh *%2 1 18 24 seal 1s 14.5 216 v7.4 a4 ae 25 ¥%bs:1 ats za?3 14 14.3 ive eae)a4 20 *%3 1 14 Zad wd 15 14.2 200 vo.a 22 *%1G 1 10 Zal 45 14 i3 2lé 24.5 maa 4 15 ee bs 1 '15 a4 wis 17)«614,°ZF v4 hate a 3 ae S 1 1s Zan ard S i2.l 21E 100.3 a a i 1 4 1 ne aac he i?11.4 214 1O3.8 a1.&2 4 Po 24 we 7 20 10.4 220 104.4 a1.2 =2 1 Zh =a bal 2d 7.9 261 1O3.9 OWS **32 2 Sl Zh za?065 ee ee 240 1o03.5 4g ib **oo 4%m4 26 Sel w7i 2 bah 252 LO4.1 49.e*babe 4%4 24 3 71 Z4 bal 25 11i1.%43.7 ¥%71 He woe 24 za 6 DAY 123.1 212.1 vo.7 21.5 7.8 246 i134 22a?430 39.1 ee) =SS A Ele ME LIEN LAC 2 depo HIND TEMPERATURE SOLAR -- -WINDGENERATOR DIESEL POWER HOUR VELOCITY INRECTION INSIBE ©OUTSIDE RAD,TOT.TOT.TIME-ON TOT.FUEL FACTOR (AVG.HPH}=(DEG)(DEG)(DEG)=(BTU/F2)-EYE (KWH}(HRS}(KWH)(GAL)(COS 0) i Fal 2G 103.7 45.6 tad 70 ee 45 wae 2a hd z b4 let)104.2 42,5 **%eK et 22 Zao 7a 3 a4 24s 105 45.4 ae 1246 eK O41 mat 2a 3 4 it.24y 104.4 43.1 ¥%122 %%Fl 20 za?4 1.5 243 vo.4 45.2 He 1 4 1 oa eed ea? &10.2 271 v4.7 45 *%4 =i 1S wads acai 7 ia.27?VE ad 43 ¥e 2 by i 14 24 wily s 10,5 ZnS VOWS 47.5 i i?=1 Ze oa7 aie o md 2b?vo.4 45 &is?a oS 4 2.9 whe7 10 Fac 273 vo 4 4A?1o Ls?e%o 24 245 a bals Li val 24 100.1 49.7 19 hot 2 Fe 20 za7 whe 12 S21 2?1 100.2 aO4&17 77 ae a ie 24 ze?0 bt is Pad Zoe 104.7 mh ae oi So HR a4 24 Le?a7 14 &é 200 103.46 aa 20 #%ee 07 22 2.5 a7 is aes 241 110.4 244 4 al 4%ws 2 mad wh14a]B57 110.4 mead 30 #%4%He 24 2.5 Fz 17 ea 24e 113.5 hot a 29 *%te HH ee 2.5 74 3 3 7b Li?.7 61.7 is ¥e %%*%Pts:aed a7 iv ad 72 121.4 £0.7 2 *e ee ¥%ae 2.5 7d 2Q 3.4 &1 Lee.te 4 ¥%%%xe 22 2a7 7il 21 28 b£4 les.aad 1 ae He xe 24 2a?ava222.5 124 123.5 cd w ft He a ae ee 25 3.1 7d ao ma?173 12o.?al ad ee He HE ee Wated a fo 24 a 171 131.5 whe *%**ae xe 24 3 a7? DAY 6&8 231.2 105.4 Beas v4 Bee 1é 10.7 m40 47.2 o& =OE ME LSM LIAS 0 Seco WIND TEMPERATURE SOLAR ---WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE OUTSIDE RAD,ToT.TOT,TIME-ON TOT.FUEL FACTOR (AVG.MPH}=(DEG)(BEG)(DEG)=(BTU/F2}-EYE,(KWH)(HRS)(KWH)(GAL)(C05 0) bie {33 ee?tat x 4%aH 4%oa ae 277 2 133 114.7 wLad He ¥%%%*%22 a?073 4 13s Liz.'m1.¥ae #*20 web wie 4 133 Lis.oi.l He *%ee **2Q wab 7kxa -iFBE154 110, al.PESDPethoemsfiTtPt>E>rernt2)bomyHa-Bpe00ORaAoe-ath1 1 v -)1 sa 2.4 mt 1 z 10 3.2 L142 mi.chee 10 ¥%by 1 is wan ard Li 43.5 143 oS 4 a4 ae bs 1 io Zao a4 lz 13.4 132 2 sabe 1a xe &1 14 Zel oe) 2 14.1 145 tL.mie 7 oF 3 &1 14 ead walls 14 14.5 144 a4 bab &2 #%2 1 14 2 wold iS 17.2 141 od.ba 4 *%10 1 14 2 4 16 15.4 147 BO lial wot Zh ¥e 19 1 10 1.49 17 17 14%FEW cha A 15 *t iz 1 12 1.2 AS >lve?134 BO me a4 16 #%19 i 12 2 AY iv 1h.isi PP ae ae A 7 ee 14 1 14 Zeal eal 2Q n.d 147 77.2 De 2 ¥%iz 1 iz 1.245 Zi 20.2 13%Fi a7 shad *%#%14 1 z 1.?45 ee 23.1 138 777 m1.5 **He 14 1 10 1.5 45 23 21.?ise 74 mia d 4 ee 1é 1 1Q 1.8 45 24 14.5 134 73.5 wea >¥**iz 1 14 2 whe DAY 14.3 131.4 vO.see?LL.3 il 184 iP.e a72 32.oa fF "Gone MEELISNM LAGOON 4"coo WIND TEMPERATURE SOLAR - --WINDGENERATOR BIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH}§=©-(DEG)(DEG)(DEG)=(BTU/F2)CYC.(KWH)(HRS)(KWH)(GAL}(COS 0} 14.7 133 1,aa ¥%ee =1 14 Zel 4 13.2 154 B47 eee %%ee bs i 14 zal ata) 13 132 4.3 aee *e *%bs i 14 zal wo4 11.3 154 Bo.1 mee?*%1 4 1 bs eZ aad Vad Le4 104.5 Dea?¥*7b **265 20 2a 2&5 bw ivS 114 a?%%ii %%«24 20 zak oh? aa i7i 122.4 aot A **34 id 43 22 Zu eat 3 12?i124.hata i ¥%*%#*24 2.0 »7i 2.7 Za46 124.9 sae?3 ¥*#%**24 Ze?7 a 271 Lee.m4.19 z 2 re 26 Ze ee) 12.7 253 105.46 44 22 ¥%4 1 3 ead fl 7a 220 104.3 4.1 i4 bi #%&7 20 ee eb a)330 111.4 4 21 z a*Ol 20 Zab 7a 4.5 B40 111.7 mies 20 **%%*%24 2.0 we) als me Y 112.4 ad &15 1 Z vod ee 2a ok 19 220 110.7 vane 14 60 ee 75 24 we?W&5 7al B13 114.1 pa oa 12 Z %%D4 25 3 7h Fad S20 114.1 mae &1 al O53 Z4 2a?27 bw a1?114.7 1S 2 aa *%aa:Zh Sel 1 a4 S10 118.6 a 1 aF 4%**24 2.0 77 aa 4 3035 119.2 mi)***%¥**%"24 wa?273 a4 eee 115.7 a]Oa *%*%ee ee Pic 3 oe a4 276 Liv.31.4 ¥*xe ae *%2h Bal ol ma Gs Zo4 115.7 oie %**%%%¥*25 Bal a 7.e 254.8 110.5 at &SPS 3 74 a4 ES aa BS -ers NELSON LaAiGOon 4 Wesco WIND TEMPERATURE SOLAR - -WINDGENERATOR DIESEL POWER VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT,TIME-ON TOT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG}=(BTU/F2}CYC,(KWH)(HRS)(Ku)(GAL)(COS 0) ed 2h4 114,85 ai.5 **¥%¥%#%24 3 3 oh«"it”fra 243 113.7 o1.7 ee 4 %%O08 24 one:bs fie 207 115.4 ae ¥*3 **v7 24 2.8 74 4,5 Lae 124.9 mat we ee is *%12 ar Za 74 4.7 172 125.4 mie 4 ae ***e ee 20 Za7 Fo 4.7 141 124.2 raha a ae iz ee wiz 22 2.5 7d 74 171 127.5 21.4 ee 37 ee rea)2Q 2.7 7 aren)177 if1.1 iad 10 he 2 24 20 2.446 oh Sel 140 120.4 hate 10 114 ¥%24 22 2.7 13.5 13%ios.t hata 14 ¥%&i 20 ee ah 14.2 137 v7.1 24.7 20 ¥%3 1 is Za wae 17 134 v1.8 4%14 ee Le i is Zed ao 2045 140 7.5 a es 24 ¥%14 1 14 Zeal eal is.134 72.8 a4 ab 14 x%10 1 22 2.5 wa? i.144 71.2 mt»4 7 ¥%2 1 22 264 a7 15.8 1465 E&Y.ea 19 *%lz 1 is Zea oe) 14.1 173 &65 2442 Ze 4%10 1 Ze 2ah spate 20 173 &F ota A iv He 14 1 14 eal 4? isd 187 bo 2 oad 7 #*1s 1 14 ae wal we 233 7O.5 a4.4 a%14 1 12 1.?49 17 eo7 71 Dale 1 ae 10 1 20 Zed wns 13.3 2o3 7O.1 IQ.4%ae I 1 24 2.0 Wf 11.2 eo 70.4 20.1 ¥*#*4 1 25 Sal 71 12.1 243 Feel nO 4%ee 4 1 ele ore he12.5 174.4 we 4 hae 74 Peta 134 15 4oz £2 & =o mee CE MELSON LAC 2 belicoico WIND TEMPERATURE SOLAR -WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,TOT.ToT,TIME-ON ToT,FUEL FACTOR (AVG,MPH)=(DEG)(DEG}(DEG)=(BTU/F2)YE,(KWH)(HRS)(KWH)(GAL)(C05 0) 14 a 1 240 7248 A.7 HE 4%bs wG a at LJ 9 244 72u&si.l He 3S 2 ao 24 247 73 2 et av 22 247SO,5 HE Fb caea 72 47?x#He = QO Fd 4%{oO OQ H%4%10 i.e &RE 4%ta be 4 4 14 *%14 bi a3 z 24 ¥%is 7047 54,a *%14 71.2 4 71.2 Kal Bs ba i)iibetteanOPtt6SpaUPApeSEfaeeeptpntomNEUota2*«©8«8rs)wae asf.2P32_(pppPodeimps.a2pee0CEftwtpsEseclayx "teBeROeeBeRtAS]-qsrhewmzal 1.? is 27.4 So o1 ¥%pa 14 Zal or) 14 2E.6 71.8 a4!Zh 1 14 a S 2.5 wicket iS 25.2 71.4 D4a%2?i 14 is:14 eee oe) 14 27.3 71.3 2447 24 %%1s 1 14 ead 45 17 «24.8 71 bata &12 a%Ls 1 3 Zao Ao ig 23.2 70,9 4 1?He is i 5 2.5 whe iy 22.4 70.5 ees 3 ¥%14 1 13 24 es) 20 i?70,3 Seas i %*14 1 1s wat we 2l i.Lo 7 mb a ae xe iz 1 24 2a 4 22 22.2 bs A hal **¥%14 1 20 Zan wl 23 20.3 Eo ba ***%14 1 is Zao ate Z4 ee &o 4 wha 4%Sd 14 i 19 zZel 45 DAY 20,7 238.4 70,27 3eaz B42 113 aO4 Beeb S30 33.45 a 2liliifLi=oo i as MELISS LSP WIND TEMPERATURE SOLAR ---WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT.TOT,TIME-ON ToT,FUEL FACTOR (AVG.MPH)(DEG)(DEG)(DEG}=(BTU/F2}CYC,(KWH)(HRS}(KWH}(GAL}(COS 0} 1 22.4 241 bi 30.5 ee #%16 1 10 Z 45 2 21.1 23?Eid &a0.4 ee **14 1 10 2 045 3 20.5 :GS Owe *%*%14 1 10 2 45 4 15.5 &S a %%**12 1 lz 2 AS 'le?GS Ay 8 ***e 3 1 1é Zed ee &16.bee 47 4 4*a*10 1 14 ead Ad 7 22.7 64,3 43.0 4%1 1é ve iz Zel Za) S 27.7 64.5 43.6 1 =1o oh 18 Ze4 wa? v Ze &3 5 43.7 3 1 14 257 14 wae os) 10 24,9 br ahs 45.7 7 *%15 i 14 Zao AS 11 24.7 &4 3 4s.&11 **2Q i 22 Zee a) 12 26.9 64.5 49 is ee 20 i 14 eas 4d 13 25.7 G5 a.Moin #%14 1 14 2a 245 14 SSS bi ab chad 20 *%15 1 is Zan 45 etal bit a7 oa 3 ae 14 1 14 Zao 45 14 21.3 5.8 wia4 49 ae 14 i 14 eal 45 17)o1?.5 bbs 7 at 2?xe iz 1 Ze a 4 12 12.5 4&7 49.3 18 e*160 i 25 Sal Oe i?7.2 &7 WS 45.9 o #%10 1 24 2a?a& 20 164.1 &7 Ws 45.1 1 e*10 i 2G ee?oh el 14.8 &7 a 43.3 ¥***10 1 24 za7 a7 22 15.5 byF als 45.2 4%ae a 1 22 248 wales eo 146.4 &7 al 4a ¥*¥e is 1 22 Za7 wats 24 15.3 bla D 45 %%¥%ay i 22 zal o& DAY 20,5 46.49,4 10,4 7 a14 234 424 35.2 * HOUR PtAAtetoRaebepteeHOUR "CoNOBlopePan ,heeWIND VELOCITY DIRECTION (DEB)(AVG.NPHD 13.7 12.4 LM 7 7.fosndce»©8s*®8WpCONooesoeitnMopQeLAosmowtti.2 bee10>opMonbawy-om;"el"ood WIND VELOCITY DIRECTION (AVO.MPH) iz.3 W7 10.9 11 10.4 i1 11.5 "sae!_fetth2"oyBPewoetek"fhPadwy3|acad"LipawttreoSBiemee,"5mebPBG9.7 41.1 v (DEG} Coes oarwa mombomemeReeeoeTEMPERATURE INSIDE (DEG)or0Ce.sdsa.eooeTEMPERATURE INSIDE (DEG)=Bb"ifFJfPlahaAYONGNphoFeRORBOFfFPipeSeoMELSON LAO SOLAR OUTSIDE RAL, (DEG) 46,5 KE HEa)436& 45.4 ee 49,RE 40.2 KR ari * 471 4% 4cw1 1 40,5 4 47k ov S1.d me 51.5 37 Se?4i 54.1 ae KE A4,7 oe 49 NELSOM LAGOS SOLAR OUTSIDE RAD. (DEG) 43.0 ¥e 45.7 x# 43.0 %* As ats ee 43.4 HH 43.3 at 43.3 45.2 3 4B &i1 43.3 23 pezo-pedom™poboooEPeeUToe(BTU/F2} 11.8 (BTU/F2) ---WINDDGENERATOR TOT.TOT. Cyc.(KWH) Kt Pee ¥%*ot*PPhMmeoPphRPRKPKPIRPEORDEEpeeooNe**as--WINDGENERATOR ToT.TOT. cyt.(KWH} ¥%és **pe 4%16 H%be ae 16 EE bay ¥% ¥%iz 4 Pe *%4ixesekPpokohft0afF**kOK*kOKokteee {iTIME-ON (HRS)Ovaw"one!AOSIcoedonlceedoolnoelnoelsellnoelDIESEL ToT.FUEL (KWH)(GAL) Fay (3 =.& 20 ee 20 2 Pe 20 eek 20 Z 74 3 B42, tth artwefatot BO ms f3teMNEsNoGereaaan " 39 ae oo =tn Be a.8 2G ws a3 atntheeee 8 22 2 20 2 ef 24 2.9 2h a? eo ll 23 Sel 25 aad * y eeZhasy mike bb {ef SSS TIME-ON {HRS}ameae]Pafs)eeRtetpePteeeSaat'StCXSSloolnoelseeendlsnellsellnoelaod***UFDIESEL TOT.FUEL (KWH}(GAL) if 2.5 ig 2.4 14 2.3 14 2.3 14 2.2 i4 2.4 14 2,2 14 2.2 22 247 22.0 2.4 2h 2A? 0 342 EO sad 49 38 mb mS 3200«32 a0 sal POWER FACTOR (C05 9) wal Oe oo o4 atl va) hia)AoBoeLeOoooMoePe.oAcionChancicnihew>ooUTieeCoLdse2ChetatboePOWER FACTOR (C05 0) abe) os 5 LionBoUPAcotowoooNDRPRUopEUpA Be IE OES PES LOM Layo lo sd WIND TEMPERATURE SOLAR 0 wa WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD.THT,Ti.TIME ON TOT.FUEL FACTOR (AVG.HPH)(DEG)(DEG)(DEG)«=(BTU/Fz}CYL.6°(RH)(HRS)(KWH)(BAL)(C05 0) 164 40,7 24n ma 27 14 4%NS 4%NIG aes eft 17 25.5 eat]a4 35.&*%#%ee 24 eZ af te 27.l 21s Eat acct 24,i Ke He 4H AQ of ef? iy 27.4 ee Si.z 34,6 xe 4%4%¥%42 2a af 20 2.7 Be BC.4 m4 ee RE Mo HH 40 a?fe 21 30.7 3 AG.B45 eH x *%38 5 77 we Dial 4s An 24,1 ee aE RE ES 4 aA afd iat es st m4 45 S38 Ke HH ME He m2 .4 wit 24 30.7 24 47.7 mo %%%HH £%mm al fe NO SUMMARY Gm Of MELON Lowa temo pl WIND TEMPERATURE SDBLAR - --HINDGENERATOR TIESEL POWER HOUR =«VELOCITY DIRECTION INSIDE ©OUTSIDE RAD,ToT,ToT.TIME-ToT.FUEL FACTOR (AVG.MPH)=(DEG)(DEG}(DEG)=(BTU/F2))|CYC.(KWH)UR)(KWH)(GAL)(2050) 1 1.7 an 74 BS RE Ee RH RF 30 we ai? 2 Ea Bad ha gS mel 1 ae he 4%2h Pi ats? SDSS 4 45,5 22.0 i ee HE ced wore 1.4 ale? &me.4 m4?45.2 me i 4%a 4%25 i.2 EE S 37.5 mel 44,7 me 1 eH HH RE 28 a a bes &37.2 B20 443 BL.&i Re ee *%25 t.l fF 7 27.9 244 42,5 m0.1 £%HE RS me a ee So 34.4 sil 4b 27 1 Ee aE KE 4n 7 a Abe a S 4 43.5 BOG ZO &%RE Ee AS 1 atl 1O SAS oe ie 43,4 20,8 4 4%Bd xe So 3 we ito o3S 5 358 4,3 20,5 10 *#HE cs ae wl iz Hist a 3G 411 30.2 li 4%RH Re a4 aid iz o m27 41.8 mG 14 Ke LH %saved Bs Q 2s"bsOFwtfsom30215 4i.