Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Copper Valley Electric Association Sutton to Glennallen 138KV Transmission Intertie Project Volume 2 Final Report January - 1993 Project No 120087-02
.FENGINEERS PROJECT NO.120087-02 COPY NO.: ISSUES TO: COPPER VALLEY ELECTRIC ASSOCIATION SUTTON TO GLENNALLEN 138KV TRANSMISSION INTERTIE PROJECT VOLUME 2 FINAL REPORT JANUARY -1993 FOR INFORMATION REGARDING THIS DOCUMENT CONTACT: e JOHN MCGREW e =6JiIM GILL (HART CROWSER) 3940 GLENBROOK DRIVE P.O.BOX 1066 HAILEY,IDAHO 83333 (208)788-3456 5PROJECT NO.120087-02 COPY NO.: ISSUES TO: COPPER VALLEY ELECTRIC ASSOCIATION SUTTON TO GLENNALLEN 138KV TRANSMISSION INTERTIE PROJECT VOLUME 2 FINAL REPORT JANUARY -1993 FOR INFORMATION REGARDING THIS DOCUMENT CONTACT: e JOHN MCGREW e =JIM GILL (HART CROWSER) SUTTON TO GLENNALLEN 138kV TRANSMISSION INTERTIE PROJECT VOLUME 2 TABLE OF CONTENTS SECTION I.Executive Summary I.Cost Estimate Summary Ill.Project Schedule iV.Route Analysis V.Line Analysis VI.Substation Analysis APPENDICIES A.Design Criteria B.Construction Zone C.Material Quote D.TLCADD Reports and Profile E.Route Maps F.Anchorage Meeting Notes -October,1992 |.EXECUTIVE SUMMARY CZIMER I.EXECUTIVE SUMMARY INTRODUCTION Copper Valley Electric Association,Incorporated (CVEA)is studying the possiblility of constructing a 138kV transmission line from Matanuska Electric Association's O'Neil Substation to AEA's Pump Station No.11 Substation located near Glennallen,a distance of approximately 134 miles. The purpose of the project is for CVEA to interconnect with the "railbelt transmission system”for economic dispatch of power and to improve system operations and reliability. Per CVEA's request,POWER Engineers,Incorporated (POWER)developed a "screening level cost estimate”of the project which was completed on August 18,1992.The results of the study were reviewed by CVEA,Alaska Energy Authority (AEA),Chugach Electric Association (CEA),Matanuska Electric Association (MEA),two construction contractors,and other interested parties.Based on the input received from the reviewers the project appeared feasible,however,it was generally agreed that a more detailed cost estimate be prepared for the proposed project.As a result of these discussions,POWER was requested by CVEA to prepare a detailed cost estimate for the project.This document is POWER's response to CVEA's request. STUDY APPROACH As with the original study,POWER was to develop cost estimates for the project considering a minimum cost transmission system that would meet the project criteria.The objective of the new study was to develop a detailed cost estimate that could be used as a planning tool for CVEA.In developing this cost estimate,POWER received valuable input from CVEA, some Alaskan utilities,and construction contractors.The meetings held in Anchorage on October 14-16,1992,with CVEA,POWER,Hart Crowser, AEA,CEA,MEA and two construction contractors were very valuable in PEI-HLY 51-381 120087-02 (02/03/93)ab 1-1 oBeeterms of gathering specific data and gaining a solid understanding of the engineering and construction considerations that should be addressed in preparing the new cost estimates. ROUTE SELECTION . At this level of study it was decided to develop a detailed cost estimate for one route rather than expend study time costing various route options.Hart Crowser who performed the route study work on the Northeast Intertie,and helped POWER prepare the August 18,1992 study,was requested to develop a single route for cost estimating purposes. In the route selection process,Hart Crowser considered the work that it performed on the Northeast Intertie routes,public comment received after completion of the Northeast Intertie Study,and the input received at the October,92,meeting in Anchorage.As a result of this process,Hart Crowser selected a route that is slightly different than the preferred route identified in the Northeast Intertie Study for the line segment from O'Neil Substation to Pump Station No.11. LINE ENGINEERING POWER's analysis and cost estimate are based on installing 556.5 Kcemil ACSR "Dove"conductor.This conductor compares closely with the performance of the 636 ACSR conductor analyzed in the August 18,1992 study.The choice of the 556.5 conductor was partially based on the input from the utilities that 556.5 conductor is commonly used in Alaska,where 636 ACSR conductor is not.Also,AEA has 556.5 ACSR conductor on the transmission line from Valdez to Glennallen. POWER contacted the Arctic Environmental Information and Data Center and other data centers for climatic data.From the data POWER selected a 100 mph extreme wind case along the entire length of line.This wind speed is felt to be conservative in areas where terrain and tree cover will offer resistance and reduce the wind speed.POWER opted not to use a windspeed reduction factor for this cost estimate.The major "weather" load cases used in this study are: e NESC "Heavy"%ice +4 psf (4Omph)at O°F (-20°C). e NESC Extreme wind of 100 mph at 14°F (-10°C) e 1"Glaze ice +4 psf wind at O°F (-20°C) PEI-HLY 51-381 120087-02 (02/03/33)ab 1-2 Hart Crowser provided POWER marked-up 1:250,000 USGS quad maps showing the route centerline.POWER digitized the centerline off the quads to develop a centerline profile.A terrain file was developed with the centerline data for input into POWER's transmission line design and structure optimization program TLCADD.This terrain file was generated in parallel with the engineering specification file required for running the optimization.The structure optimization program,based on the data input, including costs,selected the optimum structure type,structure height and spans between the structures. Based on the structure optimization results POWER selected weathering steel poles,with climbing provisions,for the project.The labor cost was a strong determinant in coming to the conclusion that steel structures would be optimum compared to wood structures.A loaded labor rate of $125 an hour was used in developing the cost estimates for both the line and substations.Because of the relatively high labor costs,POWER's approach was to design structure types that required a minimum amount of labor. Steel structures had the strength required to achieve the long spans that were desired to take advantage of spanning over problem areas that would be identifiedin final design.Also,steel is in good supply where the wood industry in the Pacific Northwest is concerned about the availability of timber for supplying wood poles.Another advantage of using steel is the consistency in diameter which lends to easier framing and installation which will cut down on labor costs. POWER selected both single pole and H-Frame steel structures for the project.The line is designed for H-Frame construction except in the area between a point north of Hundred Mile Lake (at Watchtower Inn)to a point near Tahneta Pass (approximately 25 miles),which requires helicopter construction.This "helicopter section”is designed for single pole steel structures.The H-Frame structures are equivalent to Meyer class LD-6 poles from 55°to 100'.The basic wind span limit of this pole class ranges between 1,280°and 1,560"depending on pole length.The single pole structure assumes LD-6 poles from 55°to 100°with the basic wind span limit of about 840'. All poles are direct embedded except for the line segment from Moose Lake to Pump Station No.11,a distance of approximately 70 miles.The poles in this mainly permafrost area will be supported/connected to piles driven or drilled into the permafrost and/or soils. PEI-HLY 51-381 120087-02 (02/03/93)ab 3 ealCTPSUBSTATION ENGINEERING Based on the preliminary engineering studies performed during the development of the August 18,1992 study the substation design parameters were defined for both the O'Neil Substation and Pump Station No.11 Substation. The O'Neil substation will need to be expanded to accommodate new 115kV and 138kV equipment.The 115kV portion of the substation will interconnect to MEA's O'Neil Substation at 115kV.The required 115kV equipment includes a 115kV metering unit,disconnecting switch,and power circuit breaker.The 138kV portion requires addition of a 20 MVA 138/115kV auto transformer,138kV MVAR shunt reactor and associated isolating disconnect switches,surges arresters,CCVT's power circuit breakers,and control building. The Pump Station No.11 Substation will need to be expanded to include 138kV disconnecting switches,CCVT's surge arresters,a 6 MVAR shunt reactor and two power circuit breakers.Additions to the fencing,grounding conduit,foundations and substation steel will be required.The control building will also require a new battery system,SCADA RTU and miscellaneous control and relay panels.Steel pilings will be used for the foundations due to the permafrost conditions. COST ESTIMATES POWER developed detail cost estimates for the project,including the transmission line and the two terminal substations.POWER included costs for the following listed items: Environmental Studies &Permitting &Cultural Surveys Easement Acquisition &Purchase Geotechnical Surveying,Engineering,Construction Staking Line Construction Substation Construction Procurement &Construction Management Administration Contingency POWER is assuming that CVEA would administer and manage the project once the AEA Feasibility Study is completed and approved.Assumptions are included for preparing the cost estimates throughout the document, including the appendices.A major assumption made for preparing the cost PEI-HLY 61-381 120087-02 (02/03/93)ab 1-4 estimates is the $125 loaded labor rate for the line and substation construction.POWER developed the $125 figure based on input received from two construction contractors in Alaska,as well as the input received during the October,92,meetings in Anchorage from MEA,AEA and CEA. The line construction cost estimate includes right of way clearing and access road development.A loaded labor rate of $100 was used for this task.This number was compared with cost input received from a clearing contractor familiar with the project. POWER's approach in preparing the cost estimates was to develop manhours for performing each construction task and apply the loaded labor rates to determine the labor costs.Material suppliers were called to obtain cost of materials FOB Palmer or Anchorage.All estimates are in 1992 dollars. Environmental,right of way acquisition,right of way purchase,and geotechnical costs were provided by Hart Crowser. SUMMARY The proposed Project Schedule assumes that the AEA Feasibility Study would be completed fourth quarter,1993 with State of Alaska approval of the project by January 1,1994.Environmental,permitting,and right of way acquisition would start upon approval by the State of Alaska and be completed by fourth quarter,1994.Construction of the project would commence fourth quarter,1994,and be completed by April,1996,a periodofapproximately19months. The total estimated cost for the project,in 1992 dollars,including the two substations and the transmission line,is $40,428,919. PEI-HLY 51-381 120087-02 (02/03/93)ab 1-5 ll.COST ESTIMATE SUMMARY CLOWER ll.COST ESTIMATE SUMMARY INTRODUCTION The major assumptions for developing the Cost Estimate Summary enclosed at the end of this section are outlined below.Assumptions for developing the cost estimates are also included in each respective section of this document.POWER has included costs for the following listed items. e Environmental Studies &Permitting &Cultural Surveys e Easement Acquisition &Purchase e Geotechnical e Surveying,Engineering,Construction Staking e Line Construction - e Substation Construction e Procurement &Construction Management e Administration e Contingency MAJOR ASSUMPTIONS: POWER is making the major assumption that regardless of the source of funding for this project,CVEA would administer and manage the project once the AEA Feasability Study is completed and approved.Other assumptions include: 1.Estimates are in 1992 dollars. 2.Material prices are based on telephone quotes from vendors as well as current in-house data on material costs.Material costs are quoted FOB Palmer,or Anchorage,Alaska. 3.Cost estimates include shipping of materials from Palmer or Anchorage to transmission line marshall yards and substation sites. PEI-HLY 51-381 120087-02 (02/03/93)ab H-1 10. 11. 12. 13. 14, 14. The construction cost estimates for the line and stations use a loaded labor rate of $125 an hour for each construction hour except for right of way Clearing where a loaded labor rate of $100 an hour is used.There is no distinction made between different labor classes. The loaded labor rate includes bare labor,all direct and indirect labor costs,benefits,cost of construction equipment operation,construction consumables,per diem,travel,and profit.The loaded labor rate assumes that Alaskan prevailing wages will be paid.Helicopter costs are not included in the loaded labor rate. Engineering includes optimizing the line and station designs,performing engineering and detailed design functions,and preparing construction drawings and documents for construction of the project. Surveying includes control survey,aerial mapping,centerline survey,and land surveys(easement and land acquisition descriptions and plats). Construction staking includes staking structure and guy locations prior to construction and after the right of way is cleared. Construction Management includes procurement,contractor selection, contract administration,field inspection,testing and energization of the facilities. Geotechnical costs include performing field investigation and drilling, laboratory testing and preparation of a geotechnical report. The Environmental Studies are budgeted for preparing and certifying an Environmental Assessment Document.Securing project permits are included in the estimate.It is assumed that an Environmental Impact Statement will not be required. The Cultural Resource Study will include an on-site reconnaissance during the field investigation phase. The Easement Acquisition Work will include approximately one senior staff right-of-way agent plus support for approximately six months. Land Acquisition costs are based on 376.97 acres of private and native- owned land at $660 an acre. Administration costs include the $325,000 allocated for the AEA Feasibility study and CVEA's costs to administer the project. PEI-HLY 61-381 120087-02 (02/03/93)ab U-2 15. 16. Right of way clearing include clearing a 100 foot right of way.The transmission line is organized into four segments based on the vegetative cover.The clearing cost estimate includes both burning and lop and scatter. Line Length is approximately 134 miles long.Conductor is 556.5 ACSR "Dove".Steel H-Frame structures are specified for line segments 1,3, and 4.Helicopter construction is assumed for line segment 2 which is specified for single pole steel structures.Pipe piles are assumed for use in Line segments 3 and 4.Rock holes are assumed in line segment 2. No overhead ground wire is required.Approximately every tenth structure is longitudinally guyed for "failure containment”. PEI-HLY 51-381 120087-02 (02/03/93)ab -3 COST ESTIMATE SUMMARY ENVIRONMENTAL Studies &Permitting 400,000 Cultural Resource Surveys 300,000 $700,000 RIGHT OF WAY Easement Acquisition Work 200,000 Easement Purchase 248,800 448,800 GEOTECHNICAL Field Drilling 150,000 Laboratory Testing &Report Preparation 45,000 Helicopter Support 125,000 320,000 ENGINEERING Survey 1,100,000 Substation Engineering 300,000 Line Engineering 500,000 Structure Staking 200,000 Helicopter Support 200,000 2,300,000 LINE CONSTRUCTION ; ROW Clearing 6,301,187 Construction Labor 10,382,689 Material 8,578,579 25,262,455 SUBSTATIONS Labor 1,143,468 Material 2,441,470 3,584,938 CONSTRUCTION MANAGEMENT Procurement 220,000 Contractor Selection 150,000 Contract Administration 800,000 Field Inspection 1,200,000 2,370,000 ADMINISTRATION AEA Feasability Study 325,000 CVEA Administration(5%of Construction)1,442,370 1,767,370 SUBTOTAL $36,753,563 CONTINGENCY (10%of Subtotal)3,675,356 TOTAL PROJECT COST $40,428,919 PEI-HLY 51-381 120087-02 (02/03/93)ab i-4 Il.PROJECT SCHEDULE OLIMER Ill.PROJECT SCHEDULE INTRODUCTION The proposed Project Schedule,which is enclosed at the end of this section, depicts the time duration for completing the major tasks associated with the Intertie project.A major emphasis was placed on developing a realistic and feasible construction schedule for the project.Input was received from Hart Crowser,two transmission line contractors and Alaskan utilities. POWER's cost estimates included in this analysis are closely tied to the construction schedule since the cost estimates are based on labor hours, production rates and a loaded labor rate. PROJECT APPROVAL The Alaskan Energy Authority (AEA)Feasibility Study for the project is scheduled for completion by first quarter 1994.The project schedule assumes that the State of Alaska will approve funding for the project by January 1,1994 which will allow additional environmental work and _right of way acquisition to commence.POWER is assuming that the Environmental Assessment (EA)would be certified by second quarter 1994. Right of way permitting and acquisition would be conducted in parallel with surveys with all permits and right of way obtained by fourth quarter 1994. Rural Electrification Administration approval of the Construction Work Plan and Borrower's Environmental Report would be obtained shortly after certification of the EA. ENGINEERING &CONSTRUCTION A number of significant issues were considered in scheduling the engineering and construction for this project.Considerations include;length of line,terrain,weather,right of way clearing,access,geologic conditions, remoteness,local lodging,number of contractors,and productivity. PEI-HLY 61-381 120087-02 (102/03/93)ab M-4 Engineering is scheduled for start second quarter 1994.Survey activities would be conducted in parallel with the right of way acquisition effort.To obtain the easements the centerline needs to be identified so that easement descriptions and plats can be prepared. Its important to note that the project is organized into four zones (see Appendix B for detailed discussion)to represent the different clearing and construction requirements.The survey,clearing and construction need to be carefully coordinated to maximize productivity.A significant amount of survey work will be required before the right of way is cleared.Control, aerial mapping,centerline identification,and land surveys will have to be completed before a significant amount of clearing can be completed.During the centerline identification process the centerline will have to be flagged for the cultural resource survey and for right of way clearing.The survey subcontractor will utilize a considerable amount of helicopter time to assist with the process.The permafrost zones 3 and 4 will be surveyed in spring/summer probably requiring helicopter access to a lot of locations. Survey work is scheduled for completion last quarter 1994. Line and substation engineering will commence second quarter 1994 and be completed first quarter 1995 (approximately 10 months).Preliminary centerline identification will be completed third quarter 1994.Final design and structure spotting is dependent on receiving final geotechnical data by last quarter 1994.Geotechnical field work for zones 1 and 2 is scheduled for summer 1994.Geotechnical work for the perma-frost zones 3 and 4 is scheduled for fall/winter 1994. Based on input received from construction contractors it seems reasonable to assume that the project can be constructed within nineteen months. However,to complete the right of way clearing,access road construction, line and station construction in nineteen months it may be necessary to have multiple right of way clearing and construction contracts in place to keep the project on schedule.Also,by having multiple construction contracts in place for line,station and right of way work it will be easier for more firms to bid the contracts as a result of the bond amounts being lower. However,if the contract amounts are kept to low the larger competitive Alaskan and lower 48 contractors may not bid which could drive the costs of the project higher.Suffice to say that the contracts will have to be structured to assure that a competitive bidding environment takes place given the amount of other project work that may be available and the amount and size of available qualified bidders at the time this project is ready for construction. PEI-HLY 51-381 120087-02 (102/03/93)ab N-2 Most of the right of way clearing will take place during the winter months because of fire concerns.Also,clearing and access road development is timed to start right after the right of way acquisition process is completed. If large contiguous parcels could be obtained early in the easement acquisition process then it might be possible and desirable to move the clearing and access road development ahead in the schedule.The schedule assumes that the right of way work will stay ahead of the pole excavation in zones 1 and 2 scheduled for start in first quarter 1995.Depending on availability and financial condition of right of way clearing and road access construction contractors it might be necessary to have two to four contracts in place. The transmission line in zones 3 and 4 will require winter construction because of the geologic conditions along the route.Piles will be installed in these zones.It is anticipated that two construction contractors or one large construction contractor with two sets of crews will perform the work for zones 3 and 4 from October,1995 through May,1996.Piles would be installed from October,1995 through February,1996.If enough right of way could be obtained and enough clearing could be accomplished in last quarter 1994 then a contractor could start installing piles in January,1995 which would give a good head start for the construction scheduled for 1995 and 1996. Structure excavation for zones 1 and 2 will commence spring 1995.It is highly unlikely this time could be moved up because enough clearing won't be accomplished before the snows hit the higher elevations for line construction.Plus the materials won't start arriving until May,1995. Construction for zones 1 and 2 will be mostly completed prior to December, 1995 with completion scheduled for April 1996. Substations will be mostly constructed in summer of 1995. PEI-HLY 51-381 120087-02 (102/03/93)ab I-3 PROJECT SCHEDULE COPPER VALLEY ELECTRIC SSueD DECEMBER 12 SUTTON -GLENNALLEN 138KV_INTERTIE POWER ENGINEERS.INC. HAILEY.IDAHO SERVICE year PSSS7 1993 994 994 TASK 3E 1995 (995 }1996 i996MONTH[JAN]FEB j MAR]APR(MAY]JUN]JUL |4UG|SEP |OCT |NOV DEC J JAN]FEB fmaR!APR}Mayi JUN |JUL |AUG|SEP JOCTINOV]DEC JAN |FEB MAR!PR May}JUN |Jui |AUC {SEP OCT NOV |DEC]JAN |FEB |MAR|APR May |JUN |JUL |AUG |SEP]OCT {NOV |DECAEAFEASIBILITYSTUDYcooeetethenetettteeeteehtreeSerereterrerereSererereeereereerSRRRRERRRERERRSERRE EA CERTIFICATION Peter erent Rte tstet tte te nettet eter nrttee ister trate rr eee tree ore r terre rrr eerrereresesgy Be Ae Ges Oe ee Ge ee Dee ses eee ee Se Se Oe en os oe ee oo ees Coe oe patel ROW PERMITTING J ACQUISITION crrrerreecrecerrretreeceereeeeeeeneenentceerege:Bp ee ee es Coed (eee Be tees ee ee Geen Coes ee Fes es re foe eed ee bee Coed es Oe eet ee Oe Oem Soe z ROW SECURED TRANSMISSION LINE LEGEND ZONE 1,2 TIMELINE ROUTE SURVEY -cccccceceece creer eree tees este teteetaes et etnteee tenes ceeeeeneneanenenenenens Bs Is (os fa Ce Oe oe ls Coes Pw oes Oe bees es Gm es es oe oe ey Oe oe ee Oe Oe en Oe Je le Bed ZONE 3,4 TIMELINE SoA mele cence eeeeesenssasaeneaseereeecensrsuaceeeeeeusedcecasseessesescagereneeeeseeene eed Pas Oo Dos Gd Bo Fs Cs es Oe Ss ee Oo Se et Be Oo PEPECPEP ETE Bay OG es See Ee Cee pe Be 3 See See5 SUBSTATIONS ACTIVITIES FINAL DESIGN/STRUCTURE SPOTTING ccccccrccrreeecrecerceneseeteceeceserertees Bee fore Fees Gee eee Oe Ke es Se Oe Oe ees nee ee es Qed eee nes Coe ee Gee ee oe See See ed Oe oes ee Doe Ans ed De ee A ae ||acumen /-MILESTONE CONTRACT PREPARATION/MANAGEMENT -vccceeeeccereeeetetreeere efefedepeledefebed deadep depp dd pp bp pp df dd dd CONSTRUCTION STAKING ocr rete cee eeeceenesecrenenseeeeees Bos Ss Pee lees (et Pe fa ee Oe Cs ee bo lee Oe De Se Os Dee Dos Doe ne Se no nt De Sie Gnd De CO Od De De oe Dey De Os Od De ROW CLEAR,BURN,ACCESS ROAD DEVELOPMENT °°PhP Ed pp bp Pp pp PP tL Ld LL eONGTRUE .. MATERIAL DELIVERY TO MARSHALL YARDS (ZONE 2)---Was So (Pk PO Je ee Oe DOs Ces Dt Os Coes De De Ce Ge Be ms Oe Doe ces rs ee Cem Oy Dee oe rs es Go Ce Sed Dee Os Gos Oe Ce Cn ee Oe os Oe Ss et nS es GOO GO J ok Oe Oe Se OB MARSHALL YARD ASSEMBLY (ZONE 2)<r erer Be Fs GON (pe Gk de Fs et De Ge CON feels (er GL COs One Se Cie Oe Oe Coe Oe Oe er Oe Ce Ow Dd Ds FS DY Ge DO De Gs GD Oe OO MATERIAL DELIVERY TO SITES dee cenececcaeeececneeeeeeeneeetenenecerenerscaseneceneunentegs sdeebeede debe fede bedeedbebeedeecpebedee peed pe deobeefeedee de Peedepebe dtp fd bbb be deed peepeedecdtcobeefecdecben Be deesperdas deocbeobecdeecboabes EARTH EXCAVATION orcseeeeetetecctteceticesctceeeneeneneeneneenreneeteneenectan:Bos Pa (ore be oes Ge re Fees Sees 0 Coes oe On ce Ces De De Ors Oe Oe Sek We Goer Cs Oe Ce Gs es 0 Fe Os Foe Oe Cee De ce ee OC Oe Ce Se Oe ee Oe De ROCK EXCAVATION sircceccccr crescent esses retteneteseeteatneseeneseesenensneneneney Faas Se Ps Pe Sos eee Oe Gm Ss Dt ee bel Qe See Oe bf elie SO Ge Oe fe Ot OV GOO Sos OD Sees ns De On De De DO PILE FOUNDATIONS -rvvcccccesseccrseeeeeereeeeceseeceeeteeeeeeeceeneseenaseensreeransneesseeeaes fap is (ee ee Fe (On ee Oe lees er Gee co Os Ge aces ms be rs ee Ce Cee Oe Cee es bee Sees Oe Do See)ny Oe ce ees er Oe ce es Cee ce ne ee ce Cond be On ee es Oe Ge Ge eS DO De dD POLE INSTALLATION -ccceccccceccececereseeeeteececeeceresteetrettteeeceneseeneneneererereases Bas Gs Fe Fa ns ee em St Oe Bo Sy ee Oe snes De be Ot es bs Ss oe es ee See Sk De Od De Oe So es De Cs nes De Lo OB Dd Oe Ge Ds OO OD Oe OO DO 4 FRAMING covceccceeeecestecesceces ees ctetee eerste eeeeen scene scnenensseneeetnerersnneceeeanererestisesenaeetienny Fase Rees (ee ne Oe On Oe Fe Se Ws GS Se es Ce Ds CC De Geet De (Ot Gs ed eS Ct Gre OO ed re DO Dt Fs Os mr Be OO Sd De OSs ne OO Gs OC DS Oe PREPARATION FOR STRINGING crvvcccce etc eccseseeeesteeeeeseeeeneseentetenes Fa)(rs Pe Oe (de Ce es Ore Ce Ce Od ee Gres (ne bs Fees ok ne oe ne Dee De Go Ot BO (ns J Cees De bee Ss Be De Ss oe ns DG Se FCs OS GS DD DO SET SCREW ANCHORS 2c cet eee ees ee eeeteeter es eee ee nee seneneneeenentes Boy (oe fe rms (0s be Foes Os Ba be (od Dee One So bry Ot Ons emt De Fes es ve DSS)Ge DS)Ce Sn Ob Ss et ne Gs ny De Ss es Be ee Oe GS BS OO OD SET PILE ANCHORS 20 ec cect rete eete rt escent etree creer neneneeeeiannicerey Fae Se Fe Cons ee Om Ges em Or GUO BG CPS PS Qe One nt Se Gs tr SS VS Cd nw Se me Ss Os i Ss De Fs Os Dw Oe Cy Os Co lt DO lS SO OO ED GC Oe A Od J BO INSTALL ROCK ANCHORS oirccceec cette et ee eceeeeeteetettees ieee eens neeeeasenenes Bas es Sees be Fes Gnd We re Ore me Pe Goes os 0m Cs ne Des Cs re Dee Cs Oe es eB sed De Ome Os es Fe Sn Oe Se Os Los Ce De Os eve ee Ge 0 i Oe Oe Soe Wd OS WO INSTALL GUYS corer rece teet teeter et tce cee recetnnecnsenenenteeceneeetnenengs So Soe es oe Be Gs Ge Fs DOS Gr Sm os et Os See De De Ges (nO De Ss Crs ps ones Cede GS Ds On oo ees COs Dn OO Or GO Ce OO Oe DOO Oe DO OO SB OO STRING,SAG,CLAMP-IN CONDUCTORS revere tes Fan ee Ree Se)Bae pee oes Ge Be le Gs Boe bs Cnet Bn Oe SO ne Om Sos OS BSD Ss (es (Se)Ga tn Uns Sn SO Ss nes Ge Ss ns Dn GO Ss Dt SO SD (OG OO DJ OO OD PLACE VIBRATION DAMPERS --vccceieececcsceeccereereeereeeereeserraeetanens Bi ne Coes (nee Be Fs Sree bs es Ce De es ee Ge 0 Ore ne CS BF Ce Li CO DS (ne BS Cs De 0 id Ue SS 0 OOO Sd We We ee Oe FC OD OS OD FINAL INSPECTION orescccececereeeesteeeeseeeecceeceetsereeeenenensseeneseserneseseeneenseeens Fe Seen Sees Oo Gs ue Dee pee coe Ss Pee snk We Dr (ie Crs De bees Grd Dae Ge Cd ms De (nk Ws ne Less Be Os nt De Fs oO Ss ee DO Ge Ot Um Cd re Se De ee Dek ee Os De Cd OG OO OD DO PREPARE TO ENERGIZE vrvcecceeceteeeceestereeeecceereeseeeceeeeeneaeeeneseanenereneeeens wpe.FO FO (ot Oe Pee See Ces Ge Fee lt Oe Om Cm oe SCs Ws Ore Oe DO Ss See ne nek Dew Uo Gis Ee DS We Be Gs eo Oe Oe Gd De GC ee Oe Coes Pe Set rs Fm Oe (Oe lO A CS Dt SN OG HD OD J OB DEFICIENCY CORRECTION coccccceecreeserecetteterteettreeeneeeneeereeeeeanetaees Boy Fe (an See bee Fee (ns De On Ces Des Hee Sees md Doe Hoes nes ne Ome Snes Be pe Ss ms se Ss ed De Sc Ss GS Cn ne DO Cs Ds ls Gt sD Oe Bs G(s De Gl We Oe Gk (et Gre Se OS De OO Gt Be SG FL Dd GO GO DO a FINAL CLEANUP ccccccceccerereerceereeeeeeteetacecereceseeeneneesenorneneeencesienegs on Gn as Cy J Cs oe FC Oe Fre lee Gt Ee GO Ge Set ne OC Qe Oe OO rd Dn Gs Cs Dn CO Ss Ol De BSS me DL Ge ee Fs (ned Fe CO CN vo FO de FG SS Ge Fe Od Ew Gs Gd OOOO OO l/sittttii SUBSTATIONS ENGINEERING Pee eee Eee eS ere e See e Teer eee Five (nee ee Gs De ees lee ee Gerd Wn a So (ee Oo Gs Se De ee Sd Dee ee Crd eee ees ney ee Oe nee oe ones ed ee Se es | MAY,1996 PROCUREMENT Se ee oe eee eee eh tt ore Sete Sore ee oe eee eee ere eee eee Terres Ba re ae Soe rere Dee re Seed rare bere Sees Sere ee Ses Ores bee Sires See ere eee eee ee ere eee ce Od ce Cee eed Gee oe Diet eee ie Coe Ss eee eres Ged ere ee es CONSTRUCTION cece ccecreetrercterteeeeteeeeeneceneeteeesnesecessesteasteesneessneesseecsreasenten oss fen sD nf Fs 68D GG oS OY ne OF Oe GO oD (eG EOD 60 SO lO DO MONTH §JAN |FEB |MAR]APRIMAY |JUN JUL |AUG]SEP [OCT INOV|DEC §JAN |FEB IMAR|APR |MAY JUN |JUL |AUG}SEP |OCT |NOV|GEC J JAN |FEB IMAR}APR Mar]JUN |JUL [AUG {SEP LCCT I NOV |DEC J JAN |FEB |MAR|APRI MAY}JUN |JUL |AUG]SEP |OCT [NOV]DEC YEAR 11993 1993 }1994 1994 f 1995 1996 71996 1996 CLLMER” IV.ROUTE ANALYSIS _OP2QMER) IV.ROUTE ANALYSIS INTRODUCTION A number of possible route options have been proposed for the transmission link between MEA's O'Neil Substation to AEA Pump Station No.11,a distance of approximately 134 miles.The Northeast Intertie Feasibility Study looked at two route options paralleling the Glenn Highway.The Northeast Intertie Concerned Residents (NEICR)proposed some other route options than what was proposed in the Northeast Intertie Study. Hart Crowser,Incorporated has performed a review of the proposed routes and has developed a route that varies only slightly from the original Northeast Intertie selected route.Changes were made to facilitate pole construction rather than guyed towers,to accommodate,to the extent possible,the public comments obtained during and after the Northeast Intertie Study was completed,and to improve access and right of way acquisition. In order to meet these various goals,not all of the suggested route changes made by NEICR could be accommodated.Following are the results of this study. ROUTE DESCRIPTION The route,as modified from the Northeast Intertie Study begins at the O'Neil Substation and goes directly north 1.2 miles.It proceeds east and then northeast roughly parallel to the Glenn Highway crossing the Kings River and then turning east.Much of this initial portion of the line crosses privately owned land and only departs slightly from the Northeast Intertie route.The next segment of the line departs from one to three miles to the north of the Northeast Intertie route and goes northeast across California Creek,then east across the Chickaloon River and northeast to a point north of Rush Lake.Finally,the route returns to the Intertie route in a southeasterly directions.It follows the original intertie route parallel to the Glenn Highway to a point just east of Hick Creek and just north of the Glenn PEI-HLY 51-381 120087-02 (02/03/93)ab W-1 Highway.Most of this segment from Chickaloon to Hicks Creek is on state land.The route then departs northeast and north,first across native land up Pinochle Creek and then on federal land over the mountain pass to Hicks Lake and into the Caribou Creek Valley.It follows Caribou Creek downstream to Squaw Creek,and from there proceeds eastward along Squaw Creek entering native-owned land in T21N,R11E,S.M..The route leaves Squaw Creek near the Glenn Highway approximately one-half mile north of the highway near Tahneta Lake and runs parallel to the highway northeast past Eureka Roadhouse and enters state land in T22N just north of Eureka Roadhouse.The route continues northeast and turns in an easterly direction three miles west of the Little Nelchina River.It remains on the north side of the highway and is within one half mile of the highway until Snowshoe lake where it averages roughly one mile to one and one quarter mile north of the highway.The route goes to the north of Moose Lake taking it approximately two and one half miles away from the highway, and from Tolsana Creek to Glennallen,it runs directly east one mile north of the highway.It enters native land four miles west at Glennallen and turns 90 degrees south just before the Alyeska Pipeline and connects to the substation south o the Glenn Highway adjacent to the pipeline. CLEARING Most of the route has heavy trees and will require extensive clearing except for a stretch over the mountains from the upper end of Pinochle Creek to Caribou Creek,and from just north of Mendeltna to just north of Tahneta Lake,which are both sparsely tree-covered. PILES/GEOTECHNICAL CONSIDERATIONS Pile foundations will be needed for a distance of approximately 70 miles west of Glennallen.Shallow rock may be encountered in the area of the mountains between the highway and Caribou Creek.Piles will average 25 feet in length. The following is an estimate for geotechnical investigations for this project: Drill Rig,Crew,Geologist,Truck $130,000.00 and Subsistence Mobilization &Demobilization Laboratory Testing $20,000.00 Report Preparation $25,000.00 Helicopter Support $125,000.00 TOTAL $320,000.00 PEI-HLY 51-381 120087-02 (02/03/93)ab V-2 | AVALANCHE HAZARDS The route has been realigned to avoid the obvious avalanche hazards. However,during the subsequent studies areas along Caribou Creek and Squaw Creek need to be examined to determine whether hazards exist. ENVIRONMENTAL STUDIES AND PERMITS We have determined that beyond the feasibility study phase,an Environmental Assessment (EA)and permitting phase will be necessary. This will begin with development of the EA followed by the permitting phase.This effort will require two people for a total of six months plus support staff and drafting.Additional costs will include air photos, helicopter and field costs for reconnaissance and reproduction costs.The total cost of this effort is estimated to be $400,000.The work is estimated to be completed in six months,with follow-up work to continue for three months. RIGHT OF WAY This task consists of obtaining private right of way through private and native-owned property.It is anticipated that one senior staff right of way agent plus support will accomplish this task in six months.Total cost of staff is $200,000. An appraisal of 160 acres of land at Mile 111 of the Glenn highway (NE1/4, Section 26,T2ON,R10E,SM)was performed in the first quarter of 1992. The appraised price per acre is $660. The total acres required for easement acquisition is estimated at 376.97. Total payment cost for the easements is $248,800 (376.97 X $660). CULTURAL RESOURCES A study of cultural resources in right of way will be necessary during the EA phase.This will be followed up by an on-site reconnaissance during the field investigation phase.In addition,locations of borings to be done during the geotechnical investigation will be necessary.Estimated total costs for cultural resources work is $300,000. PEI-HLY 51-381 120087-02 (02/03/93)ab WV-3 | V.LINE ANALYSIS CLIMER V.LINE ANALYSIS INTRODUCTION This cost estimate is developed for the engineering,ROW acquisition, material purchase and delivery,and construction of the 134 mile long "Sutton -Glennallen 138 kV Intertie Transmission Line”. The "tool”used to generate information was a set of interconnected spreadsheets on computer.Unit rates and factors were combined into totals in a way where changes to any component are made easily and the effects are recalculated automatically.The additional benefits of using this set of spreadsheets is that the sensitivity of the cost estimate to changes in unit rates or quantities can be explored.With the right computer and software,most of these sensitivity exercises can be done very quickly "on screen.” The spreadsheets are in two basic groups -labor and materials.A printout of each spreadsheet file is included in this report.The parameters and criteria used to develop the cost estimate are easily described below by way of a description of each file's input and output. The cost estimate displays various "per mile”costs for labor,materials, clearing,etc.The Cost Estimate Sensitivity section describes some of the sensitivities and items that control the cost estimate.These include construction methods and design features.. DESIGN CRITERIA The line and structure design values used in this estimate are based on the Design Criteria documented as Appendix A.Appendix A_includes arrangement drawings of the various structure types assumed for the estimate.We have taken the approach that,due to the high labor costs and sometimes low productivity caused by geography and climate,money is best spent on materials and designs that reduce labor needs. PEI-HLY 51-381 120087-02 (02/03/93)ab v-1 To this end,we foresee structures that: a)are light,easy to transport and erect, b)simple to assemble,and Cc)have large wind and weight span limits.- 2 , In simplest terms,this dictates the use of very strong poles -tall with no bracing systems and limited use of guys and anchors. TLCADD -LINE DESIGN The transmission line design and optimization computer program TLCADD was used to quantify the structures on the project.The profile used was "extracted”from the 1:250,000 "quad”maps included in half-size in Appendix E. In fact,TLCADD's results on first pass suggested benefits of a design revision (further spanning out with stronger H-frame structures)that yielded significant savings. At this point,we have to assume that the quality of profile extracted from the maps in fact produces a structure count and usage across the project that is sufficiently accurate for estimating purposes.The TLCADD profiles and reports are included in Appendix D.We do expect that usage of particular types and heights of structures may vary significantly from results obtained with a detailed profile.However,unless the total count changes, the impact on project price will not be large... Through further design "tuning”,we are ultimately in control of the structure count and therefore the resulting costs. SCHEDULE A Project Schedule based on the task durations developed in the cost estimate process is presented in Section Ill.The purpose of the schedule is to indicate the timing and number of Contracts necessary to complete the work,given the latest start date and desired completion date. Section Ill includes a commentary on the schedule and a list of assumptions that control it. PEI-HLY 51-381 120087-02 (02/03/93)ab v-2 MAJOR LINE COST ESTIMATE ASSUMPTIONS The major assumptions developed for guiding the transmission line cost estimate are listed below.Other,detail oriented assumptions are included elsewhere throughout the document,including the appendices. The estimate assumes: e 1992 $,taxes extra e The lfoaded labor rate includes all direct and indirect construction labor costs plus the cost of construction equipment,operations, construction consumables,per diem ,travel,etc. Material is FOB Anchorage Poles are weathered steel and include costs for climbing devices NESC grade B construction556.5 Kcmil ACSR conductor,no overhead groundwire The line design includes a "failure containment”scheme comprised of a longitudinally guyed line structures every 10 structures or so. e Helicpoter construction for Zone 2:1.AS-332L Super PUMA for steel pole lift and delivery to polelocation 2.BELL 205A-1 for personne!and material transport PEI-HLY 61-381 120087-02 (02/03/93)ab V-3 LABOR COSTS Four files develop the labor costs for the estimate. Labor Unit Costs | Production Rates Production _ -Labor Cost Summary Each is described below. Labor Unit Costs © This 1 page file is used to input: 1 Task and subtask numbers and descriptions,2 Hourly rates,3 Manpower needed to accomplish a subtask,and 4 A "normal”day's duration (hours) The file calculates: 1 The "loaded”labor cost per day of effort on all subtasks. The file uses a unit cost of "per day”-a unit compatible with developing a subtask duration.This latter item is useful for developing a job schedule. The loaded rate noted at the top of the page applies unless another"special”rate is imposed in its place. Production Rates This file is used to declare "normal”production rates expected per day,per subtask for the crew sizes noted above.Productivity units vary - miles/day,acres/day and structures/day. In addition,the file also declares productivity reduction factor for four zones along the route.These percentage figures alter the "normal”productivity expected based on the varied features of the four zones on the powerline route.The selected percentage values and descriptions of the zones are included in Appendix B. Nothing is calculated in this file. PEI-HLY 51-381 120087-02 (02/03/93)ab v-4 Production This file declares: The line length of each zone, The average span length in each zone, The number of structures in each zone, Percentage of foundation type per zone, Percentage of guyed structures per zone,and Percentage of deadend structures per zoneOahaAh - Items 1,2,3 and 6 come from a design run of TLCADD. The file is used to calculate: 1 Total number of days required to complete each subtask The number of days to complete each subtask is calculated by combining the factored "normal”production rates noted in the Production Rates file with the job totals for miles,number of structures and acreage noted in this file.Acreage is calculated based on a 100'right-of-way width.It is these subtask durations in days that are useful for developing a schedule and/or noting their suitability to a desired schedule. For example,if the 159 days to install piling is not acceptable,then the combination of the noted 3 man crew producing at a rate of 1.8 structures per day (3.0 factored by 60%)needs alteration -say to 4 crews producing at a rate of 7.2 structures per day. Labor Cost Summary This file calculates the labor cost per subtask,per zone by multiplying the subtask cost per day in the Labor Unit rates file by the days of production required in the Production file. These costs are summed to subtask totals,task totals,zone totals,and a project total.This last Project Total Labor Cost value is sent to the Cost Estimate Summary file for addition to the material cost estimate. PEI-HLY 51-381 120087-02 (02/03/93)ab V5 'LABOR UNIT COSTS Loaded Rate $125 -Normal Special Task No.Task Unit:$/_-sUnit Cost_= Manpower Day Rate 1 ROW Preparation 1.1 Cutting day $6,000 6 10 $100 1.2 Clearing day $3,000 3 10 $100 1.3 Burning day $3,000 3 10 $100 1.4 Access Road Development day $2,000 2 10 $100 2 Material Handling 2.1 Mat'l Delivery to Marshall Yards day $5,000 4 10 $125 2.2 Marshall Yard Assembly day $5,000 4 10 $125 2.3 Mat'l Delivery to Str.Sites day $5,000 4 10 $125 2.4 Helicopter Delivery to Str.Sites day $68,000 1 10 $6,800 3 Foundations 3.1 Earth Excavation day $3,750 3 10 $125 3.2 Rock Excavation day $5,000 4 10 $125 3.3 Permafrost Pile(s)day $4,000 4 8 $125 4 Structure Erection 4.1 Pole Installation day $5,000 4 10 $125 4.2 Framing day $5,000 4 10 $125 4.3 Prep for stringing (set travellers)day $3,750 3 10 $125 §Guy/Anchors Sets 5.1 Set Screw Anchor day $3,750 3 10 $125 5.2 Set Pile Anchor day $5,000 4 10 $125 5.3 Install Rock Anchor day $5,000 4 10 $125 5.4 install Guy day $3,750 3 10 $125 6 String Conductor 6.1 Run in PullingLine day $25,000 5 10 $500 6.2 Set up stringing equipment day $6,250 5 10 $125 6.3 Pull Conductor Set day $6,250 5 10 $125 6.4 Make Splice day $3,750 3 10 $125 6.5 Sag in Section day $6,250 5 10 $125 6.6 Clamp in day $3,750 3 10 $125 6.7 Dead end Installation day $5,000 4 10 $125 6.8 Place Vibration Dampers day $2,500 2 10 $125 7 Energization 7.1 Final inspection day $3,750 3 10 $125 7.2 Prep.to Energize day $6,250 5 10 $125 7.3 Deficiency Correction day $6,250 5 10 $125 7.4 Final Cleanup day $5,000 4 10 $125 V-5a PRODUCTION RATES "Normal”Productivity (%of "normal”day) Task No.Task Productivity Units Zone 1 Zone 2 Zone 3 Zone 4 1 ROW Preparation 1.1 Cutting 3.5 acres/day 70%150%120%90% 1.2 Clearing 3.5 acres/day 70%150%120%90% 1.3 Burning 3 acres/day 70%100%120%90% 1.4 Access Road Development 6 str/day 80%70%120%140% 2 Material Handling 2.1 Mat't Delivery to Marshall Yards 12 str/day '90%'* 2.2 Marshall Yard Assembly 20 str/day .90%.. 