%30,8 Zi ek HH KH BQ S10 4?20,3 14 aE KE He FAC-Llfat23-z313 42,7 20,7 tl x%HH x%BePeork weeRSBOpeoPpeebel**aoF=eosmogoetEgedaaomttsOSpeagftis22 223.7 343 43 "5h:xi8«J7"i17)63 BLE 4249 BOWS v et ced ee aed wy me DY eae 4A ma.4 4 eH ae x 2 wfc iv oS5.8 mle 42.1 20,1 EX ed ae 44 wie 20°SS.1 we 43 27a?x acd ae A ais z 4S m13 cs a 278 ed RH ae "ee oft wegeeepkBepeoe:"4xeok=aie+tet"2rertswdxEyxakcaoePtfsf.3KetcisDAY 34.2 G25.5 43.5 ion)UFO CS MELSON Leas WIND TEMPERATURE SOLAR toon WINDGDENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE ==UTSILE RAD,TOT.TH,TIME-ON ToT,FUEL FACTOR (AVG.MPH}©(DES)(DES){BES} (BTU/F2)CE,(KWH)(HRS)(KWH)(GAL}(COS 0} 21.240 43.3 i 4%aS &%es 12 a72otai3214.5 S81 43.2 td RS HR RE cre)2 fe =,4 274 43.2 v4 4%ae KH 2S *ah? 4 2atimes2.9 Za 43.4 re"ot ae RS He ate 122 43.5 ¥#%eH #% "boUfobtobare1forepeteonUeHe*%H%43 x* HH HE KE 42 4H eH **40 £% KH HK mA £¥% 3 HH x a2 +e EX HH 4%Ey xs x%KE HHa3od*m™mtBoptaEPSttPeia®Lthe-atft=osex"atswdoetetCabatttlokokteOEbe.led|it,Oeook*£i2 1 2 1 oF 1 5 mi 29.5 i s oh a 144 42.7 27.4 1 %%4%4%.a be 294 14 434 27.2 i ¥*He #*25 *7 Pa 25 Bel 43,7 27,5 1 4%He 4%4 we a Ok 7 OO,257 4347 270 1 Rt Ue aH me 4 s/s 10 oe.1 tod 4345 et ah 4 HH RE He Robe Pe)27 lio o2Y.4 37 4,7 27.7 fi *%HH xs 4g 24 w77 2 2e.5 141 4u.9 27,0 ca aE 4%4%4.0 a4 a? is 2.7 141-44.6 30,5 is HH H%4%40 4%2s 14 2o.7 4 4m 31 17 HS em KE 24 *%1.45 15 2h 7?44,4 al iS ee He **Meter a ait 14 25.7 7S 4544 SO ay Ke aE 4%2&4 4H.w/a 17 23.1 2il 455 30.7 7 Ee aE HH m4 tH afi? 1h F123 OF 44,4 1 3 rd LH £¥Be Ke af? 1 1 2 =1 z sa i ""sMiseotG»xg00o4 47.3 BS4 Avo Be TAY D4.t B14 44.9 30,3fIft $k"oktemobezanbo £24 ca ME LIS OMD LAC WIND TEMPERATURE SOLAR 0 =o WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE DUTSEBE RAG.TOT,ToT.TIME-ON TOT.FUEL FACTOR (AVG.RFH}=(IEG)(DEG)(BEG)(BTUAF2)cye,(KWH){HRS}(KWH)(GAL}(COS 0} 1 14,7 245 A bs a HF +*He 4%eo 4%fa 2 i5.4 O44 49 EF e HH +e m4 te ava 3 61E.2 357 Sil.2 Ke ee eH He 24 *e sf 11.7 374 eo R¥*¥HR +2 a atts 5 3 1 ¥%HH HX 24 4%a Poh raMPUleoLilvo a4 4 a eed 1 &E RE Ee ze 4 af& 7 bor bak Sa S34 ed EH eH HH 2h xe af? =v2 Bal 4a]RH %%oH %%m0 4%a? o s?7 34,5 1 RH HH 4%a 4%a4 16 my 7 mS 5 &ey HH x mb HH pets il ft 57.34.0 14 x%*%He m4 4%ala iz 2.0 mo 4 a7 i?*%#%#¥Nab 4%afc is on Sad 37 24 He %%*%3 4%ala 14 a?iy aE Bo 22 He Re HH 24 4%a? 1S zal 40,|tha b ba HH HE +%BOG ed evil 1é 1.8 60,9 3744 14 x *%4%m4 *%af 17 7.61.3 25.5 sa)%%a%¥%34 xe al is mS Beas 24 5 2 Ke LH eH Se KH oft is 7.3 Bids,7 24 Wb 4%HH ay **AG ¥*af 2O ae 4.7 34,5 RE Re EE EF 44 KE wo? 21 ae abe ne B54 x +%ee x*44 +H ae 22 v7 a a &370 ee xe xR 4%44 4%aftr eat ve AO,5 A &as HE HH %%m3 &a? 24 ai1.8 AOL 40,7 HE +LH KE re a wes DAY o.2 nih 25.50 aA x 4%ae Tob 4%af Lo .2S "GS ME LOSE Le sd WIND TEMPERATURE SOLAR tao WINDGENERATOR DIESEL POWER HOUR =«VELOCITY DIRECTION INSIDE OUTSIDE RAD.TOT,TOT,TIME-ON OT FUEL FACTOR (AVG.MPH)=(DEG)_(BED)(DEG)=(BTU/F2}YE,(KWH)(HRS)(Kh (GAL}(C03 0) 11.7 327 40,8 40,8 HH H%H###Be ¥%arate m-i1 os 2 10 4 fie 40.6 HE #%*%#%24 ¥¥2 G4 3 es SS bal 40,5 4%Ce HH HE wee ae ati] 4 7G 44 beak 40,Ke H He K#2h E%ae fuist Ha Sal 357 be 41 H*x4 #*4 mis 4%a GE &fa 272 2.8 41 xe RE He He 25 Ee WO 7 Aa,SAE A283 40,05 KE KE HH 3 TAC}K*av g zal 350 bz 4 ayad ¥%ae *%**46 +af? 9 7.5 374 GE.6 B99 He H%Re RK 48 #%wed 10 ra &Zod fia?40,7 2 He He %%AS a aid ti 11.5 26 &45 40,4 fi %%eK aE 42 RE woo iz ain.i 20 fsb 40,0 il +e HH 4%40 EF a Eh is 12.4 iv bi.?4 20 4%HH 4%44 4%2 14 is 14 b2w4 44 Zeal ¥4%*%4Q 4%ai 13)614.1 1é be.44.7 eo eH #%x%Ag HE he) 14 14,7 22 é1,5 42.7 22 %%HX *%ah x wba 17)«14.7 its oo 9 mo pa 4%a 4 2 4%etl Le 11.4 eat han oe 34,3 H%HH %ae KE 27 17 11.4 1 a7 .o B52 He ¥¥%%¥¥A HE we 20 12 &é 7 bs mS #H%H%Hx 4°¥¥me el 641.4 ze Ect aoa 4 4%%%%%4%4b 4%aa) ee 11.5 Zl 7 i 3S +HE x%*%A He a 22 Ti.zy 7 24,0 HE 4%cd *%24 4%att me 12.?2A 87.5 34.4 **¥eH +20 x 74 DAY 410.4 154.7 GQ?Be A4 see #¥He EH abs ee a7 em OE MELSON LOA WIND TEMPERATURE SOLAR tweeWINDGENERATOR BIESEL POWER HOUR VELOCITY DIRECTION INSIDE =GUTSIDE RAD,TOT.TOT,TIME-(N TOT,FUEL FACTOR (AVG.MPH}=(BEG)(DED)(BEG)(BTU/F2)tye.(KWH)(HRS)(KWH (GAL)(COS 0) 11.8 2 24,7 KH ¥*RE KE 28 %* 12.4 24 EN?alt 24,6 aS 4%ae ee 24 x 5 4 4 EE 4%zs £%4 *¥ 12,2 Ss sn bn my 4 Ke HE HH Ke 2A erS a aS 4¥ea KF wh 4% 12.5 a1 S4 ws ao 4 *%4%HE KH 2G rd S a So KE H¥HH EH oS EK 1O,5 43 hea bor Se 34,4 3 x oe ¥%44 4¥ 1o,2 Tay BA,5 255 HK KS KH Ht 45 ae ws ?waaWettweNyMaapseGresos(ioemeohoseon0SOpeotBeett23+fattrffitetEsk"Jokok10 LOV%GL 7 4 359 %*Fg *H 44 H¥we ii 10.4 25 So 37.2 %E EE ae 42 &%2 iz 10.2 Race SE 37 4?14 *%Ke H%4&¥%od ie)WG 271 a ane 40,7 a)4%RE ae 42 a ehh 14 vA 344 Sy 44.1 25 HH *%%40 ¥%wi4 15 ma?whe,é4 45,3 BO KF HH KF 3 KE me 14 17 1.3 4 ze %%#%**34 H%wil 17 Had fala 40.2 Pa]ae Be RE mh 4%Ee 1s ital 1.4 a7 ad 3 4%ae x ah ae a7ts i?a4 40,1 me KE H%HH 3 m4 KE av? 20 1.4 SS yg B44 4 x%Re 4%34 #e afi Ht 1.5 E74 35,5 K%KK KH KE 40 HH we oe 46 ao.SL.7 H%+KK aH ete a of 2 m4 So 2 ES HH ke +E AQ HX an' 24 va maids go S58 e%ee HK *%25 %a O's DAY Yi 21e.'7 m4 2.5 aE RE EE Paha]ER a? 100 £22 "GSS MELISS LAs WIND TEMPERATURE SOLAR w ---WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE =OUTSIDE RAD,TOT.TOT.TINE-ON ToT.FUEL FACTOR (AVG.RFH}=(DEG)(DEG)(BEG)(BTU/F2)tye,{KWH}{HRS}KWH}(GAL}(CHS 0} 1 o 245 a 250)He ae HH e*Zé 4%2 =o 229 4.9 2 KE ee RE RE 24 KE sfa7 .35 229 So.i Zo.He co aH Ke 2h 4%GE 4 Sa 203 m4 wb 29 &KE 4%**4%24 4%eh? si)1.7 210 mAb 4 2 a¥4%%%%%zh ¥*a ds bs mtn &21?sia Zi.9 et Re +E Ee 24 RE alo? 7 v4 24?Baw Bia &Xe HH x e 35 ¥%a? oh vad 241 7a a4 HE xt aR 4%44 4%27a ou o 243 te 4 S322 1 Re He ee ao ¥e a to 4.4 E26 mia a Z402 ba 4%RE 4%mS 4%aft ti 14.4 20 60,5 ee 2 ee ae HE 2 4%a? 2 17.23 240 &1.l 4245 13 4%a 4%40 4%ao 13 23 240 E14 43.7 20 a RH ¥*42 ee aft 14 22.4 245 &1.&44,2 zl 4%ee 4 42 4%273 iS 25.¢243 bes 4é Zh **#*%4%2 %%ai 16 oe.oe 638 4c 7 4%*H *%44 0 Be 2k 17 22.2 m4 m4 5 3 3 #e HH %*40 %%w4 18 22,wok aes 42,5 Ek eF HS EF 8 RH ai 17 £1,.8 231 3,4 2 Se %¥He ¥by ¥F a?owt)17.7 Sek ves Za aE aE HS aE EE fl 672.7 224 oA 3 x#¥#He *% Be OSA B32 v1.2 Asi %%HH HE x eB BAG 7 7 29 a%X¥HH HH HH 3 24 27,5 257 ma &43.1 eS Re HE HE :HE uf DAY 15.5 255.2 4547 SE 1 4.7 aH ad R%B42 RH af és 4%7 4 eR TP 73matgesWbtettad bytafaiLo "ES "Sis MELISS OM LACS on WIND TEMPERATURE SOLAR soe WINDGENERATOR DIESEL POWER HOUR =VELOCITY DIRECTION INSIDE GiTSIDE RAD,TOT.TOT,TIME-ON TOT,FUEL FACTOR (AVG.MPH)=(BEG)(DEG)(BEG)(BTU/F2}Cyc.(KWH)(HRS)(EWH)(GAL)(Cos 0) 32,0 246 Si.2 43.7 HH ¥%HH %*Zh x%a?v4 475 HE Sr Ee £%hs *%arts 42.i EF ae ee 2 4%a #4 22 HH EE HH Ke Sh x 74 47.1 4 He oH 4 24 H%74 41.4 Ht X¥Ht %4%or EF 74 41.4 %%HH 4 He eH aes 4i.l HH KE eH EE 44 RE ai Ati HE eH He #¥Aé KE a 4i.i 1 a%#%4%44 4%s 41.5 4 £¥+H %44 HE s 43%bas rd He es pes 4¥a 3 LS BOA 71.7 js il 4H HH HH 44 4%a 14 21.2 204 2.5 42,5 il ¥%4%4%4n 4%a? 20.5 27.3 24,3 ss,& 29 "tf aDrircit= ,Janea£"utfoLYteOobee feettOE's.21 }oecoenbsiwsWatboeNoUTSOan"2bYrtlikBomew"ay2"oe!:LeeOWgsfofA0SPeepopSfoBohayoeoeoOonteeoicwiphopoGopobepoboRafontsReebotai»aforfal== ,Sa!aa13 21.7 30?74,2 43.1 18 ¥H HH en 4A '#%% 1é@ 1?.3 avo 7345 42,5 &£%UE a%4g 4%ES 17 pay er 743 42 5 H%He HH AG x wc t&is.3 BOS 77.0 41.2 i Ee Ee ee 42 &%at 1? {o,2 227 eS AG %%eH HE %re %%a =O o oF me,7 se 4 K%4%£*tS 4G EX wh 2 ft BEA,oto 37.5 H**%H%¥%ea 4%wi 2 v2 AE oo 2a,7 KE 4%HH KF AQ Ke oie 2 mS eng 20 sn.**K¥4%+mo ¥%wi 24 acd aren oad 27 4A KE He HE HE vote)eK ofa DAY 20.2 255.4 77a 41.2 Se %#4%4%ee ¥%2 a oe hE LEO LAO! WIND TEMPERATURE SOLAR a -o -WINIGENERATOR BIESEL POWER HOUR =VELOCITY DIRECTION INSIDE OUTSIDE RAL,ToT,TOT,TIME-ON ToT.FUEL FACTOR (AYG.NPH)==(DEG)(DEG)(DEG)(BTU/F2)oye,(KWH)(HRS}(KWH)(GAL)(£b5 0) 4%Tas we oT a KE a*HH KE 2 x¥av? ae w4aé LOLA 24,03 He %%%xx mh +274 2797 oo 250 RE x4 KE xe m4 aE 274 29S 161 4 e*He #%%%24 #%af Sa 104.4 :KE RS RE 23 KE ao 74 235 1046.4 =%e #*ee *%24 a «74 2e1 iti.ae %KE KH Ke ae KE aml MwoeonfeiRae"fhfae*akPs 245 115.4 *¥HH %H 2 #¥me tnUberpeeeyetnoCosbao*Ed%#4%ae +4% 4%HH %:+ 27 at %*%EH K%Be HE 27 ae HE K*K*K%m4 £% :x¥ee #*0 SS DAY m6 260.5 v4?27.5 2.0 KF KE ci eset KEtat dra*1 uv ba 107 Ss £x%4 ad,*%ate LO 7 Va?3 3 HH eH xe A KE wel ii ue oS Bee a ee GR Re 44 EE a iz io.oO?37.8 i4 *H 4%%H 4A ¥e aS 13 is mS St me 7 iS ¥H eK ee 45 aE we 14 2?275 4.7 So iS xe %%a 2 %%a ts 1S 14.2 273 4.5 me 7 12 EE eK Ee 44 Ee ales 14 15.2 eo 4,4 40.4 17 a HH *%ae ee afi 7 13.8 Sey m4 BUG &4%HE 4%40 **2? &La,275 S47 37,5 a aH HH Ht be xe a! o 3.2 2 mS 2744 KH eH eH H%£%a :*sa 37.4 1 378 7 oiosihen"ionoe0Poae.ORonmr=s*i")sg00grosit"if3memmtateOO-Ibaboapabopb»FepeiOoaoef-2fseyrabsdmmcabobaytetsdKe*me20 "C30 "(Sm RES LOS LAs WIND TEMPERATURE SOLAR ----WINDGENERATOR BIESEL POWER HOUR «=VELOCITY BIRECTION INSIDE OUTSIDE RAG,ToT,TOT,TIME-GN TOT.FUEL FACTOR (AVG.HPH)©(DEG)(DEG)(BEG)=(BTU/F2)CYL.(KWH)(HRS)(KWH)(GAL)(C05 0) 1 v4 my.274 &%4%RE 4%ah 4%a74 2 10 ms a7 4%¥%HH ¥%2 a wl 3 adi.2 Oo ao 4A RE a4 HK k%24 4%274 4 10.3 TO.7 37a?%%4%NH Ke 24 ae a7 ba ac Viol 3747 %%%xe ¥%"4 4% /l &10,8 v1.5 sist *%4%Ke +*22 ¥%eb 7 m4 ea)mh KE Ee H%Ee ore)RE 72 S a1,Bee &B47 H*HH ee a m2 +%ave y 7.1 wad Bg be RE K¥KH EF AQ.#¥ie 1G 7.2 27 5 oT ee 4 HH HK HX AQ HK he) ii ti.l 1o2 a7 13 KN eH 4 Ee KE wes 12 10,3 vA Se,14 X%HH E*mé #¥aids is 14,4 7.8 40,25 KE KR 4S m4 R%a?& 14 44,1 re 1i ee He He ae *%afa 33at'7 z 14 K%HH HE me a aves fa 15 KH ee HH a3 ae av? 2 Li %%£*0 4%af &" o sal "fha XH HE eH ACh x aftisjeSae fstOotfotattek1 ti?te.aCe 27 EF K*ae x*40 +%re 20 vol 27 4 37.HH HH HH **ache HH si? 21 7a4 107.7 27.aE eH ne RE 28 EE 7? rans ov tis.2 aS KH 4%Me +%mo %*afi 2 oS io?5 27.7 Es KE HH KE 0 aE af 24 11.7 Ly?1602.4 ch aed a He +e ae 25 4%2? YAY 10.7 245,7 v1.8 mod 446 HE RE GH 75e HH a? Lo £Sb "Sle ME LCS OP Lao oops WIND TEMPERATURE SOLAR 00 woeeeWINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE OUTSIDE RAD,TOT,ToT,TIME-DN TOT.FUEL FACTOR (AVG.MPH}«=(DEG)(DEG}(DEG)(BTU/F2)YE,(EHH)(HRS)(KWH)(GAL}(G05 0} 11.7 175 '38,5 ae 4%KH HH hs KE 73 17.23 140 Sid4h He ES HE KE wh Ke 14,3 175 mi.%e He Be 4%24 x% C £*+ee H*24 KK 4%£*HR #%24 HH HE x KR KH 74 4% *%tH HH KE 24 ed AE **HH EE ie % Re #%HH xe AG x%aftyLd8ioeoy."fp"S008"SbAPpeoopeemLe.ta"A"bagip1Om7162HHKHKEA4% il iad :Ps eH HH Prd Ag 4%. iz 10.1 114 o ¥##%¥*4a ¥#. Is «614.4 8isHeHHx4?x 15 x Ue %KE 42 He 13 XH HH +40 +e 13 ae HH 2 mA £% 7 %%HH *a2 HH 1 2 ee 2 me 4% *%*%HH +%4é 4%Me"JapsCOceMoogdotteooeoonPoorboPooMdopOtng_-oosyoononbo"ohpeaiQaBooonongOeeeaeLTPCeedaTUteiobiAESOot20 14 the ls an 7 HE kX HH XE 40 t¥. 21 iS?Pa wos me,4 +%%HH x%46 KF a? 22 14,2 »4 sod a KE HH Fe a me KE a7 So ONS1 =aw 37,40 4 He eH #%AQ HE w/e 24 21.9 m4 7 mh aE %%KR EF me HE wie DAY 14 234,97 7s 4 40,2 3.HH +e 4%oe4 a%a? Li f/f”i f/f Gem MELSON LAS oOnl WIND TEMPERATURE SOLAR ----WINDGENERATOR DIESEL POWER HOUR YELOCITY BIRECTION INSIDE OUTSIDE RAD,ToT,TOT.TIMNE-ON ToT,FUEL FACTOR (AVG.MPH}==(DEG)(DEG)(DEG)(ETU/F2}CVE,(KWH)(HRS)(KWH)(GAL}(COS 0} iv.S31 BA,27,1 x x#Me %%2 KE 14,7 221 mite &27 #4 4%RE 4%Zh 4% 12.9 ts mitra 2447 HH 4%**%%2h 4% is 27 saan :KE ¥EH *¥24 KE Ya 27?m4 7 ae KE He ae eres E% 10.4 Zk 4.3 4%¥%HH 4%24 4 mac 2S Be 7 z HH %%He *%24 HX 208)B44 é KE +HH KE a2 HE LES Shaws 4 %%#%*%x¥40 4% 143 SAS &3 KE HE Fey 4g H% 149 si 1 by %%ee **44 ee 4. 