2.3 Mat'l Delivery to Str.Sites 6 str/day 80%'80%80% 2.4 Helicopter Delivery to Str.Sites 20 str/day '90%'. 3 Foundations 3.1 Earth Excavation 10 str/day 80%50%80%80% 3.2 Rock Excavation 3 striday 80%50%80%80% 3.3 Permafrost Pile(s)3 str/day 80%80%60%60% 4 Structure Erection 4.1 Pole Installation 7 str/day 80%228%70%70% 4.2 Framing 7 striday 80%228%70%70% 4.3 Prep for stringing (set travellers)10 str/day 80%80%80%80% 4.4 Helicopter transport,crew and equip.7 str/day 25% §Guy/Anchors Sets 5.1 Set Screw Anchor 3 str/day 80%50%70%60% 5.2 Set Pile Anchor 3 str/day 80%50%70%60% 5.3 install Rock Anchor 3 str/day 80%50%70%60% 5.4 Install Guy 5 str/day 80%50%70%60% 6 String Conductor 6.1 Run in Pulling Line 5 miles/day 80%65%70%70% 6.2 Set up stringing equipment 1 miles/day 80%65%70%70% 6.3 Pull Conductor Set 1 miles/day 80%65%70%70% 6.4 Make Splice 3 miles/day 80%65%70%70% 6.5 Sag in Section 1.5 miles/day 80%65%70%70% 6.6 Clamp in 5 miles/day 80%65%70%70% 6.7 Dead end installation 15 str/day 80%65%70%70% 6.8 Place Vibration Dampers 8 striday 80%70%80%80% 7 Energization 7.1 Final Inspection 20 str/day 80%65%80%70% 7.2 Prep.to Energize 40 str/day 80%65%80%70% 7.3 Deficiency Correction 10 miles/day 80%65%80%70% 7.4 Final Cleanup 5 miles/day 80%65%80%70% V-5b PRODUCTION Line Length 134.27 40.34 24.38 47.81 21.74 Average Span Length 1115 1,121 780°1,281'1,275 No.of Structures 642 190 165 197 90 Total Quantity Task No.Task Units Quantity Zone 1 Zone 2 Zone 3 Zone 4 1 ROW Preparation 1.1 Cutting day 478 200 56 138 84 1.2 Clearing day 478 200 56 138 84 1.3 Burning day 590 233 99 161 98 1.4 Access Road Development day 117 40 39 27 11 2 Material Handling 2.1 Mat'l Delivery to Marshall Yards day 15 15 2.2 Marshall Yard Assembly day 9 9 2.3 Mat'l Delivery to Str.Sites day 99 40 41 19 2.4 Helicopter Delivery to Str.Sites day 9 9 3 Foundations see percentage fdn type to right> 3.1 Earth Excavation day 31 14 17 0 0 3.2 Rock Excavation day 87 32 55 0 0 3.3 Permafrost Pile(s)day 159 0 0 109 50 4 Structure Erection 4.1 Pole installation day 103 34 10 40 18 4.2 Framing day 103 34 10 40 18 4.3 Prep for stringing (set travellers)day 80.24 21 25 1 4.4 Helicopter transport,crew and equip.day 94 94 §Guy/Anchors Sets see percentage guyed structures to right> 5.1 Set Screw Anchor day 12 6 7 0 0 5.2 Set Pile Anchor day 17 0 0 11 6 5.3 Install Rock Anchor day 14 6 9 0 0 5.4 Install Guy day 26 7 9 7 4 6 String Conductor see percentage DE structures to right> 6.1 Run in Pulling Line day 37 10.1 75 13.7 6.2 6.2 Set up stringing equipment day 187 50 38 68 31 6.3 Pull Conductor Set day 187 50 38 68 31 6.4 Make Splice day 12 3 3 5 2 6.5 Sag in Section day 125 34 25 46 21 6.6 Clamp in day 37 10 8 14 6 6.7 Dead end Installation day 30 7 9 6 9 6.8 Place Vibration Dampers day 104 30 29 <3 14 7 Energization 7.1 Final inspection day 43 12 13 12 6 7.2 Prep.to Energize day 22 6 6 6 3 7.3 Deficiency Correction day 18 5 4 6 3 7.4 Final Cleanup day 36 10 8 12 6 V-5e Foundation type percentages Zone 1 Zone 2 Zone 3 Zone 4 60%50%0%0% 40%50%0%0% 0%0%100%100% Guyed Structure percentages 7%6% 12%12% 7%8% 14%14%12%12% Deadend Structure percentages 20%20%20%20% 4%5%3%10% 3.1 Earth Excavation 3.2 Rock Excavation 3.3 Permafrost Pile(s) 5.1 Set Screw Anchor -§.2 Set Pile Anchor 5.3 Install Rock Anchor 5.4 Install Guy 6.4 Make Splice 6.7 Dead end Installation V-5d LABOR COST SUMMARY Cost per Zone Task No.Task Subtask cost Zone 1 Zone 2 Zone 3 Zone 4 Task cost 1 ROW Preparation $6,301,187 1.1 Cutting $2,865,021 $1,197,477 $337,732 $827,879 $501,934 1.2 Clearing $1,432,510 $598,738 $168,866 $413,939 $250,967 1.3 Burning $1,769,767 $698,528 $295,515 $482,929 $292,795 1.4 Access Road Development $233,889 $79,167 $78,571 $54,722 $21,429 2 Material Handling $1,104,931 2.1 Mat'l Delivery to Marshall Yards $76,389 $76,389 2.2 Marshall Yard Assembly $45,833 $45,833 2.3 Mat'l Delivery to Str.Sites $496,875 $197,917 $205,208 $93,750 2.4 Helicopter Delivery to Str.Sites $485,833 $485,833 3 Foundations $1,186,424 3.1 Earth Excavation $115,313 $53,438 $61,875 3.2 Rock Excavation $433,333 $158,333 $275,000 3.3 Permafrost Pile(s)$637,778 $437,778 $200,000 4 Structure Erection $1,895,035 4.1 Pole Installation $514,192 $169,643 $51,692 $201,020 .$91,837 4.2 Framing $514,192 $169,643 $51,692 $201,020 $91,837 4.3 Prep for stringing (set travellers)$300,938 $89,063 $77,344 $92,344 $42,188 4.4 Helicopter transport,crew and equip.$565,714 $565,714 5 Guy/Anchors Sets $301,941 5.1 Set Screw Anchor $45,531 $20,781 $24,750 5.2 Set Pile Anchor $86,286 $56,286 $30,000 5.3 Install Rock Anchor $71,708 $27,708 $44,000 5.4 Install Guy $98,416 $24,938 $34,650 $25,329 $13,500 6 String Conductor $4,656,141 6.1 Run in Pulling Line $936,449 $252,125 $187,538 $341,500 $155,286 6.2 Set up stringing equipment $1,170,561 $315,156 $234,423 $426,875 $194,107 6.3 Pull Conductor Set $1,170,561 $315,156 $234,423 $426,875 $194,107 6.4 Make Splice $46,822 $12,606 $9,377 $17,075 $7,764 6.5 Sag in Section $780,374 $210,104 $156,282 $284,583 $129,405 6.6 Clamp in $140,467 $37,819 $28,131 $51,225 $23,293 6.7 Dead end Installation ; $150,916 $33,333 $46,154 $28,571 $42,857 6.8 Place Vibration Dampers $259,989 $74,219 $73,661 $76,953 $35,156 7 Energization $588,218 7.1 Final inspection $162,406 $44,531 $47,596 $46,172 $24,107 7.2 Prep.to Energize $135,339 $37,109 $39,663 $38,477 $20,089 7.3 Deficiency Correction $111,720 $31,516 $23,442 $37,352 $19,411 7.4 Final Cleanup $178,752 $50,425 $37,508 $59,763 $31,057 Added Items:' Contractor Mob/Demob. Contract 1 (Zone 3,4)(20 days x 8 hours x loaded rate x 15 men)$300,000 Contract 2 (Zone 1,2)(20 days x 8 hours x loaded rate x 15 men)$300,000 Helicopter Mob/Demob.$50,000 Zone Totals $4,899,473 $3,793,655 $4,833,875 $2,506,874 $16,683,877 |Clearing Labor $/mile $63,805 $36,123 $37,220 $49,086 Line Construction Labor $/mile $57,649 $119,482 $63,886 $66,226 V-5e MATERIAL COSTS Four files develop the material costs for the estimate. Pole Costs Stores Catalogue Structure Materials Cost List Material Cost Summary Each is described below. Pole Costs This simple matrix of pole prices documents purchase costs for wood and Standard "light-duty”steel poles from the noted suppliers.An LD-2 steel pole is designed to be structurally equivalent to a class H1 wood pole,and so on up the scale.The price of the steel equivalent is not much more than or equal to the wood pole in the large and long sizes. Our analyses,confirmed by a spot-check run by Meyers,shows that our assumed designs and desired spans require class LD-6 (class H5,if wood) for H-frame designs and class LD-8 (class H7,if wood)for the single pole structures. Since wood is much heavier and probably not available in quantity in these classes,and for other minor reasons,we assume the use of steel poles on the project.In fact,we assume the two classes noted above for the H- frame and single pole designs. One reason to prefer steel is the NESC requirement to include a 1.33 over- capacity factor (OCF)in wood pole design calculations for the extreme wind load case.Since this load case controls the pole design almost exclusively on this project and the same NESC OCF for steel is only 1.00,steel yields much better capacities per dollar than wood. The prices used in the estimate include the addition of six thru-holes for bolts and provision for climbing -either step bolts or a ladder.Meyer indicates the two climbing systems can be cost comparable. Stores Catalogue This two page file is simply a list of all items,including an item number and a unit purchase price (FOB Anchorage),for all material expected to be used PEI-HLY 51-381 120087-02 (02/03/93)ab :vV-6 on the project -construction consumables supplied by the contractor(s) excepted.The items are grouped by type/function. The LD-8 pole prices are extrapolated from the Pole Cost file above with a small amount added for the expected number of thru-holes and special features that would be added over and above the basic pole design/price. Appendix C contains the manufacturers'responses to our requests for cost estimates. Structure Materials Cost List This file declares: 1 Structure Types,including a description,wind and weight span limits,and line angle limit,and 2 List of items and quantities per structure type The file calculates: 1 The "net”cost of materials (without the pole costs)per Structure type.These are calculated on pages 2 through 6 and 'summarizedon page 1,a 2 The "gross”cost of materials per structure type and pole length. This latter list is a matrix of costs where the constant per structure type "net”costs were added to the varying (with length and number)pole costs for a total per structure material cost. For purposes of the estimate,at this point,the gross per structure costs for each type used averaged pole costs from the range of costs for 55"to 100” poles -weighted to lengths preferred by the run of TLCADD. Statistical Analysis Reports,Transmission Design Reports and profile printouts from runs of TLCADD in all four zones are included in Appendix D. PEI-HLY 51-381 120087-02 (02/03/93)ab V-7 Material Cost Summary This file declares: 1 The number of each structure type on the project per zone (from TLCADD), 2 Conductor,splice and damper purchase unit costs.These are independent of structure quantity and type, The file calculates: 1 Percentage of each type of structure per zone, 2 Structure material costs per zone, 3 Conductor costs, 4 Total material cost estimate for the project This last Total Material Cost value is sent to the Cost Estimate Summary file for addition to the labor cost estimate.All materials are priced FOB Anchorage,AK. PEI-HLY 51-381 120087-02 (02/03/93)ab vV-8 POLE COSTS CLASS McFarland Cascade -Douglas Fir (Nov.92)|Meyer -Light Duty Steel (Nov.92)|LENGTH 3 2 1 H1 H2 H3 H4 LD1 LD2 LD3 LD4 LDS LD6 LD7 55 $1,191 $1,238 $1,387 $1,550 $1,824 $1,888 $1,953 60 $600 $1,000 $1,100 $1,200 $1,311 $1,352 $1,593 $1,679 $1,953 $2,026 $2,074 65 $1,584 $1,645 $1,721 $1,829 $1,930 $2,035 $2,071 70 $700 $1,200 $1,400 $1,500 .$4711 $1,777 $1,865 $1,984 $2,111 $2,237 $2,285 75 $1,838 $1,916 $2013 $2,195 $2,355 $2,456 $2,516 80 $900 $1,500 $1,800 $1,900 $2,346 $1,974 $2,060 $2173 $2,373 $2,561 $2,710 $2,769 85 $2,111 $2,206 $2,334 $2,556 $2,774 $2,942 $3,01390$2,152 $2,360 $2,554 $2,745 $2,995 $3,184 $3,263 95 $2,395 $2,515 $2,732 $2,982 $3,266 $3,434 $3,524100$2,542 $2,676 $2,921 $3,189 $3,506 $3,647 $3,745 STORES CATALOGUE Item #Price Supplier 1 Cat.# 1 Poles 10355 LD-6:55]$2,019 10360 60)$2,157 10365 65}$2,166 10370 70|$2,368 10375 75)$2,587 10380 80]$2,841 10385 85]$3,073 10390 90|$3,315 10395 95)$3,565 10400 100|$3,778 10855 LD-8:55!$2,060 10860 60}$2,184 10865 65)$2,181 10870 70)$2,402 10875 75)$2,639 10880 80}$2,900 10885 85)$3,151 10890 90]$3,409 10895 95]$3,678 10900 100}$3,905 2 Piles 21030 Pipe Pile 16"@ x 25'|$2,500 raw structural sections 22000 Pole Sleeve}$800 fabricated str.steel 3 Crossarms 36833 ST 6 x 8 x .250"x 33'}$800 _fabricated str.steel 36836 ST 6x 8x .250"x 40;$950 _fabricated str.steel 36933 ST 6x 10 x .250"x 33'|$1,000 fabricated str.steel 4 Insulators (Polymerics). 41500 15,000#suspension}$212 Ohio Brass 512009-1201 43000 30,000#suspension]$244 Ohio Brass 513009-1201 44000 69 kV Vertical Post}$239 Ohio Brass 232336 44500 138 kV Vertical Post;$315 Ohio Brass 522008-1222 45000 138 kV Horizontal V}$750 Ohio Brass 232241 46000 138 kV Jumper Post]$354 Ohio Brass 522009-1002 5 Conductor Connectors 50001 Saddle Clamp (Dove)wclevis}$13 Reliable ATS-125-C 50002 High Angle Saddle Clamp $6 Reliable ALS-2 50003 Vertical Post Saddle Clamp $9 Ohio Brass 270661 50004 Horizontal Post Clamp Adaptor]$21 Ohio Brass 271630 50005 Comp.DE Ass'y (Dove)}$65 Alcoa E33125 50006 Comp.Jumper Pad]$35 Alcoa 50014 Comp.Splice (Dove)}$25 Alcoa 33026 50015 Vibration Dampers}$24 Alcoa 1705-8 50021 Double V-post Bracket}$25 fabricated steel 6 Line Hardware 60001 Y-Clevis-ball,long}$26 Joslyn BT3091 60002 Y-Clevis-ball,short)$11 Joslyn BT3030 60011 Socket-clevis $8 Power Line Hdwr BC-30 60021 Fuse link}$12 7 Structure Connectors 70001 10"@ Pole Band for DE att.Pt.|$42 Joslyn J25967.2 70011 Crossarm Hanger Set (Fargo)|$100 Reliable 5201 70021 Crossarm Pole Band}$28 Joslyn J5201 70031 Crossarm Thru-bolt (3/4")$3 Joslyn J8916 Vv-10 Supplier 2 K-line Reliable Reliable Reliable Reliable Reliable Cat.# KL-138-BS-15 C149061GLW P244030GLW V217054GLW L161046GLW- ACTS-106 STORES CATALOGUE Item #Price Supplier 1 8 Guys and Anchors 81000 10°screw anchor set}$40 Joslyn 81200 12"screw anchor set}$50 Joslyn 81800 Rock anchor!$30 Joslyn 81818 24"plate anchor;$30 Joslyn 82000 6 log anchor;$15 83010 1"x 10'anchor rod]$36 Joslyn 84040 4"x 4"sq.washer $2 Joslyn 83880 3/8"EHS x80}$4 83891 3/8"EHS Guygrip}$10 83895 3/8"3-bolt clamp|$4 Joslyn 87001 Yellow Guy Guard,7"|$7 Joslyn y-1 Cat.#Supplier 2 J23141CAB.4 J23141CAB.6 JR396 J3524 J7440 (E) J930 J1492Y Cat.# Structure Materials/Cost List Line Angle "Net”Mat'l Structure Type Description Wind Span |Weight Span Range Cost VA_{Single pole,detta,V-strings/post 840'1,000'0°-1°$2,251 VB_Single pole,vertical,V-strings,guyed 950°1,100°1°-10°$2,568 VC {Single pole,vertical RC,I-strings 950°1,100°10°-60°$1,511 VD {Single pole deadend 950°1,100'0°-80°$4,185 A_{Two pole,H-frame,I-strings 1,280'-1,560°1,600'0°-2°$1,731 AL|A,with in-span guys 1,280'-1,560°1,600 0°-2°$1,931 ATA,with transverse guys 1,800 1,600°0°-3°$1,881 AS|A,with in-span &transverse guys 1,800"1,600°0°-3°$2,081 AP IA,on piles 1,280'-1,560°1,600°o°-1°$8,331 APLIAL,on piles 1,280'-1,560'1,600"o°-1°$8,531 APTAT,on piles 1,800°1,600°0°-3°$8,481 APS|AS,on piles 1,800°1,600°0°-3°$8,681 B_{Light angle A,offset X-arm and side guys 1,600°1,600°1°-10°$1,863 BP)|B,on piles 1,600"1,600°1°-10°$11,863 C -|3 pole running corner 1,500°1,600°10°-60°$2,636 CPC,on piles 1,500'1,600 10°-60°$9,236 D_=|3 pole deadend 1,500'2,000°0°-80°$4,115 DP|D,on piles 1,500°2,000'0°-80°$10,715 E _|AS,with long weight span limit 1,500'2,000'0°-3°$2,377 EP{E,on piles 1,500'2,000"0°-3°$8,977 F ={2 pole deadend on X-arm,uplift use 1,200°1,600°0°-10°$4,316 FPF,on piles 1,200'1,600 0°-10°$10,916 v-12 Structure Materials/Cost List "Net”mat'l cost is without pole cost(s)included Line Angle VA __Single pole,delta,V-strings/post Structure "Net”cost Item No.Unit Price Qty Item Cost 44500 138 kV Vertical Post $315 2 $630 45000 138 kV Horizontal V $750 2 $1,500 50001 Saddle Clamp (Dove)w clevis $13 2 $26 50003 Vertical Post Saddle Clamp $9 1 $9 50021 Double V-post Bracket $25 1 $25 60002 Y-Clevis-ball,short $11 2 $22 60021 Fuse link $12 2 $24 70031 Crossarm Thru-bolt (3/4")$3 6 $15 VB ___Single pole,vertical,V-strings,guyed Structure "Net”cost Item No.Unit Price Qty Item Cost 45000)138 kV Horizontal V 750 3 $2,250 50001 Saddle Clamp (Dove)w clevis $13 3 $39 60002 Y-Clevis-ball,short $11 3 $33 60021 Fuse link $12 3 $36 70031 Crossarm Thru-bolt (3/4")$3 6 $15 81000 10”screw anchor set $40 3 $120 83880 3/8"EHS x 80°$4 3 $12 83891 3/8"EHS Guygrip $10 3 $30 83895 3/8"3-bolt clamp $4 3 $12 87001 Yellow Guy Guard,7°$7 3 $21 ___VC __Single pole,vertical RC,I-strings Structure "Net”cost Item No.Unit Price Qty Item Cost 43000 30,000#suspension $244 3 $732 50002 High Angle Saddle Clamp $6 3 $18 60001 Y-Clevis-ball,long $26 3 $78 60011 Socket-clevis $8 3 $24 70001 10”@ Pole Band for DE att.Pt.$42 3 $126 70031 Crossarm Thru-bolt (3/4")$3 3 $8 81200 12"screw anchor set $50 7 $350 83880 3/8"EHS x 80°$4 7 $28 83891 3/8"EHS Guygrip $10 7 $70 83895 3/8"3-bolt clamp $4 7 $28 87001 Yellow Guy Guard,7°$7 7 $49 VD ___Single pole deadend 'Structure "Net”cost Item No.Unit Price Qty item Cost 43000 30,000#suspension $244 6 $1,464 46000 138 kV Jumper Post $354 3 $1,062 §0004 Horizontal Post Clamp Adaptor $21 3 $63 50005 Comp.DE Ass'y (Dove)$65 6 $390 §0006 Comp.Jumper Pad $35 6 $210 60001 Y-Clevis-ball,long $26 6 $156 60011 Socket-clevis $8 6 $48 70001 10"@ Pole Band for DE att.Pt.$42 6 $252 70031 Crossarm Thru-bolt (3/4")$3 6 $15 81200 12"screw anchor set $50 7 $350 83880 3/8"EHS x 80°$4 7 $28 83891 3/8"EHS Guygrip $10 7 $70 83895 3/8"3-bolt clamp $4 7 $28 87001 Yellow Guy Guard,7”$7 7 $49 V-13 "Net”Mat'! $2,251 $2,568 $1,511 $4,185 Structure Materials/Cost List Line Angle A Two pole,H-frame,I-strings Structure "Net”cost Item No.Unit Price Qty Item Cost 36833 ST 6x8 x .250"x 33'$800 1 $800 50004 Horizontal Post Clamp Adaptor $21 3 $63 50001 Saddle Clamp (Dove)w clevis $13 3 $39 60002 Y-Clevis-ball,short $11 0 $0 60011 Socket-clevis $8 3 $24 60021 Fuse link $12 3 $36 70011 Crossarm Hanger Set (Fargo)$100 1 $100 70021 Crossarm Pole Band $28 1 $28 70031 Crossarm Thru-bolt (3/4")$3 2 $5 41500 15,000#suspension $212 3 $636 AL __A,with in-span guys Structure "Net™cost Item No.Unit Price Qty Item Cost as above for A,plus... 81200 12"screw anchor set $50 2 $100 83880 3/8"EHS x 80'$4 4 $16 83891 3/8"EHS Guygrip $10 4 $40 83895 3/8”3-bolt clamp $4 4 $16 87001 Yellow Guy Guard,7°$7 4 $28 AT __A,with transverse guys Structure "Net”cost Item No.Unit Price Qty Item Cost as above for A,plus... 81200 12"screw anchor set $50 2 $100 83880 3/8"EHS x 80°$4 2 $8 83891 3/8"EHS Guygrip $10 2 $20 83895 3/8"3-bolt clamp $4 2 $38 87001 Yellow Guy Guard,7°$7 2 $14 AS __A,with in-span &transverse guys Structure "Net”cost Item No.Unit Price Qty Item Cost as above for A,plus... 81200 12"screw anchor set $50 4 $200 83880 3/8"EHS x 80°$4 6 $24 83891 3/8"EHS Guygrip $10 6 $60 83895 3/8"3-bolt clamp $4 6 $24 87001 Yellow Guy Guard,7°$7 6 $42 AP A,onpiles Structure "Net"cost Item No.Unit Price Qty item Cost as above for A,plus... 21030 Pipe Pile 16"o x 25°$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 APL AL,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for AL,plus... 21030 Pipe Pile 16"a x 25°$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 APT AT,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as abovefor AT,plus... 21030 Pipe Pile 16"x 25"$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 APS _AS,on piles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for AS,plus... 21030 Pipe Pile 16"a x 25°$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 v-14 "Net"Mat'l $1,731 $1,931 $1,881 $2,081 $8,331 $8,531 $8,481 $8,681 Structure Materials/Cost List Line Angle "B___Light angle A,offset X-arm and side guys _Structure "Net"cost item No.Unit Price Qty Item Cost 36833 ST 6x 8x .250"x 33'$800 1 $800 41500 15,000#suspension $212 3 $636 50001 Saddle Clamp (Dove)w clevis $13 3 $39 60002 Y-Clevis-ball,short $11 0 $0 60011 Socket-clevis $8 3 $24 60021 Fuse link $12 3 $36 70011 Crossarm Hanger Set (Fargo)$100 1 $100 70021 Crossarm Pole Band $28 1 $28 70031 Crossarm Thru-bolt (3/4")$3 2 $5 81000 10"screw anchor set $40 3 $120 83880 3/8"EHS x 80'$4 3 $12 83891 3/8"EHS Guygrip $10 3 $30 83895 3/8”3-bolt clamp $4 3 $12 87001 Yellow Guy Guard,7 $7 3 $21 BP _B,onpiles Structure "Net”cost item No.Unit Price Qty Item Cost as above for B,plus... 21030 Pipe Pile 16"a x 25°$2,500 2 $5,000 22000 Pole Sleeve $2,500 2 $5,000 C _3 pole running corner Structure "Net"cost Item No,Unit Price Qty Item Cost 36836 ST 6x 8 x .250"x 40°$950 1 $950 43000 30,000#suspension $244 -3 $732 50002 High Angle Saddle Clamp $6 3 $18 60001 Y-Clevis-ball,long $26 0 $0 60011 Socket-clevis $8 3 $24 70001 10"@ Pole Band for DE att.Pt.$42 3 $126 70011 Crossarm Hanger Set (Fargo)$100 2 $200 70021 Crossarm Pole Band $28 2 $56 70031 Crossarm Thru-bolt (3/4")$3 2 $5 81200 12"screw anchor set $50 7 $350 83880 3/8"EHS x 80°$4 7 $28 83891 3/8"EHS Guygrip $10 7 $70 83895 3/8"3-bolt clamp $4 7 $28 87001 Yellow Guy Guard,7°$7 7 $49 CP C,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for C,plus... 21030 Pipe Pile 16"x 25°$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 V=15 "Net”Mat'l $1,863 $11,863 $2,636 $9,236 Structure Materials/Cost List Line Angle D 3 pole deadend Structure "Net”cost Item No.Unit Price Qty Item Cost 36836 ST 6 x 8 x .250"x 40°$950 1 $950 43000 30,000#suspension $244 6 $1,464 §0001 Saddle Clamp (Dove)w clevis $13 3 $39 §0005 Comp.DE Ass'y (Dove)$65 6 $390 50006 Comp.Jumper Pad $35 6 $210 60001 Y-Clevis-bail,long $26 0 $0 60002 Y-Clevis-ball,short $11 0 $0 60011 Socket-clevis $8 3 $24 70001 10"6 Pole Band for DE att.Pt.$42 6 $252 70011 Crossarm Hanger Set (Fargo)$100 2 $200 70021 Crossarm Pole Band $28 2 $56 70031 Crossarm Thru-bolt (3/4")$3 2 $5 81200 12"screw anchor set $50 7 $350 83880 3/8"EHS x 80°$4 7 $28 83891 3/8"EHS Guygrip $10 7 $70 83895 3/8"3-bolt clamp $4 7 $28 87001 Yellow Guy Guard,7°$7 7 $49 DP ___D,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for D,plus... 21030 Pipe Pile 16"x 25'$2,500 |2 $5,000 22000 Pole Sleeve $800 2 $1,600 E _AS,with long weight span limit Structure "Net”cost Item No.Unit Price Qty Item Cost as above for AS,minus... 36833 ST 6x 8x .250"x 33°$800 1 $800 41500 15,000#suspension $212 ©3 $636 as above for AS,plus... 36933 ST 6x 10 x .250"x 33 $1,000 1 $1,000 43000 30,000#suspension $244 $732 EP_E,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for E,plus...; 21030 Pipe Pile 16"@ x 25'$2,500 2 $5,000 22000 Pole Sleeve $800 2 $1,600 V-16 "Net”Mat'l $4,115 $10,715 $2,377 $8,977 Structure Materials/Cost List Line Angle F 2 pole deadend on X-arm,uplift use Structure "Net"cost Item No.Unit Price Qty Item Cost 36833 ST 6x 8x .250"x 33'$800 1 $800 41500 15,000#suspension $212 6 $1,272 43000 30,000#suspension $244 3 $732 50001 Saddie Clamp (Dove)w clevis $13 6 $78 50005 Comp.DE Ass'y (Dove)$65 6 $390 50006 Comp.Jumper Pad $35 6 $210 60001 Y-Clevis-ball,long $26 0 $0 60002 Y-Clevis-ball,short $11 0 $0 60011 Socket-clevis $8 6 $48 70011 Crossarm Hanger Set (Fargo)$100 2 $200 70021 Crossarm Pole Band $28 2 $56 70031 Crossarm Thru-bolt (3/4")$3 2 $5 81200 12°screw anchor set $50 7 $350 83880 3/8"EHS x 80°$4 7 $28 83891 3/8"EHS Guygrip $10 7 $70 83895 3/8"3-bolt clamp $4 7 $28 87001 Yellow Guy Guard,7"$7 7 $49 FP__F,onpiles Structure "Net”cost Item No.Unit Price Qty Item Cost as above for F,plus... 21030 Pipe Pile 16"e x 25°$2,500 |2 $5,000 22000 Pole Sleeve $800 2 $1,600 V-17 "Net”Mat'! $4,316 $10,916 Gross Material Costs (pole costs added) Structure Type Description 55°60°65°70°75°80°85°90°95°100°AverageVASinglepole,delta,V-strings/post $4,311 $4,436 $4,433 $4,653 $4,891 $5,151 $5,403 $5,660 $5,929 $6,157 $4,433VBSinglepote,vertical,V-strings,guyed $4,628 $4,752 $4,749 $4,970 $5,207 $5,468 $5,719 $5,977 $6,246 $6,473 $4,628vcSinglepote,vertical RC,|-strings $3,570 $3,695 $3,692 $3,912 $4,150 $4,411 $4,662 $4,919 $5,188 $5,416 $4,361vDSinglepoledeadend$6,245 $6,369 $6,366 $6,587 $6,824 $7,085 $7,336 $7,594 $7,863 $8,090 $6,366ATwopole,H-frame,|-strings $5,769 $6,045 $6,063 $6,467 $6,905 $7,413 $7,877 $8,361 $8,861 $9,287 $7,305ALA,with in-span guys $5,969 $6,245 $6,263 $6,667 $7,105 $7,613 $8,077 $8,561 $9,061 $9,487 $7,505ATA,with transverse guys $5,919 $6,195 $6,213 $6,617 $7,055 $7,563 $8,027 $8,511 $9,011 $9,437 $6,617ASA,with in-span &transverse guys $6,119 $6,395 $6,413 $6,817 $7,255 $7,763 $8,227 $8,711 $9,211 $9,637 $7,655APA,on piles $12,369 $12,645 $12,663 $13,067 $13,505 $14,013 $14,477 $14,961 $15,461 $15,887 |$14,013APLAL,on piles $12,569 $12,845 $12,863 $13,267 $13,705 $14,213 $14,677 $15,161 $15,661 $16,087 |$14,105APTAT,on piles $12,519 $12,795 $12,813 $13,217 $13,655 $14,163 $14,627 $15,111 $15,611 $16,037 |$15,611APSAS,on piles $12,719 $12,995 $13,013 $13,417 $13,855 $14,363 $14,827 $15,311 $15,811 $16,237 |$14,255BLightangleA,offset X-arm and side guys $5,901 $6,177 $6,195 $6,599 $7,037 $7,545 $8,009 $8,493 $8,993 $9,419 $8,493BPB,on piles $15,901 $16,177 $16,195 $16,599 $17,037 $17,545 $18,009 $18,493 $18,993 $19,419 |$18,993c3polerunningcorner$8,693 $9,107 $9,134 $9,740 $10,397 $11,159 $11,855 $12,581 $13,331 $13,970 |$10,997CPC,on piles $15,293 $15,707 $15,734 $16,340 $16,997 $17,759 $18,455 $19,181 $19,931 $20,570 |$17,597D3poledeadend$10,172 $10,586 $10,613 $11,219 $11,876 $12,638 $13,334 $14,060 $14,810 $15,449}$12,476DPD,on piles $16,772 $17,186 $17,213 $17,819 $18,476 $19,238 $19,934 $20,660 $21,410 $22,049 |$19,076EAS,with long weight span limit $6,415 $6,691 $6,709 $7,113 $7,551 $8,059 $8,523 $9,007 $9,507 $9,933 $7,951EPE,on piles $13,015 $13,291 $13,309 $13,713 $14,151 $14,659 $15,123 $15,607 $16,107 $16,533 |.$16,107F2poledeadendonX-arm,uplift use $8,354 $8,630 $8,648 $9,052 $9,490 $9,998 $10,462 $10,946 $11,446 $11,872 $8,630FPF,on piles $14,954 $15,230 $15,248 $15,652 $16,090 $16,598 $17,062 $17,546 $18,046 $18,472 |$15,652 V-18 MATERIAL COST SUMMARY No.of Structure Types per Zone %of Structure Types per Zone STRUCTURES Zonet Zone2 Zone3 Zone4|Zone1 Zone2 Zone3 Zone4 Total Number of Structures 657 cosT/190 165 197 90 100.00%100.00%100.00%105.56% Structure Type Description TOTALS TYPE VA Single pole,delta,V-strings/post 144 $638,284 144 87% VB Single pole,vertical,V-strings,guyed 4 $18,510 4 2% VC Single pole,vertical RC,I-strings 8 $34,892 8 5% VD Single pole deadend 1 $6,366 1 1% A Two pole,H-frame,I-strings 155 $1,132,244 155 82% AL A,with in-span guys 10 $75,048 10 5% AT A,with transverse guys 3 $19,851 3 2% AS A,with in-span &transverse guys AP A,on piles 195 $2,732,535 140 55 1%61% APL AL,on piles 15 $211,572 10 5 5%6% APT AT,on piles 37 $877,607 16 21 8%23% APS AS,on piles B Light angle A,offset X-arm and side guys 1 $8,493 1 1%. BP B,on piles 4 $75,972 3 1 2%1% Cc 3 pole running corner 10 $109,967 10 5% CP C,on piles 13 $228,757 10 3 5%3% (9)3 pole deadend 10 $124,757 6 4 3%2% DP D,on piles 10 $190,757 6 4 3%4% E AS,with long weight span limit 3 $23,852 3 2% EP E,on piles 13 -$209,391 12 1 6%1% F 2 pole deadend on X-arm,uplift use 6 $51,780 2 4 1%2% FP F,on piles 15 $234,780 10 5 6% ;TOTAL STRUCTURE COSTS $6,705,416 $1,462K $782K $3,050K $1,412K CONDUCTOR (DOVE)$permile=$36,231 $32,095 $63,791 $64,927 Length (mi)134.27 $1,774,420 $1,873,163 Phases 3 : Overage 3%_Unit Cost:$ift(Alcoa)==O8tSplices(ea)165 $4,136 Dampers (ea)3942 $94,608 TOTAL MATERIAL COSTS $8,578,579 Material Costs per mile = V-19 $50,182 $46,046 $77,742 $78,878 COST ESTIMATE SENSITIVITY Several unit costs from the cost estimate are discussed here for purposes of pointing out features of the project that impact the price more than other features.These are items which need careful attention during design and construction to control the costs. The loaded labor rate is $125 per hour.Dropping this rate by 20%to $100 per hour drops the project total by 5%.Dropping another 20%to $75 per hour drops the project total another 5%.The sensitivity of the total cost to this rate is a 5%change per 20%change in loaded rate. The average spans developed by the design is 1,100'to 1,275 for the H- frame construction zones 1,3,and 4;and 780'for the single pole construction in zone 2.The effect of changing the basic pole for the H- frame from class LD-3 to LD-6 allowed a wind span change from 840'to 1,200'+.The structure count dropped accordingly along the line and the project cost dropped by $2M+,due largely to labor savings. The Labor Cost Summary displays "line construction labor costs per mile” for each zone.Zones 1,3,and 4 use similar designs except that zones 3 and 4 are winter construction with poles mounted on piles.These two factors raise the labor costs relative to zone 1.Zone 2 is much higher (40% to 60%higher)than the other zones due to its assumed,comparatively poor access and the shorter average span capability of the single pole design. The effect of poor access is acknowledged in the estimate by discounting the normal productivity rate.Improving the productivity rates for tasks 4 through 8 to those of zone 3 reduces the zone 2 labor by only $10,000 per mile. Unfortunately,H-frame construction in zone 2,assuming such poor access and helicopter construction would be more labor intensive and costly. Savings in Zone 2 are available only through further spanning out,insofar as the single pole designs can be strengthened to the practical limit of helicopter capability. Access to Zone 2 and the assumption that "helicopter construction”is required plays a controlling role in the project price. The Material Cost Summary notes "per mile”structure material costs.The single pole design in Zone 2 is lower cost than the zone 1 H-frame cost by about 15%.Both zones have comparable foundation conditions assumed. As noted above,the single pole design carries a higher labor cost with it, PEI-HLY 51-381 120087-02 (02/03/93)ab v-20 regardless of terrain and access.The material costs of zones 3 and 4, where 100%piled foundations set in permafrost are assumed,are double that of the otherwise similar zone 1.The purchase costs of the piling and attaching "bracket”are the sole cause of the price difference.The long spans desired to save labor time (cost)force the use of larger and more expensive piling. The nature and quantity of the piling required on the project has a huge impact on the project cost.Considerable geotechnical exploration expense should be directed at the subject of pile design. GEOTECHNICAL EXPLORATION Except for the use of piling to support structures in "active layer/permafrost”locations,the line will use direct buried pole structures - guyed where necessary.With no (or minor exceptions at guyed structures, perhaps)all poles are steel.Therefore,the purpose of any geotechnical work will be to: 1 locate permafrost sites a)'quantify the depth of active layer b)determine soil type insofar as predrilling or driving is appropriate 2 elsewhere,locate/determine the likelihood of encountering rock vs excavatable soil. The need for extensive lab testing of samples to determine soil properties for foundation design is not widely expected.There is a good chance that schedule constraints will "want”two field crews and some of their work to take place before access to the ROW is developed (cleared). The comments above suggest the use of somewhat limited geotechnical field work,especially involving large machinery.However,for purposes of the estimate,we assume that,given the opportunity,we would drill a 25° exploratory hole at every fifth structure -on average.That equals about 1 hole per mile or 130 holes. The estimate allows for 130 holes (to 25'depth)at $1,000 each plus $10,000 each crew for mobilizing and demobilizing and $45,000 for lab work and reports.The total is $320,000. PEI-HLY 51-381 120087-02 (02/03/93)ab V-21 Vi.SUBSTATION ANALYSIS CLIMER VI.SUBSTATION ANALYSIS INTRODUCTION This report documents the cost analysis study of the proposed 138/115kV expansion of the O'Neil Substation and the 138/24.9kV Pump Station No. 11 Substation., 'Neil ion The existing O'Neil Substation will require substantial expansion to accommodate the new 115 and 138kV equipment.The expansion entails new fencing,grounding and conduits in addition to bus work,steel and foundations to support the new equipment. | The 115kV portion of the substation will interconnect to MEA's O'Neil Substation at 115kV...The required 115kV equipment includes a 115kV metering unit,disconnecting switch,and power circuit breaker. The 138kV portion of the project requires addition of a ZOMVA 138/115kV auto transformer,138kV 6 MVAR shunt reactor and associated isolating disconnect switches,surge arresters,CCVT's and power circuit breakers.A new 15°X 20'control building will also be necessary to house the battery system,control and relay panels,SCADA RTU and miscellaneous supporting hardware. Pum ion No.11 ation Pump Station No.11 Substation will also require significant expansion and associated upgrades.The major equipment requirements include 138kV disconnecting switches,CCVT's,surge arresters,a 6 MVAR shunt reactor and two power circuit breakers. PEI-HLY 51-381 120087-02 (12/15/92)ab vi-1 The expansion efforts will include additions to the fencing,grounding, conduit,foundations,and substation steel.The control building will also require a new battery system,SCADA RTU and miscellaneous control and relay panels.; Pump Station No.11 substation will also require the use of steel pilings under most foundations due to the perma frost conditions.We have assumed these pilings will be of the same design as those utilized on the transmission line effort and have estimated accordingly. ASSUMPTIONS The construction costs estimates (Section 5)are based on the following design parameters: 1.Steel structures are of structural tubing. The steel structures will be made of galvanized square tube typically utilized for substation design.This is the most economical methodology for fabricating and erecting the structures.No special provisions have been provided for alternate steel configuration (i.e. lattice)or special paint of finish requirements. 2.Welded bus for 115 and 138kV.Bolted connections for 24.9kV bus. Welded bus is typically used for 138 and 115 kV bussing and bolted connections are common for distribution class installations. 3.Conservative ground grid.It is assumed that ground wells or other remedial actions are not necessary. The ground grid should be adequate without special grounding provisions such as grounding wells.The grid design was assumed utilizing 4/0 conductor on 10 ft.X 10 ft.spacings with exothermic connections. 4.Moderate site preparation. We have estimated an approximate site expansions of 100"X 100'. PEI-HLY 61-381 120087-02 (12/15/92)ab VI-2 5.Prefabricated control buildings. No provisions have been included to provide a custom building installation.Prefabricated metal types are routinely utilized in substation work. 6.Typical costs for line relay,transformer,reactor and metering panels. No provisions are included for special line relaying such as single pole tripping. 7.Short (100'or less)access roads. A short access road/modification will be required to accommodate the substation expansion. 8.Fence -8°typical. The perimeter fencing is anticipated to be a seven foot (7')high galvanized chain link fence with three (3)strands of barbed wire,one foot (1°)high.. 9.Foundation -Concrete piers at O'Neil,Piles at Pump Station No.11. We have estimated the construction costs utilizing steel pilings similar to the transmission line effort.These are necessary to mitigate the perma-frost concerns. 10.No microwave or fiber optic equipment. Powerline carrier is specified between O'Neil and Pump Station No.11 Substations. 11.Testing and energization costs include testing equipment. T&E costs are based on providing usual and normal startup support including transformer,PCB and relaying testing. PEI-HLY 51-381 120087-02 (12/15/92)ab VI-3 COPPER VALLEY ELECTRIC O'NEIL SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE}TOTAL |MATERIAL LABOR MATERIAL COST EQUIPMENT 138/115 kV,12/16/20 MVA AUTOXFMR (NO LTC)1 ea |250.00 |125 |31,250 290,000 31,250 290,000 321,250 138/79.67 kV,6 MVAR SHUNT REACTOR BANK 1 ea 100.00 |125 |12,500 225,000 12,500 225,000 237,500 138 kV SF6 CIRCUIT BREAKER,1200A,(LINE)1 ea 100.00 |125 |12,500 100,000 12,500 100,000 112,500 138 kV SF6 CIRCUIT BREAKER,1200A,(REACTOR)1 ea 100.00 |125 |12,500 100,000 12,500 100,000 112,500 138 kV VERT BRK DISC SWITCH,600A,GOAB 1 ea 60.00 125 7,500 10,000 7,500 10,000 17,500 138 kV VERT BRK DISC SW,1200A,GOAB,W/GND SW 1 ea 65.00 |125 8,125 15,000 8,125 15,000 23,125 138 kV SUSPENSION INSULATOR STRING 30 ea 0.50 125 63 25 1,875 750 2,625 138 kV STATION POST INSULATORS 24 «ea 2.50 125 313 500 7,500 12,000 19,500 138 kV ALUMINUM BUS ;600 ft 0.50 125 63 50 37,500 30,000 67,500 138 kV CAPACITIVE VOLTAGE TRANSFORMER 3 ea 10.00 |125 1,250 5,100 3,750 15,300 19,050 84 kV MCOV STATION CLASS ARRESTERS 6 ea 4.00 125 500 2,100 3,000 12,600 15,600 115 kV SF6 CIRCUIT BREAKER,1200A 1 ea 100.00 |125 |12,500 100,000 12,500 100,000 112,500 115 kV VERT BRK DISC SWITCH,1200A,GOAB 1 ea 60.00 |125 7,500 10,000 7,500 10,000 17,500 115 kV VOLTAGE TRANSFORMER 3 ea 10.00 |125 1,250 5,800 -3,750 17,400 21,150 115 kV CURRENT TRANSFORMER 3 ea 10.00 |125 1,250 7,000 3,750 21,000 24,750 115 kV SUSPENSION INSULATOR STRING .27 =ea 0.50 125 63 25 1,688 675 2,363 115 kV STATION POST INSULATORS 15 ea 3.75 125 469 450 7,031 6,750 13,781 115 kV ALUMINUM BUS 300 ft 0.50 125 63 50 18,750 15,000 33,750 70 kV MCOV,STATION CLASS ARRESTERS 3 ea 4.00 125 500 1,750 1,500 5,250 6,750 POWER LINE CARRIER (PER TERMINAL)2 ea 40.00 |125 5,000 35,000 10,000 70,000 80,000 SUBTOTAL FOR EQUIPMENT 204,469 1,056,725 1,261,194 STEEL STRUCTURES 138 kV DEAD END TOWER 1 ea |100.00 |]125;12,500 25,000 12,500 25,000 37,500 138 kV SWITCH STANDS 2 ea 24.00 |125 3,000 2,500 6,000 5,000 11,000 ONEIL.Wat PAGE 1 OF 5 VI-4 COPPER VALLEY ELECTRIC O'NEIL SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE}TOTAL |MATERIAL LABOR MATERIAL COST 138 kV CAPACITIVE VOLTAGE XFMR STANDS 3 ea 4.00 125 500 1,000 1,500 3,000 4,500 138 kV BUS SUPPORT STANDS 24 -soea 4.00 .|125 500 1,000 12,000 24,000 36,000 115 kV DEAD END TOWER 1 ea 90.00 |125}11,250 25,000 11,250 25,000 36,250 115 kV CIRCUIT SWITCHER STAND 1 ea 24.00 |125 3,000 3,500 3,000 3,500 6,500 115 kV CURRENT TRANSFORMER STANDS 3 ea 4.00 125 500 800 1,500 2,400 3,900 115 kV VOLTAGE TRANSFORMER STANDS 3 ea 4.00 125 500 800 1,500 2,400 3,900 115 kV BUS SUPPORT STANDS 15 ea 4.00 125 500 800 7,500 12,000 19,500 SUBTOTAL FOR STEEL STRUCTURES 56,750 102,300 159,050 FOUNDATIONS 138 kV,12/16/20 MVA XFMR,12'X16'X3'SLAB (22 cy)1 ea 150.00 |125 |18,750 17,600 18,750 17,600 36,350 138 kV,BMVAR SHNT REACTOR,10'X12'X2'SLAB (9 cy 1 ea 48.00 |125 6,000 7,200 6,000 7,200 13,200 138 kV DEAD END TOWERS,5'X15°PIERS (11 cy)4 ea 48.00 125 6,000 8,800 24,000 35,200 §9,200 138 kV SF6 CIRCUIT BREAKER,10°X12'X2'SLAB (9 cy)2 ea 48.00 |125 6,000 7,200 12,000 14,400 26,400 138 kV SWITCH STANDS,3'X10'PIERS (3 cy)8 ea 12.00 |125 1,500 2,400 12,000 19,200 31,200 138 kV CAPACITIVE VOLT XFMR,3X10'PIERS (3 cy)3 ea 12.00 |125 1,500 2,400 4,500 7,200 11,700 138 kV BUS SUPPORT STANDS,3'X10'PIERS (3 cy)24 =ea 12.00 |125 1,500 2,400 36,000 57,600 93,600 115 kV CKT SWITCHER STANDS,2'X8'PIERS (1 cy)4 ea 5.00 125 625 800 2,500 3,200 5,700 115 kV BUS SUPPORT STANDS,2'X8'PIERS (1 cy)4 ea 5.00 125 625 800 2,500 3,200 5,700 CONTROL HOUSE FOUNDATION,20°X15'X1'(11 cy)1 ea 96.00 |125 |12,000 8,800 12,000 8,800 20,800 SUBTOTAL FOR FOUNDATIONS 130,250 173,600 303,850 CONDUIT AND CABLE 138/115 kV 12/16/20 MVA TRANSFORMER (1)100 ft 0.25 125 31.25 20 3,125 2,000 §,125 138 kV,6 MVAR SHUNT REACTOR (1)100 ft 0.25 125 31.25 20 3,125 2,000 5,125 138 kV SF6 CIRCUIT BREAKER (2)200 ft 0.25 125 31.25 20 6,250 4,000 10,250 ONEIL.WOT PAGE 2OF 5 VI-5 COPPER VALLEY ELECTRIC O'NEIL SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 VI-6 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE|TOTAL |MATERIAL LABOR MATERIAL Cost 138 kV CAPACITIVE VOLT XFMR (3)100 ft 0.25 125 31.25 15 3,125 1,500 4,625 115 kV CIRCUIT SWITCHER 100 ft 0.25 125 31.25 20 3,125 2,000 5,125 115 kV POTENTIAL TRANSFORMERS (8)100 ft 0.25 125 31.25 15 3,125 1,500 4,625 115 kV CURRENT XFMR (3)100 ft 0.25 125 31.25 15 3,125 1,500 4,625 CABLE TRENCH,20°(INCLUDES CABLE)100 ft 1.00 125 |125.00 75 12,500 7,500 20,000 FLOODLIGHTS,DIRECT BURY (6)600 ft 0.01 125 1.67 3 1,000 1,800 2,800 SUBTOTAL FOR CONDUIT 38,500 23,800 62,300 CONTROL HOUSE CONTROL HOUSE,PREFAB (15'X20")1 ea 60.00 125 7,500 5,000 7,500 5,000 12,500 150 A-HOUR BATTERY SYSTEM 1 ea 24.00 125 3,000 4,000 3,000 4,000 7,000 REMOTE TERMINAL UNIT (SCADA)1 ea 80.00 125 }10,000 6,000 10,000 6,000 16,000 LINE RELAYING PANELS 2 ea 96.00 125 |12,000 25,000 24,000 50,000 74,000 TRANSFORMER PANELS 1 ea 96.00 125 |12,000 25,000 12,000 25,000 37,000 REACTOR PANEL 1 ea 96.00 125 |12,000 15,000 12,000 15,000 27,000 INTERCHANGE METERING PANEL i ea 96.00 125 |12,000 15,000 12,000 15,000 27,000 LIGHTS,CONDUIT,AC PWR,HEATERS,ETC 1 lot 48.00 125 6,000 5,000 6,000 5,000 11,000 SUBTOTAL FOR CONTROL HOUSE 86,500 125,000 211,500 YARD (200'°X150') TRANSFORMER OIL CONTAINMENT,LINER 1 lot 80.00 125 |10,000 12,000 10,000 12,000 22,000 REACTOR OIL CONTAINMENT,LINER 1 lot 40.00 125 5,000 6,000 5,000 6,000 11,000 GROUNDING,10°GRID,4/0 CU CABLE 6,600 ft 0.10 125 12.50 4 82,500 26,400 108,900 FENCE AND GATES 700 ft 0.18 125 21.88 10 15,313 7,000 22,313 STATION LIGHTING,S500W QUARTZ 6 ea 6.00 125 |750.00 250 4,500 1,500 6,000 SITE PREPARATION 33,600 sq ft 0.01 125 1.56 0.50 52,500 16,800 69,300 ONEIL.Was PAGE 3 OF 5 COPPER VALLEY ELECTRIC O'NEIL SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE]TOTAL |MATERIAL LABOR MATERIAL COST FINISH SURFACING 33,600 sqft 0.01 125 0.78 0.25 26,250 8,400 34,650 SUBTOTAL FOR YARD 196,063 78,100 274,163 TESTINGANDENERGIZATION 138/115 kV,12/16/20 MVA TRANSFORMER 1 ea 24 125 3,000 3,000 0 3,000 138 kV,6 MVAR SHUNT REACTOR BANK 1 ea 12 125 1,500 1,500 0 1,500 138 kV SF6 CIRCUIT BREAKER 2 ea 18 125 2,250 4,500 0 4,500 138 kV CAPACITIVE VOLT TRANSFORMERS 3 ea 4 125 500 1,500 0 1,500 115 kV CIRCUIT SWITCHER 1 ea 18 125 2,250 2,250 0 2,250 115 kV VOLTAGE TRANSFORMER 3 ea 4 125 500 1,500 0 1,500 115 kV CURRENT TRANSFORMER 3 ea 4 125 500 1,500 0 1,500 150 A-HOUR BATTERY SYSTEM 1 ea 8 125 1,000 1,000 0 1,000 REMOTE TERMINAL UNIT (SCADA)1 ea 48 125 6,000 6,000 0 6,000 INTERCHANGE METERING PANEL 1 ea 12 125 1,500 1,500 0 1,500 LINE RELAYING &XFMR PANELS 3 ea 16 125 2,000 6,000 0 6,000 REACTOR PANEL 1 ea 12 125 1,500 1,500 0 1,500 GROUNDING SYSTEM 1 lot 12 125 1,500 1,500 0 1,500 TRAVEL TIME (4 PEOPLE -ROUND TRIP)4 ea 24 125 3,000 12,000 0 12,000 TRAVEL EXPENSE (4 PEOPLE -ROUND TRIP)4 ea 0 0 0 1,000 0 4,000 4,000 ROOM &BOARD (4 PEOPLE FOR 11 DAYS)4 ea 0 fe]0 1,400 0 5,600 5,600 RENTAL VEHICLE ($60/DAY FOR 12 DAYS)11 ea 0 60 0 660 660 SUBTOTAL FOR TESTING,ETC 45,250 10,260 55,510 PROVISIONS TO CONNECT TO EXISTING 1 lot 64 125 8,000 10,000 8,000 10,000 18,000 ONEIL.wat PAGE 4 OF 5 VI-7 COPPER VALLEY ELECTRIC O'NEIL SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION LABOR MATERIAL TOTAL EQUIPMENT 204,469 1,056,725 1,261,194 STEEL STRUCTURES 56,750 102,300 159,050 FOUNDATIONS 130,250 173,600 303,850 CONDUIT &CABLE 38,500 23,800 62,300 CONTROL HOUSE 86,500 125,000 211,500 YARD 196,063 78,100 274,163 TESTING &ENERGIZATION 45,250 10,260 55,510 PROVISIONS TO CONNECT TO EXISTING 8,000 10,000 -18,000 MATERIAL TRANSPORT &STORAGE COSTS 200,000 MOBILIZATION &DEMOBILIZATION 116,378 SUBTOTAL $765,781 $1,579,785 $2,661,945 PAGE 5 OF 5ONEIL.WQ1 VI-8 COPPER VALLEY ELECTRIC PUMP STATION #11 SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE}TOTAL |MATERIAL LABOR MATERIAL COST EQUIPMENT 138/79.67 kV,6 MVAR SHUNT REACTOR BANK 1 ea |100.00 |125]12,500 225,000 12,500 225,000 237,500 138 kV SF6 CIRCUIT BREAKER,1200A,(LINE)1 ea {|100.00 |125]12,500 100,000 12,500 100,000 112,500 138 kV SF6 CIRCUIT BREAKER,1200A,(REACTOR)1 ea |100.00 |]125 |12,500 100,000 12,500 100,000 112,500 138 kV VERT BRK DISC SWITCH,600A,GOAB 1 ea 60.00 |125 7,500 10,000 7,500 10,000 17,500 138 kV VERT BRK DISC SW,1200A,GOAB 1 ea 65.00 |125 8,125 10,000 8,125 10,000 18,125 138 kV VERT BRK DISC SW,1200A,GOAB,W/GND SW 1 ea 65.00 |125 8,125 15,000 8,125 15,000 23,125 138 kV SUSPENSION INSULATOR STRING 30 ea 0.50 125 63 25 1,875 750 2,625 138 kV STATION POST INSULATORS 24 -oea 2.50 125 313 500 7,500 12,000 19,500 138 kV ALUMINUM BUS 600 ft 0.50 125 68 50 37,500 30,000 67,500 138 kV CAPACITIVE VOLTAGE TRANSFORMER 3 ea 10.00 125 1,250 5,100 3,750 15,300 19,050 84 kV MCOV STATION CLASS ARRESTERS 3 ea 4.00 125 500 2,100 1,500 6,300 7,800 POWER LINE CARRIER (PER TERMINAL)2 ea 40.00 125 5,000 35,000 10,000 70,000 80,000 SUBTOTAL FOR EQUIPMENT 123,375 594,350 717,725 STEEL STRUCTURES 138 kV DEAD END TOWER 1 ea |100.00 |125 |12,500 25,000 12,500 25,000 37,500 138 kV SWITCH STANDS 2 ea 24.00 |125 3,000 2,500 6,000 5,000 11,000 138 kV CAPACITIVE VOLTAGE XFMA STANDS 3 ea 4.00 125 500 1,000 1,500 3,000 4,500 138 kV BUS SUPPORT STANDS 24 ea 4.00 125 500 1,000 12,000 24,000 36,000 SUBTOTAL FOR STEEL STRUCTURES 32,000 57,000 89,000 FOUNDATIONS 138 kV,6 MVAR REACTOR,10°X12'X2'SLAB (8 cy)1 ea 48.00 125 6,000 6,400 6,000 6,400 12,400 138 kV,6 MVAR REACTOR,W8X35X25'PILES 4 ea 2.00 125 250 525 1,000 2,100 3,100 138 kV DEAD END TOWERS,W8X35X25'PILES 4 ea 2.00 125 250 525 1,000 2,100 3,100 PUMP#11.WO1 PAGE 1 OF 4 VI-9 COPPER VALLEY ELECTRIC PUMP STATION #11 SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 PUMP#11.Wa1 VI-10 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE]TOTAL |MATERIAL LABOR MATERIAL COST 138 kV DEAD END TOWERS,CONCRETE (12 cy)1 fot 125 0 9,600 0 9,600 9,600 138 kV SF6 CIRCUIT BREAKER,10'X12'X2'SLAB (9 cy)2 ea]48.00 |125 6,000 7,200 12,000 14,400 26,400 138 kV SF6 CIRCUIT BREAKER,W8X35X25'PILES 8 ea 2.00 |125 250 525 2,000 4,200 6,200 138 kV SWITCH STANDS,W8X35X25'PILES 8 ea 2.00 |125 250 525 2,000 4,200 6,200 138 kV SWITCH STANDS,CONCRETE (10 cy)1 lot 125 0 8,000 0 8,000 8,000 138 kV CAPACITIVE VOLT XFMR,W8X35X25'PILES 3 ea 2.00 |125 250 525 750 1,575 2,325 138 kV CAPACITIVE VOLT XFMR,CONCRETE (5 cy)1 lot 125 0 4,000 0 4,000 4,000 138 kV BUS SUPPORT STANDS,W8X35X25'PILES 24 -soea 2.00 |125 250 525 6,000 12,600 18,600 138 kV BUS SUPPORT STANDS,CONCRETE (30 cy)lot 125 0 24,000 0 24,000 24,000 SUBTOTAL FOR FOUNDATIONS 30,750 93,175 123,925 CONDUIT AND CABLE 138 kV,6 MVAR SHUNT REACTOR (1)100 ft 0.25 |125 31.25 20 3,125 2,000 5,125 138 kV SF6 CIRCUIT BREAKER (2)200 ft 0.25 |125 31.25 20 6,250 4,000 10,250 138 kV CAPACITIVE VOLT XFMR (3)100 ft 0.25 |125 31.25 15 3,125 1,500 4,625 FLOODLIGHTS,DIRECT BURY (3)300 ft 0.01 125 1.67 3 500 900 1,400 SUBTOTAL FOR CONDUIT ,13,000 8,400 21,400 CONTROL HOUSE BATTERY SYSTEM UPGRADE 1 ea |24.00 |125 3,000 2,000 3,000 2,000 5,000 REMOTE TERMINAL UNIT (SCADA)1 ea |80.00 |125]10,000 6,000 10,000 6,000 16,000 LINE RELAYING PANEL 1 ea |96.00 |125]12,000 25,000 12,000 25,000 37,000 REACTOR PANEL 1 ea |96.00 |125]12,000 15,000 12,000 15,000 27,000 MISCELLANEOUS ITEMS 1 lot |24.00 |125 3,000 2,000 3,000 2,000 5,000 SUBTOTAL FOR CONTROL HOUSE 40,000 50,000 90,000 PAGE 2 OF 4 COPPER VALLEY ELECTRIC PUMP STATION #11 SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION QTY LABOR UNIT TOTAL TOTAL TOTAL HOURS |RATE]TOTAL |MATERIAL LABOR MATERIAL COST YARD (100'X150') REACTOR OIL CONTAINMENT,LINER 1 lot |40.00 |125]5,000 6,000 5,000 6,000 11,000 GROUNDING,10°GRID,4/0 CU CABLE 3,300 ft 010 |125]1250 4 41,250 13,200 54,450 FENCE AND GATES 500 ft 0.18 |125]21.88 10 10,938 5,000 15,938 STATION LIGHTING,500W QUARTZ 6 ea |6.00 |125]750.00 250 4,500 1,500 6,000 SITE PREPARATION 16,800 sqft]0.01 |125 1.56 1 26,250 8,400 34,650 FINISH SURFACING 16,800 sqft}0.01 |125 0.78 0.25 13,125 4,200 17,325 SUBTOTAL FOR YARD 101,063 38,300 139,363 TESTING AND ENERGIZATION 138 kV,6 MVAR SHUNT REACTOR BANK 1 ea 12 125 |1,500 1,500 0 1,500 138 kV SF6 CIRCUIT BREAKER 2 ea 18 125 |2,250 4,500 0 4,500 138 kV CAPACITIVE VOLT TRANSFORMERS 3 ea 4 125 500 1,500 0 1,500 BATTERY SYSTEM 1 ea 8 125 |1,000 1,000 0 1,000 REMOTE TERMINAL UNIT (SCADA)1 ea 48 125 |6,000 6,000 0 6,000 LINE RELAYING PANEL 1 ea 16 125 |2,000 2,000 0 2,000 REACTOR PANEL 1 ea 12 1251 1,500 1,500 0 1,500 GROUNDING SYSTEM 1 fot 12 125 |1,500 1,500 0 1,500 TRAVEL TIME (2 PEOPLE -ROUND TRIP)2 ea 24 125 |3,000 6,000 0 6,000 TRAVEL EXPENSE (2 PEOPLE -ROUND TRIP)2 ea 0 0 0 1,000 0 2,000 2,000 ROOM &BOARD (2 PEOPLE FOR 11 DAYS)2 ea 0 0 0 1,400 0 2,800 2,800 RENTAL VEHICLE ($60/DAY FOR 11 DAYS)11 ea 0 60 0 660 660 SUBTOTAL FOR TESTING,ETC 25,500 5,460 30,960 PROVISIONS TO CONNECT TO EXISTING 1 lot 96 125 |12,000 15,000 12,000 15,000 27,000 PUMP#11.Wal PAGE 3 OF 4 VI-11 COPPER VALLEY ELECTRIC PUMP STATION #11 SUBSTATION EXPANSION CONSTRUCTION COST ESTIMATE BY:POWER ENGINEERS,DECEMBER,1992 DESCRIPTION LABOR MATERIAL TOTAL EQUIPMENT 123,375 594,350 717,725 STEEL STRUCTURES 32,000 57,000 89,000 FOUNDATIONS 30,750 93,175 123,925 CONDUIT &CABLE 13,000 8,400 21,400 CONTROL HOUSE 40,000 50,000 90,000 YARD 101,063 38,300 139,363 TESTING &ENERGIZATION 25,500 5,460 30,960 PROVISIONS TO CONNECT TO EXISTING 12,000 15,000 27,000 MATERIAL TRANSPORT &STORAGE COSTS 125,000 MOBILIZATION &DEMOBILIZATION 60,619 SUBTOTAL $377,687 -$861,685 $1,424,991 PAGE 4 OF 4PUMP#11,.WQ1 VI-12 6MVAR i eeLJSHUNT -.. REACTOR ---- 7 cBLS- =:..a / -y a Sof, al 127 MILES |ae Lo , #¥¢A 7 TO 24.9kV _fT LJ é : :7 DISTRIBUTION - MEA SUB -+"env +,"|7 ,/Eta a 7115KV/138KV vy : ' ' ,7VISKY12716/20MVA 'Yooy aa,.AUTO-NON LTC ft '.yoy y 7 vl .I,a va ae i 7 ' H "x .-i .7 /' ."NEW ./'7 7 fp New a 2 "a"y "4 /ae a 4 po Soy aA|"|v oy /po EXISTING 7 a,aa,y yaha|)/.\"ad 7 //7 4..'/','. /;,y . if 2 24.9kV 7 138KV 1 -wT "138K \DISTRIBUTION 6MVAR y y a /lel A SMvAR a ..!SHUNT :,"'..SHUNT - Ze--L-/"--+ , REACTOR EXISTING ,4 .fo 4 LS REACTOR”O'NEIL SUBSTATION +"fan y -__ae ee A i PUMPSTATION NO.11 eZ t Soop YoYSUBSTATIONaeee __Z _2 | c 49.5 MILES 138KV PUMPSTATION -NG.12 .SUBSTATION - (NO WORK} 62 MILES 138KV ;-7 _ ;} /a Oey -MEALS'SUBSTATION "|rr a rs rs cy/ ; . ;,4 7 yy aA 4 y ' . :.. .Sf /i a , '-..4 °Lf va /a : a .,'" .a .7|oy eo [..WA - /. . |7 /.SyEXISTINGfy.aaav;/.:a 7 =yoy y ;y .aymAoa. 'o |va a 'va"7 7 oe °/a 4 S . € /."a a 7 "aA 4 '' :7 y ,y cA 24.9KV "|I BUS y v 7 "|/||4 A}/y WA JX [ISSUED FOR PRELIMINARY APPROVAL iz - Svs L REY |DESCRIPTIONS |DATE |BY |CKO.|APP. |-YQ |REFERENCE DRAWINGS COPPER VALLEY ELECTRIC .y .>- OPTIONAL 7 a i wo !STATION ONE-LINES - i *DSON.TWO |8-13-92]JOB _NQ.120079.01 fs) Do =ePDOMWER DRN._ucM |8-13-92]DRAWING NO REV.|=;ENGINEERS CKD.+>00 |a fe: TA 24.9KV DISTRISUTION MAILEYS.iano.83338 SCALE:-NONE See 138KV APPENDICES CPDOWER)BINEEF4: APPENDIX A DESIGN CRITERIA APPENDIX A -DESIGN CRITERIA TABLE OF CONTENTS Ampacity Weather Data Extreme Windspeed Selection Temperature Range Snow Cover "Weather”Load Cases Conductor Sag-tension Design Structure and Conductor Performance Requirements General Conductor as a Structural "Fuse” Structure Performance Vertical Loads Transverse Loads Longitudinal Loads Order of Element Strength Achieving the Order of Strengths Vertical Loads Transverse Loads Longitudinal Loads Line Performance Electrical Performance -Clearances To Grade &Proximities Phase to Phase Phase to Ground Working Clearances Structure Families Single Pole Construction H-frame Construction Pile Foundations PEI-HLY 51-381 120087-02 (12/15/92)ab A-1 FIGURES Ampacity Comparisons Alcoa Summer -Full Sun Winter-Cloudy Sag-tension Output Ruling Spans 800'-1.500' Wind Reduction Formulae Figure 1-Tree Cover Figure 2-Terrain Structure Types PEI-HLY 51-381 120087-02 (12/15/92)ab A-2 AMPACITY ALCOA lists a conductor's ampacity in their "Products”catalogue that is based on an ambient air temperature of 40°C (104°F)and a temperature rise of 40°C (to 176°F).They use 2 fps wind,an emissivity factor of 0.5 and presume "no sunshine.” We suggest this definition is inappropriate for designs in Alaska.POWER offers the following rules for determining the conductor thermal limit for this transmission line project: 1 Conductor temperature be based on the maximum "delivered power” requirements (MVA)rather than on an arbitrary temperature limit such as 176°F or 212°F. 2 The calculations use summer and winter peaks and be based on the following ambients: Summer 90°F (32°C)with full sun Winter 50°F (10°C)with no sun (full cloud cover) 3 The windspeed and emissivity factors remain at 2 fps and 0.5 The three tables following show the reduction in maximum thermal temperature achieved by these revised ampacity calculation criteria.The presumed design capacity of the Sutton-Glennallen 138 kV Intertie is 40 MVA.Accordingly,the maximum thermal temperature of the desired 556.5 ACSR conductor is about 110°F (summer)and less than 60°C (winter).If it can be determined that the summer capacity requirements are less than 40MVA,the summer limit can be reduced according to the'summer table. Without a_differentiation between summer and _winter capacity requirements,we suggest a maximum thermal temperature limit for design of 110°F (45°C). We will find this temperature limit develops a sag less than the heavy ice load case develops and the ground clearances are governed by the ice load case.The difference in sag between the thermal and ice load cases in effect will allow an increase in thermal sag (to a temperature of about 40°C) and a transfer of more power under the conditions described above than is presumed by this ampacity analysis. PEI-HLY 51-381 120087-02 (12/15/92)ab A-3 WEATHER DATA The following data in sourced with the Arctic Environmental Information and Data Center (AEIDC),University of Alaska,Anchorage and with "comments”made by/to the client. Extreme Windspeed Selection Based on client comment,POWER is asked to design the transmission line for a 100 mph "extreme”wind case.The comments are: "70 to 75 mph wind recorded in Glennallen,Sept.'92” "115 mph wind recorded at Palmer Airport,1979” The Weather office in Anchorage and others familiar with the general area all agree that this can be a "very windy placel” The data included in the Alaska Climate Summary from the AEIDC includes basically no wind data.We obtained one sample of "fastest minute”values from Gulkana.The data is not in a form readily useful to determining a 50 or 100 year extreme design wind.It would appear as though the data might cover a 10+year period and the highest value is 52 mph.Assuming a 20%COV and a 10 year data period of record,the resulting 50 and 100 year extremes are 91 and 100 mph respectively. In summary,a 100 mph design wind cannot be proven or refuted.It should be accepted for estimating purposes.Some advantage of terrain and tree cover can be considered in final design. Temperature Range The Alaska Climate Summary does record temperature extremes.The following information is extracted from the Summary: Station Years of Record Record Low Record High Gulkana '42 '87 -65 91 Snowshoe Lake '63 ='87 -63 85 Tahneta Pass '78 '87 -27 80 Sutton '78 '87 -36 83 PEI-HLY 51-381 120087-02 (12/15/92)ab A-4 These four station are listed in order east to west.While the latter two show a considerably higher low temperature record,they are for much shorter periods of record keeping.The choice of a cold temperature should be conservative.Given the high ice loading case desired,the maximum tension on the line is not controlled by the choice.Only site locations and structure type selections controlled by uplift will be affected by the low temperature limit.The use of -60°F across the entire project is assumed. Snow Groun over The Alaska Climate Summary also records maximum snow depth.For the four stations above the record depths are 48",36",48"and 36”-in order. The selected value is used in clearance calculations only.Since maximum sag will generally occur under the 1"ice loading,the selected snow depth value is added to the basic NESC clearance requirements.48”is used in this report.In the final design,it may be important to be aware of the possibility of local drifting and the impact it will have on safety clearance in areas likely to be frequented by snow machine travel. Ice Accumulation The Alaska Climate Summary does not measure ice accumulation.The only reliable source is local knowledge and experience.1"radial ice is assumed. As noted above and again below,this load case governs several areas of the design.Erring high is costly to capital costs and erring low runs the risk of being costly via failure(s).The latter is only a risk while the former is a certainty.Often though,vertical strength comes relatively inexpensively to transmission line structures but not to the conductor and its spanning capability. PEI-HLY 51-381 120087-02 (12/15/92)ab A-5 "WEATHER”LOAD CASES The following "weather”load cases are suggested: Case 1 NESC "Heavy”-%"ice +4 psf (40mph)wind @ O°F (- 20°C).* Case 2 NESC Extreme wind of 70 mph at -10°C (14°F).* Case 3 Extreme wind of 100 mph at -10°C (14°F). 3a) 3b) While the NESC calls for a 70 mph wind in the area of this line but we believe that winds to 100 mph are possible -a least in the flatter, more open portions of the route.The difference between a 70 mph and a 100 mph design wind is a doubling of the transverse strength requirements of structures.This is a costly load case if not warranted. We suggest a criterion that employs the 100 mph limit but acknowledges the sheltering effects of terrain that is available along parts of the route.The criterion is stated as follows: Structures shall be designed for 100 mph wind -from any direction -on the structure alone with no wind applied on the conductors. Structures shall be designed for transverse 100 mph wind on the structure plus a transverse 100 mph wind on all conductors,except that the wind on conductors may be reduced as follows: i to 90 mph where trees averaging 50°in height "cover”both sides of the right-of-way in all directions for at least 1,000', plus an additional 10 mph for each 10°increase in average tree height as described above,to a maximum reduction of 30 mph -ie:to 70 mph windspeed.See figure 1 for clarification. ii 5 mph for each 5°increase in "effective”side slope above a side slope "datum”of 10°above the horizon."Effective”side slope is defined as a line of sight between the line's centerline and the horizon low point when viewed from up to 30°off of perpendicular to the line centerline.Horizon is defined as where the sky meets the land or half way down average tree height.The least value calculated from the two sides of the right-of-way shall be used.See figure 2 for clarification. The use of tree cover to reduce the windspeed must also acknowledge the possibility that the line will outlast particular stands of timber lost through cutting or fire.Its use might be deemed invalid. PEI-HLY 51-381 120087-02 (02/03/93)ab A-6 This extreme windspeed reduction rule seems overly complex but,the savings it allows may be significant.It is not used at all for the development of this cost estimate. Case 4a 1"glaze ice +no wind at O°F (-20°C)west of longitude 147°35'and Case 4b 1"glaze ice +4 psf wind at O°F (-20°C)east of longitude 147°35'. The 1"glaze ice load (case 4)is equivalent to 2”rime ice at a density of 20 pcf.on 556.5 ACSR conductor.Rime ice's density can vary from less than 20 pcf to 57 pcf -the density of glaze ice.There is mention of 5"to 6”of rime ice that has been recorded (noted)in the Glennallen area.At 20 pcf,this equates to 3.5"glaze ice -a load which would control design overwhelmingly.The use of a rime ice load of this magnitude must be carefully reasoned.The cost of mis- application either way can be large. ase Construction Loads: The combined application of 700 pounds vertical and 2,000 pounds longitudinal applied at any one or all conductor attachment points. *Cases 1 and 2 above are NESC "safety”requirement cases and must be used in association with the appropriate over-capacity factors (OCF's)and strength factors.Cases 3,4 and 5 are not NESC requirements and do not use OCF's on the loads. PEI-HLY 51-381 120087-02 (12/15/92)ab A-7 CONDUCTOR SAG-TENSION DESIGN Sag-tension calculations will use the following constraints: 1 2 3 NOOfb) Cc) Initial stress in the aluminum at -40°(C and F)is limited to 60%of ultimate strength. The NESC "Heavy”load is limited to 60%RTS For Vibration "control”,the final unloaded "T/m”value is limited to 7,400' at -25°C (13°F). The 1"ice load at -20°C is limited to 60%RTS. The 100 mph load at -10°C is limited to 70%RTS. The initial tension temperature range is limited to -40°lower limit. The final unloaded temperature range is -60°F (-50°C)to 110°F (45°C). Constraint 1 above equates to limits near and below the NESC 35% RTS limit for initial unloaded tension.However,it is the aluminum that is highly stressed at low temperatures,thus the manner of notation. T/m is tension over mass.It should be applied at a temperature near the "10%coldest”value.This method of limiting tension for vibration control is felt to be a more correct "formula”for addressing the issue than is the "%RTS”rule used by the NESC.It allows tensions in AAC conductors to exceed the NESC 25%rule without apparent harm.It is a virtual match with the NESC 25%requirement for 26/7 strandings. If ice loadings in excess of 1"are contemplated,the %RTS limit should exceed 60%-say 70%-90%.Otherwise,the conductor will become a very strong element in the system.It is understood that Copper Valley et al desire the conductor to fail under "extreme” loadings before inducing severe structure damage. Results of ALCOA sag-tension calculations for ruling spans from 800°to 1,500'are included in this appendix. PEI-HLY 51-381 120087-02 (12/15/92)ab A-8 STRUCTURE AND CONDUCTOR PERFORMANCE REQUIREMENTS General As noted above,it is "preferred that loadings that develop high conductor tensions should result in conductor failure before structure failure.”The load sources of concern include ice loadings and catastrophic local structural loss via avalanche,etc.Controlling structure failure by depending on conductor failure is difficult.It might be more useful to rephrase the request to -"the fai/ure of an element on the line should not be allowed to propagate into the failure of other elements such that the cost of the failure is disproportionate to the probability of it occurring.” This "performance request”is applicable to any and all failure situations. Conductor Performance The problem with relying on conductor strength as the weak link or "fuse” in the system is that rated tensile strength (RTS)of ACSR is a value based on strain in the strands of the two metals.It does not have a whole fot to do with the wire actually breaking.The strain in the strandings at the RTS limit is a fraction of the strain at breaking.When a tension limit above 70%-90%RTS is met or exceeded,it would be more likely to presume the wire is stretched,oversagged and beyond its intended,performance limit.It may have become unserviceable but it is probably still intact. We normally design some structural elements for a loading which is a factored value of the maximum tension expected.The intent is to keep those elements strong enough to handle all loads imposed via the wire. Typically,that maximum tension is 60%RTS -or less.If the conductor is to be the weak link and its actual breaking point is actually (say,as low as) 120%RTS,then,with these numbers we would have to double the strength of the structural elements to retain the "wire first”sequence of failure.That is an expensive approach to instilling performance.We need to concede that the conductors will not break first and we need to find another solution. Besides,a broken conductor implies a probably long length of damaged conductor (over-strained)and that is very expensive to repair in itself. PEI-HLY 51-381 120087-02 (12/15/92)ab A-9 Structure Performance The following discussion is a suggested manner of controlling the cost of failures.It is essentially a "containment”approach which requires the acceptance of some kind/amount of failure as its first premise.The basic result of this approach is strong corner structures and the periodic use of longitudinally and transversely strong structures.These two features,but not any particular details,are acknowledged in the cost estimate. Three comments -typically,a structure designed for 1,000'wind span and 1,200'weight span gets applied routinely throughout a line at actual spans starting at zero or some low fraction of these values up to and perhaps slightly over them.And typically,a structure designed for a 30°corner is used to turn a 10°corner under the shelter of trees.Finally,although the maximum tension developed on a series of elements for a design might be 11,500 Ibs,the chosen manufacturers'items might have strengths ranging from 15,000 to 25,000 Ibs.with varying COVs. These three comments point out the difficulty of designing weak links into structures in order to control failure sequencing.The first two describe the upset that takes place on a design between the balance of vertical, transverse and longitudinal loads.The third point describes a material limitation that requires care and tenacity to control.It is useful to consider vertical,transverse and longitudinal loads independently. Vertical Loads Vertical failures (of structure elements)are almost exclusively sourced on the conductor by ice,galloping,fallen trees,construction,or the collapse of an adjacent structure. If the failure includes the collapse of the structure,it will likely be slow and include some transverse motion.This increases the chances of putting transverse load on adjacent structures to the point of damaging them but reduces the vertical impact.If the failure does not include structure collapse,the fast drop in conductor from the structure induces a doubling (more or less)of the vertical load on the adjacent structures.However, these structures are not likely to be under the same initial large load except in flat terrain,high ice conditions.The possibility of inducing tension increases sufficient to promote continued vertical or longitudinal failures of adjacent structures is real but not "guaranteed.”The propagation of this failure mode to additional structures is with decreasing power and probability of "success.”However,some consideration of containment against cascading is warranted. PEI-HLY 51-381 120087-02 (02/03/93)ab A-10 Generally,allowing a heavily loaded conductor to fall away before damaging anything is advantageous.We suggest installing a hardware item between the insulators and conductor clamp on suspension strings that is the "fuse.” An effective "fuse”needs a reasonable guarantee of failing before any other (costly )element fails.To do so,we suggest that 90%of the "fuse” products supplied be weaker than 90%of the products to which it is connected. (IE:mean strength +3 std.deviations of "fuse”<mean strength -3 std. deviations of "others”) This concept applies to suspension and light angle structures,not high angles and deadends.The following table lists unit conductor loads for various conditions for this project. Case Unit Loads Blowout # -Ice_Wind Vertical Transverse Resultant Angle -Oo O 0.766 6)0.766 0° 2 QO -70 (NESC)0.766 0.946 1.218 51° 2 O-70 (factored by 1.33 for wood)7.620 51° -oO 80 0.766 1.236 1.454 58° 3 0 100 0.766 1.931 2.078 68° %O 1.653 @)1.653 O° 1 %40 (NESC)1.653 0.642 1.774 21° 7 %40 (factored)2.480 1.605 2.954 33° 4a 1 0 3.162 (@)3.162 o° 4b 1 £440 3.162 0.976 3.309 17° In the above,case 4 (heavy ice)will yield maximum vertical (insulator string) load even moreso than the factored NESC load cases 1 and 2.Note how factoring the NESC "ice +wind”case distorts the blowout angle. Transverse Loads Transverse load has two basic "initiating”sources -wire tension at angle structures and wind.The former affects only corner structures while the latter affects most structures.Only structures protected by geography and those with high angles feel reduced loads from wind.Both source the load on the conductors.Avalanches and landslides can be considered isolated sources of transverse load albeit,usually on the structure foundation.It is useful to consider the problem at angles,tangent and "avalanche”sites independently. PEI-HLY 51-381 120087-02 (12/15/92)ab A-11 Transverse failure at angles is very costly.These failures introduce considerable "slack”into the line in both directions inducing the strong likelihood of longitudinal failures in both directions.Since relatively few structures are corner structures (usually),it pays to ensure that these structures have complete structural integrity for the loads expected on the line.In fact,if the concept of containment is to be employed,these structures become the handiest locations for ensuring that failures initiated elsewhere are stopped. Transverse failure of tangent and light angle structures is almost exclusively "wind on conductor”or "gust on structure”sourced.The effect of a failure is a combined transverse and longitudinal load on adjacent structures. There is a good chance these adjacent structures are also being subjected to their own wind loads and their probability of failure is reasonably good if that load is substantial. A look at the unit load table above shows that the maximum wind load on insulator strings (hardware)which have been designed to break away under vertical load is only 2/3 of the iced load.If we are to accommodate 1”of ice then the same vertical load "fuse”will easily tolerate (more than)the extreme wind load depending on the wind to weight span ratio.We cannot employ the same fuse idea to limit transverse load on tangent structures. The vertical load requirement could break it. Since the magnitude of transverse load on any structure cannot be determined prior to line layout or controlled by hardware selection,we will accept the idea of a transverse failure occurring with probable adverse consequences to adjacent structures.The defense is appropriate initial strength plus failure containment within a series of structures as "backup.” Transverse failures due to avalanches,landslides,etc are isolated and rare but structures in their "path”cannot survive without some ingenuity,luck or extraordinary construction expense.Known avalanche or slide locations should be-spanned if at all possible.If not possible,the number of structures should be minimal and minimal cost.If practical,the structures should be sacrificial while the conductors should be left intact.This amounts to a hardware break-away scheme in which the conductors are not trapped in structure "windows.”The structures just beyond a known boundary should be strong enough to contain the failure or provide conductor break-away via a hardware "fuse”within a deadend assembly. PEI-HLY 51-381 120087-02 (12/15/92)ab A-12 Longitudinal Loads Longitudinal failures are usually not "initiating”failures.They tend to be the consequence of the failure of some other element.Unlike the cases above for vertical and transverse failures,the forces that cause these failures are comparatively large and fairly constant between span.Without containment, they pose a high risk of propagating into long and very costly failures. In addition,some structure designs -like H-frames -are essentially two dimensional and have much less longitudinal strength than they do transverse or vertical strength.Couple that with the fact that conductor tension generally instills higher longitudinal "stored energy”into a line than is generated vertically or transversely by ice and wind.So we often align the weakest structural axis with the highest load axis.The only reason this works is due to the fact that the longitudinal load rarely occurs.To design for it specifically at every structure can be costly. The requirement,when using longitudinally weak structures is to expect failure (eventually)and to minimize damage by fusing,propagation damping and containment. Fusing is already suggested for series of suspension structures to contain vertical failures.Noting the unit load table above,we can see that for a design wind and weight span of 1,000°with "Dove”ACSR,the NESC would require an insulator and associated hardware strength of 2 x 2,954# or approximately 6,000*.If we assume all metal hardware has a COV of 0.10 and 10,000#epoxy insulators have a COV of 0.15;we get a desired metal component "fuse”mean strength of: 10,0007x (1-3x0.15)=4,230# (1+3x0.10) This fuse strength is below NESC requirements.This is rectified by increasing the strength of the insulator to (say)15,000*.The fuse strength requirement becomes 6,345*and that satisfies the NESC.Other hardware. with COVs of 0.10 would need to have minimum mean strengths of: 6,345*x (1+3x0.10)=11,800* (1-3x0.10) The expected strength of 90%of these "fuses”with a mean value of 6,345#is 4,450*to 8,250".The fuse should be expected to "operate” under vertical loads or longitudinal tension imbalances in this range. PEI-HLY 51-381 120087-02 (12/15/92)ab A-13 The average "fuse”would break under 6,345#load -generated by 1”ice on 2,000"span or 1.7"ice on 1,000'span.The probable everyday tension of "Dove”will be about 3,000*and the iced tensions will reach near 10,000*.A fuse as is already suited to vertical failure control seems also appropriate for longitudinal fusing and structural protection /f the structures, including crossarms are designed for withstanding up to 8,000*.This amount of longitudinal strength might require guys and might make sense only intermittently thus potentially sacrificing structures between to longitudinal failure. Propagation damping is the action of reducing the tension-induced loads felt at one structure by the slowed failure and or tension reducing action of swinging insulators at the adjacent failing structure. Containment is the occasional use of a structure strong enough to withstand the failure-causing loads thus stopping the failure progression to additional structures.The frequency of their use is cost-benefit driven.Advantage should be taken of all reasonable "excuses”to install such strong structures -such as at corners and other typical places where deadend type structures are necessary or at least not ridiculous.A containment structure placed at a low load location (a structure least likely to instigate failure) makes most sense since the corollary would have the structure intended to contain failure fail first leaving no nearby backup. PEI-HLY 51-381 120087-02 (12/15/92)ab A-14 Order of Element Strength All of the above suggests a preferred sequencing of failure (ie:an order of element strength).The proposed list -weakest to strongest follows.Items are grouped.A group can and should have more or less equal strength: 1 Suspension and light angle structures a Conductor attachment point "fuse” b Crossarms,insulators,associated hardware c Poles,"storm”guy/anchor systems,foundation systems 2 Tangent,light angle "containment”structures Conductor attachment point "fuse”a b Crossarms,insulators,associated hardware c Poles,foundation systems d Longitudinal guy/anchor system (free standing,strong poles are not assumed), 3 Running corner structures a Poles b All other components (insulators,hardware,guy and anchor systems) 4 Deadend structur x lift_onl a Conductor attachment point "fuse” b Poles c Insulators,associated hardware,guy/anchor and foundation systems 5 Conductor system a wire b splices The "totalized”order for overall line strength is: 1a*2a* 1b 2b 1c 2c 3a 2d 4a** 3b 4b 4c 5a 5b *vertical and longitudinal suspension structure "fuse” **Deadend structure "fuse” PEI-HLY 51-381 120087-02 (12/15/92)ab A-15 It is important to note that each of these elements is loaded vertically, transversely and longitudinally and the "order of strength”requirements need to be understood and applied most diligently against the component(s) and events of importance as described in the discussions above. PEI-HLY 51-381 120087-02 (12/15/92)ab A-16 ACHIEVING THE ORDER OF STRENGTHS Vertical Loads 1 Conductor attachment points,insulators,and their hardware assemblies shall be designed to withstand vertical loads,combined with associated longitudinal and transverse loads equal to the loaded weight developed by all 4 load cases noted above under "Weather Load Cases”-with the NESC Rule 277 strength factor of 50%of ultimate strength applied. Assuming a COV of 0.15 on insulator strength and assuming an inclusion limit of 3 standard deviations from mean;the strength factor to apply,in the absence of NESC direction would be 55%(1.0- 3*0.715).Therefore,using the NESC value of 50%is acceptable for all load cases. Crossarms shall be designed to carry the factored vertical and associated transverse and longitudinal attachment point loads from above at each point -one (1)point at a time,and at all attachment points coincidentally.These loads shall be increased by a factor of 1.15 to ensure an increase in crossarm strength relative to insulator and hardware strength.Note that this develops a total vertical OCF for crossarms,etc.of 2.25 which exceeds the NESC requirement of 1.50.Generally,vertical strength is not expensive. Poles shall withstand the factored vertical loading of point 1 above with a load factor of 1.25 applied.This develops a total vertical OCF for poles of 2.50 which exceeds the NESC requirement of 1.50,as above. Pole foundation systems shall resist the factored vertical loads applied to the poles as per point 3 above multiplied by an additional factor of 1.50 Transverse Loads 1 Conductor attachment points,insulators,and their hardware assemblies shall be designed to withstand the transverse loads, combined with associated vertical and longitudinal loads equal to 100%of that developed by the 4 load cases noted above under "Weather Load Cases”-with the NESC Rule 277 load factor of 50% of ultimate strength applied. PEI-HLY 51-381 120087-02 (12/15/92)ab A-17 Crossarms shall be designed to carry the factored transverse (and associated longitudinal and vertical)attachment point loads from above at each point -one (1)point at a time and at all attachment points coincidentally.These loads shall be increased by a factor of 1.15 to ensure an increase in crossarm strength relative to insulator and hardware strength.As described above,this develops a total transverse OCF for crossarms,etc.of 2.30 which exceeds the NESC requirement of 1.65 for tension induced loads at line angles but falls short of the 2.50 OCF for wind induced loads.For the NESC case (1),factor the loads on crossarms,etc by 1.25 (instead of 1.15)to equate to the NESC requirement. Poles shall withstand the factored transverse loadings of point 1 above with a load factor of 1.25 applied.This develops a total vertical OCF for poles of 2.50 which exceeds/matches the NESC requirements of 1.65 and 2.50 as noted in point 2 above. Note:Poles may meet the requirements of point 3 above by the appropriate application of bracing or guys and anchors. Guy systems,including anchors,and pole foundation systems shall resist the loads applied to the poles as per point 3 above multiplied by an additional factor of 1.50 Longitudinal Loads 1 Conductor attachment points,insulators,and their hardware assemblies on all deadend,"running corner”structures with line angles above 30°,and any non-swinging insulators shall be designed to withstand longitudinal,one-way tension loads,combined with associated vertical and transverse loads equal to 100%of the maximum tension developed by any load case noted above under "Weather Load Cases”-with the NESC Rule 277 load factor of 50% of ultimate strength applied. Swinging insulators -suspension units on tangent and light angle structures,and "running corner”structures with line angles below 30°,their hardware assemblies,and attachment points shall be designed to carry 75%of the above. PEI-HLY 51-381 120087-02 (12/15/92)ab A-18 4a 4b 4c Crossarms shall be designed to carry the factored longitudinal and associated transverse and vertical attachment point loads from above at each point -one (1)point at a time,except deadend structures with crossarm attachment points shall apply the loads at all attachment points coincidentally.These loads shall be increased by a factor of 1.15 to ensure an increase in crossarm strength relative to insulator and hardware strength.As above,this develops a total longitudinal OCF for crossarms,etc.of 2.30 which exceeds the NESC requirement of 1.65 for deadends. "Deadend on crossarm”structures that are used solely to solve an uplift problem and that is not subjected to a significant tension change shall have their crossarm,poles,guy system and foundations designed against longitudinal load as if they were non-deadend structures. Poles are required to withstand the factored longitudinal loadings of point 1 above with an additional load factor of 1.25.This develops a total longitudinal OCF for poles of 2.50 which exceeds the NESC requirement of 1.65 for deadends. Poles required to withstand the factored longitudinal loadings of point 2 above shall use a load factor of 1.33 (for a total OCF of 1.00) except that... A series of structures designed with an OCF as low as 0.50 may meet the longitudinal strengths by the insertion of a structure with po/es meeting the loading requirements of points 1 and 4a above.Other components of these structures shall be designed for loads based on points 2 and 3 above.Such longitudinally strong structures shall be inserted into the line so that no more than 10 consecutive structures or no more than 2 continuous miles (10,000')of line length that do not meet the requirements of point 4b exist on the line. Note:Poles may meet the requirements of point 4a above by the appropriate application of in-line guys and anchors. Guy systems,including anchors,and pole foundation systems shall resist the loads applied to the poles as per point 4 above multiplied by an additional factor of 1.50 PEI-HLY 51-381 120087-02 (12/15/92)ab A-19 All of the above "factors”are /oad factors.They are to be used in combination with factored ultimate strength values.Use strength factors of 0.90 for structural steel members and fasteners as per AISC ,0.90 for steel guys as per NESC Rule 261C2a and 0.65 for wood members as per NESC Rule 261A2b1a. Line Performance The structural performance of the "line”should be such that there is minimal damage or loss to/of structures adjacent to a structure of initial failure.Point 4b of Structural Performance "longitudinal loads”is directed at achieving this -failure containment.There may be special situations requiring special solutions.An example is structure loss in avalanche areas. Extra strength aimed at containing failure may be necessary at the limits of avalanche areas if total failure prevention within the area is considered overly expensive. PEI-HLY 51-381 120087-02 (12/15/92)ab A-20 ELECTRICAL PERFORMANCE - CLEARANCES T ra Proximiti Clearances to grade and proximities shall be as per the table below. Clearances to grade shall be altered from the "basic”as follows: 1 Winter condition clearances (sags involving iced wires calculated at 32°F,or bare and wind loaded wires with temperatures below 50°F (10°C))over land and all but major highways shall be increased by 5' -4'to account for snow depth plus 1°for construction variance. Otherwise,they shall be increased by 2'-1°to account for quality of profile information plus 1'for construction variance. 