7 "ltt"SboEPgepoetit10 andsONSPheb.soonCanOnaeetopshoeNSnoQooe"ay"atheohLianfaSetabtetQiohOohobooaooaes hn ees 3 E¥x x%44 ¥* 127 ae 4 15 *%He Sy 45 *% 128 ae ee 27 a He HE 43 ¥% 24 +H HH x#42 *¥f4Mieo*Sd"leias=12 3 HX Ee mE ES 145 Se Al ti #¥He x a3 +% 215 a7 37.2 ke RE Ke ce ke om"iebagsCenUPgewyOPeeoninwdwy dPoaUPMEwgceUPteUtMYUos-si?.2A em 34,3 H+He Ht *%40 ry ba 20 24 Se .3 a3 H¥+ae aS 44 EE ba zi :2As3 Sol 32.7 HS HK H%**40 %%ale rate .ZOO et &oi.4 %%*%%%até 4%aff 2 .Peale oo 209 ¥%*%4%x%24 4%ave 24 .277 ad 30,7 £¥a*4%&S 20 rr 7 DAY 7.7 225.2 hel a oy 4.5 #4 4%x%a4 %*af hb @ 2 #ei MEI LIS HM Les Ss WIND TEMPERATURE SOLAR 0 moon WINDGENERATOR DIESEL POWER HOUR VELOCITY DIRECTION INSIDE QUTSIDE RAD.TOT.TOT,TIME-ON ToT,FUEL FACTOR (AVG.MPH}=(DED)DEG}(DES)=(BTU/F2}CYC,(KWH)(HRS)(KWH)(GAL)(COS 0) 1 1.2 ae o =O **a%oe HH wih H%a? 2 2.8 bes ban Ba AO %*ee 3 HH %%2h H%abt a mad Bs 4.2 RE kt He &%24 a abd 4 sald So 25.at *%aH e*22 xe af? Ha ba?ba oo Bh bs %%x%*%¥%24 4%Gb bs 7.4 Sr 4 34,5 %%¥*ae ee 26 ¥*267 7 m8 ay 27 HS Fy HH £*wh He 2 oes be 744 ey 7 Mate XH xe HH K me KE af? o Hema 40,5 25,7 sr KH Me KE 47 %%22S 1o)606UWdaGd4 40,4 mea 2 Sed HH ¥%AG 4%atts i1 m5 :bad a Se 5 4%HH HE 43 KH Arohe) te 10.3 h,keen A 40,3 &x HH KH 44 xe a tite 3 Lo £4 SoS 4i {2 x xe a 44 E*wet i4 wad 4 mi ad 17 Xe ae H%44 xe 5 15 12.4 é5 mete 1 43.35 17 %4 a 4%46 4%227 14 12.7 a7 a9.42.5 17 **%%4%42 4H 24 17)36.s.di 7i a a 42,4 v 4%KE 4%AQ 4%Ao =12.5 bé&Soe?41 1 t%x*a mS **at iv ii.l 73 bat mo *%%%co *%Bz xe afd 20 &.5 oO 34,7 37.4 %%4#*¥*4 44 4%ef? ei Sa ot S40 37.5 RE Et KR ¥%40 Re a7t 22 10 73 SAD 37 &%%¥%%%x 40 *we eo 61S?74 4.7 37.5 4%KE RK **wh xt ith Z4 tad m4 sed 248 **Re HH ¥%2 ae we DAY Y Liz:a7 mo 2 a%He **¥34 %%a7 ME LST Leos WIND TEMPERATURE SOLAR 00 wean WINDGENERATOR BIESEL POWER HOUR =VELOCITY DIRECTION INSIDE ©QUTSIDE RAD.TOT.TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH)=(DEG)(DEG)(DEG)«=(BTU/F2})CYC,(KWH)(HRS)(KWH)(GAL)(£05 0) 1 7a7 a7 Be 24,5 RE aE KH &%2h a Ges 2 v4 Ea as oa aE a cc H%22 a*5 2 10.7 oF a oe KE 4%cd 4%24 &%a bales 4 11.4 a So 4 4%H%HH a%24 +od &10.6 bo ead eS &t RE 4%we 4%fb ts to ao FQ sc HH Ht cr a we ¥%oe 7 23 a?4%HE **HH K¥SS K*we ba en 72 apt x +HH ¥H 4?H%fe v 2.8 7 45,3 EK KE eH 4%44 ey wet 10 8 B4 47.3 3 %*%x 43 XH ati 11 74°BO A?we Bas eH RE 4%44 4%oid 12 7.4 oS 4A.7 14 ¥%ee *%x a4 13 &vo 4baG 13 a KE ce eH ied i4 ad el 47.5 ii £%Ke +4%a 15 7 ar 45,4 lz ee aH 4%4% 14 fi.oS 45 5 7 Hx %¥¥%¥% 17 bah 162 47,5 =EE RF a 4% te 747 120 47 5 He *%4%#¥+% iv 40 {32 EO.%%KE He E%KE 20 &.c Pes 0,1 4%a xe a*eH ai 75 ey 47.9 KH a eX +%x 22 7.4 a |47,2 HH H%*%%*+% 23 7.4 Os 50,4 re KE NK Ke + 24 7a 17 FO.+HH He ¥*HX DAY 2 aS,47.7 ot £HH KE HH L212 #4 ££tei ME LOST LOA WIND TEMPERATURE SOLAR o>---WINDGENERATOR BIESEL FOWER HOUR VELDCITY DIRECTION INSIDE OUTSIDE RAB.ToT.TOT.TIME-ON TOT,FUEL FACTOR (AVG.MPH}©(DEG)(DEG)(GEG)(BTU/F2)}CYC,(KWH)(HRS)(KWH)(GAL)(CoS 0} baal 245 se 2342 4%**%*%%%26 +%a7 a 250 mad 32.2 RE E%RR ER 24 RE ae ateS50ao734,5 4%KX He 4%24 x a hls 10,5 Zod Seal seed RE EY Re KE we Ee . 274 Be a2 ,e a Ke HH HH 23 4*af 1G.4 290 ba 34,5 HE ke HE EE 24 re ® 2 275 ar Be i SOG Ke KH HH XH 24 ¥%. 3 249 SAT S144 Px.Ee HH HH a 4% 7 24>hos bn m2 He HH HH KH 42 *% fs aces Sa.S41,3 a 4%EE 40 ¥%mee é éYoo "oeUPtehepea!.flae!ro'229 7.7 32,5 7 He %%H%4g ee aa Me SO bate B45 14 4%HH HF Ao HH wei 13 4 tee fv bs 35.8 15 *%Pe #H 42 HH aid 14 mad 146 sit &moe &17 *¥x ¥%4G eH a iS 5.4 2Eh 107 aan 14 KE HH 4%4 4%a4foepentbetae2hd=.afeofeltttht i;ACCECEEECCEEE APPENDIX C:SOFTWARE DOCUMENTATION On the following page is a listing of the current data collection program.It includes only the steps that directly pertain to the treatment of data as collected.The operating system and timing software are stored on PROM and also on the cassette containing this program. This is the third version of the original software developed during the summer of 1981.It is anticipated that many functions that are currently used in the data analysis software will be included in future versions once their applicability has been established. The data collection software is owned by the State of Alaska. Equations used in data analysis are included at the close of this appendix. Future plans for the software development also include a reduction in the scan interval,allowing more data to be processed.A target figure of ten seconds is presently being considered pending the size,and hence "time to run,"of the data collection software. 105 110 130 132 135 140 150 160 162 165 166 167 168 170 180 190 380 405 415 :End I =USR (20) X =0 DIMWB (43),CS (4) FOR I =1 to 42 WB (I)=8.5 +1 NEXT FOR I =255 TO 5 STEP -4; :I =USR (24): F(83)=F (83)+1 F(44)=FNC (1) FQ&=-F(44)50.5 ON FG%GOTO 165 FOR I =1 TO 41 IF WB(I)-F(44)0 THEN 160 NEXT F(I)=F(I)+C GOTO 166 F(42)=F(42)+C F(48)=F(48)+F(44)AW3 F(49)=F(49)+F(44)N4 F(50)=F(50)+F(44) F(51)=F(50)/+F(83) WP =INT (H+59) POKE 40961, INT(FNC(8)*10)+(F(44)/100)F(WP)= F(52)=F(52)+FNC (11)/1000 F(45)=F(45)+FNC (9) F (46)|F(46)+FNC (10) I:NEXT Line 1 calls the Aeoilan Kinetic operating system subroutines. Lines 20,35,40 and 50 are used to define the "wind bins."The array WB(I)is used to test the '30 second wind speed average.| Line 90 resets the digital pulse counters to zero at start-up. Line 99 calls the Aeolian Kinetics data collections subroutines. Line 105 sets up a counter for calculating averages.The F(XxX) array is the function records which are stored on magnetic tape every 24 hours -then zeroed. Line 110 gets the current 30 second windspeed.F(44). Lines 130 and 132 check to see if the windspeed is above the windbin limit (50.5 mph).If so,skips the windbin segment and logs time in F(42). Lines 135,140,150,160 and 162 loop through the windbin testing the current windspeed and logging time in the correct velocity location.The wind bins are F(1)-F(41).The last step causes the program to skip the greater than 50.5 mph bin. Line 166 calculated the sum of the 30 second averages after cubing each value.F(48). Line 167 calculates the sum of the 30 second averages after calculating them to the 4th power.F(49). Line 168 sums up the 30 second averages.F(50). Line 170 computes a running daily average.F(51). Lines 180 and 190 compute and store the kW and current wind speed (30 seconds average).These values are processed so as to represent a single number by multiplying the kW value by 10 and taking its integer result and adding it to the windspeed which has been divided by 100. i.e.:kW =15.7 Ws =24.5 value stored is 157.0245 The equation in line 180 sets up a subscript table using the current time of day.This in effect produces one reading stored per hour -taken at the end of each hour. i.e.:Time is 11:59:30 kW =15.7 Ws =24.5 Then F(11 +59)=F(70)=157.0245 Line 405 sums the pulses generated by the diesel kWH meter. F(45). Line 415 sums the pulses generated by the diesel kWH meter. Line 999 calls Aeolian Kinetics operating system software. EQUATIONS USED IN DATA ANALYSIS MEAN ENERGY SPEED =V: EV units are in mph.WwMEAN POWER =*.0547 x V units are Wy? WH ,,,2WINDENERGY=*.0547 x V(x)x T(x)units are /M Where V is in miles per hour V(x)is a range or speed class;i.e.,10 mph +.5 T(x)is the time duration of a specific speed class (Hrs). The following program listing is the "function program"used in the August data listing.It contains various procedures designed to allow the computer to print out the number of rotations of the wind direction sensor.This function has been abandoned due to the likelihood of printer jamming. Succeeding versions of this program used for data collection contain most of the routines found in this listing.However, they have been streamlined in order to allow the inclusion of additional functions related to sensors in later months. LIST 1 tENDST=USR(20):2 REM*#**NLENGHH% 3 REM*##BY T.LEWIS#* 10 ALZ=O°8CF ASO PDA=O0FPOZE1 IRVASOICTAS08 ZZ74=020DIMWB(43)+0$(4)- REM*WINDBINS* co.FORT=1T042 40 WE(T>}=5,5+1 20 NEXT 40 C#(L)="OFFMls(2)="ON"ICS (3)="-LINES"FO CB C4)KHER E ERE EE 90 FORI=255TOSSTEP-4 sPOKE40961 +1 ENEXT yy STSUSR(24)5 101 REM END 24HRS? 102 IFH=QANDS>1S5THENZZ2=0104ZZ4=ZZ4+1 104 IFF=-i1THENGOSUBSO10 103 CTASCTA+L 10%REM WINDSFEED 110 F(44)=FNC(1) 120 REMFILL WINDBIN 130 FiGZ=-(F(44)250,53)is2 ONFOGAGOTOI4S 135 FORT=17T041 140 IFWBEC1)-F(44)2OTHENI460O1350NEXT 160 FCT=F CT 340142GOTOLSO 165 F(42)=F (42040 170 REMGET MAX W.5. 120 IFF (44)oF (43)THENF (43)=F (44) .|REMAV.T-IN/24HR 1vO F(45)=F (45)4+FNC C3)200 FC46)=F (45)/22% 22?REMAV.HUM/24HRS 230 F(645)=F (35)4+F NC CS)240 FCS4)=F (55)/22% 270 FCSS)=F (SS)+F (44 9°3 280 F(S4)=F (S4)+F (44)"4 eo?REM AVG PF/HR 290 FC 49)=F (49)4FNC(7)BOO FCSO)=F(49)/0TASO?REM AVG KW/HR 310 F(47)=F (47)4+FNC CS)320 F(45)=F047)/0T%349 REM FUEL/24HRS 370 FCS2)=F (CS2)4+FNC (1140377REMFUELIN1HR BBO FCSL)=FCSLI+FNCCLLaC3a?REM AVG W5/24HR B9O F(S7)=FC37)+F (44)400 FCSS)=F (3579/2274 200 CXA=INTCFNS(1)>SiO ITFCF%-CXA=OTHENS30a2CFASIX% 530 PRINTICE(CFA+1+0 C3)+CHRS (44)SHES /460'+REMWINDIVANE..«920 IFALZ=1THENGOO 240 ALZ=1 370 F(44)=FNC(2) 20 BA=340--F (44)270 GOTOPS? 600 F(44)=FNO(2) 410 Di=340-F (44) eteteata ay ae.at a fe ela A230 640 630 640 670 £80 { Yad 710 720 730 740 7a oo 1003 10106 1026 1025 1030 1040 1050 1040 10706 1080 L090 2000 2010 201% 2020 2030 2040 2050 REMGRAY AREA LR REMFOR NEG.ROT: IFDI<90.OANDBA 2270.0THENGEO REMFOR POS.ROT: TFBA<9O,GANDDL 2270,0THEN7O0BOTO720. X1=BA-340 -D1 GOTI720 X1=F (44)+BA GOTO730 X1=BA-D1 DA=DA+X1 BA=[11 IFABS (DA)=>360,.OTHENGOSUB1LOOST=USR(22)SEND IFDASOTHENPRA=-1RVA=RVATPOA DA=DA (3408FZ } FOAZ=1 FRINT!"" FRINT!C#(4) PRINT !$(4) PRINT!"""sRVA3"REVOLUTION(S)" PRINT !C$(4) FRINT!C$(4) FRINT!"© RETURN LTA=0 REMZER 1-HR FN FORT=47T051 F(I)}=0 NEXT RETURN OOOE 00 BRE This listing is of the "data-dump"software used to produce the listings in Appendix B.Since the raw data is stored in the form of pulse totals at instantaneous voltages,this program makes use of the sensor channel calibration values used during data collection. The only exception to this is the power factor calibration values which are,at this time,highly suspected to be inaccurate. "LT 1 20 St= ,-£1OtLhMONEOPtube¢£3Li%,ST DNLO® SENDS TsUSR (20): INFUT"LOCATION »YEAR="sL08)YR DIMX CLL eVCLL +ZCLOUIXS=LIALSeLeAz=15:As=2A485SASHAIAGH4IAPHRBPARR7ITAVERSIAOKLEIPIS=CHRS (14)SPSS=CHRSE (SS) DATAG+79 79Fee 797 e 7 eB e798 DWS=ITHRS (14)SSWSECHRS (15)SNL SSSé=CHRS (28)INSOS=<CHRS (25)Hig="WIND"tHeé="TEMPERATURE"tHo$="SOLAR"SH4¢="-------u HS$="WINDGENERATOR'tH64 $=---eee "SH7$=8Hit="WIND"tHe¢="TEMPERATURE"tHo¢é="SOLAR"SH4¢:24-------" HS¢="WINDGENERATOR"'H4ge !--------------"rH7 ga D HS¢="DIESELYSHYgs"----- EHOS="POWER"Dig="HOUR"PDS$="VELOCITY"sDS¢="DIRECTION"'D4¢="INSIDE" DS$="QOUTSIDE"D4$="RAD."I D7$="AVG."8 08$="TOT,"Dv¢s="TIME-ON"'0O¢="FUEL"I DAPS="FACTOR'tAL$="(AVG.MFH)"AZ$="(KEG)"sA3¢="(BTU/F2)"tA4g="(KW)PASS="(HRS)"AGE="(KWH)"EA7$="(GAL)Y PASS="COS GO)" Z0¢13=1052(2)=100227(3)=1000°2(4)=0,855:22(5)=-1.205 Z(4)0=1 G75 Z(7IHS.7 LIZ (S HO .5461 2129 a1 Oo84DEFFNTICVI=INT(PEER (CV)/16)%2(01)34+(PEER (VIANDIS)DEF FNTSCVISINT(VEZ (199/701)PTSUSR (24)5110IFPi=2 THEN GOTOS000 140 Y¥COd=VCO4+12X CSI =FNTSCFNE CS)EX C4)=FNTSCPNE C4)2 X(G)=FNTSCFNO CS)}130 XCLI=INTCCFNE(2)SRO eZ (0190/2019 ZAS XCLL)=FNG(7)¥Z(7)4+Z(9) 220 X(S)SINTCFNC (4))2X (7)=ENC CF)2X (9)=FNE (10)2X (2)=INTCFNE (2)#Z(4))240 XCLO)SINT(FNG(11)/Z(2))/Z(1)2X (SD SINT(FNST (4 )*Z (2)/Z (2)1 X(10)=0 250 IFX (10)>S00RX (1O}<1 THENX(10)=0 F°FORTSITOLLEYCLD=Y¥CId+X C1)NEXT2X(O=FNTL (252)SMO=FNTI C280)SDA=FNTI (251) 400 IF X=1 THEN GOSUBISS0O SOO GOSUB 1100 Y T=lisR (22)°END1100RESTORE!PRINTF1S: 10 FORI=OTOLLIaS=STRE(XCT)) iS IFX(T)=GTHENGS="#2"2 TFI=OANDX (O)=OTHENS="24"17 IFX=1ANDI=OTHEN2$="DA" 1120 READST:TB=ST-(LEN(STRE(X(T)D+IPRINTSPC(TE)3 i$s1125NEXTIPRINTCHRS(15>P2$RETURN1350PRINTPISsDOWSMO/SDA /"SYR SPC (SILOS SWS PRINTNI SSS1590PRINTSPICALISHISSSPCCAS)SHESTSPOCAS)SHES SSPCCAS)51400PRINTH4$3HS¢HOSS SPC (AG)SH7SSHSSSHYSISPC(AS)FHOS14 14 14. 10 PRINTSPOCAZ)SDLSs SPC (AG)DSSsSPC(A7)DSSS20PRINTSPC(AG)sD4¢s SPC (A6)sDSSsSPC(AS)D48330FRINTSPC(AS)FD7 $s SPC (AS)SDSSs SPCCAS)POPS 31440PRINTSPO(A4)SDS$:SPC (AS)DOS SPCCAS)SDAt1450PRINTSPC(AQ)FAL$S SPC CAP)SASS ESPC CAS)SARS1451FRINTSPC(AS)SASSI SPC (AG)SASES1440PRINTSPIO(AG)sA4$55P0 (AS)FAGSISPC(AS)SASS 31470PRINTSPC(AS) tA&gS3SPC(AS)$A7$5 SFC(CA4)SARS14580PRINTNSOSSP2$2 X=O:RETURN2000X=] 20 20 SO FRINTPi¢:""SPRINT "3P2¢20 10 FORT=iTO6°Y(T =¥C1I/Y(0)ENEXT 20 ¥CLIIRVYCLII/Y(CO)O FORTS=OTOLLEXCIS=INTCY(CD)#20200/Z201)(NEXT 2 GOSUBL 100 2060 FOR [=0 TO 1L1LtYCLI=O8NEXT I 2070 GOTOe?9 TFC ERROR OOO2 BY LDA 8740+ IF FNC(7)3=Z05)THEN XCLLS=INTCCPNO (73820534206)#20259 /2 02)ONTOS Sensor Specifications _Calibrations - APPENDIX D:SENSOR SPECIFICATIONS AND CALIBRATIONS Three major types of sensors are used with the monitoring system: analog devices,which produce an output (in volts,amps,etc.) proportional to the quantity measured;digital devices which emit pulses for some amount of the quantity measured;and status lines which simply indicate ON or OFF,OPEN or CLOSED conditions.All analog devices'readings are converted to a 0 to 1 VDC value by a Signal Conditioning Card before being read by the system.If the devices'output is already in this range,a jumper card is used. Analog and digital sensors are lettered A through N;status lines are numbered 1 through 8.The sensors used for each of the quantities measured at Nelson Lagoon are described below: WIND SPEED Sensor Channel A (FNC (1)) An anamometer emitting 4200 pulses per mile of wind speed is used. 1 Mi x #Pulse x 3600sec\_.02857 #Pulses)=mph in 30 sec. 4200P 30 sec Hr. SLOPE =.02857 The programmed sensors are Y-INT =0 Thirty second totals are summed for 1 hour and then that total is stored. Channel A total data provides average velocity over the hour when divided by 120 (the number of readings per hour). i.e.,COA =1752.569 =1752-569 _446 mph 120 Anemometer is located at the generator building 35'AGL. WIND DIRECTION Sensor Channel B (FNC (2)) A Wind Direction Sensor providing an analog voltage output corresponding to the wind direction is used.The programmed SLOPE used provides for values between 0 and 360 degrees.It is located at the generator building 35'AGL. TEMPERATURE Inside Air Temperature Channel C (FNC (3)) The AD 590 Transducer gives current output proportional to the temperature of about 1 microamp per °C.The specific one used here has an output of 1.77711 x 10°°F /Ampere. A Signal Conditioning Card is used to convert the current value to a voltage that is read by the system.The value of the card used is R =2734,1 ohms. The programmed SLOPE and Y-INTercept are computed as follows. Note that the value if 1.007 is used to correct for the calibration of the entire monitoring system. SLOPE =(2.771 x 10°OF y¢1 \x 1.007Amp2734.1} Where 1.007 is =*648.24 oF/V *Because it is a resistive device,there is a self-heating factor involved when used in enclosed spances: 648.24 -.9 =647.34 oF/V SLOPE Y-INT 647.34 oF/V -451.43°F Sensor Location is in Computer Enclosure. TEMPERATURE Outside Air Temperature Channel D (FNC(4)) An AD590 is also used to measure the Outside Air Temperature.It has programmed values, SLOPE It645.14 oF/V (no self-heat factor) Y-INT 448.2°F It is located at the peak of the power shed roof in a ventilated enclosure. SOLAR RADIATION Channel F (FNC (6)) A pyranometer is used to measure solar radiation.It gives a current output proportional to the intensity of radiation.Used in conjunction with a Signal Conditioning Card that converts the current value to a voltage,its programmed SLOPE is SLOPE =432.76 (BTU/FT?*HR)/V POWER FACTOR Channel 6 (FNC (7)) The unit used provides a current in proportion to the power factor,which is converted to a voltage by a Signal Conditioning Card.The sensor gives readings: 3.3 ma =.5 p.f.(lead) 11.8 ma =1 (unity) 20.5 ma =+.5 p.f.(lag) At this time the SLOPE and &YINT are set to 1 and 0, respectively,pending calibration of the sensor. KILOWATT Channel H (FNC (8)) An analog device. A "Jumper"card and voltage divider network is used to derive the requisite 0 -1VDC input. The sensor is used on the Grumman controller to monitor power factor for control purposes.The circuit used to "tap"the sensor output appears below: r) 10.235K Q-1VDC To Sensor Terminal oO 2 "Jumper"Card +Ry 0 8.3kVDC _-£) 92.13K ; Ro Scale =20 kw RL t R2 =24.1 kW 8.3 VDC R2 V Y-INT =0 Sensor is located in the windgenerator contactor enclosure. KWH Windgenerator Channel I (FNC (9)) The meter used emits pulses proportional to the number of KWH generated. A SLOPE of 2 kWH per pulse is used for this unit. KWH Diesel Channel J (FNC (10)) Same as above. FUEL FLOW Channel K (FNC (11)) The sensor used provides a signal in the form of pulses proportional to the rate of fuel flow. SLOPE =-1 gal_,X pulse ,3600s _x(.01395)Tenths Gal 8600 pulse 30s HR gal.AYs yyy SLOPE =.01395 Y-INT =0 Location is near the day tank within the power plant. TIME ON LINE Windgenerator Contactor (FNS (1)) A relay is used as a status line. The computer detects a relay closure and sums the number of times the relay was closed.This occurs at the end of each 30 second scan interval.The software assumes that if the switch is closed at the end of the 30th second,the switch was closed for the entire 30 second interval. _Aeolian Kinetics Brochure <-Oos=m-woc>. Oo oO PDL-24 Solar Monitoring SystemZ=oUN KNEHCS, PO.Box 100,Providence,Rnode Island 02901 /401 421-5033 Microcomputer 65™ Sensor Terminal™ and Signal Conditioner User Guide ge wate gets 4aesBattalee EOLIAN:NIN SaIOSS PDL-24 Solar Monitoring System PO.Box 100,Providence,Rhode Island 02901 /401 421 5033 "It's easier than it first appears.Once you start using the system, its logic and flexibility become very clear."A PDL-24 user THE SYSTEM Aeolian Kinetics has combined state-of-the-art computer technology with sophisticated software to yield a powerful and easy-to-use data acquisition system.The PDL-24 Monitoring System both monitors the activity of sensors and performs analysis of the sensed data.Preliminary analysis occurs simultaneously with the collection of data;further analysis occurs by reading the stored data back into the System.Analysis,performed underusercontrol,is fully programmable in the BASIC computer language.Data and results of preliminary analysis are printed on paper tape and stored on magnetic cassette tape;results of further analysis are printed on paper tape. In its minimum configuration the PDL-24 can accept inputs from 22 sensors --14 analog or digital and 8 status.Any sensor generating an output which varies with the quantity measured can be used with the system.Expansion oftheSystemcanoccurinseveralways.It can be made to communicate with other computer systems,it can generate on/off outputs,and can accept up to 56 analog or digital sensors,32 status sensors,and 32 output relays. Features e STATE-OF-THE-ART:Microcomputer based data acquisition system perfornrealtimeanalysiswhiledataisbeingcollected.Data results are stored on cassette tape and printed on paper tape for further analysis. e FULLY PROGRAMMABLE: *FUNCTIONS -The user may create up to 50 functions which correlate sensor readings,alter output port conditions,and force printouts to record special events. *PRINT INTERVAL -The on-board printer can be instructed to print data summaries,time of events,sensor values at any interval of up to one year in duraction. *FUNCTION &DATA STORAGE INTERVALS -Data and function values are stored on cassette tape at user-specified intervals. *SENSOR CALIBRATION -The PDL-24 can accept slope and intercept data to linearize and calibrate sensor readings to engineering units. @e SIGNAL CONDITIONING:All analog sensor levels can be matched to the PDL-24 using "plug-in"signal conditioning cards. @e REAL TIME CLOCK:The PDL-24 maintains a quartz crystal clock and per- petual calendar (Leap Years included!)to an accuracy of +2 seconds/day. e RAPID SCAN RATE:Each sensor is read for 1/30 second,every 15 seconds (user can re-program scan rate.) e DIRECT ACCESS TO SENSOR READINGS:Numerous keyboard options allow the users to examine sensor readings and perform special tasks without interrupting data collection. e CASSETTE STORAGE:Accumulated data is stored on cassette tape at reg- ular,user-specified intervals.The permanent data can be analyzed with the PDL-24 software or transferred to another system for further 'analysis. e BATTERY BACKUP:The PDL-24 contains a rechargeable battery pack to power the unit during power failures or remote use. e TRULY PORTABLE:The PDL-24 is packaged in a rugged aluminum carrying case and weighs 32 pounds. e EXPANDABLE:The PDL-24 can accept up to four Sensor Terminals and four Output Terminals,offering up to 56 analog/digital channels,32 status channels,and 32 output ports. @ OUTPUTS:The PDL-24 can generate binary outputs controlling relays which power furnaces,control processes or other electronic devices. e RS232 INTERFACE:The PDL-24 can be connected to other computer systems using the optional RS232 Interface (and modem,if needed). AEOLIAN KINETICS 2 Space heater|Fan Lights 'Thermostat Daisy Chain Cabl e -_xXSensorTerminal RS232 Interface ** S:,¢(yOutputTerminal"a 1g,C ) OY DF aesSEAToExpansionSensorTerminals "S49 fandOutputTerminals. Gq ->|) _-_-Z|| aag J)ae Lo Dn neta,---.,a Ps Heat Sensor Current Tronsducer Pyranometer .Vane Anemometer SYSTEM OPERATION The PDL-24 Monitoring System has been designed so that it can be used by both the novice and the experienced user.For example,a homeowner or technician can set up the System and have it running in a short time usingpreparedprogramsstoredoncassettetape.He/she can "initialize"the System and begin data collection by hitting only a few keys on the key- board.Accumulated data and functions