2 Summer condition clearances (sags due to temperatures of 50°F (10°C)and higher)and proximities shall be increased by 2'-1°to account for quality of profile information plus 1°for construction variance. "Basic”Clearances (refer to NESC Table 232-1 for definitions and n Nature of surf low learan 1.Railway (top of rail)28.5" 2 Major Roads 20.5'. 3 Driveways 20.5' 4 Land accessible to vehicles 20.5' 5 _Land inaccessible to vehicles*16.5' 6 Non-navigable waterways |19.0° 7 Navigable waterways (summer sags only) <20 Ac.22.5' 20-200 Ac.30.5' 200-2,000 Ac.36.5' >2,000 Ac.42.5' Add the additional clearance values from points 1 and 2 above. *This category is rarely used.Read as "reasonably inaccessible to snowmobiles.” Phase to Phase and Phase roun Phase to phase and Phase to structure and "ground”clearances shall be as per the NESC. Working Space NESC and Utility space requirements shall apply. PEI-HLY 51-381 120087-02 (12/15/92)ab A-21 STRUCTURE FAMILIES As noted above,POWER has presumed a project cost advantage is available via the use of long span,light-weight,easily assembled and erected structures.The preference is spend money on material where labor savings will result. H-frame construction is assumed as the basic preference and is used in zone 1.The longer span capability of the H-frame,combined with the high labor costs (per structure)makes the family more economical than single pole construction under these "normal”circumstances. Zone 3 and 4 assumes the same family of H-frame structures used in Zone 1 except that each type is mounted on steel piles.Since the reason for the pile foundations is to achieve permafrost penetration sufficient to control uplift,the use of guys is held to a minimum and,when used they are assumed installed with long lead distances to minimize vertical forces in the poles should uplift occur. The estimate assumes that Zone 2 is limited/difficult access and requires "helicopter construction.”It assumes that Zones 3 and 4 require all structures and guys to be supported/connected to piles driven or drilled into permafrost. Single pole construction is selected for the zone 2 helicopter construction on the assumption that the lighter weight,one lift installation and minimal on- site assembly approach saves labor and helicopter time to the point of least cost. In all cases,steel poles are assumed.At the large (class)sizes desired, wood is not in ready supply and no cheaper than steel.Meyer prices for their Light-duty (LD)series of standard poles were used.Meyer states that these LD series poles are not necessarily less expensive than custom designed poles but,they are intended to be shorter delivery items. Depending on schedule demands,that quicker delivery might become an attractive feature. The other attraction of steel poles is the constancy of diameter.POWER expects that connecting details at the crossarms,guying and particularly the pile foundations can be simplified and less labor intensive if varying diameter of poles need not be accommodated. PEI-HLY 51-381 120087-02 (12/15/92)ab A-22 Single Pole Construction Meyer class LD-8 poles from 55'to 100'are assumed.Direct bury installation is assumed.The basic wind span limit of this pole class is about 840'.That value is assumed in the TLCADD optimization run. The top phase conductor is supported on a vertical poletop polymeric post insulator.The other two phases attach to polymeric horizontal V units staggered vertically,one each side of the pole.The poletop post is typically not a strong item in transverse loading -the governing design load case being the 100 mph wind -compared to the rest of the structure.We anticipate the need to in effect double-up the insulator with an assembly of stacked 69 kV station posts where increased transverse capacity is needed. This is a detail that makes constant poletop diameter attractive. Since spanning out tends to typically improve the costs,it would seem useful to explore an increase in pole strength -perhaps into the realm of custom poles -(to the point of helicopter lifting limits,if in fact helicopter construction is used)so that longer spans and fewer structures and structure sites are needed.This exercise was not pursued beyond the LD-8 class pole in development of this cost estimate. Four vertically framed designs comprise the family -a tangent (VA),a light angle (VB),a large angle running corner (VC),and a deadend(VD). H-fram nstruction Meyer class LD-6 poles from 55"to 100'are assumed.Direct bury installation is assumed.The basic wind span limit of this pole class ranges between 1.280'and 1,560'depending on pole length.Those value are assumed in the TLCADD optimization runs.The choice of pole class and span limits matches roughly with the limits imposed by the right-of-way width and phase spacing.Unlike the single pole design,additional spanning out is not so possible. Polymeric suspension insulators hung from a single steel crossarm are assumed. Reduced pole class sizes were not presumed at guyed structures although, in the final design,such reductions would typically make sense. PEI-HLY 51-381 120087-02 (12/15/92)ab A-23 Six designs comprise the family -tangent (A),light angle (B),running corner (C),deadend (D),long span tangent (E),and an uplift deadend(F). Type A comes in unguyed (A),side guyed (AT),line guyed (AL),and fully guyed (AS)versions.Type B is a side guyed A with an offset crossarm. Types C and D are three pole structures.The running corner structure is guyed such that it offers deadend capabilities if adjacent structures are lost. Type E is a type A with a stronger crossarm and insulators.Type F has limited deadend capabilities. All versions come in piled configuration for application in zones 3 and 4 - AP,etc. Pile Foundations Steel piles driven 20'-through a varying depth active layer into permafrost are assumed on all structures in zones 3 and 4.The only penalty for spanning out in these zones (to minimize structure installations)is the increase in pole sizes,groundline forces and therefore,pile sizes and purchase costs. It is noted elsewhere in the report that the cost of piling,including the installation,plays a large role in controlling the project cost.While particular values for pile sizes,costs and installation rates are assumed for the estimate,we note that,in our opinion,several options as to pile design are yet to be explored.Significant project cost savings could result from such an exploration. For the forces involved in these large pole sizes/spans,H-piles are not attractive.Their basic strength has difficulty matching the poles'strength. in addition,H piles are weak longitudinally if oriented for maximum benefit transversely.They offer poor longitudinal strength -a valued commodity in "containment”design -compared to pipe piles.We have assumed pipe piles and make no distinction as to whether the costs (need to)represent the installation method -driven or predrilled.The method is determined somewhat by the soil composition.We anticipate the assumed costs cover either method. PEI-HLY 51-381 120087-02 (12/15/92)ab A-24 ALCOA OVERHEAD CONDUCTOR AMPACITY TABLE FILL IN THE BOXES,THEN "PRINT”TABLE Wire information Other Parameters: Name:|DOVE /See List Ambient Air Temp (F): Diameter (in):|0.927 Wind Speed (mph): R20 (ohms/mile):|.0.1646 |Rdc @ 20C or 75F Power Factor: L-L Voltage (kV): Emissivity factor:0.5 (new:0.23,black:0.91),recommend 0.5 Absorptivity factor:|0.55 -|(new:0.23,black:0.95),recommend 0.55 %Cloud Cover:100 |0=clearsky Wind Speed in ft/sec:2.00ConductorTemp.Range,from Ambient to:|176 l(F) CONDUCTOR CAPACITY TEMPERATURE (F)AMPACITY (MW) Ambient 104 0 0 114 274 62 124 384 87 134 467 106 144 535 122 154 594 135 164 647 147 174 694 158 176 703 160 A-25 SUMMER-FULL SUN OVERHEAD CONDUCTOR AMPACITY TABLE FILL IN THE BOXES,THEN "PRINT"TABLE Wire information Other Parameters: Name:|DOVE |See List Ambient Air Temp (F):90 Diameter (in):}0.927 Wind Speed (mph):|1.365 R20 (ohms/mile):|0.1646 |Rdc @ 20C or 75F Power Factor:|0.95 L-L Voltage (kV):138 Emissivity factor:0.5 (new:0.23,black:0.91),recommend 0.5 Absorptivity factor:}0.55 -|(new:0.23,black:0.95),recommend 0.55 %Cloud Cover:0 0 =clear sky Wind Speed in ft/sec:2.00ConductorTemp.Range,from Ambient to:|176 |(F) CONDUCTOR CAPACITY TEMPERATURE (F)AMPACITY (MW) Ambient 90 0 0 100 0 0 110 181 41 120 326 74 130 422 96 140 498 113 150 §62 128 160 617 140 170 668 152 176 695 158 A-26 WINTER-CLOUDY OVERHEAD CONDUCTOR AMPACITY TABLE FILL IN THE BOXES,THEN "PRINT"TABLE Wire information Other Parameters: Name:|DOVE |See List Ambient Air Temp (F):50 Diameter (in):|0.927 Wind Speed (mph):|1.365 R20 (ohms/mile):|0.1646 |Rdc @ 20C or 75F Power Factor:|0.95 L-L Voltage (kV):138 Emissivity factor:0.5 (new:0.23,black:0.91),recommend 0.5 Absorptivity factor:|0.55 |(new:0.23,black:0.95),recommend 0.55 %Cloud Cover:100 |0=clear sky Wind Speed in ft/sec:2.00ConductorTemp.Range,from Ambient to:|176 |(F) CONDUCTOR CAPACITY TEMPERATURE (F)AMPACITY (MW) Ambient 50 0 0 60 283 64 70 397 90 80 482 109 90 §52 125 100 612 139 110 665 151 120 713 162 130 756 172 140 796 181 150 834 189 160 868 197 170 901 205 176 919 209 A-27 Conductor DOVE AREA= English Units ALUMINUM COMPANY OF AMERICA SAG AND TENSION DATA Zone 1 Copper Valley Sutton-Glenallen 138 kv Line file:¢c:\sagl0\sutndove.dat -5083 Sq.In. Data from Chart No. Horizontal Tensions SPAN=800.0 Feet 1-782 Creep is NOT a Factor Design Points TEMP F 0. 0. 0. 14. 14. 32. -20. -10. QO. 10. 13. 20. 30. 32. 40. 50. 60. 70. 80. 90. 120. 167. 212. ICE In 1.00 1.00 -50 -00 00 50 00 -00 00 00 00 00 -00 00 -00 00 00 00 00 00 -00 00 00 WIND Psf 4.00 00 4.00 25.60 12.80 90 00 00 00 00 00 00 00 .00 00 00 00 00 00 00 00 00 00 *Design Condition K Lb/F .00 .00 30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 556.5 Kemil Heavy Loading WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 Final SAG Ft 22.54 22.19 19.23 19.98 16.91 19.30 12.49 13.09 13.69 14.30 14.48 14.90 15.50 15.61 16.09 16.68 17.26 17.83 18.40 18.96 20.05 21.29 22.47 A-28 26/7 Stranding ACSR TENSION Lb 11764. 11415. 8633. 8498. 5920. 6859. 4908. 4683. 4477. 4289. 4235. 4116. 3957. 3927. 3811. 3677. 3553. 3439. 3333. 3235. 3058. 2881. 2731. Initial SAG TENSION Ft Lb 22.54 11764. 22.04 11492. 17.88 9284. 18.52 9166. 14.23 7035. 17.04 7768. 9.46 6478. 9.85 6224. 10.25 5977. 10.68 5738. 10.81 5668.* 11.13 5508. 11.59 5287. 11.69 5244. 12.07 5077. 12.57 4877. 13.07 4689. 13.59 4511. 14.11 4344. 14.64 4187. 16.25 3774. 18.74 3273. 21.03 2916. SPAN=900.0 Feet Creep is NOT a Factor Design Points TEMP ICE In 1.00 1.00 50 -00 -00 50 -00 00 -00 -00 «00 00 -00 00 -00 -00 -00 «00 00 «00 00 «00 00 WIND Psf 4.00 00 4.00 25.60 12.80 00 -00 00 00 00 00 -00 00 00 00 00 00 00 00 00 00 00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 -766 766 -766 .766 Heavy Loading Final SAG Ft 27.23 26.84 23.51 24.32 20.91 23.53 16.11 16.77 17.42 18.06 18.26 18.71 19.34 19.47 19.98 20.60 21.22 21.83 22.43 23.02 24.10 25.43 26.70 A-29 TENSION Lb 12323. 11946. 8940. 8836. 6061. 7122. 4815. 4628. 4455. 4296. 4250. 4148. 4012. 3986. 3885. 3768. 3658. 3556. 3461. 3372. 3222. 3053. 2909. Initial SAG TENSION Ft Lb 27.23 12323. 26.65 12031. 21.81 9634. 22.52 9543. 17.58 7206. 20.77 8066. 12.12 6403. 12.57 6171. 13.04 5947. 13.54 5731. 13.69 5668.* 14.05 5524. 14.57 5325. 14.67 5287. 15.10 5137. 15.65 4957. 16.21 4787. 16.77 4627. 17.34 4475. 17.91 4332. 19.63 3953. 22.30 3481. 24.76 3135. SPAN=1000.0 Feet Creep is NOT a Factor Design Points TEMP F QO. 212. ICE In 1.00 1.00 «50 -00 00 -50 «00 -00 00 00 «00 00 00 00 00 «00 «00 00 -00 «00 00 00 00 WIND Psf 4.00 00 4.00 25.60 12.80 00 00 -00 00 -00 00 00 00 00 00 -00 00 .00 -00 00 00 00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.252 1.654 .766 766 .766 .766 .766 .766 .766 -766 .766 .766 766 -766 766 766 .766 766 766 Heavy Loading Final SAG Ft 32.26 31.83 28.13 29.01 25.26 28.10 20.14 20.83 21.52 22.21 22.41 22.89 23.56 23.69 24.22 24.88 25.52 26.16 26.80 27.42 28.44 29.87 31.22 A-30 TENSION Lb 12843. 12440. 9225. 9150. 6195. 7364. 4757.° 4598. 4451. 4314. 4275. 4187. 4068. 4045. 3956. 3852. 3755. 3663. 3577. 3496. 3370. 3209. 3071. Initial SAG TENSION Ft Lb 32.26 12843. 31.59 12532. 26.05 9960. 26.83 9891. 21.25 7362. 24.81 8340. 15.12 6333. 15.64 6123. 16.18 5920. 16.73 5725. 16.90 5668.* 17.30 5538. 17.87 5360. 17.99 5325. 18.46 5190. 19.05 5028. 19.65 4874. 20.26 4729. 20.87 4591. 21.48 4460. 23.31 4110. 26.14 3666. 28.76 3333. SPAN=1100.0 Feet Creep is NOT a Factor Design Points TEMP F QO. 212. ICE In 1.00 1.00 50 00 -00 50 «00 00 00 00 00 00 00 00 -00 -00 00 -00 -00 00 00 00 -00 WIND Psf 4.00 00 4.00 25.60 12.80 00 00 00 00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 766 766 .766 .766 .766 .766 .766 .766 .766 .766 766 .766 766 .766 Heavy Loading Final SAG Ft 37.62 37.14 33.09 34.02 29.96 33.00 24.55 25.28 26.00 26.72 26.93 27.43 28.13 28.27 28.82 29.50 30.18 30.85 31.51 32.12 33.09 34.61 36.04 A-31 TENSION Lb 13328. 12900. 9491. 9440. 6320. 7588. 4722. 4586. 4459. 4339. 4305. 4228. 4123. 4102. 4024. 3931. 3843. 3760. 3681. 3611. 3505. 3352. 3219. Initial SAG TENSION Ft Lb 37.62 13328. 36.86 12998. 30.60 10261. 31.44 10213. 25.23 7504. 29.14 8591. 18.49 6268. 19.07 6078. 19.66 5895. 20.27 5719. 20.45 5668.* 20.88 5551. 21.51 5390. 21.63 5359. 22.14 5237. 22.77 5090. 23.41 4951. 24.06 4819. 24.71 4693. 25.35 4573. 27.29 4249. 30.27 3832. 33.03 3512. SPAN=1200.0 Feet Creep is NOT a Factor Design Points TEMP F 0. 0. 0. 14. 14. 32. -20. -10. 0. 10. 13. 20. 30. 32. 40. 50. 60. 70. 80. 90. 120. 167. 212. ICE In 1.00 1.00 50 -00 00 50 00 00 00 00 -00 -00 00 00 00 «00 00 00 -00 -00 00 -00 00 WIND Psf 4.00 00 4.00 25.60 12.80 .00 00 00 00 -00 00 00 90 00 00 00 .00 00 .00 00 00 -00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 .766 .766 .766 .766 .766 .766 -766 766 .766 .766 766 .766 .766 .766 Heavy Loading Final SAG Ft 43.31 42.79 38.39 39.37 35.01 38.24 29.34 30.10 30.85 31.59 31.81 32.33 33.05 33.20 33.77 34.48 35.18 35.87 36.56 37.02 38.05 39.64 41.15 A=32 TENSION Lb 13781. 13329. 9738. 9709. 6438. 7794, 4702. 4584, 4473. 4368. 4338. 4269. 4176. 4158. 4087. 4004. 3924. 3848. 3776. 3729. 3629. 3483. 3356. Initial SAG TENSION Ft Lb 43.31 13781. 42.45 13434. 35.45 10542. 36.36 10513. 29.51 7634. 33.77 8822. 22.22 6209. 22.85 6038. 23.49 5873. 24.14 5714. 24.34 5668.* 24.80 5562. 25.47 5417. 25.60 5389. 26.14 5278. 26.81 §145. 27.49 §019. 28.17 4898. 28.85 4783. 29.53 4673. 31.56 4373. 34.68 3980. 37.58 3674. SPAN=1300.0 Feet Creep is NOT a Factor Design Points TEMP F oO. 0. 0. 14. 14. 32. -20. -10. QO. 10. 13. 20. 30. 32. 40. 50. 60. 70. 80. 90. 120. 167. 212. ICE In 1.00 1.00 -50 -00 -00 -50 .00 -00 -00 .00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 WIND Psf 4.00 00 4.00 25.60 12.80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .00 00 .00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 -766 -766 -766 766 -766 -766 -766 -766 -766 -766 -766 766 766 766 -766 766 766 Heavy Loading Final SAG Ft 49.32 48.76 44.02 45.06 40.40 43.81 34.50 35.28 36.05 36.82 37.05 37.58 38.32 38.47 39.06 39.80 40.52 41.24 41.88 42.24 43.31 44.99 46.57 A-33 TENSION Lb 14205. 13731. 9968. 9959. 6548. 7985. 4695. 4591. 4493. 4400. 4373. 4311. 4227. 4211. 4147. 4071. 3999. 3929. 3870. 3837. 3741. 3603. 3481. Pa Initial SAG TENSION Ft Lb 49.32 14205. 48.36 13842. 40.61 10802. 41.58 10791. 34.11 7753. 38.71 9035. 26.30 6157. 26.98 6002. 27.66 5853. 28.36 5710. 28.57 5668.* 29.06 5572. 29.76 5441. 29.90 5415. 30.47 5315. 31.18 5194. 31.89 5078. 32.60 4968. 33.31 4862. 34.02 4761. 36.13 4483. 39.39 4113. 42.41 3821. SPAN=1400.0 Feet Creep is NOT a Factor Design Points TEMP F 0. oO. 0. 14. 14. 32. -20. -10. 0. 10. 13. 20. 30. 32. 40. 50. 60. 70. 80. 90. 120. 167. 212. ICE In 1.00 1.00 -50 -00 -00 -50 -00 -00 -00 -00 -00 .00 -00 -00 .00 -00 -00 -00 .00 -00 00 00 -00 WIND Psf 4.00 00 4.00 25.60 12.80 00 00 00 00 00 00 00 00 00 00 00 .00 00 00 00 00 00 00 *Design Condition WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 Heavy Loading Final SAG Ft 55.66 55.05 49.98 51.07 46.14 49.72 40.02 40.82 41.61 42.40 42.63 43.18 43.95 44.10 44.71 45.46 46.20 46.94 47.39 47.76 48.89 50.64 52.29 A-34 TENSION Lb 14602. 14107. 10184. 10193. 6652. 8162. 4695. 4603. 4515. 4432. 4407. 4352. 4276. 4261. 4204. 4134. 4068. 4004. 3966. 3935. 3845. 3713. 3596. Initial SAG TENSION Ft Lb 55.66 14602. 54.59 14224. 46.07 11045. 47.10 11049. 39.02 7861. 43.95 9231. 30.74 6110. 31.46 5970. 32.18 5835. 32.91 5706. 33.14 5668.* 33.65 5581. 34.39 5462. 34.54 5439. 35.13 5347. 35.87 5237. 36.61 5131. 37.35 5030. 38.09 4932. 38.82 4839. 41.02 4581. 44.39 4233. 47.53 3954. SPAN=1500.0 Feet Creep is NOT a Factor Design Points TEMP F 0. QO. oO. 14. 14. 32. -20. -10. 0. 10. 13. 20. 30. 32. 40. 50. 60. 70. 80. 90. 120. 167. 212. ICE In 1.00 1.00 -50 00 -00 50 «00 00 «00 -00 00 00 -00 00 -00 -00 -00 -00 «00 -00 -00 00 -00 WIND Psf 4.00 00 4.00 25.60 12.80 00 00 00 -00 00 -00 00 00 00 00 00 00 00 00 00 00 00 -00 *Design Condition Heavy Loading 00 WEIGHT Lb/F 3.310 3.163 2.074 2.121 1.251 1.654 .766 .766 .766 -766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 .766 Final SAG Ft 62.31 61.66 56.27 57.40 §2.21 55.95 45.89 46.71 47.53 48.33 48.57 49.12 49.91 50.07 50.69 51.46 52.23 52.82 §3.22 53.61 54.78 56.59 58.31 A-35 TENSION Lb 14975. 14460. 10385. 10411. 6749. 8327. 4700. 4618. 4539. 4464. 4442. 4392. 4323. 4309. 4256. 4193. 4132. 4085. 4055. 4026. 3940. 3814. 3702. Initial SAG TENSION Ft Lb 62.31 14975. 61.14 14583. 51.84 11270. 52.92 11289. 44.25 7959. 49.49 9412. 35.53 6068. 36.29 5942. 37.05 5820. 37.81 5702. 38.04 5668.* 38.58 5589. 39.35 5480. 39.50 5459. 40.11 5376. 40.88 5275. 41.65 5178. 42.41 5085. 43.18 4995. 43.94 4909. 46.21 4668. 49.69 4342. 52.94 4076. AVERAGE TREE HEIGHT AT EDGE OF ROW ||Gi-w KXOff,XGminVK,RY!Ws"UpWEBZA07»VSly5 AVERAGEfeHEIGHTSEE [ae|___ FIGURE 1 WIND SPEED=100 -(H-40') (MIN 70 MPH,MAX 100 MPH) SUTTON-GLENNALLEN 138KV INTERTIE SCALED WV Tg,[PSN be PATE 42/09/92 DWG.NO.COMER|.°°FIG 13940GLENBROOKORIVEHAILEY.104HQO 83553 figt.dgn "HORIZON”= 15 AVERAGE TREE HEIGHT Piva c & _Litt = -] FIGURE 2 DESIGN WIND SPEED=100 -(LESSER OF [Y.X]-10°) (ROUND UP TO MULTIPLE OF 5) (MIN 7O MPH) SUTTON-GLENNALLEN 138KV INTERTIE SCALE?NT Tig,JOS.ac OATe 12/09/92 DWG.NOORN.BCLOMER|__° FIG 23940CLENBROOKORIVE MAILEY.(OAH 83333 fig2.dgn POM 3° 69 kV.OU $T 6 STN POLES ££00 4 2 $F ++6' zal HIGH STRENGTH POLE TOP ASSEMBLY -OPTION-47'-6"TO 88'-0"MAX STRUCTURE "VA" SUTTON-GLENNALLEN 138KV INTERTIE SINGLE POLE TANGENT -STR "VA SCALE?A)rg [OSGNe og PATE 42/09/92 CLOMER 8 ery3940GLENBROOKORIVEWAILET.10QHQ 63333 strva.dgn 12° STRUCTURE "VB” SUTTON-GLENNALLEN 138KV INTERTIE SINGLE POLE LT ANGLE -STR "VB” SCALEE Tg USO PATE 12/09/92 ORN.DB DWG.NOC2OWER|__STRVB3940GLENBROOKDRIVEHAILEY,IDAHO 83333 strvb.dgn i |Tp \ 'A STRUCTURE "VC" SUTTON-GLENNALLEN 138KV INTERTIE SGL POLE RUNNING ANGLE -STR "VC" SCALE:N.T.S.DSGN.PC PATE 12/09/92 CLLMF 3940 GE HAILEY. NBROOK DRIVE IGaHG 83333 ORN.DB cKO. DWG.NO. STRVC Strvc.dgn 12° 12' | STRUCTURE "VD” SUTTON-GLENNALLEN 138KV INTERTIE SINGLE POLE DEADEND -STR "VD” OSGN. 3940 _GLENBROOK OR VEHAILET.10AHO 83333 SCALE:N.1.S.PC DATE 12/09/92 ORN.DB OWG.NO.GROWER |_STRVD strvd.dgn €LINE A-NO GUYING AL-WITH INLINE GUYS AT-WITH TRANSVERSE GUYS AS-WITH BOTH GUYS AP-ON PILES E-HAS STRONGER X-ARM 7 47°-6"MIN 100°-0"MAX (ON PILES) (ALL TYPES) STRUCTURE "A”&"E" SUTTON-GLENNALLEN 138KV INTERTIE TWO POLE TANGENT -STR "AY &"E" SCALE:N.T.S-DSGN.PC PATE 42/09/92 CLLMF 3940 GLENBROOK ORI VEWAILEY.I108HG 83333 ORN.DB cKO. OWG.NO. STRA stra.dgn 16" | u MM |in STRUCTURE "B" BP ON PILES SUTTON-GLENNALLEN 138KV INTERTIE TWO POLE LIGHT ANGLE -STR "B” SCALE:N.7.S.OSGN.PC DATE 42/09/92 CLLMF 3940 GLENBROOK ORI HAILEY.[DAHO 683353 vE ORN.DB CKD. OWG.NO. STRB strb.dgn ¢LINE Ig 5'-0' | a iti m oa |-_a | || +1 + || STRUCTURE "C” CP ON PILES SUTTON-GLENNALLEN 138KV INTERTIE THREE POLE RUNNING ANGLE -STR "C" SCALE:N.17.S.OSGN.PC DATE 12/09/92 CLLLER 33 iy generar ORI VEEY.[Dano 83353 ORN.DB ckO. DWG.NO. STRC strc.dgn NN7StLil a STRUCTURE "D” DP-ON PILES SUTTON-GLENNALLEN 138KV INTERTIE THREE POLE DEADEND -STR "D” SCHED TT5 [OS™pe PATE 12/09/92 CLIMER step3940GLENBROOKDRIVE WA(LEY.108HO 83335 strd.dgn Lenn.a VE STRUCTURE "F” FP ON PILES SUTTON-GLENNALLEN 138KV INTERTIE TWO POLE DEADEND -STR "F” SEE Tg.[OS Be PATE 42/09/92 DWG.NO.QUEL CKD.3240 GLeneronk ORI VEIDAHO83353 strf.dgn APPENDIX B CONSTRUCTION ZONES APPENDIX B -CONSTRUCTION ZONES INTRODUCTION This Appendix describes the four geographic zones that the line is separated into for purposes of allowing the application of different designs, construction methods and rates.For the cost estimate,one tool used to allow for varying costs per zone is Percentage of "normal”production rates values.These percentage factors are input in the Production Rates file. They are described here. ZONE 1 (40.34 miles) Zone 1 extends from the line's origin at O'Neil Substation -near Sutton - to a point a few miles east of Watchtower Inn where it turns north,away from its proximity to the Glenn Highway and heads "into the hills.”The line is rarely more than a mile or two from the highway along the entire zone. The elevation ranges from 500'at Sutton to about 2,500'°north of Rush Lake and at the zone's east end. The tree coverage is described as 100%-"can barely walk through”, includes birch,spruce and cottonwood,some to 90°tall.We assumed 50% lop and scatter and 50%burn.We assume 60%earth foundations,40% rock foundations and no permafrost installations.Compared to the other three zones,access and therefore,productivity is about as good as it gets. For Zone 1,an 80%factor is applied to the "normal”production rate.We assume year-round construction access and effort.This reduction is to account for lost time due to periodic inclement weather and machine down- time,etc.These are typical construction delay features generally independent of location and season. ZONE 2 (24.38 miles) Zone 2 extends from the point north of Hundred Mile Lake (at Watchtower Inn)to the point near Tahneta Pass where the ROW rejoins proximity to the highway.The zone is presumed to have sufficiently poor (costly)access that helicopter construction is assumed.Elevation gets to 3,200" The foundations are assumed 50%earth and 50%rock.Single pole structures are anticipated almost exclusively -the possible exceptions being high weight span locations as they might exist. PEI-HLY 51-381 120087-02 (12/15/92)ab B-1 Forest coverage is assumed at 50%,including spruce and cottonwood.We assume 50%lop and scatter and 50%burn.Accordingly,the productivity on cutting,clearing and burning increases.All other productivity drops off from 80%of normal to about 60%of normal simply to acknowledge the time to access the site(s)each day.Anchor setting productivity is further reduced to account for the difficulty of maneuvering on the roughest terrain on the project. Pole installation and framing productivity is high to account for the dramatically improved expectations associated with helicopter delivery of these single pole structures to site(s).Note that this translates into 18 structures set per day by helicopter compared to 5.6 set per day in Zone 1 -the regular way! ZONE 3 (47.81 miles Zone 3 extends from Tahneta Pass to a point just north of Moose Lake.The zone drops gradually in elevation from 3,000°to 2,000.'We assume 10% earth foundations,10%rock foundations and 80%piled permafrost foundations. Forest coverage is reduced to 25%and includes scattered spruce.We assume 100%burned.The zone is a transition into the 100%permafrost, winter construction requirements of Zone 4.So,although access is as good as it is in Zone 1,the time of year is cause for a comparative reduction is productivity for most construction activities. ZONE 4 (21.74 miles) Zone 4 extends from Moose Lake to the Line's end at Glennallen.We assume 100%piled foundations on permafrost and a restriction to winter construction.Proximity to the highway remains excellent.The time of year is the reason for the generally large reduction in productivity. Forest coverage is 100%including 30'to 40'black spruce.We assume 100%burn.Productivity is assumed poor,again for the extent of work and the time of year. We presume a preference for H-frame construction when permafrost pile foundations are required.Therefore,H-frame (multiple pole)construction is assumed exclusively in Zones 3 and 4. PEI-HLY 51-381 120087-02 (12/15/92)ab B-2 -APPENDIX C MATERIAL QUOTES Era Aviation,Inc.9 * "' December 18,1992 Mr.Ray McClure Power Engineering Post Office Box 1066 Hailey,Idaho 83333 Ref:Powerline Repair. Dear Mr.McClure, Thank you for contacting Era Helicopters for your proposed work on the Intertie.This letter will confirm your conversation with Lynn Pierson,HelicopterOperationsCoordinator. Era is pleased to offer the following,subject to availability of aircraft: 1.Kurocopter AS-332L Super Puma -$4,850 per flight hour (dry).Fuelconsumption165gph.There would be a 3.5 flight hour daily minimum,non- cumulative. 2.Era would provide an experienced crew and necessary sling gear toperformthejob. 3.The mobilization/demobilization charge would be the quoted flight rate from Fairbanks,Anchorage or some other location,depending upon where the aircraft is at the time of the work.The AS-332L,currently in the state,is being hangared in Fairbanks,but we are actively seeking long-term work for it. 4,Power Engineering would be responsible for room and board for the crew (4),fuel for the helicopter,transportation for fuel to worksite,and local ground transportation for the crew. 5.Power Engineering would be responsible for any applicable taxes, licenses or permits (i.e.,Federal Airport and Airway Excise Tax). If you have any other questions,lease do not hesitate to contact Lynn Pierson or me. Yours trul ee -yet Ly -_Bryan BlixhavnVicePresident,Marketing 6160 South Airpark Drive,Anchorage,Alaska 99502,(907)248-4422,Telecopier:(907)266-8350,Telex:25324 PO WER TELEPHONE RECORDEngineersincorporated Corrdecc doseto:Cher Jb eu wade J S.C,/?2@87.2777.04 Of/lob Ph.Sve.Task =Sub.MASEX From:Khel /LAPS Zs LW7 SOELT.GY om.Telephonie Nuumber Subject:Xst-plead «©fezeuest ZTSYOvorlesSS32phaseor SEZ foweAESaZ_Abrchoveae ¢AteS-¥4%'PEtehw7elesS S280 Ler Ltt fico BE.Lb Tuutiom *#S (Est.20M bec)Estiuuzsate 177 -9hLiteMins106-28 lbs Ek yduengZslimaleaEOBbathpeaaeosfeeb7-- Tasted Cis,Zen Ce ¢Set wreLegLL oe, Follow Up: ce Lele Lali pole Nov 19 'S2 12:23 MEYcR IND'S.MKT.PictdAMERICANELECTRICMEYERINDUSTRIES STEEL STRUCTURES @ROUP ANCHOR METALS JOB NAME Power:Engineers -Aleska_JOB NO. R119 BY scm pate __(/-/9 -FZ__Schedvleof estimated Fices.coeET OF hole Size-»Loy tO2,.103 Lod.Los LOU 127 gs!B98 1238.3871950.1824 18 PR 1253 oO!A8/tL 1352)S98 167A.193.2026 2074ORised)ed 1720182930...2085 2011 0 SM Tar.1s 98d.200.2231.2265 WS!13a Hie.2813.29S)235s ase asic"9rd)2000)2/73 2873:28/2700 270985'ani)B2eb.288d 255 27 Zidz2 3013 00!22 2616 2921.3184.3806.3641 3745 Dices inclode.freight.4o..a.rail”destination.tices alse.lnclude-.co rind S the.-embedded.Section of uself weathering.steel _Poles: The.price.Be each drifled hole iske.Cie.On of balk hale,beth st d esof.pole t9.812.).0 | .a i GS-52-R3 A (5-90) :an | |RECEIVE a ALI PRPACePROPOSAL-From ©WITS LITTDev-7 W92HUBBELL/THE OHIO BRASS COMPANY P.O.Box 1001,Wadsworth,Ohio 44281-0901 (OHIO)800/523-7735 @ (OUTSIDE OHIO)800/523-7736 woveemmmnn FAX 216/336-7718 [raaees AL i YOUR INQUIRY NO.|DATED BY NUMBER 3-120292SF_|FAX |12/2/92 |MICHELLE HALL nce |orl TO:MICHELLE HALL DATE December 3,1992 POWER ENGINEERS,INC. P.0.BOX 1046 HAILEY,ID 83333-1046 nesByGtho,pay fat eal Pas Cw cee mee |A"foacg 3 fm ¢tases i]{fx-3-49 _-ESTIMATING PURPOSES ONLY _| (ew NO.Quannity DESCRIPTION |PRICE |3,000 #232404 HAS BEEN SUPERSEDED BY THE FOLLOWING: |#512009-1201 HI*LITE XL SUSP INSULATOR $212.00 EA 500 #232021 HAS BEEN SUPERSEDED BY THE FOLLOWING: |:#513009-1201 HI*#LITE XL SUSP INSULATOR 244.00 EA |500 :#232336 HI*LITE II SERIES 250 STA POST INSUL 239.00 EA 800 |#232138-3006 HAS BEEN SUPERSEDED BY THE FOLLOWING: |:#522008-12ee VERT LINE POST HI#LITE XL 250 315.20 EA |300 |#232241 HI*LITE HORIZONTALL VEE 750.00 EA 300 :#232145-3001 HAS BEEN SUPERSEDED BY THE FOLLOWING: :|#522009-1002 HI*#LITE LINE POST XL 250 354.00 EA 300 |#271630-300e ADAPTOR 21.00 EA NOTE:300 '#522009-1102 HI#*LITE LINE POST XL 250 354.00 EA THIS HDWE CODE WOULD ELIMINATE THE NEED TO PURCHASE ADAPTOR 271630 AS A SEPARATE ITEM. 1,000 | #2704661-3002 CLAMPS 9.00 EA DRAWINGS ARE ATTACHED FOR THE SUPERSEDED ITEMS. SHIPMENTS TO ALASKA WILL BE MADE F.0.B.SHIPPING POINT WITH TRANSPORTATION BY THE MOST ECONOMICAL MEANS TO A WEST COAST PORT CHOSEN BY THE SELLER FOR ALL SHIPMENTS OF $1000 OR MORE EXCLUSIVE OF TAXES. TERMS AND CONDITIONS OF SALE ON REVERSE SIDE F4eeFohewHawkgpwePovAIMdenyi:THE OHIO BRASS COMPANY 45 DEG.Y-CLEVIS CHIU BRASS 7/8 DIA _.1 svat THIS Y=<CLEVIS ATTACHMENT FITS4_A 1"MINIMUM DIAMETER HOLE CHAMFERED OR ROUNDED 1/6"MIN.ON SOTH SIDES. USE WITH SHARP EDGED OR PUNCHED HOLES MAY RESULT IN BINDING - LEAKAGE DISTANCE --<---=137 IN -ORY ARCING DISTANCE -<-- =55.1 IN ORY 80 HZ F.0.---------545 KV VET 60 HZ F.0.---------505 KV IMPULSE POSITIVE F.0.-----680 KV IMPULSE NEGATIVE F.0.-----eso KV 67.3 SPECIFIED MECHANICAL LOAD ---30000 LB ROUTINE TEST LOAD -------15000 LS NO.OF WEATHERSHEDS ------36 NET WEIGHT ----------143 LB 4 DIMENSIONS ARE IN INCHES ANSI S2-5 BALL HI#LITE XL.SUSPENSION INSULATOR WADSWORTH,OHIO s3E3-01-90 PE o9-09-1990 DRAWING NOREER51200011201 45 DEG.Y-CLEVIS 7/8 DIA 1 5/8 5 ai ANSI 52-11 BALL OHIO BRASS THIS Y-CLEVIS ATTACHMENT FITS A 1"MINIMUM OIAMETER HOLE CHAMFERED OR ROUNDED 1/6”MIN. ON BOTH SIDES. USE WITH SHARP EDGED OR PUNCHED HOLES MAY RESULT IN BINOING LEAKAGE DISTAMIE - -----137 INDRYARCINGDISTANCE-----=SS.INDRY60HZF.D.---------545 KVVET60HZF.---------50S KVIMPULSEPOSITIVEF.Q -- -- --e900 KVIMPULSENEGATIVEF.0.-----goo KVSPECIFIEDMECHANICALLOAD---50000 LBROUTINETESTLOAD-------25000 LBNO.OF VEATHERSHEDS ------36NETWEIGHT----------15.3 LB DIMENSIONS ARE IN INCHES HI*LITE XL SUSPENSION INSULATOR WADSWORTH.OHIO i qd PIE4-10-92 fate O1-01-1980[__DRAYING WMG213009-1201 94 DIA, ] 200 >ee FAA om 69 DIA.-4 HOLES STRIKE DISTANCE_ _45 IN LEAKAGE DISTANCE_____111 IN. AVERAGE BREAKING LOAD___+-_-_-_3240 LB MAXIMUM WORKING LOAD _____--1620 LB DRY 60 HZ FLASHOVER.-____-445 KV WET 60 HZ FLASHOVER__ _--_-390 KV WET 60 HZ WITHSTAND_-- _ ____-_330 KV IMPULSE CRITICAL POSITIVE__- --685 KV IMPULSE WITHSTAND POSITIVE.-_--650 KV IMPULSE CRITICAL NEGATIVE__--795 KV IMPULSE WITHSTAND NEGATIVE _- -755 KV WEIGHT ..-$-_}_-_->__72 LB p=---------20.00 92.32 --7,.6e DIA.7]-1.31 *16 SHEDS =|stttATE -HE TG 94 |- -L_aa 8711 WADSWORTH ROAD,WADSWORTH,OHIO HUBBELL/THE UHIO BRASS CU. pat VERT LINE POST HxL_XL_250 we 52008-1222 SCALE 1e=1 vesi n BERNSTORF |nate 03/26/92 DRAWN G.P.pate 03/26/92 S001244--00 ©O02 Aoproved 08-28-1992 .94 DIA.aN -sjre-131 F-z|_ |12° H 7.62 DIA. re 18 SHEDS STRIKE DISTANCE._-§_- §_§_§_50 IN LEAKAGE DISTANCE____-§_§_§-_»__125 IN AVERAGE BREAKING LOAD_____-2990 LBMAXIMUMWORKINGLOAD-__-_-1495 LB DRY 60 HZ FLASHOVER .-- §_§___-495 KVWET60HZFLASHOVER_______435 KVWET60HZWITHSTAND.__-_365 KV IMPULSE CRITICAL POSITIVE____- _765 KV IMPULSE WITHSTAND POSITIVE._--725 KV IMPULSE CRITICAL NEGATIVE____875 KV IMPULSE WITHSTAND NEGATIVE__-830 KVWEIGHT _-§_-_.-» §_§_64 LB HUBBELL/THE OHIO BRASS CU. 8711 WADSWORTH ROAD,WADSWORTH,OHIO part HI-LITE LINE POST XL 250 SCALE we 522009-1002 12=1 vesia BERNSTORF |foate 11726791 [owe REV, pawn GP.ur ti7e67a1 (@ SOO02S0-O00 f=Ol Approved 10-14-1992 8.06 94 DIA.HOLE \|--1.31\| ILe 69,POLE TO CLAMP (+|.Ne 6 73 DIA HOLE 7.62 DIA. 18 SHEDS STRIKE DISTANCE_-_ _ 30 IN LEAKAGE DISTANCE_-________1eS5_IN. AVERAGE BREAKING LOAD ----e2950 LB MAXIMUM WORKING LOAD.1475 LB DRY 60 HZ FLASHOVER.__-____-495 KV WET 60 HZ FLASHOVER.-_--435 KV WET 60 HZ WITHSTAND_-_- __-365 KV IMPULSE CRITICAL POSITIVE.___ _765 KV IMPULSE WITHSTAND POSITIVE--_-- 7e5 KV IMPULSE CRITICAL NEGATIVE____-875 KVIMPULSEWITHSTANDNEGATIVE___-830 KV WEIGHT >LL 65 LB /-°HUBBELL/THE OHIO BRASS CO. 8711 WADSWORTH ROAD,WADSWORTH,OHIO eat HI-LITE LINE POST XL_e50 "E 522009-1102 vesin BERNSTORF [oate 11/26/91 Jove oeavn GP,ue 11726791 |(@ S000292-00 fo Ol Approved 10-14-1992 +ay,badaeas QUOTATION;Me\'£K-LINE INSULATORS LIMITED 50 Passinore Ave.,Scarborough,Ont,M1V 2T1 Tol.(516)2592-2008 ©Fax (416)290-2094 No 1377 TO: Power Engineers Inc.DATE:__December 9,1992P.O.Box 1066,, Hailey,ID 83333-1066 QUOTE REQUESTED BY:Michelle Hall U.Ss.A.YOUR REQUEST No.:__120087-02 QUOTED DELIVERY DATE: SHIP TO:THIS QUOTATION IS VALID ONLY: FROM:Dec.9,1992 To:Jan.9,1993 ==NET 30 DAYS TERMS:|OTHER: FOB:{ ITEM QUANTITY CAT #DESCRIPTION UNIT PRICE AMOUNT l.3,000 KL-138-BS-15 $155.09 ea.$465,270.00 U.S.FUNDS FOB:Alaska -Add Approx.$7.74 ea. FOB:Seattle -Add Approx,$4.92 ea. FOB Our Plant -|Toronto f-GsT ; E53.O INCLUDED G EXEMPT C1 PAYABLE EXEMPTION Ne. ___ PST:DO INCLUDED G EXEMPT ©PAYABLE EXEMPTION No. FREIGHT CHARGES:.___Extra a -e.”J 4 K-LINE INSULATORS LIMITED -Yy iCORRESPONDENCE)©3.NUMGRIC FILE SENT BY:reliable power prod.312-4-92 :2:59PM ;reliable power+POWER ENGINEERS [NC:#17 1 '&°o iane.EF"="-aayE ”BUBTARK 2 Ool/OVE ;RESPEC 4:1992 RESPPOWERPRODUCTS,INC.. FACSIMILE COVER SHEET = FAX NUMBER:708-455-0029 TELEPHONE NUMBER:708-455-0014 DATE:(PO-Z2-SENT BY:_425_UboetensentTa:MH rchelle.Ket @ fave EvinEby necesFAXNUMBER:(2°83 F-2op2 TOTAL NUMBER OF PAGES (INCLUDING COVER SHEET){ MESSAGE:CPA Yrs Loe pre.fh estiattrapfacecesteepegvegteHMcovst.Chris a hchont,«Joc pre whe2 |G eo$?-0z.. Behimehing Loew.;Carrteog 4C140616%6 fo,2 b2d$030 Ce w SIS” Vel7OSYELWL goo.” L/6/0466LW fase ATS -/25-/3.?°7 ALS ->:rad |Atts-106 oy,3° S2or 70S” (epee ett!weit we han AY Lomas TELE-FAX MESSAGE 2”DOWEL=(Ny ENOIEESS IICOLLOLTHESIG:if LO: POWER ENGINEERS,INC. P.O.BOX 1066,HAILEY,ID 83333-1066 USA TELEPHONE:(208)788-3456 FAX:(208)788-2082 '(208)788-9473 TO:THULoa,MCelcanweyYyCOMPANY:ALcco. COUNTRY: FAX NUMBER:(aca)4 -B1IC4 FROM:Michelle Hall JOBNO.:120087-02 22 03 PROJ/PHSE svc TSK SENTBY:Michelle 1 5UBTSK DATE:December 1,1992 PAGE 1OF 2 TIME SENT: SUBJECT:Please find attached a list of equipment.We would like a quote on these items for estimating purposes only. We would also like an estimate on freight charges both FOB Alaska and FOB Seattle. Please FAX these quotes to me as soon as possible. Thank You Nicwihle sq 0) Michelle Hall Procurement Specialist A\eoc, Cu Dona ption okt SCO Come,DE Ass'u Move)ESATBOOComp.<Tompe?Fad L8O (lomp Spuirt (eo1)BDBOBLo lo CCO Vlilaraicn Damacees IWOS-8 Pisano nate that Lip Quete is feOEOGPUAPOSesCLEYG Eee a)mAteGSge Sege6 Wes. LOS -SHY <a COA.AS Re uel(000 eae|(1206 <7 LazeipePsZRSC24 LEIA Sa|JOSLYN DATE:210 [QZuracturingCo.PLEASE DELIVER THIS MESSAGE COVERSHEETPLUS____!_PAGES TO:MicHetLe HALL COMPANY:Pewee Eng inteRS ADDRESS:cen ,ne ,8 a PHONE NUMBER:pea FAXNUMBER:7.06 -7E8-Zone. FROM:_MARK C VWLASTINIC Joslyn Manufacturing Co.[3700 South Morgan StreetChicago,Illinois 60609(312)927-1420...Extension x 335FAXNumber:(312)927-1225 1 MESSAGE:Dene MiIcHéecce, / BeLW YoU Wit FIND List Peces eee Est MATING i evepeses oNcY,We serv/pRrice CIRECT ONLY To Ove AuTHeRIZED WWSLYHN pig7e (Bu70eS.SE 'Sou REQUIRE moRE SPECIFIC FRICING-08 PURCHASING LYSINFoeMATIONNcwmaTCoNTACT° WesTéRN STATES KENT,WA 206-872-5630 GENERAL EceciRic SY-ANCHORAGE AL 907-SiI-1960 87309)25,62 (é ye%tb 2.3b]e |89440 36,29 le &™3030 11.05 /6.|$2314ICAB.4 15.30/e]WASHERS -See ATH Sacwet CLEViIS-CANNOT Suppcy |s231dicas,&nse SO2aQ 3,59 /E \2597.2 4.1.39 fe TT ye3Gu 2425/6 |M4024)u.25fe S526 |27.32 /eé $3524 28.75/e low Geup-AMY Coy THANK "eu coe "love INTEREST Tas SOSUYN, "TALadL-PeO Ce DINA TOR. THE POFMATION CONTAINED 0 fred PACSAMALE 19 THE PROPERTY OF JCSLYN MANU ACTURING CO.AND '§PRIVILEGED AND CONITCENTUL INFORMATION INTENOED SOLELY SOM ToS Lik OF THEE INDIVIOUAL OF ENTITY TO IT 1$ADORESSED,17 YOU sred real THE INTENDED RRCHMENT,YOU ARS MEREEY NOTIRED THAT ANY DISSEMINATION,CSC LISURE,COPYING Of CLETIOBUTION OF T1408 TELECOPY 15 STRNGTLY PrecreGiTED.#7 VORY RECEIVED TOG COMMLIMICATION ih ERM,PLEASE IMMEDLATELY NOTIFY US FYTELEPHONEANGRETURNNatOFIGINALMEBOAQEANCDOCUMENTIS)TO US AT THE ABOVE ADORESS VIA UNITED STATES BOSTAL SERVICE,THANK TOU. We Have Ssvees 4X4 Squace WasnNees ZT Have.PeoViOED ALL Catalog#s &PRICING BELOW|: CAT #size "'Hote ©Price (Est.oncr) S1V08G 4x4 3/ic 2\%,Bb ICH2W®A K4K 1/4 718 (18 S473 4x 4x U2 qe 21S S168(AK 4X He t/a 2.93 NM A (op<7 HADTocow1110NORTHCOLEROADP.QO.BOX 4295 BOISE,IDAHO 83711 FAX TRANSMITTAL TO:HEATHER CADIENTE =POWER ENGINEERS a ee ce)rence uy) 120079-01.21,32] ee RY SURTAGK REC'D DEC 3 1992 REC'DLogperValleylecheGistEsfiirfe FAX:208-322-4987 WIN:-734-5657 BELL:208-377-1221 FROM:SUE THOMAS =ABB BOISE OFFICE NUMBER OF PAGES,INCLUDING TRANSMITTAL SHEET:- SUBJECT:ESTIMATING PRICES HEATHER, PRICE FOR 1 -12/26/20 MVA AUTOTRANSFORMER,138 KV TO 115 KV,3 PHASE NO LIC £5 $200,000 -$225,000 NET EACH PRICE FOR 1 -15/20/25 MVA AUTOTRANSFORMER,138 KV TO 24.9 KV,3 PHASE, WITH LTC IS $275,000 -$300,000 NET EACH PRICE FOR 1 =6 MVAR,138 KV,3 PHASE SHUNT REACTOR IS $180,000 PRICE FOR 1 =VERTICAL BREAK SWITCH WITH ARCING HORN,138 KV,1200 AMP IS $8300 PRICE FOR 1 =SAME AS ABOVE EXCEPT 600 AMP IS $8200 PRICE FOR 1 =VERTICAL BREAK SWITCH,138 KV,1200 AMP,WITH GROUND SWITCH IS $11,800 PRICE FOR gyv-VERTICAL BREAK SWIICH,25 KV,600 AMP IS $3900 PRICE FOR 1 -CCVT,.138 KV,1 PHASE IS $5083. PRICE FOR 1 =CCVT,115 KV,1 PHASE IS $4761 DATE:12/3/92 :TIME_SENT:3:05 PM ABB Power T&D Company tnc. iy PWR ENGERS PAGE.892 PAGE 2 PRICE FOR 1 =115 KV CURRENT TRANSFORMER,600/5 IS 550 KV BIL -$6900 650 KV BIL=$8100 TRANSFORMER SHIPMENT =20-25 WEEKS SHUNT REACTOR SHIPMENT =40 WEEKS VERTICAL BREAK SWITCH SHIPMENT =16-18 WEEKS CCVT SHIPMENT -16-18 WEEKS CT SHIPMENT =12-14 WEEKS PLEASE LET ME KNOW IF YOU HAVE ANY QUESTIONS. REGARDS, SUE #-TOTFL FAGE.CeS «+ St0Se oe Od ©0 iO PWR ENGRS PAGE .20! ASEA BROWN SOVERI 1110 NORTH COLE ROAD CeO TP'/P.Q.BOX 4295 \' BOISE,IDAHO 83711 FAX:208-322-4987 FAX TRANSMITTAL WIN:-734-5657 BELL:208-377-1221 TO:REATHER CADIENTE -POWER ENGINEERS FROM:SUE THOMAS =ABB BOISE OFFICE NUMBER OF PAGES,INCLUDING TRANSMITTAL SHEET:I SUBJECT:ESTIMATING PRICES FOR ARRESTERS 608 Palmer Alaska HEATHER, PRICES ARE AS FCLLOWS: 15 =84 KV MCOV ARRESTERS -$2098 NET EACH 3 =72 KV MCOV ARRESTERS =$1728 NET EACH 3 -15 RV MCOV ARRESTERS -$408 NET EACH 9 =15 KV MCOV INT CLASS ARRESTERS =$366 NET EACH SEIPMENT ON ALL ITEMS IS 6-8 WESKS. PLEASE LET ME KNOW IF YOU HAVE ANY QUESTIONS. SUE (ZOO T1-Ol-2},04.0}08 NO os a aie]*nt loi eee 'REC'DRECO-pee -3-1982-oe Nalien Clee.Cres Feb mcs nFREpelE DATE:12/3/92 TIME SENT:7:15 AM ABB Power T&D Company Inc. #=TOTSL ZOGE.ec:+e wy wt Fe LbID6 LSLU/RUGERS/ARMOUR 901 467 3307 P.ivt ef Rij x -Strong..oci te ,Inc. Commerce Plaza 2719 Lemei Circle #8 Sait Lake City,Utah 84115-2997 (801)488-4778 7 Fax #801-467-3907 Date:Vy,'Gz,: gd bypaaFACSIMILE TRANSMITTALFax #:2Op-M2"EU sotPages / (Including Cover} Data Transmitted:/-Aue lit ab [36024 segpene/MiddenyM9 ttn iltiingdesef 3 Mid Tanke with -35°F Lnilhiiieag gpeilad) fy Se faye LE"Sud (2OCHT CT.21,4 )GF REC'D SUUTABK DEC REC'DGLT26VValLeeeior@=rast ical PETERSON CO.P.O.Box 25836 Paye__/_of_/thi Salt Lake City,Utah 84125 Batch ___Immediate_x_ PHONE:801-972-3328 811 WEST 1700 SOUTH FAX #:801-974-5716 SALT LAKE CITY,UTAR 94104 DATE:/2-4-92 10:Powel Pwer's Lpmy:WEI (Gq FROM:BRENT MONTGCMERY CUSTOMER:SUBJECT:Sat.Mhdeh ze Celta 7 +DUdNTe teBuberPhiCOPIESTO: Fee ont cequerr THe Bugler Phi 6 WEi»%4oon- lar *197838-BBIZH! Le weetTt ps.lak 5 a need alef.'L ay<4 / (20077 -07.27.3-1 e °® SOBNO,Pidal.!me "SUBTASK ee eg DEG 3 BY rece we P O WER TELEPHONE RECORD Engineers incorporated Leppae Yale,Elasbai,To:Nin Mrenr |120079.O1.2/..3 .] Job Ph..Sve.=Task Sub.lbh Malin hole:| File NameFrom:Math.(adink./21re 192 _32/0Time(300o/7 F490 __ex Subject:ee Buel F086,Fabrtn,abe - [32k Malton,Prot Inaubatore 4 33) WSkv G "4 293 Z5ky ""a "”$40 _thiite.Le hall,WA nbs7”og Follow Up: ce:_Zk.ty dine.U Z fo.wayOCR POWER TELEPHONE RECORD Engineers incorporated . j 5 Project ollTo:dus Doman (20073.0).2/.3.| Job Ph.Sve.=Task Sub.Abb Fata J+| .File NameFrom:Kathy,Cadnte,/2;1492 3:20 Oate Time (20¢)377./221 Ext. swice Loic Dutt E08,PubWaban _2Z5KV -Fe Lark (Aaz : sially-|(-5%addin fa.E28. (tt FAX wlipo2 LE. Follow Up: cc:Li Bite.g d "EEeewe mee .we ep P O WER TELEPHONE RECORD .;Project NameTo:Nyne.Oly,(20079.0/1 .2!_03.0) sob Ph.Sve.Task Sub. prom:Latthnn,Laden 211 '2 5:25 Date Time (90))592.NOT?ex .Telephone NumberSubject:£hic.Duet E.0.B.Filorwnr,hhh. 25kV sb60A,Ail (yet ticles,wl chil "leon pao. Me Law Laon th ch Mle pu. Follow Up: ce:A tis buna4)7 P O WE R TELEPHONE RECORD Engineers incorporated . !Zip Projest NameTo:Baty Pad,/20079-O1_.2/.2 . Job Ph.Sve.Task Sub.Congaun,babuLh Laur Zedom File NameFrom:kabby Chik /212192 10:20 Date Time (201)SP7-FGF on Telephone NumberSubject:bruce,Austr Fob.Lebontr,Wbraboa 25kV,Sb0A,Dil Creu Hieber wl cll (\acuum"11500) SkVv_12008 (eu dolby,-Mh not sake Follow Up: ce:A tintsd7 P O WER TELEPHONE RECORD Engineers incorporated Corgan Ub,Urcbuc.A .Project NamieTo:othe ;ad iiph L 20078.ON ZiJooPh.Svc.=Task Sub. p File NameFrom:Jue Yrnaz [2 1D192 /):20 Date TimeARBPtr1-19 Ls.