relating the sensor readings to one another will automatically store on cassette tape and print out at regular intervals.This user need only change the cassette and paper tape at regular intervals.Depending on the extent of data being stored,a 69-minute cassette tape will store upwards of six weeks'data per side. After data has been collected,further analysis can be done using the Systemin"Data Examination"mode or by sending the cassette to more experienced personnel at a central location (or by transmitting the data over telephonelinesusingtheoptionalRS232Interfaceandmodem). The more experienced user or researcher can perform on-line,real-time inspection and analysis of data.He/she can easily modify the sensor assignment and implement new mathematical and logic functions relating the sensor readings to one another.Furthermore,the researcher can perform on-line analysis of previously collected data. AEOLIAN KINETICS onaeeeeweeeeeeeeeInitialization File Stored On Cassette Tape Define Experiment, Assign Sensors & Write Functions Set up PDL-24 Microcomputer 65, Sensor Terminal,Sensors,and Optional Equipment Modify Functions in BASIC L + Execute Initialization Procedure Execute PROG I: UPDATE | | | | | | .STORE Write New rem cmeny InitializationTape Paper ---NLU{ Tape Data STORE ;Stored on eee 0 ee 6 ee 6 ees es we Cassette Tape \LOADleee (mm cere se ee ee ee ee ee ee ee ee ee oe Do Defaults ification Execute PROG II: DATA COLLECTION ? NO wr. Modify Functions and Defaults as Required Send Data to Another Computer ? NO ? Connect RS232 Interface 4-7 y Pd Execute PROG III: DATA EXAMINATION Are Results oa NOSufficientto Another Computer Conclude Experiment ? Conclude Experiment Redesign Experiment Collect More Data YES AEOLIAN KINETICS The great advantage of a computer-based data acquisition system over a simple data logger is that the sensor data can be processed according to a user-specified program while data collection takes place.This allowsfunctionvaluestobecalculatedfromthesenseddata,decisions to be made according to the values,and special events to be recognized and noted by the computer.This program is written in the BASIC*computer language and is executed each time the sensors are read.The System offers the user tremendous flexibility within this arrangement.Functions which relate sensor readings to one another can be entered into the program;instructions can be entered to note the occurrence of special or unusual conditions;and signals can be sent to specific output ports to control other mechanical or electrical systems via relays. Four major components make up the PDL-24 Monitoring System:the sensors,the AK Sensor Terminal(s),the AK Microcomputer 65,and the Software.Each of these is discussed below. SENSORS and SENSOR TERMINAL (S) Some typical sensors (transducers)which can be used with the PDL-24 includetemperatureprobes,pressure transducers,radiation sensors,electric current transformers,voltage sensors,electric power transducers,heat flowsensors,liquid or gas flow transducers,humidity sensors,on/off sensors and a wealth of others. Each sensor connects to the Sensor Terminal (or one of the Expansion Sensor Terminals}.Signal conditioning cards,which fit into the Sensor Terminal, modify the sensor's electrical output so that it is compatible with theSystem.The interchangeability of signal conditioning cards (which each plug into a slot corresponding to a channel)allows a wide range of sensors to be connected to the System. In addition to analog and pulse counting (digital)sensors,status sensors(switches)which indicate on/off,closed/open,and yes/no conditions can be connected to the System directly without a signal conditioning card. OUTPUT TERMINALS Optional Output Terminals,which can be connected to the System,generatelowlevelsignalssufficientforoperatingrelaystocontrolanumberof mechanical and electrical devices,such as solenoid valves,motors, thermostats,and others.Functions controlling the signals can be based on sensor readings,time-of-day,or other programmable relationships. *BASIC (Beginners All-purpose Symbolic Instruction Code) AEOLIAN KINETICS MICROCOMPUTER 65 The Microcomputer 65 includes the necessary electronic hardware and software for acquiring,manipulating,and analyzing the data from the Sensor Terminal.With the optional RS232 interface,the Microcomputer 65 can actasterminalorinput/output device to another computer.With a modem,this communication can take place over telephone lines.The battery backup allows the System to continue operating during a two-to-three hour power outage. SOFTWARE The Software is the collection of computer programs (in both machinelanguageandinBASIC)that enables the components of the System and the user to interface with each other.The Software is comprised of aninitializationprocedure(start-up)and three routines --a default updating routine,a data collection routine,and a data examination routine. INITIALIZATON In the initialization procedure,a file containing system operating para- meters is loaded from cassette tape into the Microcomputer 65.The initial- ization file includes default values for user-specified constants,channel processing directives,and sensor calibrations.It also contains a default function program which relates sensor readings to one another and one-time values.The defaults supplied with the PDL-24 and explained in this manual are based on the SERI/DOE*Class "B"National Passive/Hybrid Performance Evaluation Program,explained in Appendix V.These defaults may be used as a departure point for creating similar programs or may be replacedcompletely. PROGRAM UPDATING "PROG I:Update"is used to enter sensor calibrations,specify channelprocessingoptions,and modify the intervals at which the functions are stored and printed.These values and the functions can be modified to fit the needs of the particular user or a particular run of the Data Collection or Data Examination routines.The modifications along with new or modified functions can be stored on cassette tape and re-entered into the System at a Tater date in place of the original initialization file. *Solar Energy Research Institute of the U.S.Department of Energy. AEOLIAN KINETICS DATA COLLECTION After the System is initialized and updated,the second routine,"PROG II:Data Collection"is run.During this routine sensors are read every fifteen seconds.Totals,averages and functions (defined in the function program) are computed at fifteen second intervals.At user-specified intervals,the channel totals and averages,and function values are printed;channel data is stored on cassette tape;and function values are stored on cassette tape.These data tapes can be used in later analysis.At a fourth inter- val,function values are zeroed.Zeroing the functions at specified inter- vals allows for automatic calculation of data totals for parts of the diurnal cycle or for periods of longer duration. Flow of information in the PDL-24 System During Data Collection Channel Total Inmediate reading stored on and/or total or cassette tape average printed Digital -tyAccumul ated !Tt Sensor Counts | Signal Lf |1|. Analog ry t ;Pri ntedSensor--+)G-1 Volt DC --pFrequency digits in -Lyengineeri ng L>Function*° Signal Memory Units Values "|Stored onPassette Tape SIGNAL VOLTAGE TO DIGITAL PDL-24 USER- CONDITIONING FREQUENCY MEMORY MONITOR FUNCTION CARD CONVERTER L PROGRAM PROGRAM J SENSORS SENSOR TERMINAL MICROCOMPUTER 65 With appropriate programming by the user,some functions can be computed at one interval and others computed at another interval.For example,averagesofvarioustemperaturesandtypesofenergyusemaybecomputeddailywhile some complex interaction of these may be computed on a monthly basis. While data is being collected,the time of day is flashed to the display and printed after every reading.Typing single characters at the keyboard allows the user to instruct the System to perform various operations,such as examine the instantaneous readings of any or all sensors,or turn off the printer.One can also force a printout of totals and function values or a zeroing of totals and averages.It is also possible to stop the Data Collection routine,modify the function definitions in order to more closely examine some observed situation,and then continue collecting data. DATA EXAMINATION In the final part of the software,"PROG III:Data Examination,"the data that has been stored on cassette is examined and analyzed.Data for a specified interval is read in,printed out,and operated on by user-defined functions.After all the data which is being examined has been entered,the computed function values are printed.Using the optional RS232 interface, data can be transferred to another computer during Data Examination. AEOLIAN KINETICS Gee HNN NEU@SY PDL-24 Solar Monitoring System PO.Box 100,Providence,Rhode Island 02901 /401 421 5033 Specifications System Sensor Inputs: Analog Channels 2 reference voltage levels 14 single ended 0-1 volt full scale 250 MsLinput resistance Switch Channels + 8SPST (NO or NC) Analog to Digital Conversion +Resolution:1 part in 3333 (11-1/2 bits accuracy) *Linearity error:<+.05%full scale +Temp.Coefficient:+30 ppm/°C +Conversion time:33 Microseconds Hardware Physical Microcomputer 65 Sensor Terminal Width:17.0 in 8.0 in Height:7.5 in 3.0 in Length:21.0 in 8.0 in Weight:27 1b°:2 1b Power Supply Power Requirements:120 VAC,60 Hz Battery Pack Data *Rechargeable sealed lead-acid cells *Operates from AC while charging +Battery test indicator 2 hour operation from full charge Environmental +Operating Temperature:O°C -70°C +Storage Temperature:-40°C -70°C *Humidity:0-95%Rh without condensation Cassette Recorder .Panasonic RQ-2785 Cassette Recorder *Auto stop,built-in microphone Tape counter Automatic level control 5/81 Data Storage 30 days per side on C-60 cassette storing 10 channels and 10 functions hourly Programmable Variables *Sensor calibrations (slope + intercept) Channel totals/averages Print Interval Channel Store Interval Function Store Interval Function Zero Interval 100 user-defined functions User-defined constants 3 special variables Channel print/process/store RS232 interface (optional)CreeeeeraeyThermal Printer *64 ASCII alphanumeric characters and symbols *120 lines per minute .20 column,5X7 dot matrix Keyboard *Standard 54 key layout ¢full ASCII alphanumerics and symbols plus control and function keys Processor and Peripherals *6502 8 bit CPU at 1 MHz *6532 RAM Input/Output Timer «6522 Interface Adapters Memory 8K ROM System Monitor 8K ROM PDL-24 Monitor 8K BASIC Interpreter 5K User RAM (expandable) Sampling Rate One complete scan every 15 seconds Major Software Routines .Initialization/Update Defaults *Data Collection .Data Examination Real Time Clock &Calendar *Quartz crystal timebase accurate to +2 seconds/day (battery backupprovided) >Data filed by month,day,hour, minute for easy retrieval Expansion Capability +Up to 56 analog/digital and 32 status channels +Up to 32 output relays Input/Output *20 ma.current loop TTY interface (RS232C optional) +Two audto cassette interfaces ¢Two 8 bit bidirectional 1/0 ports (TTL levels) *44 Pin Application Connector +44 Pin Expansion Connector Documentation Full software and hardware documentation includes: PDL-24 User's Guide BASIC Programming Manual Hardware Guide User Operating Manual Monitor Listing Machine Language Programming Manual System reference cards /EOUAN KINETICS Copyright 1981 OLIAN KINETICS The PDL-24 PROGRAMMABLE DATA LOGGER incorporates these important features: * e@ TRULY PORTABLE:The PDL-24 is packaged in a rugged aluminum carrying case,weighs 27 pounds and contains its own battery power supply. e RS232 INTERFACE:the PDL-24 can be connected to other computer systems using the optional RS232 Interface. e BATTERY BACKUP:the PDL-24 contains a rechargeable battery pack to power the unit during power failures or remote use. e CASSETTE STORAGE:cumulated data is stored on cassette tape at regular,user-specified intervals (typically one hour).The permanent data can be analyzed with the PDL-24 software or transferred to another system for further analysis. e@ REAL TIME CLOCK:the PDL-24 maintains a quartz crystal clock and perpetual calendar (leap years included!)to an accuracyof+2 seconds/day. @ SIGNAL CONDITIONING:All analog sensor levels can be matched to the PDL -24 using "Plug-in"signal conditioning cards. @ PROGRAMMABLE SENSOR CALIBRATION:The PDL-24 can accept slope and intercept data to linearize and calibrate sensor readings to engineering units. e RAPID SCAN RATE:Each sensor is read for 1/30 second,every 15 seconds (240 times an hour). e@ PROGRAMMABLE PRINT INTERVAL:The on-board printer can be instructed to print data summaries,time of events,and sensor values at any interval of up to one year in length. e DIRECT ACCESS TO SENSOR READINGS:Numerous keyboard options allow the user to ecamine sensor readings and perform special tasks without interrupting data collection. @ PROGRAMMABLE FUNCTIONS:The user may create up to 50 functionswhichcorrelatesensorreadings,alter output prt conditions,and force printouts.to record special events. e EXPANDABLE:The PDL-24 can accept 3 expansion boxes,offering up to 56 analog/digital channels,32 switch channels,and 32 output ports. e OUTPUTS:The PDL-24 can generate binary outputs controlling relays which power furnaces,nighttime insulation,etc. SNesarSE ag(NEWS:'sete aa Sete Aaa SF 2 7 HOYneodVEOLIAN!K PDL:24 P.O.Box 100,Providence,Rhode Island 02901!/401 421-5033 SOLAR DATA LOGGING SYSTEM OFFERS INCREASED CAPABILITIES Aeolian Kinetics has increased the capabilities of its PDL-24ProgrammableDataLogger,selected as a "preferred system"by the Solar Energy Research Institute for its Class B Performance Evaluation of passive solar homes.The PDL-24 is a compact,totally integrated, low cost data acquisition system for collection and analysis of data from solar energy installations.Now,solar researchers (architects,engineers,physicists)can do sophisticated research without the trouble and expense normally associated with complex data gathering systems. Incorporating a state-of-the-art microcomputer,the PDL-24 is an extremely versatile tool.It can monitor 24 channels of data ranging from temperature sensors to solar radiometers to current transducers to switches indicating whether a furnace is on or the nighttime insulation is down.The PDL-24 automatically calibrates and linearizes sensor readings to engineering units.It computes and prints channel totals (or averages)and up to 50 user-defined functions interrelating the readings to one another.The processed data is stored hourly on cassette tape for further analysis. .The PDL-24 is a complete system and includes the AK MICROCOMPUTER.65, the AK SENSOR TERMINAL -24,Systems Software and complete instructions. The user need only specifiy the required sensors from an extensive array available from AK or provide their own. Flexibility and ease of operation are two important features of the PDL-24.Its unique software prompts the user from an on-board printer and display to enter the information necessary to get the system up and running.The comprehensive User Guide details the operation of the system and provides explicit and clear examples. 20 October 1980 <eeaeTeeeeteee<--o=moo>Sensor Brochure MAXIMUM ANEMOMETER Calibration Programming: ® 2 '*2"diameter low housing. ® ® 2 The Maximum Anemometer is used for measuring ombient wind conditions.It has a threshold speed of under 3 mph.A 4 pole magnet and reed switch gives an out- put of four pulses per revolution.The anemometer is used with a digital signal conditioning card. Mechanicol specifications are as follows: 3 cups of conical cross-section,2"diameter. 7.5"swept diameter of rotor. 3.2"overoll assembly height.Moment of inertia of rotor assembly =68x10 S-ft. Material of cups and housing is black Lexan. 2 The anemometer closes the reed switch 4200 times per mile of wind.The scale,expressed in miles of wind per pulse,is 1/4200 miles per pulse,or 0.0002381 miles/pulse.Since the minimum programmed SCALE acceptable for the digital card is 0.01,the SCALE Lead Polarity: Wire Type: Connections: _LightningProtection: should be entered as 0.02381.The output from the microcomputer,therefore,will be in hundredths of miles of wind.When this channel value is accessed in the function program,and when the "instantaneous”readings and print-interval data are examined,divide by 100 to obtain miles of wind.See the information sheet on the Digital Signal Conditioning Card for instructions for that cord,including start-up procedure and inter- pretation of instantaneous readings. Either lead can be connected to high or low on the sensor terminal and to either brass terminal on the anemometer. 2 wire,24 gauge sensor cable.Shielded cable is recommended.Earth-ground the shield at the PDL-24 end of the cable.Do not connect the ground to the anemometer or tower. Crimp or solder connections are adequate.Care should be taken to insure continuity of shielding and moisture 'protection.Once the anemometer is mounted ond proper operation has been verified,coat the terminals with silicone caulking to prevent corrosion of the terminals and eventual degradation of the contact. Lightning protection should be employed on all out- door sensors.See application note 81PO1A,"Protection of the PDL-24 from Lightning Damage." - 7 ANALOG FEATURES Linear Current Output:war KWideRange:-55C to +150°C Probe Compatible Ceramic Sensor Package Two-Terminal Device:Voltage In/Current Out Laser Trimmed to £0.5°C Calibration Accuracy (AD590M) Two-Terminal IC Temper Excellent Linearity:£0.3°C Over Full Range Range (AD590M)¢ Wide Power Supply Range:+4V to +30V Sensor Isolation from Case PRODUCT DESCRIPTION The AD590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to 'absolute temperature.For supply voltages between +4V and +30V the device acts as a high impedance,constant currentregulatorpassing1A/°K.Laser trimming of the chip's thin film resistors is used to calibrate the device to 298.2uA output at298.2°K (+25°C). The AD590 should be used in any temperature sensing applica-tion below +150°C in which conventional electrical tempera- ture sensors are currently employed.The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations.Linearization Circuitry,precision voltage amplifiers,resistance measuring circuitry and cold junction compensation are not needed in applying the ADS90. In addition to temperature measurement,applications include temperature compensation or correction of discrete compo- nents,biasing proportional to absolute temperature,flow rate measurement,level detection of fluids and anemometry.The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected en- vironments. The AD590 is particularly useful in remote sensing applica- tions,The device is insensitive to voltage drops over long lines due to its high impedance current output.Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry.The output characteristics also make the AD590 easy to multiplex:the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output. , PRODUCT HIGHLIGHTS 1.The ADS90 is a calibrated two terminal temperature sensor requiring only a de voltage supply (+4V to +30V).Costly transmitters,filters,lead wire compensation and lineariza- tion circuits are all unnecessary in applying the device. .State-of-the-art laser trimming at the wafer level in conjunc- tion with extensive final testing insures that AD590 units are easily interchangeable. .Superior interference rejection results from the output being a current rather than a voltage.In addition,powerrequirementsarelow(1.5mW's @ 5V @ +25°C).These features make the AD590 easy to apply as a remote sensor. .The high output impedance (>10MQ)provides excellent rejection of supply voltage drift and ripple.For instance, changing the power supply from 5V to 10V results in onlyauAmaximumcurrentchange,or 1°C equivalent error. .The AD590 is electrically durable:it will withstand a forward voltage up to 44V and a reverse voltage of 20V. Hence,supply irregularities or pin reversal will not damage the device. .The device is hermetically sealed in both a ceramic sensor package and in to TO-52 package.MIL-STD-883 pro- cessing to level B is available and,for large unit volumes, special accuracy requirements over limited temperature ranges can be satisfied by selections at final test.The device is also available in chip form. NOTICE This document is an edited version of the AD590 data sheet.Material included in this revision is thought to be the relavent data for users of Aeolian Kinetics'products. FloScan 3016 N.E.Blakely St.TURBINE FLOWcDInstrumentisyP08| TRANSDUCERS Inc.a SERIES 200 Description Series 200 turbine flow transducers measure flows of hydrocarbon fuels Lo such as gasoline,kerosene,and #2 -. diesel fuel and other light transmitting, non-corrosive liquids of similar vis- cosity.Typical fuel flow applications include aircraft fuel monitoring sys- tems;gasoline,diesel,and gas tur- bine engine test stands;and industrial furnaces. The transducers give linear signals on gasoline across a 100 to 1 ffow range down to 0.3 GPH. The higher viscosity of diesel fuel reduces signal linearity at flow rates below 2 GPH.Pressure drops are very low compared to other turbine flow transducers.The transducer bearing system is rated for continuous operation to 30 GPH and for intermittent flows in excess of 60 GPH. The transducers produce a current pulse signal from an opto-electronic pickup with or without a preamplifier.When ordering models with the preamplifier the liquid to be measured must be specified.Amplifier models have three wire leads;non-amplifier models are available with _either three wire leads or three brass tabs.Tranducers are supplied with calibrated K-factors. Principle of Operation Liquid enters the flow chamber tangentially,follows a helical flow path,and exits vertically, thereby venting any entrained vapor bubbles.The rotational velocity of the liquid is directly proportional to flow rate.A neutrally buoyant rotor spins with the liquid between V-jewel bear- ings.Rotor movement is sensed when notches in the rotor interrupt an infrared light beam between an LED and photo-transistor. The vapor venting design requires that the transducer be positioned with the electrical con- nectors pointing up.Turbulence caused by valves or sharp elbows mounted close to the trans-ducer inlet can affect linearity and should be minimized. Performance Specifications 201A,203A 201B,203B , Mode!Number 211A,213A 211B,213B Flow Range,Gasoline........