(2of)377-/22)enTelephoneNumberSubject:[ap bans (4 upK)Lely Aebpe2. Aboud(ap Bank (notFoR)=8547 oppdmgonLukLesnclallfo 2-3 spol cr > (apa re F.0.8 ©5%wile |Y (1 05)(547,vad)=#574 3) - Follow Up: ce:(\KopbtnnUOd a?MQMER SUBJECT JOB.NO"Ws TENGINEERS SHEET NO.OF BY DATE CK.BY DATE. -G&MVAZ crea lejowe'-4 Des &cyDETowed4--9'xiS'-48 pres ia ou Cw Q-lowit =QB Pres 1\&« SWITCHES 8-3xI10 BY,ples JO + NU TRAN¢B-3x10 3 G&G Pres S » Bus Sue Z4-Bx10 C44 Pn|es Bo 3 cySlBSALES AXSSume Ww Bx BS Kw US!oz Pipe EQuvacenr $2500 /dan Syne ®aly iw Ors aven on 12 piles 'de,(30 Waren o2)=&days Lavor ay al 3,S ole) 426,7753]aMater25*x %60/Ike 26"x 30 =A32¢5-S5 yen<=une Thove4 no "mobiliguce "cot welelrot,|Mune HeeConSeMeboLOLIneCrWoutwheewitwea.He wit baw abut Ibo CVaw-day 5 wank.om Oe lineWinDorAere(sone ytav!) oe.We man deveondill fv H pilewKpablsPrrctagvpeprin,wed ,AG Ne by Bore &Sowe cost. Comer ete a3 cy Boo len.=64,400(2Qhe Aat'L =24,775 Qe laloev =13,600 Fon.lerau =«(106,475 -__-" APPENDIX D TLCADD REPORTS AND PROFILES Page 127 100.00 3000.00 Conductor Number:1 Station spacing (for clearance checking)= 33019 maximum = 12-02-1992 REPORT PERCENT OF MAXIMUM ALLOWABLE WIND SPAN 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 ANALYSIS Parabola 50.00 5 100 5 Conductor shape 100.00 213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATISTICAL minimum = SPAN Std.Dev. (ft) 24.50 (for interpolation) WIND Average (ft) ion spacing OF TOWERS NUMBER Allowable span lengths: Basic clearance = Section Length: TOWER NAME TLCADD (C) Stat I coloeOe3”od ry -- ©8 OERPMOMIM &80et ee tl hl ehhhlhlhlhlhlhlhlhlhlhlhlhlhlhlhlll Ca a Ce oS i ry eNmMomne Cr ee eeey oN aon i i ey = 'some o8©©©©©©©©88©8eo eee lel tll el thle lll el oo | CmCe er Co SY eeCr ee | CP | Cr ey CiCr ee}eeeeeeee.ee....eeee.eeeLeodeeAZees..e.eCe ee | Cr i i | Pasteerenry*WK MBB NEKRM OOOooooooooooKGocemoeocoqoqoeooooes eee ©oe8ew ow VSeuye o aa) K"OOQf eK KANNeererererreeee mnVeamerh-WOanqoaoacoeooo0ocoeocoroOrr QO Caqocoo°ecdedeo KNNNSE wee Page 2 1 100.00 2:30:27 3000.00 19 maximum = Conductor Number 12-02-1992 Station spacing (for clearance checking)= REPORT PERCENT OF MAXIMUM ALLOWABLE WIND SPAN 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 ANALYSIS Parabola 100.00 0 65 5 10 213000.00 (ft)40.34 (miles) \TDES\COPRVALY\ZONE1TLC Conductor shape STATISTICAL SPAN Std.Dev. (ft) 24.50 (for interpolation)= WIND Average (ft) fon spacing OF TOWERS NUMBERTOWER NAME Allowable span Lengths Basic clearance = Section Length: TLCADD (C) Filename =D Stat gooooc0cooeqqoooeooowoooowmoowoooesseesoesemieovr00c0ecggoocoooeofTONOANMoOoAanagcgnooooowerNi 2s 06> =- ee oemqa0co0cecqcoqoececeoOrooror omMroaoermoonrwrooooceros TLCADD (C)12-02-1992 19:30:27 Page 3 STATISTICAL ANALYSIS REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 TOWERS (ft)(ft)5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 E65 0 0.0 0.0 a E70 0 0.0 0.0 ee E75 0 0.0 0.0 a E80 0 0.0 0.0 a a a £85 0 0.0 0.0 a E90 1 1461.9 0.0 a E95 0 0.0 0.0 a a a a E100 1 1499.5 0.0 a F55 1 1500.9 0.0 i F60 )0.0 0.0 a a F65 1 632.1 0.0 a F70 0 0.0 0.0 a F75 0 0.0 0.0 i F80 0 0.0 0.0 a F85 0 0.0 0.0 a a F90 0 0.0 0.0 a a F95 0 0.0 0.0 a F100 0 0.0 0.0 a Creeee2 TLCADD (C)12-02-1992 19:30:00 Page 1 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)ss Cft))s-Max Min ac(Swg)(ft)OneSide Excl .Cond <<RULING SPAN =1166 >><<assumed ruling span =1165 with C(hot)=4487,C(cold)=8131,CCiced)=N/A C(Swg)=5085 >> 0 0.00 0-00-00 1 82 (D)55.50 530.50 1264.1 632 527 441 N/A 1.23 24.65 30 16761 (F65)N/A ¢500.00) 2 1264.13 0-00-00 2 6(8)64.50 560.15 1126.2 1195 1178 1165 N/A 1.02 24.57 51 27636 ¢a85)31.59 ¢1864.13) 4 2390.36 0-00-00 3°4(¢S)55.50 590.79 1100.0 1113 1040 981 N/A 1.08 26.16 46 37503 (A75)33.17 €2890.36) 6 3490.36 0-00-00 4 6(S)64.50 638.60 1433.9 1267 1148 1052 N/A 1.12 25.07 56 48378 (85)34.10 (4490.36) 9 4924.23 0-00-00 5 2 (8)46.50 738.90 857.6 1146 1154 1150 N/A 1.0 25.95 72 57367 (A65)31.06 ¢5324.23) 12 5781.83 0-00-00 6 3 (8S)51.00 798.02 901.4 880 1003 948 N/A 0.92 26.14 57 66778 (A70)29.09 ¢6281.83) <<RULING SPAN =1199 >><<assumed ruling span =1198 with C(hot)=4544,C(cold)=8105,CCiced)=N/A C(Swg)=5120 >> 14 6683.27 90-00-00R 7 62 (0D)46.50 846.50 1000.0 951 843 766 N/A 1.14 27.29 44 88429 (D65)N/A ¢€7083.27) 15 7683.27 0-00-00 8 6(S)64.50 923.26 801.8 901 1392 1176 N/A 0.74 25.65 69 99304 (85)24.24 (8283.27) 18 8485.02 0-00-00 9 2S)46.50 936.26 1276.2 1039 1655 1384 N/A 0.73 25.01 63 108293 (a65)23.76 (8885.02) 21 9761.23 0-00-00 10 5 ¢S)60.00 860.00 1238.8 1257 920 655 N/A 1.43 26.55 33 118686 (A80):40.94 (10361.23) 25 11000.00 0-00-00 11 #9 (CS)78.00 878.00 1144.4 1192 1530 1381 N/A 0.85 25.02 52 131025 (A100)27.16 (11644.41) 29 12144.41 0-00-00 12 7 (8S)69.00 846.87 1200.0 1172 1341 1267 N/A 0.92 27.14 62 142402 (A90)29.02 (12744.41) 33 3344.41 0-00-00 13 6(S)64.50 789.25 1440.9 1320 1145 1007 N/A 1.18 25.22 49 153277 ¢a85)35.45 ¢14103.51) 38 14785.35 0-00-00 14 3S)51.00 775.82 1000.0 1220 876 606 N/A 1.47 25.74 39 162688 (A70)41.59 (15285.35) 41 15785.35 0-00-00 15 4(S)55.50 842.38 911.5 956 1253 1122 N/A 0.84 26.81 61 172555 (At)26.83 ¢(16185.35) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C)-12-02-1992 19:30:00 Page 2 TRANSMISSION LINE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 44 16696.82 0-00-00 16 3 ¢S)51.00 869.64 1178.2 1045 956 886 N/A 1.11 25.15 40 181966 (A70)33.80 17196.82) 47 17875.00 30-00-00L 17 59 (6S)78.00 928.00 772.1 975 959 946 N/A 1.02 25.69 60 203670 (C100)73.55 18019.27) 52 18647.13 0-00-00 18 7(S)69.00 969.00 1300.0 1036 1410 1246 N/A 0.81 26.94 51 215047 (A90)26.23 19247.13) 55 19947.13 0-00-00 19 9¢S)78.00 978.00 1200.0 1250 1458 1367 N/A 0.90 26.36 49 227386 (A100)28.70 20647.13) 59 21147.13 0-00-00 20 4(S)55.50 955.50 1024.3 1112 1027 960 W/A 1.09 26.65 30 237253 (AT)33.51 21671 .46) 62 22171.46 0-00-00 21 4(¢S)55.50 955.50 1210.3 1117 1031 963 N/A 1.10 25.92 31 247120 (ATS)33.54 22671 .46) 66 23381.75 0-00-00 22 #4(S)%'55.50 978.48 1005.2 1108 866 677 WN/A 1.33 25.47 45 256987 (ATS)38.73 23881.75) 69 24386.97 0-00-00 23 3 (S)51.00 1051.00 1163.7 1084 1481 1307 N/A 0.81 26.08 63 266398 (A70)26.18 24886 .97) 7%25550.69 0-00-00 24 9S)78.00 1078.00 1300.0 1232 1476 1369 WN/A 0.89 26.94 50 278737 (A100)28.27 26250.69) 77 26850.69 0-00-00 25 7S)69.00 1069.00 1181.5 1241 1266 1244 N/A 1.0 26.04 41 290114 (A90)31.11 27450.69) 81 28032.24 0-00-00 26 5 (S)60.00 1060.00 1130.2 1156 1121 1094 N/A 1.03 24.99 34 300507 (A80)32.06 28632 .24) 84 29162.47 0-00-00 27 5 (S)60.00 1060.00 1237.5 1184 1118 1066 N/A 1.07 26.48 34 310900 (A80); 32.85 29687 23) 89 30400.00 0-00-00 28 9(S)78.00 1078.00 1199.2 1218 1488 1370 N/A 0.88 26.42 49 323239 (A100)27.96 31100.00) 92 31599.16 30-00-00R 29 54 (S)55.50 1055.50 1200.0 1200 930 719 N/A 1.34 26.36 29 341235 (C75)75.14 32099.16) 95 32799.16 0-00-00 30 9 ¢S)78.00 1104.12 1296.7 1248 1468 1371 N/A 0.90 26.22 60 353576 (A100)28.57 33499.16) 100 34095.82 0-00-00 31 8 (S)73.50 1121.56 1300.0 1298 1486 1403 N/A 0.92 27.29 48 365469 (A95)29.01 34795 .82) 103 35395.82 0-00-00 32 8 (S)73.50 1108.99 1304.2 1302 1302 1302 N/A 1.0 26.95 47 377364 (A95)31.18 36095 .82) 108 36700.00 0-00-00 33.8 (S)73.50 1096.37 1300.0 1302 1286 1274 N/A 1.01 29.36 45 389259 (A95)31.53 37300.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C) TRANSMISSION LIWE Allowable span lengths:minimum =50.00 Basic clearance =24.50 Station spacing (for interpolation)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC Conductor shape:Parabola DESIGN REPORT 12-02-1992 19:30:00 Page3 maximum =3000.00 Conductor Number:1 Station spacing (for clearance checking)=100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X Max LINE COST No.tocation Deg Mn Se No.Typ/Insl Height Elev SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)Max (ft)OneSide Excl.Cond 112 38000.00 0-00-00 34 #9(S)78.00 1088.29 1182 1484 N/A 26.33 58 401598 (A100)38700.00) 115 39063.01 0-00-00 35 71 ¢S)42.00 1042.00 1406 1998 N/A 42.00 91 413178 (E60)39063.01) 119 40812.18 0-00-00 36 7 (S)69.00 838.14 1267 =971 N/A 40.44 52 424555 (A90)41312.18) 120 41556.52 30-00-00L 37 52 (8)46.50 796.50 872 463 N/A 2.12 25.49 18 441234 (C65)82.64 41956 .52)123 42556.52 0-00-00 38 5 (¢S)60.00 830.70 1100 1118 N/A 0.99 27.11 47 451627 (A80)30.91 43056.52) 127 43756.52 0-00-00 39 8 (S)73.50 869.05 1258 1092 N/A 1.17 25.74 55 463522 (A95)35.39 44471.61) 131 45071.61 0-00-00 40 5 ¢S)60.00 958.92 1264 1388 N/A 0.9%25.98 7%473915 (80)29.67 45671.61)136 46283.63 0-00-00 41.8(S)73.50 1023.16 1214 1398 N/A 0.91 25.96 66 485810(A95)28.91 46983 .63)139 47500.00 0-00-00 42 5S)60.00 1060.00 1208 1362 N/A 0.93 27.11 51 496203 (A80)29.25 48000 .00)142 48700.00 0-00-00 43 8(S)73.50 1073.50 1250 1341 N/A 0.96 27.29 44 508098 (A95)30.05 49300.00) 146 50000.00 0-00-00 44 8 (8S)73.50 1073.50 1266 1504 N/A 0.89 25.63 55 519993 (A95)28.40 50631.15) 150 51231.15 0-00-00 45 6(S)64.50 1037.23 1224 1192 N/A 1.03 25.22 49 530868 (a85)31.95 51831.15)154 52448.03 0-00-00 46 5 ¢S)60.00 1010.00 1158 1057 N/A 1.11 26.99 33 541261 (A80)33.88 53048.03)157 53548.03 0-00-00 47 5 ¢S)60.00 1010.00 1126 1157 N/A 0.98 25.92 37 551654 (80)30.75 54048.03)161 54700.00 5-00-00L 48 47 (S)69.00 1005.64 1226 1112 N/A 1.12 26.94 33 565275 (B90)47.28 55300.00) 164 56000.00 0-00-00 49 9(¢S)78.00 1033.31 1250 1458 N/A 0.90 26.36 53 577614 (A100)28.70 56700.00)168 57200.00 0-00-00 50 4(S)55.50 1028.04 1150 1028 N/A 1.14 26.58 34 587481 (A75)34.51 57700 .00)171 58300.00 0-00-00 51 6(S)64.50 1052.83 1156 1210 N/A 0.97 25.00 45 598356 (A85)30.45 ¢58900.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD «)12-02-1992 19:30:00 Page 4 TRANSMISSION LINE DESIGN REPORT Allowable span Lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)CN ame)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 175 59512.70 0-00-00 52 4(S)55.50 1072.16 1000.0 1106 1010 934 N/A 1.11 25.74 43 608223 (A75)33.86 ¢60012.70) 177 60512.70 0-00-00 53 3S)51.00 1109.30 1001.3 1001 960 928 N/A 1.05 25.67 46 617634¢A70)32.39 €61012.70) 179 61513.98 0-00-00 54 4(S)55.50 1155.50 1309.6 1155 1298 1235 N/A 0.93 25.26 52 627501 (A75)29.31 ¢€62013.98) 184 62823.60 0-00-00 55 9(S)78.00 1192.95 1200.0 1255 1437 1357 N/A 0.92 26.36 58 639840 (A100)29.00 ¢63523.60) 186 64023.60 0-00-00 56 &(S)55.50 1200.36 1200.0 1200 1030 896 W/A 1.19 26.36 38 649707(A75)35.77 (64523.60) 189 65223.60 0-00-00 57 9(S)78.00 1252.76 1312.6 1256 1462 1372 N/A 0.91 26.19 62 662046(A100)28.74 (65923.60) 193 66536.25 0-00-00 58 4 (S)55.50 1276.81 1000.0 1156 937 766 N/A 1.27 25.74 47 671913 (A75)37.57 €67036.25) 196 67536.25 0-00-00 59 3 (S)51.00 1343.33 1008.0 1004 1138 1079 N/A 0.92 25.62 60 681324(A70)29.16 ¢67936.25) 199 68544.26 0-00-00 60 5 (¢S)60.00 1393.72 1101.8 1055 1156 1112 N/A 0.9%26.87 55 691717 (A80).29.70 €69144.26) 202 69646.03 35-00-00R 61 55 (S)60.00 1435.00 1264.8 1183 1171 1161 N/A 1.01 27.31 49 710502 (C80)72.88 ¢70146.03) 206 70910.84 0-00-00 62 9(S)78.00 1485.89 1166.9 1216 1145 1090 N/A 1.07 25.84 62 722841 (A100)32.92 (71610.84) 209 72077.79 0-00-00 63 3S)51.00 1551.00 1100.0 1133 1664 1431 N/A 0.77 26.17 60 732252 (A70);25.03 €72577.79) 212 73177.79 0-00-00 6&7(S)69.00 1540.39 1422.2 1261 1238 1219 N/A 1.02 27.63 47 743629 (A90)31.72 (73777.79) 217 74600.00 0-00-00 65 7(¢S)69.00 1534.00 1200.0 1311 1194 1102 N/A 1.11 27.14 43 755006 (A90)33.93 ¢75200.00) 220 75800.00 0-00-00 66 6 (5S)64.50 1559.50 900.0 1050 1614 1366 N/A 0.75 28.16 52 765881 (A85).24.31 €76200.00) 224 76700.00 0-00-00 67 3S)51.00 1516.00 1200.0 1050 880 747 N/A 1.22 25.21 40 775292 (A70)36.51 ¢77300.00) 228 77900.00 0-00-00 68 7 (S)69.00 1502.93 1300.0 1250 1232 1217 N/A 1.02 26.91 44 786669 (A90)31.60 ¢78600.00) 233 79200.00 0-00-00 69 7(S)69.00 1494.00 1273.7 1287 1250 1220 N/A 1.03 25.33 40 798046 (A90)32.03 ¢79800.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical clearance. tower specifications.(#)Protected towers TLCADD (C)12-02-1992 19:30:00 Page 5 TRANSMISSION LINE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min (ft)OneSide Excl .Cond 238 80473.70 0-00-00 70 8 (S)73.50 1495.72 1300.0 1287 1373 1335 N/A 27.29 46 809941 (A955)81073.70) 241 81773.70 0-00-00 71.8 (CS)73.50 1483.65 1093.8 1197 1397 1309 N/A 25.89 53 821836 (A95)82473.70) 244 82867.45 0-00-00 72 2S)46.50 1446.50 900.0 997 1390 1217 N/A 26.49 63 830825 (A65)83267.45) 246 83767.45 0-00-00 73 #3:¢S)51.00 1372.25 1032.5 966 1037 1006 N/A 27.80 72 840236 (A70)84167.45) <<RULING SPAN =1169 >> 248 84800.00 60-00-00L 7%69 (1D)78.00 (0100) 250 85008.60 0-00-00 75 24 (8S)55.50 (AT75) 251 85108.60 0-00-00 76 6 (S)64.50 (A85) 254 85611.63 0-00-00 7 863 ¢S)651.00 (A70) 256 86511.63 90-00-00 78 2S)46.50 (A65) 260 87745.42 0-00-00 79)=6©4(S)55.50 (A75) 263 89053.87 0-00-00 80 5 (S)60.00 (A80) 266 89563.20 0-00-00 81 2S)46.50 (A65) 270 91200.00 60-00-00R 82 50 (S)37.50 (55) 272 91700.00 0-00-00 8 7(¢S)69.00 ¢A90) 274 92800.00 0-00-00 &3 (5)51.00 ¢A70) 277 93660.98 0-00-00 8 3S)51.00 (A70) 280 94389.24 0-00-00 8 3S)51.00 (A70) <<assumed ruling span =1168 with C(hot)=4492,C(cold)=8128,C(iced)= 1278.00 208.6 621 -1838 -3816 1372.87 100.0 154 1707 1013 1399.25 503.0 302 1609 1024 1451.00 900.0 702 1578 1186 1446.50 1233.8 1067 850 675 1499.88 1308.4 1271 572 '7 1760.00 509.3 909 1144 1039 1846.50 1636.8 1073 1505 1312 2037.50 500.0 1068 1966 1565 2040.61 1100.0 800 1445 1157 1960.14 861.0 980 1202 1103 1873.72 728.3 795 1348 1101 1751.00 1601.2 1165 1104 1055 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A C(Swg)=5089 >> 26.18 5 866912 (84908.60) 55.50 212 878822 85008 .60) 47.78 135 889697 85408.60) 26.24 63 899108 86111.63). 26.68 24 908097 86911.63) 48.18 57 917964 88045 .42) 24.96 137 928357 89463 .20) 25.53 92 937346 90263 .20) 37.50 89 953530 91200.00) 25.79 72 964907 92300.00) 25.85 72 974318 93200.00) 26.90 100 983729 93960.98) 24.88 119 993140 9518924) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)12-02-1992 19:30:00 Page 6 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X%Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 284 95990.43 0-00-00 87 2 (8S)46.50 1502.85 1274.6 1438 845 365 N/A 1.88 27.45 46 1002129 (A65)48.62 (96390.43) 287 97265.08 0-00-00 88 8(S)73.50 1473.50 1048.5 1162 1226 1197 N/A 0.97 24.69 50 1014024 (A95)30.32 ¢97965.08) 291 98313.59 0-00-00 8 5 (S)60.00 1441.06 956.0 1002 1639 1354 N/A 0.72 27.33 82 1024417 (a80)23.41 ¢98813.59) 294,99269.60 0-00-00 90 3S)51.00 1336.58 1854.6 1405 1100 853 N/A 1.33 27.06 73 1033828 (A70)38.76 (99769.60) 301 101124.18 0-00-00 91 5 (¢S)60.00 1260.00 891.7 1373 654 73 =ON/A 2.46 25.00 45 1044221 (A80)56.07 ¢101724.18) 305 102015.92 0-00-00 92 2S)46.50 1365.85 833.8 863 1041 961 N/A 0.89 27.18 799 1053210(A65)28.18 ¢102415.92) 307 102849.77 0-00-00 93 2S)46.50 1446.50 1187.3 1011 1517 1290 W/A 0.76 25.22 68 1062199 (A65)24.73 €103249.77) 310 104037.06 0-00-00 94 6(S)64.50 1487.38 1111.3 1149 997 873 W/A 1.18 25.62 54 1073074 (85)35.45 (¢104637.06) 313 =105148.40 0-00-00 9 3S)51.00 1563.36.1168.5 1140 778 484 N/A 1.56 26.53 64 1082485 (A70)43.40 (¢105648.40) 316 106316.88 0-00-00 96 OCS)37.50 1737.50 740.1 954 1869 1460 N/A 0.62 32.77 96 1091144 (A55)20.71 ¢106516.88) 318 107057.00 0-00-00 97 6 (8S)64.50 1764.50 1246.9 994 1240 1130 N/A 0.87 24.99 41 1102019 (A85)27.64 (€107657.00) 323 108303.88 0-00-00 98 4¢S)55.50 1772.18 1000.0 1123 984 871 N/A 1.16 25.42 40 1111886 (AT5) ; 35.15 ¢108803 .88) 326 109303.88 0-00-00 9 3S)51.00 1809.38 998.2 999 959 926 N/A 1.05 25.52 46 1121297 (A770)32.38 (109803.88) 329 110302.12 0-00-00 100 4 (S)55.50 1855.50 1000.0 999 1411 1227 N/A 0.79 25.42 52 1131164 (A75)25.68 ¢110802.12) 331.=111302.12 0-00-00 101 3 ¢S)51.00 1851.00 1036.3 1018 1162 1098 N/A 0.92 28.69 40 1140575 (A70)29.07 ¢111702.12) 333 112338.44 45-00-00L 102 59 (S)78.00 1828.00 1095.8 1066 491 26 «N/A 2.57 26.31 26 1162279 (€100)84.78 ¢112838.44) 337 §=©6113434.27 0-00-00 103 5 (¢S)60.00 1943.88 906.3 1001 1631 1349 N/A 0.72 32.10 85 1172672 (A80)23.46 (113734.27) 342 =114340.59 0-00-00 104 4 (8)55.50 1969.46 1000.0 953 891 841 N/A 1.08 25.42 40 1182539 (A75)33.15 ¢114840.59) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)-12-02-1992 19:30:00 Page 7 TRANSMISSION LINE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 343 =115340.59 0-00-00 108 3 (8S)51.00 2011.49 1617.0 1308 951 661 N/A 1.45 26.40 49 1191950 (A70)41.24 (¢115840.59)347 116957.58 0-00-00 106 1(S)42.00 2208.20 753.2 1185 897 664 N/A 1.38 25.03 98 1200903 (A60)39.86 (117257.58)349 117710.78 0-00-00 107 3 ¢S)51.00 2348.12 753.0 753 1264 1035 WN/A 0.70 25.80 109 1210314 (A70)23.01 ¢118063.81)353.118463.81 0-00-00 108 2(S)46.50 2440.70 752.5 753 1738 1297 W/A 0.55 25.69 77 1219303 (A65)18.40 ¢118863.81)355 119216.33 0-00-00 109 1(¢S8)42.00 2442.00 576.8 665 1581 1171 N/A 0.54 26.89 65 1228256 (A60)18.00 ¢119307.93)358 119793.12 45-00-00R 110 59 (S)78.00 2378.00 1200.0 888 408 20 «N/A 2.58 25.92 39 1249960 (€100)85.55 (120493.12)361 120993.12 0-00-00 111 4 (8)55.50 2373.08 1006.1 1103 986 892 WN/A 1.14 25.42 34 1259827 (A75)34.51 (121493.12)366 121999.22 0-00-00 112 3 (8S)51.00 2395.13 968.9 988 1001 995 WN/A 0.99 24.73 39 1269238 (A70)30.97 (122499.22)369 122968.16 0-00-00 113 3.(8S)51.00 2414.79 955.5 962 970 966 N/A 1.0 25.87 37 1278649 (A70)31.06 (123468.16)372 123923.66 0-00-00 114 3 ¢S)51.00 2433.31 1076.3 1016 933 865 W/A 1.10 26.33 37 1288060 (A70).33.70 (124423.66)375 125000.00 35-00-00L 115 54 (6S)55.50 2674.11 1064.0 1070 1448 1279 WN/A 0.82 25.80 47 1306056 (C75)70.59 ¢125400.00)380 126064.03 0-00-00 116 8¢S)73.50 2464.98 1200.0 1132 1500 1335 N/A 0.83 26.67 66 1317951 (A95)26.69 (126764.03)383 127264.03 0-00-00 117,5 (S)60.00 2400.39 1448.8 1324 1106 930 N/A 1.23 25.67 46 1328344 (A80)36.64 (127864.03)387 128712.83 0-00-00 118 1¢S)42.00 2392.70 887.2 1168 612 163 N/A 2.17 25.35 38 1337297 (A60)52.69 (129399.08)391 129600.00 0-00-00 119 2(¢S)46.50 2497.71 1100.0 994 1658 1361 N/A 0.70 25.15 79 1346286 (A65)23.10 ¢130000.00)394 130700.00 0-00-00 120 8 ¢S)73.50 2538.01 1300.0 1200 1400 1310 N/A 0.91 26.75 54 1358181 (A9S)28.72 (131400.00)398 132000.00 0-00-00 121.8(¢S)73.50 2553.72 1300.0 1300 1300 1300 N/A 1.00 26.75 48 1370076 (A95)31.18 ¢132600.00)401 133300.00 0-00-00 122 8(S)73.50 2569.44 1235.7 1268 1399 1340 N/A 0.94 24.59 48 1381971 (A95)29.61 ¢€133900.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)12-02-1992 19:30:00 Page 8 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(N ame)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 405 134535.70 0-00-00 123 6(S)64.50 2564.50 1272.6 1254 1189 1135 N/A 1.06 25.94 37 1392846 ¢a85)32.75 ¢135135.70) 409 135808.33 0-00-00 124 9 (¢S)78.00 2578.00 1154.8 1214 1490 1366 N/A 0.88 26.20 50 1405185 (A100)27.91 (136508.33) <<RULING SPAN =1245 >><<assumed ruling span =1244 with C(hot)=4616,C(cold)=8074,CCiced)=N/A C(Swg)=5166 >> 411 136963.10 80-00-00R 125 63 (D)51.00 2551.00 1140.2 1147 951 798 N/A 1.24 26.19 24 1427469 (D70)N/A ©137463.10) 414 138103.32 0-00-00 126 8(S)73.50 2573.50 1184.7 1162 1444 1324 N/A 0.87 26.11 47 1439364 (a9)27.65 (138803.32) 416 139288.02 0-00-00 127,4(¢S)55.50 2555.50 1100.0 1142 1034 954 N/A 1.12 27.10 31 1449231 (aT5)34.08 ¢139788.02) 417 140388.02 0-00-00 128 6 (S)64.50 2564.50 1100.0 1100 1232 1176 WN/A 0.93 27.10 38 1460106 (a85)29.33 €140988.02) 418 141488.02 0-00-00 129 4 (8)55.50 2555.50 1518.3 1309 1007 780 N/A 1.35 26.03 30 1469973 (A75)39.22 ¢162488.02) 422 143006.28 0-00-00 130 4&(S)55.50 2642.53 919.2 1219 1203 1191 N/A 1.01 25.51 72 1479840 (A75)31.55 ¢143506.28) 425 143925.53 0-00-00 131 2 (S)46.50 2698.35 842.8 881 873 867 N/A 1.01 26.37 53 1488829 (A65)31.44 (144325.53) 428 144768.36 0-00-00 132 3 (S)51.00 2751.00 1100.0 971 1344 1184 N/A 0.80 26.69 53 1498240 (A70):25.92 (145268.36) 430 145868.36 0-00-00 133.7S)69.00 2769.00 1031.6 1066 1395 1254 N/A 0.83 26.31 45 1509617 (A90)26.80 (146468.36) 432 146899.92 0-00-00 134 6 (8S)64.50 2743.82 1100.0 1066 1491 1309 N/A 0.80 27.10 72 1520492 (A85)25.73 (147499.92) 434 147999.92 0-00-00 135 4&(S)55.50 2659.01 1690.7 1395 1120 915 N/A 1.28 31.00 58 1530359 (A755)37.82 (149199.92) 438 149690.62 0-00-00 136 5 (S)60.00 2629.33 1075.2 1383 1057 812 N/A 1.36 25.85 46 1540752 (a80)39.43 (150390.62) 441.150765.84 0-00-00 137 OCS)37.50 2686.46 1159.4 1117 1825 1522 N/A 0.71 25.71 52 1549411 (A55)23.30 ¢151065 .84) 447 151925.26 0-00-00 138 2(S)46.50 2646.50 744.4 952 860 791 W/A 1.12 25.77 27 1558400 (A65)34.16 ¢152325.26) 450 152669.62 0-00-00 139 2S)46.50 2635.68 824.2 784 1585 1242 N/A 0.61 25.93 5 1567389 (A65)20.11 ¢153069.62) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C)12-02-1992 19:30:00 Page 9 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Exc!.Cond 453 153493.86 0-00-00 140 1S)42.00 2542.00 1539.0 1182 916 718 N/A 1.34 27.41 67 1576342 (A60)38.94 (154493.86) 457 155032.85 0-00-00 141 4(S)55.50 2655.50 978.0 1258 1020 842 N/A 1.27 27.31 31 1586209 (A75)37.51 ¢155532.85) 459 156010.84 0-00-00 142 3 ¢S)51.00 2451.00 1691.7 1335 1689 1537 N/A 0.85 27.18 71 1595620 (A70)27.35 (157110.84) 463 157702.49 0-00-00 143 77 (S)69.00 2369.00 1232.1 1462 1204 1012 N/A 1.25 32.30 31 1609624 (E90)37.00 (158302.49) 467 158934.60 0-00-00 144 9S)78.00 2378.00 1215.4 1224 1432 1343 N/A 0.90 25.96 49 1621963 (A100)28.62 (159634.60) 470 160150.00 20-00-00L 145 54 (S$)55.50 2355.50 1000.0 1108 852 661 N/A 4.35 26.17 2 1639959 (C75)71.55 (160650.00) 472 161150.00 0-00-00 146 3 .¢S)51.00 2392.28 1000.0 1000 958 927 N/A 1.05 26.17 46 1649370 (A70)32.40 (161650.00) 475 162150.00 0-00-00 147 4&4 (8S)55.50 2438.06 1314.1 1157 924 750 N/A 1.29 27.72 51 1659237 (A75)37.99 (162850.00) 479 163464.15 0-00-00 148 6(S)64.50 2564.50 1100.0 1207 1576 1418 N/A 0.84 27.10 88 1670112 (A85):26.84 (164064.15) 482 164564.15 0-00-00 149 4 (8S)55.50 2620.07 1103.7 1102 1032 979 N/A 1.08 26.33 56 1679979 (A75)33.09 (165064.15) 485 165667.84 0-00-00 150 5 (S)60.00 2692.63 1032.2 1068 1142 1110 N/A 0.96 26.68 65 1690372 (A80)30.08 (166267.84) 486 166700.00 3-00-00R 151 23 (S)514.00 2751.00 1100.0 1066 1694 1425 N/A 0.73 26.69 53 1701826 (AT70)31.95 €167200.00) 488 167800.00 0-00-00 152.7 (S)69.00 2727.59 1300.0 1200 1276 1244 N/A 0.96 27.66 56 1713203 (A90)30.18 ¢168400.00) 491 169100.00 0-00-00 153 79 (S)78.00 2687.65 1699.0 1499 1901 1729 N/A 0.85 26.27 5 1728169 (£100)27.32 ¢170300.00) 497 170798.98 0-00-00 154 3 (8S)51.00 2551.00 1100.0 1399 953 618 N/A 1.56 26.69 28 1737580 (A70)'43.27 (171298.98) 498 171898.98 0-00-00 155 7(¢S)69.00 2569.00 1200.0 1150 1312 1243 N/A 0.92 27.76 43 1748957 (A90)29.03 (172498.98) 501 173098.98 0-00-00 156 6(S)64.50 2564.50 1228.5 1214 1180 1154 N/A 1.03 25.85 37 1759832 (A85)32.00 (173698.98) 505 174327.51 0-00-00 157 7 (S)69.00 2569.00 1169.8 1199 1300 1257 N/A 0.95 26.67 41 1771209 (A90)29.87 (174927.51) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical clearance. tower specifications.(#)Protected towers TLCADD (C)12-02-1992 19:30:00 Page 10 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/iInsl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond 508 175497.36 0-00-00 158 8 (S)73.50 2558.69 1300.0 1235 1463 1365 N/A 0.89 28.01 61 1783104 (A95)28.42 (176097.36) 512 176797.36 0-00-00 159 8 (S)73.50 2510.54 1300.0 1300 1323 1313 N/A 0.99 26.02 62 1794999 (A95)30.89 (¢177497.36) 516 178097.33 0-00-00 160 9(S)78.00 2458.70 1254.2 1277 1533 1423 N/A 0.89 30.96 78 1807338(A100)28.21 (178797.33) 520 179351.51 0-00-00 161 7 (S)69.00 2369.00 1266.4 1260 1510 1403 N/A 0.89 26.28 92 1818715 (A90)28.23 ¢179951.51) 524 180617.87 0-00-00 162 5 (S$)60.00 2239.19 1000.0 1133 1042 975 N/A 1.10 25.90 70 1829108(A80)33.61 ¢181217.87) 526 181617.87 0-00-00 163 2 (8S)46.50 2156.34 1337.5 1169 1217 1196 N/A 0.97 25.35 78 1838097(A65)30.52 ¢181759.80) 529 182955.36 90-00-00 164 0(S)37.50 2037.50 1319.9 1329 1237 1168 N/A 1.08 33.90 65 1846756 (A55)33.26 (183955.36) 533 184275.30 0-00-00 165 2 (8S)46.50 1946.50 828.7 1074 1536 1338 N/A 0.78 25.75 80 1855745(A65)25.39 ¢184675.30) 536 =185103.98 0-00-00 166 1S)42.00 1842.00 1464.1 1146 865 655 N/A 1.38 26.49 69 1864698 (A60)39.82 ¢186168.08) <<RULING SPAN =1234 >><<assumed ruling span =1233 with C(hot)=4599,C(cold)=8081,C(iced)=N/A C(Swg)=5155 >> 540 186568.08 0-00-00 167 80 (D)46.50 1746.50 1537.7 1501 71-1009 N/A -14.86 26.92 23 1881129 (F55),N/A (©187545.91) 546 188105.79 0-00-00 168 21 (8S)42.00 2123.83 244.4 891 1827 1424 N/A 0.60 28.62 143 1892125 (AT60)19.92 ¢188150.21) 549 188350.21 90-00-00 169 4&4 (8)55.50 2155.50 1155.5 700 1621 1224 W/A 0.54 27.65 69 1901992 (A75):18.21 ¢188850.21) 554 189505.74 0-00-00 170 8 (S)73.50 2173.50 1339.5 1248 1346 1304 N/A 0.95 27.08 45 1913887 (A95)29.94 €190127.05) 559 190845.23 0-00-00 171,9 (S)78.00 2178.00 1014.6 1177 1527 1376 N/A 0.84 26.12 54 1926226 (A100)26.96 €191545 .23) 562 191859.79 0-00-00 172,O(S8)37.50 2137.50 1154.3 1084 1861 1526 N/A 0.69 37.50 89 1934885 (A55)22.55 ¢191859.79) 564 193014.07 0-00-00 173 6 (S)64.50 1980.49 852.2 1003 1186 1107 N/A 0.90 27.83 105 1945760 (A85)28.46 (¢193514.07) 567 193866.29 0-00-00 174 O(¢S)37.50 1845.29 1433.7 1143 1125 1111 N/A 1.02 27.30 105 1954419 (A55)31.63 ¢193925.43) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. TLCADD (C)12-02-1992 19:30:00 Page 11 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:213000.00 (ft)40.34 (miles) Filename =D:\TDES\COPRVALY\ZONE1.TLC S$TATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.kocation Deg Mn Se No.Typ/Inst Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 574 195300.00 45-00-00L 175 58 ¢(S)73.50 1623.50 1100.0 1267 552 10 N/A 2.72 25.88 33 1975457 (C95)84.36 (196000.00) 575 196400.00 0-00-00 17%6 2 (8S)46.50 1624.39 1071.7 1086 870 706 N/A 1.29 26.25 31 1984446 (A65)37.91 (€196800.00) 578 197471.73 0-00-00 177 4(¢S)55.50 1675.58 895.9 984 816 690 WN/A 1.24 25.86 54 1994313 (A75)36.79 €197971.73) 581 198367.66 0-00-00 178 3 (8)51.00 1751.00 1050.3 973 1584 1321 N/A 0.71 25.37 65 2003724 (A70)23.37 (198867.66) 585 199417.92 0-00-00 179 §(8S)60.00 1760.00 1248.6 1149 1123 1102 N/A 1.03 26.34 36 2014117 (A80)31.86 ¢200017.92) 590 200666.48 0-00-00 180 9(¢S)78.00 1778.00 1300.0 1274 1447 1372 N/A 0.92 27.49 48 2026456 (A100)29.12 €201366.48) 593 201966.48 0-00-00 181 7 (S)69.00 1769.00 1249.8 1275 1243 1219 N/A 1.03 26.61 39 2037833 (A90)31.90 (202566.48) 597 203216.31 0-00-00 182 7 (S)69.00 1769.00 1100.0 1175 1307 1250 N/A 0.93 26.57 43 2049210 (A90)29.45 (203816.31) 600 204316.31 0-00-00 188 3 (8S)51.00 1751.00 1597.5 1349 1677 1535 N/A 0.87 25.32 3 2058621 (A70).27.65 (€204434.21) 603 205913.76 0-00-00 184 5 (S)60.00 1660.00 1100.0 1349 1087 888 N/A 1.28 27.38 33 2069014 (a80)37.72 (206413.76) 605 207013.76 0-00-00 185 5 (S)60.00 1660.00 1430.0 1265 1110 993 N/A 4.16 26.06 34 2079407 (a80)35.04 (207613.76) 608 208443.77 0-00-00 186 6(S)64.50 1708.16 1203.3 1317 1172 1063 N/A 1.14 26.78 61 2090282 (a85)34.60 (209043.77) 612 209647.02 0-00-00 187 8 (S)73.50 1786.48 1200.0 1202 1469 1354 N/A 0.88 27.57 72 2102177 (A95)27.92 (€210347.02) 614 210847.02 0-00-00 188 #5 (S$)60.00 1824.92 1310.6 1255 1099 981 N/A 1.16 27.26 52 2112570 (a80)35.11 ¢211447.02) 617 212157.60 0-00-00 189 4 (8S)55.50 1911.37 842.4 1076 915 793 N/A 1.20 31.55 70 2122437 (A75)36.03 (212657.60) 618 213000.00 45-00-00L 190 62 (D)46.50 1996.50 0.0 421 1238 886 N/A 0.45 0.00 62 2144088 (065)N/A ¢0.00) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. TLCADD (C)11-29-1992 19:44:08 Page 1 STATISTICAL ANALYSIS REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 7 80 85 90 95 100 TOWERS (ft)(ft)5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 VA55 26 705.8 172.7 sy ir -s k 2 a Se ar VA6O 8 699.2 180.2 es Os cy i ak Sr VA65 60 771.4 75.1 es is i i ie -2h7a +Oy Ay Aan VA70 30 842.6 34.4 rs Py i 2)Sr VA75 18 814.4 62.6 Ss i 2 2hVva803844.6 9.2 rc Sr VA85 4 727.7 91.4 Ss Pr VvA90 0 0.0 0.0 ee eee VA95 0 0.0 0.0 rr VA100 0 0.0 0.0 ee ee vss5 3 675.2 25.0 eee ee we Tk lt VB60 1 700.0 0.0 a VB65 0 0.0 0.0 ee eel vB70 *)0.0 0.0 eee wa VB75 (0)0.0 0.0 eee ln vB80 0 0.0 0.0 ee ew ve85 0 0.0 0.0 ee ea ll vB90 0 0.0 0.0 a vB95 0 0.0 0.0 eee eel ll vB100 0 0.0 0.0 ee eel vcs5 0 0.0 0.0 eee vcé60 0 0.0 0.0 ee elt vc65 2 759.3 225.3 yn vc70 1 563.9 0.0 a (cr vc75 1 750.0 0.0 a a (c vcs80 2 827.4 9.1 Sr vces 1 900.0 0.0 a vc90 0 0.0 0.0 eal vc9os 0 0.0 0.0 ee vc100 1 687.7 0.0 a (rrr vp55 0 0.0 0.0 rr VD60 0 0.0 0.0 eee vD65 1 624.8 0.0 ee eee El vo70 0 0.0 0.0 eee lt VD75 0 0.0 0.0 ©ee wl vp80 0 0.0 0.0 ee lt TLCADD (C) , 11-29-1992 19:44:08 STATISTICAL ANALYSTS REPORT Page 2 Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 TOWERS (ft)(ft)5§10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 vD85 0 0.0 0.0 ee ll vD90 0 0.0 0.0 eee vD95 0 0.0 0.0 ee vp100 0 0.0 0.0 ee le D 3 621.3 536.4 ee a FP65 2 900.2 639.7 rs a J TLCADD (C)11-29-1992 19:42:25 Page 1 TRANSMISSION LINE DESIGN REPORT Allowable span Lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola _Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN (ft)(Name)(ft)(ft)(ft)(ft) Unloaded Max Min Iced SWING (LOCATION)WtSpan (cumul.) OneSide Excl .Condac(Swg)(ft) <<RULING SPAN =838 >><<assumed ruling span =837 with C(hot)=3846,C(cold)=8419,CCiced)= i}213000.00 45-00-00R 1#40#(D)46.504 1996.50 900.0 450 (0) 3 213900.00 0-00-00 2 5 (8s)60.00 2145.00 800.0 850 (VA89) 7 214700.00 0-00-00 3.2(¢8)46.50 2279.06 614.2 707 (VA65) 9 215314.17 0-00-00 4 2 (8)46.50 2368.18 722.4 668 (VA65): 10 216036.60 0-00-00 5 2(8)46.50 2446.50 991.7 857 (VA65) 14 217028.31 0-00-00 6 5 ¢S)60.00 2609.04 707.9 &50 (VA80) 16 217736.17 0-00-00 7 OCS)37.50 2734.34 1054.3 881 (VA55) 20 218790.48 0-00-00 8 2 (8)46.50 2910.26 570.5 812 (VA65) 23 219360.99 0-00-00 9 O(¢S)37.50 3020.03 484.7 528 (VA55) 25 219845.68 0-00-00 10 2¢S)46.50 3080.42 614.0 549 (VA65)28 220459.73 0-00-00 11 1¢8)42.00 3142.00 400.0 507 (VA60) 29 220859.73 0-00-00 12 4(S)55.50 3155.50 887.6 644 (VA75) 32 221747.34 0-00-00 13 3 ¢S)51.00 3151.00 843.2 865 (VA70) 35 222590.50 0-00-00 14 2S)46.50 3146.50 844.4 844 (VA65) 39 223434.88 0-00-00 15 3 .¢S)'51.00 3156.03 900.0 872 (VA70) 41 224334.88 0-00-00 16 4(¢S)55.50 3175.63 790.5 845 (VA75) 44 225125.43 0-00-00 17 3 ¢S)51.00 3176.00 932.6 862 «VA70) -185 840 $2IE-940 828 TH 809 390 739 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A ¢ c ¢ ¢ ¢ ¢ 26.50 213400.00) 29.29 214400.00) 28.28 215100.00) 29.73 215714.17) 30.76 216436.60) 26.62 217428.31) 26.20 218036.17) 30.71 219090.48) 26.17 219445 .68) 25.29 220359.73) 41.47 220559.73) 27.77 221359.73) 25.82 222147.34) 27.91 222990 .50) 27.00 22383488) 30.51 224734 .88) 32.10 225525 ..43) 0 179 168 142 118 183 160 180 165 120 105 N/A C(Swg)=4690 >> 21651 30977 39584 48191 56798 66124 74610 83217 91703 100310 108920 117985 126813 135420 144248 153313 162141 (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C) Allowable span lengths: 25.00 Station spacing (for interpolation)= 128700.00 (ft)24.38 (miles) Basic clearance = Section Length: Filename =D:\TDES\COPRVALY\ZONE2A.TLC TRANSMISSION minimum = Conductor shape:Parabola100.00 50.00 LIWE DESIGN 11-29-1992 REPORT maximum = Station spacing (for clearance checking)= 19:42:25 Page 2 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(N am e)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond 49 226058.00 0-00-00 18 2S)46.50 3196.50 842.0 887 1027 951 N/A 0.92 25.65 61 170748 (VA65 )29.08 (226458.00)50 226900.00 15-00-00R 19 25 (S)51.00 3201.00 800.0 821 800 776 N/A 1.03 27.95 41 182730 (vc80)65.18 (227300.00)51 227700.00 0-00-00 20 2(¢S)46.50 3209.54 800.0 800 778 753 W/A 1.03 25.70 46 191337 (VA65)32.04 ¢228100.00)52 228500.00 0-00-00 21 #28)46.50 3222.59 700.0 750 858 799 N/A 0.93 25.76 50 199944 (vA65)29.25 (228900.00)54 229200.00 0-00-00 22 OS)37.50 3225.00 600.0 650 601 542 N/A 4.10 25.80 33 208430 (VA55)33.70 ¢229500.00)55 229800.00 0-00-00 23 O(¢S)37.50 3234.78 266.6 433 883 639 N/A 0.63 26.43 39 216916 (VA55)20.97 (229966.60)57 230066.60 0-00-00 24 4(S8)55.50 3224.88 1240.8 754 973 854 N/A 0.86 28.16 111 225981 (VA75)27.51 (230966.60)60 231307.36 0-00-00 25 2 (8S)46.50 3146.50 522.0 881 880 879 N/A 1.00 31.95 73 234588 (VA65)31.22 (231507.36)63 231829.39 0-00-00 26 2 ¢S)46.50 3413.69 1119.2 821 728 618 N/A 1.16 26.41 82 243195 (VA65)35.06 (232229.39)65 232948.58 0-00-00 27 3S)51.00 3070.34 600.0 860 492 54 N/A 2.09 37.05 39 252023 ¢vA70)51.70 (233248.58)66 233548.58 0-00-00 28 2 (8)46.50 3104.51 651.4 626 679 650 N/A 0.95 27.90 72 260630 (VA65)30.02 (233948.58)67 234200.00 3-00-00R 29 10 (S)37.50 3137.50 700.0 676 968 809 N/A 0.81 25.76 65 272891 (vB55)37.98 (234500.00)68 234900.00 0-00-00 30 2S)46.50 3148.68 800.0 750 811 778 N/A 0.96 27.95 45 281498 ¢vA65)30.07 ¢235300.00)70 235700.00 0-00-00 31°3 (8)51.00 3155.67 900.0 850 826 798 N/A 1.04 27.37 45 290326 ¢va70)32.07 (236200.00)72 236600.00 0-00-00 32 3 (8S)51.00 3169.14 800.0 850 827 800 WN/A 1.03 30.20 54 299154 (VA70)32.03 ¢237000.00)6)237400.00 0-00-00 33 3 ¢S)51.00 3185.84 900.0 850 831 808 N/A 1.03 27.00 54 307982 (va70)31.89 (237800.00)75 238300.00 0-00-00 34 4S)55.50 3209.14 800.0 850 939 891 N/A 0.96 32.45 64 317047 (VA75)29.75 (€238700.00)76 239100.00 0-00-00 35 3 ¢S)51.00 3221.34 900.0 850 809 761 N/A 1.06 27.00 50 325875 (VA70)32.73 (239500.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical clearance. tower specifications.(#)Protected towers TLCADD (C) TRANSMISSION Allowable span lengths: Basic clearance =25.00 Station spacing (for interpolation)= 128700.00 (ft)24.38 (miles)Section Length: Filename =D:\TDES\COPRVALY\ZONE2A.TLC minimum =50.00 Conductor shape: 100.00 LINE Parabola DESIGN 11-29-1992 REPORT maximum = Station spacing (for clearance checking)= 19342225 Page 3 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac (Swg)(ft)OneSide Excl .Cond 78 240000.00 0-00-00 36 4(S)55.50 3244.64 800.0 850 939 891 N/A 0.9%32.45 64 334940 (VA75)29.75 (240400.00)79 240800.00 0-00-00 37 3.(6S)51.00 3256.84 900.0 850 809 761 N/A 1.06 27.00 50 343768 (VA70)32.73 (241200.00)80 241700.00 0-00-00 38 4(S)55.50 3280.14 800.0 850 939 891 N/A 0.94 32.45 64 352833 (VA75)29.75 (¢242100.00)81 242500.00 0-00-00 39 3.(S)51.00 3292.34 900.0 850 809 761 N/A 1.06 27.00 50 361661 (VA70)32.73 (242900.00)83 243400.00 0-00-00 40 4(S)55.50 3315.63 800.0 850 939 891 N/A 0.94 32.45 5&4 370726 (VA75)29.75 (243800.00)8&4 244200.00 0-00-00 41 3 (8S)51.00 3327.8 900.0 850 809 761 N/A 1.06 27.00 50 379554 (VA70)32.73 (244600.00)86 245100.00 0-00-00 42,&(5S)55.50 3351.13 800.0 850 939 891 N/A 0.9%32.45 64 388619 (VA75)29.75 (245500.00)88 245900.00 0-00-00 43 3¢S)51.00 3363.34 900.0 850 778 692 N/A 1.12 25.66 50 397447 (vA70)34.02 (246400.00)91 246800.00 0-00-00 44 3S)51.00 3393.95 800.0 850 844 836 W/A 1.01 30.20 70 406275 (VA70),31.41 (247200.00)93 247600.00 0-00-00 45 3 (8S)51.00 3422.48 800.0 800 895 843 N/A 0.%25.70 66 415103 (VA70)29.58 (¢248000.00)94 248400.00 5-00-00R 46 11 (5S)42.00 3442.00 600.0 700 1077 872 W/A 0.77 36.10 55 427488 (VB60)42.45 (248600.00)%249000.00 0-00-00 47 4&(S)55.50 3429.75 800.0 700 984 830 N/A 0.82 30.20 82 436553 (VA75)26.27 (249400.00)9 249800.00 0-00-00 48 2 (S)46.50 3386.41 800.0 800 757 705 N/A 1.07 25.70 71 445160 (VA65)32.94 ¢250200.00)101 250600.00 0-00-00 49 2 (8)46.50 3352.08 830.0 815 676 510 N/A 1.26 27.03 44 453767 CvA65)37.39 (251000.00)104 251430.00 0-00-00 50 2(S)46.50 3346.50 700.0 765 817 789 N/A 0.96 25.76 43 462374 (VA65)30.25 ¢251830.00)107 252130.00 0-00-00 51 O(¢S)37.50 3337.50 1100.0 900 542.116 N/A 1.94 30.16 26 470860 ¢VA55)49.63 (252330.00)109 253230.00 0-00-00 52 0(S)37.50 3425.86 466.0 783 108 921 N/A 0.82 25.33 106 479346 (VA55)26.47 (253296.00)113.253696.00 0-00-00 53 2 (8)46.50 3446.50 537.0 502 1016 736 W/A 0.64 32.23 56 487953 (VA65)21.06 ¢253996.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 19:42:25 Page 4 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WD/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)9 (ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 115 254233.00 0-00-00 54 0S)37.50 3437.50 574.0 556 1105 807 N/A 0.64 25.39 85 496439 (VA55)21.31 ¢€254407.00) 119 254807.00 0-00-00 55 2S)46.50 3390.38 791.0 683 873 770 N/A 0.87 27.27 119 505046 (VA65)27.64 (€255307.00) 123 255598.00 0-00-00 56 0(¢S)37.50 3307.56 602.0 697 467 193 N/A 1.67 33.03 59 513532 (VA55)45.36 (255798.00) 124 256200.00 1-00-00L 57 4(S)55.50 3280.50 900.0 751 547 305 N/A 1.49 27.00 40 522597 (vA75)46.87 (€256700.00) 125 257100.00 0-00-00 58 3 (8S)51.00 3287.75 800.0 850 831 808 N/A 1.03 30.20 49 531425 cva70)31.89 ¢257500.00) 126 257900.00 0-00-00 59 3 (8S)51.00 3298.20 900.0 850 831 808 N/A 1.03 27.00 48 540253 (vA70)31.89 ¢258300.00) 128 258800.00 0-00-00 60 4(S)55.50 3314.45 800.0 850 987 912 N/A 0.92 30.20 58 549318 (VATS)29.04 €259200.00) 129 259600.00 0-00-00 61 2 (8)46.50 3315.89 800.0 800 757 705 N/A 1.07 25.70 39 557925 (VA65)32.94 (260000.00) 130 260400.00 0-00-00 62 2(S)46.50 3326.34 700.0 750 858 799 WN/A 0.93 25.76 47 566532 cva65)29.25 ¢260800.00) 132 261100.00 0-00-00 63 O(¢S)37.50 3326.48 1204.0 952 598 177 N/A 1.83 25.99 31 575018 (VA55)47.90 ¢261400.00) 135 262304.00 0-00-00 Q¢S)37.50 3437.50 200.0 702 1099 884 N/A 0.76 37.50 120 583504 (VA55)24.70 €262304.00) <<RULING SPAN =963 >><<assumed ruling span =962 with C(hot)=4113,C(cold)=8301,C(iced)=N/A C(Swg)=4855 >> 137 262504.00 0-00-00 65 40 (0)46.50 3446.50 183.0 192 1904 1025 N/A 0.16 32.16 71 605155 (D)N/A (262587.00) 139 262687.00 0-00-00 66 6(S)64.50 3417.11 1305.0 744 752 748 N/A 0.99 30.41 197 614732 ¢VA85 >31.03 (¢263787.00) 142 263992.00 0-00-00 67 O(¢S)37.50 3206.31 600.0 953 545 129 N/A 2.02 26.56 71 623218 (VA55)50.74 €264292.00) 146 264592.00 0-00-00 68 0O(S)37.50 3168.88 603.0 602 569 535 N/A 1.07 28.85 65 631704 (ASS)32.90 €264892.00) 148 265195.00 0-00-00 69 2(S)46.50 3136.08 860.0 732 1058 893 N/A 0.79 28.32 112 640311 (VA65)25.64 (€265595.00) <<RULING SPAN =1845 >><<assumed ruling span =1844 with C(hot)=5360,C(cold)=7777,CCiced)=N/A C(Swg)=5692 >> 151 266055.00 0-00-00 70 41 (¢D)55.50 3055.50 1845.0 1353 1720 1666 W/A 0.80 46.50 113 662849 CFP65)N/A (€267900.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C) TRANSMISSION L Altowable span lengths:minimum =50.00 Basic clearance =25.00 Conductor shape:Parabola Station spacing (for interpolation)=100.00SectionLength:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC DESIGN 11-29-1992 19:42:25 Page 5 REPORT maximum =3000.00 Conductor Number:1 Station spacing (for clearance checking)=100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT No.Location Deg Mn Se No.Typ/Insl Height Elev (ft)(Name)(ft)(ft) SPAN AHEAD (ft) WIND WEIGHT SPAN (ft) UnloadedSPAN (ft)Max Min Iced WO/WT CLEARANCE %Max LINE COST SWING (LOCATION)WtSpan (cumul.) ac(Swg)(ft)OneSide Excl.Cond <<RULING SPAN =824 >><<assumed ruling span =823 with C(hot)=3814,C(cold)=8432,C(iced)=N/A C(Swg)=4670 >> 155 267900.00 45-00-00R 71 40 (D)46.50 2796.50 (D) 157 268500.00 0-00-00 72 O¢S)37.50 2837.50 (va55) 161 269500.00 0-00-00 73 6 (8S)64.50 2864.50 (VA85) 164 270000.00 0-00-00 74 6 (S)64.50 2864.50 (VA85)167 270700.00 5-00-00R 75 10 (S)37.50 2837.50 (VB55) 168 271400.00 0-00-00 76 2(S)46.50 2811.13 (VA65) 170 272200.00 0-00-00 7 2S)46.50 2770.71 (vAé5) 172 273179.04 0-00-00 78 2(S)46.50 2746.50 (VA65) 174 273979.04 0-00-00 79 =2(S)66.50 2746.50(VA65)177 274700.00 90-00-00 80 2(S)46.50 2778.32 (VA65) 179 275500.00 0-00-00 81 2 (8S)46.50 2814.68 (va65) 180 276200.00 5-00-00R 82 10 (S$)37.50 2837.50 (VB55) 181 276800.00 0-00-00 8 2S)46.50 2825.01 (VA65) 184 277600.00 0-00-00 8 2(S)46.50 2796.36 (VA65) 186 278300.00 0-00-00 85 0(S)37.50 2762.29 (VA55) 189 278900.00 0-00-00 8 0(S)37.50 2740.80 (VA55) 192 279681.28 0-00-00 87 1(¢S)42.00 2732.81 (VA60) 600.0 1000.0 500.0 700.0 700.0 800.0 979.0 800.0 721.0 800.0 700.0 600.0 800.0 700.0 600.0 781.3 540.5 1223 800 450 600 700 750 890 890 760 760 750 650 700 750 650 691 661 209 1149 -446 958 853 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.86 vw_NonRON:.wowi«WoWRaseRBReeyw=aSo.(on30.01 9 684500 268300.00) 37.50 76 692986 268500.00) 56.63 72 702563 269700 .00) 32.10 67 712140 270500.00) 25.63 58 724401 271000.00) 25.52 77 733008 271800.00) 26.06 65 741615 272800.00) 25.52 37 750222 273579.04) 30.09 37 758829 274379.04) 25.52 68 767436 275100.00) 25.63 6)776043 275900.00) 30.01 54 788304 276400.00) 25.52 65 796911 277200.00) 25.63 71 805518 278000 .00) 25.70 52 814004 278600.00) 31.53 41 822490 278992 .18) 27.81 69 831100 279721.76) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C) TRANSMISSION L Allowable span lengths:minimum = Basic clearance =25.00 Conductor Station spacing (for interpolation)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC 50.00 shape: IWE Parabola ry -| Page 611-29-1992 19:42:25 DESIGN REPORT maximum =3000.00 Conductor Number:1 Station spacing (for clearance checking)=100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 196 280221.76 0-00-00 88 6(S)64.50 2701.48 1093.5 817 803 787 N/A 1.02 27.19 99 840677 (vA85)31.70 ¢281021.76) 199 281315.22 0-00-00 89 1(S)42.00 2642.00 700.0 897 640 330 WN/A 1.54 30.13 31 849287 (VA60)42.96 (281615.22) 202 282015.22 0-00-00 90 3S)51.00 2651.00 876.6 788 897 837 °W/A 0.93 26.01 43 858115 (va70)29.35 (282415.22) 205 282891.81 0-00-00 91 3 ¢S)51.00 2651.00 837.0 857 857 857 W/A 1.0 28.08 41 866943 (va70)31.18 (283328.83) 208 283728.83 0-00-00 92 3S)51.00 2651.00 919.2 878 842 798 N/A 1.05 27.56 40 875771 (va70)32.50 (284128.83) 212 284648.00 0-00-00 93 2 (8S)46.50 2659.70 800.0 860 644 383 N/A 1.44 25.52 50 884378 (VA65)41.13 ¢285048.00) 214 285448.00 0-00-00 9%2¢8)46.50 2712.51 614.9 707 860 776 N/A 0.89 28.01 89 892985 (VA65)28.40 ¢285848.00) 216 286062.86 0-00-00 95 1S)42.00 2742.00 600.0 607 1075 819 W/A 0.70 27.95 65 901595 (va60)22.99 (€286362.86) 218 286662.86 0-00-00 96 O(¢S)37.50 2737.50 1237.1 919 736 515 N/A 1.32 26.34 40 910081 (va55)38.66 (286765.93) 223 287900.00 10-00-00R 97 22 (6S)37.50 2787.50 600.0 919 1224 1057 N/A 0.84 30.01 78 921344 (VC65 >51.56 ¢288100.00) 224 288500.00 0-00-00 98 2(S)46.50 2790.05 800.0 700 826 757 W/A 0.91 25.52 46 929951 (va65)28.81 ¢288900.00) 226 289300.00 0-00-00 99 2(¢S)46.50 2781.45 800.0 800 800 800 N/A 1.00 25.52 46 938558 (VA65)31.18 (289700.00) 228 290100.00 0-00-00 100 2(S)46.50 2772.84 800.0 800 800 800 N/A 1.0 25.52 46 947165 (va65)31.18 (290500.00) 230 290900.00 0-00-00 101 2 (8S)46.50 2764.24 800.0 800 800 800 WN/A 1.00 25.52 46 955772 (VA65)31.18 ¢291300.00) 232 291700.00 0-00-00 102 2 (8S)46.50 2755.64 800.0 800 779 753 W/A 1.03 27.77 41 964379 (VA65 )32.03 ¢292100.00) 234 292500.00 0-00-00 103 3 ¢S)51.00 2751.54 615.3 708 966 824 N/A 0.83 25.95 58 973207 (va70).26.72 €292900.00) 237 «=-293115.30 0-00-00 1046 1(S)42.00 2729.54 1202.6 909 954 929 N/A 0.97 31.54 86 981817 ¢vaé0)30.49 (293415.30) 239 «§=294317.92 0-00-00 105 2S)46.50 2680.08 544.5 874 602 272 N/A 1.62 27.83 41 990424 (vA65)44.35 (294562.47) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C) Allowable span Lengths: Basic clearance =25.00 TRANSMISSION LIWE minimum =50.00 Conductor shape:Parabola 100.00Stationspacing(for interpolation)= 128700.00 (ft)24.38 (miles)Section Length: Filename =D:\TDES\COPRVALY\ZONE2A.TLC DESIGN 11-29-1992 REPORT maximum = Station spacing (for clearance checking)= 19:42:25 Page 7 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X%Max LINE COST No.Location Deg Mn Se No.Typ/iInsl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl.Cond 241 294862.47 0-00-00 106 2 (8S)46.50 2696.50 800.0 672 927 787 N/A 0.83 25.52 49 999031 (VA65)26.58 €295262.47) 243 «=-295662.47 0-00-00 107 2 (8S)46.50 2696.50 788.0 794 794 794 N/A 1.00 26.16 37 1007638 (VA65)31.18 (296062.47) 245 296450.42 0-00-00 108 2 (S)46.50 2696.50 800.0 794 794 794 N/A 1.00 25.52 37 1016245 (VA65)31.18 (296850.42) 247 297250.42 0-00-00 109 2 (S)46.50 2696.50 649.6 725 842 778 N/A 0.92 27.87 41 1024852 (VA65)29.05 ¢297650.42) <<RULING SPAN =824 >><<assumed ruling span =823 with C(hot)=3814,C(cold)=8432,C(iced)=N/A C(Swg)=4670 >> 248 297900.00 75-00-00L 110 32 (0D)37.50 2687.50 600.0 625 1211 890 N/A 0.66 25.70 82 1042947 (v065)N/A (298200.00) 249 298500.00 0-00-00 111 O¢S)37.50 2637.50 1300.0 950 785 585 N/A 1.27 37.50 86 1051433 (VA55)37.56 ¢298500.00) 253 299800.00 0-00-00 12 #&(¢S)55.50 2585.50 400.0 850 488 49 «=ON/A 2.09 37.50 48 1060498 (vAT5)51.69 ¢300200.00) 254 300200.00 0-00-00 113.O(¢S)37.50 2607.50 400.0 400 324 231 N/A 1.30 26.07 58 1068984 (VA55)38.29 ¢300500.00) 257 300600.00 0-00-00 114 0(S)37.50 2637.50 600.0 500 1132 786 N/A 0.59 25.70 72 1077470 (vA55)19.59 ¢300900.00) 259 301200.00 0-00-00 115 0O(¢S)37.50 2637.50 500.0 550 550 550 N/A 1.00 29.63 26 1085956 (VASS)31.18 ¢301400.00) 260 301700.00 10-00-00L 116 22 (8)37.50 2637.50 700.0 600 551 492 N/A 1.11 25.63 24 1097219 (VC65)65.36 ¢302000.00) 261 302400.00 0-00-00 117 2 (8)46.50 2646.50 800.0 750 858 799 W/A 0.93 25.52 43 1105826 (VA65)29.26 ¢302800.00) 264 303200.00 0-00-00 118 2 (S)46.50 2646.50 800.0 800 800 800 WN/A 1.00 25.52 37 1114433 (VA65):31.18 ¢303600.00) 266 304000.00 0-00-00 119 2 (8)46.50 2646.50 800.0 800 800 800 N/A 1.00 25.52 37 1123040 (VA65)31.18 ¢304400.00) 268 304800.00 0-00-00 120 2 (8S)46.50 2646.50 600.0 700 826 757 N/A 0.91 30.01 40 1131647 (vA65)28.81 ¢305200.00) 270 305400.00 0-00-00 121 O¢S)37.50 2637.50 1172.3 886 504 40 N/A 2.12 28.12 23 1140133 cva5s5)52.08 ¢306300.00) 273 +306572.28 0-00-00 122 O0(¢S)37.50 2737.50 600.0 886 1151 1006 N/A 0.86 25.70 113 1148619 (VA55S)27.44 (306872.28) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical clearance. tower specifications.(#)Protected towers TLCADD (C) Allowable span lengths: 25.00 Station spacing (for interpolation)= 128700.00 (ft)24.38 (miles) Basic clearance = Section Length: Filename =D:\TDES\COPRVALY\ZONE2A.TLC TRANSMISSION minimum = Conductor shape: 100.00 50.00 LIWE Parabola DESIGN 11-29-1992 REPORT maximum = Station spacing (for clearance checking)= 19342325 Page 8 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl .Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swa)(ft)OneSide Excl.Cond 275 307172.28 06-00-00 123 O¢S)37.50 2769.84 327.7 464 411 348 N/A 1.16 35.89 65 1157105 (VASS)35.07 ¢307272.28) 276 307500.00 10-00-00R 124 23 (S)42.00 2792.00 800.0 564 921 725 N/A 0.74 27.40 61 1168589 (VC70)56.61 (¢307800.00) 278 308300.00 0-00-00 125 4 (8S)55.50 2812.25 900.0 850 1034 933 N/A 0.89 26.78 59 1177654 (VATS)28.38 (308800.00) 280 309200.00 0-00-00 126 3 (8)51.00 2815.35 800.0 850 831 808 N/A 1.03 30.02 45 1186482 (vA70)31.89 ¢309600.00) 282 310000.00 0-00-00 127 3 ¢S)51.00 2822.11 900.0 850 831 808 N/A 1.03 26.78 45 1195310 (VA70)31.89 ¢310400.00) 284 310900.00 0-00-00 128 &(¢S)55.50 2834.20 800.0 850 940 891 N/A 0.94 32.27 54 1204375 (VA75)29.76 (311300.00) 286 311700.00 0-00-00 129 3 ¢S)51.00 2836.46 900.0 850 809 760 W/A 1.06 26.78 40 1213203 (VA70)32.72 €312100.00) 288 312600.00 0-00-00 130 4(¢S)55.50 2848.56 822.3 861 996 922 N/A 0.92 28.90 54 1222268 (VA75)29.11 ¢313100.00) 290 313422.32 0-00-00 131 2 ¢S)46.50 2846.50 800.0 811 778 737 W/A 1.05 25.52 37 1230875 (VA65)32.50 ¢313822.32) 292 314222.32 0-00-00 132 2S)46.50 2851.49 800.0 800 800 800 N/A 1.00 25.52 42 1239482 (VA65)31.18 ¢314622.32) 295 315022.32 0-00-00 133 2(S)46.50 2856.49 800.0 800 800 800 WN/A 1.00 25.52 42 1248089 (VA65)31.18 ¢315422.32) 298 315822.32 0-00-00 134 2(S)46.50 2861.48 800.0 800 800 800 N/A 1.0 25.52 42 1256696 CVA65)31.18 ¢€316222.32) 300 316622.32 90-00-00 135 2(S)46.50 2866.48 800.0 800 800 800 N/A 1.00 25.52 42 1265303 (VA65)31.18 ¢317022.32) 302 317422.32 0-00-00 136 2 (8)46.50 2871.47 800.0 800 800 800 N/A 1.00 25.52 42 1273910 (vA65)31.18 ¢317822.32) 304 318222.32 0-00-00 137 2(S)46.50 2876.46 800.0 800 800 800 N/A 1.0 25.52 42 1282517 (VA65)31.18 ¢318622.32) 306 319022.32 0-00-00 138 2S)46.50 2881.46 800.0 800 800 800 N/A 1.00 25.52 42 1291124 (VA65)31.18 ¢(319422.32) 308 319822.32 9-00-00 139 2 (8S)46.50 2886.45 800.0 800 779 753 N/A 1.03 27.77 42 1299731 (VA65)32.03 ¢320222.32) 310 320622.32 0-00-00 140 3S)51.00 2895.94 910.0 855 867 860 N/A 0.99 25.96 47 1308559 (vA70)30.99 (321022.32) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 19:42:25 Page 9 TRANSMISSION LINE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(N ame)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond 313 =321532.33 +0-00-00 141 4&4 (8)55.50 2905.50 800.0 85 991 917 N/A 0.92 32.27 52 1317624 (VA75)29.08 (321932.33) 315 322332.33 90-00-00 142 3 °¢S)51.00 2901.00 867.7 834 812 785 N/A 1.03 26.48 41 1326452 (VA70)32.00 ¢322732.33) 316 323200.00 10-00-00R 143 25 (S)51.00 2901.00 800.0 834 881 855 WN/A 0.97 27.77 39 1338434 qvcs0)>56.88 (¢323600.00) 317 324000.00 0-00-00 144 2 ¢S)46.50 2896.50 700.0 750 811 778 N/A 0.96 25.63 43 1347041 (VA65)30.07 ¢324400.00) 319 324700.00 0-00-00 145 0(S)37.50 2887.50 600.0 650 601 542 N/A 1.10 25.70 26 1355527 (VA55)33.69 ¢325000.00) 322 325300.00 0-00-00 146 OCS)37.50 2887.50 700.0 650 601 542 N/A 1.10 25.63 26 1364013 (VA55S)33.69 (325600.00) 324 326000.00 20-00-00L 147 24 (8S)46.50 2896.50 800.0 750 723 690 N/A 1.05 25.52 39 1375734 (VC75)70.95 (326400.00) 325 326800.00 0-00-00 148 2(S)46.50 2912.50 800.0 800 779 753 W/A 1.03 27.77 53 1384341 (vA65)32.03 (327200.00) 326 327600.00 0-00-00 149 3 °(S)51.00 2933.00 900.0 850 855 852 N/A 1.0 26.78 58 1393169 (VA70)314.09 ¢328000.00) 328 328500.00 12-00-00R 150 26 (S$)55.50 2955.50 900.0 900 857 805 N/A 1.06 26.78 59 1405402 (VC85)60.87 ¢329000.00) 331 329400.00 0-00-00 151 3 ¢S)51.00 2988.13 800.0 850 903 874 N/A 0.97 25.52 71 1414230 (VA70)30.33 ¢329800.00) 333 330200.00 0-00-00 152 18)462.00 3012.13 1024.2 912 700 442 N/A 1.40 26.86 59 1422840 (VA60)40.26 ¢330500.00) 336 4 §=©6331224.22 0-00-00 153 4(S)55.50 3099.96 575.0 800 731 648 N/A 1.12 29.02 119 1431905 (VATS)34.07 ¢331599.26) 339 331799.26 0-00-00 154 2 (S)46.50 3159.61 800.0 688 1010 833 W/A 0.79 25.52 108 1440512 (VA65)25.66 (332199.26) 341 332599.26 0-00-00 155 2(S)46.50 3212.06 625.4 713 862 780 N/A 0.90 27.61 89 1449119 (VA65)28.47 (332999.26) 345 333224.69 0-00-00 156 1(S)42.00 3242.00 600.0 613 1016 795 N/A 0.73 30.20 65 1457729 (VA60)23.91 (333524.69) 347 333824.69 0-00-00 157.1¢S)42.00 3242.00 375.3 488 1004 721 N/A 0.63 26.66 64 1466339 (VA60)20.87 ¢334000.00) 351 334200.00 30-00-00L 158 29 .(S)69.00 3219.00 1000.0 688 83 758 N/A 0.89 27.24 110 1479326 (VC100)74.73 (334800.00) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. TLCADD (C)11-29-1992 19:42:25 Page 10 TRANSMISSION LIWE DESIGN REPORT Altowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:128700.00 (ft)24.38 (miles) Filename =D:\TDES\COPRVALY\ZONE2A.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Exct.Cond 354 335200.00 0-00-00 159 2 (8S)46.50 3139.34 700.0 850 634 372 W/A 1.45 34.63 51 1487933 (VA65)41.31 ¢335500.00) 356 335900.00 0-00-00 160 4 (8S)55.50 3123.28 900.0 800 951 868 N/A 0.91 26.78 76 1496998 (VAT5)28.72 (336400.00) 359 336800.00 0-00-00 161 3 °¢S)51.00 3086.55 800.0 850 855 852 N/A 1.0 27.77 71 1505826 (vA70)31.09 ¢337200.00) 362 337600.00 0-00-00 162 2 (8)46.50 3053.41 893.0 847 699 520 N/A 1.27 26.30 44 1514433 (VA65)37.58 (338100.00) 365 338493.04 0-00-00 163 3 ¢S)51.00 3051.00 867.9 880 746 584 N/A 1.23 38.40 41 1523261 cva70)36.64 (338793.04) 368 339360.95 0-00-00 164 5 (S)60.00 3079.17 800.0 834 699 537 W/A 1.25 26.27 69 1532587 (VA80)37.01 (¢339860.95). 372 340160.95 0-00-00 165 0(S)37.50 3133.34 643.4 722 1061 875 N/A 0.79 27.20 84 1541073 (VA55)25.64 (340360.95) 374 340804.38 0-00-00 166 3 (8S)51.00 3151.00 895.6 770 959 855 N/A 0.88 27.02 52 1549901 (VA70)28.04 (341204.38) 377 341700.00 90-00-00 1674 414(0) 55.50#3155.50 0.0 448 490 467 W/A 0.95 0.00 28 1572439 CFP65)N/A ¢0.00) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. TLCADD (C)11-29-1992 18:31:53 Page 1 STATISTICAL ANALYSIS REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average -Std.Dev.0 5 10 15 20 2 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 TOWERS (ft)(ft)5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 APS5S 0 0.0 0.0 a AP60 0 0.0 0.0 a AP65 3 1161.5 214.5 re AP70 5 1240.8 86.3 a cs Oe rsAPTS171200.4 106.7 a - -Sy 2” AP&0 12 1162.3 112.2 a a Y rs 2 a r AP8&5 21 1219.8 83.2 a -AP90 22 1261.9 38.2 a PO |)AP9S 54 1278.4 39.6 oS \ry AP 100 23 1238.3 28.4 A |- APL5S 0 0.0 0.0 a APL60 0 0.0 0.0 a APL65 0 0.0 0.0 Pe APL70 0 0.0 0.0 i APL75 0 0.0 0.0 a a APL&O 0 0.0 0.0 a APL85 0 0.0 0.0 a APL9O 0 0.0 0.0 a APL9S 0 0.0 0.0 a APL100 0 0.0 0.0 a APT55 0 0.0 0.0 es APT6O 0 0.0 0.0 a APT65 0 0.0 0.0 a APT70 0 0.0 0.0 a APT75 0 0.0 0.0 a APT&O 1 1200.0 0.0 i a APT85 1 1433.9 0.0 a APT9O 1 1350.1 0.0 eee ll le le Te APTOS -)1362.0 37.1 ry 2 APT100 7 1306.6 53.3 a Py 2,Ss APS55 0 0.0 0.0 a APS60 0 0.0 0.0 a a APS65 0 0.0 0.0 a a APS70 0 0.0 0.0 a APS75 0 0.0 0.0 i APS80 0 0.0 0.0 eS ' TLCADD (C)11-29-1992 18:31:53 STATISTICAL ANALYSIS REPORT Allowable span lengths:minimum =50.00 maximum = Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)= Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC 3000.00 Basic clearance =24.50 Conductor shape:Parabola 'Conductor Number:1 100.00 Page 2 TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 865 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 TOWERS (ft)(ft)5 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85=[=]85 90 90 95 100 95 100 APS85 APS90 APS95 APS100 BP55 BP60 BP65 BP70 BP75 BP80 BP85 BP90 BP95 BP100 cP55 cPé60 CP65 cP70 cP75 cp80 cP85 cP90 CP95 cp100 DPSS DP60 DP6é5 oP70 DP75 pP80 DP&5 pP90 DP9S bP 100 EP55 EP60 SCODDDODDODOOOCODDOOWSCOODOOOODOORDOODOOCSCS=-Wweoomacocoooo.°ooooceo=i=]per'-_=©oonery.weoeooveccqc0co0c0co0ccrecoeouMmaqacoooaoococo0coooa0oooeoeooo°oo..eorecocooooao0oceococro0cecrfrcacecooo0ocoooooo°oeoe°oco=8oooo0oo0o0ccece0oceoovTdee.COOMAGOHjHC0]00O4N200WPFNOOVMP@HMQ0CGH0E00e000oPeeeeeeeeeeeCeeeeeeeCeeeeeeeeeeeCeeeeeee|CeOeeeeeeSCeeeeeSSCeeeCeCr|Ceeeee.o28©©»©©©©©©©©88888lellllllllllllllllCeeeee7©©©©©©©©»©©©©©©©©Belllhllhllllllleltllellleofr©8©@@©©ot0©©©e88ewlllllllhlllllltlellCeeeCr|CeCrieeSe| TLCADD (C)11-29-1992 18:31:53 Page 3 STATISTICAL AWALYSIS REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 TOWERS (ft)(ft)5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 EP65 0 0.0 0.0 ..................... EP70 0 0.0 0.0 eee wa EP75 0 0.0 0.0 eee ee le EP80 0 0.0 0.0 eee EP85 0 0.0 0.0 eee EP90 2 1275.0 247.5 ec ns [rs EP9S 4 1431.9 55.4 kr EP100 6 9421.1 77.9 cP Y 2 | FP55 0 0.0 0.0 eee FP60 0 0.0 0.0 eee ln FP65 1 550.0 0.0 a FP70 0 0.0 0.0 ©ee lt FP75 1 800.0 0.0 a FP80 0 0.0 0.0 ee ee FP85 0 0.0 0.0 ©eee lt FP90 0 0.0 0.0 ee ee lt FP9S 0 0.0 0.0 ee ee FP100 0 0.0 0.0 a TLCADD (C)11-29-1992 18:29:55 Page 1 TRANSMISSION LIWE DESIGR REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Inst Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)=(ft)OneSide Excl .Cond <<RULING SPAN =1282 >><<assumed ruling span =1281 with C(hot)=4674,C(cold)=8049,C(iced)=N/A C(Swg)=5202 >> 0 341700.00 0-00-00 1 82 (D)55.50 3155.50 1100.0 550 816 704 W/A 0.76 27.50 46 22538 CFP65)N/A 342200.00) 1 342800.00 0-00-00 2 6(S)64.50 3119.19 1200.0 1150 1186 1171 N/A 0.98 28.24 55 39388 CAP85 )30.68 (343400.00) 3 344000.00 0-00-00 3 7S)69.00 3074.27 1327.9 1264 1092 967 N/A 1.18 26.85 42 56740 (AP90)35.50 (¢344700.00) 6 345327.86 0-00-00 4 8(¢S)73.50 3073.50 1248.7 1288 1342 1319 W/A 0.97 27.37 44 74610 (AP95)30.51 (346027.86) 9 346576.55 0-00-00 §6(S)64.50 3064.50 1223.5 1236 1188 1153 N/A 1.05 26.36 37 91460 CAP85)32.32 (347176.55)11 347800.00 0-00-00 6 8(S)73.50 3068.33 1300.0 1262 1426 1357 N/A 0.92 28.57 50 109330 CAP95)29.17 (348400.00) 12 349100.00 0-00-00 7 8S)73.50 3045.91 1300.0 1300 1284 1272 N/A 1.01 30.65 49 127200 CAP95)31.53 (349700.00) 13 350400.00 5-00-00R 8 49 (S)78.00 3028.00 1300.0 1300 1174 1084 N/A 1.12 28.22 36 147995 (BP100)46.91 (351100.00) 14 351700.00 0-00-00 9 27 (8S)69.00 3045.00 1400.1 1350 1247 1173 N/A 1.09 26.68 45 166134 (APT90)33.47 (352300.00) 16 353100.14 0-00-00 10 29 (S)78.00 3094.08 1343.6 1372 1169 1022 N/A 1.20 28.46 60 185235 (APT100)35.92 ¢353800.14) 18 354443.72 0-00-00 11.8 ¢(S)73.50 3199.54 1152.2 1248 1335 1298 N/A 0.96 26.25 83 203105 CAP95)30.07 ¢355143.72) 20 355595.92 0-00-00 12 7¢S)69.00 3277.50 1300.0 1226 1487 1378 WN/A 0.88 28.22 70 220457 CAP90)28.01 €356195.92) 21 356895.92 0-00-00 13 79 (S)78.00 3323.34 1264.5 1282 1721 1537 W/A 0.82 27.07 47 240142 (EP100)26.36 €357495.92) 23 358160.37 0-00-00 14 7 (8)69.00 3299.07 1300.0 1282 1245 1218 N/A 1.03 28.22 46 257494 (AP90)32.02 ¢358760.37) 24 359460.37 0-00-00 15 29 (S)78.00 3284.51 1359.2 1330 1348 1340 N/A 0.99 29.73 48 276595 (APT100)30.95 ¢360160.37)27 360819.59 0-00-00 16 29 ¢S)78.00 3266.13 1300.0 1330 1372 1354 N/A 0.98 28.22 49 295696 (APT100)30.66 (¢361519.59) 29 362119.59 0-00-00 17 7 (8S)69.00 3241.70 1300.0 1300 1235 1189 N/A 1.06 28.22 43 313048 (AP90)32.64 (362719.59) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C) TRANSMISSION LIWE Allowable span lengths:minimum =50.00 Basic clearance =24.50 Conductor shape:Parabola Station spacing (for interpolation)=100.00SectionLength:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC DESIGN REPORT 11-29-1992 maximum = Conductor Number:1 Station spacing (for clearance checking)= 18:29:55 Page 2 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WD/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min (ft)OneSide Excl .Cond 31 363419.59 0-00-00 18 9 (CS)78.00 3235.27 1212.5 1256 1477 1384 N/A 26.13 331362 (AP100)364032.14) 34 364632.14 0-00-00 19 8(S)73.50 3196.03 1392.2 1302 1257 1224 N/A 27.23 349232 (AP95)365432.14) 37 366024.36 0-00-00 20 26 (S)64.50 3164.50 1475.6 1434 1184 1003 N/A 26.80 366869 (APT85)366624 .36) 40 367500.00 0-00-00 21 5 (S)60.00 3210.00 1200.0 1338 1291 1257 N/A 30.06 383237 CAP80)368000.00) 41 368700.00 0-00-00 22 79 (8)78.00 3259.11 1628.8 1414 1323 1257 N/A 26.94 402922 (EP100)369700.00) 43 370328.79 0-00-00 23 78 (8S)73.50 3357.52 1071.2 1350 1851 1641 N/A 26.02 422163 CEP9S)370828.79); 45 371400.00 5-00-00L 24 44 (S)55.50 3355.50 1200.0 1136 911 749 N/A 27.43 440486 (BP75)371900.00) 46 372600.00 0-00-00 25 9 (8S)78.00 3410.92 1300.0 1250 1457 1370 N/A 28.22 458800 (AP 100)373300.00) 47 373900.00 0-00-00 26 7 (8S)69.00 3437.59 1144.8 1222 1262 1245 N/A 26.95 476152 CAP90)374500.00) 48 375044.84 0-00-00 2 4 ($8)55.50 3455.50 945.9 1045 1248 1163 N/A 26.89 491994 CAP75)375544.84) 49 375990.75 0-00-00 28 2 (8S)46.50 3446.50 1523.3 1235 1663 1483 N/A 27.73 506958 CAP65)377090 .75) 51 377514.01 0-00-00 3.¢S)51.00 3351.00 1100.0 1312 942 675 N/A 27.09 522344 (AP70)378014.01) 53 378614.01 0-00-00 30 7 (S)69.00 3369.00 1318.8 1209 1286 1254 N/A 26.96 539696 CAP90)379214.01) 56 379932.79 0-00-00 31.#9(¢S)78.00 3378.00 1200.0 1259 1465 1379 WN/A 27.43 558010 «AP100)380632.79) 58 381132.79 0-00-00 32 4(S)55.50 3355.50 1097.4 1149 1038 959 W/A 25.96 573852 CAPT5)381632.79) 61 382230.21 0-00-00 33 8 (S)73.50 3360.81 1300.0 1199 1442 1340 N/A 28.57 591722 CAP95)382930.21) 63 383530.21 0-00-00 34 8(S)73.50 3327.81 1269.8 1285 1263 1248 N/A 26.90 609592 CAP95 )384230.21) 66 384800.00 0-00-00 35 6 (8S)64.50 3301.40 1200.0 1235 1176 1133 N/A 28.24 626442 CAP85)385400.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (Cc) : TRANSMISSI Allowable span lengths:minimum = Basic clearance =24.50 Conductor Station spacing (for interpolation)=100.00 Section Length: 252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC ON L 50.00 shape: IWE Parabola 11-29-1992 18:29:55 Page 3 DESIGN REPORT maximum =3000.00 Conductor Number:1 Station spacing (for clearance checking)=100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 68 386000.00 0-00-00 36 7 (S)69.00 3291.62 1200.0 1200 1260 1235 N/A 0.97 28.24 46 643794 CAP90)30.37 ¢386600.00) 70 387200.00 0-00-60 37 6S)64.50 3272.83 1300.0 1250 1174 1120 N/A 1.07 27.02 40 660644 CAP85)32.97 ¢387800.00) %3 388500.00 0-00-00 38 8 (S)73.50 3273.50 1200.0 1250 1345 1305 N/A 0.95 28.18 44 678514 CAP95)29.98 ¢389200.00) 5 389700.00 3-00-O00R 39 25 (S)60.00 3260.00 1200.0 1200 1095 1019 N/A 1.11 28.18 31 695669 (APT80)42.68 ¢390200.00) 7 390900.00 0-00-00 40 8(S)73.50 3273.50 1300.0 1250 1341 1303 N/A 0.96 28.57 44 713539 (AP95 )30.03 ¢391500.00) 78 392200.00 06-00-00 41 8(S)73.50 3273.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 731409 CAP95 )31.18 ¢392800.00) 80 393500.00 6-00-00 42,8(S)73.50 3273.50 1294.3 1297 1325 1313 N/A 0.99 26.56 43 749279 CAP95)30.83 ¢394200.00) 82 394794.30 0-00-00 43 7 (¢S)69.00 3269.00 1300.0 1297 1249 1213 N/A 1.04 28.22 40 766631 CAP90)32.27 (395394.30)|8&4 396094.30 0-00-00 44 9S)78.00 3278.00 1240.9 1270 1443 1371 N/A 0.92 27.34 48 784945 (AP100)29.09 ¢396794.30) 86 397335.22 0-00-00 45 5 (S)60.00 3260.00 1429.5 1335 1565 1469 N/A 0.90 29.30 64 801313 (AP80)28.57 (398135.22) 88 398764.74 0-00-00 46 7S)69.00 3198.47 1200.0 1315 1227 1164 N/A 1.08 28.24 50 818665 CAP90)33.17 ¢399364.74) 90 399964.74 0-00-00 47 6(S)64.50 3169.33 1135.3 1168 1272 1228 N/A 0.95 27.74 53 835515 CAP85)29.77 (400464.74) 93 401100.00 0-00-00 48 6(S)64.50 3127.00 1100.0 1118 1268 1205 N/A 0.92 26.36 62 852365 CaP85)29.11 ¢401700.00) 96 402200.00 0-00-00 49 4(S)55.50 3065.50 1000.0 1050 971 914 N/A 1.09 26.43 48 868207 (AP75)33.44 ¢402800.00) 98 403200.00 30-00-00R 50 52 (8S)46.50 3026.50 1100.0 1050 897 786 N/A 1.19 26.37 32 892086|(CP65)75.20 (403600.00) 9 404300.00 0-00-00 51 8(S)73.50 3019.65 1300.0 1200 1398 1315 N/A 0.90 28.57 57 909956 CAP95).28.67 (404900.00) 101 405600.00 0-00-00 52 8(S)73.50 2979.65 1300.0 1300 1211 1146 N/A 1.08 26.56 48 927826 (AP95)33.23 (406300.00) 103 406900.00 0-00-00 53 6(S)64.50 2964.50 1200.0 1250 1403 1339 N/A 0.93 28.38 52 944676 (AP85)29.28 (407400.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 4 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length: 252440.00 (ft)47.81 (miles) Filename =0:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 105 408100.00 0-00-00 54 8(S)73.50 2927.67 1300.0 1250 1338 1301 N/A 0.96 28.57 63 962546 (APIS)30.06 ¢408700.00)106 409400.00 0-00-00 55 8(S)73.50 2873.50 1300.0 1300 1285 1274 N/A 1.01 28.57 61 980416 CAP95)31.51 ¢410000.00)107 410700.00 0-00-00 56 8(S)73.50 2823.50 1300.0 1300 1300 1300 N/A 1.00 28.57 61 998286 CAP95)31.18 ¢411300.00)108 412000.00 0-00-00 57 28 (8S)73.50 2773.50 1324.0 1312 1322 1318 N/A 1.0 26.32 59 1016943 CAPT95)31.06 ¢412700.00)110 413324.00 0-00-00 58 8(S)73.50 2721.00 1176.0 1250 1379 1325 N/A 0.94 27.14 66 1034813 (AP95)29.56 (414024.00)111 414500.00 0-00-00 59 4(S)55.50 2655.50 1600.0 1388 1443 1420 N/A 0.98 27.91 77 1050655 (APTS)30.54 ¢415000.00)113 416100.00 0-00-00 60 4 (8S)55.50 2555.50 1100.0 1350 1020 781 N/A 1.37 27.50 30 1066497 (AP75)39.75 (€416600.00)415 417200.00 0-00-00 61 6 (S)64.50 2564.50 1600.0 1350 1136 981 N/A 1.21 32.70 38 1083347 CAP85)36.32 ¢417700.00)118 418800.00 0-00-00 62 3S)51.00 2651.00 1000.0 1300 1520 1428 W/A 0.90 26.51 71 1098733 CAP70)28.61 ¢419300.00)120 419800.00 0-00-00 63 4(S)55.50 2677.72 1200.0 1100 1033 985 N/A 1.07 27.43 42 1114575 CAP75)32.98 ¢420300.00)122 421000.00 0-00-00 64 9 (S)78.00 2726.89 1200.0 1200 1502 1375 N/A 0.86 27.43 60 1132889 CAP100)27.50 ¢421700.00)124 422200.00 0-00-00 65 4(S)55.50 2731.06 1100.0 1150 1024 933 N/A 1.14 27.50 37 1148731 CAP75)34.57 (¢422700.00)126 423300.00 0-00-00 66 6(S)64.50 2764.50 1100.0 1100 1411 1280 WN/A 0.85 27.50 49 1165581 CAP85)27.10 (¢423900.00)128 424400.00 0-00-00 67 4(S)55.50 2755.50 1600.0 1350 954 668 W/A 1.48 27.01 30 1181423 CAP75)41.94 (425300.00)131 426000.00 0-00-00 68 79 (S)78.00 2878.00 1300.0 1450 1585 1529 N/A 0.94 28.22 71 1201108 CEP 100)29.71 (426700.00)133 427300.00 0-00-00 69 7 (S)69.00 2955.67 1200.0 1250 1581 1442 N/A 0.85 27.53 71 1218460 (AP90)27.32 (427800.00)136 428500.00 0-00-00 70 9 (¢S)78.00 2978.00 1200.0 1200 1512 1381 N/A 0.86 26.41 50 1236774 CAP100)27.38 (429200.00)138 429700.00 0-00-00 71°5 (8S)60.00 2953.75 1200.0 1200 1450 1345 N/A 0.88 28.18 61 1253142 CAP80)28.07 ¢430200.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 5 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola :Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length: 252440.00 (ft)47.81 (miles) Filename =0:\TDES\COPRVALY\ZONE3.TLC STATION CINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Inst Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 139 430900.00 0-00-00 72 8S)73.50 2892.25 1400.0 1300 1138 1021 N/A 1.16 27.62 53 1271012 CAP95)35.09 ¢431700.00) 141.432300.00 0-00-00 73 7S)69.00 2869.00 1200.0 1300 1255 1222 N/A 1.046 26.32 41 1288364 (AP90)32.19 ¢432900.00) 143 433500.00 0-00-00 7%7S)69.00 2860.67 1300.0 1250 1474 1380 N/A 0.90 28.22 58 1305716 CAP90)28.47 ¢434100.00) 144 634800.00 0-00-00 75 79 (S)78.00 2815.50 1500.0 1400 1368 1346 N/A 1.03 27.66 49 1325401 (EP100)31.83 (435500.00) 146 436300.00 0-00-00 76 28 (S)73.50 2773.50 1300.0 1400 1269 1175 N/A 1.12 28.57 39 1344058 CAPT95)34.03 (436900.00) 148 437600.00 0-00-00 77 8S)73.50 2773.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 1361928 CAP95)31.18 (¢438200.00) 149 438900.00 0-00-00 78 8(S)73.50 2773.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 1379798 (AP95)31.18 ¢439500.00) 150 440200.00 0-00-00 79 «8 (CS)«73.50 2773.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 1397668 CAP95 )31.18 ¢440800.00) 151 441500.00 0-00-00 80 8(S)73.50 2773.50 1300.0 1300 128 1272 N/A 1.01 30.65 42 1415538 (APIS >31.53 €442100.00) 152 442800.00 0-00-00 81 29 (S)78.00 2778.00 1300.0 1300 1403 1360 N/A 0.95 26.49 44 1434639 (APT100)29.92 €443500.00) 154 444100.00 0-00-00 82 8(S)73.50 2765.78 1300.0 1300 1349 1328 N/A 0.98 28.57 50 1452509 CAP95)30.58 (¢444800.00) 155 445400.00 0-00-00 83 8(S)73.50 2745.72 1300.0 1300 1300 1300 N/A 1.0 28.57 50 1470379 CAP95)31.18 ¢446000.00) 156 446700.00 0-00-00 8 8 (S)73.50 2725.66 1300.0 1300 1300 1300 N/A 1.00 28.57 50 14882469 CAP95)31.18 ¢€447300.00) 157 448000.00 0-00-00 85 8(S)73.50 2705.60 1300.0 1300 1300 1300 W/A 1.00 28.57 50 1506119 CAP95)31.18 (448600.00) 158 449300.00 0-00-00 8 8(S)73.50 2685.54 1180.0 1240 1371 1316 N/A 0.94 26.19 54 1523989 CAP9S)29.53 ¢450000.00) 160 450480.00 0-00-00 87 7(S)69.00 2648.17 1300.0 1240 1349 1303 N/A 0.95 28.22 64 1541341 CAP90)29.80 ¢451080.00) 161 451780.00 0-00-00 88 9 (S)78.00 2589.46 1220.0 1260 1450 1371 W/A 0.91 26.35 76 1559655 ¢AP100)28.87 (452480.00) 163 453000.00 50-00-O00L 89 54 (S)55.50 2505.50 1200.0 1210 560 91 =WN/A 2.49 28.17 16 1584851 CCP75)84.58 ¢453500.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 6 TRANSMISSION LIWE DESIGN REPORT Allowable span Lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X%Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 165 454200.00 0-00-00 90 9(S)78.00 2589.76 1300.0 1250 1397 1336 N/A 0.93 28.22 76 1603165 (aP100)29.35 ¢454900.00) 166 455500.00 0-00-00 91 7 (8)69.00 2657.24 1200.0 1250 1438 1359 N/A 0.91 30.02 67 1620517 (AP90)28.88 (456000.00) 168 456700.00 0-00-00 92 9 (S)78.00 2691.51 1300.0 1250 1427 1353 N/A 0.92 28.22 54 1638831 (AP 100)29.00 ¢457400.00) 169 458000.00 0-00-00 93 7 ¢S)69.00 2700.08 1200.0 1250 1235 1224 WN/A 1.01 28.24 44 1656183 (AP90)31.52 ¢458600.00) 170 459200.00 0-00-00 9%6(S)64.50 2711.80 1100.0 1150 1275 1222 N/A 0.93 26.27 42 1673033 CAP85)29.49 (459800.00) 173 460300.00 0-00-00 9 4&(8)55.50 2705.50 1200.0 1150 1288 1230 N/A 0.93 27.43 46 1688875 (APTS)29.31 ¢460800.00) 175 461500.00 2-00-00R 96 29 (8S)78.00 2678.00 1200.0 1200 1354 1289 N/A 0.92 27.43 57 1707976 (APT 100)34.94 (462200.00) 177 462700.00 0-00-00 97 4S)55.50 2627.59 1200.0 1200 1025 898 N/A 1.19 27.43 38 1723818 (aP75)35.85 (463200.00) 179 463900.00 0-00-00 98 9 (8S)78.00 2622.19 1200.0 1200 1502 1375 WN/A 0.86 27.43 61 1742132 (AP 100)27.50 (464600.00) 180 465100.00 0-00-00 99 &(S)55.50 2571.78 1200.0 1200 1032 911 N/A 1.18 26.65 38 1757976 (APTS)35.63 (465600.00) 182 466300.00 0-00-00 100 6(S)64.50 2564.50 1100.0 1150 1167 1160 W/A 0.99 27.50 38 1774824 CAP85)30.9%¢466900.00) 184 467400.00 0-00-00 101 4 (¢S)55.50 2555.50 1100.0 1100 1543 1357 N/A 0.79 27.50 62 1790666 (AP75)25.64 (467900.00) 185 468500.00 0-00-00 102 6(S)64.50 2485.93 1400.0 1250 996 812 N/A 1.29 27.30 47 1807516 (AP85)38.03 ¢469200.00) 187 469900.00 0-00-00 103 28 (S)73.50 2473.50 1300.0 1350 1309 1279 N/A 1.04 28.57 40 1826173 CAPT95 )32.07 ¢470500.00) 188 471200.00 0-00-00 106 8 (S)73.50 2473.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 1844043 (AP95 )31.18 (471800.00) 189 472500.00 0-00-00 105 8(S)73.50 2473.50 1300.0 1300 1300 1300 N/A 1.00 28.57 42 1861913 (APIS)31.18 (473100.00) 190 473800.00 0-00-00 106 8(S)73.50 2673.50 1200.0 1250 1555 1427 N/A 0.86 32.10 58 1879783 (AP9S)27.59 €474300.00) 192 475000.00 45-00-00R 107 59 (S)78.00 2428.00 .1500.0 1350 1343 1337 N/A 1.01 27.66 64 1908687 ¢(cP100)74.38 (475700.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 7 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =0:\TDES\COPRVALY\ZONES.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)>(ft)OneSide Excl .Cond 195 476500.00 0-00-00 108 28 (S)73.50 2373.50 1300.0 1400 1214 1080 N/A 1.17 30.65 38 1927344 (APT95)35.38 (477100.00) 197 477800.00 0-00-00 109 79 (S)78.00 2378.00 1700.0 1500 1322 1194 W/A 4.15 27.92 34 1947029 (EP 100)34.88 (478800.00) 200 479500.00 0-00-00 110 78 (S)73.50 2448.50 1200.0 1450 1421 1401 N/A 1.02 27.73 59 1966270 (EP95)31.75 ¢480000.00) 203 480700.00 0-00-00 111 8 (S)73.50 2505.64 1200.0 1200 1433 1335 N/A 0.89 27.52 63 1984140 (AP95)28.26 (481200.00) 206 481900.00 0-00-00 112 9 ¢S)78.00 2528.00 1300.0 1250 1456 1369 N/A 0.90 28.22 49 2002454 CAP100)28.68 (¢482600.00) 208 483200.00 0-00-00 113.7 (¢S)69.00 2519.00 1300.0 1300 1235 1189 N/A 1.06 28.22 39 2019806 CAP90)32.64 (483800.00) 210 484500.00 0-00-00 114 9(S)78.00 2528.00 1100.0 1200 1461 1351 N/A 0.88 30.23 49 2038120 (AP 100)27.95 (485200.00) 212 485600.00 0-00-00 115 §(S)60.00 2500.00 1500.0 1300 1606 1478 N/A 0.87 27.27 76 2054488 (AP80)27.71 ¢486100.00) 216 487100.00 0-00-00 116 6(S)64.50 2604.78 1100.0 1300 1106 967 N/A 1.20 27.50 45 2071338 CAP85)35.95 ¢487700.00) 218 488200.00 0-00-00 117 4(S)55.50 2380.50 1200.0 1150 1024 933 N/A 1.14 27.43 34 2087180 (AP75);34.57 (¢488700.00) 220 489400.00 0-00-00 118 9(S)78.00 2386.33 1300.0 1250 1452 1367 N/A 0.91 27.22 53 2105494 cAP100)28.72 ¢490100.00) <<RULING SPAN =1082 >><<assumed ruling span =1081 with C(hot)=4341,C(cold)=8197,C(iced)=N/A C(Swg)=4995 >> 222 490700.00 85-00-00L 119 65 (D0)60.00 2360.00 1100.0 1200 1146 1113 N/A 1.05 25.45 31 2137510 (DP80)N/A (©491200.00) 223 +491800.00 0-00-00 120 5 (S)60.00 2349.81 1100.0 1100 1100 1100 N/A 1.0 25.45 38 2153878 CAP80)31.18 ¢492300.00) 225 492900.00 0-00-00 121 5 ¢(S)60.00 2339.63 1100.0 1100 1100 1100 N/A 1.00 25.45 38 2170246 ¢AP80)31.18 ¢493500.00) 227 494000.00 0-00-00 122 §(8S)60.00 2329.44 1100.0 1100 1100 1100 WN/A 1.0 25.45 38 2186614 (AP80)31.18 ¢494500.00) 229 495100.00 0-00-00 123.5 (S)60.00 2319.26 1000.0 1050 1161 1109 N/A 0.94 24.26*41 2202982 CAP80):29.62 (¢495700.00) <<RULING SPAN =1280 >><<assumed ruling span =1279 with C(hot)=4671,C(cold)=8050,C(iced)=N/A C(Swg)=5200 >> 230 496100.00 85-00-00R 124 62.(D)46.50 2296.50 1100.0 1050 881 743 W/A 1.22 26.35 24 2232892 (DP65)'N/A (496500.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 8 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =0:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Min ac(Swg)(ft)OneSide Excl .Cond 231 497200.00 0-00-00 125°8S)73.50 2312.92 1300.0 1200 1398 1315 N/A 0.90 28.54 47 2250762 (AP95)28.68 (497800.00) 233 «498500.00 0-00-00 126 8(S)73.50 2300.42 1300.0 1300 1300 1300 N/A 4.00 28.54 47 2268632 (AP95)31.18 ¢499100.00) 235 499800.00 0-00-00 127 8 (S)73.50 2287.92 1300.0 1300 1300 1300 N/A 1.00 28.54 47 2286502 (AP95)31.18 ¢500400.00) 237 501100.00 0-00-00 128 8 (S)73.50 2275.42 1300.0 1300 1278 1262 N/A 1.02 27.01 44 2304372 CAP95)31.66 ¢501800.00) 239 502400.00 0-00-00 129.7 (¢S)69.00 2269.00 1300.0 1300 1245 1204 N/A 1.05 28.20 39 2321724 CAP90)32.43 (503000.00) 241 503700.00 0-00-00 130 9(S)78.00 2278.00 1250.0 1275 1447 1375 N/A 0.92 26.71 48 2340038 CAP100)29.10 ¢504400.00) 243 504950.00 0-00-00 131 5 ¢S)60.00 2260.00 1200.0 1225 1105 1019 N/A 1.12 28.16 34 2356406 (AP80)34.18 ¢505450.00) 245 506150.00 0-00-00 132 8(S)73.50 2273.50 1305.0 1253 1360 1315 N/A 0.95 26.73 44 2374276 (APIS)29.83 (506850.00) 248 507455.00 0-00-00 133.8(S)73.50 2270.83 1300.0 1303 1394 1355 N/A 0.96 28.54 48 2392146 CAP95 >30.07 ¢508055.00) 250 508755.00 0-00-00 134 8(S)73.50 2253.47 1300.0 1300 1300 1300 N/A 1.00 28.54 48 2410016 (AP95)31.18 ¢509355.00) 252 510055.00 0-00-00 135 78 (S)73.50 2236.12 1645.0 1473 1297 1170 N/A 1.15 28.94 35 2429257 CEP95)34.90 ¢510655.00) 256 511700.00 0-00-00 136 3 (S)51.00 2276.00 900.0 1273 903.636 N/A 1.48 25.92 59 2444643 CAP70)41.80 ¢512100.00) 260 512600.00 0-00-00 137 77 (S)69.00 2369.00 1300.0 1100 1876 1550 W/A 0.69 28.20 64 2463366 (EP90)22.57 ¢513200.00) 262 513900.00 0-00-00 138 29 (S)78.00 2378.00 1340.0 1320 1403 1368 N/A 0.96 27.69 43 2482467 (APT100)30.18 (¢514600.00) 265 515240.00 60-00-00L 139 58 ¢(S)73.50 2373.50 1300.0 1320 1304 1293 N/A 1.01 28.54 39 2510705 (CP95)77.75 ¢515840.00) 267 516540.00 0-00-00 140 8 (S)73.50 2373.50 1260.0 1280 1338 1313 N/A 0.97 26.54 44 2528575 CAP9S)30.46 (¢517240.00) 269 517800.00 0-00-00 141 6 (S)64.50 2364.50 1250.0 1255 1143 1062 N/A 1.11 26.89 37 2545425 (AP85)33.89 ¢518500.00) 271 +519050.00 0-00-00 142 6 (8S)64.50 2385.53 1240.0 1245 1181 1134 N/A 1.06 27.75 47 2562275 (AP85)32.70 ¢519650.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 9 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles Filename =D:\TDES\COPRVALY\ZONES.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac (Swg)(ft)OneSide Excl.Cond 272 520290.00 60-00-00R 143 58 (S)73.50 2423.50 1300.0 1270 1450 1374 N/A 0.92 28.54 52 2590513 (CP95)76.93 (520890.00) 273 +=521590.00 0-00-00 144 8(S)73.50 2434.32 1300.0 1300 1300 1300 N/A 1.0 28.54 46 2608383 CAP95)31.18 ¢522190.00) 274 522890.00 0-00-00 145 8(S)73.50 2445.13 1300.0 1300 1300 1300 N/A 1.00 28.54 46 2626253 CAP95)31.18 ¢523490.00) 275 524190.00 0-00-00 146 8 (S)73.50 2455.95 1300.0 1300 1300 1300 N/A 1.00 28.54 46 2644123 CAP95)31.18 ¢524790.00) 276 +§525490.00 0-00-00 147 78 (S)73.50 2466.76 1610.0 1455 1285 1162 N/A 1.15 30.40 36 2663364 CEP95)34.83 (526490.00) 279 527100.00 0-00-00 148 4&(S)55.50 2538.83 1000.0 1305 1386 1352 N/A 0.96 26.75 69 2679206 (AP75)30.19 ¢527400.00) 281 528100.00 0-00-00 149 8 (S)73.50 2573.50 1190.0 1095 1496 1328 N/A 0.81 26.20 50 2697076 (AP95 )26.08 ¢528800.00) 282 +529290.00 60-00-00L 150 54 (S)55.50 2555.50 1200.0 1195 1037 922 N/A 1.17 27.41 29 2722272 (CP75S)80.24 ¢529790.00) 283 530490.00 0-00-00 151 9 (¢S)78.00 2578.00 1260.0 1230 1467 1368 N/A 0.89 28.54 49 2740586 (aPi00):28.28 ¢531190.00) 285 531750.00 0-00-00 152 6 (S)64.50 2564.50 1410.0 1335 1075 886 N/A 1.28 26.63 36 2757636 CAP85)37.70 ¢532450.00) 288 533160.00 0-00-00 153.29 (S)78.00 2628.00 1180.0 1295 1470 1397 N/A 0.92 28.69 65 2776537 (APT100)29.10 ¢533860.00) 289 534340.00 60-00-00R 154 54 (8S)55.50 2655.50 1200.0 1190 1390 1306 N/A 0.90 27.41 43 2801733 (CP75)77.44 (534840.00) 290 535540.00 0-00-00 155 9 (S)78.00 2653.61 1360.0 1280 1453 1380 N/A 0.92 26.62 56 2820047 (AP100)29.09 (536240.00) 292 536900.00 90-00-00 156 28 (S)73.50 2622.22 1300.0 1330 1282 1247 N/A 1.04 28.54 45 2838704 CAPT9S)32.23 (537500.00) 294 538200.00 90-00-00 157 8(S)73.50 2605.55 1300.0 1300 1300 1300 N/A 1.0 28.54 48 2856574 CAP9S)31.18 ¢538800.00) 296 539500.00 0-00-00 158 8(S)73.50 2588.88 1300.0 1300 1320 1312 N/A 0.99 26.81 49 2876444 CAP95)30.93 (540200.00) 298 540800.00 0-00-00 159 7 (S)69.00 2569.00 1300.0 1300 1196 1121 N/A 1.10 28.20 39 2891796 (AP90)33.59 ¢541400.00) 300 542100.00 0-00-00 160 9 (S)78.00 2578.00 1240.0 1270 1339 1310 N/A 0.97 27.13 46 2910110 (AP100)30.31 ¢542900.00) (*)Values are in violation of design criteria or (&)Special clearance jis controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 10 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TOES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max Hin ac(Swg)(ft)OneSide Excl .Cond 302 543340.00 20-00-00L 161 53 (S)$1.00 2576.00 1100.0 1170 108 1025 N/A 1.09 27.07 33 2934622 (CP70)66.82 (543840.00) 303 544440.00 0-00-00 162 7 (S)69.00 2594.00 1260.0 1180 1236 1212 N/A 0.97 31.51 43 2951974 (AP90)30.42 ¢545040.00) 306 545700.00 0-00-00 163 9 (S)78.00 2605.92 1200.0 1230 1431 1347 N/A 0.90 27.41 47 2970288 (AP100)28.69 (546400.00) 308 546900.00 0-00-00 164 4(S)55.50 2587.32 1200.0 1200 1025 898 N/A 1.19 27.41 31 2986130 (AP75)35.85 (547400.00) 310 548100.00 0-00-00 165 9(S)78.00 2613.71 1200.0 1200 1502 1375 N/A 0.86 27.41 51 3004444 (aP100)27.50 (548800.00) 312 549300.00 0-00-00 166 4 (S)55.50 2595.11 1200.0 1200 1025 898 N/A 1.19 27.41 31 3020286 (AP75)35.85 ¢549800.00) 314 550500.00 0-00-00 167 9 (S)78.00 2621.51 1200.0 1200 1502 1375 N/A 0.86 27.41 51 3038600 CAP100)27.50 ¢551200.00) 316 551700.00 0-00-00 168 4(S)55.50 2602.90 1440.0 1320 1019 801 N/A 1.34 28.08 31 3054442 (AP75)39.05 ¢552200.00) 318 553140.00 10-00-00R 169 48 (S)73.50 2673.50 1300.0 1370 1655 1535 N/A 0.88 28.54 67 3074793 (BP95)48.16 (553740.00) 319 554440.00 0-00-00 170 8 (S)73.50 2691.26 1300.0 1300 1300 1300 WN/A 1.00 28.54 49 3092663 (AP95)31.18 ¢555040.00) 320 555740.00 0-00-00 171 8 (S)73.50 2709.02 1260.0 1280 1297 1290 N/A 0.99 29.81 49 3110533 (AP95)30.96 ¢556340.00) 322 557000.00 0-00-00 172 28 (S)73.50 2723.50 1500.0 1380 1337 1306 N/A 1.04 28.02 43 3129190 (APT95)32.08 ¢557700.00) 324 558500.00 0-00-00 173 6(S)64.50 2754.50 1200.0 1350 1359 1355 N/A 1.0 26.83 56 3146040 (AP85)31.07 ¢559000.00) 326 559700.00 0-00-00 174 9S)78.00 2778.00 1300.0 1250 1463 1374 N/A 0.90 28.20 49 3164354 (AP100)28.59 (560400.00) 327 561000.00 0-00-00 175 7(¢S)69.00 2769.00 1250.0 1275 1243 1219 N/A 1.03 27.25 39 3181706 (AP90)31.91 (561600.00) 329 562250.00 0-00-00 176 7(¢S)69.00 2769.00 1350.0 1300 1209 1143 N/A 1.08 27.85 39 3199058 (aP90)33.27 (563050.00) 331 563600.00 0-00-00 177 6(S)64.50 2795.27 1200.0 1275 1169 1092 N/A 1.10 28.21 51 3215908 CAP85)33.70 ¢564200.00) 332 564800.00 0-00-00 178 7 (S)69.00 2845.92 1300.0 1250 1223 1204 N/A 1.02 28.28 59 3233260 (AP90)31.79 (565500.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 11 TRANSMISSION LINE DESIGN REPORT Allowable span Lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WIE CLEARANCE X Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Exc!.Cond 335 566100.00 0-00-00 179 6(S)64.50 2908.25 1200.0 1250 1392 1332 N/A 0.93 28.26 64 3250110 (AP85)29.41 (566600.00)337 567300.00 0-00-00 180 8 (S)73.50 2944.65 1300.0 1250 1339 1302 N/A 0.96 28.54 54 3267980 CAP95)30.04 ¢568000.00)339 568600.00 0-00-00 181 8 (S)73.50 2969.65 1300.0 1300 1431 1376 N/A 0.96 26.47 51 3285850 (AP95)29.60 (569200.00) 341 569900.00 0-00-00 182 8(S)73.50 2973.50 1300.0 1300 1324 1314 N/A 0.99 28.54 43 3303720 CAP95)30.88 ¢570500.00) 344 571200.00 0-00-00 183 8(S)73.50 2973.50 1300.0 1300 1300 1300 N/A 1.00 28.54 42 3321590 CAP95 )31.18 ¢571800.00)346 572500.00 0-00-00 18 8(S)73.50 2973.50 1300.0 1300 1300 1300 WN/A 1.00 28.54 |42 3339460 CAP95)31.18 ¢573100.00) 348 573800.00 0-00-00 185 8(S)73.50 2973.50 1300.0 1300 1300 1300 N/A 1.00 28.54 42 3357330 CAP9S)31.18 (¢574400.00)350 575100.00 0-00-00 186 8(S)73.50 2973.50 1300.0 1300 1284 1272 N/A 1.01 30.62 42 3375200 CAP95)31.53 ¢575700.00) 353 576400.00 0-00-00 187 9(S)78.00 2978.00 1200.0 1250 1443 1362 N/A 0.91 26.18 50 3393514 (AP 100)28.82 (577100.00)356 577600.00 0-00-00 188 6 (S)64.50 2953.39 1100.0 1150 1479 1341 N/A 0.84 28.92 54 3410364 CAP85)27.06 (578200.00) 359 578700.00 0-00-00 189 6(S)64.50 2885.93 1000.0 1050 1562 1347 N/A 0.76 25.97 93 3427214 CAP8&5)24.71 (579000.00)363 579700.00 0-00-00 |1909 3S)51.00 2761.00 1200.0 1100 1101 1100 N/A 1.0 26.03 93 3442600 CAP70)31.17 (¢580400.00) 367 580900.00 0-00-00 191 3 °¢S)51.00 2611.00 1240.0 1220 7964 486 N/A 1.64 26.68 51 3457986 CAP70)44.69 (581400.00)370 582140.00 30-00-00L 192 57 (S)69.00 2569.00 1300.0 1270 1493 1399 N/A 0.90 28.20 68 3485447 (CP90)67.77 (582740.00)371 583440.00 0-00-00 193 79 (S)78.00 2488.96 1660.0 1480 1675 1593 N/A 0.92 26.89 76 3505132 (EP100)29.14 (584640.00)374 585100.00 0-00-00 1964 2 (S)46.50 2346.50 1000.0 1330 866 530 N/A 1.63 26.21 235 3520096CaP65)44.69 ¢585500.00)375 586100.00 0-00-00 195 5 (S)60.00 2360.00 1100.0 1050 1159 1113 N/A 0.94 27.89 37 3536464 (AP80)29.56 (586600.00) 377 587200.00 0-00-00 196 5 (S)60.00 2360.00 1100.0 1100 1100 1100 W/A 1.00 27.89 33 3552832 (AP80)31.18 ¢587700.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)11-29-1992 18:29:55 Page 12 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =24.50 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=100.00 Station spacing (for clearance checking)=100.00 Section Length:252440.00 (ft)47.81 (miles) Filename =D:\TDES\COPRVALY\ZONE3.TLC STATION LINE ANGLE -TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)=(ft)OneSide Excl .Cond 379 588300.00 0-00-00 197 5S)60.00 2360.00 1000.0 1050 1159 1113 N/A 0.9%26.21 37 3569200 (AP80)29.56 (588900.00) 382 589300.00 0-00-00 198 2(S)46.50 2346.50 840.0 920 1770 1413 N/A 0.63 27.66 7 3584164 (aP65)20.76 ¢589700.00) 383 590140.00 15-00-00R 199 52 (8S)46.50 2246.50 1100.0 970 456 84 N/A 2.44 27.98 33 3608043 (cP65)78.45 ¢590540.00) 384 591240.00 0-00-00 200 9 (S)78.00 2236.65 1300.0 1200 1486 1366 N/A 0.87 28.20 66 3626357 caP100)27.67 (591940.00) 386 592540.00 0-00-00 201 77 (S)69.00 2178.77 1600.0 1450 1138 912 N/A 1.32 26.97 35 3645080 (EP90)38.52 (593240.00) 389 594140.00 10-00-00R 196 84 (D)64.50 2214.50 0.0 800 980 904 N/A 0.87 0.00 58 3668496 (FP75)N/A ¢0.00) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. 53 Page 1 100.00 3000.00 0616 Conductor Number:1 maximum = 12-02-1992 REPORT Station spacing (for clearance checking)= PERCENT OF MAXIMUM ALLOWABLE WIND SPAN 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 +ANALYSIS 50.00 Parabola 5 10 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 990 95 100 0 minimum = 150.00 114800.00 (ft)21.74 (miles) \TDES\COPRVALY\ZONE4.TLC Conductor shape: STATISTICAL SPAN Std.Dev. (ft) 25.00 Station spacing (for interpolation)= Section Length: Filename=D WIND Average (ft) OF TOWERS NUMBERTOWER NAME Allowable span lengths: Basic clearance = TLCADD (C) COONMNATNQGDOCOCOOCGOOCOCOCOCOCoCOoeSaeooOoOrRmMescooeSdene DPPC OANDNWTTOOCOOCOCOCOCOCOCoCOoAOoCOoOooOOoOMNenoeeeSe- s an 1211222.1237. -= 10 - - Page 2353061612-02-1992TLCADD(C) REPORTANALYSISSTATISTICAL 3000.00maximum=50.00minimum=Allowable span lengths Conductor Number:1ParabolaConductorshape:25.00 Station spacing (for interpolation)= Basic clearance = Section Length 100.00Stationspacing(for clearance checking)=150.00 114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONE4.TLC PERCENT OF MAXIMUM ALLOWABLE WIND SPAN 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 SPANWIND Average NUMBERTOWER NAME 50 5 Std.Dev.OF TOWERS 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100(ft)(ft) ooooeocooocoooqgaqqoaoooeoesoseseaeeceseesessaSccceoscosoeococeoscoooOeOSeSC oC OOOSO OOOO SOOOOSOgeeocecececaqogoagogeoeeeoeeomogeoreewoesseesmaom gi =- =28B = eoo0oqc0c0o0c0eco0cceoocorococecorocoror oooooer0coeoo°oo f=]- BES DROSLKSSEFHRSSERSSSSCRSSER SLES OLS Qa2aagdadkddaqdaaaaa aa0a8a00808 0 aaaqaqaaaa aaaa Keke eNOANHNMBAOMMMOYVOIOVOVYHOYUOVAaaaaqaaaqaasaww TLCADD (C) ; 12-02-1992 16:06:53 Page 3 STATISTICAL ANALYSIS REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=150.00 Station spacing (for clearance checking)=100.00 Section Length:114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONE4.TLC TOWER NUMBER WIND SPAN PERCENT OF MAXIMUM ALLOWABLE WIND SPAN NAME OF Average Std.Dev.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100. TOWERS (ft)(ft)5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 EP65 0 0.0 0.0 eee EP70 0 0.0 0.0 ee eel ll lt EP75 0 0.0 0.0 ee eel lt EP80 0 0.0 0.0 ...e .°.*.e .°e ........ EP85 0 0.0 0.0 ...............e .e ... EP90 0 0.0 0.0 ee elt EP95 0 0.0 0.0 ee ee lll EP100 1 1454.1 0.0 a FP55 0 0.0 0.0 a FP60 0 0.0 0.0 ee ee lt FP65 0 0.0 0.0 ee ee ll FP70 0 0.0 0.0 ee ee ll FP75 0 0.0 0.0 ee ee ll FP80 0 0.0 0.0 ...e °.............*.. FP85 0 0.0 0.0 ....°e ..e ....e ....*e . FP90 1)0.0 0.0 ee ee ln FP95 0 0.0 0.0 a FP100 0 0.0 0.0 ee FAKE 2 650.0 35.4 a TLCADD (C)12-02-1992 16:06:05 Page 1 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimun =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=150.00 Station spacing (for clearance checking)=100.00 Section Length:114800.00 (ft)21.74 (miles) Filename =0:\TOES\COPRVALY\ZONE4.