=....+...0.3-30GPH 0.6-60 GPH #2 Diesel .............2.030GPH - 3.060GPH Linearity Across Flow Range,%of Reading,Gasoline ..+2.5%+1%(8-60 GPH) +3%(0.6-60 GPH) #2 Diesel ..+2.0%+£3% Average K Factor (Pulses/Gallon),Gasoline .....97,000 84,000 #2 Diesel ......100,000 .-85,000, Pressure Drop @ 15GPH,Gasoline.........O.6psi@15GPH 1.2 psi@30 GPH a ,2.4psi@30GPH 4.8 psi@60 GPH #2 Diesel ........O8Bpsi@15GPH 1.5psi@30 GPH 3.0 psi@30GPH 6.0 psi@60GPH Repeatability Between Measurements.........KM%-N%% Repeatability Between Transducers.N%*)2.1..2%+29 Working Pressure ....1...ee ee 6200 psi 200 psi Minimum Bursting Pressure ........=...=.2000psi 2000 psi Temperature Range Ne?,2.2 ww ww ewe 7 659/125°CS -65°/125°C Life Expectancy -.......eee ee he)«610,000 Fir.min.10,000 hr.min. Note 1-Contact factory if closer matching required. Note 2-Refer to temperature derating factor under Pulse Shaping Circuits. Material Specifications Flow Transducer Body (Model 201,203)....Die cast zinc,cadmium plated, ,dichromate finish (Model 211,213)....Diecast aluminum,anodized V-Bearings .......-.6 ««.+s Sapphire Rotor.2...2...ee ee ee ee Nylon 6/12 Rotor Pivot...............Stainless Steel,Carpenter420 Phototransistor :............=.8D1440 Light Emitting Diode...........SE 1450 ;Connectors203,213,201,211........22 Gauge Wire Leads ((3) 203,213 ......2....=.4"Tab (3) a Dimensions in inches reer MARKING OFV4FLOWRANGEINLETANDOUTLETTHREADED,©,9 Dye4°FPT THTE e =at =_-J-j= bn,oO.36 ;F+:-t sis !|1.20 83 2-HOLES FOR A t X*SOCKET 250 -a-a1 .||SCREWS 190 ;+ TOP VIEW SIDE VIEW Suggested Pulse Shaping Circuits Dotted line signifies Fiow Transducer _ -O 12V(4-19)" 10K fo) TRANSDUCER "0(Model 201) (Model 211) BLACK (GROUND)," v4 RED --N ° --Q 12V(4-19)* TRANSDUCER (Model 203) (Mode!213) SLACK (GROUND) *Derate maximum voltage by 0.2V/°C above 25°C fuel temperature. enero,RR NTS -Date ZETIB Oeeoks &GSA contractLI-200S Pyranometer Sensor MEASURES SOLAR RADIATION DIRECTLY IN WATTS m-? (see specifications) The LI-200S Pyranometer Sensor is designed for field mea- surements in meteorological,agricultural and hydrological studies.The pyranometer is patterned after work of Kerr, Thurtell and Tanner (4)and features a silicon detector mounted in a fully cosine corrected miniature head. QS TTTq SOLAR IRRADIATION CURVE OUTSIDE ATMOSPHERE SOLA IRRADIATION CURVE AY $€@ LEVEL CURVE FOR SLACKBOOY et S900°%PERCENTRELATIVERESPONSE("G2 04 06°08 10 12 14 16 18 20°22 24 26 2B ROR? WAVELENGTH (u) The LI-200S pyranometer response is illustrated along with the energy distribution in the solar spectrum |Taken from Kondratyev, K.Ya.1969.Direct solar radiation.Radiation in the Atmosphere, Academic Press,New York-London]. The spectral response of the LI-COR pyranometer sensor does not cover the full range of the solar spectrum,but the error introduced is less than +5%under most conditions of natural daylight (4).The sensor should not be used within plant canopies or under artificial lights. This cosine corrected sensor can be used with the LI-188. 21-170 or LI-185A Quantum/Radiometer/Photometer for direct readout over a wide dynamic range.The sensor can be connected directly to a millivolt recorder when used with the 2200S Miltivolt Adapter.A mounting and leveling fixture 'is available (2003S)for applications which require accurate sensor placement. Extensive long-term radiation data accumulation in remote areas can be accomplished when the LI-200S is directly coupled with a LI-COR Integrator.This combination pro- vides an excellent meteorological instrument. LI-200S Pyranometer Sensor 1 asa contact Calibration -Calibrated against an Eppley PSP Pyranometer under natural daylight clear conditions.Absolute accuracy under these conditions is 5%. Sensitivity -Typically 50 microamp/1000 watts mr?or 5millivolts/1000 watts m-?when used with a 2200S Millivolt Adapter. Linearity-Maximum deviation of 1%up to 3000 watts m-?. Stability -Less than 2%change over a 1 year period. Response Time (10-90%)-10 microseconds. Temperature Dependence -+.15%/degree C maximum. Cosine Correction-Cosine corrected up to 80°angle of incidence. Azimuth Error-less than 1%over 360°at 45°elevation. Sensor Case -Weatherproof anodized aluminum case with diffuser and stainless steel hardware.Size 15/16"dia.x 1.0”height (2.38 x 2.54 cm).5 ft cable provided. 2003S Mounting and Leveling Fixture. The anodized aluminum base has stainiess steel hardware and an all weather precision level for use with all LI-COR 15/16"(2.38 cm)diameter sensors.Size:3”(7.6 cm) diameter. CABLES 2222S Extension Cable. For use with atmospheric type LI-COR sensors.Standard length =50 ft.(15.2 m).Custom lengths up to 1000 ft (305 m) may be ordered. LIVLOE,tre.LI COR,Léed.Box 4425 'Lincoln.Nebraska 68504 USA Phone (402)467-3576 TWX.910-621-8116 Status Sensors Calibration Programming: Lead Polarity: Wire Type: Wire Connections: Wire Length: InstallationPrecautions: Since only on/off conditions are monitored,no program- ming and signal conditioning are required.The activation temperature of some thermally activated switches is adjustable,however.Consult the specifications supplied with thermal switches. Either lead high. 2 wire,24 gauge wire is sufficient,for lengths up to 400 feet. Crimp or solder connections are adequate. Up to 400 feet is acceptable. Thermally and physically activated switches pose no particular installation problems,aside from insuring that the switch is accurately monitoring the status of the system.A microswitch which closes upon complete closure of one insulating curtain,for example,will not indicate if the curtain is 3/4 closed,nor will it indicate the status of other curtains. Relays which indicate the status of any electrically controlled system must be carefully installed to insure that the circuit being monitored is electrically isolated from the PDL-24.Damage to the PDL-24 may result from introducing even moderate currents to the status channel sensor terminals!This voids the warranty! The following sketch shows a proper circuit for monitoring the status of thermostat-controlled electric resistance heater: Status Sensors -1 Wind Direction Sensor The Aeolian Kinetics wind direction sensor utilizes a single-turn potentiometer,internalresistors,and a regulated 5 VDC power supply.The sensor has a O0-1 VDC output and is used with a jumper signal conditioning card.Connect the -sensor as shown in the diogram below. POL-24 5 vor D4VS0R TERMINAL KEGULATED POWER SURLYLowH1GH_.+. {f -.]| rn |. / ¢I 1 \ NS ;ee mm ee AK Wind Direction Sensor Wiring Diogram Calibration Multiply the slope listed on the calibration tog Progromming:of the sensor by the Sensor Terminal coefficient to yield the programmed SLOPE: Sensor Slope x Sensor Term.Coeff.=programmed SLOPE For example,a direction sensor with a slope of420°/V used with a sensor terminal with a coeffic-ient of 1.0163 has a programmed SLOPE of 427°/Volt. 420°/V x 1.0163 =427°/V. The PDL-24 will now display the wind |direction indegreesofthecompass.the,wind is from the north,30°from the east,180°from the south,and 270°from the west. Less than 5°indicates Accuracy: Wire type & Connections: Wire Length: The maximum error is due to the ""deadband"of the sensor,that area of the potentiometer where the moveable contact is not touching the stationary resistor.This varies with each sensor,between5°and 10°in angulor width,and is located to the west of north.The maximum error in the readingwillbe10°in this region,up to 7°at 270°,andlessthan5°from 0-180°.Erroneous readings will "occur on the very small portion of the potentiometer where the moveable contoct first touches the sta- tionary resistor at the west side of the deadbond. Since this occurs in ao very small orea,overall readings.will be affected very little. 3-conductor 24-gauge shielded cable is recommended. Ground the shield of the cable to earth-ground at the PDL-24 end of the cable.Do not connect theshield.to the sensor. Up to 200 feet of 24 gauge wire may be used with- out affecting calibration.If longer lengths are used,compensation for voltage drop in the wire may be required. @ Scan Instrument Company,3016 N.E.Blakely Street,Seattle,Washington 98105 Phone (206)524-6625 SERIES 200 FLOW TRANSDUCER APPLICATION NOTES 1.A screen or filter should be installed upstream of the flow trans- ducer to screen out debris which could affect rotor movement or -..settle in V--bearings.As turbulence upstream of the transducer affects its performance there should be a reasonable length ofstraightlinebetweenthetransducerinletandthefirstvalve,elbow,or other turbulence producing device. 2.Install flow transducer with wire leads (or tabs)pointed UP to vent bubbles and insure that rotor is totally immersed in liquid.For maximum accuracy at low flow rates the transducer should be mounted on a horizontal surface. 3.Power supply:12 VDCat 100 mA filtered and regulated. 4.Specified linear flow ranges for Series 200 flow transducers applytoliquidswithkinematicviscositiesequaltoorlessthan#2 diesel oil. °5.Series 200 flo transducers are designed to measure steady stateflows.Indicated accuracies and pulse counts were obtained on a gravity fed flow stand and are reproducible in flow.systems using rotary or gear pumps. Fuel systems with diaphragm fuel pumps and carburetors producepulsatingfuelflows.For accurate results on these systems usetheSeries264PB-15 flow transducer which has an integral pulsationisolator/response equalizer. 6.Series 200 flow transducers are compatible with Series 3000ElectronicReadouts(analog outputs,totalizers and batch dispensors). 7.Series 200 flow transducers are zinc;as such they are suitable forusewithhydrocarbonsandsomeotherorganicliquids.Series 200transducersarenotsuitableforwaterormostchemicals;for such liquids use Series 300 flow transducer. 