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond <<RULING SPAN =1273 >><<assumed ruling span =1272 with C(hot)=4660,C(cold)=8055,C(iced)=N/A C(Swg)=5193 >> 0 594140.00 5-00-00R 1 90 (D)87.00 2237.00 1350.0 675 809 753 N/A 0.89 26.46 20 200000 (FAKE)N/A 594940.00) 1 595490.00 0-00-00 2 6(S)64.50 2214.50 1050.0 1200 1182 1169 N/A 1.02 27.82 39 216850 (AP85)31.60 ¢596090.00) 2 596540.00 0-00-00 3.3¢S)51.00 2201.00 1050.0 1050 950 877 N/A 1.12 25.78 28 232236 (AP70)34.09 (597040.00) 4 597590.00 0-00-00 4 5 ¢S)60.00 2210.00 1050.0 1050 1188 1130 N/A 0.92 25 .89 36 248604 (AP80)29.15 (¢598190.00) 6 598640.00 0-00-00 5 3S)51.00 2201.00 1158.0 11046 955 847 W/A 1.18 27.36 28 263990 (AP70)35.45 (599140.00) 9 599798.00 0-00-00 6 9 (8S)78.00 2228.00 1342.0 1250 1465 1374 N/A 0.90 27.43 50 282304 (AP100)28.58 ¢600498.00) 11 601140.00 50-00-00R 7 58 (S)73.50 2223.50 1350.0 1346 1382 1367 N/A 0.98 27.01 44 310542 (CP95)75.26 (601840.00) 12 602490.00 0-00-00 8 29 (S)78.00 2212.87 1350.0 1350 1377 1366 N/A 0.99 29.18 47 329643 (APT100)30.86 (603190.00) 13 603840.00 0-00-00 9 29 (8S)78.00 2197.73 1350.0 1350 1377 1366 N/A 0.99 26.85 48 348744 CAPT100)30.86 (604540.00) 14 605190.00 0-00-00 10 8 (S)73.50 2178.10 1150.0 1250 1484 1385 N/A 0.89 27.53 59 366614 (APIS)28.37 (605690.00) 16 606340.00 10-00-00L 11 49 (8S)78.00 2128.00 1200.0 1175 1102 1049 N/A 1.07 27.32 50 387409 (8P100)55.91 (¢607040.00) 17 607540.00 0-00-00 12 4 ¢S)55.50 2094.51 1050.0 1125 1038 974 N/A 1.09 25.99 35 403251 (AP75)33.52 ¢608040.00) 19 608590.00 0-00-00 13 &(S)55.50 2084.90 1050.0 1050 1050 1050 N/A 1.00 25.99 35 419093 (APTS)31.18 ¢609090.00) 21 609640.00 0-00-00 14 &(S)55.50 2075.28 1050.0 1050 1050 1050 W/A 1.0 25.99 35 434935 (AP75)31.18 ¢610140.00) 23 610690.00 0-00-00 15 4 (8S)55.50 2065.66 1110.0 1080 1042 1015 N/A 1.04 26.83 33 450777 (AP75)32.20 ¢611190.00) 24 611800.00 20-00-00L 16 56 (S)64.50 2064.50 1505.0 1308 1510 1425 N/A 0.91 27.72 56 477485 (cP85)61.00 ¢612800.00)27 613305.00 0-00-00 17 &(CS)55.50 2025.07 1166.0 1336 1020 790 N/A 1.36 27.49 37 493327 (AP75)39.40 (613805.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the criticat clearance. (#)Protected towers TLCADD (C) Allowable span lengths: 25.00 Station spacing (for interpolation)= 114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONE4.TLC Basic clearance = Section Length: TRANSMISSION L minimum = Conductor shape: 150.00 50.00 Parabola DESIGN 12-02-1992 REPORT 16 maximum = Station spacing (for clearance checking)= 2:06:05 Page 2 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X Max LINE COST Wo.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond 29 614471.00 0-00-00 18 8(S)73.50 2073.50 1350.0 1258 1507 1402 N/A 0.89 27.01 59 511197 (AP95 )28.22 ¢615171.00) 31 615821.00 0-00-00 19 29 (8)78.00 2087.78 1350.0 1350 1404 1381 N/A 0.97 26.85 46 530298 (APT100)30.54 (616521.00) 33 617171.00 0-00-00 20 28 (S)73.50 2093.06 1350.0 1350 1319 1296 N/A 1.03 27.01 42 548955 (APT95)31.84 (617871.00) 35 618521.00 0-00-00 21 29 (6S)78.00 2107.34 1350.0 1350 1404 1381 WN/A 0.97 26.85 46 568056 CAPT100)30.54 (619221.00) 37 619871.00 0-00-00 22 8S)73.50 2112.62 1200.0 1275 1278 1277 W/A 1.0 32.62 45 585926 CAP95)31.13 ¢620471.00) 39 621071.00 0-00-00 23.7 ¢S)69.00 2116.82 1351.0 1276 1187 1123 N/A 1.08 26.35 39 603278 ¢(AP90)33.25 (621771.00) 42 622422.00 0-00-00 24 29 (8S)78.00 2147.09 1350.0 1351 1411 1386 N/A 0.97 26.85 52 622379 (APT 100)30.46 (623122.00) 44 623772.00 0-00-00 25 8 (8S)73.50 2167.14 1250.0 1300 1379 1345 N/A 0.96 28.35 51 640249 (AP95)30.22 (624372.00) 47 625022.00 0-00-00 26 8 (8S)73.50 2173.50 1350.0 1300 1314 1308 N/A 0.99 27.01 43 658119 (AP95);31.00 (625722.00) 49 626372.00 0-00-00 27 #9 CS)78.00 2178.00 1200.0 1275 1453 1378 N/A 0.92 27.32 49 676433 (AP 100)29.04 (¢627072.00) 51 627572.00 0-00-00 28 4(S)55.50 2155.50 1200.0 1200 1025 898 N/A 1.19 27.32 30 692275 (AP75)35.84 (628072.00) 53 628772.00 0-00-00 2 9 (CS)78.00 2178.00 1350.0 1275 1426 1362 N/A 0.93 29.18 49 710589 (AP 100)29.34 (629472.00) 55 630122.00 0-00-00 30 29 (S)78.00 2178.00 1350.0 1350 1377 1366 N/A 0.99 26.85 43 729690 (APT100)30.86 (630822.00) 57 631472.00 0-00-00 31 28 (S)973.50 2173.50 1350.0 1350 1319 1296 N/A 1.03 27.01 40 748347 (APT95)31.84 (632172.00) 59 632822.00 0-00-00 32 29 ¢S)78.00 2178.00 1350.0 1350 1404 1381 WN/A 0.97 26.85 43 767448 (APT100),30.54 (633522.00) 61 634172.00 0-00-00 33°8 (S)73.50 2173.50 1226.0 1288 1428 1369 N/A 0.93 26.18 50 785318 (AP95)29.49 (634872.00) 64 635398.00 0-00-00 34 (S)60.00 2148.09 1200.0 1213 1110 1035 N/A 1.10 28.07 36 801686 (AP80)33.75 (635898.00) 66 636598.00 0-00-00 35 8 (S)73.50 2149.68 1350.0 1275 1339 1312 N/A 0.97 27.01 47 819556 (AP95).30.38 ¢(637298.00) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C) Allowable span lengths: 25.00 Station spacing (for interpolation)=114800.00 (ft)21.74 (miles) Basic clearance = Section Length: TRANSMISSION L Filename =D:\TDES\COPRVALY\ZONE4.TLC minimum = Conductor shape: 150.00 50.00 INE Parabola DESIGN 12-02-1992 16 REPORT maximum = Station spacing (for clearance checking)= 2:06:05 Page 3 3000.00 Conductor Number:1 100.00 STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se Wo.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl.Cond 68 637948.00 0-00-00 36 29 (S)78.00 2140.78 1288.0 1319 1430 1383 N/A 0.95 26.50 49 838657 CAPT100)29.85 (638648.00) 70 639236.00 0-00-00 37 6 (8S)64.50 2114.50 1200.0 1244 1222.1206 N/A 1.02 28.12 45 855507 CAP85 )31.69 (639836.00) 72 640436.00 0-00-00 38 7(¢S)69.00 2095.73 1200.0 1200 1260 1235 N/A 0.97 28.12 49 872859 (aP90)30.37 ¢641036.00) 74 641636.00 0-00-00 39 6(S)64.50 2067.95 1228.0 1214 1172 1141 N/A 1.04 28.25 45 889709 (AP85)32.18 (642236.00) 77 642864.00 0-00-00 40 8(¢S)73.50 2050.58 1200.0 1214 1366 1302 N/A 0.93 28.07 55 907579 (APIS)29.246 (643564.00) 79 644064.00 0-00-00 41 5 (S)60.00 2010.89 1558.1 1379 1345 1320 N/A 1.03 26.87 59 923947 CAP80)31.89 (644964.00) 83 645622.10 0-00-00 42 79 ¢S)78.00 1970.77 1350.0 1454 1382 1329 N/A 1.06 26.85 38 943632 (EP100)32.64 (646322.10) 85 646972.10 0-00-00 43 28 (S)73.50 1956.97 1350.0 1350 1319 1296 N/A 1.03 27.01 42 962289 CAPTIS)31.84 (647672.10) 87 648322.10 0-00-00 44 29 (6S)78.00 1952.17 1350.0 1350 1404 1381 N/A 0.97 26.85 46 981390 (APT100)30.54 (¢649022.10): 89 649672.10 0-00-00 45 28 (S)73.50 1938.37 1350.0 1350 1319 1296 N/A 1.03 27.01 42 1000047 CAPT95)31.84 (650372.10) 91 651022.10 0-00-00 46 29 (6S)78.00 1933.57 1259.1 1305 1441 1384 N/A 0.94 26.46 49 1019148 (APT100)29.54 (651722.10) 9%652281.20 0-00-00 47 8(S)73.50 1907.72 1276.1 1268 1423 1357 N/A 0.93 26.92 61 1037018 (AP95)29.29 (652981.20) 97 653557.30 0-00-00 48 5 (S)60.00 1856.95 1200.0 1238 1048 909 N/A 1.21 28.07 36 1053386 (AP80)36.14 (654057.30) 9 654757.30 0-00-00 49 8(S)73.50 1858.25 1350.0 1275 1339 1312 N/A 0.97 27.01 47 1071256 (AP95)30.38 (655457.30) 101 656107.30 0-00-00 50 29 (S)78.00 1849.03 1350.0 1350 1404 1381 N/A 0.97 26.85 48 1090357 (APT100)30.54 (656807.30) 103 657457.30 0-00-00 51 28 (S)73.50 1830.81 1319.1 1335 1299 1273 N/A 1.03 29.76 43 1109014 (APT95)31.94 (¢658057.30) 106 658776.40 0-00-00 52 29 (S)78.00 1823.02 1350.0 1335 1381 1361 N/A 0.98 26.85 47 1128115 (APT100)30.62 (659476.40) 108 660126.40 0-00-00 53 28 (S)73.50 1807.32 1350.0 1350 1319 1296 N/A 1.03 27.01 43 1146772 CAPT9S)31.84 (660826.40) (*)Values are in violation of design criteria or (&)Special clearance is controlling the critical tower specifications. clearance. (#)Protected towers TLCADD (C)12-02-1992 16:06:05 Page4 TRANSMISSION LINE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=150.00 Station spacing (for clearance checking)=100.00 Section Length:114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONE4.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min @C(Swg)(ft)OneSide Excl .Cond 110 661476.40 0-00-00 54 29 (S)78.00 1800.62 1350.0 1350 1404 1381 N/A 0.97 26.85 47 1165873 (APT100)30.54 (662176.40) 112 662826.40 0-00-00 55 8(S)73.50 1784.92 1200.0 1275 1339 1312 N/A 0.97 28.07 48 1183743(AP95)30.38 ¢663526.40) 113 664026.40 0-00-00 56 5 (8S)60.00 1761.47 1227.1 1214 1114 1042 N/A 1.10 26.13 36 1200111(AP80)33.66 €664626.40) 116 665253.50 0-00-00 57 8S)73.50 1763.63 1350.0 1289 1352 1325 N/A 0.97 27.01 46 1217981(AP95)30.40 (665953.50) 118 666603.50 0-00-00 58 29 (S)78.00 1755.45 1350.0 1350 1404 1381 N/A 0.97 26.85 47 1237082 (APT100)30.54 (667303.50) 119 667953.50 0-00-00 59 8(S)73.50 1738.26 1200.0 1275 1309 1296 N/A 0.98 30.37 47 1254952 (AP95)30.75 (668553.50) 120 669153.50 0-00-00 60 6(S)64.50 1717.99 1271.1 1236 1170 1123 N/A 1.06 26.53 41 1271802 (AP85)32.74 (669753.50) 123 670424.60 0-00-00 61 9¢S)78.00 1714.32 1200.0 1236 1486 1380 N/A 0.88 27.32 57 1290116 (AP 100)28.16 €671124.60) 125 671624.60 0-00-00 62 4 (¢S)55.50 1673.59:1190.1 1195 1037 922 N/A 1.17 26.06 35 1305958 (AP75)35.36 (672124.60) 127 672814.70 0-00-00 63 8(S)73.50 1673.50 1350.0 1270 1348 1315 N/A 0.96 27.01 48 1323828 (AP95)30.20 (673514.70) 129 674164.70 0-00-00 6 9 (CS)78.00 1660.33 1200.0 1275 1453 1378 N/A 0.92 27.32 56 1342142 (AP100)29.04 (674864.70) 131 675364.70 0-00-00 65 4(S)55.50 1622.12 1200.0 1200 1025 898 W/A 1.19 27.32 34 1357984(AP75)35.84 (675864.70) 133 676564.70 0-00-00 66 9 (S)78.00 1628.92 1270.1 1235 1466 1369 N/A 0.89 27.76 53 1376298 (AP100)28.37 (677264.70) 136 677834.80 0-00-00 67 6(S)64.50 1599.70 1200.0 1235 1150 1089 N/A 1.08 30.37 39 1393148 (AP85)33.23 (678434.80) 138 679034.80 0-00-00 68 8 (S)73.50 1593.91 1350.0 1275 1309 1294 N/A 0.98 27.01 48 1411018 (AP95)30.75 (¢679734.80) 140 680384.80 0-00-00 69 9(¢S)78.00 1581.76 1205.1 1278 1467 1387 N/A 0.91 26.73 56 1429332 (AP100)28.91 ¢681084.80) 143 681589.90 0-00-00 70 #4 (8)55.50 1542.57 1200.0 1203 1031 905 N/A 1.19 27.32 34 1445174(AP75)35.75 (682089.90) 145 682789.90 0-00-00 71.#9 ¢S)78.00 1547.82 1350.0 1275 1453 1378 W/A 0.92 26.85 53 1463488 (AP100)29.04 (683489.90) (*)Values are in violation of design criteria or tower specifications.(#)Protected towers (&)Special clearance is controlling the critical clearance. TLCADD (C)12-02-1992 16:06:05 Page 5 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=150.00 Station spacing (for clearance checking)=100.00 Section Length:114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONE4.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE %Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded [Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min (ft)OneSide Excl .Cond 147 684139.90 0-00-00 72 8 ¢S)73.50 1523.92 1229.2 1290 1260 1238 W/A 26.25 45 1481358 CAP95)684839 .90) 150 685369.10 0-00-00 73 5 (8S)60.00 1510.00 1200.0 1215 1109 1033 N/A 28.07 34 1497726 (AP80)685869.10) 152 686569.10 0-00-00 7%8S)73.50 1523.50 1350.0 1275 1339 1312 N/A 27.01 44 1515596 (AP95)687269.10) 154 687919.10 0-00-00 7%9 ¢S)78.00 1528.00 1200.0 1275 1453 1378 N/A 27.32 49 1533910 (AP 100)29.04 ¢688619.10)156 689119.10 0-00-00 7 4&(8S)55.50 1505.50 1200.0 1200 1025 898 N/A 1.19 27.32 30 1549752 (AP75)35.84 (689619.10)158 690319.10 0-00-00 7”9S)78.00 1528.00 1350.0 1275 1453 1378 WN/A 0.92 26.85 49 1568066 (AP 100)29.04 ¢691019.10)160 691669.10 0-00-00 78 8 (S)73.50 1523.50 1200.0 1275 1339 1312 N/A 0.97 28.07 44 1585936 (AP95)30.38 (692369.10)162 692869.10 0-00-00 79 #5 (S)60.00 1510.00 1154.0 1177 1106 1055 N/A 1.07 26.67 34 1602304 (AP80)32.96 €693469.10)164 694023.11 0-00-00 80 6(S)64.50 1514.50 1262.0 1208 1193 1182 N/A 1.01 26.16 37 1619154 (AP85)31.53 €694623.11)165 695285.12 0-00-00 81 28 ¢(S)73.50 1523.50 1350.0 1306 1337 1324 N/A 0.99 27.01 41 1637811 (APT95)30.80 ¢695985.12) 166 696635.12 0-00-00 82 9S)78.00 1528.00 1204.9 1277 1455 1380 N/A 0.92 27.01 49 1656125 (AP100)29.05 ¢697335.12)169 697840.00 90-00-00R 83 64 (S)55.50 1505.50 1200.0 1202 1028 901 N/A 1.19 27.32 26 1687352 (DP75)82.88 (698340.00) 170 699040.00 0-00-00 &9(S)78.00 1528.00 1200.0 1200 1502 1375 N/A 0.86 27.32 49 1705666 (AP100)27.50 ¢699740.00)171 700240.00 0-00-00 8 4(S)55.50 1505.50 1200.0 1200 1025 898 N/A 1.19 27.32 30 1721508 (APTS)35.84 (700740.00)173 701440.00 0-00-00 8 9(S)78.00 1528.00 1350.0 1275 1453 1378 N/A 0.92 26.85 49 1739822 (AP100)29.04 ¢702140.00)175 702790.00 0-00-00 87 8(S)73.50 1523.50 1150.0 1250 1349 1307 W/A 0.95 28.70 45 1757692 (AP95)29.93 ¢703390.00) 176 703940.00 20-00-00L 88 54 (¢S)55.50 1505.50 1200.0 1175 1061 978 N/A 1.12 27.32 31 1782888 (CP75)67.37 ¢€704440.00) 177 705140.00 0-00-00 89 9(S)78.00 1516.00 1350.0 1275 1426 1362 W/A 0.93 29.18 49 1801202 (AP 100)29.34 ¢705840.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers waTLCADD (C)12-02-1992 16:06:05 Page 6 TRANSMISSION LIWE DESIGN REPORT Allowable span lengths:minimum =50.00 maximum =3000.00 Basic clearance =25.00 Conductor shape:Parabola Conductor Number:1 Station spacing (for interpolation)=150.00 Station spacing (for clearance checking)=100.00 Section Length:114800.00 (ft)21.74 (miles) Filename =D:\TDES\COPRVALY\ZONES.TLC STATION LINE ANGLE TOWER POINT OF SUPPORT SPAN WIND WEIGHT SPAN (ft)WO/WT CLEARANCE X Max LINE COST No.Location Deg Mn Se No.Typ/Insl Height Elev AHEAD SPAN Unloaded Iced SWING (LOCATION)WtSpan (cumul.) (ft)(Name)(ft)(ft)(ft)(ft)Max =Min ac(Swg)(ft)OneSide Excl .Cond 178 706490.00 0-00-00 90 9 (S)78.00 1502.50 1200.0 1275 1426 1362 N/A 0.93 27.32 54 1819516 (AP 100)29.34 ¢707190.00) 179 707690.00 0-00-00 91 &(S)55.50 1468.00 1250.0 1225 1037 900 N/A 1.21 26.06 34 1835358(AP75)36.13 ¢708190.00) 180 708940.00 0-00-00 92 90 (D)82.50 1482.50 0.0 625 718 679 W/A 0.91 0.00 18 2035358 (FAKE)W/A ¢0.00) (*)Values are in violation of design criteria or tower specifications. (&)Special clearance is controlling the critical clearance. (#)Protected towers 1100 1000 900 IEA S LZ.ONoO . <|AN J<:ZL Nea iN_wi PS roo /\ 600 ASE500NNAee 400 STATION 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 CONST.NO.1 2 3 4 5 6 7 8 9 10 "1 12 13LINEANGLE0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 90-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0TOWERNAME__F65 Ags ays Aas A65 A70 065 A85 A65 A80 A100 Ag0 Ags HEIGHT 55.50 64.50 46.50 51.00 46.50 64.50 46.50 60.00 78.00 69.00 64.50C.L.HUB EL 475.00 thu dsbs 3°O89:25888 3992 574.10 692.40 747.02 800.00 858.76 889.76 800.00 800.00 777.87 724.75STATIONLOC.0.00 cal 0.36 3490.36 4924.23 5781.83 6683.27 7683.27 8485.02 9761.23 11000.00 12144.41 1334441 P.S.ELEV 530.50 idea 8 638.60 738.90 798.02 846.50 923.26 936.26 860.00 878.t 1 G4687 789.25SPANAHFAD1264.13 i 110 ial 4433 87 857 60 901.44 1000 60 BOL75 1276 21 1238 77 1144 ee cia on 1440 95 1400 1300 1200 ELEVATION1100 Np900yt w fy oo \\700 STATION 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 CONST.NO.13 14 15 16 17 18 19 20 21 "22 23 24 25LINEANGLE0-0-0 0-0-0 0-0-0 0-0-0 30-0-0L0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0TOWERNAMEA85A70A75A70C100_-A90 A100 A75 A75 A75 A70 A100 A90 HEIGHT 64.50 5100 55.50 51.00 78.00 _65.00 78.00 55.50 55.50 55.50 5T.00 7300 69.00C.L.HUB EL 724,74 Thu Dec 0209351:06 Fetaa 818.64 850.00 900,00 900.00 900.00 900.00 922.98 1000.00 10)0.00 1000.00STATIONLOC.13344 HF Vertical {85,580 15785.35 16696.82 17875.0018647.13 19947.13 2114713 22171.46 23381.75 24386.97 25650.69 26850.69P.S.ELEV 789.2 Horizont 192 "5 842.38 869.64 928.00 969.00 978.00 955.50 955.50 978.48 09 oy 471078.00 1069.00SPANAHEAD144095po001471178.18 772.13 1300 ON 1200 00 1024 34 1210 29 1005 22 Peete of 1 1300 00 1181 54 1400 1300 1200 zo 4 BSdd 100 ,7,IP 1000 |----l 900 800 700 STATION 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000 38000 39000 CONST.NO.25 26 27 28 29 30 31 32 33 34 35 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 30-0-0R 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0TOWERNAMEA90AsOA80A100C75A100AQ5AQ5A95A100E60 HEIGHT B9.00 60.00 60.00 78.00 55.50 78.00 73.50 73.50 73.50 78.00 42.00 C.L.HUB EL bo.Bec 95 ABGb:6d 19921000.00 1000.00 1000.00 1026.12 1048.06 1035.49 1022.87 1010.29 1000.00STATIONLOC.pbS46 69.805%,4 29162.47 30400.00 31599.16 32799.16 34095.82 35395.82 36700.00 38000.09 39063.01P.S,ELEV 069,00;-ontal ofo.f og'1060.00 1078.00 1055.50 1104.12 1121.56 1108.99 1096.37 cheet 3199839 1042.00SPANAHFAD1811430231237531199.16 1200.00 1296.65 1300 00 1304 18 1300 an>eet eS a 174917 1400 1300 1200 =° F <xiyi 1400 1000 pee BS y 900 X op || B00 \N JW ee 700 TATION 39000 40000 41000 42000 43000 44000 45000 46000 47000 48000 49000 $0000 51000 52000 CONST.NO.35 36 37 38 39 40 4 42 43 44 45 46 LINE ANGLE 0-0-0 0-0-0 30-0-OL 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME E60 A90__-=CBS A80 A95 A80 A95 ABO A95 A95 A85 A80 HEIGHT 42.00 69.00.46.50 60.00 73.50 60.00 73.50 60.00 73.50 73.50 64.50 60.00 CL.HUB EL 1000.00 |Thu Dec 07 9341:050%%=770.70 795.55 898.92 949.66 1000.00 1000.00 1000.00 972.74 950.00STATIONLOC.39063.01 $e OVer tical #08"2,1841 596-52 42556.52 43756.52 45071.61 46 283.63 47500.00 48700.00 50000.00 5123115 52448.03 PS.ELEV 1042.00 Horizont oe 2 96,00 830.70 869.05 958.92 1023.16 1060.00 1073.50 1073.50 4 0997-43 1010.00 SPAN AHF AD 1749 17.4.55 4 00.4200 00 1315 08 1212.02 1216.37 1200.00 1300.00 1231 iow 1100.00 1600 1500 1400 z oO i- < >a 1300 1200 7, 1100 Be 1000 wa 900 STATION 53000 59000 62000 63000 64000 CONST.NO.47 52 54 55 56 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME ABO A75 A75 A100 A75 HEIGHT 55.50 5550 78.00 55.50 C.L.HUB EL v3 Dea SHRP:St:ro3t .1016.66 1100.00 1114.95 1144.86 STATION LOC.eae:tiepoe S §8300.00 59512.70 61513.98 62823.60 64023.6 P.S.ELEV OO 1072.16 1155.50 1192.9 1 6 SPAN AHFAD 00 Her er"1000 00 1309 62 1200 agreet 5 bad ba 1800 1700 1600 z° - < i 1500 . vA 1300 A=1200 Ih 1100 STATION 65000 66000 67000 68000 69000 70000 71000 72000 73000 74000 75000 76000 77000 78000 CONST.NO.57 58 59 60 61 62 63 64 65 66 67 68 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 35-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME A100 A75 A70 A80 C80 A100 A70 Ag90 A90 A85 A70 A90 HEIGHT 78.00 55.50 51.00 60.00 60.00 78.00 57.00 65.00 69.00 64.50 51.00 65.00 C.L.HUB EL 1174.76 Thu Deg 294 8B:51:4g99%==1333.72 1375.00 1407.89 1500.00 1471.39 1465.00 1495.00 1465.00 1433.93 STATION LOC.65223.4OCU:6653.25 .67536.25 68544.26 69646.03 70910.84 §72077.79 =73177.79 74600.00 _75800.00 76700.00 |77900.00P.S.ELEV 1252.74 Horit@kBPl1"=33 1393.72 1435.00 1485.89 1551.00 1540.39 1534.00 1559.5Qn ed 516.00 17 1502.93SPANAHFAD1312.6 00.1 Ot 1101 77 1264 Rt 1166 95 1100.00 1422?21 1200.00 900.00 0 00 1300.00 1900 1800 1700 | / / zco) Fe 4 >Fi 1600 1500 LI 7 me --wae /y 1300 \Ws 1200 STATION 77000 78000 79000 80000 81000 82000 83000 84000 85000 86000 87000 88000 89000 90000 CONST.NO.68 69 70 71 72 73 74736 «77 78 79 80 81 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 600@6@00-0-0 0-0-0 0-0-0 0-0-0-0-0 TOWER NAME A90 A90 AQ5 AQ5 A65 A70 010885 A70 A65 A75 A80_A65 HEIGHT 69.00 69.00 73.50 73.50 46.50 51.00 785RI500 57.00 46.50 55.50 60.00 48.50 C.L.HUB EL {HG Ber 03 091910854992 1422.22 1410.15 1400.00 1321.25 120033067900.00 1400.00 1444.38 1700.008D0.00 STATION LOC.09,17 79200 00 80473.70 81773.70 82867.45 83767.45 8488808300511.63 86511.63 87745.42 8905 63.20 P.S.ELEV 1502.93 ;onta 14 13-99 1495.72 1483.65 1446.50 1372.25 127859382951.00 1446.50 1499.88 choot 7136998 6.50SPANAHFAND130)273 1300 00 1093.76 900.00 1032 55 20 RENO.300 00 123380 1308 44 ee 9.546B6 80 2800 1900 1800 Java 1 \ 1700 2400 1700 1600 2300 1400 Zz \° - < > a \i 1500 2200 1500 a 1400 2100 140d INS RK / 1300 2000 KN 1304 N /) 1200 1900 a \1200 g WA 1100 [ral 1100}STATION \/ 89000 90000 91000 92000 93000 94000 95000 96000 97000 98000 99000 100000 =101000 =102000 CONST.NO.80 81 82 83 84 85 86 87 88 89 90 91 92 93 LINE ANGLE 0-0-0-0-0 60-0-99R)-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME _A80 AGS css Ag0 A70 A70___A70 A65 Ag5 A80 A70 A80 A65 A65 HEIGHT 60.00 46.5 7.5069 00 57.00 51.00___51.00 46.50 73.50 60.00 51.00 60.00 |46-50 46 50C.t.HUB EL 1700.00 18 Dec 03 09:-20thow N61 1909.14 1822.72 1700.00 1456.35 1400.00 1381.06 =1285.58 1200.04 1319.35 1400.00STATIONLOC. 8905389H6F 2G;ee amo.00 92800.00 93660.984389.24 95990.43 97265.08 98313.59 99269.60 101124.18 102015.92102849.77 P.S.ELEV 1760.0845.SOverizontol 0.61 1960.14 1873.72 175t.00 1502.85 1473.50 1441.06 1336.58 64.00 1365.85 1446.50SPANAHFAD509.346 0.00 860.98 728 26 160119 1274 f4 1048 51 956.02 1854 57 Sheet 8 bee B33 RS 1187.30 2000 7 1900 fy seoa ;VMHK_LY ;=MYfo} i= <Gy a Ndd17007; 1600 Vy, 1500 A 1400 a /| 1300 BTA TION 102000 103000 104000 105000 106000 107000 108000 109000 110000 111000 112000 113000 114000 115000 CONST.NO.92 93 94 95 96 97 98 99 100 101 102 103 104 105 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 45-0-O0L 0-0-0 0-0-0 0-0-0 TOWER NAME A65 A65 A85 A70 A55 A85 A75 A70 A75 A70 C100 A80 A75 A70 HEIGHT 46.50 F6.50 64.50 5T.00 37.50 64.50 55.50 57.00 55.50 5.00 78.00 60.00 55.5 5T.00 C.L.HUB EL 1319.35 be ps<O35 0%34:88 1992151236 1700.00 1700.00 1716.68 1758.38 1800.00 1800.00 1750.00 1883.88 1913196 1960.49STATIONLOC. 102015.92 cant 040 6 105148.40 106316.8807057.00 108303.88 109303.88 110302.12 11130212 112338.44 113434.27 114340.59 115340.59P.S.ELEV 1365.85 col nag?po'1563.36 1737.50 1764.50 1772.18 1809.38 1855.50 1851.00 1828.00 .9146 =.2011.49SPANAHFAD83385413411684874012.1246 88 1000.00 998 24 1000 00 103632 1095 83 ape SP of #68 O00 1616 99 2600 2500 so min LAE) e ad 2300 2200 7 2100 2000 Se 1900 STATION 115000 116000 117000 118000 119000 120000 121000 122000 123000 124000 125000 126000 127000 128000 CONST.NO.105 106 107 108 109 110 111 12 13 14 15 116 17 118 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-045-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 35-0-OL 0-0-0 0-0-0 0-0-0 TOWER NAME A70 AGO A70 A65 A60 C100 A75 A70 A70 A70 C75 A95 A80 A60 HEIGHT 51.00 57.00 46.50 42.00 78.00 55.50 5T.00 57.00 BT.00 55.50 73.50 60.00 42.00 C.L.HUB EL 1960.49 ole:Dec 03 DAS Io8 3892 12 2394.20 2400.08300.00 2317.58 234413 2363.79 2382.31 2418.61 2391.48 2340.89 2350.70 STATION LOC.115340 Vertical YO9SE5817710.7818463.8119216138793.12 -120993.12 121999.22 122968.16 123923.66 125000.00 126064.03 ii 128712.83 P.S.ELEV 2011.49 sorizonta 298.2 8.12 2440.70 2442.00378.00 2373.08 2395.13 2414.79 2433.34 2474.11 2468.99 10 of 240.69 2392.70 SPAN AHEAD 1616.99 5 302 752.52 576791200 00 1006.11 968 94 955.50 1076_34 1064.03 °ithe 19 887 17 3000 2900 2800 Zz°o = <> id 2700 2600 9500 AN J]UN ANNE| 2400 7 2300 BTATION 128000 129000 130000 131000 132000 133000 134000 =:135000 136000 137000 138000 139000 140000 =141000 CONST.NO.118 119 120 121 122 123 124 125 126 127 128 129 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 80-0-O0R 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME A60 A65 A95 AQ95 A95 A85 A100 070 AQ5 A75 A8S AT5 HEIGHT 4500 46.50.73.50 73.50 75.50 64.50 78.00 51.00 73.50 55.50 645 55.50 C.L.HUB EL 25417 Gec24S1091 51:2026s%51 2480.22 2495.94 2500.00 2500.00 2500.00 2500.00 2500.00 2509.00 2500.00 STATION LOC.14 33.1296 00.00,,-130700.00 132000.00 133300.00 =134535.70 =135808.33 136963.10 138103.32 139288.02 140388.02 141488.02P.S.ELEV 292.ri one71"8.01 2553.72 2569.44 2564.50 2578.00 2551.00 2573.50 564.50 2555.50SPANAHFADB7400.0 00 1300 00 1235.70 1272?63 1154 77 1140.22 1184.70 Pee oft 10.fete!1518 26 3100 3000 2900 ELEVATION2800 2700 |VAR SW N,va KYO /- Nadie26007QI7>\ 2500 IN N 2400 BTATION 141000 142000 143000 144000 145000 146000 147000 148000 149000 150000 151000 152000 153000 154000 CONST.NO.129 130 131 132 133 134 135 136 137 138 139 140 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-6 TOWER NAME A75 A75 A65 A70 A90 AB5 A75 AsO ASS A65 A65 A60 HEIGHT 55.5 55.50 46.50 51.00 69.00 64.50 55.50 60.00 37-50 46.50 46.50 42.00 C.L.HUB EL 2509.90!Dec 03 939):63 199651.85 2700.00 2700.00 2679.32 2603.51 2569.33 2648.96 2600.00 2589.18 2590.00 STATION LOC.14148808:oy 14300G,28 143925.53144768.36 14586836 146899.92 147999.92 149690.62 150765.84 151925.2652669.625.4493.86 P.S.ELEV 255$.50 prorizontal2 2698.35 2751.00 2769.00 2743.82 2659.01 2629.33 2686.46 26465026 8,2542.00SPANAHFAD1518126919.24 842.84 1100 0 1031.56 1100.00 1690 70 107522 1159.42 set SR sera '7548 99 3000 2900 2800 z °° Fe <> id 2700 J 2600 -YW ' 2500 SY pe 2400 \ei L| 2300 anon 153000 154000 155000 156000 157000 158000 159000 160000 161000 162000 163000 164000 165000 166000 CONST.NO.140 141 142 143 144 145 146 147 148 149 150 151 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 20-0-0L 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 3-0-OR TOWER NAME A60 A75 A70 £90 A100 c75 A70 A75 A85 A75 A80 AT70 HEIGHT 42.0 55.50 51.00 69.00 78.00 55.50 51.00 55.50 64.50 55.50 0.00 51.00 C.L.HUB EL 2506.fu!Dec 03 0%66.86 199%400.00 2300.00 2300.00 2300.00 2341.28 2382.56 2500.00 2564.57 2632.63 2700.00 STATION LOC.153495.86.tical 1550 5 156010.84 157702.49 158934.60 160150.00 161150.00 162150.00 163464.15 164564.15 165667.84 166700.00 P.S.ELEV 2543.00 sicrizontal 4853 90°2451.00 2369.00 2378.00 2355.50 2392.28 2438.06 2564.50 '692.63 2751.00 SPAN AHFAD 1538.99 977 99 1691 66 12.32?11 1215.40 1000 00 1000.00.131415 1100.00 Sheff 38.Yt 7 10.32.16 1100.00 2900 2800 nee pLjNOfa) 2 |<> d 2600 2500 -T aN A 2400 IN 2300 2200 TATION 166000 167000 168000 169000 170000 171000 172000 173000 174000 175000 176000 177000 178000 179000 CONST.NO.151 152 153 154 155 156 157 158 159 160 161 LINE ANGLE 3-0--OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AT70 A90 £100 A70 A90 A85 A90 AQ5 AgS A100 AgO HEIGHT 5 og 69.00 78.00 5T.00 69.00 64.50 69.00 73.50 73.50 78.00 C.L.HUB EL 2dooPec OEey,0.00 199609.65 2500.00 2500.00 2500.00 2500.00 2485.19 2437.04 2380.7d 3300-00 STATION LOC.21st altsapre 169100.00 170798.98 171898.98 173098.98 174327.51 175497.36 176797.36 178097.B3 179351.51 P.S.ELEV 2751.frizontBribes 500"2687.65 2551.00 2569.00 2564.50 2569.00 2558.69 2510.7q 2369.00 SPAN AHEAD rahe 1698.98 1100.00 1200.00 122854 1169 BS 130000 129g.greet 14 $39 a 1266 36 2400 2300 XX 2200 RE)NNZzco} i-J <>(Wm NNad2100\/ 1900 oN 1800 \ 1700 ETAT 179000 180000 181000 182000 183000 184000 185000 186000 187000 188000 189000 190000 191000 192000 CONST.NO.161 162 163 164 165 166 167 16869 170 171 172 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0--0 0-0-0 0-0-0 0-0-0 TOWER NAME A90 A80 A65 A55 A65 A60 F55 ATaO5 AQ5 A100 ASS HEIGHT 69.00 60,00 46.50 37.50 46.50 42.00 46.50 4256.50 73.50 78.00 3750 C.L.HUB EL 2300.9qhu Dec 2479)fa95!:26 118 4 2000.00 1900.00 1800.00 1700.00 2081.80.00 2100.00 2100.00 |2100.00STATIONLOC.17935}:Wart 06}7.87.$81617.87 182955.36 184275.3085103.98 186568.08 1888330.21 189505.74 190845.23]191859.79 P.S.ELEV 2369.00 foriz AG 2 34 2037.50 1946.50 1842.00 1746.50 2123.83.50 2173.50 sheet 2178.99 2137.500.1 49 $319 93 828 68 1464.10 1537 71 2441467 53 1339 49 14.5 1154 28 2200 2100 2000 \ 1900 aNELEVATION 1800 1700 WA 1600 mI LTp+ 1500 TATION 191000 192000 193000 194000 195000 196000 197000 198000 199000 200000 201000 202000 203000 204000 CONST.NO.172 173 174 475 176 177 178 179 180 181 182 LINE ANGLE 0-0-0 0-0-0 0-0-0 45-0-OL 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0 on TOWER NAME ASS ABS ASS C35 AGS A75 A70 AB0 A100 A90 noo”0-0-0 aetUB EL forage 03 Gaebay Mae 73.50 46.50 55.50 51.00 60.00 75.00 69.00 59.00 eb0 STATION LOC 9 fe lec i ,7.79 1550.00 1577.89 1620.08 1700.00 1700.00 1700.00 1700.00 1700.00 1700.00 STATION LOC.1918;12q1 42301 407 193866.29 195300.00 196400.00 197471.75 198367.66 199417.92 200666.48 201966.48 203216.31 204316.31S.11980.....1. )) SPAN AHEAD LeahgKzontal nob 8 S0Ue ss 24 1100.00 107173 asap ash97 19488 13a on ipaeet 16 offo leapas 2300 2200 2100 z fa) = <<> id 2000 1900 a 1800 SA VA, 1700 \|> 1600 LA E TATION204000205000206000207000208000209000210000211000 212000 213000 214000 215000 216000 217000 CONST.NO.183 184 185 186 187 -188 189 190 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 45-0-OL TOWER NAME A70 ABO ABO ABS 5 A9S A80 A75 D65 HEIGHT 5T.00 73.50 60.00 55.50 46.50 C.L.HUB EL 1700.gore ee 03 188ebe9 199800.00 1643.66 1712.98 1764.92 1855.87 1950.00 STATION LOC.204316.S400:ay ieosont36 207013,.76 208445.77 209647.02 210847.02 212157.60213000.00P.S.ELEV 1751.0).86.48 1824.92 1911.37 1996.50 SPAN AHEAD 1597 45 _Horizont OO 430 o1 1203.25 120000 1310 52 84240 000 Sheet 17 of 17 2600 / 3300 2500 7,/320 2400 /31 ATR ee = :/4<xcis 2300 y,sodaVY Y 2200 7,2900 Z ya 2100 /S "7, 2000 Os 1900 2600.BTATION 213000 214000 215000 216000 217000 218000 219000 220000 221000 222000 223000 224000 225000 226000 (ING ANGLE \5-0-0R g-0-0 G-0-00-0-0 0-0-0 6-0-0 6-0-0 0-0-0 00-00-0068 o.o o.o.0.o i -0--O--0-00-0-0 0-0- 0-0 0-0--0-00-0-0-0-00-049-0-0 0-0-0 0-0-0 0-0-0 -0--0--0-- TOWER NAME OD VA80 VA6S.VA65_-VA65 VA80__-VASS VA65 VA55 VA65_VAGOVA75 VA70 VA65 VA70 VAIS VATO”vAgs.veeHEIGHT46.50 Sa 46.50.46.50 60.00 37.50 46.50 37.5046.50 47.055.50 57.00 46.50 51.00 55.50 51.00 46.50 57.00 C.L.HUB EL 1950.00 bs,8 Sat 40000 2549.04 2696.84 2863.78982.5533.931000100.00 3100.00 3100.00 3105.03 3120.13 3125.00 3150.00 3150.00STATIONLOC.213000.0 4 oor 14.1216036.60 217028.317736.17 21879024836219845BH)4390H59.73221 747.34222590.5@M23434.88224334.8825125143 226058.07226900.00P.S.ELEV 1996.50 {214 2446.50 2609.042734.34 2910.28020.65880.4314251G5.50 3151.00 3146.50 3156.03 63 0d 3196.50 ) |SPAN AHF AD 900.00 B00 ee 99171 707 86.1054 31 57051484 661404400GR7 Al A84316 B44 38 900.On Heeb qi"389 B42?00 3201.00 3700 3600 3500 z co) i <>id 3400 3300 3200 <=|_4anal \AN _4 KY=tet a NUE 7 3000 Ree 226000 227000 228000 229000 230000 231000 232000 233000 234000 235000 236000 237000 238000 239000 CONST.NO.18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LINE ANGLE 0-0-0 15-0-ORO-0-0 0-0-0 0 -0-00-0-0-0 0-0-®-0-0 0-0-00-0-0 3 0-ORO-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0TOWERNAMEVA65VC80--VA65._-sOVAGS|-_-s«VASS|_VASIA7S VA65 VA65 VA70_VA65 VBSS VA6S __VA70 VA70__- VA70 VA75 __*VA70 VA75 HEIGHT 46.50 [51.00 46.50 46.50 37.50 37.56.50 46.50 46.50 5T.00 46.50 37.50 46.50 51.00 57.00 51.00 55.5 5T.00 55.50 C.L.HUB EL 3150.00 Rep 84689933:$676299 3187.5197189.38 3100.05067.19 3019.34058.013100.003102.18 3104.67 3118.14 3134.84 3153.54 3170.34 3189.14STATIONLOC.226058.0 Q 272090 8500.02920020GHTDG8.60 23130231829.39 2329482398548.5B4200.064900.0035700.00236600.0037400.00238300.02.39100.00 240000.00P.S.ELEV 3196.50 1320 -fae 94 69 3225.002:3278.88 3146.53113.69 3070.36104.513137.50 3148.68 3155.67 3169.14 94 3221.34 3244.64 SPAN AHF AD 4200 Bon fet Z O 600 00 268 840 75 §22 04119 19 600 00651 42.700 00 800 00 900 00 B00 00 Road of tp 900 00 BOO oo 3800 3700 3600 zoO i= 4>Fs 3500 3400 ye dN aleoSJVj 3300 ran =|AEM / 3200 |__ 3100 STATION 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250000 251000 252000 253000 CONST.NO.36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53LINEANGLE0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 5--0-0B-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0 0-0-0-0TOWERNAME_VA75 VA70 VATS,VA70 VA75__VA70 VA75___VA70 VA70___-*VA70___-sSVBGO_VA75 _-VAGS_-sCVABSS VA65__VA55 VA55 VA65 HEIGHT 55.50 41.0 5.00 55.50 51.00 55.50 51.00 57.00 57.00 42.00 55.50 46.50 46.50 46.50 37.50 37.5046.50 C.L.HUB EL 3189.14 4 9 Mec 8305683:$54199%3260.13 3276.84 3295.63 3312.34 3342.95 3371.48 3400.00374.25 3339.91 3305.58 3300.003300.0 3388.3400.00 STATION LOC.240000.0d 9 A a 2500.00243400.0244200.00245100.02@45900,00246800.0247600.0248400239000.0249800.0250600.00@51430.052130|00 2532°359696.00P.S.ELEV 3244.64 4256 izonpal 54 3315.63 3327.84 3351.13 3363.34 3393.95 3422.48 3442.00429.75 3386.41 3352.08 Sie.3 3425.8446.50SPANAHFAD80000.B00.00 900 00 B00 00.900 00 800.00 80000 60000800 00 80000 830 00 ers S 468 OB37 oo 3400 4 IN 3300 we Ln.Ae 11 \So SIS§eSy=1 3200 z N - <>iyid 3100 EN 3000 2900 2800 2700 STATION 253000 254000 255000 256000 257000 258000 259000 260000 261000 262000 263000 264000 265000 266000 CONST.NO.52 53 54 55 56 57 $8 59 60 61 62 63 646566 67 68 69 70 LINE ANGLE 0-0-0-0-@-0-00-0-0 0-0-01-0-OL 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-@-dBD-0 0-0-00-0 -00-0-0 0-0-0 TOWER NAME VA55 VA65 VAS5SS_VA65 vase VA75 VA70 VA70 VA75 VA65 VAGS _VAS55 VAS WABS VA5SS VASS VA6S FP65 HEIGHT 37,504.50 "Ae5003 se50 37.50 55.50 5T.00 51.00 55.50 46.50 46.50 37.50 37D KDO 37.50 37.50 46.50 95.50 C.L.HUB EL 3388 5400¢Bh 180aPea225.00 3236.75 3247.20 3258.95 3269.39 3279.843288.98 34500050061 3168.815131.383089.58 3000 00STATIONLOC.33088 8 dee55598286 200.00257100.0@57900.00258800.0259600.0260400.261100.00 2626887890000 2639922646 592286194 00266055 fare)P.S.ELEV 3425.B44 .56280.50 3287.75 3298.20 3314.45 3315.89 3326.343326.48 3435550301 3206.8551 OB 3055 50 SPAN AHF AD 466 083 ears 90000 80000 900.00 8n000 80000 700.00 1204 00 20086805 00 600 RECS ES 1845 00 3300 3200 3100 z °o - <xiy \a 3000 2900 X 2800 N 4 A AN ine SN 2700 ca (heed S IK 2600 t STATION 266000 267000 268000 269000 270000 271000 272000 273000 274000 275000 276000 277000 278000 279000 CONST.NO.70 71 72 73.«74 75 76 77 78 79 80 81 82 83 84 85 86 87 LINE ANGLE 0-0-0 45-0-0R0-0 0-0-0-0-0 5-0-ORO-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 5-0-0B8-0-0 0-0-0 0-0-00-0-0 0-0-0TOWERNAMEFP6SD.VA55 VA85 VA85 VB55 =VA65_-_-sCVAGS VA65 __VA65__- VA6S5'_ -sVAGS' -=VBS5S5_ VA65 -VA6S--sVASS)«VAS5S -s VAG HEIGHT 55.50 37.50 64.5064.50 37.50 46.50 46.50 46.50 46.50 46.50 46.50 37.50 46.50 46.50 37.50 37.50 47.00 C.L.HUB EL 3000.00 fru IDec oss G.3aa0b88 2800.800.002800.00 2764.63 2724.21 2700.00 2700.00 2731.82 2768.18 2800.00778.51 2749.862724179703.30 2690.81STATIONLOC.266055.0D Cale:tical 2 500.00 26950B70000.090700.001400.0272200.00 273179.0273979.74700.0875500.0620006 800.0077600.208300208900.0879681.28P.S.ELEV 3055.50 Horizont”9P-2864.96 4.502837.502811.13 2770.71 2746.50 2746.50 2778.32 2814.68 2837.50825.06,2796,36 2{62 1227 40.80 2732.81SPANAHFAD184500fore!0010)500 0000 00.700 00 800 00 979.04 B00 00 720.96 800 00 700.00 60000800 00 600 78128 540 48 =e _- 3300 3200 3100 z So F 4 >id 3000 2900 2800 2600 \et he TATION N279000280000281000282000283000284000285000286000287000 288000 289000 290000 291000 292000 CONST.NO.87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 LINE ANGLE 0-0-@-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-00-0-00-0-0 10-0-GR-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME VA6O VA85 VA60__VA70 VA70 VA70 VA65 --VA65- VA6GO_-=CVASS vC65 VA65 _VA65-sVAG6S./-sVAGS)-sCVAGS S™-C«WVAC10 HEIGHT 00 64.50,42.00__51.00 5T.00 57.00 46.50 46.50 47.00 37.50 37.50 46.50 46.50 46.50 46.50 46.50 5100 C.L.HUB EL 24 169886.98 09:5i6b6.68%500.00 2600.00 2600.00 2613.20 2666.012700.00700.00 2750.00743.55 2734.95 2726.34 2717.74 2709.14 2700.54 STATION LOC.2 %15.2282015.22282891.81283728.83 284648.00854482RB062286662.86 287900283500.0289300.0090100.0290900.0491700.0092500.00 P.S.ELEV 27 al 2651.00 2651.00 2651.00 2659.70 2712.512742.00737.50 2787.52790.05 2781.45 2773.84 276¢-24 3755.64 2751.54 SPAN AHF AD 5 360 A76.59 B37.02 919.16 800 00 614 86 600 00123714 6000080000 BOO.00 27738 t Pit Pe 800 00 Hi5 30 3200 3100 3000 z oO 4 <=cyi 2900 2800 2700 Xo 2 Anette ie] 2500 TALL const.no 293000 294000 297000 298000 299000 300000 301000 302000 303000 304000 305000 NO.109 «110,111 112113114 115 oHLINEANGLE-vATo vag”0-0-M-0-0 0-0-0 0-0-0 0-0-0 75-0-0-0-0 0-0-8 0-0 0-00.0-00-00.0-0 o0-0 6-0-0 O0-00-0 0TOWER,vA *VA6S.Vass,VD65__VAS5S VATSVASSVA5S VAS5 VC65_VA6S.-*VAGS.-sOCVAGS.-s«AGS.s VAS. HEIGHT ie a 2b50 Bg E0 |150 -4 37.50 37.50 55.507.507.50 37.5037.50 46.50 46.50 46.50 ]46.50 37.5CLHUBEL.$2880.00 2650.00 2650.002650.00600.00 2530257 02600.00600.0800.002600.00 2600.00 2600.00 |2600.006¢y STATION LOC.2026608 rate geabiess 52,295662.4296450.4297250.297900208500.00 299 8BO0BONEH030020801700.2 400.0603200.0G04000 da04800308 400,PS.ELE 275154 a 50 2696.502687.50537.50 2585250 7280 7.506 37.53537.502646.50 2646.50 )900 787.95.800 00 649.58 600 001300.00 400 @M0 69000500 000000 800 00 ae aha?REFS GO 2616 50637.50 3300 3200 3100 Zzfe) e <qij 3000 2900 2800 nN o™A 1 KNEE TEEdinelei 2700 Via2600re)STATION 305000 306000 307000 308000 309000 310000 311000 312000 313000 314000 315000 316000 317000 318000 CONST.NO.121 122 123124 125 126 127 128 129 130 131 132 133 134 LINE ANGLE 0-0-0 0-0-00-0100-0-ORO-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 60-0 6-0-0 b-b-0 b-0-0 TOWER NAME VA55 VASS.VA5SC70_--«VA75 VA70___-VA70 VA75__-*VA70 VA75 VA65 _VA65_-OVA6S) -sCVAGS)-VAGS-sCVABSS VASHEIGHT37.5q moe nae 00__55.50 57.00 57.00 55.50 51.00 55.50 46.50 46.50 46.50 46.50 46.50 46.90 46.50 C.L.HUB EL 260001 Fe 264988 2756.75 2764.35 2771.11 2778.70 2785.46 2793.06 2800.00 2804.99 2809.99 2814.98 2819.98 2824.97 2829.96STATIONLOC.stentert .280.0608300.00309200.0610000.00 310900.0611700.00 312600.0G1 3422.3314222.3315022.3315822.3B16622.3317422.3318222.32P.S.ELEV 2637150 hori 5x6q7 00 2812.25 2815.35 2822.11 2834.20 2836.46 2848.56 2846.50 2851.49 2856.49 2861.48,3 7|.47 2876.46SPANAHEAD117290000800.00 9nn 00.800.00 900 00 B22.32 BNO 00 800 00 800 00 800 00 n@pe8%1 oF NO 800 00 3500 3400 3300 z (oe) - <> d 3200 3100 DZ 3000 pe seco NeaeteEeeeeEEer 2800 STATION 318000 319000 320000 321000 322000 323000 324000 325000 326000 327000 328000 329000 330000 331000 CONST.NO.137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 O-0-0 10-0--ORO-0-0 0-0-00-0-0 20-0-OLO0-0-O0 0-0-0 12 -0-OR 0-0-0 0-0-0 0-0-00-0-0 TOWER NAME VA65--VA65.-sVAGS|_-_-s«VA70 VA75__'VA70 VCB8O__-*VA65S__-sOVASS)«VASS.-OVC75.-s VAG)CVA VC85 VA70__-«VA6O VA7S VA65 HEIGHT 46.50 ].46.50 46.50.5T.00 55.50 51.00 51.00 46.50 37.50 37.50 46.50 46.50 51.00 55.50 5T00 42.00 55.50 46.50 C.L.HUB EL 2829.94 8 2960-92%D5 1988094 2850.00 2850.00 2850.00 2850.002850.00850.002850.00 2866.00 2882.00 2900.00 2937.13 2970.1 3044.43113.11 STATION LOC.318222 82ee 206 22.32 321532.3322332.33323200.0624000.G04 700325 300.G26000.0626800.0627600.00328500.00329400.063020 D.00 331224322799.26P.S.ELEV 2876.44 p94 2905.50 2901.00 2901.00 2896.502887.5@887.502896.50 2912.50 2933.00 2955.50 1B 3099.93159.61 SPAN AHF AND 800 001 80)B00.00 86747 800.00 700.00 60000700 00 800 00.8O0 00 900.00 900 00 apes ofr 4.2 §75.04800 oo 3700 3600 3500 z oO FE <>id 3400 3300 , 3200 Se DT \ /ee WA 3000 SNA 331000 332000 333000 334000 335000 336000 337000 338000 339000 =340000 =341000 342000 343000 =344000 CONST.NO.153 154 155 156 157 158 159-160 161 162 163 164 165 166 167 LINE ANGLE 0-0-00-0-G 0-0-00-0-00-030-0-0L 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-00-0-0 0-0-0 TOWER _NAME VA75 VA6S __VAG65_VA60_VAGO/C100 VA65___VA75 VA7O__VA65 VA70 VA8O___VASS__VA70.FP65 HEIGHT 55.50 46.50 46.50 42700 47069.00 46.50 55.50 ST.00_46.50 57.00 60.00 3750 5T.00 55.50 C.L.HUB EL 3044,43181 Dec 3965096530000 80.00 3092.843067.78 3035.55 3006.91 3000.00 3019.17 3095.843100.00 3100.00 STATION LOC.3312249 4 2589 75532 4350 8754G90.00 335200.0G5900.00336800.0637600.00338493.04339360.9540160.$80804.38341700.00P.S.ELEV 3099.94159 4;14,06524 42Q09.00 3139.34 3123.28 3086.55 3053.41 3051.00 3079.17 3133.343151.00 3155.5Qneet 10 of 10SPANAHFAD5750480043600.0)53000 00 700.00 900 00 BOO 00 89304 B67.91 800 00.643 43 295 62 0.00 3600 3500 3400 z fe) = <cyi 3300 3200 ™op / 3000 MN Ne ZN ZN 2900 TATION 341000 342000 343000 344000 345000 346000 347000 348000 349000 350000 351000 352000 353000 354000 CONST.NO.1 2 3 4 5 6 7 8 9 10 11 LINE ANGLE 45-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 5-0-OR 0-0-0 0-0-0 0-0-0 TOWER NAME DP75 AP85 AP9O AP95 AP85 AP95 AP95 BP106 APT90 APT100 AP9S HEIGHT 55.50 64.50 69.00 73.50 64.50 73.50 73.50 75.00 69.00 78.00 73.50 C.L.HUB EL 3fotmad@ec O50HyBb59 193005.27 3000.00 3000.00 2994.83 2972.41 2950.00 2976.00 3016.08 3126.04 STATION LOC.34 00 1347800.344000.00 345327.86 346576.55 347800.00 349100.00 350400.00 351700.00 353100 /14 354443.72 P.S.ELEV 3155.orizonfi 9.490="599°3074.27 3073.50 3064.50 3068.33 3045.91 3028.00 3045.00 cheet 4 BPH 08 3199.54 SPAN AHEAD 11n0.0 00.00 1327 86 1248 68 1300 00 1300.00 1300 00 1400.14 5 1152 204223.45 3800 3700 3600 z ° f= <x > ad 3500 3400 3300 Sy ay Neee | 3200 AWaTLL/. 3100 STATION 354000 355000 356000 357000 358000 359000 360000 361000 362000 363000 364000 =.365000 366000 367000 CONST.NO."12 13 14 15 16 17 18 19 20 21 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP95 AP90 EP100 AP90 APT100 APT100 AP9O AP100 AP9S APT8S APaO HEIGHT 735 69.00 78.00 69.00 75.00 78.00 65.00 78.00 73.50 6450 60.00 C.L.HUB EL 3126|qlhu Dec 396g!GxP4:40 19345.34 3230.07 3206.51 3188.13 3172.70 3157.27 3122.53 3100.00 3150.00 STATION LOC.3544498:395595.92,,,356895.92 358160.37 359460.37 360819.59 36 2119.59 363419.59 364632.14 366024.367500.00 P.S.ELEV 3199154 Jovi £459"2509 323-34 3299.07 3284.51 3266.13 3241.70 3235.27 3196.03 cheat 2346440 3210.00 SPAN AHF AD 1152120 0 264.45,1300.00 1359 22 1300 00 1300 00 1212 54 1392 23 j 4 1200 00 3800 3700 3600 Zz 3 e r.4> a 3500 3400 NZ KU \ 3300 Ale aT 3200 pict J 3100 STATION 367000 368000 369000 370000 371000 372000 373000 374000 375000 376000 377000 378000 379000 380000 CONST.NO.21 22 23 24 25 26 27 28 29 30 K3| LINE ANGLE 0-0-0 0-0-0 0-0-0 5-0-OL 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME ArBO cF100 EP95 BP75 AP100 AP9O AP75 AP65 AP70 AP90 AP100 HEIGHT 60.0 73.50 55.50 78.00 69.00 55.50 46.50 57.00 69.00 78.00 C.L.HUB EL 3180.5aDec B81,04:42 1992 3284.02 3300.00 3332.92 3368.59 .3400.00 3400.00 3300.00 3300.00 3300.00 STATION LOC.367$WP tic Bi ane 370328.79 371400.00 372600.00 373900.00 375044.84 375990.75 377514.01 378614.01 379932.79 P.S.ELEV 3219.0000 Horizo 3357.52 3355.50 3410.92 3437.59 3455.50 3446.50 3351.00 snget63:99 20 |3378.00SPANAHEAD120:1071721 1200 00 1300 00 1144 84 94592.1523276 1100.00.1200 00 3900 3800 3700 z °° fad <x >Fi 3600 3500 3400 3300 IN MN .AEETRA 3200 BTATION bh 379000 380000 381000 382000 383000 384000 385000 386000 387000 388000 389000 390000 391000 392000 CONST.NO.31 32 33 34 35 36 37 38 39 40 41 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 3-0-OR 0-0-0 0-0-0 TOWER NAME Ar100 Ap7s.APS AP95 APB5 AP9O AP85 APO5 APT80 AP95 AP95HEICHT73.50 64.50 69.00 64.50 73.50 60.00 73.50 73.50 C.L.HUB EL {hades 03 103860850!992 5287,31 3254.31 3236.90 3222.62 3208.33 3200.00 3200.00 3200.00 3200.00 STATION LOC.9995 9 4381432.79 382230.21 383530.21 384800.00 386000.00 387200.00 388500.00 389700.00 390900.0 392200.00P.S.ELEV 337,dal 58.50,3360.81 3327.81 3301.40 3291.62 3272.83 3273.50 3260.00 sheet 4225-50 3273.50 SPAN AHF AD 120:974 1300.00 1269.79 1200.00 1200.00 1300.00 1200 00 1200 00 1 1300 00 3600 3500 3400 z °o 4 <> beig 3300 pL]Nee3100Ee < 2900 ETATION 392000 393000 394000 395000 396000 397000 398000 399000 400000 401000 402000 403000 404000 405000 CONST.NO.a 42 43 44 45 46 47 48 49 50 51 52 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 30-0-OR 0-0-0 0-0-0 TOWER NAME AP95 Apes APSO AP100 AP80 AP9O AP85 AP85 AP75 cP65 AP95 AP9S HEIGHT 73.50 78.00 60.00 69.00 64.50 64.50 55.50 46.50 73.5 73.50 C.L.HUB EL 3200.00 Pee 44 $320.00 3200.00 3200.00 3129.47 3104.83 3062.50 3010.00 2980.00 29465 2906.15 STATION LOC.392200 OPN:309 s 0”Rin 30 396094.30 397335.22 398764.74 399964.74 401100.00 402200.00 403200.00 404300.00 405600.00 P.S.ELEV 3273.50 or 69.00 3278.00 3260.00 3198.47 3169.33 3127.00 °3065.50 30 9.65 2979.65 SPAN AHEAD 1300 0:00.00 1240.92 41429.52?1200 00 1135 26 1100 00 1000.00 os fee?5 of S348 0 1 300.00 3200 3100 3000 ELEVATION2900 \ 2800 RS | |KN ZNi.N\ noo = 2500 BTATION 405000 406000 407000 408000 409000 410000 411000 412000 413000 414000 415000 416000 417000 418000 CONST.NO.52 53 54 55 56 57 58 59 60 61 62 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP95 AP85 AP95 AP9S AP95 APTOS AP95 AP75 AP75 AP85 AP70HEIGHT_73.0 64.50 73.50 73.50 735.50 735.50 73.50 55.50 55.50 64.50 51.00 C.L.HUB EL 29 ns Dec 0324006 199D854.17 2800.00 2750.00 2700.00 2647.50 2600.00 2500.00 2500.00 2600.00 STATION LOC.40$666,90)ical 4p690 g0 408100.00 409400.00 410700.00 412000.00 413324.00 414500.00 416100.00 417209.00 418800.00 P.S.ELEV 2979.6 orizontd Gf soo!2927.67 2873.50 2823.50 2773.50 2721.00 2655.50 25 lo 2651.00 SPAN AHEAD 1300.0 200.00 1300.00 1300.00 1300 00 1324.00 1176.00 1600.00 110:16 oft 1000 00 3200 3100 3000 5 FE "4i 2900 >aa 2800 2600 r 2500 5 TATION 418000 419000 420000 421000 422000 423000 424000 425000 426000 427000 428000 429000 430000 431000 CONST.NO.62 63 64 65 66 67 68 69 70 71 72 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP70 AP75 AP100 AP75 APBS AP75 EP100 AP90 AP100 AP80 APS HEIGHT 51.00 55.50 73.05 55.50 B450 55.50 78.00 65.00 78.00 60.00 73.50 C.L.HUB EL 248 Bec 9800.09 1996 48.89 2675.56 2700.00 2700.00 2800.00 2886.67 2900.00 2893.75 2818.75 STATION LOC.4 99.i419800.09,421000.00 -422200.00 423300.00 424400.00 426000.00 427300.00 428500.00 429700.00 |430900.00P.S.ELEV 3651,izonfGrages 8 2728.89 2731.06 2764.50 2755.50 2878.00 2955.67 2978.00 sneg?9>h520 2892.25SPANAHFADono1200.00 1100.00 1100.00 1600 00 1300 00 1200 00 1200.00 1400 00 3300 3200 3100 z Oo FE < >Fe 3000 2900 "J 2800 NS.AN iN7Ki 2700 2600 TATION 430000 431000 432000 433000 434000 435000 436000 437000 438000 439000 440000 441000 442000 443000 CONST.NO.72 73 74 75 76 77 78 79 80 81 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP95 AP90 AP90 EP100 APTQ5 AP9S5 APQS APQS APQS APT100 HEIGHT 73.50 69.00 69.00 78.00 73.50 73.50 73.50 735.50 73.50 78.00 C.L.HUB EL ite Gee O05 10:03968.6892 2791.67 2737.50 2700.00 2700.00 2700.00 2700.00 2700.00 2700.00 STATION LOC.QQ 4°432300.00 -433500.00 434800.00 436300.00 437600.00 438900.00 440200.00 441500.00 442800.00 P.S.ELEV 289 ontal 128t Ae 2860.67 2815.50 2773.50 2773.50 2773.50 2773.50 s Q 2778.00SPAN_AHF AD 140 120)1300 00 1500.00 1300.00 1300.00 1300 00 1300 00 Le f 20 1300 00 3100 3000 2900 z oOFe<> uyi 2800 2700 KA,Z\p>ar aae Neoy aan2600US 2500 NO S | 2400 STATION 442000 443000 444000 445000 446000 447000 448000 449000 450000 451000 452000 453000 454000 455000 CONST.NO.81 82 83 84 85 86 87 88 89 90 91 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 50-0-OL 0-0-0 0-0-0 TOWER NAME APT100 AP9S AP95 AP95 AP95 AP95 AP90 AP100 CP75 AP100 APSO HEIGHT 8.00 73.50 73.50 73.50 73.50 73.50 69.00 78.00 55.50 75.00 69.00 C.L.HUB EL Q7he dec 03 1GO¥$25881992 2672.22 2652.16 2632.10 2612.04 2579.17 2511.46 2450.00 2511.76 2588.24 STATION LOC.4 2.1 1444 10-00 445400.00 446700.00 448000.00 449300.00 450480.00 451780.00 453000.00 454200.00 455500.00P.S.ELEV 9778.00 ontal 276s.Boo!2745.72 2725.66 2705.60 2685.54 2648.17 2589.46 250 76 2657.24 SPAN AHEAD 300 1300.0 1300 00 1300.00 1300.00 1180 00.1300.00 1220 00 1200 bet 2%of Fe 1200 00 3100 3000 2900 z o = <> cd 2800 A2700(>a|/ _2600 LZ=p a 2500 |p=aNNQ 2400 STATION 455000 456000 457000 458000 459000 460000 461000 462000 463000 464000 465000 466000 467000 468000 CONST.NO.91 92 93 94 95 96 97 98 99 100 101 102 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 2 0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP90 AP100 APao AP85 AP75 APT100 AP75 AP100 AP75 AP85 AP75 AP&S HEIGHT 69.0 64.50 55.50 75.00 55.50 78.00 55.50 64.50 55.50 64.50 C.L.HUB EL 2588.a6 eee Sl 198635,08 2647.30 2650.00 2600.00 2572.09 2544.19 2516.28 2500.00 2509.00 2421.43 STATION LOC.455$00UP,4:patar ©Of 458000.00 459200.00 460300.00 461500.00 462700.00 463900.00 465100.00 466300.00 467}00.00 468500.00P.S.ELEV 265}2424 Horin 691-5 So500'2700.08 2711.80 2705.50 2678.00 2627.59 2622.19 2571.78 4.59,5$.50 2485.93SPANAHFAD120)1200.00 1100 00 1200 00 1200.00 1200.00 1200 00 1200.00 ia ax of ar oo 1400 00 3000 2900 2800 Zz o - <>id 2700 2600 2500 fe L NOU”|A NOY |NO2400 \ 7 2300 BTATION 468000 469000 470000 471000 472000 473000 474000 475000 476000 477000 478000 479000 480000 481000 CONST.NO.102 103 104 105 106 107 108 109 110 11 112 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 45-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP85 APTOS APQ5 AP95 APQS CP100 APT95 EP100 EP95 AP95 AP100 REIGAT 64.50 73.50 73.50 735.50 78.00 73.50 78.00 735.50 350 78.00 C.L.HUB EL 2421.5aDec 032450063 1992 2400.00 2400.00 2400.00 2350.00 2300.00 2300.00 2375.00 2432.14 2450.00 STATION LOC.4685 WD tical p09 9a.p0 471200.00 472500.00 473800.00 475000.00 476500.00 477800.00 479500.00 480700.00 481900.00 P.S.ELEV 2488.933 Horizontdls 75-50 500°2473.50 2473.50 2473.50 2428.00 2373.50 2378.00 48,5 2505.64 2528.00 SPAN _AHFAD.1400 0.1300 00 4300 00 1200.00 1500 00 1300 00 1700 00 shesiee f 20 200,'00 1300 '00 2900 2800 2700 zoO e <qis 2600 2500 N VAN N. "e oe,Ne 2300 i S NA NN 4 TH tH| 2200 BIATION 481000 482000 483000 484000 485000 486000 487000 488000 489000 490000 491000 492000 493000 494000 CONST.NO.112 13 14 115 116 117 118 119 120 121 122 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 85-0-OL 0-0-0 0-0-0 0-0-0 TOWER NAME AP100 Aro AP 100 AraO AP85 AP75 AP100 DP80 AP80 AP80 AP80 HEIGHT 78.00 "00 :00 64.50 55.50 73.00 60.00 60.00 60.00 60.00 C.L.HUB EL legos 05 10:$456406992 2450.00 2440.00 2340.28 2325.00 2308.33 2300.00 2289.81 2279.63 2269.44 STATION LOC.0,4»483290.00 484500.00 485600.00 487100.00 488200.00 489400.00 490700.00 491800.00 492900.0q 494000.00 P.S.ELEV 252 ontal 1S.GAo"2528.00 2500.00 2404.78 2380.50 2386.33 2360.00 2349,3 2329.44 SPAN AHEAD 1.30)300 1100.00 1500.00 1100.00 1200.00 1300 00 1100 00 1100 caheet 12530 ay 1100 00. 2800 2700 2600 zOo Ee <x > a 2500 2400 2300 N AN Oo A1=\|a ieee2200 J 2100 BTATION 494000 495000 496000 497000 498000 499000 500000 501000 502000 503000 504000 505000 506000 507000 CONST.NO.122 123 124 125 126 127 128 129 130 131 132 133 LINE ANGLE 0-0-0 0-0-0 85-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME _AP80 AP80 DPés Ap 9S AP95 AP95 AP95 AP9O AP100 AP80 AP95 APQ5HEIGHT60.00 60,00 46.50 73.50 73.50 73.50 69.00 78.00 60.00 73.50C.L.HUB EL 2269.44 orp 86283 1@ 8409501992 2239.42 2226.92 2214.42 2201.92 2200.00 2200.00 2200.00 2200.00 3197 33 STATION LOC.494000.0 P0,P0,496190.00 497200.00 498500.00 499800.00 501100.00 502400.00 503700.00 504950.00 50615000 507455.00P.S.ELEV 2329.44 25F8)7h tol 270 TO 2312.92 2300.42 2287.92 2275.42 2269.00 2278.00 226 f27g-50 2270.83 SPAN AHFAD 1100.00 cee |1100.0:1300 00 1300.00 1300 00 1300 00 1300 00 1250 00 1 sean 13 1 ae 0 1300.'00 2800 2700 2600 z a Ee < Gji 2500 2400 A 7 2300 Yo 2200 _NS Z \-l |NT Ane 2100 STATION 507000 508000 509000 510000 511000 512000 513000 514000 515000 516000 517000 518000 519000 520000 CONST.NO.133 134 135 136 137 138 139 140 141 142 143 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 60-0-OL 0-0-0 0-0-0 0-0-0 60-0-OR TOWER NAME AP95 AP95 EP95 AP70 EP9O APT100 cP95 AP95 AP85 AP85 cP95 HEIGHT 73.5 73.50 73.50 51.00 69.00 78.00 73.50 73.50 64.50 64.50 73.50 C.L.HUB EL 2197|Fou Dec OF 79:94:57 1999162.62 2225.00 2300.00 2300.00 2300.00 2300.00 2300.00 2321.03 2350.00 STATION LOC.507455619",.,008755.99, 510055.00 511700.00 512600.00 513900.00 515240.00 516540.00 517800.00 519050.520290.00 P.S.ELEV 2270.83 \orizo 3.7 =500°2236.12 2276.00 2369.00 2378.00 2373.50 2373.50 2364.3 2423.50 SPAN AHF AD 1300100 0.00 1645.00 900.00 1300.00 1340.00 1300 00 1260.00 1250.eet 14 eres 1300 '00 3000 2900 2800 z[oe]iJ<x > a 2700 2600 wy | J ./ 2400 NK JN WA NA Ja, aaISS ea 2300 . STATION §20000 §21000 522000 §23000 524000 525000 526000 §27000 §28000 529000 530000 531000 532000 533000 CONST.NO.143 144 145 146 147 148 149 150 151 152 153 LINE ANGLE 60-0--OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 60-0-OL 0-0-0 0-0-0 0-0-0 TOWER NAME cP95 Aras Aros AP95 EP95 AP75 AP95 CP75 AP100 AP85 APTI00 HEIGHT 735.50 73.50 73.50 55.50 73.50 55,50 78.00 64.50 78.00 C.L.HUB EL 2350.oo Decgigoleoe 581871.63 2382.45 2393.26 2483.33 2500.00 2500.00 2500.00 2500.00 2550.00 STATION LOC.520290.BONE:i hasex6 Rr 00 524190,00 525490.00 527100.00 528100.00 529290.00 530490.00 531750.00 533160.00 P.S.ELEV 2423.A Hori 445.13 2455.95 2466.76 2538.83 2573.50 2555.50 2578.00 Sheet 256$599 2628.00 SPAN AHF AD 1300.0 300.00 1300.00 1610 00 1000.00 1190 00 1200.00 1260 00 j L180.00 3200 3100 3000 z°o <4 <> uyi2900 2800 2700 2600 No.aT 4 NQF |\ a KY 2500 533000 534000 535000 536000 537000 538000 539000 540000 541000 542000 543000 544000 545000 546000 CONST.NO.153 154 155 156 157 158 159 160 161 162 163 164 LINE ANGLE 0-0-0 60-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 20-0-OL 0-0-0 0-0-0 0-0-0 TOWER NAME APT100 CP75 AP100 APT95 AP95 AP9S5 APSO AP100 cP70 AP9O AP100 AP75HEIGHT78.00 55.50 78.00 73.50 73.50 73.50 65.00 75.00 57.00 69,00 5.00 55.50C.L.HUB EL 2550.00]Thu BenaO:05:OB AGRA 2548.72 2532.05 2515.38 2500.00 2500.00 2525.00 2525.00 2527.92 2531.82 STATION LOC.533160.09%°4340.00_sp5SS40.00 536900.00 §38200.00 539500.00 540800.00 542100.00 543340.00 544440.00 $45700.00 546900.00P.S.ELEV 2628.00|4 ag §53:61 2622.22 2605.55 2588.88 2569.00 2578.00 2576.00 Sipe?ROot 20 3605.92 2587.32 SPAN AHF AD 1180 90 1 00 1300 00 1300.00 1300 00 1300 00 1240 00 110000 0.0.200.00 1200 00 3200 3100 3000 z fe) = <x> uJid 2900 2800 2700 A Z /\™7 LO |NF //No _-- _eeaN N\ 2500 TATION 546000 547000 §48000 549000 550000 551000 552000 553000 554000 555000 556000 557000 558000 559000 CONST.NO.164 165 166 167 168 169 170 171 172 173 174 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 10-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP75 AP100 AP75 AP100 AP75 BP95 APQS APSS APT95 AP85 AP100 HEIGHT 55.50 75.00 55.50 78.00 55.50 73.50 73.50 73.50 73.50 6460 78.00 C.L.HUB EL 7a)9 mie i'"BS 3507100?2539.61 2543.51 2547.40 2600.00 2617.76 2635.52 2650.00 2690.00 2700.00 STATION LOC.1548199.00 549300.00 550500.00 551700.00 553140.00 554440.00 §55740.00 557000.00 55$500.00 559700.00 P.S.ELEV 258 8 2pay Too"2595.11 2621.51 2602.90 2673.50 2691.26 2709.02 7 4.50 2778.00 SPAN AHF AND 1201 1200 00.1200.00 1440 00 1300 00 1300 00 1260.00 27a 17 of 27s"00 1300900 3400 3300 3200 zoO e <<> a 3100 3000 2700 BIATION 559000 560000 561000 562000 563000 564000 565000 566000 567000 568000 569000 §70000 571000 572000 CONST.NO.174 175 176 177 178 179 180 181 182 18 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 b-0-0 0-0-0 TOWER NAME AP100 AP90 AP90 AP85 AP90 AP85 AP95 AP95 AP95 AP95 AP95 HEIGHT vk 00 69.00 69.00 64.50 69.00 64.50 73.50 73.50 73.50 73.50 73.50 C.L.HUB EL 27GoNGec 05 KROG:Gd 1992 2700.00 2730.77 2776.92 2843.75 2871.15 2896.15 2900.00 2900.q0 2900.00 STATION LOC.54 Aue 10Q9,00 562250.00 563600.00 564800.00 566100.00 567300.00 568600.00 569900.00 7 ( :cal §71209.00 572500.00 P.S.ELEV 2778.rizontal 7690 00'2769.00 2795.27 2845.92 2908.25 2944.65 2969.65 297 90 2973.50 SPAN AHEAD 1300.6 1250.00 1350.00 1200.00 1300.00 1200 00 1300 00 1300.00 Peambipet 18 of he 1300 00 3000 2900 aN 2800 \ z Oo fF <> a 2700 \ 2600 SS Nd 2500 Pp 2400 \Y 2300 STATION N 572000 573000 574000 575000 576000 577000 578000 579000 580000 581000 582000 583000 584000 585000 CONST.NO.184 185 186 187 188 189 191 192 193 194 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 30-0-O0L 0-0-0 0-0-0 TOWER NAME Ap as Ap as ApQs AP100 AP85 AP85 AP70 AP70 cP90 EP100 AP65 HEIGHT 73.3.56 78.00 64.50 64.50 57.00 57.00 69.00 78.00 46.50 C.L.HUB EL 5900,a6 ods anos 1992960,00 2900.00 2888.89 2821.43 2710.00 2560.00 2500.00 2410.96 2300.00 STATION LOC.5724 UW tical7avabis 575100.00 576400.00 577600.00 578700.00 579700.00 580900.00 582140.00 583440.00 585100.00 P.S.ELEV 2978.50 Horizongq ease500°2973.50 2978.00 2953.39 2885.93 2761.00 2611.00 2569.00 srpt8596 20 2346.50 SPAN AHFAD 1300 0 1300.00 1200 00 1100 90 1000 00 1200 00 1240.00 1300.00 ie]o°1000.00 2800 2700 2600 Zzfe) i= <>id 2500 2400 2300 i XI 2200 ha 2100 STATI 585000 586000 587000 588000 589000 590000 591000 592000 593000 594000 595000 596000 597000 598000 CONST.NO.194 195 196 197 198 199 200 201 196 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 15-0-OR 0-0-0 0-0-0 10--0-OR TOWER NAME AP65 Arad.Ars AP80 AP65 CP65 AP100 EP90 FP75 HEIGHT 46.50 60.00 46.50 46.50 75.00 69.00 64.50 C.L.HUB EL 2300.00 rsbec085 10:$850606992 2300.00 2300.00 2200.00 2158.65 2109.77 2150.00 STATION LOC.2300.00 |a"ahe §88300.00 589300.090140.00 591240.00 592540.00 594140.00 P.S.ELEV 2346.50 ie 190"2360.00 2346.50 2246.50 2236.65 2178.77 2214.50 Sheet 20 of 20SPANAHEAD1000.00 2)fab 1000.00 840.00 1100 00 1300.00 1600.00 O00 2100 2000 1900 z o i =<> 4a 1800 1700 1600 1500 ZL ZN AN LZ AN,' 1400 ;ETATION -he697000698000699000700000701000702000703000704000705000706000707000708000 709000 710000 CONST.NO.82 83 84 85 86 87 88 89 90 92 LINE ANGLE 90-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 20-0 0L 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME DP70 AP100 AP90 AP80 APSO cP75 AP95 AP100 AP70 FAKE HEIGHT BT.00 78,00 69.00 60.00 69.00 55.50 73.50 78.00 5T.00 37.00 C.L.HUB EL ha Oec 03 0%99:dd 1992 1450.00 1450.00 1450.00 1450.00 1438.00 1424.50 1412.50 1400.00 STATION LOC.5 99,£99089.00 700390.00 701590.00 702790.00 703940.00 705140.00 706490.00 707690.00 708940.0) P.S.ELEV 501,-ontal Ds o9°1519.00 1510.00 1519.00 1505.50 1511.50 1502.50 1463.50 cheat!48g,09SPANAHEAD2001350001200001200.00 1150.00 1200.00 1350 00 12n0 00 125000 cea 4 2700 2600 2500 Zz° Ee <x> ef 2400 2300 2200 \LN L =]L vi.N A ee "PSI 2000 5 TATION 594000 595000 596000 597000 598000 593000 600000 601000 602000 603000 604000 605000 606000 607000 CONST.NO.1 2 3 4 5 6 7 8 9 10 1 12 LINE ANGLE 5-0-OR 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 50-0-OR 0-0-0 0-0-0 0-0-0 10-O0-OL 0-0-0 TOWER NAME FAKE AP85 APBS APBS AP65 AP8O cP90 APT100 APT95 AP95 BP95 APTI00 HEIGHT 52.50 6450 -64.50 64.50 46.50 60.00 69.00 78.00 73.50 73.50 73.5 78.00 C.L.HUB EL 2150.00 |Thu Degi 96.89:59:0224980 2150.00 2150.00 2150.00 2150.00 2134.87 2119.73 2104.60 2050}00 2037.64 STATION LOC.594140.90°%°:595490.00 .,596690.00 597890.00 598940.00 599948.00 601140.00 602490.00 603840.00 605190.00 6063#0.00 607690.00 P.S.ELEV 2232.50]Horkphtep01"=94450 2214.50 2196.50 2210.00 2219.00 2212.87 2193.23 217 (2423/50 2115.64 SPAN AHEAD 1350.00 fa]0.00 1050 00 1008 00 1192 00 1350 00 1350.00 1350.00 ech to 1 28 reve!1350.00 2600 =<a 2500 2400 ZzoO = <> a 2300 2200 2100 2000 1900 CONST.NO. LINE ANGLE TOWER NAME HEIGHT C.L.HUB EL STATION LOC. P.S.ELEV a a BIATION 614000 617000 618000 620000 17 19 20 22 0-0-0 0-0-0 0-0-0 0-0-0110APTaAP9OAP70AP100APBS ;51.00 78.00 64.50peDec03Ofy5¥:93 1992 1993.06 2016.30 2025.00 2043.47 14205.00 616721.00 617921.00 620471.00 2067.30 2103.0 193.2107.97 1316.00 1200.00 1350 ogheet 2 $588 ie]13451 00SPANAHEAD 2700 2600 2500 zco) Ee <xcyct 2400 2300 2200 2100 .JN -LY NO NIU”Bi_ 2000 BTATION 620000 621000 622000 623000 624000 625000 626000 627000 628000 629000 630000 631000 632000 CONST.NO.22 23 24 25 26 27 28 39 40 633000 LINE ANCLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 O.52 TOWER NAME ApS APTIOO APSO.APO AP100 AP70 AP100 AP90 APSO APTIOO APIO. ..:.78.00 517.00 78.00 CL HUB EL 2043-175raDec core0519922082.73 2100.00 2100.00 2100.00 2100.00 2100.00 2100.00 2100.0 3100 STATION LOC.62047""Werte setae >623172.00 6 24422.00 625772.00 626972.00 628172.00 629522.00 630722.00 6320720 633499.00 orizol .:.. :. SPAN AHEAD 13silog Oo"nd 1250.00 1350.00 1200.00 1200 00 7 bo on on ean Sheet PUB PO 2169.00 1226 00 2500 2400 2300 Zz fo) i=] < > bai 2200 2100 <"N NEZN ZN a ee | 2000 Npo|| 1900 NS PAHiel 1800 BIATION 633000 634000 635000 636000 637000 638000 639000 640000 641000 642000 643000 644000 645000 646000 CONST.NO.32 33 34 35 36 37 38 39 40 41 42 LINE ANGLE 0-0-0 0-0-0 0-0-0 0 0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0TOWERNAMEAP90Ar90AprooAPT9OAPT100AP90APT100AP95AP75AP85AP9OHEIGHT65.0 69.00 78.00 69.00 75.00 73.50 55.50 64.5 69.00C.L.HUB EL 2100.10bsOp 259859 06 199889,14 2068.74 2055.34 2035.45 2009.27 1980.36 1954.17 1894183 1886.57STATIONLOC.syOF 4:BagoQo 635998.00 637348.00 638698.00 639986.00 641336.00 642714.00 643914.00 64532210 646522.10P.S.ELEV 216900 Horiz 29 ,,90'2160.14 2137.74 2133.34 2104.45 2087.27 2053.86 2009.62.64 4 9133 1955.57SPANAHEAD12261001350001350001288001350001378001200001408107"°°of ee 0 1350.00 2400 2300 2200 Zz o Ee < > ad 2100 2000 1900 NN IN 'A AN |A 1800 th MLN /\ p77]HH 1700 5 TATION. 646000 647000 648000 649000 650000 651000 652000 653000 654000 655000 656000 657000 658000 659000 CONST.NO.42 43 44 45 46 47 48 49 50 51 52 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP9O AP100 AP70 AP100 APg9O AP95 AP75 AP95 AP95 AP75 AP90HEIGHT69.q0 78.00 57.00 78.00 69.00 73.50 55.50 73.50 73.50 55.50 69.00C.L.HUB EL 1886.By Dec 05 89753708 199%869.00 1860.74 1851.44 1813.19 1790.85 1778.65 1764.93 1752.74 1742.53 STATION LOC.6465291)64787210 649072.10 650272.10 651622.10 652881.20 654157.30 655357.30 656707.30 657907.34 659076.40P.S.ELEV 1955.57 Horizont}55°27 6yq'1920.00 1938.74 1920.44 1886.69 1846.35 1852.15 1838.43 1808 2 1811.53 SPAN AHF AD 1350.00 00 00.1200.00 4350 00 1259 10 127610 1200 00 1350 60 1200.00 Sheet etd 1350.00 2200 2100 2000 z o F <> a 1900 1800 =TI-ThKX |]NERLAAL AK1700pTaa an--+--+] 1600 ---- 1500 STATION 659000 660000 661000 662000 663000 664000 665000 666000 667000 668000 669000 670000 671000 672000 CONST.NO.52 53 54 55 56 57 58 59 60 61 62 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP9O AP100 AP70 AP100 AP9O AP85 AP90 APT100 AP9O AP90 AP100 HEIGHT 69.00 78.00 57.00 78.00 65.00 64.50 695.00 75.00 69.00 69.00 78.00 C.L.HUB EL 1742.53 |Thu Deg 393.99:59:09714938 1714.42 1700.22 1688.72 1677.45 1664.76 1652.08 1634.04 1613.53STATIONLOC. 659076.40°°8560426.4 -.661526.40 662826.40 664176.40 665403.50 666603.50 667953.50 669303.50 670574.60 671924.60 P.S.ELEV 1811.53 HolBdath>1°=.38 1789.42 1769.22 1753.22 1746.45 1742.76 1721.08 ShOp-R4 pg |1691.53SPANAHFAD1350.00 0.0.00.1350.00 122710 1200.00 1350 00 1350 00 127110 o°1190.10. 2100 2000 1900 Zzro) Ee < > id 1800 1700 "600 aS Po pay NTN 1500 ---L-||> 1400 TATION 671000 672000 673000 674000 675000 676000 677000 678000 679000 680000 681000 682000 683000 684000 CONST.NO.62 63 64 65 66 67 68 69 70 7 72 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 TOWER NAME AP100 AP70 AP100 APSO APSO APT100 AP90 AP80 AP90 APT100 AP85 HEIGHT 78.00 51.00 78.00 69.00 69.00 78.00 69.00 60.00 69.00 78.0 64.50 C.L.HUB EL we 1¢5 OFS 071002 1580.37 1562.70 1546.30 1529.66 1513.01 1497.84 1480.60 146420 1450.00 STATION LOC.eee 674314.70 675664.70 676934.80 678284.80 679634.80 680839.90 682039.90 683489.90 684769.10 P.S.ELEV 169 eo 1g4 ZU 1658.37 1631.70 1615.30 1607.66 1582.01 1557.84 1549.69 t?7 1934.20 1514.50SPANAHFAD.1350.00 127010 1350.00 1350.00 1205 10 1200 00 13450 O°o''47d 20 1200 00 2100 2000 1900 z fo) 4 =<> a 1800 1700 1600 1500 N ZI.VAN ZN YAN VAN VAN WAN ZN YAN 1400 STATION 684000 685000 686000 687000 688000 _689000 690000 691000 692000 693000 694000 695000 696000 697000 CONST.NO.72 73 74 75 76 77 78 79 80 81 82 LINE ANGLE 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 90-0-OR TOWER NAME AP85 AP90 APT100 APT9O APT100 APT9O APT100 AP9O AP9O AP100 DP70 AEICHT 4.50 69.00 75.00 69.00 78.00 69.00 78.00 69.00 69.00 7B.00 5T.00 C.L.HUB EL iBBeuBec 03 PRsb90b2 1992 1450.00 1450.00 1450.00 1450.00 1450.00 1450.00 1450.00 1450.00 1450.00 STATION LOC.q AP.gi §85962,10 687319.10 688669.10 690019.10 691369.10 692719.10 694023.11 695285.12 6-6635.12 697840.00P.S.ELEV 1 rizontal49-G0 sqq'1528.00 1519.00 1528.00 1519.00 1528.00 1519.00 15 1528.00 1501.00 SPAN AHF AD 1 et 0.00 1350.00.1350.00 1350 00 135000 1304 01 12762 01 ane Sof 9 1?04 88 1200 60 APPENDIX E ROUTE MAPS peso aneceenesoneme 9 , a Fa soe 10 fig,123Feameseeaotaaa2sdi\.o£(ANCHORAGEC7)Gull Lake i 28> oF ,:. ey teed tan prea uamreesprecmmreaedbyteSoutofLandFoes§-1 and $14,Somme Marconnames,0 carvUnd,secs wey Oe WRT wermnthsottoweel,as waerpeeind tram sores shengrete.There may ba ornate Shang wine On been ofteMebanaloFStsiaremaratensSewnOnenmee eat ermartant aa,omagueent FOR SALE BY U.S.GEQLOGICAL SURVEYFAIRBANKS.ALASKA 99701.DENVER.COLORADO 80225.OR RESTON.VIRGINIA 22082'A FOLOER DESCRIBING TOPOGRAPHIC MAPS AMO SYMGOLS 1%AVARABLE OM MEQUEST Page1 i a :as GIG18 fANCHORAE 30a WTC esa coo FEET io 888 ofanya WANGHORAGE B-6)Az ELAe WIE oR eee aTOE rye Mapped,edited.and published by the Geatagical Survey SCALE 1:63 360 "* Cores Oy URGE,NOLAIOAA ond UOCE ROAD CLASSINCANION "te,Tesegrety Phone and Ce ee eee ANCHORAGE (C-6).ALASKA 61148-€8-17-083 ia anon afr 1887 e "arsz30°so ROE a4 *OM is oe £ y 'ee i»)rae 4efiyytsNaar ee: Japped.edited.and published by the Geological Survey Conteol by USGS.USCAGS.ana USCE Topagracty by photagremmettre methods {rom nena pholagiaohstanen1949and1987.tld annotated 1960 Map nol held checked Mercator oroyection 1927 North American datum 4 Unvetrsat Traowerse10.000 foot god tased on Alashe coordinate system 10081000meterUniverseFranswerseMercatorgridticks, 1one 6.shown 16 blue Gray land hnes represent unturvered afd unmaried locationsDrecetermnedbytheureayofLandManagement DEcLMATON.1Fatesiand514.Sewers Mencean FOR SALEBYU.S.GEOLOGICAL SURVEY Swamps a portraved sncicate onty the wetter areas,FAIRBANKS,ALASKA,DENVER 28,COLORADO OR WASHINGTON 25.0 C.sully of howe rebel,28 interpreted Irom BeCsat pOLagE AGS 'A FOLDER OLSCANONES TOPOGRAMAC WATE AND $)HAOOMAQUEET 3 %S "pons o0aron ANCHORAGE (C-5).ALASKA wip.AC =WARIO 719022 Page 2 ba 61 ad (ANCHORAGEOMSyTer'Mapped,edited.end publishedbytheGeologicalSurveyConwrelbyUSGSandUSCEGSTepugrasiyiyphonngreveratrcmethodsromsure!chotngremtetater19:48,Fahd srrctoten1948,Mon mo fit chaciaed RSe Red oaorE cone 6,shown9bieLorefinesoriing6grey rapreut omwerneroytheBrenuof CONTOUR INTERVAL 100 FEET :SyOTTEDLetsATERESZNT89FOOTCONTOURapowceimaTetanteeOATUeifsekam$24 LEVEL seapneonat soca FOR SALESYU.S.GEOLOGICAL SURVEYFAIRBANKS,ALASKA OENVER25.COLORADO WASHINGTON25,0 C.4 FOLDER CURCRIENNS TOROGRAPING MAZE AFUE STRIEOLS FO AYRRAMLE CO REQUEST Page 3 ANCHORAGE (D-4).ALASKA6145.14807 5/15%225 1948meecermin 100k ; -:seme eayie mie or ey cee oe ee orem ns , By ane .7 .So ae - ;% eo 7 -oe 7 aan . 2820 0 FUT |atedomay . tal -4 - 4 «we 1 a 'vee -1 7 ;r iH +gett :"- .4 spe ++.a7 *.a ro . .: ,, Morte :Mount .o Morerch cS ; T A L K E T N A Lal oOo uu w T A-1 w +geet ia &2 c a :_: $3 &igz:" é 4 't%"4,ryt%.SiehSatetatetetatataod]Swerve,an covtrayed.ncicateontythewetterofese.UsuallyOfhomrete,an nterDreeeFramsarapNCRCgrREA » \ 4 H 1126! '4 oo ntoee o] .3 <a |20anoFey2.|zom6 :< 'td tee 2 S .% 1 e S 6 a ;- L 2g 000 FET : 2008 5 217 A , SSO oe 190 G00 FEET (Ze 31°as""ANCHORAGE G0)56°TaD =aa ST a >Mapoed.eatted,and oublished by the Geotogical Survey j SCALE 163360 omA:1 smsaControlbyUSGSandUSCAGSos====-==aoe rrcaron Topography Oy chotngrammetne methods Irom aerial ohCtOgrRBAS x a ROAD CLASSI #taken 1948,hed snncnpeny1948,Map cot held hace H A 7 corel MeO mmm UOCitereaseees Uneeriat Franmvere Monster promchon 1927 North Amencen aatum HA 100 FEET ">Sauem Route10.000 toot eau haem on Aussia conronete system sone J and 4 4 corm eae 1000 metre tinsersat Traniverse MercetorgridOch,3 se SarreD mts sermeSEW"S0."OGT Como +Sum fone 6,shown on tue a,. 'Gray land Wren regrenae wmiureeved ond vemeree tecsbone petri na seontheGureayofLandManagomantSccunaton,eae Semen caren ANCHORAGE (D-3),ALASKA Foun S-1.Semere Mernaen SALE BY U $GEOLOGICAL SURVEY W145 W14745/184225FAIRBANKS.ALASKA 99701.DENVER.COLORADO 90225.OR RESTOM.VIRGINIA 22082jOPOGt'A FOLOER i aval Om REQUEST 1948OLOERDESCRIBEAPEANDSYM@QLS15AVANASLEul - Page 4 UNITED STATES.ANCHORAGE (0-2)QUADRANGLEDEPARTMENTOFTHEINTERIORALASKA-MATANUSKA -SUSITNA BOROUGHGEOLOGICALSURVEY1:63 $60 SERIES (TOPOGRAPHIC)e200 a tee 29k NWE 35°'TAUKEETNA MINS 4-21 147722"30" r exoywm:a <fh =»We :=Le SI i "i 7YS\Y hea "x ASG , Ly ENS FAN GS)os Ke =4)GE mn7 eea y xKymt wa N =4ENeeNetonSoSZONE2S=,wn Greek {rhe”sustnsmoaorousemecnamoeonmutinwar7Dag"es L14rag39aOF218OBFEETT Mapped,echied.and pubirshed by the Geologpcat Survey SCALE 1 63360 Comment by USGS snd MOEROAATosograntyty my 10.000-4out Saneon Alesha conrete £3Teasrosesner'Ownae E CONTOUR INTERVAL 100 FEET ae ."®moe -oll J Crromae ChcarTic xT DoT OF1828 *Ramancat 00810 ANCHORAGE {D-2).ALASKAtheprmecteninven5SrmaternrenninandILSmavwresoetawenoneateMEMwashocefolliesRAG!2hAGreytardinesreprengntermurenedandurcertentlcetrens,DLCLINATION,1988 ve by the Breen of Land MenegeeaetprecenareersedFoto$\,Seward ihenanen FOR SALE SY U.S.GEOLOGICAL SURVEY ives FAIRBANKS,ALASKA 99701.DENVER.COLORADO 80225.GR RESTON.VIRGINIA 22092 VMITED REVISIONS 1978 A FOLDER DESCRIGING TOPOGRAPHIC MAPS ANO SYM@OLS 1S AVAILASLE OM REQUEST Page 5 2wy&fete$2 in ia = 2 ='|patBYpometh,29"70a FEET 7 We (ANCHORAGE C-)19°F hw Mapped,edited.ad pwblithed by the Geological Survey SCALE 163360 Controt by USGS and USCAGS P Topagrb0Ry be Chowoprammettic Mathods from ser chow BONS 700 tanen 1943 Map nol held checked ' "z Unewersal Transverse Mercator provaction.1927 North Amencendatum x!4A10000lootgridoxsedonAlaskacoordsetesystem,zone J FI is 1000 meter Universal Transverse Mercator grid UCKS,3 4 2000 6,shown Blut wa CONTOUR INTERVAL 100 FEETSimatommntenucindonrnreagSarreatsTASER"30700"TEE aoreoeverminedbytheBurany-!Land Monagament ¢ woe slhonalahd peneersc ANCHORAGE (D-1),ALASKA Foww'S:1 Sowa Merdlan CR.ora CRS,Capen Rew Hanae spomonniane wean NG 45W 14700/15822.5'Smarnoa,a5 portraves.sncicatecetythewater areas.DECLINATION.FOR SALE BY US.GEOLOGICAL SURVEY i9ae"sublyOfowrevel a5 wiecoreingSram aerit ohotogroohs FAIRBANKS.ALASKA 99701.DENVER.COLORADO 80225.OR RESTON VIRGINIA 22092 warp semicon 1897 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOCS IS AVANABLE ON MEQUEST Page 6 TAINSATAIN:(IALKEETNAMOUNx.neePOMOCiwot147"00' SSS 'aahe 50'VALDEZ €-8)19000 FRET 3s Maoped.edited.and oubieshed by the Geological Surviy SCALE 163360 Control by USGS ond USCEGS 5 es Topageaere by (TeIhOOS From sor pho IONS ae '002 78 0 et se se "ve ree? ni =emomgrameretretangs1948,twig enncuned(969 Map ao ted checkedUnenersatTramiverseMercatorproection1927NorthAmencenaaturh10000fonegridbatedonAlgacoordinatewytiam.zone21000creteJeonersanTransverseMercatorgradIces.fone6 shownonpharLandnenreninUNEreYeE and venartan)leCmEnepreceterrerendOvtheBuranofLanaMenagamentFomosCR4andCR5,Copper River MeexinanSwemnonabODrITyEs.mcncate onty the satter areas.UiueltyOF10mreel ab setaroret rom aenet OnOtagFEOnSToplacaanthepredeciadMothAmaricanDatum1963'ravetheprepectionnds$9 waners nerth one 114 mater est et QUR OMVERVAL oo FEET CEO Ling ELeRE-ENE a S207 comt9UmS sara GEODETIC ORTON,OArUAE sereoumatt wean DECUNATON,1908 FOR SALE BY US GEOLOGICAL SURVEY FAIRBANNS.ALASKA 99701.DENVER COLORADO 80225 OR RESTON VIRGINIA 22092 'A FOLOER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS (9 AVAKAMLE ON MEQUEST Page 7 SURORANOLL LOCATON TE ear ROAD CLASSIFICATION % MOC AY ee eeDSteeRoe VALDEZ (D-8),ALASKASoASW186.37 8/15222 6 1949LtEDetmONE LIL _ Speke-maeRras ----DP raqive nt w ROAD CLASSIFICATION "Le 36 (WaLOEZ 0-4 AND: Mogig™Sue mem |BT Seth - am HET <mmproved ort D State Rowe _t paasaa| §CONTOUR INTERVAL 100 FEET ' * DOTTEDLanesACPRESONT 99 FOOT CowTOURE oe GULKANA (A-5).ALASKAPeetersonanceSevenNaw18061949 FOR SALE BY U.S.GEOLOGICAL SURVEY beaielnatinal FAIRBANKS,ALASKA DENVER 25,COLORADO WASHINGTON 25.°0.C.4 FOLOUR DESCARING TOFOGRAREC APE AND STOOLS 6 AYAKLABLE Oat REQUEST Page 8 -*,foe 3 ?. [7 ”4 !wT Low :i . . 'x i a oe |oR a pe +'VALDEZ O-5 42ND O-@ ore waiSeowronaraw SCALE 162500 .}2 1 +D oy ROAD CLASSIFICATION002oot1009"oe 70 son =om FOR Leertinne dieneTk cntechebes eet i .:?o 7.5 ROTO,©Same Reve CONTOUR INTERVAL 100 FEETDOTTEDGimeMesMESENT90FOOTCostryarentean GULKANA (A-4),ALASKA DECLINATION,1961 N6200-W14530/15030 1951FORSALEBYU.$.GEOLOGICAL SURVEY -_senwn FAIRBANKS,MASKA 9P7OL,DENVER.COLORADO BOZ25,OR WASHINGTON.D.C,20242 Page 9 a 'F % -"'.8 me 4 .a .ei, °D ,as J 2 >é $0 N . in _- :_7 we et =z ewe ?= -_7 : . .'i Z ,,16 $ _-_7 \y¢bm\ENGLOLTAROECONTOUR INTERVAL 100 FEETOOTTEOUMESMEPRESLIT30FOOTCOMFOURS ' mation,CLODENG VERTICA DATUM OF 1970 : FOR SALE BY U.S.GEOLOGICAL SURVEY FAIRBANKS.ALASKA 99701.DENVER.COLORADO $0225.08 RESTON,VIRGINIA 22082 A FOLDER OLICROUNE Tt MAPE AND SYMMOLE 16 AVAHABLI OM MLQUEST -Page 10 2 as A Cel Pa]s 3g ROAD CLASSIFICATION emmcAOE.OFS GULKANA (A-3),ALASKA Ne2COW! APPENDIX F MEETING NOTES OCTOBER -1992 MEETING NOTES OCTOBER 15,1992 O'NEILL TO GLENNALLEN 138 KV TRANSMISSION LINE ATTENDEES: POWER Engineers:Alaska Energy Authority: Stan Sostrom Brent Petrie John McGrew Afzal Khan Dave Eberle Chugach Electric Association Remy Williams Dora Gropp Dick Emerman Mike Massin Tom Arminski Ed Stephens Stan Sieczkowski Matanuska Electric Association Copper Valley Electric Association Jim Hall Clayton Hurless Bob Yluisaker Mike Easley Hart Crowser Jim Gill The meeting was held at the Barratt Inn in Anchorage Alaska.The meeting was opened at 9:30am by Clayton Hurless.Introductions of all present were made. Clayton gave a brief background of the project to date.A previous study completed by POWER Engineers was very preliminary and was intended to determine if any further study was warranted.This study was dicussed at a meeting on September 15,1992.The consensus of those present at the meeting was that there is considerable interest in the line and further study should be done.That meeting also identified some areas of concern in the design criteria used to develop the costs.The POWER study was based on the work done for the Northeast Intertie Study.The line being proposed is smaller than that in the Northeast Intertie Study,some changes to the criteria may need to be looked at.The purpose of this meeting is to define the design criteria needed to develop good cost estimates for the proposed line.Input is needed from all present to develop reasonable criteria and alternates based on experience in the area. $1 AK0017(10/21/92)t20087.01/g1 1 The proposed corridor for the transmission line was discussed in some length.The importance of public involvement early in the process was stressed.The specific areas mentioned as potential landowner problems include the Glacier View area,Chickaloon Native Corporation,Sheep Mountain area and Ahtna Native Corporation.The route should avoid native corporation lands if possible,or at least allow adequate time in the schedule to deal with them.Clayton stated that CVEA fully intends to involve the public at the earliest possible stage and has already scheduled a meeting with the Ahtna Native Corporation.It is also important to stress the differences between the proposed line and the Northeast Intertie.The line is lower voltage and smaller so it should require less right of way and have less visual impact. A group formed during the Notheast Intertie investigation have offered alternate routes in the Glacier View and Sheep Mountain areas.Their concern is visual impact and EMF. The group requested that enough property be acquired that EMF is zero at the edge of the right of way.The alternate routes were not considered in the preliminary study,but should be recognized in more detailed cost estimates. MEA has a distribution line from Sutton to the Glacier View area that could be overbuilt. The line has decent overland access through the potentially difficult Long Lake area.The line is built on a 40 ft right of way,so additional right of way would be required.The distribution line is not in a good location in the Glacier View area.This line is constructed without using piles,and MEA has not experienced any problems. Jim Hall stated that he feels a 100 ft right of way is minimum for a 138 kV line based on experience.The entire right of way should be cleared on the western half of the route. This portion is mostly spruce and cottonwood,some of which are 90 ft tall.In most areas the trees should be stacked and burned in the right of way.The trees should be made available to landowners for firewood in populated areas.Aerial photos of the route may be available to assist in identifying areas needing clearing..Aeromap US may be a good source.Jim Gill will check with them.The cost of right of way restoration should be considered in the cost estimates. The only areas identified as potential avalanche hazards are behind Sheep Mountain and in the Long Lake area.Both of these areas may require helicopter construction. $1 AK0017(10/21/92)120087.01/g1 2 The design criteria that should be used for the line was discussed.MEA's distribution line from Sutton to Glacier View is designed to NESC heavy and uses grade C construction with some class 5 poles.They have not experienced any weather related problems with this line.In this area the lines generally have snow load,but not much ice.The lines unload as soon as wind hits them.The 138 kV line to O'Neill is 397 AAC designed to NESC heavy.MEA has not experienced outages due to wind or ice.In 1979,a 115 mph wind was recorded at the Palmer Airport.Winds in excess of 100 mph are possible in this area,but are,in general,parallel to the line.MEA has a 1600 ft span crossing O'Neill canyon.This crossing is designed to NESC heavy and has encountered no problems. Copper Valley also designs to NESC heavy,but keeps the spans short (300-325 ft).They use 2/0 conductor and class 3 poles.CVEA has seen 5-6 inches of rime ice,but have experienced no problems with broken conductors or poles.CVEA has no information on how quickly the ice disappears in wind.It is generally felt that the active layer near Glennallen could be up to 10 ft deep but varies in depth.CVEA uses 25 ft H-piles and have not seen any jacking on the distribution lines.Some jacking problems have occurred on poles not using piles. Some discussion followed concerning pile construction.It is generally acknowledged that an area where H-piles may be needed,all foundations should be constructed using H piles rather than trying to determine which locations do or do not need them.This eliminates material ordering problems and is more efficient for construction.The contractor does not have to change construction methods,which results in increased efficiency and saves on mobilization costs.It is very difficult to drive piles in frozen gravely soils or if rock is encountered.In these situations,the holes may have to be pre-drilled and slurried. The most common conductor used in Alaska,in the range required for this project,is 556 ACSR.The cost estimates should consider using this conductor rather than the 336 and 636 conductors assumed in the preliminary cost estimates.Some discussion was held regarding the use of vibration dampers and marker balls.The route crosses some flight paths,so marker balls are a consideration.It was mentioned that a version is available that is lighted with energy from the energized line.Vibration dampers will be considered in the cost estimates. Discussion was held regarding the use of braced or unbraced H-frame structures.If H- frames are used in the mountainous area,braced structures are best to maximize spans 51AK0017(10/21/92}120087.01/gt 3 since no ground movement is expected.In permafrost areas,unbraced H-frames may be best to allow for some jacking.It appears that,based on CVEA's experience,it is possible to design for no movement.This may allow the use of braced H-frames and span lengths can be maximized.Consider the use of other configurations,such as three pole structures, where more strength is needed and the possibility of ground movement exists. Structures should be located out of the way of avalanche chutes wherever possible. Conductors should be placed so as to be out of the wind created by avalanches.This may be done by placing them high on avalanche chutes when possible.If avalanche chutes cannot be spanned,consider use of breakaway structures and deadends to minimize damage. Single pole structures lend themselves to helicopter construction better than H frame or guyed X structures.If single pole construction is used,consider the use of vertical post top construction.Avoid construction where one phase is directly above another.This can cause phase to phase faults during snow and ice unloading.MEA turns angles of up to 15 degrees with this configuration on short spans.The use of a static wire is not desirable. The braced V configuration used in the preliminary estimate is more labor intensive. Considering the loaded labor rates in Alaska and the possibility of winter construction,it may be cost effective to use vertical post construction even with shorter spans. Consider tradeoffs in line design.Increased span lengths reduce foundation costs,but increase pole costs.Long span length may make direct imbedded steel poles more cost effective than wood for single pole structures.Increasing spans lengths from 600 to 900 ft could result in poles being 10 ft taller.This could affect visual impact in sensitive areas. Savings on structures may be overshadowed by foundation costs in some cases. Field welding is very expensive and should be kept to a minimum.If steel poles on pile foundations are used,consider alternate methods of connection that do not require field fabrication.No one at the meeting has experience with attached single steel poles to pile foundations.Direct embedded poles or pile foundations should be used.Concrete foundations are extremely expensive.MEA connects wood poles to pile foundations with 4 bolts through the flange.The pole is bolted against the flange to take advantage of the strong axis of the H-pile.CVEA bolts the pole between the flanges and bolts to the web using two through bolts.MEA's connection method may allow the use of smaller piles, although this is unknown at this time. $1.AK0017(10/21/92)120087.01/gl 4 All material required for this project may be acquired through Alaska suppliers,although there may be a problem with steel poles.All material can be ordered FOB job site.Most items will come from the lower 48,but packaged and purchased through Alaska suppliers. Some local suppliers capable of packaging a job this size are Potelcom Supply,Debenham Electric and Western States Electric.Load limits of 75%are in effect during April,May and June and should be considered in the cost estimates. Loaded labor rates in Alaska vary from $85/hour in urban areas to over $120/hour in rural areas.Chugach experienced costs of $120/hour on the Daves Creek Mine.The loaded labor rates include equipment,per diem,travel,etc. Consider breaking the construction of the line into two or more contracts.The section of line from Sutton to Sheep Mountain should be summer construction.Sheep Mountain to Glennallen should be winter construction.May require two winters to complete. December and January are generally too cold and dark to work efficiently.Productivity declines at about -20 degrees.Productivity declines to about 5 hours out of an 8 hour day in the dark of winter.February,March and April are usually the only productive months for winter construction.The amount of existing lodging and the labor pool may not support the use of multiple stmultaneous contracts to complete construction in one winter. AEA may have other major construction projects in progress at the same time.It may be possible to set all structures in the winter and string wire in the spring and summer. Existing lodging is preferable to using man camps even if more driving time is required. Consider one hour driving time each way at the most remote spots.Consider liquidated damages or early finish bonuses as a means of accomplishing construction in one season. AEA requested that geotechnical costs be kept separate from the engineering costs. Geotechnical costs should be kept down and the design flexible rather than locking yourself into a rigid design.It is not cost effective to obtain enough geotechnical data to design each structure precisely.Administrative costs should range from 5%to 10% depending on whether feasibility studies are included.Contingency costs should be 25% since the level of detail is not as good as final design. The configuration used to determine substation costs may be more complex than required. The configuration used requires three additional circuit breakers Circuit switchers may be used in place of circuit breakers.System studies will probably be required to determine the final configuration of the substation.The impact on the existing system such as 51 AK0017(10/21/92)120087.01/gl 5 operating speed,effects on existing generation and duty cycle should be considered. Circuit breaker costs should be $100,000 as compared to the $75,000 used for the preliminary cost estimates. Clayton will discuss the project with his board at the October 21,1992 meeting. Discussions with Alyeska will be conducted to determine interest in a possible interconnection.Their participation could greatly affect the feasibility of the line.Jim Hall stated that MEA could be interested in participating in the project.There is a benefit to MEA from the line to improve service to consumers in the Glacier View area.MEA participation would depend on approval from the management and board. $4AK0017(10/21/92)120087.01/gt 6