8.In the model 201,the internal pre-amplifier has been adjusted to give a square wave output when a fluid is used with the same infra-red optical properties as gasoline.A model 201 will work on»gasoline but may not give any signal when used on air.A model 203willgiveanoutputsignalonanytransparentfluidbecauseithas no pre-amplifier. 9.The transducers are rated for continuous operation at the middle of their flow range.Continuous operation at full flow will cause ex- cessive pivot wear;however,they may be temporarily overranged by a factor of 2 to 3 without damage. May,1980 FloScan Price List (Effective 11-15-78) 1-24 FLOW TRANSDUCER PRICE LIST 25-99 100-499 500-999 1000-2999 SERIES 100 FLOW TRANSDUCERS , 100A $50 100B 100C 100A-S 100B-S 100C-S 50 50 85 85 85 $36© ae $27 RRERNSERIES 200 FLOW TRANSDUCERS 201A 201B -203A ONaB 120 120 470 110 140 140 1350 130 80 80 100 100 93 93 SHIPMENTS FOB,SEATTLE,FREIGHT PREPAID Description $19 1.5-15 GPH,incandescent/phototransistor pickup,Zinc192.5-25 GPH,incandescent /phototransistor pickup,Zinc195.0-50 GPH,incandescent/phototransistor pickup,Zinc331.5-15 GPH,replaceable LED/phototransistor pickup,Zinc332.5225 GPH,replaceable LED/phototransistor pickup,Zinc335.0-50 GPH,replaceable LED/phototransistor pickup,Zinc 46 Zinc,0.3-30 GPH,internal amplifier,3 wire leads46Zinc,1.5-60 GPH,internal amplifier,3 wire leads . 42 Zinc,0.3-30 GPH,no amplifier,3 wire or 3 tab (addT+p42_Zine,1.5-60 GPH,no amplifier,3 wire or 3 tab,model #) 52 Aluminum,0.3-30 GPH,internal amplifier,3 wire52Aluminum,1.5-60 GPH,internal amplifier,3 wire 48 Aluminum,0.3-30 GPH,no amplifier,3 wire or 3 tab(add f to model #)48 Aluminum,1.5-60 GPH,no amplifier,3 wire or 3 tab SERIES 261PB-15 FLOW TRANSDUCER (for gasoline engines with carburetors) 261PB 264PB 165 150 120 100 -89 ----consult factory---- SERTES 300 FLOW TRANSDUCERS 300-1 300 2 300-3 301-1 301-2 301-3 302=1 302-2 302-3, 165 165 165 165 165 165 165 165 165 120 120 120 120 120 120 120 129 120 RRBRRRRRB75 (add T to model #) 63 0.5-25 GPH,diaphragm pulsation bypass,floating ground, tab connectors pulsation bypass RARARKKKKDelrin/316SS,Delrin/316SS,12-120 GPHDelrin/316SS,30-300 GPH Ryton/Polypropylene/316SS,Ryton/Polypropylene/316SS,12-120 GPHRyton/Polypropylene/316SS,30-300 GPH Ryton/Nylon/316SS,Ryton/Nylon/316SS,12-120 GPHRyton/Nylon/316SS,30-300 GPH 0.5-25 GPH,non-floating ground,wire leads,diaphragm 2-30 CGPH 2-30 GPH 2-30 GPH aeheOEee,ere As et ee OD Ae FloScan Instrument Co.,Inc. 3016 N.E.Blakely St.,Seattle,Wa.98105Telephone(206)524-6625 es me ee ee me a es ee em we ee eee we - cooatteetaaeGrumman Manufacturers Literature |GRUMMAN WINDSTREAM-33 WIND TURBINE GENERATOR The Grumman Windstream 33 (WS-33)is a second generation wind turbine generator designed to operate in parallel with an electric utility grid network.The WS-33 provides constant frequency,con- stant voltage 38 AC power at varying levels between a.9 mph (4.02m/sec)cut-in speed to a 35 mph (15.6m/sec)cut-out speed.It is rated at 15 KW at 24 mph and is predicted to produce 32,000 KW Hr/year in an annual mean wind speed of 12-mph (5.4 m/sec).Peak power is 18 KW at 35 mph. ) Power is generated by 240/480 volt,38,60Hz induction generatorratedat20KW.Synchronous currentis provided by maintaining -essentially constant generator speeds of between 1800 and 1835 rpm at all operating wind speeds.This is achieved by using the pull- out torque characteristics of the induction generator in combination with the aerodynamic characteristics of 'the rotor.An induction _generator,.which is in essence an induction motor driven mechanically by an outside source,is characterized by its ability to produce constant frequency and voltage when run above synchronous speed uptoitsbreak-away torque limit.Up to this point the generator | resists the mechanical power input with progressively increasing levels of torque.The aerodynamic characteristics of the rotor are. such that it performs with maximum efficiency or power coefficientwhenoperatingataspecifictipspeedratio(i.e.the relationship of the speed of the rotor blade tips to the speed of the ambient. wind).If the rotor is constrained to a nearly constant rotationalspeedaswindspeedsincrease,its power coefficient is reduced but the net power output is increased because of the additional energy | provided by the wind.The operating principal of the machine may "therefore be described as follows.When cut-in wind speeds are experienced,the motor is free to spin up to its nominal rotational _Speed of 74 rpm,driving the generator at 1800 rpm by means of a gearbox.At this speed the generator is on the border line between running:as a motor or a generator;a motor if deriving power from the utility,or a generator if drawing mechanical power from the wind. -l-- PRELIMINARY DESCRIPTION - WINDSTREAM 33 WIND TURBINE GENERATOR GRUMMAN ENERGY SYSTEMS,INC. RONKONKOMA,N.Y. A 11/19/79 As the wind increases,the rotor turns slightly faster,causing the generator to produce more power:in so doing the generator applies an increasing amount of resistive torque to the rotor effectively controlling its speed.This changes the tip speed ratio at which the rotor is operating which,in turn,changes its efficiency;increasing efficiency up to 17 mph and reducing it thereafter.At 34 mph,the generator is atfull power and the machine is automatically shutdown if sustained winds are experienced above this value. System Description The machine utilizes a three bladed,down wind rotor,33%feet in diameter.The individual blades are extruded aluminum alloy with a modified NACA 64,421 airfoil section.The blades are adjustable in pitch utilizing a dual (redundant)pitch actuator system.The pitch actuator system is controlled by a solid state programmable logiccontroller,the Microprocessor Control Unit (MCU).Control logic for the entire system is resident in the controller which directs all functions of the WTG.The overall weight of the nacelle and rotor assembly including the blades is 2,589 pounds.The blades weigh 185 pounds each.. The power source for the machine is an induction generator.It is a 240/480 volt,38,60H,generator rated at 20 KW.Synchronous speed is 1,800 rpm.It is coupled to the rotor via a stainless steel drive shaft,25.1:1 gearbox,a high speed shaft and coupling with brake.The gearbox matches rotor.shaft speed of 74.1 rpm maximum at rated power to the generator synchronous speed at 1,800 rpm. The rotor blade pitch control system consists of redundant, electrical,linear actuators operating under the control of the Micro-processor Control Unit and appropriate push rods and bellcranks.The primary actuator,115v,60H.is capable of moving the blades from the high speed run to the feather position in 5 seconds.Actuator travel is determined by limit switches.This actuator.also is used to position the blades to the intermediate position of 27°used for machine startup.The 27°blade position is determined by a pulse generator within the actuator which drives logic circuits within the MCU to control actuator movement. The secondary actuator which.is mechanically in series with the primary actuator,operates from 28.volts DC and provides backup control of blade angle in the event the primary actuator fails to function or if utility grid power is lost.If a FEATHER signal is given to the primary actuator and it fails to feather the blades within 7 seconds,control logic in the MCU will activate the secondary actuator.In the event of a grid power failure,a permanent magnet generator mechanically driven by the rotor shaft will provide power to the secondary actuator to reposition the blades.from the high speed run to the feather position.This.emergency feathering action occurs in less than 5 seconds.This rapid operation will minimize rotor overspeed after a grid disconnect and will be accomplished before the rotor stops rotating.This activation of the secondary actuator is independent of the MCU and occurs when a relay,which is held in the open position by grid power,closes upon loss of power and connects the permanent magnet.generator to the secondary actuator. Movement of the blades to the feather position by either actuator mechanically set the caliper disc brake on the high speed shaft. Feather and shut down of the machine will occur automatically in winds over 35 mph.Wind velocity is sensed by a cup anemometer.When velocity exceeds the duration shut down speed of 35 mph,temporary shut down will occur.If the wind velocity falls below 20 mph,the machine will operate.If the wind velocity exceeds 50 mph,the instantaneous shut down.speed,the machine will feather and shut down immediately.When the machine is shut down due to high winds,the Manual reset button must be activated. The machine is free to pivot in yaw about the vertical shaft mounted in the tower.The weight.of the machine is carried on a ball thrust bearing while sleeve bearings maintain alignment on the shaft.Heavy duty slip rings carry power and control signals between the nacelle and the tower. 7 oe | No batteries or inverters are required for the operation of the Windstream 33.The induction generator is interfaced directly to the 3f AC utility grid thru a line contactor which is controlled by the MCU and a conventional manual,fused disconnect switch. Performance Specifications Rated Power 15 KW @ 24 mph a 10.2 KW @ 20 mph Cut in velocity . :.9 mph Cut out velocity .35 mph (duration shutdown) -50 mph (instantaneous shut- down) . Annual Energy Output =11.0 mph -24,000 KWhr/yr. =11.5 mph -28,000 KWhr/yr. =12.0 mph -32,000 KWhr/yr. =-35,750 KWhr/yr.12.5 mph Plots of Power Output vs.Windspeed and Average Annaul Energy Output vs.Average Annual Windspeed are presented on the following pages. 4OA-MOILETZGENGRAPHPAFERd Zz Zz ie] EF< 2" 6 o g ia] QO Zz W QO N t- i Q INU.S.A.MADEMILLIMETERryaitaneceptertyparesoepeeTatiis:fsade4Hybodtebord«ftadsotreGeewketts}aashyperryTitsPopeepoaSepeepepanaytqefeegaEFSESS!fsHereriSaberarhe4;beseetygeacesetteHE4atrf.iawaapeFanhe&eastesaetdieeestrTy4athy iptiehfadwosrapepret pereners paupyweaoe; Pr 713 : soda recent ee ee re ees repute beg fies mangerbeb emngee eepsot martes beeneeeeo wate, ede Mae eee piecemnen pmb dome mabey wep tees cede et eeeekee FDTE DOE pepga cpeiomnegeee meron npvndmenaes 2 Ped : oe-z aarano sees owed " - : eeceenareeern Eecinted seeteatt aieareoentn en REiaeaeserepee eonsbancatnes Bepmengegpeers ene pron nero - Soe: eee ern ene 4 i Hi + 7fs :ri z -- } 1 any foeny wb cares wane beore maaren cnieceny abe enn Saath soonest cagusasphepat peneaan Rseea = N°sere) Wee eet oe eee tah hassunPtesaie Somber inouepert = SSovetrotect tieee eee ee teennten Cemnattabatas mmene = Tene cgnermebaneRete merenm ene aS adage alpey comiceepaepana: orcap neherbarn pee tres map eee LIIRIIE PeeoR ce pean ang eh acetonetated pon Hep maf arnt oe TEI. . OO TLE STDEEnEtaaetam dcaiaeeenaaelor eeteeiconine onaaietamieaeeed